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Abstract 

The dynamics of the game world present both challenges and opportunities for AI to make 

a useful difference. Learning smart behaviours for game assets is a first step towards 

realistic conflict or cooperation. The scope this thesis is the application of Reinforcement 

Learning to moving assets in the game world. Game sessions a generate stream data on 

asset's performance which must be processed on the fly. The lead objective is to produce 

fast, lightweight and flexible learning algorithms for run-time embedding. The motivation 

from current work is to shorten the time to achieve a workable policy solution by 

investigating the exploration / exploitation balance, overcome the curse of dimensionality 

of complex systems, and avoid the use of extra endogenous parameters which require 

multiple data passes and use a simple state aggregation rather than functional 

approximation. How action selection (AS) contributes to efficient learning is a key issue in 

RL since is determines the balance between exploiting and confirming the current policy or 

exploring an early less likely policy which may prove better in the long run. The 

methodology deploys the simulation of several AS using 10-armed bandit problem 

averaged over 10000 epochs. The results show a considerable variation in performance in 

terms of latency and asymptotic direction. The Upper Confidence Bound comes out leader 

over most of the episode range, especially at about 100. Using insight from action selection 

order statistics are applied to determine a criterion for the convergence of policy 

evaluation. The probability that the action of maximum sample mean is indeed the action 

of maximum population mean (PMSMMPM) is calculated using the 3 armed bandit 

problem. PMSMMPM reaches 0.988 by play 26 which provides evidence for it as a 

convergence criterion. An iteration stopping rule is defined using PMSMMPM and it 

shows plausible properties as the population parameters are varied. A mathematical 

analysis of the approximation (P21) of just taking the top two actions yields a minimum 

sampling size for any level of P21. Using the gradient of P21 a selection rule is derived and 

when combined with UCB a new complete exploratory policy is demonstrated for 3-arm 

bandit that requires just over half the sample size when compared with pure UCB. The 

results provide evidence that the augmented UCB selection rule will contribute to faster 

learning. TD sarsa(0) learning algorithm has been applied to learn a steering policy for the 

untried caravan reversing problem and for the kerb avoiding steering problem of racing car 

both using negative rewards on failure and a simple aggregation. The output policy for the 

caravan is validated as non jack-knifing for a high proportion of start states. The racing car 

policy has a similar validation outcome for two exploratory polies which are compared and 

contrasted. 
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Keyword definitions 

action probabilities Action probabilities give a direct probability for the selection rule. 

action selection An algorithm which outputs the next action to take. 

action transition 

probabilities 

Given any state and action, s and a, the probability P
a
ss' of each next 

state, s', is: P
a
ss' ≝ ℙ[st+1 == s' | st == s , at ==a].  

transition 

probabilities 

Given any state, s and policy π the probability P
π

ss' of each next state, 

s', is: P
π

ss' ≝ ℙ[st+1 == s' | st == s].  

action value The expected reward conditional on choosing action a and state s. 

action variable Action variables characterise the problem directly from the 

environment. 

actions Actions are behaviours which affect the environmental state. 

agent An entity which can sense the environment and take actions. 

Bellman Optimality 

Equation 
The optimal action value at (s, a) under *, Q*(s, a) is related to the 

expectation conditional on st=s, at=a of the reward rt+1 and the 

discounted maximum over the actions a' of Q*(s', a') at the successor 

state s'. 

bootstrapping A calculation where estimates are updated on the basis of the values of 

successor states. 

complete 

exploratory policy 

A policy whose matrix is positive for every element. 

deterministic policy A policy which yields the next action to take from a given state.  

eligibility traces A learning algorithm which uses an extra parameter λ used to factor in 

a proportion of higher step returns. 

epoch The sequence of outcomes generated by a set of independent random 

variables as a basis for the reward. 

exploitation A process of choosing actions so as to improve its estimate of the 

reward. 

exploration A process of choosing non-optimal actions in order to minimise the 

regret of missing a better set of actions. 

features  Properties of data cases which entail sufficient information for 

learning. 

goal A state or states chosen to achieve the appropriate learning behaviour.  

greedy policy A policy with no exploration and homes in on the first feasible 

solution. 

irreducible  A Markov sequence is where it is possible to get to any state from any 

other state (Takahara and Hall, 2017). 

learning rate The proportion of the error term added to get the next increment. 

Markov Decision 

Process 

An MDP is defined by its state set S, action set A, action transition 

probabilities P, the conditional rewards R, and the action policy π. 

Markov property A property of the environment's response where the value at t+1 

depends only on the state and action at t. 
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Markov sequence The sequence of states and actions, (st, at | t ≥ 0) where at ~ 𝔻[π(st, j), 

j= 1..A(st)] that obey the Markov property. 

Monte Carlo A method that repeatedly samples random inputs, simulates the system 

and collates the output distribution. 

move and turn A discrete approxmation to motion where the vehicle travels to a new 

position in Δt at velocity V in direction αt. Then turns by Δαt. 

Non-Player 

Characters 

Moving assets of all kinds. 

on-policy The distribution of states encountered by the agent is the same as that 

used to update the state/action values. 

optimal action 

value 

The action value of the optimal policy. 

plays to 

convergence 

The first t, tx where the PMSMMPM is greater then a critical value 

PMSMMPM The probability of the action of maximum sample mean being the 

maximum population mean. 

Policy evaluation  An expression which improves the action value given a particular 

policy. 

Policy 

improvement  

An expression that uses the current action values to obtain a new 

greedy policy. 

policy matrix The probability for choosing an action given a particular state. 

policy search A process of seeking a policy solution directly by maximising the 

objective function of RL. 

positive recurrent  A state s is called positive recurrent if the expected amount of time to 

return to state s, given that the sequence started in state s has finite 

expectation (Sigman 2006, Proposition 2.2).  

Q-learning A learning algorithm that uses an updated target based on the current 

approximation to the optimal Q. 

reference reward A variable that tracks the long run mean value.  

Reinforcement 

Learning 

RL, a tried and tested method of machine learning. 

return The discounted sum of the total rewards.  

reward A numerical measure of the achievement of the agent's goal. 

round robin The selection of each action in turn.  

state A sufficient statistic of the environment which entails all the 

information needed for learning. 

state index The state index is an index combining all of the state variable indices.  

state path The sequence of states embedded in a Markov sequence. 

state space The state space is the tuple of all the state variables. 

state value State value is the expected reward conditional on choosing a particular 

state 

state variable State variables characterise the problem directly from the environment 
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state variable sub-

range 

A small contiguous part of the range of a state variable. 

state region A multidimensional hypercube whose edges are sub-ranges of all the 

state variables and which correspond to a state index. 

stationary in 

distribution  

The joint distribution of signals at a set of distinct time points is the 

same as the joint distribution as those at time point displaced by any 

positive integer (Takahara and Hall, 2017). 

steady state 

solution  

a situation where the state variable do not change with time. 

supervised learning A learning process which is directed towards target examples. 

Temporal 

Difference 

A learning process which is driven by changes in temporally 

successive predictions. 

trial-and-error A search process which embodies selecting actions based on 

maximising the best information so far and using the error from the 

expected successor state to improve subsequent selections. 

ϵ-greedy A selection rule that choses the action of maximum reward with 

probability 1− ϵ and choses a random action otherwise. 
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 Problem formulation and motivation Chapter 1

 AI in the games context 1.1

The task of human learning is highly diverse, multi-layered, and dynamic. It is diverse 

since it ranges from motor skills, e.g. walking and running, literacy and communication 

skills, numeracy, erudition, problem solving and planning to high levels of abstraction. It is 

multi-layered since higher learning like erudition depends on good reading skills. It is 

dynamic since circumstances in the real world change, new knowledge needs to be 

acquired, existing knowledge reviewed. Lastly it is embedded in a society that has a history 

of past learnt experience. 

This Ph.D. is motivated by the sustained need to make Non-Player Characters(NPC) more 

intelligent, context aware and engaged with the game play, rather than static or at best 

reactive with limited behaviour. NPCs include opponents, buddies, weird animals and in 

this thesis moving vehicles. It is rare to see some common sense behaviours satisfactorily 

implemented. Indeed the next generation will need to show empathy and work hard to 

optimise the player game experience (Lucas, 2009). This marks a departure from the recent 

drive of just getting game characters cleverer. “There is a gulf to be crossed in making 

learning work well within commercial video games where it needs to be rapid, robust, and 

highly flexible – essential more human like” (Lucas, 2009). Tom Scutt stresses the inherent 

dramatic context and character based behaviour that makes NPCs plausible and even 

interesting (Scutt, 2009). Among the many desirable attributes for a NPC, learning from 

the game context was chosen as an important step towards this ambitious aim. Machine 

learning with its focus on experience appears as the place to start. A widely quoted 

definition of machine learning has been proposed: "A computer program is said to learn 

from experience E with respect to some class of tasks T and a performance measure P if its 

performance at tasks in T, as measured by P, improves with experience E"
 
(Mitchell, 

1997). In addition, several threads of investigation in machine learning offered potentially 

useful tools, the most tried and tested was Reinforcement Learning(RL). This claim is 

justified in terms of its origins, relationship to neighbouring approaches and breadth of RL 

applications. 

 Reinforcement Learning as a candidate machine learning tool 1.2

Reinforcement Learning was originally termed hedonistic learning and understood as "a 

system that wants something from an environment" (Sutton and Barto, 1998). In the 

natural world a lot of basic skill learning is done without a teacher but by a process of 

discovery and post experience analysis of consequences. RL introduces a simple goal 
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orientated agent which can sense the environment and take actions or behaviours, which 

affect the environmental state. The state is a sufficient statistic of the environment and 

entails all the information needed for learning. 

The twin features of trial-and-error search embody selecting actions based on maximising 

the best information so far and using the error from the expected successor state to improve 

subsequent selections. The environment yields a numerical reward at each step to indicate 

the extent of the achievement of the agents goal. The goal has been chosen to achieve the 

appropriate learnt behaviour. The return is a discounted sum of the total rewards the agent 

receives after a sequence of actions. The RL task is to find that policy which maximise the 

return and thus learns the appropriate behaviour. 

In contrast to supervised learning, where learning is directed towards target examples, RL 

is able to learn behaviour and choose actions in the light of the achievement of its goal 

(Barto and Dietterich, 2004). RL can chose actions based on what has been learnt so far so 

as to improve its estimate of the reward, called exploitation, or systematically try non-

optimal actions in order to minimise the regret of missing a better set of actions, called 

exploration. Exploitation and exploration are intertwined. In order for exploitation to be 

productive the best actions must first have been discovered. In order for further exploration 

to occur the agent must be able to make a number of successful actions to reach an 

unexplored region. 

RL is a useful paradigm for NPC learning and has inspired the work of Microsoft Research 

Lab, Cambridge (Graepel, 2005). It can offer some basic learning much earlier by a 

process of bootstrapping where estimates are updated on the basis of the values of 

successor states, and dynamic averaging. RL offers relatively simple update algorithms to 

the decision parameters based directly on the data stream as it arrives and so is feasible at 

run time. RL contrasts with sophisticated maximum likelihood or Neural Network 

approaches because they require extensive off-line computation before any outputs are 

obtained (Funge, 1999). 

 Brief History of RL from a critical appreciation of the literature 1.3

This section collates some of the key developments in RL approximately grouped by date 

order. RL is the outcome of several threads of research coming together. Bellman's (1957) 

work on optimal control in late 1950's using a notion of a system's state and a reward 

function, proposed the classic Bellman Equation (Bellman, 1957), and its stochastic 

version based on a Markov Decision Process (MDP) (Sutton and Barto, 1998). An MDP 

has a useful property that the environment's response at the next step depends only on the 

current state and action and not on any past state and action. Bellman's work did not 
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address the fact that most interesting MDPs do not have their internal structure accessible 

and the solution requires an iterative stochastic optimisation using sampling from 

trajectories in the environment to generate estimates of the expected reward. A trajectory is 

the trace of movement in the environment as an outcome of a simulation. Implicitly Sutton 

and Barto (1998) regard the incremental approach to the solution of a black box MDP as a 

metaphor for a learning by a process of repeated approximations. 

Thorndike's (1911) law of effect linked trial-and-error learning with behavioural 

reinforcement depending on a positive or negative outcome and laid a foundation on 

"exploration as a route to discovery" exploited to this day. The trial-and-error is selectional 

in that alternatives are tried and a selection is made based on a comparison of their 

consequences. Minsky (1961) made the link to the credit assignment problem which seeks 

to assign one or more of a sequence of action decisions to the final credit/blame for 

improved / reduced reward. Such a result would provide the basis for selecting the best 

action decisions. The landmark pole balancing system studied by (Michie, 1974) and 

reworked by Barto et al. (1983) provides a useful example of learning a task under 

incomplete knowledge and shows an early departure from "simulated neural networks". 

Widrow, Gupta, and Maitra (1973) modified the Least Mean Squares algorithm of Widrow 

and Hoff (1960) to produce a RL rule, described as "learning with a critic" instead of 

"learning with a teacher." "Although the hypotheses on which the model is based do not 

perfectly fit Blackjack learning, it is applied heuristically to predict adaptation rates with 

good experimental success". Whilst many learning researchers focused on supervised 

learning, Klopf (1982) with his novel but experimentally untested view that neurons "seek" 

excitation and "avoid" inhibition, was most responsible for reviving the trial-and-error 

thread to RL. 

Sutton and Barto (1998), rehabilitated the notion Temporal Difference (TD) learning where 

learning is driven by changes in temporally successive predictions, known as the TD error. 

The TD error is used mostly in psychology but the language was adopted in early 

neuroscience models, (Gelperin, Hopfield and Tank, 1985). The components to one-step 

TD learning include for each step of the agent: 

 an action selection usually based on the current action value table, Q; 

 a simulation or experiment to generate the next step, next state and reward; 

 calculation of the TD error which is the reward at the current step plus the 

discounted current Q value at the next step less the one step Q value; 

 a new Q value for the current state based on the TD error factored by the learning 

parameter. 
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The output of TD learning is either a deterministic policy vector which yields the next 

action to take from a given state or a policy matrix which gives a probability for choosing 

an action given a particular state. By 1983 Barto, Sutton, and Anderson (1983) embedded 

TD in trial-and-error learning, called the actor-critic architecture, and applied it to the 

landmark pole balancing problem. Actor-Critic has been revised by both Sutton and Barto 

(1998) and Silver (2014). Actor-critic methods are TD methods that have a separate term 

to explicitly represent the policy (actor) independent of the value function (critic). The 

actor is modelled by a contemporaneously but separately leant policy vector which yields 

the next action to take from a given state. The actor uses the TD error as an input. The 

critic is the estimated long term reward using the consequences of actions taken and 

provides the TD error. Although an additional learning parameter is introduced for the 

policy vector, it does offer the modelling flexibility of a different learning rate, and a 

graceful feature of providing an improving policy from the outset. 

The sampling of states for estimation can be either on-policy or off-policy in relation to the 

reward sequence generated from the using policy π. On-policy means that the distribution 

of states encountered by the agent is the same as that used to update the state/action values. 

On-policy state sequences are easier to generate and have better convergence results. In 

contrast in the off-policy case the policy used to generate behaviour, called the behaviour 

policy, may continue to sample actions unrelated to the policy that is evaluated and 

improved (i.e. being learned), called the estimation policy. Off-policy estimation has not 

been attempted in this study. 

In 1989, Chris Watkins (1989) introduced Q-learning which integrated all the threads of 

RL. Watkins Q-learning uses an updated target based on the current approximation to the 

optimal Q, which is independent of the current behaviour policy being followed for step 

generation. Watkins Q-Learning is off-policy in the sense that the action selection policy is 

unrelated to the learned action value function that is evaluated and improved. Chris 

Watkins considers conditions for convergence in detail but does not look at the 

operationally difficulties for larger state action spaces. 

Monte Carlo estimation has been used since the 1940's usually for systems that are 

intractable and is a mature method that repeatedly samples random inputs, simulates the 

system and collates the output distribution. In this case it simply derives the average return 

for each visited state for a set of episodes. An episode is a finite sequence of consecutive 

states ending with a terminating state, and which correspond to some natural finish in the 

real world. Since each episode must run to completion before the return is obtained there is 

a higher computational demand but this pays for several advantages: each state estimate is 

independent since no bootstrapping occurs, rewards are processed immediately so they can 
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be used directly for learning. Results compare favourably with the best TD, Tesauro and 

Galperin (1997). 

Most interesting processes are continuous in time and because the continuous time version 

of RL presents difficult equations the approximation of discrete time intervals is used. 

CEWDoya (2000) compares the discrete time and continous time formulations of the 

classic cart pole problem. Normally the time interval has to be small in relation to 

dynamics of the system for accurate modelling. However the reward may occur at an 

arbitrary number of steps, n, later. If such an n is known, TD could be designed using the 

n-step (Sutton and Barto, 1998) return rather than the one-step return above. Eligibility 

traces introduces an extra parameter λ used to factor in a proportion of higher step returns. 

It provides a parameterised bridge between a Monte Carlo approach (λ = 1) and TD(λ = 0). 

If the task is known to be non-Markovian or there are many steps per episode then eligibly 

traces produces significantly better results. However it does require a sequence of 

experiments to determine the optimal λ for any particular problem and there is a extra 

computation premium in updating all action values at each data step. 

Since 2002 progress on RL has been a story of refinement and scaling up to larger more 

challenging complex domains. 

Scaling up the number of Q values for a dimension, as particularly required where a 

continuous domain is modelled using a discrete number of ranges, rapidly leads to very 

large Q value matrices, each element requiring statistical estimation. The estimation task 

grows exponentially as the number of dimensions grows, an example of the curse of 

dimensionality foreseen by Bellman(1957) and a common problem across machine 

learning. For example a discrete approach to backgammon needs 10
20

 states (Tesauro, 

1994). 

Function Approximation (FA) gives an approximation to action or state values by using a 

considerably smaller set of orthogonal domain features each associated with a state and 

presumed to entail sufficient information for learning. A corresponding set of parameters is 

optimised to produce an approximation to each action value that satisfies the minimum 

squared TD error. Features share the properties of independent variables similar to those 

used in statistical regression. In principle any parameterised function can be used. In 

particular Neural Networks can represent any continuous function as deployed in TD-

Gammon (Tesauro, 1994) subsequent to which considerable effort in FA has been 

undertaken with mixed results (Kober, 2013). FAs which are linear in features and 

parameters have the most useful mathematical properties and the most stable results, Silver 

(2014). The drawbacks include operationally the need to store and retrieve a feature vector, 
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and theoretically need for a non-learnt principle to guide the selection of features. 

However, as noted by Sutton and Barto (1998) of paramount interest is the optimal policy 

and not the best fitted action value. 

The importance of addressing the problem at the episode level obscured the potential of 

using the step wise information to construct a model of environment, information which is 

thrown away after a Q update. Given a state and action the model aims to yield the next 

state and the reward either as a sample or as a distribution. Such models were used in the 

Bellman calculations. Normally the model is a unknown and it has to be learned using 

regression or a nonlinear function of inputs to outputs. Sutton and Barton (1998) 

demonstrated the Dyna-Q architecture which uses Q-learning, updates the model, adds N 

repetitions of the current model deployed from a random state and using the generated 

successor states applies N Q updates. They show an order of magnitude improvement with 

a toy maze problem of 63 states with 4 actions. Dyna-Q offers the advantage of leveraging 

past information to augment the step wise simulation when that is expensive. Sutton and 

Barton (1998) anticipated many current developments: partially observable MDP, state 

aggregation, trajectory sampling, modularity and hierarchy in problem decomposition 

some touched on below. 

Forbes, building on his work with the Bayesian Automated Taxi project (Forbes et al., 

1995), deploys RL to successively improve vehicle driving control policies through 

experience and feedback from the environment. The driving challenge is particularly 

difficult because the control variables are analogue, the multivehicle context presents a 

vast number of configurations and all kinds of road topology must be followed safely. He 

uses a two level decision theoretic architecture combining trip planning to identify routes 

with low level lane selection and speed control. At that time real time sensors were 

insufficiently reliable and so development was limited to a simulation environment. 

Addressed are several deficits of classic RL approaches: the curse of dimensionality which 

renders the tabular Q values too large for real time learning with continuous variables; the 

sampled state action space for on-policy is locally non-stationary with long periods of 

highway driving interfering with short periods of urban driving. Estimates suffer from that 

similar to over fitting in neural network models. 

Forbes proposes an action value FA to Q values (Forbes, 2000). Rather than using features 

he stores each visited state and action with its current Q value estimate in a database. His 

Instance Based Learning (IBL) achieves lookup by using kd trees, which are binary trees 

that store k-dimensional data Bentley (1975). Instance averaging and instance deletion are 

used to keep the bound on database to a prudent level. The standard TD has an extra last 

stage: Take the current action to get the next state, calculate the next action based on ϵ-
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greedy selection, calculate the TD error, update the state action Q values of the neighbours 

using the gradient ascent derivative of the weighting function and store the new Q value 

for the current state and action. Database query and update mechanisms are used to retrieve 

and update Q values. 

Clearly a scaling up issue is finding the best sampling strategy given the vastness of the 

state action space. Forbes uses a sample approach that may be considered off-policy in the 

sense that action values used for Q estimation are in a different proportion that encountered 

in the input data stream. Forbes suggests that IBL will contribute to algorithms that 

complete in limited time, a requirement reinforcing an important objective of this thesis. 

Jones and Crowe (2014) deploys a similar off-policy approach by re-using selected past 

data on failed trajectories to validate and if necessary alter the exploration and learning 

rate. The motivational principle is to focus learning where it is most effective and not 

necessarily the most recent. In general off-policy learning has more difficulty showing 

convergence if it is uncertain that all states will be visited. 

Policy search was motivated by seeking a policy solution directly by maximising the 

objective function of RL rather than indirectly using large action values. The policy vector 

FA comprises of a differentiable function of features for each state action pair and a 

corresponding set of parameters to be optimised. The objective function is couched as the 

average reward per time step and can be constructed in terms of the policy vector, the 

stationary distribution of the Markov sequence and the average reward for each state action 

pair. The incremental update of the policy parameters using the gradient of the objective 

function produces the most stable improvement and also fits in with the iterative solution 

of RL. 

Gradient methods to implement policy search include finite differences and likelihood 

ratio methods. A important requirement is the existence of a score function defined as 

gradient of the log of the policy vector. Silver (2014) generalises the expression for the 1-

step gradient to the policy gradient theorem of the multistep MDP as the expectation of the 

score function and the action value for a particular state action pair. The classic TD 

learning algorithm above now has an added step for the policy vector update using an actor 

learning rate, the score function and the action values. 

Policy gradient estimate is statistically inefficient and Silver (2014) introduces a critic in 

the form of a linear action value FA which uses a second set of adjustable parameters for 

the true action value. The classic TD learning algorithm above now has a further added 

step for the policy vector update using a critic, the TD error and the gradient of the linear 

action value FA . He present further refinements to these updates to mitigate the bias in the 
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policy parameters estimates, and introduces a compatibility constraint on the action value 

parameters and score function parameters. Silver (2014) has shown success by several 

orders of magnitude with a deterministic policy for several bench mark problems including 

high dimensional bandit and octopus arm of 20 actions and 50 state dimensions. 

The use of endogenous parameters whether for less bias from the choice of time step as in 

the case of eligibility traces or the use of a constant α on the assumption that the reward 

processes might only be stationary in the very long term, require several passes over the 

data stream incurring addition data management resources. 

The curse of dimensionality of complex systems generates a large number of actions 

values as the number of states expands as the product of the number of regions for each 

dimension. Each action value requires sufficient data to get statistical efficiency which 

motivates choosing the minimum state and action variables as necessary. The more 

powerful methods of policy search introduce further steps which are likely to be 

computationally more demanding as well as requiring decisions on underlying feature 

spaces for functional approximation. The games world requires multi-context applicability, 

few tuneable parameters and statistical efficiency for fast learning. This thesis will 

investigate how simple learning algorithms can be augmented to achieve rapid learning 

with relative little extra demand. 

 Landmark applications 1.4

Embryonic RL was introduced by Samuel checkers program (Samuel, 1959) who was 

probably the first to publish the term machine learning. A look ahead search was used to 

obtain a value for the current board position. The best move was based on a minimax 

procedure which assumed the opponent would always choose the minimum score. Rather 

than a modern evaluation function he used first a memoising of past board positions and 

then added a piece advantage index. Samuel was mainly concerned with how to generalise 

the evaluation function by adding board properties used at each self-play update. Samuel's 

checkers player did "better-than-average" play and was widely recognized as a significant 

achievement in artificial intelligence and machine learning. 

RL has been applied to a wide variety of physical control tasks (Bernstein, 1927). One 

such task is the acrobat, a two-link, under actuated robot roughly analogous to a gymnast 

swinging on a high bar. The first joint (corresponding to the gymnast's hands on the bar) 

cannot exert torque, but the second joint (corresponding to the gymnast bending at the 

waist) can. The RL task is to determine the choices to the acrobat as to when to apply 

positive /negative or zero torque to his waist using his legs. 



  Page 19 

RL’s major success with TD-gammon established it as a dominant approach to automated 

learning in an uncertain environment (Tesauro, 1994). Backgammon is a turn taking board 

game for two players. Each player aims to be first to move their checkers around the board 

to their home position and then to remove them to the side. Moves are directed by dice 

throws. The skill is the choice of which checkers to move at any time. TD learning receives 

an input from a representation of the Backgammon board and produces an output move. 

Because the number of board positions is enormous a Neural Network is used to process an 

input pattern into a state value FA. State value is the expected reward conditional on 

choosing a particular state. TD-gammon also introduces a reward delay using eligibility 

traces. The Neural Network is updated every learning step and a heuristic parameter λ is 

used to implement the delay. TD gammon was trained using a self-play protocol where an 

improved policy was developed from an "opponent" using the previous one. TD-gammon 

shocked the Back gammon elite players with par performance at the 1992 World Cup 

Backgammon tournament and provided an alternative to an opening gambit that had stood 

for 30years. Tesauro admits ignorance and surprise that TD Gammon learns so well, he 

conjectures that the dice rolls force sufficient exploration which no evaluation function 

would carry out. 

The complex and open-ended context of modern video games requires real time learning 

by both players and game characters to achieve interesting game play. Graepel reports on 

the use of RL techniques to martial arts fight games. Often the moves are repetitive and 

implausible. By using a state-action formulation Q-learning (Peng & Williams 1996) with 

a reward to minimize hurt in both players he generated evasive and minimally aggressive 

play (Graepel, 2005). 

Microsoft has put over a million pounds into applying RL methods to the solution of Go 

(Graepel, 2005). The goal of Go is to gain territory and take prisoners on a 19x19 board of 

black and white stones. Unlike chess there are over 200 moves per turn, strong global 

interaction which prevents local search, and difficulty in defining a good evaluation 

function. This work was superseded by the success of Monte Carlo Tree search combined 

with the use of the Upper Confidence Bound (UCB) to give par performance against Go 

masters (Enzenberger & Muller 2009). The breakthrough came in in April 2017 when 

DEEPMIND's alphaGo earned a Dan 9 victory over Mr Lee Sedol the strongest Go player 

in the world. Its innovative play overturned 100 years of received wisdom. The Go engine 

employs advanced tree search to model moves and a neural network to model the board 

input all embedded in a 'learning from mistakes' process here known as reinforcement 

learning (Hassibis, 2017). Demis Hassiabis co-founder of Deepmind commented on Desert 

Island Disks, in May 2017 (Hassibis, 2017b). "The most exciting breakthrough (in AI) 
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from our perspective is combining two different areas of AI together, there is one area 

called deep learning that uses a neural network to mimic what the brain does… And then 

the second part called reinforcement learning is about decision making. Given a model of 

the world and how it works then how do you use that model to make decisions?" (Hassibis, 

2017b). . 

 Scope of thesis and objectives 1.5

The scope this thesis is to demonstrate the application of RL to moving assets in the game 

world to achieve realistic NPC learning for control. The particular constraints of 

engineering for games include algorithms that can provide a timely solution, have efficient 

learning gain from a single data steam and do not make large computing demands. The 

work first addresses the problem of exploration using the single state n-armed bandit 

problem. Although much studied it provides a simple controllable work bench on which to 

investigate selection strategies because it isolates the problem of exploration verses 

exploitation from the added complexity of choosing the state to state sequence in the 

course of maximising the reward. In parallel to this the focus is on finding a suitable case 

study and problems are looked at which are relevant to a range of games and which do not 

involve a disproportional large engineering effort in relation to the learning task. Next the 

dynamics of moving assets in the games world are studied in particular how to learn the 

steering task. Among the pattern of examples studied by Sutton and Barto (1998) and 

others a significant proportion are 2D spatial tasks and vehicle control e.g. race track 

driving, ship manoeuvring, orienteering, robot navigation, grid search and traversal, all 

presenting an inviting context for demonstrating learning algorithms. This is of relevance 

since there are hundreds of steering games on the market. Of interest to games designers is 

the interaction of ensembles of 'vehicles'. Graepel (2005) notes that game-based racing car 

teams follow like pearls on a string rather than jostle for overtaking / blocking moves. 

Craig Reynolds (1987) has a whole list of multi-vehicle behaviours which would need 

learned responses to specific contexts like arriving, queuing, avoiding and crowding 

following. Bevilacqua (2012) provides an online tutorial on modelling steering behaviours. 

Subsequently the reversing caravan problem is explored since no studies from a learning 

viewpoint could be found on line. This work seeks a learnt steering policy which achieves 

a stable turn using the current steering angle and car-trailer angle as state variables and the 

action variable comprised of small changes in the steering angle. State and action variables 

characterise the problem directly from the environment. Jayakaran (2004) has offered a 

dynamic systems approach to the equation of motion and uses it to build a physical model 

with an additional trailer steering contol unit. 
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Five objectives are proposed as a guide to investigation: 

Objective 1.0: Show how action selection contributes to efficient learning 

From its earliest formulation to the present day the notion of exploration and exploitation 

remains an important issue discussed under various slogans: trial and error (Klopf 1982), 

learning from mistakes and test and learn. This objective drives the investigation into 

action selection, a key element of RL, because it implements how the balance of effort 

between exploitation and exploration can be made effective for learning. 

Objective 2.1: To exploit and develop the implications of RL learning algorithm for the 

reversing caravan and its generalisation to related movement tasks. 

The reversing caravan is an original problem from the RL viewpoint and provides a 

realistic example to study the effectiveness and limitations in the game context. It serves 

typical example of a nonholonomic vehicle manoeuvring under limited control. 

Objective 2.2: Applying other known solutions to the reversing caravan problem. 

This will provide a basis for cross comparison with classic solutions and establish the 

validity of the discrete simulation. 

Objective 3.0. Explore and demonstrate the wider application of learning in games. 

This objective builds on 2.1 and addresses another case study which looks at a more 

demanding dynamic task. In particular the focus is on steering to a target, e.g. Snake 

Domain (Silver, 2004, Lecture 7). 

Objective 4.1: To produce fast, lightweight and flexible learning algorithms suitable for 

run-time embedding in current games. 

The game engine requires fast algorithms that are both statistically efficient and have 

modest demands in terms of CPU and memory resources especially for mobile 

platforms.The games context requires a useable if approximate policy early in the session. 

A learning algorithm is considered fast if a usable policy can be obtained to a given 

probability even though the action value estimates are still converging. This in turn 

motivates investigation into the statistical properties of the policy expression. A fast 

algorithm will be eager in the sense that estimation will work incrementally from the first 

data item unlike Monte Carlo (Rubinstein and Kroese, 2017) which needs the complete 

input data. 

A lightweight algorithm will not have any parameters that need pre optimising for either 

exploration e.g. UCB has none, Kocsis and Szepesvári (2006) , or learning parameters e.g. 

sample average has none (Sutton, 1998). 
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A flexible algorithm will be generalizable to many kinds of moving assets which preclude 

the use of FA since it requires asset specific domain features. 

Objective 4.2: To explore at least one of the key theoretical problems arising from current 

theoretical advances. 

4.2.1. Determine a convergence criterion that achieves a specified level of probability. 

The early investigation covers the efficiency and interrelation of exploitation, exploration 

and action selection, since these determine the accuracy of output results. The experiments 

using n-armed bandit simulation for several selection rules show considerable variation of 

performance as the sample size for learning is increased. The latency, rates of increase and 

asymptotic limit show considerable differences and are still trending at samples of over 

10
4
. Some published work need vast data sets which are impractical for deployment in 

games engines. A neglected issue with several case studies is how to decide that learning 

has converged to a measurable criteria. Thus optimal selection is crucial to achieve useable 

estimates within a given samples size. The bandit problem has been revisited and a 

variance based measure for the convergence is proposed which also has the bonus of 

providing a more efficient exploration policy.  

4.2.2. Investigate the properties of state aggregation. 

State aggregation is trivial form of FA (Forbes, 2000) where each feature is a region of the 

aggregation. The feature value is 1 if the state variables lies in the region and zero 

otherwise and the feature parameter is just the Q value for that region. 

4.2.3. Construct a single measure of convergence based on the measure for each state. 

The n-armed bandit criterion for convergence of 4.2.1 is only applicable to one state. 

Multistate convergence requires a single measure which takes into account the relative 

importance of some states over others. 

Objective 5.1: To investigate and develop metrics for the validation and evaluation of the 

performance of RL algorithms using a standard set of simulated problems. 

The aim of validation is to check that the learning performance measures what was 

intended. Also a much more efficient validation test is proposed which avoids large 

random data set. In this context the output policy is simulated against a standard set of 

input data and the corresponding behaviour assessed for correctness. 

Objective 5.2: Demonstrate and visualise the learning progress. 

Both the learning and validation simulations are to be visualised both as static 2D graphs 

and as animations. The former will provide insight into the impact of exploration. The 
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latter will yield insight into the relationship between the RL reward and the shape of the 

learnt behaviour. 

Appendix 3 shows a graph of the relationship of objectives to chapter and section 

headings. The first objective is to understand how actions are selected in a one state 

system. It is useful to focus on just the selection of a best action from a single decision and 

use a system which avoids the issue of locating the reward among sequence of decisions. 

The next chapter introduces the n armed bandit problem which provides a good work 

bench for the study of action selection.  
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 Bandit based exploration / exploitation Chapter 2

The task of this chapter is to follow though on objective 1.0 and to investigate the 

effectiveness of several implementations of action selection. Action selection is a key issue 

in RL since it contributes to efficient learning by determining the best balance between 

exploitation for improved values and exploration for ignored values. The much studied n-

armed bandit problem (Berry etal, 1985) is analogous to a slot machine but with n arms 

instead of one. Each play of an arm spins the dials and yields one of the jackpots. From the 

n arms to choose from the player faces the problem of learning from trials which arm gives the 

best jackpot. Here a play is generalized to an action and the jackpots correspond to the 

rewards. The action value of an arm is the expected value of the reward for choosing that 

arm. The solution followed below is to estimate action values using iterative sample 

estimates through a sequence of plays. CEWAn alternative evolutionary approach is 

followed by Koulouriotis and Xanthopoulos (2008) which is particularly appropriate for 

the case of non stationary rewards. 

 Action value estimation methods and action selection rules 2.1

At the start of a play an action at is selected from a set of A actions [1, 2,.. A]. At the 

completion of the play at a reward rt is obtained. The jth selection of a particular a occurs 

at time i(a, j). The number of times a has been chosen in time interval [1..t] is k(t, a). The 

population action value and sample average of the reward for choosing action a are 

respectively (Sutton, 1998): 

(2.1.1) Q*(a) ≝ 𝔼(rt | at == a), 

𝔼(R| C) denotes the expectation of R over its distribution condition C. 

(2.1.2) Qt(a) ≝ (1/k(t, a) Σj=1 
k(t, a)

 ri(a, j) 

The core framework for learning the Bandits problem is to carry out a sequence of T 

independent plays. At each play t the action selection rule is deployed, a reward generated 

which has a random component, the action value expression updated and the number of 

successful plays are accumulated. The random component is based on based on T 

independent random variables rT = (rt | t=1..T) ∈ ℜT where ℜT is a T dimensional space of 

real numbers. An epoch is the sequence of outcomes generated by a set of independent 

random variables as a basis for the reward. The true value of any performance statistic p is 

𝔼rT[p]. Using many epochs will control for any particular effect of the reward distribution 

for rt. In practice a sample of X epochs, each with an independent rT are generated and 

averages taken of p over all samples. 
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The performance statistic is the proportion of plays that choose the optimal action for a 

given epoch. The optimal action is that action which yields the maximum reward. At the 

end of each experiment of X epochs the average of the performance statistic is calculated 

as a percentage. The final output is the %optimal action, as function of episodes of T plays 

for T=2 to 10000, and of the learning parameter ζ. 

The incremental update is known as the sample average method for estimating action 

values and becomes: 

(2.1.3) Qt(a) = (1/k(t, a))Σj=1 
k(t, a)

 ri(a, j) = (1/k(t, a))( ri(a, k(t, a)) + Σj=1
k(t−1, a)

 ri(a, j) ), for a == at 

= (1/k(t, a))( ri(a,k(t, a)) + (k(t−1, a))Qt−1(a) ), 

= (1/k(t, a))( ri(a,k(t, a)) + (k(t, a) – 1)Qt−1(a) ), 

Now since a == at, then i(a, k(t, a)) = t since the last time a is chosen it is t. 

= Qt−1(a) + (1/k(t, a))( rt − Qt-1(a)) 

The action selection rule is an algorithm which outputs the next action to take. The action 

value expression shows how the sample mean is calculated. The pseudo code below shows 

the algorithm used for all the learning methods of this chapter but with the appropriate 

action selection rule and action value expression embedded in the learning parameters, 

epoch and play loops. This section and sections 2.3 – 2.7 shows and compares the % 

optimal action for five alternative selection rules. 

#loop over a learning parameter ζ, ranging from ζ1, ζ2,.. ζZ 

for ζ = ζ1, ζ2,.. ζZ 

 set learning parameter ζ 

#loop over epochs 

 for x = 1:X       

  CountOfCorrect actions(x, t) =0 

#Set Q*(a) to a standard normal deviate 

  Q*(a) ~ ℕ(0, 1)  

#Find true best arm    

  a* = arg max-with-random-tie-break(Q*)  

  Q=0 

#loop over plays 
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  for t = 1:T      

   Deploy action selection rule for at 

#Select the reward as a normal deviate of mean Q*(a) 

   rt ~ ℕ(Q*(a), 1) 

   Update action value expression for Q 

   CountOfCorrect actions(x, t) =+ (at == a*) 

  end t 

 end x 

 %optimal action(ζ ,t) = Σx CountOfCorrect actions(t, x) /X 

end ζ 

The action selection rule below is ϵ-greedy which choses the action of maximum reward 

with probability 1− ϵ and choses a random action otherwise. The ϵ-greedy is designed to 

achieve both exploitation and exploration. The function maxWithRandomTieBreaks 

selects uniformly randomly the Qt(a) any a for which Qt(a) which is maximal. This 

extrapolates to the extreme case when the rewards of all the actions are identical. So the 

degeneracy in two or more tied actions is solved by using a random selection to provide 

feasible at and can be regarded as another component to exploration. For example if Q(1)=1 

and Q(2)=1 and all other Q values were 0 then the function select action 1 and 2 with 

probability of 0.5. The tables below (2.1.1), (2.1.4),.. present for each learning algorithm the 

action selection rule and its corresponding action value expression. 

(2.1.4) action selection rule (2.1.5) action value expression  

if(ρ <= ϵ ) ρ ~ 𝕌[0, 1], ρ a uniform deviate 

 at ~ 𝕌[0, A] #𝕌 the uniform distribution 

else 

 at = arg maxWithRandomTieBreaksa Qt(a) 

endif 

Q0(a0) initialised, k(0, at) =0 

rt ~ ℕ (Q*(at ), 1) 

k(t, at) = k(t −1, at) + 1 

Qt(a) = Qt-1(a) + (1/k(t,a))( rt − Qt-1(a)) 

Qt(a') = Qt-1(a'), ∀ a' # at 

k(t, a') = k(t-1, a'), ∀ a' # at 

Table 2.1.1 Action selection and value expression for ϵ-greedy selection 

Experiments have been performed using GNU Octave (Eaton, 2012) which offers a 

mathematically based scripting and plotting language with large library of built-in 

functions using language that is mostly compatible with Matlab. The main strengths 

https://en.wikipedia.org/wiki/Matlab
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include matrices as a fundamental data type and powerful built-in math functions, plotting 

function with simple GUI widgets, and extensive function libraries. 

The epochs below use randomly generated rewards, each reward for action a is a normal 

deviate drawn from ℕ(Q*(a), 1) where Q*(a) ~ ℕ(0, 1) for a ∈ [1..10]. The average % 

optimal action is plotted against T=2,10000 in Figure 2.7.1, and Table 2.7.1, which shows 

and it reaches a learnt %optimal action of 87% by T=10000 after averaging over X=1000 

epochs and uses the best value for ϵ of 0.1. Appendix 0 gives the detail on the derivation of 

ϵ based on those values used by Weatherwax (2005, chapter 2). The sections 2.3 – 2.7 

show the % optimal action for five alternative selection rules. 

 Optimistic or pessimistic initial values 2.2

If the starting values Q0(a0) are set much higher than expected subsequent rewards will 

most likely be less and cause the sample average to drop, in which case the greedy 

selection will choose another action and so on. In this way a sort of initial systematic or 

round robin exploration is achieved. If Q0(a0) are set too low then expected action selection 

will follow that which is initially greater and exploration will be down to the ϵ probability 

of random selection. In either a large positive or negative initial value needed to ensure all 

estimates are bounded above or below will introduce a large initial bias in the incremental 

sample estimate. If Q0(a0) is set to zero then no bias in introduced and a round robin 

selection can be introduced explicitly. By the action of maxWithRandomTieBreaks forces 

random selection from those actions whose (s, a) pairs have not been updated if a negative 

or zero reward is used with Q values initialised to zero, (2.2.1). For t > T it switches to 

(2.1.4): 

(2.2.1) 

if (t ≤ T) 

at = mod(t-1, A) +1 

else 

at = arg maxWithRandomTieBreaksa Qt(a), 

endif 

 Softmax Action selection 2.3

The rationale here is to emulate natural stochastic systems and use a Boltzmann expression 

in each Q(a) and temperature τ to give the action probability t(a) of choosing action a 

(Gibbs, 1902). As τ ≫ maxa Qt(a) the t(a) all converge to 1/A. As τ → 0 t(a) →1 for a = 
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arg maxa Qt(a) and zero for all other a. The selection rule is to choose at in proportion to 

the probabilities [t(1), t(2),... t(A)] denoted at ~ 𝔻[t(1), t(2),... t(A)], i.e. ℙ[at == j] = 

πt(j). 

(2.3.3) t(a) = 


A

b

bQaQ tt ee
1

/)(/)(  , τ > 0 is the temperature, 

(2.3.4) at ~ 𝔻[t(1), t(2),... t(A)] 

The best %optimal action emerges at T =10000 for τ = 0.1 (see Appendix 0 for comparison 

of other values of τ  ) and Figure 2.7.1 shows low long term increase finally reaching only 

63%. 

 Action value with Pursuit Selection methods 2.4

Pursuit selection methods independently attenuate action probabilities t(a) with additional 

parameter β to sample action values on the basis that they will have different long run 

behaviour (Sutton, etal (1998). Action probabilities give a direct probability for the 

selection rule, Table 2.4.1. Figure 2.7.1 shows the performance of pursuit. 

(2.4.1) Selection rule (2.4.2) Action probabilities 

at ~ 𝔻[t(1), t(2),... t(n)] (2.1.4) for Qt(a) 

t(a)= t-1(a) − t-1(a) a ≠ at 

t(at) = t(at-1) + [1-t(at-1)] 

Table 2.4.1 Action selection and value x expression for Pursuit selection 

The best learnt %optimal action is 92% for β = 0.01 (See Appendix 0) and shows most 

rapid rise at t~200, see Figure 2.7.1. 

 Reinforcement Comparison with softmax 2.5

Reinforcement comparison deploys separate learning models for the actor and critic using 

parameters α and β respectively, Dayan, P. (1991). A reference reward  ̄rt tracks the long 

run mean value and is updated using a linear update with parameter α on the deviation, rt –

 ̄rt. Base action probabilities )( tt ap are generated with parameter β on the deviation, rt – ̄rt. 

Base action probabilities can range from below zero and greater than 1.0 and are converted 

to selection probabilities using a soft max expression (2.3.3). The probabilities provide a 

basis for action selection and hence fulfil the role of actor. The reference reward serves as 

a critic, Table 2.5.1. 
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(2.5.1) Selection rule (2.5.2) Base action probabilities 






1

)(

)(

)(

b

bp

ap

t
t

t

e

e
a , 

at ~ 𝔻[t(1), t(2),... t(n)] 

nro /1 , p0(a0) = 1/n 

][)()( 1 tttttt rrapap    ,where β > 0 

][1 tttt rrrr    , where 0 < α ≤ 1 

Table 2.5.1 Action selection and value expression for Reinforcement Comparison 

 

The best %optimal action is 96% for α = 0.2 and β = 0.01 (See Appendix 0) but before 

t=250 the value is the lowest, see Figure 2.7.1 

 Upper Confidence Bound action selection 2.6

Hoeffding's inequality, Hoeffding (1963) provides a very useful bound of the sample mean. 

"For any sample size n, X n is bounded below by the population mean μ plus a 

quantity t with probability δ, dependant on n and t". 

(2.6.1) ℙ[ X n − μ ≥ t ] ≤ e
−2nt2

 

It means that the probability that the sample mean deviates from the population mean by an 

arbitrary quantity becomes increasingly smaller both as it and the sample size increase. In 

the bandit case t is the current play, at the current action, k(t, at) the sample size of Qt(at) at 

t. The correspondence to above is k(t, at) ≝ n, Qt (at) ≝ X k(t, at), Q* (at) ≝ μ, Û ≝ t and 

the bound δt = e
−2k(t, at)Û

2
, then (2.6.1) becomes: 

(2.6.2) ℙ[ (Qt(at) – Q*(at) ) ≥ Û] ≤ δt
 

Kocsis and Szepesvári (2006) state a symmetric result for |Qt (at) – Q*(at)| (2.6.4) and 

suggest if δt is set to t
-4

 a bound can be determined as a function of t alone (2.6.3) which 

takes into account the two tails (2.6.4). 

(2.6.3) Ût (at) ≝ √(log(1/δ)/(2k(t, at)) = √(log(t)/(2k(t, at)) 

(2.6.4) ℙ[ Q*(at) ≥ −Qt(at) + Ût(at) OR Q*(at) ≥ Qt(at) + Ût(at) ] ≤ 2t
-4

 

The selection rule is now based on an estimate of the maximum value Qt (a) could be to a 

given probability, given the variation in Qt . The upper bound Qt(a) + Ût(a) from the 

second term of (2.6.4) gets the same probability of t
-4

 across all a and the maximum is used 

to provide the best at. 

(2.6.5) at = argmax a ∈ A ( Qt(a) + Ût(a) ) 

The simulation shown in Figure 2.7.1 deploys a UCB selection rule. It shows the best % 

optimal action of 98% after learning over 10000 plays. 
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 Constant α ϵ-greedy method 2.7

The constant α approximation method introduces a departure from the sample average term 

1/k(t, a) to a learning rate αt that allows changes to the reward means Q*(a), to be tracked 

if non-stationary but at the risk of a failure to converge. Drawing from stochastic 

approximation theory (Robbins & Monro, 1951) laid down conditions for convergence to 

the population values, Q*(a): 

(2.7.1) ∑t=0
∞ 

αt = ∞ and 

∑t=0
∞ 

αt
2
 ≤ ∞ and 

If each (s, a) visited infinite number of times then ℙ[ lim t→ ∞ Qt(at ) = Q*(a) ] = 1 

(almost surely) 

The update equation for action values is: 

(2.7.2) Qt(a) = Qt-1(a) + αt ( rt – Qt-1(a)) 

Figure 2.7.1 shows that using T=2,10000 plays with X=1000 epochs each, using the best 

value of α contingent on the best value of ϵ determined independently, (See Appendix 0) 

gives 87% optimal action. 

 

Figure 2.7.1 Plot of %optimal action with the number of plays for learning for a 10-armed bandit 

Figure 2.7.1 above shows the % optimal action for the best parameters of each of the 

methods above and are rerun and plotted for 10000 steps.  It can be concluded there is 

considerable variation in performance, latency and and asymptotic direction of the six 

selection rules above with some still trending at episodes of over 10
4
. Apendix 0 shows 
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that the %optimal action depends, usually unimodally, on the learning parameters ζ whose 

values are those which maximise the %optimal action at T=1000 Weatherwax, 

(2005,chapter 2). Table 2.7.1 shows more clearly the best parameter values and the 

corresponding optimal action percentages for X=1000 and T=10000. The higher T value 

was introduced to reveal more long run behaviour which is still slowly increasing for some 

selection rules, in particular softmax, and does change the best parameters for 

Reinforcement Comparison. The value of n in the header is equivalent to A=10. 

Selection Rule Parameters and Values %optimal 

UCB  98 

RC α = 0.2, β =0.01 96 

Pursuit β = 0.01 92 

ϵ-greedy ϵ =0.1 87 

Constant α  α = 0.1 78 

softmax τ =0.1 64 

Table 2.7.1 The maximising parameter values and the corresponding %optimal action 

Although UCB does come out with the highest it has significant more variation than 

reinforcement comparison. It confirms the result of Silver (2014, Lecture 9 Exploration 

and Exploitation, Figure 9) that UCB will dominate for the most of the learning range. In 

the mid range pursuit is optimal for steps 500 to 1000 but falls away to UCB. CRAThe 

learning protocol is particularly inefficient in that the population means of the action 

rewards are chosen from a standard normal deviates with considerable duplication. Clearly 

the best selection rule has estimates of the average reward which are able to distinguish the 

most rewarding action form the next best and so on. Chapter 5 derives a more efficient 

validation. The distribution of the difference between the highest two sample means will 

determine the learning difficulty and therefore profoundly influence the % optimal. The 

validation of the learnt policy is more correctly the percentage of the predicted optimal 

actions that equal the population optimal a*. Using Table 2.1.1 the expression is Σe a*== 

arg maxWithRandomTieBreaks Qt over all the epochs of Qt. 

 Definition and implementation of convergence 2.8

The issue of lengthy convergence of action values is a serious bottleneck to fast 

lightweight learning algorithms. Many of the validation experiments have sample sizes 

~10
6~7

. The challenge is to address the problem of extimating convergence to a given level 

of probability and thus contribute to fast learning algorithms, Objective 4.2.1. The first step 

is to establish a definition for stochastic convergence on which to develop an expression 

for PMSMMPM. A useful definition of convergence is given by Mnih etal (2008). "Given 

any ϵ however small, Qt converges in probability to Q* if we can always find a sampling 

set of size T such that for all t ≥T, ||Qt – Q*|| < ϵ with probability 1− δ. T will depend on ϵ 
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and δ". Normally δ is a small number, conventionally 0.05, and relates to probability of 

non-convergence for some T. Convergence in probability is also the type of convergence 

established by the weak law of large numbers (Kendall and Stuart, 1997). Barto (1981) 

suggests the operational bound on successive differences |Q


T+1 –Q


T |∞ < ϵ and which is 

explored below. 

The classical confidence interval (Walpole, 1982)  conforms thus but does rely on 

knowledge of the population variance. This is an expression in T, δ and Q
σ
(a) the standard 

deviation of QT(a)/√T. The confidence interval is Mnih compliant since given any ϵ there 

is a T which satisfies P(||QT – Q*|| < ϵ ) = (1-δ) or equilivantly P(-ϵ < QT – Q* < ϵ) = 1- δ . 

Since the probability in the ranges ]-∞ -ϵ] [ ϵ ∞ [ is equal, each has value of (1-(1- δ))/2 = 

δ/2, then: 

P(QT – Q* < ϵ) = 1- P(QT – Q* > ϵ) = 1- δ/2 

Normalising with the standard deviation of QT which is Q
σ
(a) /√T 

P(QT – Q* < ϵ) = P((QT – Q*) / (Q
σ
(a)/√T) < ϵ/(Q

σ
(a) /√T) ) = 1- δ/2. Introducing the cdf Φ 

Φ(ϵ / (Q
σ
(a) /√T) = 1- δ/2 => ϵ√T / Q

σ
(a) = Φ

-1
((1- δ/2) => T = ( Q

σ
(a) / ϵ)Φ

-1
((1- δ/2) and 

(2.8.1) ||Qt – Q*|| < Φ
-1

(1- δ/2) (Q
σ
(a)/√T ) with probability (1 – δ ), 

Also Mnih compliant is UCB (Hoeffding 1963) which uses an expression in t and δ. It has 

the advantage of independence from population parameters of any assumed underlying 

distribution and features only the sample size, T, so has general applicability. 

(2.8.2) ||Qt – Q*|| < √ (log(1/δ )/2t) with probability ( 1 – δ ) from (2.6.4) 

More recently Mnih etal (2008) have exploited Bernstein (1927) bounds on the sum of 

random variables. Mnih (2008) proposed an empirical similar to UCB but with terms that 

depends on an estimate of the sample variance, σt and range R. 

(2.8.3) ||Qt – Q*|| < σt√ (2log(3/δ )/t) + (3/t)Rlog(3/δ) with probability ( 1 – δ ) 

The variance of the sample average will provide valuable information on its efficiency and 

this extra information is discarded in the classical estimates of sections 2.1 – 2.7. The next 

section explores how to use variance information to differentiate the action of maximum 

action value mean from noisy samples. To address the problem of stopping, sample 

estimates are calculated and stopped when a given level of probability has been reached. 

 Probability based exploration 2.9

This section takes objective 4.1 forward by formulating the probability distribution of the 

maximum of a several stochastic processes. True action selection is based on that action 

having the greatest population mean. Since the sample estimates have a distribution about 

https://en.wikipedia.org/wiki/Weak_law_of_large_numbers
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the population mean it is possible for the greater sample mean not to be greater population 

mean. Rather than exploit for the convergence of each Qt(a) it is only necessary to explore 

until the top two Qt are different enough for the probability of the action of maximum 

sample mean being the maximum population mean (PMSMMPM) by at least 1 – δ, where 

δ is a small number. Forbes (2000) makes a related observation regarding his use of 

instance based learning. "An interesting future direction would be to design a heuristic for 

instance–averaging which takes into account the reduced utility of suboptimal Q values for 

a particular state". 

Order statistics (Kendall and Stuart, 1997) are used to find an expression for PMSMMPM 

in terms of population parameters of the reward distribution for each action. At any t a 

mapping dt(a) that permutes Qt(a) into descending order Q
S

t(a) can be found s.t. (2.9.1) 

(2.9.1)Q
S

t(a) ≝ Qt(dt(a)) and Qt
S
(1) ≥ Qt

S
(2) ≥ … Qt

S
(A). 

Let the random variable Z be the maximum of {Qt
S
(2),… Qt

S
(A)}: 

(2.9.2) Z ≝ maxa#1Q
S

t(a), then the cumulative density function (cdf) of Z is ℙ[Z ≤ z]. 

Since the sample estimates are independent RV's the cumulative density function (cdf) can 

be separated: 

(2.9.3) ℙ[Z ≤ z] = ℙ[Qt
S
(2) ≤ z ∩ Qt

S
(3) ≤ z ∩..] = ℙ[Qt

S
(2) ≤ z ]ℙ[Qt

S
(3) ≤ z ]… 

= ∏a=2
A
 F(z| Q*

S
(a), Q

σS
(a)), F is cdf of Qt

S
(a). 

Qt
S
(1) has probability density function (pdf) ℙ (Qt

S
(1) == z)) = f(z| Q*

S
(1), Q

σS
(1)), where 

the mean of Qt
S
(1) is Q*

S
(1) and its standard deviation, Q

σS
(1) given by the √ V

S
(1)/k, 

where V
S
(1) is the population variance for reward r for action d(1), V

S
(1) ≝ 𝕍𝕒𝕣[rt | at == 

d(1)] ≝ 𝔼[ (rt – Q*(d(1)))
2
] and k is the sample size of Qt

S
(1). So the probability that action 

1 has the maximum population mean is ℙ[Z ≤ Qt
S
(1)]. 

(2.9.4) ℙ[Z ≤ Qt
S
(1)] = ∫ℙ[Z ≤ z ∩ z ≤ Qt

S
(1) ≤ z+dz)dz = ∫ℙ[Z ≤ z] f(z| Q*

S
(1), Q

σS
(1)] dz 

So ℙ[maxa#1Q
S

t(a), ≤ Qt
S
(1)] is the expectation of ∏a=2

A
 F(z| Q*

S
(a), Q

σS
(a)) over the 

density f(z| Q*
S
(1), Q

σS
(1)). 

(2.9.5) ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] = ∫ f(z| Q*

S
(1), Q

σS
(1)) ∏a=2

n
 F(z| Q*

S
(a), Q

σS
(a)) dz. 

A formal expression for PMSMMPM has been established in terms of the population 

parameters of the component distributions. To meet the convergence criterion for 

ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] requires: 

(2.9.6) ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] > 1 – δ for some t. 

If δ is regarded as a significance level and is set to 0.05 the non-convergence criterion is 0≤ 

ℙ[ maxa#1Q
S

t(a) ≤ Qt
S
(1)] ≤ 1− δ = 0.95. It means that there is a probability of 0.05 that the 

sample means obey maxa#1Q
S

t(a) > Qt
S
(1) but the population means obey 
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maxa#1Q*
S
(a)≤Q*

S
(1). If the result maxa#1Q

S
t(a) > Qt

S
(1) is taken as true then a statistical 

Type I error is made. As it stands (2.9.6) is intractable in closed form for A > 2 so 

simplifications and numerical approximations are required. 

There are the cases where there is a tie between the top n action value means, Q*
S
(1) == 

Q*
S
(2) for n=2, Q*

S
(1) == Q*

S
(2) == Q*

S
(3) for n=3 and so on. Equation (2.9.4) would 

need to be reworked to achieve and equivalent for (2.9.6) for each n. 

 Exact solution for A=2 using population means and standard deviation 2.10

In the case A=2 (2.9.5) becomes: 

(2.10.1)P21 ≝ ℙ[QS
t(2) ≤ Qt

S
(1)] = ∫ f(z| Q*

S
(1), Q

σS
(1)) F(z| Q*

S
(2), Q

σS
(2)) 

Given two RVs, X and Y where X ~ ℕ (μX, σX
2
) and Y ~ ℕ (μY, σY

2
) the probability that 

Y< X is obtained from an expression for the probability that X−Y > 0. The mean and 

variance of Y−X is 𝔼 [Y – X ] = μY – μX and 𝕍ar[Y – X ]= σX
2
 + σY

2
 respectively. 

The distribution of any linear combination of normal deviates has mean equal to the linear 

combination of the separate means and variance equal to the weighted sum of the separate 

variances: 

Y – X ~ N(μY – μX, σX
2
 + σY

2
 ) 

P[ Y – X < 0] can be expanded if Y – X is standardised to a normal deviate and then an 

expression for P[ Y – X < 0] in terms the standard normal cdf Φ is derived: 

P[Y < X ] = P[Y – X > 0] 

= P[(Y – X – (μY –μX)/√(σX
2
 +σY

2
) > −(μY –μX)/√(σX

2
 +σY

2
)]= Φ[-(μY – μX)/√(σX

2
 +σY

2
 )] 

P[Y < X ] = Φ[(μX – μY)/√ (σX
2
 + σY

2
 )] 

Illustrating this result as follows: 

If μY ≫ μX then μX – μY is ≪0 and so Φ [..] is very small. If the mean of Y is much greater 

than that of X it is very unlikely that Y is less than X. 

If μX == μY then μX – μY ==0 and Φ[..] =0.5. If the means are equal then it is equally 

probable whether X is either greater or less that Y. 

Inserting X=Qt
S
(1), μX=Q*

S
(1), σX

2
 = Q

σS
(1)

2
, and similarly for Y into the RHS above 

yields a simple expression, denoted P12, in the population means and variances for 

the LHS of 2.10.1. 

(2.10.2) P12 ≝ ℙ[ QS
t(2) ≤ Qt

S
(1))] = Φ( (Q*

S
(1) – Q*

S
(2)) / √(Q

σS
(2)

2
 + Q

σS
(1)

2
) 
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Looking at (2.10.2) let ΔQ = Q
S

t(1) – Qt
S
(2) and its standard deviation, SQ = √(Q

σS
(2)

2
 + 

Q
σS

(1)
2
)). Then at the critical region ΔQ is proportional to SQ with slope given by Φ

-1
(1− 

δ). This result implies that the 0.05 significance level is reached if the difference ΔQ ≥ 

Φ
-1

(1− 0.05) = 1.644 SQ. It may be the case that taking the top two values and ignoring the 

rest will result in an expression which is faster to evalute. 

It is straightforward to show that P21 converges if either of sample sizes go to infinity. The 

argument to Φ in 2.18.3 is monotonically increasing in either sample size. The cdf function 

is also a monotonically increasing function and bounded above. The RHS is therefore a 

monotonically increasing sequence with either sample size and bounded above. By the 

fundamental axiom (Scott and Tims, 1966, p110) it is concluded that P21 converges. It is 

plausible to extend this result to the case of A actions. 

 Plotting the components of ℙ[maxa#1QSt(a) ≤ QtS(1)] for A=3 2.11

To investigate the effect of a third action value the five components for ℙ[maxa#1Q
S

t(a) ≤ 

Qt
S
(1)] (2.9.5) are plotted in Figures 2.11.1 and 2.11.2 to show the effect of taking the 

maximum of Qt(2) and Qt(3). The curves 1, 2 and 3 below are plotted in Figure 2.11.1: 

1. F(z, Q*
S
(3), Q

σS
(3)), 

2. F(z, Q*
S
(2), Q

σS
(2)), 

3. ∏a=2
A
 F(z, Q*

S
(a), Q

σS
(a)), 

4. f(z, Q*
S
(1), Q

σS
(1)), 

and 

5. f(z, Q*
S
(1), Q

σS
(1))∏a=2

A
 F(z, Q*

S
(a), Q

σS
(a)). 

The product term 3 shows the combined probabilities of Q
S
(2) and Q

S
(3) and is 

systematically less than Q
S
(2) showing the influence of a competing value albeit one unit 

lower than Q
S
(2). 
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Figure 2.11.1 Plot of cdf of components of P[maxa#1 Q(a) <Q(1)] 

The pdf curve that corresponds to the density of ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)], 5 above, shows 

a smaller area than the density of Q
S
(1), 4 above (Figure 2.11.2). 

 

Figure 2.11.2 Plot of pdf of components of P[maxa#1 Q(a) < Q(1)] 

Q(1), component 4, is the upper curve of Figure 2.11.2  and is shifted to the right when 

convoluted with ∏a=2
A
 F(z, Q*

S
(a), Q

σS
(a)), shown as the lower curve. The deviates  of 

Q(2) and to a lesser extent Q(3) which have means less than 4, provide some probaility 

density for the condition Q(2) > Q(1) and Q(3) > Q(1) and which therfore reduce the 

denisty of Q(1) when convoluted with ∏a=2
A
 F(z, Q*

S
(a), Q

σS
(a)). The effect on 

ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] of the third greatest term Qt

S
(3) will determine whether it can be 

0
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ignored and just the A=2 case of (2.9.1) used. Table 2.11.1 shows ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] 

calculated for a set of values of the population mean for the third greatest term a=3. 

Q*
S
(1) Q*

S
(2) Q*

S
(3) ℙ[maxa#1Q

S
t(a) ≤ Qt

S
(1)] 

4.000  3.000  3.000  0.63367(2) 

4.000  3.000  2.000  0.72872 

4.000  3.000  1.000  0.75560 

4.000  3.000  -5.000  0.76022 

4.000  3.000  Absent  0.76025(1) 

Table 2.11.1 Q*
S
(a) a=1,2,3 and ℙ[maxa#1Q

S
t(a) ≤ Qt

S
(1)] 

Row five above shows the value of ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] without Qt

S
(3) and from 

(2.9.2) the value is: 

Φ( (Q*
S
(1) –Q*

S
(2))/√(Q

σS
(2)

2
 +Q

σS
(1)

2
)) = Φ((4-3)/√(1 +1))= Φ(1/√2) =0.76025

(1)
. 

The worse case is when Qt
S
(3) = Qt

S
(2) which does show ℙ[QS

t(2) ≤ Qt
S
(1)] to be an 

overestimate of (.76025 - .63367)/0.76025 ≈ 17% since the value ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] 

of is 0.63367
(2)

 from row one column four of Table 2.11.1. The result of investigating a 

tied third Q is drop in ℙ[maxa#1Q
S

t(a) ≤ Qt
S
(1)] , which could be mitigated if the variances 

of the Q's are reduced. The implication is that a greater sample size is needed to 

disambiguate them. 

 Well condtioned incremental calculation of the sample variance 2.12

To complete 4.2.1 the calculation of (2.9.5) needs well conditioned expressions for 

incremental estimates of the variance of sample means since both bandit and later MDP 

generate data as a stream. The calculation of (2.9.5) needs incremental estimates of the 

variance of the sample mean since both bandit and later MDP generate data as a stream. 

Like the sample mean an estimate of the sample sum of squares of deviations as each new 

data item arrives is needed. The population variance of the reward of taking action a is 

V(a) and an unbiased estimate of the population variance of the reward of taking action a 

is st
2 

(a). 

V(a) ≝ 𝕍𝕒𝕣[rt | at == a] = 𝔼[ (rt – Q*(a))
2
] 

(2.12.1) st
2 

(a) ≝ (1/(k(t, a) −1))Σj=1 
k(t, a)

 (ri(a, j)) – Qt(a))
2
 = (Σj=1 

k(t, a)
 (ri(a, j))

2
 – k(t,a)Qt(a) 

2
 

Introducing the sum of squares of deviations for action a, St(a), and following Finch 

(2009) the well conditioned incremental expression for St is: 

(2.12.2) St(a) ≝ Σj=1 
k(t, a)

 (ri(a, j))
2
 – k(t, a)Qt(a) 

2
 

(2.12.3) St(a) – St−1(a) =(ri(a, k(t, a) – Qt(a)) (ri(a, k(t, a) – Qt-1(a) ) 
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 Operational safeguard against premature stopping due to low sample size 2.13

For vary small sample sizes the variance of the underlying ri(a, k(t, a) is not stable and 

particular extreme values will lead to premature high values of ℙ[maxa#1(Qt
S
(a) ) ≤ Qt

S
(1] . 

Sharma's (2008) lower bound to the sample variance has been implemented and Appendix 

1 shows an empirical determination that at 5 cases the bound is stable. Let {yi} be a sample 

of N RVs having variance σ
2

Y, then the arithmetic mean A and harmonic mean H provide 

bounds for σ
2

Y: 

(2.13.1) Aμ ≝ (1/N)Σi yi , Hμ ≝ N/Σi 1/yi 

(2.13.2) σ
2

Y ≤ ymax(A – H)(ymax – A)/ (ymax – H), σ
2

Y ≥ ymin(A – H)(A – ymin)/ (H – ymin) 

The implication is that five samples or more must be generated before applying any 

stopping rule based on sample variances. 

 Bandits implementation with PMSMMPM stopping with round robin starts 2.14

The algorithm below implements a Bandits simulation using incremental estimate of the 

action value means, sum of squares, sorted action values and ℙ[maxa#1(Qt
S
(a) ) ≤ Qt

S
(1) ]. 

Action selection is initially Round Robin for RR cycles and then uses UCB to achieve 

action selection. The estimates Qt(a) for Q*
S
(a), and sμt(dt(a)) for Q

σS
(a)) are used for the 

calculation of ℙ[maxa#1(Qt
S
(a) ) ≤ Qt

S
(1) ]. The output of the algorithm includes the count 

of plays to stopping at time tx, Mean of tx and Standard Deviation of mean of tx. The key 

exercise is to assess whether (2.9.6) provides a stopping rule at δ =0.05. 

#MRP, Learning and simulation constants 

X=5; T=120; 

for x = 1:X   #X is the number epochs having different Q*(a) 

#Initialise Q0, k(0, a), S0,s0
2 
, sμ0

2
, Û0, RR 

Q0=Qt=Qt=Qtm1=k =smut2=st2=Std= St=Stm1= zeros(1, A); 

#Generate play t, T is the maximum number 

for t=1:T  #t is the play number, T is the maximum number 

#Action selection 

 if(t ≤ RR*A) at = mod(t-1, A) + 1  #Force all actions to be tried for t ≤ RR*A 

         if(t<=RR*A) at = mod(t-1,  A) + 1; 

 else at = arg maxa (Qt-1(a) + Ût-1(a) )    #UCB Û0(a) only defined for k(t, a) > 0, ∀ a 

         [Qm, adesc]= sort(Qtm1 .+ Ut, "descend"); 

     at=adesc(1); 
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#Generate reward for playing action at 

 rt = Q
σS

(a)*R(t, at) + Q*(at)  #R(t, at) standard Normal RV ~ ℕ(0, 1) 

         rt=Qsd(a)*R(t, at) + Qpop(at); 

#action count and action value mean update 

 k(t, at) = k(t, at) +1 

 k(at)+= 1; 

 Qt(at) = Qt−1(at) + (rt – Qt−1(at) )/k(t, at)    #Q1(a1) = rt for any a1 

 Qt(at) = Qtm1(at) + (rt – Qtm1(at))/k(at) ; 

#Action value sum of squares update using the previous Q value for this action 

 St(at) = St−1(at) + (rt – Qt(at)) (rt – Qt−1(at)) #Q0(a) is 0, but r0 = Qt(a0) so S1(at) =0 

 St(at) = Stm1(at) + (rt – Qt(at))*(rt – Qtm1(at)); 

#Compute an unbiased estimate of the population variance of the reward of taking action a, 

 st
2 
(at) = (1/(k(t, at) −1))St(a)                        #needs k(t, at) ≥ 2 

 if(k(at)>=2)st2(at) = St(at)/(k(at)-1); endif 

#Compute an unbiased estimate of the population variance of the action value of a 

 sμt
2
(at) = st

2
(at) /k(t, at)                                # k(t, at) ≥ 1 

 if(k(at)>=1)smut2(at) = st2(at)/k(at); endif 

#Sort Qt in descending order into Qt
S
 with sort order dt(a)  Qt

S
(a) = Qt(dt(a)) 

 [Qts, dts]= sort(Qt , "descend");  

#Compute ℙ[maxa#1(Qt
S
(a) ≤ Qt

S
(1) ] using Qt(a) for Q*

S
(a), and sμt(dt(a)) for Q

σS
(a)) 

 ℙ[maxa#1(Qt
S
(a) ) ≤ Qt

S
(1) ] = ∫ϕ(z, Qt

S
(1), sμt(dt(1)))∏a=2

A
 F(z, Qt

S
(a), sμt(dt(a)))dz,  

 f1FA = @(x) normpdf(x, Qts(1), smut2(ats(1))^0.5);#Bandits 7 

 for a=2:A 

 f1FA= @(x)f1FA(x).*normcdf(x,Qts(a),smut2(ats(a))^0.5); 

 endfor 

 if(t >= RR*A)PQs(1)= quadcc(f1FA , -8, 8); endif 

#Compute ℙ[Qt
S
(a) ) ≤ Qt

S
(1) ], a # 1 

  ℙ[Qt
S
(a) ) ≤ Qt

S
(1) ] = Φ ( ( Qt

S
(1) – Qt

S
(a) )/√(sμt

2
(dt(1)))) + sμt

2
(dt(a)))) ) 

 for a=2:A  

 if(t>= RR*A)PQs(a)= normcdf((Qts(1)- Qts(a))/sqrt(smut2(ats(1))+ 

smut2(ats(a))));endif 
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 endfor 

#Compute tx the first t s.t. t ≥ A*RR and ℙ(maxa#1(Qt
S
(a) ) ≤ Qt

S
(1) ) > 1 – δ 

  if(t>=RR*A & PQs(1)>1-delta & !Pqfound)tx= t; atx2= ats(1); 

Pqfound=1;endif  

#Calculate the UCB Ût(a) =√ (2log t /k(t, at), k(t, a) is >1 so it is always conditioned 

 Ut = sqrt(2*log(t)./k); 

#Terminate plays if t ≥ A*RR and  ℙ[maxa#1(Qt
S
(a) ) ≤ Qt

S
(1) ] > 1 – δ 

if(t >= RR*A  & PQs(2) > 1-delta) break; endif 

 endfor #t 

 endfor #x 

#Outputs 

#Counts of plays to stopping at time tx, Mean of tx and Standard Deviation of mean of tx 

Figure 2.14.1 shows the calculation of PMSMMPM which achieves a value of 0.988 when 

t=26 at which convergence is assumed since it exceeds 1-0.05. A value of RR of 6 is used 

to ensure premature convergence does not occur. 

 

Figure 2.14.1 Plot of P[maxa#1(Qt
S
(a) ) ≤ Qt

S
(1) ] with t 

The simulation of PMSMMPM using 3-armed bandit with shows monotonic rise to the 

threshold which confirms its suitability for a stopping rule. 
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The assumption is made that the sample estimates are independent normal RV's which 

might only be sound at very large sample size by the law of large numbers. 

The classic student t-test (Gosset, aka Student, 1908), provides a statistic t, and a critical 

region for the acceptance of the hypothesis that Q*
S
(2) ≤ Q*

S
(1) based on estimates Qt

S
(1) 

– Qt
S
(2), having estimated variances sμt

2
(dt(1)) and sμt

2
(dt(2) and sample sizes k(t, dt(2)), 

k(t, dt(2)) respectively. It entails the calculation of the degrees of freedom based the 

estimates of the action value sample variances. Use of student t would require its cdf 

instead of Φ. Because the formulae for the t distribution is complicated and is well 

approximated by the standard normal distribution for samples over five (Pollard, 1998), it 

was decided to use a straight substitution of sample variances into 2.10.2. 

Sutton & Barto (1998) suggests that a check on the absolute successive differences provide 

a stopping condition. In the Bandits case |ΔQt(a)| = maxa |Qt(a) – Qt−1(a)|. The Bandits 

update rule is: 

Qt(at) = Qt−1(at) + (1/k(t, at))( rt – Qt-1(at)), 

ΔQt(at) = (1/k(t, at))( rt – Qt-1(at)) 

In this case only the Q for the selected action at is updated. Those for the non-selected 

action are unchanged. So the absolute deviation at t, ΔQt* is: 

(2.14.1) ΔQT*= |Q


T+1 –Q


T|∞  = maxa |QT(a) – QT−1(a)| = |(1/k(T, a*))( rT – QT-1(a*))| 

The plot in Figure 2.14.2 below of single epoch of plays shows ΔQt*, the lower curve and 

PMSMMPM, the upper curve against t. It confirms numerically that spot values of ΔQt* at 

time t do not help to show where convergence has occurred. Successive differences are 

discontinuous between steps since a* may change which makes a difference formulae ill 

conditioned. The output of the run shows convergence to a probability 0.9524 occurs at 

t=142. This result will be sensitive to problem complexity which will change if the 

population parameters change which is explored below. PMSMPM is shown to provide a 

convergence criterion better than highly stochastic successive differences. 
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Figure 2.14.2 Plot of absolute successive differences and PMSMMPM with plays 

 Exploring plays to convergence with RR=3 2.15

Pursuing the objective 4.1 and having established the convergence criterion (Figure 2.14.0) 

it is now possible to define the number of plays to convergence. The number of plays to 

convergence (PTC) is the first t, denoted tx s.t. 

(2.15.1) ℙ[maxa#1(Qt
S
(a) ) < Qt

S
(1) ] > 1−δ from (2.9.6) such that t ≥ RR*A. 

The action atx, is defined as the action at time tx given by (2.6.5). Following equation 2.1.2 

the performance statistic is the proportion of plays that choose the optimal action at t==tx 

averaged over all epochs X as a percentage, denoted optx ≝ Σx(atx == a*)/X*100 where 

each epoch x is independent. In order to determine the trend with X Table 2.15.1 shows 

optx, optT the proportion of plays that choose the optimal action at t = T, the mean of tx 

μ(tx ), the standard error of the mean of tx sdm(tx ), the theoretical minimum number of 

plays k* (2.19.8), the median of tx and the standard deviation of the median (Stigler, 1973). 

Experiment date RR X optx optT μ(tx) sdm(tx) k* m
ed

ian
(tx ) 

std
(m

ed
ian

(tx )) 

04-Nov-2018.20.49 5 100 98 98 58.8 6.4 38 32 5.00 

04-Nov-2018.22.13 5 200 97 97 50.7 3.4 38 26 1.77 

04-Nov-2018.22.36 5 300 95 97 52.9 3.0 38 28 4.33 

04-Nov-2018.22.36 5 400 97 97 57.9 2.7 38 34 2.86 

05-Nov-2018.09.55 5 500 97 97 59.1 2.4 38 36 3.73 

Table 2.15.1 The performance statistics with epoch size 
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Table 2.15.1 uses values Q*(1)=1, Q*(2)=3.5, Q*(3)=2, V(1)=V(2)=V(3)=1 which are 

chosen so that ΔQ is of similar magnitude to the standard deviation of the difference, 

√(V(1) + V(2)) ≈ 1.4. It shows the performance statistics level out at 500, in particular optx 

and std(tx) which provides empirical evidence that 500 epochs is sufficient for reliable 

estimation. However the median still shows a standard deviation which is too large to make 

strong conclusions. The value of RR is five following the conclusionof 2.1.3. A further 

confirmation of the effect of RR is in the Figure 2.15.1 below which shows the frequency 

counts for tx using a value of RR of three. It shows heavy tailed behaviour with over 20 tx 

values beyond the T=200 range, although this number may decrease for larger T. It shows 

115 converged at t=9 confirming the conjecture regarding RR in 2.1.3. Until the sensitivity 

to RR is explored it is not easy to interpret this result. 

 

Figure 2.15.1 Plot of frequency of plays to convergence 

 Exploring plays to convergence with RR 2.16

Table 2.16.1 displays the sensitivity of the optx as RR is increased using the same Q and V 

as Table 2.15.1. A higher RR will stop over optimistic convergence and this should 

increase the percent convergence at the correct a*. 

Experiment date RR X optx optT μ(tx) sdm(tx) k* m
ed

ian
(tx ) 

std
(m

ed
ian

(tx )) 

12-Jun-2017.16.30 2 500 88 88 47.0 2.5 38 20 1.40 

11-Jun-2017.17.16 3 500 93 94 50.2 2.4 38 27 5.59 

12-Jun-2017.16.58 4 500 97 97 60.3 2.6 38 39 2.80 

12-Jun-2017.17.50 5 500 97 97 58.1 2.2 38 38 3.73 

Table 2.16.1 Shows experiments with increasing RR and the corresponding optimal tx  
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It can be concluded that an RR of 5 will achieve 97% correctly learnt atx An RR of 2 or 3 

achieves a lower performance. Experiments show the conditions for use of an early Round 

Robin selection mitigates volatile low sample sizes. 

 Exploring plays to convergence (PTC) with the variation in Q* and V* 2.17

Section 2.10 shows that the dominant influences on ℙ[ QS
t(2) ≤ Qt

S
(1)] (2.10.1) are ΔQ = 

Q
S

t(1) – Qt
S
(2) and SQ = √(Q

σS
(2)

2
 + Q

σS
(1)

2
)) and intuitively that would be expected of 

P[max a Q
S

t(a) ≤ Qt
S
(1)] which is used to generate tx (2.15.1). Rather than generate a 

large set of random Q* it is more efficient just to systematically vary ΔQ and SQ. It is 

assumed that the terms Q
S

t(3) and above can be neglected. Table 2.17.1, 2 and 3 shows 

optx and the same statistics and variances as (2.16.1) with systematic variation in Q* and 

V. In particular Table 2.17.1 shows μ(tx) increasess markedly as ΔQ gets samller with 

PMSMMPM. 

date Q*(1) Q*(2) Q*(3) ΔQ optx optT μ(tx) 

sd
m

(tx ) 

k* m
ed

ian
(tx ) 

std
(m

ed
ian

(tx )) 

13-Jun-2017.09.49 4 3 2 1.00 99 99 28.6 1.3 26 15 0.04 

12-Jun-2017.17.50 4 3.5 2 0.50 97 97 58.1 2.2 38 38 3.73 

13-Jun-2017.10.47 4 3.75 2 0.25 90 89 97.6 3.4 44 76 11.18 

Table 2.17.1 Shows variation in optx as ΔQ is decreased 

Table 2.17.2 shows the variation in optx with V(1) = 0.5 and 0.75 with the rest 1.0. The Q* 

are set to experiment 13-Jun-2017.09.49 of Table 2.17.1. 

date V(1) V(2) V(3) optx optT μ(tx) sdm(tx) k* m
ed

ian
(tx )

 

std
(m

ed
ian

(tx )) 

13-Jun-2017.09.49 1.00 1 1 99 99 28.6 1.3 26 15 0.04 

13-Jun-2017.16.10 0.75 1 1 99 99 27.6 1.2 23 16 0.36 

13-Jun-2017.15.34 0.50 1 1 99 99 26.9 1.2 19 15 0.04 

Table 2.17.2 Variation of optx with V(1) 

Table 2.17.2 and 3 both show decrease in μ(tx) as V(1), V(2) decrease with PMSMMPM 

respectively. Table 2.17.3 shows the variation in optx with V(2) = 1.00, 0.5 and 0.75 with 

the rest 1.0. The Q* are set to run 13-Jun-2017.09.49 of Table 2.17.1. 
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date V(1) V(2) V(3) optx optT μ(tx) sdm(tx) k* m
ed

ian
(tx )

 

std
(m

ed
ian

(tx )) 

13-Jun-2017.09.49 1 1 1 99 99 28.6 1.3 26 15 0.04 

13-Jun-2017.20.56 1 0.75 1 99 99 21.9 0.7 23 15 0.04 

13-Jun-2017.16.23 1 0.50 1 99 99 19.6 0.4 19 15 0.04 

Table 2.17.3 Variation of optx with V(2) 

The variations with ΔQ and SQ derived from 2.9.6 confirm to their role in the expression 

for A=2, (2.10.2). The closer Q*(1) and Q*(2) the lower the optx and the longer the mean 

and median tx clearly showing the drop in optx as it becomes harder to discriminate 

between very close population means Table 2.17.1. The tighter the variance of either action 

reduces the mean PTC confirming that is easier to discriminate with less probability 

overlap Tables 2.17.2 and 3. The stopping rule achieves over 90% optx in all runs. 

 Properties of P[ QSt(2) ≤ QtS(1)] 2.18

The sensitivity of P[ Q
S

t(2) ≤ Qt
S
(1)] to a change with either k(t, dt(1)) or k(t, dt(2)) is 

shown below. The result for two actions above in (2.10.2), ℙ[ QS
t(2) ≤ Qt

S
(1)] can be 

expressed in terms of the counts of each action k(t, dt(1) ), k(t, dt(2) ). Let ΔQ = Q
S

t(1) – 

Qt
S
(2) and its standard deviation, SQ = √(Q

σS
(2)

2
 + Q

σS
(1)

2
)) as above. Now Q

σS
(1)

2 
is 

equal to the sorted variance of the sample mean of size k for reward for action d(1), V
S
(1), 

divided by the size of the sample at time t which is k(t, dt(1) ). 

(2.18.1) V(a) ≝ 𝕍𝕒𝕣[rt | at == a] = 𝔼[ (rt – Q*(a))
2
] 

(2.18.2) V
S
(a) ≝ V(d(a)) 

Re-expressing (2.10.2) 

(2.18.3) ℙ[ QS
t(2) ≤ Qt

S
(1)] = Φ( ΔQt / √( V

S
(1)/ k(t, dt(1)) + V

S
(2)/ k(t, dt(2))) ) 

Here the sensitivity of ΔQt with sample size is explored by calculating the change in k(t, 

dt(a)) would be needed to achieve the same ℙ[QS
t(2) ≤ Qt

S
(1)] if ΔQt were divided by n. 

Let ΔQt '=ΔQt /n 

ℙ[ QS
t(2) ≤ Qt

S
(1)]' = Φ( ΔQt'/ √(V

S
(1) / k(t, dt(1)) ' + V

S
(2)/ k(t, dt(2))') ) 

= Φ( (ΔQt /n) / √(V
S
(1)/ k(t, dt(1)) ' + V

S
(2)/ k(t, dt(2))') ) 

= Φ( (ΔQt ) / √(n
2
 V

S
(1)/ k(t, dt(1)) ' + 4V

S
(2)/ k(t, dt(2))') ) 

= Φ( (ΔQt) / √((V
S
(1)/(k(t, dt(1))'/n

2
 + V

S
(2)/k(t, dt(2))'/n

2
)) ), k(t, dt(a))'/n

2
 == k(t, dt(a)) 

k(t, dt(a)) ' = n
2
k(t, dt(a)). 
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In general if ΔQt' =ΔQt/n , then k(t, dt(a)) ' =n
2
k(t,dt(a)). It is concluded that dividing ΔQt 

by n requires multiplying the sample size by n
2
 a much greater quantity. 

 An optimal sampling strategy to achieve P[ QSt(2) ≤ QSt(1) ] > 1 – δ 2.19

If the sampling effort is rationed in some sense (2.18.3) can guide the selection of action 1 

over 2. Given that a finite number of actions k can be taken the problem is to find optimal 

k1= k(t, dt(1) ) and k2 = k(t, dt(2) ) s.t. k = k1 + k2 . From (2.9.2) and assuming δ =0.05 and 

ΔQ is known: 

(2.19.1) Φ
-1

(.95) = ΔQ/√ (V
S
(1) /k1 + VS

(2) /k2) 

(2.19.2) c ≝ (Φ
-1

(.95) /ΔQ)
-2

 = (V
S
(1) /k1 + VS

(2) /k2) 

To find the optimum k1 and k2 the minimum of k s.t. (2.19.1) holds needs to be found. A 

Lagrangian £(k1, k2) with multiplier λ is introduced: 

(2.19.3) £(k1, k2) = k1 + k2 +λ (V
S
(1) /k1 + VS

(2) /k2) 

0 = ∂ £(k1, k2)/∂k1 = 1 – λ V
S
(1) /k1

2
 

0 = ∂ £(k1, k2)/∂k2 = 1 – λ V
S
(2) /k2

2
 

Eliminating λ 

(2.19.4) V
S
(1) /k1

2
 = V

S
(2) /k2

2
 

k1
2
/V

S
(1) = k2

2
/V

S
(2) 

k2/√V
S
(2) = k1/√V

S
(1) 

(2.19.5) k2 = √V
S
(2) k1/√(V

S
(1) ) = √(V

S
(2)/V

S
(1) ) k1 

With 2.19.5 the k2 from any k1 that makes k1 + k2 optimal can be derived. Solving for k*: 

V
S
(2) /k2 = √V

S
(2)√V

S
(2) /k2 = √V

S
(2)√V

S
(1)/k1

 

c = VS
(1)/k1 + VS

(2)/k2 VV= (V
S
(1) + √V

S
(2)√V

S
(1) )/k1, using above: 

(2.19.6) k1* = (V
S
(1) + √V

S
(2)√V

S
(1) )/c, now from (2.19.4): 

(2.19.7) k2* = √( V
S
(2)/V

S
(1) )k1 = √V

S
(2) / √V

S
(1) )( V

S
(1) + √V

S
(2)√V

S
(1) )/c 

k*= k1*+k2* =(V √V
S
(2)√V

S
(1) + V

S
(1) )/c + √V

S
(2) / √V

S
(1) )(V

S
(1)+√V

S
(2)√V

S
(1) )/c 

k* =V
S
(1) + √V

S
(2)√V

S
(1) ) + √(V

S
(2)V

S
(1) + V

S
(2) 

(2.19.8) k* = (V
S
(1) + 2√(V

S
(2)V

S
(1) + V

S
(2))/c 

The derivation of the stationary point of the Lagrangian £(k1, k2) (2.19.3) above shows the 

existence of a minimal sampling size to achive a given P21 (2.19.8). The plot in Figure 

2.19.1 of ℙ( Q
S

t(2) ≤ Qt
S
(1)) based on k1 and k2 illustrates the need for an optimal decision 

rule. 
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Figure 2.19.1 Plot of population P(Q2 < Q1) with sample size k1 and k2 

The minimal k* = 8 +16 and is shown above at the bullet point (8, 16). It illustrates that a 

greater sample size of 16 is needed for action 2 with its V
S
(2) = 4.0 than that for action 2 of 

size 8. It also suggests a decision rule that selects alternately a==1 and a==2 in a manner 

that maintains (2.19.4) will get to the nearest point on the 0.95 curve. Using a geometric 

argument it can be shown that k* is a minimum. The value (k1*, k2*) lies on the straight 

line k*= k1 + k2, and also on the contour c = (V
S
(1) /k1 + VS

(2) /k2). Since the straight 

line interests the contour once at (k1*, k2*) it is a tangent at (k1*, k2*). The line e + k*= 

k1 + k2, e > 0 will intersects the contour at two places violating 2.19.6,7  so e = 0 and the 

minimum ≤ k*. The line e + k*= k1 + k2,  e < 0 does not intersect the contour at all 

violating 2.19.6, 7 so e=0 and the minimum ≥ k*. Hence k* is the minimum. 

 Experiments to show convergence paths using sample estimates 2.20

From an observation of (2.18.3) an investigation to show the convergence path of the 

counts k(t, at) follows. In order to properly assess  (2.18.3) as a stopping criterion and 

subsequently as a selection rule the inherent randomness of using samples needs to be 

isolated by inserting population means and variances in the right hand side of (2.18.3): 

k2

k1
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P(QS(2)<QS(2))=  ( Q/ SQ))
Q = 1 VS(1) = 1 VS(2) = 4 SQ= (Vt(a*(1))/k1+Vt(a*(2))/k2)
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(2.20.1) ℙ[Q
S

t(2) ≤ Qt
S
(1))] = Φ(ΔQ /√(V

S
(1)/k(t, dt(1)) + V

S
(2)/k(t, dt(2)))), ΔQ= 

Q
*
(a*(1)) – Q

*
(a*(2)). 

where a*(1) denotes the action of maximum population mean and a*(2) the second action. 

A selection rule which seeks the maximisation of ℙ(Q
S

t(2) ≤ Qt
S
(1)) can be obtained by 

choosing that action which has the greatest positive gradient with respect to k(t, d(1)) or 

k(t, d(2)). 

Let Q2 = Q
S

t(2), Q1 = Qt
S
(1), S1 = V(dt(1)), S2 = V(dt(2)), k1 = k(t, d(1)) k2 = k(t, d(2)) and 

the selection rule can be written: 

(2.20.2) If ∂ℙ[Q2 ≤ Q1] / ∂k1 > ∂ℙ[Q2 ≤ Q1] / ∂k2 then choose dt(1) otherwise dt(2) 

∂ℙ[Q2 ≤ Q1] / ∂k1 = ∂Φ(y) / ∂y ∂(ΔQ / √ (S1 /kt + S2/k2) / ∂k1 , where ΔQ= Q1− Q2 

 = ϕ(y) ΔQ/ (S1/k1
 + S2/k2)3/2 ( S1/ k1

2
 ) 

∂ℙ[Q2 ≤ Q1] / ∂k2 = ϕ(y) ΔQ / (S1/k1 + S2/k2)3/2 ( S2/ k2
2
 ) 

Expanding (2.20.2)) can be rewritten as the selection rule (2.20.3): 

ϕ(y) ΔQ/ (S1/k1 + S2/k2)3/2 ( S1/ k1
2
 ) > ϕ(y) ΔQ / (S1/k1 + S2/k2)3/2 ( S2/ k2

2
 ) 

=>( S1/ k1
2
 ) > ( S2/ k1

2
 ) => V(dt(1))/k(t, dt(1))

2
 > V(dt(1))/k(t, dt(2))

2
 

(2.20.3) If V(dt(1))/k(t, dt(1))
2
 > V(dt(1))/k(t, dt(2))

2
 then choose dt(1) otherwise dt(2) 

Clearly only UCB or PMSMMPM selection can be applied at any one step. A η-UCB 

selection rule is introduced which uses PMSMMPM a fraction η of the time, imitating the 

mixed approach of the tried and tested ϵ-greedy selection rule.  

Starting with (2.19.1) expressions and code are presented for a* based on population 

values: 

Calculate Q*(a*), a*, k1* , k2* and k*, where k1= k(t, dt(1) ) and k2 = k(t, dt(2) ) 

a* = DescendingSortOrder(Q*) 

c ≝ (Φ
-1

(.95) /(Q*(a*(1) ) – Q*(a*(2) ) )
-2

 

k1* = (V(a*(1) ) + √V(a*(2) )√V(a*(1) ) )/c 

k2* = √(V(a*(2) ) / V(a*(1) ) ) k1 

k*= k1* + k2* 

From (2.20.3 The selection rule gives the corresponding pseudo code: 

#Selection rule η−UCB based on PV 

if (0 == mod(t−1, η ) 

 if V(dt(1))/k(t, dt(1))
2
 > V(dt(1))/k(t, dt(2))

2
 then at = dt(1) else at = dt(2) 

else 
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 [Qm, at]= sort(Q t−1 .+ Ut−1, "descend"); #Obtain a new selection based on UBC 

endif 

Figure 2.20.1 below shows a contour plot of ℙ[ Q
S

t(2) ≤ Qt
S
(1) ] for ΔQ= Q

*
(a*(1) ) – 

Q
*
(a*(2) ) and SQ based on population variances V(a*(i)) i=1, 2. The value of η was 

chosen to bring about a modest but discernible effect which could be easily compared to 

the pure UCB: 

 

Figure 2.20.1 Contour plot of P[Q(a*(2) < Q(a*(1))] with k1 and k2 

The lower stair case curve shows the k path of the pure UCB selection and shows the 

pursuit of action 1 with occasional action 2. Reading from the plot it reaches a P[Qt
S
(a) ≤ 

Qt
S
(1) ] of 0.95005 at (183, 33) giving a k* of 183+33=216. The higher stair case curve 

depicts a 4-UCB selection rule which reaches 0.95055 at (107, 40) giving with a k* of 147. 

The optimal value, shown above at the "•" yields k1*=60, k2*=60, k* = 120. It can be 

concluded that the inclusion of η > 0 does decrease the estimate of k*. 

Now expanding V(dt(1))/k(t, dt(1))
2
 of (2.18.2) in terms of sμt

2
(dt(1)) a new selection rule 

can be written (2.20.4)): 

S1 / k1
2
 = st

2
(dt(2))/k1/k1 = sμt

2
(dt(1))/k(t, dt(1)) 

(2.20.4) if sμt
2
(dt(1))/k(t, dt(1)) > sμt

2
(dt(2))/k(t, dt(2)) then choose dt(1) else choose dt(2) 

Adapting the code from the previous section: 

k2

k1
PmBandits.m10-Aug-2018.11.22

P(Qt(a*(2))<Qt(a*(1)))=  ( Q/ SQ))
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#Selection rule η−UCB based on sample variance for sample means 

if (0 == mod(t−1, η ) 

 if sμt
2
(dt(1))/k(t, dt(1)) > sμt

2
(dt(2))/k(t, dt(2)) then at = dt(1) else at = dt(2) 

else 

 [Qm, at]= sort(Q t−1 .+ Ut−1, "descend"); 

endif 

The k paths for both the 0-UCB and 4-UCB are displayed in Figure 2.20.2 where the 

selection rules are calculated using sample variances (2.20.4). In addition it shows a plot of 

ℙ[ Q
S

t(2) ≤ Qt
S
(1) ] based on population means and variances. The estimated and actual P 

values are shown at the end of the paths. 

 

Figure 2.20.2 k paths of 0-UCB and 4-UCB 

The 4−UCB rule shows the actions take a more direct route to the theoretical optimal level 

with a Manhattan distance of 106 + 42 = 148. The pure UCB selection rule has a distance 

of 183 + 36 =219 to achieve the population value for ℙ[ Q
S

t(2) ≤ Qt
S
(1) ]. 

k2

k1
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The results of these experiments show one in four use of the PMSMPMP selection rule 

gives a sample size advantage and supports the claim that the η-UCB selection rule will 

contribute to faster learning algorithms suitable for run-time embedding. The speed 

enhancement comes from stopping convergence as early as possible. 

A formal expression for PMSMMM has been derived and the properties of the simple case 

P21 established. The consequent properties of plays to convergence have been 

demonstrated. The latter provides a basis to show that a minimal sampling size to achieve a 

given P12 exists. In addition a selection rule has been derived and demonstrated which 

always nudges the sampling toward a given value for P21. This has been embedded in the 

η-UCB selection rule and which has been shown to contributes to faster learning 

algorithms. This result for the 4-UCB rests on a point estimate and to make a rigorous 

conclusion many experiments would be needed and average performances compared. 

The bandit problem is a single state multi action problem. Once a play has been made the 

environment is reset to the one state. All dynamic systems of interest including dynamic 

NCPs, will move through a sequence of states, each having different properties. The next 

chapter presents and reviews the foundation of stochastic multi state systems. 

.  
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 RL concepts and theorems Chapter 3

In order to achieve objective 2.1 the basic concepts, theorems and definition of RL are set 

out culminating in the Bellman expectation and optimality equations which are the 

foundation for the RL TD algorithm. 

 Agent, Environment, Goals and Reward 3.1

A process can be in a state, st ∈ S, where S is the finite set of possible discrete states. A(st) 

are the actions, at available from state st which take the process to st+1. Action selection is 

based on a stationary policy, denoted π(s, a), a mapping from each state, s ∈ S, and action, 

a ∈ A, to a number defined as the probability of taking action a when in state s: 

(3.1.1) π(s, a) ≝ ℙ[at == a |st == s] 

In general having taken action a0 from the initial state s0 there is a probability that the 

subsequent state will be in any of s1, s1', s1" Figure 3.1.1. A deterministic policy has exactly 

one action for each state denoted π(s). Sutton implicitly requires that the state is stationary 

in distribution which implies that the joint distribution of states st1, st2,.. stn for time points 

t1, t2,.. tn is the same as the joint distribution of st1+m, st2+m,.. stn+m. (Takahara and Hall, 

2017). 

 

Figure 3.1.1 State space decision process. 

The {S, A, and π } constitute a state space decision process. At the end of each time step, 

in part as a consequence of its action, the agent receives a signal considered to come from 

the environment in the form of a numerical reward, rt ∈ ℜ . In general rt will be a random 

variable drawn from a stationary distribution. The purpose or goal of the agent is 

formalized in terms of the definition of the reward rt which if positive, signals an 

achievement of the goal or if negative to reveals a failure. 
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 The Markov Property 3.2

If the state signal has the Markov property, then the environment's response at t+1 depends 

only on the state and action representations at t (Szepesvari, 2009) and the probability of 

st+1 == s' depends only on st:. 

(3.2.1) ℙ[st+1 == s, rt+1 == r | st, at ] = ℙ[st+1 == s, rt+1 == r |(sk, ak , rk+1| t ≥ k ≥ 0)], ∀s, r 

The Markov property is sometimes referred to as the independence of path property since 

all that matters is the current state and not the route taken to get there (Szepesvari, 2009). 

Together with a policy π (3.1.1) the sequence of states, actions and rewards generated by 

the agent environment interaction can be expressed as a Markov sequence (st, at | t ≥ 0) 

where at ~ 𝔻[π(st, j), j= 1..A(st)]. The sequence of states embedded in a Markov sequence 

constitutes a state path. The Markov property makes the mathematics of RL tractable. 

The best policy for choosing actions as a function of a Markov state is just as good as the 

best policy for choosing actions as a function of complete histories. A RL task that satisfies 

the Markov property embodies an MDP. A particular finite MDP, M, is defined by its state 

and action sets S, A, action transition probabilities P, the conditional rewards R, and the 

action policy π, M = <S, A, P, R, π> . In order to establish stationarity the conditional 

probability of the LHS of (3.2.1) is expanded in terms of the joint probability in st+1 and st : 

(3.2.2) ℙ[st+1== s', rt+1 == r |st==s, at]= ℙ[st+1== s', rt+1 == r , st == s|at]/ℙ[st== s, rt+1 == r |at] 

Since st is stationary in distribution then both the denominator and numerator of the RHS 

are stationary corresponding to n=2 and n=1 respectively, which implies the LHS is 

stationary. 

Given any state and action, s and a, the probability P
a
ss' of each next state, s', is: 

(3.2.3) P
a
ss' ≝ ℙ[st+1 == s' | st == s , at ==a] 

P
a
ss' are called action transition probabilities. Similarly, given any current state and action, 

s and a, together with any next state, s', the expected value of the next reward, R
a
ss' is: 

(3.2.4) R
a
ss' ≝ 𝔼π [rt+1 | st+1=s', st=s, at=a] 

The action transition probabilities and the conditional rewards R
a
ss' make up a model M of 

the MRP (Sutton and Barto, 1998). 

3.2.1 Existence, uniqueness and utility of the stationary distribution 

Section 2.9 states a convergence criterion for essentially a single state. For a multi state 

system there is a need to link each state measure of state convergence to a system measure 

in order to generalise PMSMMPM. As introduced earlier in gradient methods (Silver 

2014) a useful property is the long run stationary distribution of states visited under a 
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Markov sequence using policy π. From it a stationary average of any state property can be 

obtained. For a stationary policy π(s, a), P
π

ss' , called transition probabilities, can be 

defined (3.2.1.1): 

(3.2.1.1) P
π

ss' ≝ ℙ[st+1 == s'| st == s]= ∑a∈A(s)ℙ[at == a |st == s]ℙ[st+1 == s'| st == s, at ==a]= 

∑a∈A(s) π(s, a) P
a
ss' 

The stationarity of π and P
a
ss' together guarantee then the stationarity of P

π
ss'. The long run 

stationary distribution d of the Markov process is useful for the calculation of the average, 

p , of any stochastic property p(s) of any state s. Such an average will provide a well 

founded basis for the global convergence of action stratetgies. 

(3.2.1.2) p  = Σ s p(s)d(s) 

The condition for a stationary distribution d of visited states to exist and be unique is that 

the Markov sequence is positive recurrent (Sigman 2006, Proposition 2.2). A state s is 

called positive recurrent if the expected amount of time to return to state s, τss, given that 

the sequence started in state s has finite expectation 𝔼(τss) < ∞ (Sigman 2006, Proposition 

2.2). 

Every irreducible Markov sequence with a finite state space is in fact positive recurrent 

(Sigman (2006) . Since all the feasible systems encountered in games will have a finite 

states space it remains to establish irreducibility. 

A Markov sequence is irreducible if it is possible to get to any state from any other state 

(Takahara and Hall, 2017). A sufficient condition is that for all (s, s') and (s', s) pairs ∃ a 

positive integer nss' s.t. (P
π 

)
nss'

ss'> 0 i.e. the (s, s') element of P
π 

raised to the power nss'. 

From 3.2.2 an exploration policy has π(s, a) > 0. To determine whether P
a
ss' > 0 the 

dynamics of the system need to be systematically investigated to detect islands of possible 

closed off behaviour in the state variable space. It is likely that games NPC designers 

would ensure an irreducible state variable space for continuity of game behaviour. 

Takahara and Hall (2017) show that d can be determined from P
π 

, d = dP
π 

. An unbiased 

estimate of d is the proportion of the occurrence of st == s. So the proportion of visits to 

states over all epochs will be an estimate of d. Sigman (2006) shows that the population 

value is the limit of the sample estimate as n→ ∞ w. p. 1. Provided the state space is 

irreducible and finite an unbiased estimate of the stationary distribution can be obtained 

from the proportion of visits to states over all epochs. 
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 Returns 3.3

RL seeks to maximize the return, Rt, itself a random variable, defined as the geometric 

weighed sum of the rt+1 in the sequence (st, at , rt+1) (st+1, at+1 , rt+2)…  as a function of a 

discount rate γ. 

(3.3.1) Rt ≝ ∑k=0
∞ 

γ
k
 rt+1+k, 0≤ γ ≤ 1 

If γ = 0 the agent is "myopic" being concerned only with maximizing the immediate 

reward. If 0 < γ < 1 the infinite sum has a finite value as long as the reward sequence 

(rt+1+k| k > 0), is bounded. As lim γ → 1, Rt takes future rewards more strongly into account 

and eventually becomes the sum of all the rewards. The return (3.3.1) is appropriate for 

episodic tasks if the sequence finishes at the terminating state sT , where T is the final step, 

and for which rT+1 = 0. Normally the terminating state has no successors and corresponds to 

a naturel conclusion of the trajectory in the task domain. The return in this case is: 

(3.3.1) Rt ≝ ∑k=0
T
 rt+1+k 

The return is simple but useful way of modelling the aggregate reward over the state path 

and as formulated below yields graceful expressions for state values MRP (Sutton and 

Barto, 1998).. 

 Value Functions 3.4

Almost all RL algorithms are based on estimating cumulative rewards known as value 

functions, functions that estimate the expected return for states or state-action pairs. The 

state value of a state s under a policy π, denoted V
π 

(s), is the expected return when starting 

in s and following π thereafter. For MRPs, define V
π 

(s), as: 

(3.4.1) V

(s) ≝ 𝔼[Rt| st=s ] = 𝔼[ ∑k=0

 


k 
rt+k+1 | st=s] 

where 𝔼[] denotes the expected value of the Rt over all the (rt+1+k| k > 0), given that the 

agent follows policy π, and t is any time step. Note that the value of the terminal state, if 

any, is always zero. The function V

 denotes the state-value function for policy π. 

Similarly, define the action value for policy π, denoted Q
π 

, as the expected return starting 

from s, taking the action a, and thereafter following policy π: 

(3.4.2) Q

(s, a) ≝ 𝔼[Rt| st=s, at =a] = 𝔼[ k=0

 


k 
rt+k+1 | st=s, at =a] 

Estimation of V

 and Q


 can be done by either Monte Carlo methods or an iterative process 

(Sutton and Barto, 1998). 

 Bellman Expectation Equation for evaluation of Q 3.5

A relationship for Q in terms of V is given by Bellman (1957): 
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Q

(s, a) ≝ 𝔼[Rt | st=s, at==a] from (3.4.2) 

= 𝔼[ rt+1 +  Rt+1| st==s, at ==a] 

Introduce a partition over each successor state s' each with partial probabilities P
a
ss' 

= 𝔼[ rt+1| st==s, at ==a ] + s'P
a
ss' 𝔼[ Rt+1 | st==s, at ==a, st+1==s' ] 

Generate the expectation over s' to produce an inner random variable 𝔼[ Rt+1 | st+1==s'] 

= 𝔼[ rt+1| st==s, at ==a ] + s'P
a
ss' 𝔼 [ 𝔼[ Rt+1 | st+1==s'] | st==s, at ==a ] 

Since 𝔼[ Rt+1 | st+1==s'] only depends on s' and not on st, at, replacing with V(s') 

= 𝔼[ rt+1| st==s, at ==a ] + s'P
a
ss' 𝔼 [ V(s') | st==s, at ==a ] 

Since st+1 is s' with probability P
a
ss' given s and a, writing s'P

a
ss' V(s') = V

π 
(st+1) 

= 𝔼[ rt+1| st==s, at ==a ] + 𝔼[V
π 

(st+1) |st==s, at ==a] 

(3.5.1) Q

(s, a) = 𝔼[ rt+1 + V


(st+1) | st==s, at ==a ] 

Similarly a recursive relationship exists for Q Bellman (1957): 

Q

(s, a) ≝ 𝔼[Rt | st==s, at==a] from (3.4.2) 

=𝔼[rt+1 + Rt+1| st==s, at==a] 

Introduce a partition over each s' and over a' for the second term: 

= 𝔼[ rt+1| st==s, at ==a ] +∑s'P
a
ss'a' (s',a')𝔼[Rt+1| st==s, at==a, st+1==s', at+1==a'] 

Generate the expectation over s', a' to produce 𝔼[Rt+1 | st+1==s', at+1==a'] 

= 𝔼[ rt+1| st==s, at ==a ] +∑s'P
a
ss'a' (s',a')𝔼[𝔼[ Rt+1| st+1==s', at+1==a']| st==s, at==a, ] 

Since 𝔼[Rt+1| st+1==s', at+1==a'] only depends on s' ,a' replacing with Q

(st+1, at+1) 

= 𝔼[ rt+1| st==s, at ==a ] +∑s'P
a
ss'a' (s',a')𝔼[

 
Q


(s', a') | st==s, at==a, ] 

The sum of expectations is the expectation of the sum: 

= 𝔼[ rt+1| st==s, at ==a ] +𝔼 [∑s'P
a
ss'a' (s',a')Q


(s', a') | st==s, at==a, ] 

Revoking the partition over s', a' a recursive relationship for Q (3.6.2) results: 

= 𝔼[ rt+1| st==s, at ==a ] +𝔼 [Q

(st+1, at+1) | st==s, at==a, ] 

(3.5.2) Q
π 

(s, a) =𝔼[rt+1 + γQ
π 

(st+1, at+1) | st==s, at==a] 

This yields the Bellman Expectation Equation for Q

 (3.5.2) which is the basis of the TD 

update equation which is used in chapter 4 for the TD update equation. It is also 

straightforward to express V

(s) in terms of  and Q using (3.1.1) and (3.4.2) 
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(3.5.3) V

(s) = ∑a ℙ[at == a |st == s]𝔼[Rt| st=s, at =a] =∑a π(s, a) Q


(s, a) 

Bellman shows how (3.5.2) can be written in terms of Q

(s', a') and the model parameters 

P
a
ss', R

a
ss': 

(3.5.3) Q

(s, a) = ∑s'P

a
ss' [R

a
ss' + ∑a' (s', a')Q


(s', a') ] 

The fixed point will be Q

, Barto (1988) states that convergence is guaranteed under the 

same conditions that guarantee the existence of Q

. This result provides a route to the 

solution of action values if the model parameters P
a
ss' and R

a
ss' are known, otherwise (3.5.2) 

is used to provide an update term in the incremental TD(0) algorithm used in chapter 4. 

 Optimal Value Functions 3.6

Solving a RL task means finding a policy that achieves the maximum reward over the long 

run. Since A(s) is finite ∀s there is a finite set of policies and there is always at least one 

policy that is better than or equal to all other policies and all the optimal policies are 

denoted by π*. They share the same action value, called the optimal action value, denoted 

Q*, defined as: 

(3.6.1) Q
*
(s, a) ≝ max Q


(s, a), ∀s ∈ S and a ∈ A 

Sutton and Barto (1998) use the intuition that the Bellman Optimality Equation expresses 

the fact that the optimal action value at (s, a) under *, Q*(s, a) is related to the 

expectation conditional on st=s, at=a of the reward rt+1 and the discounted maximum over 

the actions a' of Q*(s', a') at the successor state s': 

(3.6.2) Q*(s, a) = 𝔼 [rt+1 +  maxa'A(s)Q*(s', a')|st = s, at = a] from (3.5.1) 

or if the model is known: 

(3.6.3) Q*(s, a) = s'P
a
ss'[R

a
ss' +  maxa'Q*(s', a')] 

The discounted maximum term can also be used to define V
*
 the optimal state value: 

(3.6.4) V*(s) ≝ maxaA(s)Q*(s, a) 

(3.6.5) V*(s) ≝ maxaA(s)𝔼 [ rt+1 + V
*
(st+1) | st=s, at =a ], using (3.5.1). 

 Policy improvement theorem 3.7

In our context the model is not available and iterative methods are need to solve (3.6.3) for 

the optimal policy. The optimal stochastic policy is directly obtained from the action of 

maximum Q*. The definition (3.7.1) checks for up to n Q each satisfying the maximum 

and computes the least biased probability of (1/n) for π*(s, a). 
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(3.7.1) π*(s, a) ≝ {1/n if ∃ a1, a2..an ˄ a ∈ {a1, a2..an } ˄ Q*(s, ai ) == max a'A Q*(s, a'); 

  {0 otherwise. 

In other words if there is a tie between two or more a values a1, a2,.. then π*(s, a1) + π*(s, 

a2) +.. =1 will be optimal. If there is no tie then a strictly deterministic policy π*(s) can be 

derived: 

(3.7.2) π*(s) ≝ argmaxaA Q*(s, a) 

Any deterministic policy π(s) has a policy matrix π(s, a) for which each state s has an 

action a of value 1 and the rest of the elements are zeros and are related: 

(3.7.3) π(s) =∑a a.π(s, a) 

(3.7.4) π(s, a) = δ π(s), a, where δab is the discrete delta function 

The action value for a discrete policy is related to its state value, V(s), and is a function of 

s only: 

(3.7.5) V(s) =∑a π(s, a) Q

(s, a) =∑a δ π(s), aQ


(s, a) = Q


(s, π(s)) 

A deterministic policy π' is defined to be better than or equal to a policy π if its expected 

return is greater than or equal to that of π for all states. Sutton and Barto (1998) propose a 

criterion to decide whether a policy change from π to π' will lead to an improved policy 

change for all states: 

(3.7.6) π' ≥ π if and only if Q
'
(s, π'(s)) ≥ Q


(s, π(s)), ∀s ∈ S. 

The RHS of 3.7.6 says that choosing π'(s) at step one and following π' thereafter yields a 

higher action value and hence higher expected return than choosing π(s) at step one and 

following π thereafter. The Policy Improvement Theorem of Sutton and Barto (1998) is as 

follows: Let a new policy π' with π'(s) = a # π(s) and assume its better in the sense that : 

(3.7.7) Q

(s, π'(s)) ≥ Q


(s, π(s)), ∀s ∈ S 

Sutton and Barto (1998) show that (3.7.7) implies Q
'
(s, π'(s)) ≥ Q


(s, π(s)) ∀s ∈ S and 

hence π' ≥ π by 3.7.6) as follows: 

Q

(s, π(s)) ≤ Q


(s, π'(s)) using 3.7.7: 

= 𝔼' [rt+1 + γ Q

(st+1, π(st+1)) | st=s], using (3.5.2), Q


(s, π(s)) = V


(s) 

≤ 𝔼' [rt+1 + γ Q

(st+1, π'(st+1)) | st=s], using (3.7.7), and that expectation is monotonic 

= 𝔼' [rt+1 + γ 𝔼'[ rt+2 + Q

(st+1, π(st+1))]| st=s], using (3.5.2) π'(s) at t+1 and π(st+1) at t+2 

= 𝔼' [rt+1 + γ rt+2 + 
2
Q


(st+1, π(st+1)) | st=s ], using 𝔼[X 𝔼[Y ] |c]=𝔼[X,Y |c] where X,Y 

independent 
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≤ 𝔼' [rt+1 + γ rt+2 + 
2
Q


(st+1, π'(st+1)) | st=s ], using (3.7.7), 

(3.7.8) Q

(s, π(s)) ≤ 𝔼' [∑k=0

 


k 
rt+k+1 | st=s ] = V

'
(s) = Q

'
(s, π'(s)) 

So by Q

(s, π'(s)) ≥ Q


(s, π(s)) => Q

'
(s, π'(s)) ≥ Q


(s, π(s)) hence π' ≥ π . Any new policy 

where an improved action can be found for a single state will be improved for all states. 

The Policy Improvement Theorem provides the basis for policy update of the TD(0) 

algorithm of chapter 4. 

 Calculating the optimal policy V* from the exact Qπ  3.8

The greedy policy π'(s) = argmax a Q
π 

(s, a) will recommend action changes for all states. 

From (3.5.1): 

(3.8.1) π'(s) = argmax a Q
π 

(s, a) = argmaxa 𝔼[ rt+1 +  V

(st+1) | st == s, at == a] 

By construction π' will be better than or as good as π for s so satisfies the Policy 

improvement theorem. If π' is as good as and not better than π the V
π 

=V
π'
 From (3.8.1) 

there is a V
π'
 that satisfies: 

(3.8.2)  V
π
'(s) = maxaA(s) 𝔼'[ rt+1+ V

π
'(st+1)| st=s, at=a ] 

Which is the same as the Bellman Optimality Equation for V*(s) so V
'
(s) = V*(s). If we 

have the correct action value the optimal policy is directly obtained. 

 The importance of exploratory policies 3.9

In practice only estimates of V

 in terms of Q


 are available and to ensure each (s, a) is 

visited an infinite number of times a policy with a non-zero probability of selecting any 

action at each state is needed. Such a complete exploratory policies has π(s, a) > 0 ∀ s, a in 

contrast to strict policy which has unique action for each π(s). The n-armed bandit 

exercises shows how a strict policy based on estimated Q will always find a sub-optimal 

Q* whereas an ϵ-greedy shows successively better long run results as ϵ → 0, ϵ > 0, Figure 

2.7.1. 

(3.9.1) π(s, a) = 1− ϵ +ϵ/|A| if a == argMaxWithRandomTiebreaksa' (Qt(s, a')) 

   = ϵ/|A|  if a ≠ argMaxWithRandomTiebreaksa' (Qt(s, a')) 

The reworking below of Sutton and Barto (1998) starts with the implicit definition of a 

deterministic policy π' based on a ϵ-greedy policy π'(s, a) identical to (3.9.1) from which to 

establish the condition for the policy improvement section  (3.7). 

(3.9.2)  Q
π
(s, π'(s)) ≝ ∑ a π'(s, a)Q

π 
(s, a) 

  = (ϵ /|A|) ∑ a Q
π 

(s, a) + (1-ϵ ) maxa Q
π
 (s, a) 
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Construct weights Wa = (π(s, a) - ϵ/|A|)/(1 -ϵ ), for a=1..A , Σa Wa =1, then maxaQ
π
(s, a) 

≥ ∑a WaQ
π
 (s, a) 

Q
π
(s, π'(s)) ≥ (ϵ /|A|) ∑ a Q

π 
(s, a) + (1-ϵ ) ∑a (π(s, a) - ϵ/|A|)/(1 -ϵ ) Qπ

 (s, a) 

  = (ϵ /|A|) ∑ a Q
π 

(s, a) – (ϵ /|A|) ∑a Q
π
 (s, a) +∑a π(s, a)Q

π
 (s, a) 

  = Q

(s, π(s)) by 3.7.7 

By (3.7.6), the policy improvement theorem: 

Q
π 

(s, π'(s)) ≥ Q

(s, π(s)) =>Q

π' 
(s, π'(s)) ≥ Q


(s, π(s)) so π' > π 

which shows that the new policy is an improvement for all states. The greedy policy entails 

no exploration and will eagerly home in on the first feasible solution. The chapter shows 

the detailed working behind the TD update equation used in Ch 4.0. The policy 

improvement theorem is explained and it is shown that a complete exploratory policy will 

select every state action pair and hence will converge almost surely to the optimum greedy 

policy by the policy improvement theorem and Robins Monro conditions.  
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 Assessment and evolution of TD methods Chapter 4

The scope of this chapter includes applying RL to a new problem in order to explore the 

effectiveness and limitations in the game context. The chapter addresses the task of 

objective 2.1 which entails applying a tried and tested RL learning algorithm to the 

determination of a steering policy for the reversing caravan. 

The TD algorithms encompass the basic task of evaluating V
π
 where the sequence follows 

policy π, and from that to obtain V* when using an exploratory policy. The point of the 

work in this section is to succinctly bring together the key theorems which underpin the 

TD algorithm in a common format and notation. 

Bellman equations state the core iterative TD algorithm and its convergence properties 

based on the Robins Monro conditions for estimation of V
π
and Q


. The structure of the TD 

algorithm, its complexity, and statistical convergence are subsequently presented. The 

online estimation of TD state/action values used above contrasts with the well founded 

offline or batch updating approach which provide a useful benchmark of the best estimates 

that can be obtained with a finite dataset. 

Finally in the same format and notation the TD extension to Q estimation is presented 

known as sarsa(0) mimicking the quintuple (state , action, result, state, action) and the (0) 

indicates no eligibility traces. 

 Foundations of the TD family of RL algorithms 4.1

TD learning is a landmark idea in RL and uses framework of Monte Carlo and DP. Like 

DP, TD methods update estimates based in part on other learned estimates, without waiting 

for a final outcome, historically known as bootstrapping. Unlike DP only the successor 

states are used. From section 3.5, the Bellman Expectation Equation provides the founding 

definition for V
π
 and Q


 from (3.5.2) 

Q

(s, a) = 𝔼[ rt+1 + γQ

π 
(s', a') | st == s, at == a], s', a' are successor state and action. 

Given values of rt+1 + γQ
π 

(s', a') and Q

(s, a) for a Markov reward sequence generated by π 

an improved estimate Q'

(s, a) is obtained using the stochastic approximation equations: 

(4.1.1) Q'

(s, a) = (1- α)Q


(s, a) + α[rt+1 + γ Q


(s', a') ] 

Q'

(s, a) = (1- α)Q


(s, a) + α[rt+1 + γ Q


(s', a') ] 

 = Q

(s, a) – αQ


(s, a) + α[rt+1 + γ Q


(s', a') ] 

 = Q

(s, a) + α[rt+1 – Q


(s, a) + γ Q


(s', a') ] 
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generalising the update from the incremental calculation of the mean of an RV using a 

learning rate parameter. 

The Robbins-Monro conditions (2.7.1) (Robbins & Monro 1951) guarantee convergence 

with probability 1. Proof that the limit is V

(s) ∀ s and Q

π 
(s, a) ∀ s ∀ a is provided by 

(Szepesvari 2009) and requires use of the Bellman operator. The TD algorithm below 

synchronises policy evaluation and policy improvement. Policy evaluation improves the Q 

value given a particular policy π using the TD update (4.1.1) which is underpinned by the 

RM conditions. Policy improvement uses the current Q values to obtain a new greedy 

policy based on (3.7.2) which will be equal or better by the Policy improvement theorem 

of 3.7. Sutton asserts that although policy evaluation and policy improvement mutually 

interfere they will converge to an optimal policy which is consistent with its action value 

function. 

 TD Sarsa(0) estimating Q* 4.2

TD sarsa(0) is essentially a extension of TD to the estimation of Q(s, a). The 

implementation of TD sarsa(0) using a soft behaviour policy π is shown below: 

Parameters 

α State value learning parameter 

γ Return discount parameter 

ε Probability of a random action 

Initialise Q(s, a) arbitrarily, Qn(s,a) to zero 

Repeat for each episode e 

 Initialise s0, a0 

 Repeat for each step t of e 

  Take action a yielding reward r and next state s' 

  Choose a' from s' using a ε-soft behaviour policy based on Q # Policy evaluation 

  δ = [r + γQ(s', a') – Q(s, a)] 

  Q(s, a) = Q(s, a) + α δ  # Q Policy improvement 

  ++Qn(s, a) #Increment count of visits to (s,a) 

  s = s' 

  a = a' 

 until s terminal 
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until last episode 

Convergence and performance are similar to TD sarsa(0) and memory complexity is O(|S| 

x |A|). TD algorithms have a graceful link to Monte Carlo methods. CEWIn Monte Carlo 

learning the complete episode is generated and the state value V(s) is the average of the 

undiscounted returns of the first visit to s over all the episodes, Rubinstein and Kroese 

(2017). On the other hand TD learning uses a one-step of the episode and an provisional 

estimate of the state value to yield an updated estimate. 

 TD sarsa(0) learning and validation of the reversing caravan problem 4.3

Pursuing objective 2.1 an incremental simulation model of a car and van is needed which 

replicates the effect of steering control on the configuration. It is understood that the game 

would need to have such a model anyway for the correct depiction of the asset's physics. A 

model for the dynamics of a car towing a caravan has been researched, developed and 

implemented, and RL applied to the caravan reversing problem. Trajectories which are 

pathways along the plane of the car and caravan for a given steering policy are generated 

and input into a TD sarsa(0) learning algorithm. A steering policy that generates a steady-

state trajectory in the sense that it does not jack-knife is to be learnt using TD sarsa(0). The 

caravan reversing problem is a non trivial control task and as far as is known has been 

untried with RL. CEWOther known solutions include a control approach has been made by 

Jayakaran (2004). Using his work a formal solution is offered in Appendix 2. 

Reversing a caravan or trailer with a car attached by a tow bar is a problem having meta-

stable dynamics and compounded by the need to look rearwards. It involves judicious 

overshooting to orientate the caravan to the correct angle. Intuitively the steady state 

solution is when the lines though all the wheel axles meet at the same point known as the 

instance centre about which both the car and van trace out circle arcs. Jayakaran (2004) 

uses the geometry of the steady state solution to show that the car-van angle is a function 

of sterring angle for any in [-90 90]. 

Figure 4.3.1 shows the geometric model of the car and caravan ensemble co-aligned and 

overlaid by the configuration after one time step. The car centre line is FA with the tow bar 

at B. The van centreline BCD is at angle  to the car. T is the instance centre of the 

turning circle of the car. The front wheels are at angle ϕ to the centreline. 
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Figure 4.3.1 Car and caravan courtesy of LaValle, S. (2006) 

The car and caravan system in 2D comprise of two displacement and one orientation 

degree of freedom each. These six degrees can also have rates of change making 12 

degrees in all. The join of the tow bar makes two displacement and two time derivatives 

constraints leaving 8 remaining. If we regard the ensemble as a single object this will have 

six degrees of freedom leaving 2 internal which are the angle between the car and van,  

and its derivative. Jayakaran (2004) has offered a dynamic systems approach to the 

equation of motion for  and Appendix 3 confirms in detail his result is equivalent to the 

geometric approach used below. 

For simplicity and tractability the speed and acceleration are assumed fixed at this stage. In 

addition an infinite plane is available so the location and orientation of the whole ensemble 

is not needed. The state space for the problem is the tuple of all the state variables, in this 

case the pair of continuous state variables (,). The only action variable available is a 

change in the steering angle ̇, which is constrained by the range for  consequent on the 

vehicle steering lock. The jack-knife angle for  is set to a nominal 7º but a proper 

consideration of the jack-knife criterion for an actual car and caravan would be needed for 

an exact value. 

Move then turn dynamics are deployed where the incremental movement is to model a 

move along a straight line as allowed by the wheels followed by a turn to a new 

orientation. The move will be along an arc of a circle. After each move the steering is 

nudged by the current best action or an exploratory random action. For the move dynamics 

over the time interval Δt the change in the car angle θ is given by (4.3.1) LaValle (2006): 

(4.3.1) Δθ ≡ (qsin ϕ /L) Δt 
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Using well conditioned expressions the displacement of point A is: 

(4.3.2) ΔA = [qcosϕ Δt cos(θ(t) +Δθ/2) {1 – (Δθ/2)
2
/3! …}; qcosϕ Δt sin(θ(t) + Δθ/2) {1 – 

(Δθ/2)
2
/3!…}] 

The change in van angle using displacement v is: 

(4.3.3)Δ = sin
-1

(v/M) 

where v is a complex expression in the displacement of the tow bar BB'. Appendix 2 

presents the detail on the derivation of 4.3.3 and presents a transformation to the equation 

of motion for Ψ. 

The change in car-van angle is: 

(4.3.4) Δ = Δ − Δθ 

Appendix 2 presents a transformation of the equation of motion for Ψ into a standard first 

order differential equation with known boundary conditions. The Wolfram|Alpha 

deductive engine is used to find a formal symbolic solution. The work in this thesis uses an 

incremental numerical approach to the solution for the equation of motion which provides 

a graceful input to the TD sarsa(0) learning algorithm. 

For the turn dynamics the steering ϕ is updated by Δϕ which is based on the ϵ-greedy 

selection rule. A positive Δϕ is an anti-clock wise turn. A negative reward on failure is the 

most common scenario in the Weatherwax (2005) studies and in the cart and pole system 

of Barto etal (1983). A reward which will learns a policy which continuously steers away 

from a jack-knife over a set number of steps is defined as a stable policy. Accordingly the 

TD sarsa(0) reward r is set to zero for each step until jack-knife occurs when it is -1. 

State aggregation divides the state space of a continuous variables into sub-regions each 

denoted by a state variable index. CEWBarto, A. G. and Sutton, R. S., Anderson, C. W., 

(1983) use the state aggregation scheme of Michie and Chambers (1968a, 1968b) 'boxes' 

model for the classic balancing the pole on a cart problem and uses a non-linear state 

aggregation which comprise of 162 regions covering a four dimensional space for the 

displacement, x and pole angle θ and their derivatives. Doya (2000) uses a 30 x 30 grid 

discretization of the state to achieve results comparable with Function Approximation. A 

detailed discussion of the interrelation of the granularity of the state aggregation and the 

probability of a state change is given in section 5.3 below. 

A state aggregation scheme of 6 sub-regions for  and 8 sub-regions for  is used. 

Similarly for the single action an aggregation of 4 sub-regions for the steering nudge Δϕ is 

used. This choice gives two levels of steering nudge each way and results only in a total 



  Page 66 

state action space of 6 x 8 x 4 = 192. The exploration parameter ϵ = 0.2 is based on a 

marginally more generous value than the best value for the bandit exercises (Figure 2.7.1) 

and the discount parameter set at γ = 0.9 based on the TD random walk of Weatherwax 

(2005). The value of Δt was determined as a compromise between simulation accuracy, 

which favours a smaller value and trajectory run length, which favours a larger value 

sufficiently long enough for trajectories to encounter near jack-knife conditions. 

Table 4.3.1 shows the counts for visits to each state action pair (Qn, see 4.2) and reveals 

two orders of magnitude between visits to the central state-action elements and extreme 

elements of the state space. For example pair (3, 4) is visited 3228 times but (1, 2) only 28 

times, see underlined values in Table 4.3.1. Clearly the learning process produces a policy 

which avoids actions leading to extreme states. 

ϕ         Ψ         

below -∞ 

 

 -7  -3  -1  0  1  3  7  ∞ 

 
-15  1  2  3  4  5  6  7  8  

 1 0  28  10

8 

 176  87  136  108  10  

-6                  

 2 0  48  64

4 

 1472  591  366  118  2  

-2                  

 3 2  24  60

2 

 3228  227

5 

 303  108  4  

0                  

 4 0  44  81

2 

 3223  227

5 

 303  108  4  

2                  

 5 4  10

9 

 59

2 

 1684  193

0 

 914  245  0  

6                  

 6 1

3 

 11

2 

 14

6 

 247  308  485  156  0  

Table 4.3.1 Counts of visits to states ( left column are ϕ bondaries) 

The output deterministic policy, π'(s), given by (3.8.1) yields an integer which is an index 

of the set of actions A(s). The change in steering Δϕ is obtained from the aggregation 

vector [-4 -1 1 4] using the index. Table 4.3.2 shows the output deterministic policy which 

reveals the appropriate symmetry about the main diagonal 
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ϕ         Ψ         

below -∞ 

 

 -7  -3  -1  0  1  3  7  ∞ 

 
-15  1  2  3  4  5  6  7  8  

 1 -4  -1  -1  4  4  4  4  -4  

-6                  

 2 -4  -4  -4  1  4  4  4  -4  

-2                  

 3 -4  -4  -4  1  1  4  4  -4  

0                  

 4 -4  -4  -4  -1  -1  4  4  -4  

2                  

 5 -4  -4  -4  -4  -1  1  4  -4  

6                  

 6 -4  -4  -4  -4  -4  -1  4  -4  

Table 4.3.2 Deterministic policy  

For example for negative ϕ with state variable index 1 and positive Ψ with index 6, Δϕ 

shows that the car is turned by 4 to ϕ + 4 which is less negative and will reduce the 

increase in Ψ, see underlined values in Table 4.3.2. Similarly in the opposite quadrant the 

case of positive ϕ, and negative Ψ, a negative Δϕ, (-4) will mitigate the decrease in Ψ. With 

the exception of extreme Ψ the policy π' shows symmetry about the main diagonal which 

confirms the sense of Figure 4.3.1. Since exploration will introduce a stochastic element to 

the reward, 15 epochs each of 100 episodes and each episode potentially up to 150 steps 

have been carried out. These values required 8 minutes of run time on an Intel i5 @3.3Ghz 

and were considered adequate for the investigation. 

Figure 4.3.2 below shows the average trajectory length following a clearly rising trend for 

Robbins & Monro compliant α of 1/Qn(s, a). It suggests a non-failing reversing trajectory 

is learnt by episode 40 from when most trajectories reach 150 steps, the maximum 

specified. At the early learning stages jack-knife occurs after about 25 steps when steering 

is more or less random. 
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Figure 4.3.2 Average trajectory length with episode 

Figure 4.3.3 shows the steady decline of the number of state action pairs with zero Q 

values. Despite all states are visited some Q values for some epochs are still zero. An 

explanation is they are visited early due to exploration and receive only the zero update as 

initialised but later paths avoid them due to learning and the jack-knife reward signal never 

propagates back to them. 

 

Figure 4.3.3 Percent of Q values still zero against episode  

Although learning is suggested only a proper validation will show that the output policy is 

achieving the learning goal and that it can be generalised. The validation protocol proposed 

in this thesis is derived from a simulation of the learnt deterministic policy (Table 4.3.2) 

where all learning and exploration is switched off and the policy repeated using starting 

conditions each corresponding to a state (ϕi, Ψj) where ϕi, Ψj are state variable values. This 

validation protocol has the advantage of being repeatable, in contrast to some random 
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selection of starting conditions, as well as highlighting with equal probability extreme 

states. Table 4.3.3 shows for each starting state s0, the length of the trajectory t, the reward 

outcome r, the state indices (i, j) and start state variables (ϕi , Ψj,) the final state s1 and the 

simple unweighted Euclidian distance of (ϕi , Ψj ) from the learning start state variable 

values (ϕi 
L 

= 3, Ψj
L

 = 2). For example from row 1: s0=35, Ψ6
 
=2, ϕ5 = 4 Distance = √ ((2-

2)
2
 + (3 – 4)

2
) = 1 

s0 t r i j ϕi Ψj s1 Distance 

35 100 0.0 5 6 4 2 41 1.00 

29 100 0.0 5 5 4 0 41 1.80 

34 100 0.0 4 6 1 2 40 2.00 

28 100 0.0 4 5 1 0 34 2.50 

23 100 0.0 5 4 4 0 41 2.69 

41 100 0.0 5 7 4 5 17 3.16 

22 100 0.0 4 4 1 0 40 3.20 

40 100 0.0 4 7 1 5 34 3.61 

33 100 0.0 3 6 -1 2 33 4.00 

17 100 0.0 5 3 4 -2 35 4.12 

27 100 0.0 3 5 -1 0 9 4.27 

16 100 0.0 4 3 1 -2 16 4.47 

21 100 0.0 3 4 -1 0 15 4.72 

39 100 0.0 3 7 -1 5 33 5.00 

15 100 0.0 3 3 -1 -2 9 5.66 

32 100 0.0 2 6 -4 2 8 7.00 

11 100 0.0 5 2 4 -5 17 7.07 

26 100 0.0 2 5 -4 0 8 7.16 

10 100 0.0 4 2 1 -5 16 7.28 

20 100 0.0 2 4 -4 0 32 7.43 

36 100 0.0 6 6 10 2 36 7.50 

38 100 0.0 2 7 -4 5 32 7.62 

30 100 0.0 6 5 10 0 24 7.65 

24 100 0.0 6 4 10 0 30 7.91 

9 100 0.0 3 2 -1 -5 15 8.06 

14 100 0.0 2 3 -4 -2 14 8.06 

42 100 0.0 6 7 10 5 42 8.08 

18 100 0.0 6 3 10 -2 42 8.50 

8 100 0.0 2 2 -4 -5 14 9.90 

12 3 -1.0 6 2 10 -5 6 10.26 

31 18 -1.0 1 6 -10 2 1 13.50 

25 15 -1.0 1 5 -10 0 1 13.58 

19 15 -1.0 1 4 -10 0 1 13.73 

37 3 -1.0 1 7 -10 5 43 13.83 

13 15 -1.0 1 3 -10 -2 1 14.08 

7 21 -1.0 1 2 -10 -5 1 15.21 

Table 4.3.3 Validation of simulation from Table 4.3.2 

Validation reveals steady-state trajectory to 100 steps for 80% (29/36) of the start state 

variable values. The failing start states are mostly extreme suggest that the selection rule 

learning is poor and steering is not nudging the van away from a jack-knife fast enough. 

An improvement to learningmay be obtained if a carefully chosen set of starting states was 

used which would have the effect of exposing extreme states to more visits and hence 

better estimation. Whist the performance of the learnt policy has been evaluated it is of 

interest to see how the policy performs for a particular start state. 
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Figure 4.3.4 shows a plot of successive ϕ and Ψ pairs for the validation of the simulation 

having policy of Table 4.3.2. The trace of Ψ shows that is maintained somewhere between 

-1.8 and 5.5 for 100 steps and no evidence this would change soon for further episodes. 

The steering oscillates between -15 and 19; the latter value is the steering lock plus four. 

The trajectory is steady-state in the sense that it oscillates about the learning start state with 

a very marginal drift in the positive Ψ direction. 

 

Figure 4.3.4 Successive state value pairs from Table 4.3.2 

This reversing caravan problem completes objective 2.1. A state and action variable space 

that is sufficient for steering control has been found. A base line state aggregation is 

deployed which leads to a converged policy. The steering policy is successful in that a 

steady-state trajectory is obtained. The performance shows a clear learning phase which 

eventually plateaus out (Figure 4.3.2) and a falling number of unvisited states. Both of 

these pose the question as to whether there is a stopping rule based on properties of the Q 

values which would produce a feasible policy earlier. A sample average of 15 independent 

learning epochs ("experiments" in the figure) have been taken. 

This chapter has solved the problem of maintaining the internal configuration of a dynamic 

system in this case the car-van angle and this needs to be complemented with learning how 

to steer to a target in a game world domain. The next chapter addresses this problem using 

a simple vehicle model. 
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  The application of RL to a racing car game Chapter 5

The motivation for this application builds on objective 2.1 and addresses another case 

study to follow through on the third objective and look at a more demanding dynamic task. 

In a racing car game road following is an essential requirement in order to solve the 

problem of constructing NPC's which can intelligently "drive" assets the game world. The 

performance of TD sarsa(0) algorithms is demonstrated for the learning of car steering 

based on local kerb avoiding. This offers minimal local information on which to base the 

steering decision. A successful outcome would complement the reversing caravan problem 

and make possible more complex steering task like parking into a bay. 

 Application of TD algorithms to Racing Car problem 5.1

A key decision for all learning is to identify the smallest set of state and action variables in 

order to mitigate the curse of dimensionality. Wang (2004) has successfully implemented a 

steering policy using the nearest kerb distance and its derivative. The simulated vehicle can 

successfully traverse loop circuits without leaving the track. The approach is used to 

provide a work bench for assessing the stopping rule proposed in (2.15.1). Silver (2014, 

lecture 7, slide 38) makes a similar two state variable approach to an RL solution to the 

simple actuated snake in a cranked course of straight and angled channels. He uses kerb 

normal distance to the head link and the angle of the kerb normal to the body axis on which 

to base its state variables. CEWThe simple vehicle model used here builds on the point 

vector model of Craig Reynolds, (Shiffman, 2012) where velocity change is essentially 

simulated using vector addition of the desired direction and the current direction but 

attenuated with appropriate upper and lower bounds. There is no attempt to model the 

underlying steering mechanism and its nonholonomic limitations. 

A race track model data structure is built out of geometric rectangles and circular bends. 

The simple vehicle model represents the car at any time t by a point vector having position 

pt and direction αt. The state of the car s, comprise the local kerb distance d and velocity v 

from the kerb which can be analytically derived. The move and turn dynamics is as 

follows: the car travels to a new position in Δt at velocity V in direction αt. On arrival at 

the new position the action available is to adjust the steering by an increment Δαt. The 

implications of turn and move dynamics are addressed below. 

Intuitively it would be expected that a strong positive Δα (anti-clock wise, i.e. towards the 

kerb) would be needed if the car is traveling away from the left kerb and also a long way 

from the left kerb, conversely if near the left kerb and travelling toward it a strong negative 

steer is required. 
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The race track frame is described by X, Y coordinates. The car is at point in track shape n 

from which d and v are calculated. The environment also returns off track condition with n 

set to zero. 

Following a common approach the terminal state is reached when the car has either come 

off the track or reached the finish line. Episodic learning is assumed with a reset to the start 

state if reaching a terminal state. A value of -1 is the reward on going off track and +1 if 

passing the finish line. Otherwise the reward is 0. The discounted reward uses γ = 0.9 

obtained from the reversing caravan case study sction 4.3. 

 Dynamic equations 5.2

Below move and turn dynamics are made explicit for the motion of the car at each time 

step. From the initial state s0 which entails p0 and direction α0 the next position and 

orientation will be pt+1 and αt+1. 

 

#Initialise V, Δt 

#Initialise p0, α0 and Δα0 

Repeat for t=0:T 

 #Update pt αt 

 (5.2.1) pt+1 = pt + ΔtV[ cos(αt); sin(αt)] 

 (5.2.2) αt+1 = αt + Δαt 

 #Derive Δαt+1 from pt+1 and αt+1 for next step 

EndRepeat 

In the case of a rectangular track the distance of the car to the left hand track is obtained by 

rotating anticlockwise the frame of reference, XOY to that of the track, SOT by θ. (Figure 

5.2.1 below). This is equivalent to rotating clockwise the line OP by theta. The XOY 

position p is now q in the track frame of reference. The notation [d; e] is used to indicate 

the orthogonal components of q and subsequently for OP and dp /dt. 

(5.2.3) q = [d; e] = R-θ [dx; dy] = R-θ OP , where [dx; dy] = OP which gives: 

(5.2.4) d = dx cosθ + dy sinθ 

The velocity of the car is dp/dt = [Vcos(α ); Vsin(α)]. The velocity v is the projection of 

this on the direction of d: 

(5.2.5) v = dp/dt . [cosθ; sinθ ] = V(cosθcos(α ) + sinθsin(α)) = Vcos(α – θ) 
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Figure 5.2.1 Rectangular and circular bends, Courtesy of Wang (2004) 

For bends the right hand diagram in Figure 5.2.1 is used. If the kerb is nearest to the origin 

the distance to the kerb is: 

(5.2.6) d = √ ((x – X0)
2
 + (y- Y0) –R. The velocity is the projection of dp /dt onto this 

radius Vcos(α – β ), β = arctan dy/dx. 

If the kerb is opposite to the origin d= W + R - √ ((x – X0)
2
 + (y- Y0)

2
). The velocity is the 

negative projection of a vector of length V and direction α onto this radius –Vcos(α−β), β = 

arctan dy/dx. In summary, following Wang(2004), the state variables have been defined 

and derived in terms of the car's x, y position coordinates. 

 Investigating the bias in learning due to state aggregation 5.3

In order to use action value learning algorithms the problem has to be fully discrete. 

Already introduced is the discrete time implicit in the Markov model by locating all change 

at a sequence of time step points. This section investigates the effect of state aggregation 

on the TD update expression and indirectly on the learnt policy. State aggregation is an 

approach to convert state variables d and v to state variable indices Di and Vi according to 

the following: the range of d and v, dr = [0, W] and vr = [-V, V] are divided into equi-

spaced sub-ranges totalling Nd and Nv. Dval are the Nd+1 boundary points of d and Vval 

the Nv+1 boundary points of v. Any d ∈ dr has an index Di, Di ∈ [1..Nd+1], indicating its 

enclosing range [Dval(Di), Dval(Di+1)] and has value Dmid(i) which is the average of 

Dval(Di) and Dval(Di +1). Any v ∈ vr has an index Vi, Vi ∈ [1..Nv+1], indicating its 

enclosing range and has value Vmid(i) which is the average of Vval(Di) and Vval(Di +1). 

For action aggregation the action variable Δα can take any value in the range ar = [-A, A]. 

For Na sub-ranges Aval denotes the Na+1 boundary points. Any Δα ∈ Aval has an action 

variable index Δαi and an interpolated value Aval(Δαi). 
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 Calculation of state to state probabilities 5.4

Successive states s will have zero probability of being the same for any positive velocity 

and angle change. 

(5.4.1) ℙ[s'==s | s, Δα ] = 0 for state s' = (d', v') will always be true for a movement from 

(d, v) for Δt > 0 

Linear state aggregation will coalesce a sub-region of d and v, having state variable indices 

Di and Vi into one state index Si. The state index is an index combining all of the state 

variable indices. The new sub-ranges Di' and Vi' give the new Si'. If the vehicle move is 

outside the sub-region then Si' ≠ Si otherwise if it remains in the sub-region Si' == Si. State 

aggregation has introduced a non-zero ℙ[Si' == Si, | Si, ΔAi]. Clearly the larger the sub-

regions for Si the greater this probability and the lower the learning gain from the state 

paths. Using the action value update relationship (4.1.1): 

(5.4.2) Q(s, a)' = Q(s, a) + α (r + γQ(s', a') – Q(s, a)) 

If (s', a') = (s, a) and its not terminal then r = 0. Inserting Q(s', a') = Q(s, a)) in 5.4.2: 

(5.4.3) Q(s, a)' = Q(s, a) + α (γQ(s, a) – Q(s, a)) = Q(s, a)(1 + α(γ −1) < Q(s, a) 

The value of Q(s, a) will be reduced and thus make action a less likely to be the policy. 

The smaller the sub-regions the greater the number of Q values that are required to be 

estimated. So it is important to understand the best ratios of track width, vehicle length, 

simulation time step and state aggregation granularity for the most effective learning. 

Figure 5.4.1 above shows the sub-regions associated with states (D1, V1), (D1, V2), … . The 

value of V as 1 is chosen to achive a step length VΔt of a workable proportion to the track 

size W. To calculate the probability of a change to another state the critical value dc(1) is 

calculated. The Δt is set to 0.1s, the value used in the caravan study. The action variable is 

allowed to range from -40˚ to 40˚ to emulate a normal vehicle with a steering lock. The 

aggregation values Nd, Nv and Na are purely illustrative at this stage. For a left hand 

boundary it's the distance travelled to Dval(1) in Δt, given a velocity of v = Vval(1). Since 

this distance is in a negative direction it is dc(1) = |Vval(1)|Δt and similarly for v=Vval(2), 

dc(2) = |Vval(2)|Δt. Both critical values delineate a critical area for D1 =1 shown as the 

trapezium area in the lower left hand corner. 

If it is assumed that all values of v are equally likely the probability of a change in D1 given 

the original state is in the sub-region D1, V1 , ℙ[D1' # D1 | D1, V1, 0] is given by the ratio of 

the critical area to the total area where critical area = 0.5*(base + top)*height and total area 

= ΔD * height. 
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(5.4.5) ℙ[D1' # D1 | D1, V1,0] = critical area / total area 

= 0.5*Δt*(|Vval(1)| + |Vval(2)|)/ (Dval(2) – Dval(1)) = Δt*(|Vmid(V1)| / (W/Nd) 

which for Δt = 0.1, (W/Nd)= 0.166 is 0.1*0.8/(0.5/3) = 0.4800 

This calculation is valid for all Δt until dc(1) = Dval(2) giving 0≤ Δt ≤ Dval(2)/|Vval(1)| 

which at the top of the range Δt = Dval(2)/|Vval(1)| = (5/3)/1.0=1.666 and yields a 

probability of 0.166*0.8/(0.166) =0.8. For Δt = Dval(2)/|Vval(2)| =0.2 no point remains the 

sub-region and so the probability of a state change is 1.0. An identical result is for all Di. 

For V3 two smaller triangles occur: 

ℙ[D2' # D2 | D2, V3, 0] = Δt*|V(4)| / (W/Nd) 

Taking the compliment to get the probability of state unchanged: 

ℙ[D2' == D2 | D2, V1, 0] = 1 − ℙ[D2' # D2 | D2, V1, 0] = 1 – Δt(|Vmid(V1)| / (W/Nd)) 

Similar formula derivable for ℙ[Di' == Di | Di, V1, 0] 

Now the change introduced by Δα is derived. For Si' to be the same as Si then neither Di 

nor Vj must change. Because d and v are independent variables the change in Vj is entirely 

due a change in α. 

The condition for V1' == V1 is α1 ≥ α + Δα ≥ α2 which gives for positive Δα, α1 – α2 ≥ Δα ≥ 

0 and for negative Δα, α2 – α1 ≤ Δα ≤ 0. 
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Vval(2) -0.6 

Vval(3) -0.2 

Vval(4)  0.2 

Vval(5) 0.6 

Vval(6)  1.0 

α = 180 

α = 127 

α = 127 + 20 = 147 

W = 0.5 

V = 1.0 

A = 40 

Δt = 0.1 

vr=[-1.0, 1.0] 

dr=[0.0, 0.5] 

Nv = 5 

Nd = 3 

Na= 4 
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Figure 5.4.1 Showing critical area in d and v space 
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If it is assumed that all values of α are equally likely, the probability that the index Vj' from 

α + Δα is the same as Vj from α, is that proportion of the α in the range [α2 , α1 ] that are 

also in [α2 + Δα , α1]. 

An expression for ℙ[ V1' == V1 |V1, α1 – α2 ≥ Δα ≥ 0 ] is written: 

ℙ[ V1' == V1 |V1, α1 – α2 ≥ Δα ≥ 0]=ℙ[α ∈ [α2 , α1] AND α ∈ [α2 +Δα, α1] ] 

= (α1 – α2 −Δα)/(α1 – α2) = 1 – Δα/(α1 – α2) 

For 0 ≤ Δα ≤ 53 the critical region occurs from 127 and above. E.g. for Δα =30: 

ℙ[ V1' == V1 |V1, 53≥ 30 ≥ 0]=ℙ[ α ∈ [127 , 180] AND α ∈ [127+30, 180] 

= 1 – 30/(180 – 126.87) = 1- 0.5647 

For a negative Δα 

ℙ[ V1' == V1 |V1, α2 – α1 ≤ Δα ≤ 0 ] = 1 + Δα/(α1 – α2) 

The critical area corresponds to a rectangle in the upper part of sub-region (1,1). So in 

general: 

(5.4.6) ℙ( V1' == V1 | V1, α1 ≥ α + Δα ≥ α2 ) = 1 −|Δα|/(α1 – α2) 

Combining the results of 5.4.5 and 5.4.6 and using the complementary probabilities: 

(5.4.7) ℙ[Si' == Si| Si, Δα] = ℙ[Di' == Di AND Vj' == V1 | Di , Vj, Δα] 

= ℙ[Di' == Di | Di,V1,Δα] *ℙ[Vj' == Vj | Vj, Δα] since they are independent 

= (1 – Δt(Vmid(Vj) / (W/Nd) )(1−|Δα| /(αj – αj+1)) 

Continuing the example for S1, which is confirmed below: 

ℙ[S1' == S1| S1, -30] = 1 – Δt(|Vmid(V1)| / (W/Nd))( 1 −|30|/(180 – 126.87)) 

= (1-0.4800)*(1- 0.5647 ) = 0.2264,(see underlined values in Table 5.4.1) 

Table 5.4.1 shows the calculation of (5.4.7) for D2 for all Vj and Δα 

     Δα: Vmid -30 -10 10 30 

     1 -0.8 0.2264 0.4221 0.4221 0.2264 

     2 -0.4 0.0000 0.4600 0.4600 0.0000 

 Vi  3 0.0 0.0000 0.4986 0.4986 0.0000 

     4 0.4 0.0000 0.4600 0.4600 0.0000 

     5 0.8 0.2264 0.4221 0.4221 0.2264 

Table 5.4.1 ℙ[Si' == Si| Si, Δα] with Vi and Δα 

Interpreting above ℙ[Si' == Si| Si, ± 30] shows zero for mid-range Vi. The value for ± 10 

shows higher ℙ[Si' == Si| Si, ± 30] values for mid range of Vi , (-0.4 0.0 0.4) which 

correspond to moves parallel to the track. 
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The probability of no state change when there is a state variable change has been 

calculated for an example aggregation. The dependence on Δt, Δα and ΔD and ΔV has 

been established and the implication for learning drawn out. From (5.4.7) it can be 

concluded that ℙ[Si' == Si| Si, Δα] declines linearly as Δt, Δα and ΔD increase and will 

lower the learning bias. The is also a non-linear decline with ΔV due to the term in 1//(α1 – 

α2)) where α1 = cos
-1

(V1 /V). However as Δt increases the step length increases which will 

make the dynamics less accurate to the point of unstable. A larger Δα will get lower ℙ[Si' 

== Si| Si, ΔAi] but increase vacillation in trajectories. It is proposed to use this result as a 

guide to the choice of the Nd, Na, and Nv and adjust to lower ℙ[Si' == Si| Si, Δα]. The 

next section illustrates this in part by the simulation of a fine grained policy which has 

larger Nd, Na and a linear expression for Δα. 

 Establishing the existence of a kerb-avoiding policy 5.5

The rest of this section brings together the state aggregation, P21 monitoring, UCB or ϵ-

greedy selection in order to complete objective 4.1 regarding fast, lightweight and flexible 

learning algorithms. To show that a policy does exist which will produce a steering 

behaviour that always moves forward and avoids kerbs a simulation has been constructed 

which tests out a intuitive hand crafted policy constructed below Table 5.5.1. At car 

position p a direction change Δα is generated based on the deterministic policy Δα
π
. The 

car then increments at velocity V in direction α for Δt seconds to a new position p' and then 

increment its direction by Δα. As a starting point I have used a V range of [-6 6] and a d 

range of [0 3] to assist in the construction of a transparent expression for Δα
π
. A finer 

aggregation than above of Nv = 6, Nd = 9; Δα*= 9 is deployed in order to achieve a more 

sensitive steering control and thus show proof of concept. A linear expression in Di and Vi 

gives a Δα
π
 as a proportion of the maximum shift Δα* and the state indices Di, Vi (5.5.1): 

(5.5.1) Δα
π
(Di, Vi) = Δα*(-0.5 +Vi/(2*V) + Di/W) 

Table 5.5.1 shows values for Δα
π
(Di, Vi) using (5.5.1) 
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D below   V across    

0.0 -5.0 -3.0 -1.0 1.0 3.0 5.0 

0.15 -7.8 -6.2 -4.8 -3.3 -1.8 -0.2 

0.50 -6.8 -5.2 -3.8 -2.2 -0.8 0.8 

0.85 -5.8 -4.2 -2.8 -1.3 0.2 1.7 

1.15 -4.8 -3.3 -1.8 -0.3 1.2 2.7 

1.50 -3.8 -2.2 -0.8 0.7 2.2 3.8 

1.85 -2.8 -1.3 0.2 1.7 3.2 4.7 

2.15 -1.8 -0.3 1.2 2.7 4.2 5.8 

2.50 -0.8 0.8 2.2 3.8 5.2 6.8 

2.85 0.2 1.7 3.2 4.7 6.2 7.7 

Table 5.5.1 Δα
π
(Di, Vi) against Di, Vi 

For example the value of Δα
π
(1.15, -3.0) is -3.3. 

#The octave code is below 

#Implement (5.5.1) 

function da=astar(Di, Vi) 

da= daStar*(-0.5 +Vmid(Vi)/(2*V) + 

Dmid(Di)/W) 

endfuntion 

#Initialise V, Δt 

V= 0.7 

dt= 0.1 

#Build track structure tk within members {O, θ , 

L, W..} 

#Initialise p0, using Dmid, α0 and Δα0 

p0=p=[Dmid(Di)+6.0, 0.01]; 

a0=a=50; 

#Compute (d, v) from p0, α0, (5.2.5) and (5.2.4) 

v = V*cosd(a – tk(n).theta) 

#Compute (Di and Vi) from (d, v) using 

#interpolation function I 

Di= I(d, Dval, len(Dval)); 

Vi= I(v, Vval, len(Vval)); 

Figure 5.5.1 Simple Steering trajectories for 

hand crafted policy 
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#Compute Δα0 from Δα
π
(Di, Vi)  

da = astar(Di, Vi); 

#Repeat for t=0:T 

#Update pt , αt 

#(5.2.1) pt+1 = pt + VΔt[ cos(αt), sin(αt)] 

    p1 = p +[V*dt*cosd(a), V*dt*sind(a)]; 

#(5.2.2) αt+1 = αt + Δαt 

  a1 = a + da; 

#Derive Δαt+1 from (Di and Vi) from (d, v), (d, v) 

from pt+1 and αt+1 

#Δαt+1 = Δα
π
(Di , Vi) 

      da1= astar(Di, Vi); 

#Calculate reward for car finish (1), of track(-1) or 

 just on-track(0) 

#Update p, a and da 

  a=a1; p=p1; da=da1 

#Exit if r#0 

#end repeat 

The first simulation is to trial a hand crafted policy 

of a fine grained aggregation Nv= 6 and Nd= 9. 

Figure 5.5.1 shows five steering trajectories using 

increasing Δα* from 6 to 18. Only value 6 fails to 

turn early enough, the rest go beyond the first kerb 

encounter. It does convincingly show that a simple 

steering policy can be constructed from just very local information. This aggregation 

presents 6*9*4 = 216 Q values to estimate each may require over 100 values and has the 

potential to be too computationally demanding. For the purposes of learning a reference 

policy is needed which has properties of 5.5.1 against which to compare learnt policies. 

A coarse but tractable aggregation (Na, Nv, Nd) = (3, 5, 5) is proposed in Table 5.5.2 

below with a reference policy which is anti-symmetric about the antidiagonal and has 

proper behaviour at the kerbs. The state (1, 1) corresponding to state variables (0.05, -0.8) 

indicates a vehicle close to the kerb and heading towards it with velocity -0.8 and is given 

Figure 5.5.2 Simple Steering validation of  coarse 

aggregation 

Simple steering trajectories for four states with 

Δt = 0.1 for coarse aggregation 
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a steering nudge of -21 to reduce α and thus bringing the vehicle away from the kerb. The 

three zero values correspond to maintaining current steering if the vehicle is parallel to the 

track. 

   V across   

D below -0.8 0.4 0.0 0.4 0.8 

0.05 -21.0  -21.0  -21.0 21.0   21.0   

0.15 -21.0  -21.0  0.0 21.0   21.0   

0.25 -21.0 -21.0  0.0 21.0   21.0   

0.35    -21.0  -21.0  0.0 21.0   21.0   

0.45 -21.0 -21.0 21.0 21.0   21.0   

Table 5.5.2 Handcrafted reference policy for coarse aggregation 

Figure 5.5.2 show four trajectories from different values of Di . The effect of the no change 

zone in the state space is manifested by straight lines with swerves when near to the kerb. 

The effect of the coarse aggregation is displayed in Table 5.5.3 using the probability P[Si' 

== Si| Si, Δα ] for Di=2. The effect of a coarser aggregation has reduced values at extreme 

indicies (1, -10) = 0.1247 at extreme indices compared to the calculation of Table 5.4.1 (1,-

10) = 0.4221. 

  P[Si' == Si| Si, Δα ]   

 Δα: -10  0 10 

   1 0.1247 0.2000 0.1247 

   2 0.1263    0.6000 0.1263    

Vi 3 0.1066    0.8000 0.1066    

   4 0.1263    0.6000 0.1263    

   5 0.1247 0.2000 0.1247 

Table 5.5.3 Variation P[Si' == Si| Si, Δ] with Vi and Δα  

Figure 5.5.3 below shows finishing trajectories starting from the mid points of all state sub-

regions except the extreme cases s=1,2, 24, 25. The path lengths of the finishing 

Figure 5.5.3 Simple Steering finishing trajectory length 

steps 
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trajectories are all over 66. The performance of finishing trajectories is (25 – 4)/25 = 84% 

of all trajectories. The extreme cases correspond to extreme proximity to the kerb and 

maximum velocity to the kerb and where in the first step the vehicle leaves the track. 

 The application of TD sarsa(0) to a racing car steering 5.6

The next task is to show that RL can provide an algorithm that can learn a feasible steering 

policy. As a base line it is necessary to show that TD Sarsa(0) for state indices will yield a 

feasible steering policy. Subsequently the application of the early stopping is investigated. 

The learning parameters are those of the caravan exercise. The implementation of TD 

sarsa(0) using the UCB / ϵ-greedy selection rule and the binary PMSMMPM based on the 

algorithm in 4.3 is reworked below: 

#SimpleSteering4.m 

#Track parameters W, V, L, R 

W= 0.5; V= 1.0; L=1; R=1; 

#Set aggregation parameters Nv, Nd, Na 

Nv = 5; Nd = 5; Na = 3; 

#MRP, Learning and simulation constants 

XX=5; E=100; T=120; 

#Set time and state partitions of Δt, Dval, Vval and Aval 

dt= 0.1; Dval = 0 : W/ Nd : W; Vval = -V : 2*V / Nv : V; 

#Generate race track in data structure tk 

[tk, bounds, W, exit]=maketrack(pls); 

#Set learning parameters γ, αμ, ϵ 

gamma = 0.9; epsilon = 0.2 

#Initialise Q0, k, S0, s0
2 

, sμ0
2
, Û0, RR 

smu2=srt2=S=U=k=Q=zeros(Ns, Na); 

#Repeat for E episodes 

for e=1:E 

#Initialise p0, and α0 

  p=[6.25, 0.1] ;a0=a=50; 

#Generate n, the shape number enclosing p, d , v, Di, Vi and s0 

  [n, D2L, V2L] = gets(p, a, tk, V, Dval, Vval, prt); 

  Di= I(D2L, Dval, len(Dval)); Vi= I(V2L, Vval, len(Vval)); 
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  s=sub2ind ([Nd, Nv], Di, Vi); 

#Get the index ιt from Round Robin using k(0, s0, a0) 

  Qsn=sum(k(s,: )+1; i=mod(Qsn-1, Na) +1; 

#Get the real value of Δα0 by interpolating ι0 in Aval, Δα0 = X(ι0 , Aval) 

  da = X(i, Aval); 

#Generate next episode, where t is the step number for episode e 

  for t = 0:T 

#Move to pt+1 along α0 and change orientation to αt+1 , (5.2.2) 

 pt+1 = pt + VΔt[ cos(αt), sin(αt)]  #[x, y] is octave notation for a column vector 

     p1 = p +[V*dt*cosd(a), V*dt*sind(a)]; 

 αt+1 = αt + Δαt 

     a1 = a + da; 

#Generate n, d' ,v', and calculate Di', Vi' and hence st+1 

     [n, D2L1, V2L1] = gets(p1, a1, tk, V, Dval, Vval, 0); 

     D1i= I(D2L1, Dval, len(Dval)); V1i= I(V2L1, Vval, len(Vval)); 

     s1=sub2ind ([Nd, Nv], D1i, V1i); 

#Check on/off track and get rt+1. Determine ιt+1 depending on learning setting 

 if(!n) #Car off track 

   if(!isnan(norm(intersectEdges ([p, p1], [exit(1,:, 

   exit(2,:])))) 

   r = 1;  #Car travels trough finish Line 

  else 

   r = -1; #Car comes off early 

  endif 

  Qs1DA1i = 0 #since s1 is terminal. Following Barto,1983 

 else #Car still on track rt+1= 0, Choose ιt+1 on basis of learning method 

  r = 0; 

  if(st+1) has still has values in RR range, ιt+1 = RR(1) 

   i1=inRR(1);    #Choose ιt+1 based on RR  

  elseif(UCB), ιt+1 = argmaxj (Qu(st+1 , j) + Ûu(st+1, j)) 

   [Qm, adesc]= sort(Q(s1, : ) .+ U(s1, : ), "descend"); 
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   i1=adesc(1); 

  elseif(EGREEDY), ρ ~U[0,1], if(ρ > ϵ ) ιt+1 = U[1..Na] 

   if(rand()<epsilon)i1 = unidrnd(Na); #Exploration 

   else, #ιt+1 = arg maxWithTieBreaksι (Qu(st , •) 

   [i1, ties] = randtiebrks(Q(s1,: ); #Exploitation 

   endif 

  endif 

 endif #n 

#Compute k(u+1, st, ιt) and αμ, k(u+1, st, ιt) = k(u, st, ιt) +1; αμ = 1/ k(u+1, st, ιt) 

  k(s,i) = k(s,i) +1; 

  alphaC = 1/k(s,i);  

#Calculate TD error δt+1 = rt+1 + γQu(st+1, ιt+1 ) – Qu (st, ιt) 

  delta = r + gamma*Qs1DA1i – Q(s, i); 

#Carry out TD update Qu+1 (st, ιt) = Qu(st, ιt) + δt+1 αμ 

 Qu+1 (st, ιt) = Qu(st, ιt) + δt+1 αμ 

  Q1stDAi = Q(s, i) + alphaC*delta; 

#Sums of squares update Su+1(st, ιt) = Su(st, ιt) + (rt+1 – Qu+1 (st, ιt) ) (rt+1 – Qu(st, ιt) ) 

  S(s, i) = S(s, i) + (r – Q1stDAi)*(r – Q(s, i)); 

#Compute sample variance of the reward of ιt, su+1
2 

(st, ιt) =Su+1(st, ιt)/(k(u+1,st, ιt) −1) 

 srt2(s,i)= (1/(k(s, i) -1))*S(s, i); 

#Compute sample variance of the action value of ιt, sμu+1
2
(st, ιt) =su+1

2 
(st, ιt) /k(u+1,st, ιt)  

 smu2(s,i) = srt2(s,i)/k(s, i); 

#Compute Qu(st+1, ιt+1 ) into local memory 

  Q(s, i)= Q1stDAi; 

#Sort Qu+1 (st, ιt) descending magnitude with sort order at(ι) Qu+1
S
(st, ιt) = Qu+1(st, at(ι)) 

  [Qts, ats]= sort(Q(s, : ) , "descend"); 

#Compute ℙ[Qu+1(st, at(2)) ) ≤ Qu+1(st, at(1)) ] and if >0.95 mark as converged 

  P21(s)=normcdf((Q(s,ats(1))-Q(s,ats(2)))/sqrt(smu2(s,ats(1))+smu2(s, 

ats(2)))); 

  if(conv(s)==0 && P21(s) > 0.95) conv(s)=1; ; endif 

#Calculate the UCB Ûu+1(st, ιt) = √ (2log(( u+1) / k(u+1,st, ιt) ) 
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  U(s, i) = sqrt(2*log(u+1)/k(s, i)); 

#Get new Δαt+1 = X(ιt, Aval) 

  da1 = X(i1, Aval);   

#Increment u 

  u=u+1; 

#Exit if off track 

  if(!n) break endif 

endfor #t 

endfor #e 

#Get the stochastic policy Π*(s, Δαi) from Q (3.7.1)  

#Get the deterministic control policy Δα*(s) which is the expectation of Amid over the 

#corresponding stochastic policy, Δα*(s) = Σι Π(s, ι)Amid(ι) 

astar = reshape(Pi*Amid, Nd, Nv); 

The next section is to show that RL based on the coarse grained aggregation can learn a 

feasible steering policy and investigates the effectiveness of the stopping rule above 

(2.8.6). 
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 Learning experiments 5.7

Figures 5.7.1(a) and 5.7.2(b) show a visualisation of the learning process for ϵ-greedy and 

UCB respectively. The TD sarsa(0) learning algorithm has been implemented for the 

simple steering vehicle model on a track of a straight section and a right hand curve. The 

reference aggregation of 5.5.1 has been used (Na, Nv, Nd = 3, 5, 5) with V=1 and the 

nudge steering having values 0 and ± 20. The P[Si' == Si| Si, Δα ] are those of Figure 5.5.1. 

Figure 5.7.1(a) shows 200 trajectories and uses a 0.2-greedy selection rule. CEWThe 

values chosen here are informed by Wang's research (2004). The trajectories show more 

exploration than those of Wang(2004) possibly due to a larger exploration parameter. The 

200 episodes generate 9035 learning steps which are apportioned on average at 120 over 

each of the 75 (s, ι) pairs, but with about 15% of them below six. This is lower than that 

needed for a reliable estimate of the variance and confirms that the on-policy data stream 

does not find and visit all states equally. 

  

Figure 5.7.1(a) Simple Steering trajectories during ϵ-

greedy learning 
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Figure 5.7.1(b) above shows 300 trajectories below which generate 6309 steps at an 

average of 84 per state action pairs but only 4% are below 6. Compared to the 15% for ϵ-

greedy, UCB does an improved job of exploration. The pattern of trajectories is more 

spread out than ϵ-greedy which suggests a broader range of exploration in the data stream. 

For ϵ-greedy the learning performance in Figure 5.7.2(a) below shows the trajectory 

lengths by episode and displays a rising trend which plateaus out at around episode 55. The 

dips thereafter are due to the 0.2-greedy random steering set at 20% of all action selections 

used to achieve exploration. For UCB the learning performance of in Figure 5.7.2(b) below 

shows the trajectory lengths by episode and displays a rising trend of peak values which 

plateaus at around episode 150 much later than ϵ-greedy. 

Figure 5.7.2a, b shows the convergence of ℙ[QS
t(2) ≤ Qt

S
(1)] (P21) on a rising or 

approximately level trend for both ϵ-greedy and UCB. 

 

Figure 5.7.2(a) Simple Steering trajectory lengths during ϵ-greedy learning  

0

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140 160 180 200

steps

e
SimplesteeringTD6Stopping.m 08-Mar-2017.22.58

Simple Steering Trajecties lengths learning EGREEDY
E = 200, Velocity = 1  = 0.9  = 1/k(s, a)  = 0.2 t = 0.1

path length
Num P21>0.95



  Page 87 

For ϵ-greedy the ℙ[QS
t(2) ≤ Qt

S
(1)] (P21) below (Table 5.7.1(a)) show mostly values over 

0.95 with 17 qualifying for convergence at episode 200. Among the 8 that are yet to pass 

three remain at zero which is confirmed by the state action visits being two low. For UCB 

the ℙ[QS
t(2) ≤ Qt

S
(1)] (P21) below (Table 5.7.1(b)) show mostly values over 0.95 with 15 

qualifying for convergence at episode 300. All the ℙ[QS
t(2) ≤ Qt

S
(1)] values are greater 

than 0.5 reflecting the better data count at extreme states than for ϵ-greedy: 

 D= 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45 

 -0.8 0.793 0.986 0.992 1.000 0.000 0.908 0.894 0.999 1.000 0.995 

 -0.4 0.933  1.000 1.000 1.000 1.000 0.955 1.000 1.000 0.640 1.000 

V= -0.0 0.997 0.596 0.999 1.000 1.000 0.723 0.806 0.999 0.969 0.999 

 0.4 0.836 1.000 1.000 0.999 0.867 0.792 0.683 0.927 1.000 0.999 

 0.8 0.000 0.000 1.000 0.963 0.996 0.593 0.813 1.000 0.999 0.996 

 
Table 5.7.1(a)  P21 for  ϵ -greedy  Table 5.7.1(b)  P21 for UCB 

For ϵ-greedy the output policy shown in the table below (Table 5.7.2(a)) shows differences 

in four cells from the reference policy (see section 5.5) denoted R. As intuitively expected 

it shows anti-symmetry about the approximate antidiagonal. For UCB the output policy 

shown in the Table (5.7.2(b)) below shows differences in six cells from the reference 

policy (see section 5.5) denoted R. 

 

Figure 5.7.2(b) Simple Steering trajectory lengths during UCB learning 

0

10

20

30

40

50

60

70

50 100 150 200 250 300

e
SimplesteeringTD6Stopping.m 09-Mar-2017.23.15

Simple Steering Trajecties lengths learning UCB
E = 300, Velocity = 1  = 0.9  = 1/k(s, a)  = 0.2 t = 0.1

path length
Num P21>0.95



  Page 88 

 D= 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45 

 -0.8 -20 -20 -20 0.0R 20 -20 -20 -20 0R 0R 

 -0.4 -20 -20 0 20 20 -20 -20 -20R    0R -20R*    

V= -0.0 -20 -20 20.0R 20 20 -20 -20 0 20 20 

 0.4 -20 -20 20.0R 20 20 -20 -20 0 20 20 

 0.8 -20 0.0R 20 20 20 -20 0R 20 20 20 

Table 5.7.2(a) Output Policy for  ϵ -greedy Table 5.7.2(b) Output Policy for UCB 

The validation protocol is derived in the same manner as section 4.3 and the policy 

deployed using a standard set of starting conditions each corresponding to a state (Di, Vi). 

This validation protocol has the advantage of being repeatable, in contrast to some random 

selection of starting conditions, as well as highlighting with equal probability extreme 

states. For ϵ-greedy Figure 5.7.3(a) provides a visual validation of the learnt policy. 

Gratifyingly the trajectories eventually converge to a common route independent of the 

start position. For UCB Figure 5.7.3(b) shows the performance is 84% finishing 

trajectories with a mean length of 59.4, very marginally lower than ϵ-greedy. The output 

policy generates two dominant trajectories unlike the single one for ϵ-greedy. 
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Figures 5.7.3(a) and 5.7.3(b) show a visualisation of the validation for ϵ-greedy and UCB 

respectively. The performance variable is the % of finishing trajectories and derives 

directly from the reward intention. For both ϵ-greedy and UCB Figures 5.7.4(a) and (b) 

shows 84% of trajectories finishing achieves with a mean length mean trajectory of over 70 

each starting from a different state.  

The four failures at s=1,2, 24, 25 correspond to extreme states where the policy does not 

make the car turn sufficiently quickly. 

The problems with states 1 and 25 are investigated here. The turning circle radius, R, of a 

vehicle at p steering in direction α, and advancing ΔtV in one time step, and then turns Δα 

clockwise is: 
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 (5.7.1) R= (Δt*V/2)/(sin(Δα/2)) 

The condition for a car d from the edge and orientation α to steer away from the edge is: 

(5.7.2) d + Rcosα ≥ R, 

For Δt = 0.1, V=1, Δα = 20, then inserting in (5.7.1), R= 0.288. With α =143, d=0.05 and 

s=1 and inserting into (5.7.2), 0.05 + 0.288*cosd(143) = -0.18 which is not greater than R. 

Thus there is no policy that can avoid a failure if the car starts in states 1, 2, 24 or 25. A 

point vector model for a car has proved sufficient to provide a state and action variable 

space that is sufficient for steering control. A simple state aggregation has been found 

which offers a basis for a kerb avoiding reference policy. The learned steering trajectory 

lengths reach the max possible at episode 55 and 150 for ϵ-greedy and UCB respectively. 

The proportion of converged PMSMMPM rise steadily and plateau at 17/25 around 100 

episodes for both selection rules. The output policies generate validation trajectories which 

show a common route at the finish line except for four extreme start states. 
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Figure 5.7.4(b) Simple Steering trajectory lengths  for UCB validation 
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 An aggregate stopping rule 5.8

Table 5.8.1 shows a percentage of P21 that have met the convergence criterion. This 

section compares several aggregate measures of the P21 matrix which result in a single 

figure. A single figure which embodies the correct trade offs provides an effective 

aggregate stopping criteria. 

A simple aggregate stopping rule is just the proportion that met the individual criterion, 

P21 > δ. Table 5.8.3 shows values 0.68 (17/25) and 0.60 (15/25) for egeedy and UCB 

respectivly. There is no obvious simple relationship between δ and the proportion above 

and so not readily interpretable or generalizable. 

The P21(s) of each state is a function of the ΔQ and SQ (2.18) of the top two actions and 

the number of visits. An aggregate measure using the sum of each P21(s) weighted by d(s) 

has an interpretation as the expected probability of a correct action at the next step, 

explained as follows: A set of E epochs and trajectories T(e) e ∈  1..E generate a set of 

steps from which d is estimated, and from which a random subset of size S is extracted 

which gives the expected number of visits to a state s, Sd(s). The expected number of 

correct actions from state s is Sd(s)P21(s). The expected number of correct actions at the 

next step is ΣSd(s)P21(s) . The expected probability of a correct action at the next step is = 

( Σ Sd(s)P21(s) )/S = Σ d(s)P21(s). It also has the property that the most visited states 

influence the measure the greatest. This reflects their importance in the dynamics of the 

learnt policy. The unvisited states have by definition zero P21 and are correctly omitted. 

The infrequently visited sates will have a poor estimate of P21 and will be discounted by 

having a low d value. On the other hand any P21 that is well over the threshold will 

compensate for below threshold states and hide important differences of P21 across states. 

Using the estimated stationary distribution the average P21 is given by (5.8.3).  Table 5.8.3 

shows that UCB does come close to the 0.95 threshold but the implication is that both need 

more episodes. The higher value of P21  for UCB correlates with its more episodes and its 

higher unweighted average P sum. In fact this counts for 0.90792-0.83464 = 0.07 of the 

difference. 

(5.8.3) P21  = Σ s P21(s)ds 

run selection rule Proportion > 0.95 P21  episodes Σ P21/25 

08-Mar-2017.22.58 ϵ-greedy 0.68 0.82416 200 0.83864 

09-Mar-2017.23.15 UCB 0.60 0.93 300 0.90792 

Table 5.8.3 Aggregate selection rule for ϵ-greedy and UCB  
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 Critical appraisal and conclusions Chapter 6

The scope this thesis is to demonstrate the application of RL to moving assets in the game 

world to achieve realistic NPC learning for control. In order to make a critique the original 

objectives from chapter 1 are restated. 

Objective 1.0: Show how action selection contributes to efficient learning. 

Objective 2.1: To exploit and develop the implications of RL learning algorithms for the 

reversing caravan and its generalisation to related movement tasks. 

Objective 2.2: Applying other known solutions to the reversing caravan problem. 

Objective 3.0: Explore the wider application of learning in games. 

Objective 4.1: To produce fast, lightweight and flexible learning algorithms suitable for 

run-time embedding in current games. 

Objective 4.2: To explore at least one of the key theoretical problems arising from current 

theoretical advances. 

4.2.1. Determine a convergence criterion that achieves a specified level of probability. 

4.2.2. Investigate the properties of state aggregation. 

4.2.3. Construct a single measure of convergence based on the measure for each state. 

Objective 5.1: To investigate and develop metrics for the validation and evaluation of the 

performance of RL algorithms using a standard set of simulated problems. 

Objective 5.2: Demonstrate and visualise the learning progress. 

Motivated by objective 1.0 the investigation into action selection reveals the interrelation 

of exploitation, exploration and the efficiency of action selection, since these determine the 

accuracy of output results. 

As evidenced from the %optimal action over the first 200 episodes there is considerable 

difference in learning power and trends only become apparent over 5000 episodes. The 

ideal action selection is one which is has high %optimal action through the sample range. 

From Figure 2.7.1 this is UCB except between 500 and 1000 episodes when it is 

Reinforcement Comparison. 

An explanation lies with the structure of the distribution of the rewards and with the 

greediness of the action selection. Regarding the structure of the reward, each epoch uses a 

reward drawn from a normal distribution whose mean is Q* and variance is 1. Q* is also 

drawn from a unit normal distribution. It implies that 40% of the means are bunched in in 

the range [-.52 .52], and the means have standard deviation 1/√ (sample size), so it takes 
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100 samples to distinguish means that are at least 2 x 1/√(100) = 0.4 apart. Greater samples 

will be needed in the case of closer and therefore harder to distinguish means. Those action 

selections that focus on the most likely actions rather than over exploring the least likely 

will be successful in finding the optimal. 

It would be illuminating to have calculated a measure of exploration defined as the 

proportion where the action chosen is not the current greedy action, Σe a ≠ arg 

maxWithRandomTieBreak Qt. The greediness of the action selection is the trend to reduce 

exploration as the number of episodes increase. Soft max %optimal only reaches 64% and 

it may be due to the expression for the probabilities is very insensitive to small differences 

in Q and so weaker actions will be over favoured. An unexploited action in UCB will 

eventually produce a growing U value large enough to supersede the maximum but only to 

fall back down when it is selected and its k value increased, so exploration continues even 

when an action is a clear maximum. The output to objective 1.0 is the decision to use UCB 

as the favoured action selection and to compare it to ϵ-greedy as a reference. 

The evidence of Figure 2.7.1 reveals the crucial role action selection plays in achieving fast 

learning and motivates the investigation of the greedy action selection expression. Action 

selection must address the following cases: a high variance in the best action value or  

bunched action values that will require more exploration to distinguish them. 

A variance based approach to convergence has been implemented with a focus on deciding 

when convergence has occurred and what form the convergence criterion should take. 

Using a proper definition (Mnih etal, 2008), the investigation of convergence of a random 

process concludes that successive differences are ill-conditioned, UCB is sound but ignores 

the reward variance information, the confidence interval is sound and needs the variance 

and the Bernstein bounds (Mnih etal, 2008), need both variance and range. A relevant 

observation is that all of these measures ignore that what is needed is only the convergence 

that confirms the maximum. All that is needed is only to explore until the top two action 

values are different enough for the probability of the action of maximum sample mean 

being the maximum population mean (PMSMMPM) to be a number arbitrarily near to 1.0. 

A probability based measure of convergence PMSMMPM has been derived from first 

principles. This contributes to objective 4.2.1 and provides a stepping stone to a 

convergence criterion. A sound formulae for the convergence of policy evaluation, 

PMSMMPM, based on order statistics and which exploits the semantics of the policy 

evaluation expression, has been proposed, implemented and tested using an n-armed bandit 

simulation. 
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A Bandits simulation has been implemented using an initial round robin of 2 cycles for 

each action, and using UCB action selection and numerical integration to output 

ℙ[maxa#1(Qt
S
(a) ) ≤ Qt

S
(1) ] at each play t. A sample epoch using a 3-armed bandit shows a 

monotonically rising PMSMMPM to a value of 0.988 at play 26 thus passing the 

convergence criterion of 0.95 and which provides evidence for its feasibility for a stopping 

rule. In summary PMSMMPM is a sound and interpretable measure of convergence. 

The classic student t-test (Gosset, aka Student, 1908), provides a t statistic and it is relevant 

to comment its validity for very small sample sizes and thus enable omission of the round 

robin step. For P12 values based on student t estimates with samples as low as 2 can only 

be supported if the difference in the means is large, the randomness is normal and the 

variances are comparable (De Winter, 2013) but since these cannot be assummed the round 

robin safeguard has been deployed. 

The stopping rule defined here is to quit plays at the first t such that PMSMMPM greater 

than 1 – δ, where interpret δ is interpreted as a significance level as used in statistical 

estimation.  

Further simulations show the mean of PTC increases markedly as the top two action values 

get closer but decrease as their variance gets smaller reinforcing the intuition that more 

samples are needed for estimation of close or high variance Q population means. The step 

when the sample maximum is the population maximum to a given probability, described as 

PTC is simulated and it properties investigated as the underlying population parameters 

vary. The frequency distribution of the number of plays to convergence based on 

PMSMMPM shows a high peak at the first allowed episode and a very long tail, a result 

that shows that the stochastic reward sequence can produce a wide range of sample average 

behaviour. Objective 4.2.1 has been substantially met with the development and testing of 

an iteration stopping rule and which will contribute to faster learning algorithms. The 

results show that PMSMMPM with an initial RR of 5 will provide a robust measure of 

convergence. 

Objective 3.2 is to develop fast, lightweight, algorithms and so a simpler expression for 

PMSMMPM is desirable. The effect on PMSMMPM of ignoring the third and subsequent 

action value shows that at the worse case of a tie between second and third introduces an 

error of 17% which rapidly fades as they move apart. PMSMMPM is reasonably 

approximated by P21 which is an expression that uses standard library functions and does 

not require numerical integration and theoretically should be faster than PMSMMPM. 

A minimal sampling size is of interest since it will promote faster learning and thus 

contribute to Objective 4.1. To that end an expression for the total sampling effort based on 
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population variances subject to the achievement of a given value for P21, is minimised and 

yields an expression for the theoretical minimum sampling sizes 

The results of a simulation of P21 show lower %optimal action as the population means of 

the action values come closer and it is harder to discriminate between very close 

population means. The tighter the variance of either action reduces the mean PTC 

confirming that is easier to discriminate where action values have less probability overlap. 

The validity of using P21 is confirmed since the theoretical minimal PTC based on the 

A==2 case with population parameters closely tracks the empirical mean PTC based on 

sample estimates. 

The expression for P21 shows an explicit dependence on the respective samples sizes. P21 

can be increased the most by selecting which ever action has the greatest positive gradient. 

Based in on explicit expression for the derivative of P21 a selection rule to decide whether 

to choose action 1 or action 2 is derived. Since choosing action 1 or 2 is not a complete 

exploratory policy the policy η–UCB combines UCB with P21 every ηth step to achieve 

completeness. It is shown that the 4-UCB produces 68% less sampling than 0-UCB using 

either population variances or sample estimates which supports the claim that the η-UCB 

selection rule will contribute to faster learning. This result rests on a point estimate and to 

make a rigorous conclusion an average over many epochs would be needed. 

In summary the expression for the simplest case of just two actions provides a basis to 

show there is a theoretical minimum sample size that could achieve any desired level of 

probability. A selection rule is proposed and demonstrated based on P12, the tractable 

approximation of PMSMMPM that chooses that action which yields the higher marginal 

convergence probability of taking either action 1 or action 2 at step t. A new complete 

exploratory policy is proposed and simulated based on augmenting UCB with the selection 

rule from P12. 

The foundation of TD is the modelling of dynamic change using a stationary discrete 

Markov Decision Process characterised by a set of states, actions, action transition 

probabilities, and conditional rewards. The system constraints for a the existance of a 

stationary distribution are derived and the implication for NPC assets is that places of no 

return in the game world should be designed out. If not the places of no return will need a 

separate learning exercise. 

In part as proof of concept and in part as a learning exercise TD sarsa(0) was applied to 

learn a steering policy that will solve the caravan reversing problem. Although animations 

are available as far as online searches reveal this problem has been untried as a machine 

learning exercise. It presents a sufficiently complex problem which is relevant to game 
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dynamics. In particular it learns the steering behavour that has the latency of a human 

operator in contrast to following a predifined trajectory of traditional animations. A 

geometric model for the configuration of a vehicle and caravan has been built which 

realistically captures steering motion given a steering angle and indicates the completion of 

objective 2.1. 

The steering angle and the car-van angle have been determined as the state variables and 

numerically well conditioned incremental dynamic equations for displacement of the 

ensemble over the time interval Δt derived, based on move then turn dynamics. In a game 

world asset dynamics would be done as a matter of course. The action variable is the 

steering angle change reflecting the normal experience of incremental steering turn and 

will be determined by the selection rule. 

A state aggregation scheme has been used to translate variable values to state variable 

indices. Similarly an aggregation of sub-ranges for the steering angle change deployed. 

The output of the TD sarsa(0) is a learnt steering change policy for any pair of state 

variables which displays the appropriate symmetry but with deviations at the edge columns 

due the reason as follows: the distribution of visited states shows the bulk of the volume at 

the central sub-regions of the state index space underlining again the difficulty in 

estimating extreme state configurations. The exercise shows that TD sarsa (0) can learn a 

successful steering policy that will enable a reversing caravan to find a trajectory arc that 

does not jack-knife. 

A validation exercise which simulates the ensemble starting from the state variables at 

each of the state indices and which switches off all learning and exploration shows 19% 

jack-knife trajectories during 100 steps. A plot of a trajectory by ϕ and Ψ shows 

overlapping circular paths revealing the learnt behaviour is more jack-knife avoidance than 

finding the steering angle which achieve a steady state. 

Control engineering offers a solution to the reversing caravan problem, (objective 2.2). 

Building on the dynamic systems approach of Jayakaran (2004) the equation of motion the 

reversing caravan problem is derived and shown to be equivalent to the geometric 

approach of this thesis. A transformation of the equation of motion into a standard first 

order differential equation with known boundary conditions is solved for a symbolic 

solution using the Wolfram|Alpha deductive engine. In the games context most NPC 

motions will not have an exact solution whereas the incremental numerical approach is 

generalizable. 

The caravan reversing problem has been complimented with a general kerb avoiding 

steering problem of a racing car and expands objective 3.0. In the interest of avoiding the 
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curse of dimensionality Wang's (2004) small set of state and action variables are followed 

and a point vector model for the car is deployed using move then turn dynamics. Of course 

kerb avoiding will fail at junctions or dead ends where trajectories need to be determined 

using other contextual information. A NCP will need a route following policy to make 

decisions at junctions. If racing is the objective then close kerb following may be a better 

reward than just kerb avoiding. 

State aggregation is a key approach to transforming the continuous problem to a discrete 

one but in making any approximation there is a price to pay in modelling accuracy. The 

investigation into the bias effect of state aggregation on the state action estimates shows 

that a illustrative aggregation of 60 values does introduce a maximum probability of 0.5 of 

the state being unchanged consequent on a single step. The implication is that for 50% of 

the steps the action value is diminished and ultmately its action may be less likely to be the 

policy action. The expression for this probability declines linearly as each of Δt, Δα and 

ΔD increases up to an upper bound. However increasing Δt will increase the step length 

and make the incremental dynamics less accurate and a larger Δα will increase vacillation 

in trajectories. This suggests that a larger time interval is used for learning and is separate 

from that used for incremental dynamics. To assist easy implementation it could be a small 

multiple of the dynamic time interval. Recapitulating state aggregation has been shown to 

introduce a bias downwards on action values for steps that remain in the same state action 

region and it receives no adjustment from action values of successor state action regions. It 

implies that only those steps which produce a state value region change will contribute to 

effective learning and by implication more state action visits and hence more episodes will 

be needed to compensate. 

A deterministic policy based on a function of the state variables with the intuitively correct 

antidiagonal symmetry using a fine aggregation scheme of 216 elements demonstrates 

feasible trajectories and so confirms the validity of the point vector model. For the purpose 

of a less demanding approach feasible trajectories are shown which are based on a 

reference policy with appropriate antidiagonal symmetry and based on an aggregation of 

75 elements. 

The ϵ-greedy and UCB selection rules to racing car problem using simple steering model 

with a 2 segment track are compared. For both the course aggregation of the reference 

policy and its steering change are used. The experiments show more spread in the 

trajectories than in Wang's (2004) study, possibly due to a larger exploration factor. 

From an implementation of objective 5.2 an animation and visualisation of the learning 

progress of the UCB shows even more failures throughout the track and as a consequence 
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generates considerable fewer state/action visits but does show fewer pairs unvisited. The 

learning performance of ϵ-greedy shows a clear rise to a plateau  whereas UCB shows a 

much slower rise punctuated by many dips. An interpretation is that this is due to the 

higher level of exploration implicit in UCB. In both cases the PMSMMPM achieves 

convergence in almost 70% of all states. 

The output policy of ϵ-greedy conforms better when compared to the reference, however 

the respective validations show similar proportion of finishing trajectories which suggests 

that the final policy need only be near optimal to satisfy the learning task. It is worth 

observing that there is no left hand turn yet the top left hand corner of the output policy 

conforms to the reference policy exemplifying that some generalisation has been achieved. 

Besides demonstrating that TD sarsa(0) can produced a succesfull steering policy for the 

racing car the PMSMMPM has been monitored and evidence shows it serves as a valid 

stopping rule in this context as well. 

As with the reversing caravan objective 5.1 results in a validation protocol which 

standardised the testing procedure and provides evidence of the power of the output 

steering policy to generate finishing trajectories. In both learning case studies the start state 

is constant for all epochs which may well reflect a constraint on NPC's in the game 

scenario. Game designers would need to vary start states to be biased towards extreme 

states in order to increase their visit their count and reduce their sampling error. 

The stationary distribution developed above is employed to produce an aggregate 

convergence measure (objective 4.2.3). 

The P21 provides a candidate aggregate stopping criteria and the evidence so far suggests 

that with more episodes it could be reached. 

For the purposes of positive play it is better to have a policy entry for an extreme state 

which has a lower than specified convergence probability than a completely random action 

which will be the case where no visits occur. 

Summarising the contribution to the science offered is the derivation, implementation and 

demonstration of a probability measure to a given level convergence of the maximum 

action value of a TD learning process. The learning of a simple steering problem has been 

modelled, implemented and validated using two selection rules. Two selection rules are 

compared and their respective convergence properties reveals complementary differences 

in the final policy. The probability of convergence is reaches the target level for a majority 

of the states and an aggregate probability of convergence as the expected probability of a 

correct action at the next step is derived and compared between the selection rules. The 
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contribution to intelligent NPC's is the demonstration of a rapid, robust and flexible 

(Lucas, 2009) learning tool to small if challenging problems but with additional insight on 

how to scale up and generalise to more demanding behaviours. 
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Appendix 0 Experiments to derive the best parameters for the %optimal 

action for selection rules 

Experiments were carried out to compute the %optimal action for several paramter values 

for each selction rule with X=1000 and T=1000 and the results are presented below. The 

best parameters are those which maximise the %optimal action at T=1000 and are marked 

as (*): 

Selection Rule Parmeters Values       

ϵ-greedy ϵ = 0 0.1* 0.2 0.4 0.6 1.0  

 %optimal 35 81* 74 59 43 10  

         

softmax τ = 0.0 0.1* 0.5 1.0 1.5 4.0 9.9 

 %optimal 11 57* 53 31 24 14 11 

         

Reinforcement comparison α =  0.1* 0.2 0.3     

 β = 0.01* 86* 83 84     

 β = 0.05 70 70 68     

 β = 0.30 41 35 51     

         

Pursuit selection β = 0.0 0.01* 0.1 0.2 0.4 0.6 0.8 

 %optimal 10 91* 58 45 38 36 36 

         

UCB  %optimal  91      

         

Constant α, ϵ = 0.1(best) α = 0.0 0.1* 0.2 0.4 0.6 0.8 1.0 

 %optimal 10 77* 72 64 59 53 46 
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Appendix 1 Implementation of Sharma's (2008) lower bound to the sample 

variance 

Below is shown an implementation Sharma's (2008) lower bound to the sample variance 

and empirically determine that at 5 cases the bound is stable. Let {yi} be a sample of N 

RVs having variance σ
2

Y then the arithmetic mean A and harmonic mean H provide bounds 

for σ
2

Y. 

σ
2

Y ≤ ymax(A – H)(ymax – A)/ (ymax – H) 

σ
2

Y ≥ ymin(A – H)(A – ymin)/ (H – ymin), where 

A ≝ (1/N)Σi yi 

H ≝ N/Σ i 1/yi 

 

#Ex Bandits 3 Use of SHARMA's lower bound to st2 

N=30 

x=1000 

sigma=1.0 

Y=rand(N, 1) +3; 

Y=[0.1+3, 0.11+3 , Y'] 

for x=1:X 

 for n=1:N 

  y=Y(1:n); 

  ymin=min(y); 

  ymax=max(y); 

  A=mean(y); 

  yi = 1.0./y; 

  H = n/sum(yi); 

  VLB = ymin*(A – H)*(A – ymin)/( H – ymin); 

  VLBav(n)= VLBav(n) + (1/n)*(VLB –VLBav(n)); #Accumulate averages 

 endfor #n 

endfor #x 

plot(VLBav) 

title (['Plot of ymin*(A – H)*(A – ymin)/( H – ymin)', "\n",… 

 'X = ', num2str(X), ' y \~ U(3, 1)']); 

xlabel(['n', "\n", "PmBandits.m ",datestr(now()) ]); 
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return 

Below the averaged variance lower bound for a standard Normal distribution with modest 

assumptions for ymin is plotted. 

 

Below the averaged variance lower bound for a standard uniform distribution is plotted 

 

Again there is a sharp rise and subsequent plateau or decline from n=5. This will support a 

forced round robin exploration for n=5. 
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Appendix 2 Equation of motion for car and van 

This appendix presents the derivation of the equation of motion for the car-van angle using 

a canonical diagram from the dynamic approach of Jayakaran (2004) and the geometric 

approach in this thesis (see section 4.3) respectively. In Figure A3 1.0 all the angles are 

positive θAF = ∠AF > 0, φCB = ∠CB > 0, Ψ > 0 ϕ > 0. The car is represented by vector AF 

and the trailer by CB, s > 0  

ϕ > 0 Steer to the left 

s > 0 The speed under A, positive means forwards. 

q > 0 The speed under wheels at F 

Measuring anticlockwise wise θAF + Ψ = φCB 

Distance travelled by F is |FF'| = hθ = qt where q is the speed of F. From the diagram 

(A2.0.1) hsinϕ = L, if q > 0 then h > 0 

(A2.0.2) θ̇ FA= limδ t→0 θFA/t = q/h = (q/L)sinϕ, if ϕ > 0 then θ ̇> 0 i.e. anti clockwise 

The equations of motion of A from LaValle follow y / x = tanθFA giving Pfaffian 

constraint (A2.0.2) 

(A2.0.3) ẋ sinθFA + ẏ cosθFA =0 which has solution ẋ = scosθFA, ẏ = ssinθFA ,where 

s = ρ θ̇ FA = L/tanϕ (q/L)sinϕ = qcosϕ 

Figure A3 1.0 Jayakaran left, thesis right 
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A2.1 Dynamics of pA 

pA= [x; y] = [cos θFA ; sin θFA] 

(A2.1.1) pȦ = [ẋ ; ẏ ] = [q cos ϕ cos θFA ; q cos ϕ sin θFA], using (A2.0.3) 

pB = pA + bÂB 

pB depends on pA and θ̇ FA 

pḂ  = ẋd/dx (pA +bÂB ) + ẏ d/dy (pA +bÂB ) + θ̇FAd/dθ̇ FA (pA +bÂB ), now ÂB = −ÂF 

pḂ  = pȦ + (q/L)sin ϕ d/dθ̇ FA (pA +bÂB ) = pȦ + (q/L)sin ϕ d/dθ̇ FA ([-cos θFA ; -sin θFA]) 

(A2.2.1) pḂ  = pȦ + (q/L)sin ϕ [sin θFA ; -cos θFA] 

For θAF >0 then the second turn causes a further x component but a negative y component 

A2.2 Dynamics of pB 

The expression for BB' and hence A2.2.1 can be derived 

B' = RδθFA (B –A) +A + ΔA = RδθFA (B – A) + A +AB - AB + ΔA = RδθFAAB + B - AB + ΔA 

Let B' ≡ B + ΔB and ΔB = (RδθFA– I)AB + ΔA then 

pB' – pB =δpB = (RδθFA – I)bAB + ΔA, RδθFA = 





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pḂ = limδt→0 δB/δt = limδt→0 (RδθFA –I)bAB/δt +limδt→0 ΔA/δt = limδt→0 (RδθFA –I)bAB/δt 

+pȦ 

pḂ = d(RΔθFA –I)bAB/dΔθFA limδt→0 ΔθFA/δt +pȦ = 












)sin()cos(

)cos()sin(

FAFA

FAFA




bAB FA  

+pȦ 

pḂ = b[-sin(δθFA )ABx –cos(δθFA )ABy; cos(δθFA )ABx –sin(δθFA )ABy]pḂ + pȦ 

pḂ = b FA [-sin(δθFA )(-cos(θFA) )–cos(δθFA )sin(θFA); ]=b FA [-sin(θFA+δθFA ); 

cos(θFA+δθFA ) ] + pȦ 



  Page 110 

pḂ = b FA [sin(δθFA )(cos(θFA) ) – cos(δθFA )sin(θFA); ]=b FA [sin(θFA+δθFA ); -

cos(θFA+δθFA ) ] + pȦ 

Now limδt→0  FA limδt→0 θFA + δt FA = θFA 

(A2.3.1) pḂ = limδt→0 b FA [sin(θFA+δθFA ); -cos(θFA+δθFA ) ] = b FA [sin(θFA); -cos(θFA) ] 

+ pȦ 

A2.3 Derivation of BB' and pḂ 

BB' is now projected in components // to CB u and left handed ⊥ to CB (Turn by +90) 

Using the frame rotation RF: 
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(A2.4.1) 
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A2.5 Dynamics of φ and Ψ 

Now sin δφBC =v/M. Since v < 0 for values on the diagram δφ is <0 i.e. clockwise. 

 φ̇ BC = lim δt→0 δφBC / δt =lim δt→0 sin
-1

(v/M)/δt = d(sin
-1

(v/M)/d(v/M)) lim Δt→0 (v/M) / δt 

 =lim δt→0 1/√(1 – (v/M)
2
)(1/M) (v / δt ) 

lim δt→0 (v) = lim δt→0 [ )sin(  cos q)cos(  FAb  ]δt =0 

lim δt→0 (v/M)δt = lim δt→0 [ )sin(  cos q)cos(  FAb  ]δt/M  

=[ )sin(  cos q)cos(  FAb  ]/M 

Now Ψ = φCB – θAF 
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̇ ̇ = φ̇ CB − θ ̇AF = FAb)cos( /M − )sin(  cos q  /M −(q/L)sin ϕ 

(A2.5.1)  ̇ ̇ = -(bq/L/M)sinϕ )cos( − )sin(  cos q/M   −(q/L)sin ϕ 

A2.6 Jayakaran approach 

Jayakaran's specification is 

The steering angle ϕ >0, and this causes a steer to the left. 

The vehicle wheel base is L (L1). 

The length of off-hook is b (l1). 

Orientation of the vehicle with the x axis θAF. 

Angle between the vehicle and the trailer Ψ. 

Turning radius ρ. 

Instance centre T. 

Speed under A s. 

Angular velocity about T θ̇ FA = s/ρ =s tanϕ/L = qcosϕ tanϕ /L = q/Lsinϕ. 

φCB = θAF + Ψ from the geometry. 

(A2.6.1) φ̇ CB = θ ̇AF +  ̇ . 

The velocity at B is the sum of the forward velocity s and that tangent to the arc traced out 

by the off hook having angular velocity at A, bθ ̇AF and which is perpendicular to AF. In 

order to preserve the direction convention the perpendicular projection on a vector has 

positive value for the anticlockwise side. The first projects a component bθ ̇AF cos(Ψ) on 

negative perpendicular to the trailer and similarly the second a component ssin(Ψ). Added 

together an expression for φ̇ CB is: 

φ̇ CB = -1/M(bθ ̇AF cos(Ψ) + ssin(Ψ)). 

The diagram confirms that both components of the velocity of B cause a clockwise turn to 

the trailer. With (A2.6.1) an expression for  ̇ ̇is obtained: 

(A2.6.2)  ̇ ̇ = φ̇ CB − θ ̇AF =-b/Mq/Lsinϕcos(Ψ) − q/Mcosϕ sin(Ψ). −q/Lsinϕ. 

A2.7 An exact solution for  ̇ 

Re stating (A2.6.2) and introducing constants A, B C and D: 

̇ ̇ = Asin(Ψ) + Bcos(Ψ) + C 

A = −(q/M)cosϕ 
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B = –(b/L)(q/M)sinϕ 

C = −qsin ϕ  

Let D ≝ √ (A
2
 +B

2
) solving for that γ ∈ [0, 360] such that cosγ =A/D, sinγ =B/D gives an 

ODE (A2.7.1) 

̇ ̇ = D(A/D sin(Ψ) + B/D cos(Ψ)) + C 

̇ ̇ = Dcosγsin(Ψ) + Dsinγcos(Ψ) + C 

(A2.7.1) ̇ ̇ = D sin(Ψ + γ ) + C, Ψ(0) = Ψ0 

Recasting into the ODE format:  ̇ ̇ −D sin(Ψ + γ ) − C =0, Ψ(0)=p and inserting y'(t) -

Dsin(y(t) + G) –C = 0, y(0) = p into Wolfram|Alpha (2009) the formal solution is: 

 

The dynamics of pA, pB, pḂ, φ have been presented. An ODE formulation for  ̇ ̇ is 

written out and a formal solution for Ψ over time obtained using Wolfram|Alpha.  
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Appendix 3 Graph of objectives and section headings 
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