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Abstract

The paper studies HH-relations in the lattices P (M) of all projections of W*-algebras M .
If M is a finite algebra, all these relations are generated by trailes in P (M). If M is an infinite
countably decomposable factor, they are either generated by trails, or associated with them.

1 Introduction and preliminaries

The aim of this paper is to describe HH-relations in the lattices of all projections of W*-algebras.
A partially ordered set (Q,≤) with a reflexive, anti-symmetric, transitive relation ≤ is a lattice

if all a, b ∈ Q have a least upper bound a ∨ b and a greatest lower bound a ∧ b. It is complete if
each subset G ⊆ Q has a least upper bound ∨G and a greatest lower bound ∧G.

Let ≪ be a relation in (Q,≤) (we only consider reflexive relations ≪ in Q stronger than ≤,
i.e., a≪ b implies a ≤ b for a, b ∈ Q). For a < b in Q, set

[a,≪] = {x ∈ Q: a≪ x} , [≪, b] = {x ∈ Q: x≪ b} .

The relation≪ is up-expanded if [a,≪] has a least upper bound for each a ∈ Q; it is down-expanded
if [≪, b] has a greatest lower bound for each b ∈ Q. We write 0 = ∧Q and 1 = ∨Q.

Amitsur [A1] (see also [Gr]) defined H- and dual H-relations on complete lattices as follows:

≪ is an H-relation if a≪ b and a ≤ c imply c≪ b ∨ c, (1.1) 1.2

≪ is a dual H-relation if a≪ b and c ≤ b imply a ∧ c≪ c. (1.2) dh1

for a, b, c ∈ (Q,≤). An H-relation is an R-order if it is transitive and up-expanded; a dual H-
relation is a dual R-order if it is transitive and down-expanded. We say that ≪ is

an HH-relation if it is an H- and a dual H-relation;

an RR-order if it is an R- and a dual R-order. (1.3) RR

Amitsur [A1] developed the theory of radicals in lattices and proved that if ≪ is an R-order (resp.
a dual R-order), then Q has a unique ≪-radical (resp. a dual ≪-radical). In [A2] he applied this
to the study of the theory of modules and rings. The problem naturally arises to give an intrinsic
description of HH-relations and RR-orders in various lattices. This will allow to describe the
radicals they generate and, using the fact that these radicals are invariant for all automorpisms of
lattices, to investigate their properties.
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Let SA be the set of all Lie subalgebras of finite codimension in a Banach Lie algebra A.
Using the relation ≪∞ in the lattice IdcharA of all characteristic Lie ideals of A (invariant for all
derivations of A), one obtains that the condition ∩{S: S ∈ SA} = {0} implies that the dual ≪▹

∞-
radical ρ = {0} and there is a descending series (Iλ)1≤λ≤γ of characteristic Lie ideals of A such that
dim(Iλ/Iλ+1) <∞ for λ ̸= γ, I1 = A and Iγ = {0}.

In [KST] the author, Shulman and Turovskii studied HH-relations in the lattices IdA of all
ideals of C*-algebras A. Although it was not possible to describe all of them, it was shown that
many well known relations in IdA are HH-relations. This allowed to establish that many important
results for C*-algebras follow from the theory of HH-relations in abstract lattices. For example,
the largest GCR-ideal in any C*-algebra A is the radical generated by some HH-relation in IdA.

In this paper we study HH-relations in the complete lattices Q = P (M) of all projections in
W*-algebras M. These lattices are widely investigated, but not much is known about various types
of relations in them. In particular, the structure of H- and dual H-relations in Q and the nature
of the radicals generated by them is very complicated and difficult to investigate. The situation
becomes tractable, if we consider HH-relations in Q. It turns out that these relations are closely
linked to trails in the lattice Q and to the traces on M. This allows us to describe a large variety
of HH-relations in P (M) and to give a full description of these relations in the case when M are
countably decomposable factors.

We call a subset K in Q a trail (cf. Exercises V.1.5 (c) [T]) if,

q - p ∈ K implies q ∈ K ( - is the Murray-vonNeumann relation in Q). (1.4) 6.6

Each trail K generates an HH-relation ≪K on Q: p ≪K q if q − p ∈ K. In Corollary 4.8 we
prove that in finite W*-algebras the converse is also true: each HH-relation is generated by a trail.
Moreover, in type In factors each trail corresponds to the value of the trace τ on Q; in type II1
factors two trails correspond to the same value of τ (Theorem 7.2).

For infinite W*-algebras, the structure of HH-relations is more complicated. Not all of them
are generated by trails. For each trail K in Q, there is also an HH-relation≪K

⊥
associated with K,

but not generated by any trail (Theorem 5.3). For example, in type I∞ factor, for each n ∈ N, the
relation p≪Kωn

⊥
q if codim(q − p) > k, is an HH-relation. Apart from HH-relations generated by

trails and associated with trails, Q may have many ”mixed type” HH-relations. However, if M is
a countably decomposable type I∞, or II∞ factor, then all HH-relations in Q are either generated
by, or associated with trails. In type I∞ factors each trail corresponds to the value of the trace τ
on Q, so that two HH-relations correspond to this value. In type II∞ factors two trails correspond
to the same value of τ, so that four HH-relations correspond to this value (Theorem 7.8).

Countably decomposable type III factors do not have faithful tracial weights and their lattices
only have two trails K0 = {0} and K1 = Q. It turns out that their sets of HH-relations are also
very simple – they only have three HH-relations. Two are trivial: = and ≤, they are generated by
trails. The third relation ≪K0

⊥
is associated with K0 and almost coincides with ≤ (Theorem 7.9).

The link between the transitive HH-relations and the trails in Q = P (M) for all W*-algebras
M, becomes very strong and does not depend on the type of M : A relation ≪ is an HH-order if
and only if it is generated by a trail K in Q (≪ = ≪K ) and K is also a sublattice (Theorem 6.1).

Finally, RR-orders constitute a set isomorphic to the set of all central projections z in Q: A
relation ≪ is an RR-order if and only if it is generated by a trail Qz, i.e., ≪ = ≪Qz (Corollary
6.6). Moreover, z is the≪-radical and 1−z is the dual≪-radical (Theorem 6.5). Thus each factor
only has two RR-order: ”= ” and ”≤ ”. In addition to them, type I∞ and II∞ factors only have
one transitive HH-relation (Theorem 7.8).
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In Section 2 we provide some information about H- and dual H-relations in lattices and about
R- and dual R-orders and their radicals. In Sections 3 and 4 we consider trails in lattices and
study HH-relations and their link with trails. We prove that, if M is finite then all HH-relations
are generated by trails. In Section 5, for non-finite algebras, we construct HH-relations associated
with trails but not generated by trails. In Section 6 we investigate transitive HH-relations and
RR-orders and in Section 7 we describe all HH-relations in Q for countably decomposable factors.

2 Relations and radicals in complete lattices (Q,≪)

Amitsur [A1] proved that conditions (1.1) and (1.2) in (Q,≪) are equivalent to the conditions

≪ is an H-relation if and only if a≪ b implies a ∨ x≪ b ∨ x for all x ∈ Q; (2.1) 1.3

≪ is a dual H-relation if and only if a≪ b implies a ∧ x≪ b ∧ x for all x ∈ Q. (2.2) dh0

He also introduced a procedure for construction R-orders (resp. dual R-orders) from H-relations
(resp. dual H-relations). This procedure was refined in [KST1]. We sketch it below.

Consider relations ≪▹ and ≪◃ in Q defined as follows. For a ≤ b in Q, write a ≪▹ b if there
is a totally ordered set (xλ)1≤λ≤γ in Q such that b = x1, a = xγ , xλ+1 ≪ xλ for all λ < γ, and
xβ = ∧λ>β(xλ) for all limit ordinals β.

We write a ≪◃ b if there is a totally ordered set (xλ)1≤λ≤γ in Q such that a = x1, b = xγ ,
xλ ≪ xλ+1 for all λ < γ, and xβ = ∨λ<β(xλ) for all limit ordinals β.

Following [A1], define the lower and upper complement relations
−→≪ and

←−≪ by

a
←−≪ b if [a,≪] ∩ [a, b] = {a} ; and a

−→≪ b if [≪, b] ∩ [a, b] = {b} for a ≤ b, (2.3) A1

where [a, b] = {z ∈ Q: a ≤ z ≤ b}. They are naturally linked with the relations ≪▹, ≪◃ ([KST1]):

←−−(−→≪)
= ≪▹ and

−−→(←−≪)
= ≪◃ . (2.4) p11

inf Theorem 2.1 ([KST1]) (i) Let ≪ be an H-relation on Q. Then ≪◃ is an R-order and
←−≪ =

←−
≪◃

is a dual R-order. Moreover, ≪ is an R-order if and only if ≪ = ≪◃ .

(ii) Let ≪ be a dual H-relation on Q. Then ≪▹ is a dual R-order and
−→≪ =

−→
≪▹ is an R-order.

Moreover, ≪ is a dual R-order if and only if ≪ = ≪▹ .

An element r ∈ Q is a ≪-radical and an element ρ ∈ Q is a dual ≪-radical if

0≪ r
←−≪ 1 and 0

−→≪ ρ≪ 1. (2.5) 2.10

The set of radicals may be empty or may have many elements. If ≪ is an R-order then

r = ∨ [0,≪] is a unique ≪ -radical in Q and [≪, r] = [0, r]. (2.6) 1.1

If ≪ is a dual R-order then

ρ = ∧ [≪,1] is a unique dual ≪ -radical in Q and [ρ,≪] = [ρ,1]. (2.7) 1.4
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3 Cones in the lattices of all projections of W*-algebras

Let M be a W*-algebra. The set Q = P (M) of all projections in M with the order ≤ – the inclusion
of the ranges of projections, is a complete lattice (Proposition 1.10.2 [Sa]).

Recall that p, q ∈ Q are equivalent (p ∼ q) if there is a partial isometry v ∈M such that vv∗ = p
and v∗v = q, so that pv = v = vq. We write p⊥ for 1− p and p - q if there is r ≤ q such that p ∼ r.
If p ∼ q and

r ≤ q then s := vrv∗ ∈ Q satisfies s ∼ r and s ≤ p. (3.1) 6.7

Note (see p. 79 [Sa]) that if pi ∼ qi for i = 1, 2, p1 ⊥ p2, q1 ⊥ q2 then

p1 ⊕ p2 ∼ q1 ⊕ q2. (3.2) 3.10

Recall that the central carrier c(p) of p is the smallest central projection majorizing p ∈ Q. Then

p ∼ q implies c(p) = c(q). (3.3) 3.4

For p ≤ q, let [p, q] = {r ∈ Q: p ≤ r ≤ q}. Let M ′ be the commutant of M and Z = M ∩M ′ be its
centre. Recall (see (1.4)) that K ⊆ Q is a trail if q - p ∈ K implies q ∈ K. It is easy to see that

Qz = [0, z] is a trail for each central projection z ∈ Q ∩ Z. (3.4) 3.5

For p ∈ Q, we call the set ω = {q ∈ Q: q ∼ p} an orbit and write ω - ω′, if p - p′ for some
p ∈ ω and p′ ∈ ω′. Orbits either coincide or do not intersect. The relation - does not depend on
the choice of the projections in the orbits. It is reflexive, transitive and anti-symmetric. If ω ∼ ω′

then ω = ω′. Denote by Ω the set of all orbits in Q. With each orbit ω ∈ Ω, associate the trail

Kω = ∪{ω′ : ω′ - ω}. (3.5) 3,3

Denote by KM the set of all trails in Q. Each K ∈ KM has form

K = KΦ = ∪ω∈ΦKω, where Φ is a subset of Ω. (3.6) 3;4

L6.2 Proposition 3.1 For a trail K in Q, let zK = ∨K be its unique least upper bound. Set

K⊥ = {p ∈ Q : [0, p] ∩K = {0}}. (3.7) 6.2

(i) zK ∈ Z and K ⊆ [0, zK ]. For each 0 ̸= p ≤ zK , there is r ∈ K such that 0 ̸= r ≤ p.

(ii) K⊥ = [0, z⊥
K
] for z⊥

K
= 1− zK .

Proof. (i) Clearly, K ⊆ [0, zK ]. Let q ∈ K. For any unitary v ∈ M, we have q ∼ v∗qv,
since (qv)(qv)∗ = q and (qv)∗(qv) = v∗qv. Thus v∗qv ∈ K. Hence, as zK is an upper bound of
K, v∗zKv is also an upper bound of K. As zK is the least upper bound of K, zK ≤ v∗zKv. Then
vzKv

∗ ≤ v(v∗zKv)v
∗ = zK . Thus zK = v∗zKv for all unitary v ∈M. So zK ∈M ′. Hence zK ∈ Z.

Let 0 ̸= p ≤ zK . As K ⊆ [0, zK ], replace M by the W*-algebra MzK = [0, zK ]. Thus we can
assume that ∨K = 1. Let q ∈ K. By Comparability theorem [Sa, 2.1.3],

qz % pz and qz⊥ - pz⊥ for some z ∈ Q ∩ Z. (3.8) 6.4

As qz ≤ q ∈ K, we have from (1.4) that qz ∈ K. As qz % pz, it follows from (1.4) that pz ∈ K.
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If pz ̸= 0 for some q ∈ K, set r = pz. Then r ∈ K and 0 ̸= r ≤ p.
Let now pz = 0 for all q ∈ K. By (3.8), qz⊥ - p. If qz⊥ ̸= 0 for some q ∈ K, there is r ≤ p such

that r ∼ qz⊥ ∈ K. Thus r ∈ K and 0 ̸= r ≤ p.
Suppose now that, for all q ∈ K, pz = 0 and qz⊥ = 0. Then q = qz, so that qp = qzp = 0 for

all q ∈ K. Hence qp⊥ = q. Thus q ≤ p⊥, so that p⊥ is an upper bound of K. As ∨K = 1 is the
least upper bound of K, we have p = 0, a contradiction. Hence the last case impossible and there
is r ∈ K such that 0 ̸= r ≤ p.

(ii) As K ⊆ [0, zK ], we have [0, z
⊥
K
] ⊆ K⊥. Let p ∈ K⊥. Suppose that pzK ̸= 0. Then pzK ≤ zK .

By (i), there is r ∈ K such that 0 ̸= r ≤ pzK . Hence r ≤ p, so that r ∈ [0, p] ∩K, a contradiction.
Thus pzK = 0, so that p ∈ [0, z⊥

K
]. Hence K⊥ ⊆ [0, z⊥

K
]. Thus K⊥ = [0, z⊥

K
].

C3.3 Corollary 3.2 Let K be a trail and zK = ∨K. Then K⊥⊥ = [0, zK ] and K⊥⊥⊥ = K⊥ = [0, z⊥
K
].

For a trail K, set Kc = {p ∈ K : c(p) ∈ K}. A trail K is complete if Kc = K.

C6.3 Lemma 3.3 Let K be a trail and z ∈ Q ∩ Z. Then Kz = {pz : p ∈ K} is a subtrail of K and
Kc = ∪

z∈K∩Z
[0, z]. The set Kc is the largest complete subtrail of K.

Proof. Let p ∈ K. As pz ≤ p and K is a trail, [0,pz] ⊆ K. Hence [0,pz] ⊆ Kz ⊆ K. If q ∼ pz
then q ∈ K. By (3.3), q ≤ c(q) = c(pz) ≤ z. So q = qz ∈ Kz. Thus Kz is a subtrail of K.

By (3.4), [0, z] is a subtrail of K for each z ∈ K ∩Z. Hence Kc = ∪
z∈K∩Z

[0, z] is a subtrail of K.
If p ∈ Kc then p ∈ [0, z] for some z ∈ K ∩ Z, so that c(p) ≤ z. Thus c(p) ∈ Kc. So Kc is complete.
Let p ∈ K and c(p) ∈ K. Then p ≤ c(p) ∈ K ∩ Z, so that p ∈ ∪

z∈K∩Z
[0, z]. Thus Kc is the largest

complete subtrail of K.

By Proposition 3.1, each trail K in Q = P (M) gives the following decomposition of M .

C3.4 Corollary 3.4 Let K ∈ KM , let zK = ∨K and z
Kc = ∨Kc. Then zK , zKc ∈ Q∩Z. Each 0 ̸= p ≤ zK

contains 0 ̸= r ∈ K, P (MzK ) = [0, zK ] and P (Mz⊥
K
) = K⊥ = [0, z⊥

K
], and

M = Mz
Kc ⊕M(zK ⊖ z

Kc )⊕Mz⊥
K
. (3.9) 8.4

Recall that q ∈ Q is infinite if p ∼ q for some p < q; otherwise, q is finite. It is purely infinite if
it does not majorize finite projections. If q is finite and p - q then p is finite. So the set Kf of all
finite projections in Q is a trail. Similarly, the set Kp of all pure infinite projections in Q is a trail.

By (3.7), Kf ⊆ K⊥
p and Kp = K⊥

f . Thus Kp and K⊥⊥
f are complete by Lemma 3.3, while Kf is

not, generally, complete. Set zf = ∨Kf, z
c
f = ∨Kc

f , zp = ∨Kp. By Proposition 3.1, zp = z⊥
f
. It is easy

to see that zcf is the unique maximal finite central projection and the central projection zsf = zf−zcf
is semi-finite. As 1 = zcf + zsf+ zp, (3.9) gives the standard decomposition M = Mzc

f
⊕Mzsf⊕Mzp

in the sum of a finite, a properly infinite and semi-finite and a purely infinite W*-algebras.
By Proposition 2.2.8 [Sa], the set A of all abelian projections in Q is a trail. The subtrail

Ac consists of all central abelian projections and z
Ac is the maximal central abelian projection.

By (3.9), M = Mz
Ac ⊕M(zA ⊖ z

Ac ) ⊕Mz⊥
A
, where Mz

Ac is the maximal commutative ideal of
M, M(zA ⊖ z

Ac ) has no central abelian projections but each projection in it contains an abelian
projection and Mz⊥

A
has no abelian projections.

Let K be the trail of all minimal projections in Q. It is easy to see that zK = ⊕p∈Kc(p),
Kc = K ∩ Z and all p ∈ Kc are mutually orthogonal. Hence z

Kc = ⊕
p∈K∩Z

p. By (3.9), M =

Mz
Kc⊕M(zK⊖zKc )⊕Mz⊥

K
, where P (Mz

Kc ) consists of all central minimal projections,M(zK⊖zKc )
has no central minimal projections but each projection in it majorizes a minimal projection and
Mz⊥

K
has no minimal projections.
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4 HH-relation in Q = P (M) generated by trails

Let S be a subset in Q and 0 ∈ S. Define the reflexive relation ≪S on Q by the condition

p≪S q if p ≤ q and q − p ∈ S. (4.1) 6.10

Conversely, for a reflexive relation ≪ in Q, consider the sets

S
≪

= {s ∈ Q: s = q − p for some p≪ q} and K
≪

= {r ∈ Q: r ∼ s for some s ∈ S≪}. (4.2) 6.9

Note that (see Proposition 2.5.3 and p. 111 [KR] vol. 1)

p ∧ e = pe if p, e ∈ Q commute, (4.3) 4.a

(p ∨ q)⊥ = p⊥ ∧ q⊥ and (p ∧ q)⊥ = p⊥ ∨ q⊥ for p, q ∈ Q. (4.4) 1.

Let p, q, r, e ∈ Q. We will later use the following formulas

pe ∧ qe = (p ∧ q)e = e(p ∧ q), if e ∈ Q commutes with p and q, (4.5) 5

(p⊕ s) ∨ (q ⊕ r) = (p ∨ q)⊕ (s ∨ r) if p ⊥ r, p ⊥ s, q ⊥ r, q ⊥ s; (4.6) 3

(p⊕ s) ∧ (q ⊕ r) = (p ∧ q)⊕ (s ∧ r) if p ⊥ r, p ⊥ s, q ⊥ r, q ⊥ s. (4.7) 4

Indeed, pe ∧ qe
(4.3)
= (p ∧ e) ∧ (q ∧ e) = (p ∧ q) ∧ e = (p ∧ q)e = e(p ∧ q). So (4.5) holds.

To prove (4.6), set a = (p ⊕ s) ∨ (q ⊕ r) and b = (p ∨ q) ⊕ (s ∨ r). As a ≥ p ∨ q and a ≥ s ∨ r,
we have a ≥ b. On the other hand, p⊕ s ≤ b and q ⊕ r ≤ b, so that a ≤ b. Thus a = b.

To prove (4.7), note that p∨ q ≤ s⊥, as p ≤ s⊥ and q ≤ s⊥. So s(p∨ q) = 0 and p∨ q commutes
with p⊕ s. Similarly, r(p ∨ q) = 0 and p ∨ q commutes with q ⊕ r. Set a = (p⊕ s) ∧ (q ⊕ r). Then

a(p ∨ q)
(4.5)
= [(p⊕ s)(p ∨ q)] ∧ [(q ⊕ r)(p ∨ q)] = p ∧ q and, similarly, a(s ∨ r) = s ∧ r. (4.8) 6

Set t = (p ∨ q)⊕ (s ∨ r). Then p⊕ s ≤ t and q ⊕ r ≤ t. Hence a ≤ t. Thus (4.7) holds, as

a = at = a((p ∨ q)⊕ (s ∨ r)) = a(p ∨ q)⊕ a(s ∨ r)
(4.8)
= (p ∧ q)⊕ (s ∧ r).

P6.1 Theorem 4.1 (i) Let K be a trail in Q and zK = ∨K. Then ≪K is an HH-relation, the relations
≪

K⊥ and ≪◃
K

= ≪▹
K
= ≪

[0,z
K

]
are RR-orders, and

≪
K⊥=

←−−≪K =
←−−
≪◃

K
and ≪

K⊥=
−−→≪K =

−−→
≪▹

K
. (4.9) 3,1

(ii) If ≪ is an H-relation then S
≪

= {s ∈ Q: 1− s≪ 1} and K
≪

is a trail.

(iii) If ≪ is a dual H-relation then S
≪

= {s ∈ Q: 0≪ s} = [0,≪] and K
≪

is a trail.

Proof. (i) Let p≪K q. Consider the Kaplansky Formula ([Sa])

p− (p ∧ q) ∼ (p ∨ q)− q for p, q ∈ Q. (4.10) 6.5

Let p ≤ r ∈ Q. As p ≤ q, we have p ≤ q ∧ r. By (4.10), (q ∨ r)− r ∼ q − (q ∧ r) ≤ q − p ∈ K. Thus
(q ∨ r)− r ∈ K by (1.4). Hence r ≪K q ∨ r. By (1.1), ≪K is an H-relation.
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Let now r ≤ q. Then r∨p ≤ q. By (4.10), r− (r∧p) ∼ (r∨p)−p ≤ q−p ∈ K. So r− (r∧p) ∈ K
by (1.4). Thus r ∧ p≪K r. By (1.2), ≪K is a dual H-relation. So ≪K is an HH-relation.

Let us show that≪
K⊥ =

←−−≪K . Let p
←−−≪K q for p, q ∈ Q. By (2.3), p ≤ q and p is not≪K related

to any x ∈ (p, q], i.e., all x− p /∈ K. Hence, by (3.7), q − p ∈ K⊥, so that p≪
K⊥ q.

Conversely, if p ≪
K⊥ q then q − p ∈ K⊥, i.e., z /∈ K for each z ≤ q − p. Hence x − p /∈ K for

each x ∈ (p, q], so that p is not ≪K related to x. Thus, by (2.3), p
←−−≪K q. Hence ≪

K⊥ =
←−−≪K .

Similarly, ≪
K⊥ =

−−→≪K . As ≪K is an HH-relation, the rest of (4.9) follows from Theorem 2.1.
As ≪K is an HH-relation, it follows from Theorem 2.1 that ≪◃

K
is an R-order and ≪▹

K
is an

R-order. By (2.4), ≪◃
K

=
−−−→(←−−≪K

)
. We also have from (4.9) that

−−−→(←−−≪K

)
=
−−−→≪

K⊥ = ≪
K⊥⊥ , where

K⊥⊥ = [0, zK ] by Corollary 3.2. Hence ≪◃
K

= ≪
[0,z

K
]
. Similarly, ≪▹

K
= ≪

[0,z
K

]
. Thus ≪◃

K
=

≪▹
K
= ≪

[0,z
K

]
are RR-orders.

(ii) If ≪ is an H-relation and s ∈ S
≪
, then s = q − p for some p≪ q in Q. As p ⊥ q⊥,

1− s = p⊕ (1− q)
(4.6)
= p ∨ q⊥

(2.1)
≪ q ∨ q⊥ = 1.

Conversely, if 1− s≪ 1, then s = 1− (1− s) ∈ S
≪
. So S

≪
= {s ∈ Q: 1− s≪ 1}.

Let p ≤ s ∈ S
≪
. Then 1 − s ≪ 1. As ≪ is an H-relation, we get that p ∈ S

≪
, since 1 − p =

(1− s)⊕ (s⊖ p) = (1− s) ∨ (s⊖ p)
(2.1)
≪ 1 ∨ (s⊖ p) = 1. So

s ∈ S
≪

implies [0, s] ∈ S
≪
. (4.11) 4.7

Let p - q ∈ K
≪
. Then p ∼ r ≤ q. By (4.2), q ∼ s for some s ∈ S≪. By (3.1), r ∼ a for some

a ≤ s. So p ∼ a. By (4.11), a ∈ S≪. So p ∈ K≪. Thus K
≪

is a trail.
The proof of (iii) is similar.

The next result shows the duality between HH-relations and trails.

L6.1 Lemma 4.2 Let K be a trail. Set ≪ = ≪K . Then S
≪

= K
≪

= K.

Proof. Let r ∈ K. For some p ⊥ r, set q = p ⊕ r. By (4.1), p ≪K q. Hence r ∈ S
≪

by (4.2).
So K ⊆ S

≪
. Conversely, let r ∈ S

≪
. By (4.2), r = q − p for some p ≤ q such that p ≪K q. So, by

(4.1), r ∈ K. Thus S
≪ ⊆ K, so that S

≪
= K is a trail. Hence S

≪
= K

≪
= K.

The duality between relations ≪ and the sets K≪ exists even if ≪ are neither H-, nor dual
H-relations and K

≪
are not trails. For example, let M be a finite W*-algebra. The relation ≪ in

Q: all p≪ p and 0≪ 1, is neither an H-, nor a dual H-relation; and S≪ = K
≪

= {0,1} is not a
trail. However, ≪ = ≪

K
≪ .

Our aim is to find conditions on an HH-relation ≪ to be generated by a trail K: ≪ = ≪K .

L3.2 Lemma 4.3 Let ≪ be an HH-relation. Then

(i) q − p ∈ S
≪

for p ≤ q, if and only if p≪ q;

(ii) ≪ = ≪
S
≪ ;

(iii) ≪ = ≪
K≪ if and only if S

≪
= K

≪
.
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Proof. (i) If p ≪ q then q − p ∈ S
≪

by (4.2). Conversely, let q − p ∈ S
≪
. As 0 ≪ q − p by

Theorem 4.1(iii), we have from (1.1) and (4.6) that p≪ (q − p) ∨ p = (q − p)⊕ p = q.
(ii) Let p ≪ q. Then q − p ∈ S

≪
by (4.2). Hence p ≪

S
≪ q by (4.1). Conversely, if p ≪

S
≪ q

then q − p ∈ S
≪

by (4.2). By (i), this implies p≪ q. Thus ≪ = ≪
S
≪ .

(iii) If ≪ = ≪
K≪ , K≪ is a trail by Theorem 4.1(ii). By Lemma 4.2, S

≪
= K

≪
.

Conversely, if S
≪

= K
≪

then ≪ = ≪
S
≪ = ≪

K≪ by (ii).

P6.5 Lemma 4.4 Let ≪ be an HH-relation and p, q ∈ Q. Set l = p ∨ q.

(i) If there exists r ∈ Q such that q ≤ p ∨ r and q ∧ r = 0, then 0≪ p implies 0≪ q.

(ii) Let p ⊥ q and p ∼ q. There is t ≤ l such that t ∧ p = t ∧ q = 0, t ∼ p and t ∨ p = l.

Proof. (i) By (1.1), 0≪ p implies r ≪ p ∨ r. So 0 = q ∧ r ≪ q ∧ (p ∨ r) = q by (1.2).
(ii) As p ∼ q, we have p = vv∗, q = v∗v, pv = v = vq. Thus lp = p, ql = q. So, as p ⊥ q,

lv = lpv = pv = v = vq = vql = vl, v2 = vqpv = 0, v∗l = v∗ = lv∗ and v∗v∗ = 0.

Let t = 1
2(l + v + v∗). Then t is a projection and t ≤ l, since t∗ = t,

t2 =
1

4
(l + vl + v∗l + lv + v2 + v∗v + lv∗ + vv∗ + v∗v∗) = t and tl = lt = t.

Set s = t ∧ q. Then sq = st = sl = s and sv = (sq)(pv) = 0, as p ⊥ q. Hence

s = st =
1

2
(sl + sv + sv∗) =

1

2
(s+ sv∗), so that s = sv∗ and s = sq = sv∗v = sv = 0.

Thus t∧ q = 0. Similarly, t∧ p = 0. Set r = t∨ p. Then r ≤ l. Let a = l− r. Then at = ap = 0 and
al = a. So aq = a(l − p) = a. Thus a ≤ q and av = aqpv = 0. Hence

0 = at =
1

2
(al + av + av∗) =

1

2
(a+ av∗), so that

0 = (a+ av∗)pv = av∗pv = av∗v = aq = a.

Hence l = r = t ∨ p. Therefore, as t ∧ q = t ∧ p = 0 and l = p ⊕ q, we have from (4.10) that
t = t− t ∧ p ∼ (t ∨ p)− p = l − p = q ∼ p which completes the proof.

We will now consider cases when 0≪ p and p ∼ q imply 0≪ q.

P4.2 Proposition 4.5 Let ≪ be an HH-relation in Q. If p ⊥ q and p ∼ q then 0≪ p implies 0≪ q.

Proof. As 0 ≪ p and ≪ is a H-relation, q ≪ p ∨ q = l by (1.1). Let t ∈ Q be as in Lemma
4.4. Then, as ≪ is a dual H-relation, 0 = q ∧ t ≪ l ∧ t = t by (2.2). Hence p = 0 ∨ p ≪ t ∨ p = l
by (1.1). So 0 = p ∧ q ≪ l ∧ q = q by (2.2).

For p, q ∈ Q, set p0 = p⊖ (p∧ q)⊖ (p∧ q⊥) and q0 = q ⊖ (p∧ q)⊖ (p⊥ ∧ q). Let b = p0 ∨ q0 and
M0 be the W*-algebra generated by p0, q0. Then ([T], p. 306)

p = p0 ⊕ (p ∧ q)⊕ (p ∧ q⊥) and q = q0 ⊕ (p ∧ q)⊕ (p⊥ ∧ q),

1 = b⊕ (p ∧ q)⊕ (p ∧ q⊥)⊕ (p⊥ ∧ q)⊕ (p⊥ ∧ q⊥),

p0 ∧ q0 = p0 ∧ (b⊖ q0) = (b⊖ p0) ∧ q0 = 0 and p0 ∼ q0 ∼ b⊖ p0 ∼ b⊖ q0 in M0. (4.12) 3.8
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P3.3 Proposition 4.6 Let ≪ be an HH-relation and p be finite. If 0≪ p and p ∼ q then 0≪ q.

Proof. If p⊥ ∧ q = 0 then, setting r = p⊥ in Lemma 4.4(i), we have 0≪ q.
Assume now that p⊥ ∧ q ̸= 0. Consider the representation of p and q given in (4.12). Set

p1 = p0 ⊕ (p ∧ q) and q1 = q0 ⊕ (p ∧ q).

As p0 ∼ q0 in M(p0, q0), we have p1 ∼ q1. As p is finite, q is finite. Thus p ∨ q is finite by Theorem
V.1.37 [T]. Hence the W*-algebra M1 = (p ∨ q)M(p ∨ q) is finite and p ∼ q and p1 ∼ q1 in M1.

Set p2 = p− p1, q2 = q⊖ q1. Then p2 = p∧ q⊥, q2 = p⊥ ∧ q ̸= 0 and it follows from Proposition
2.4.2 [Sa] that they are equivalent: p2 = vv∗ and q2 = v∗v for a partial isometry v. They are also
orthogonal. Set l = p2 ⊕ q2 and t = 1

2(l+ v + v∗). Replacing p by p2 and q by q2 in Lemma 4.4(ii),
we obtain from its proof that

t is a projection, t ≤ l, q2 ∧ t = 0 and l = p2 ∨ t. (4.13) 3;1

We have p = p0 ⊕ (p ∧ q)⊕ p2 and q = q0 ⊕ (p ∧ q)⊕ q2. Set s = b⊖ p0. By (4.12), b = p0 ∨ q0
is orthogonal to l = p2 ⊕ q2, so that s ⊥ l. Moreover, s ⊥ ((p ∧ q) ⊕ p2), t ⊥ p0 and t ⊥ (p ∧ q).
Hence, by (4.12) and (4.6),

p ∨ (s⊕ t) = (p0 ⊕ (p ∧ q)⊕ p2) ∨ (s⊕ t) = (p0 ∨ s)⊕ (((p ∧ q)⊕ p2) ∨ t)

= (p0 ∨ s)⊕ (p ∧ q)⊕ (p2 ∨ t)
(4.13)
= (p0 ∨ q0)⊕ (p ∧ q)⊕ l ≥ q

Similarly, by (4.12), s ⊥ ((p ∧ q)⊕ q2), t ⊥ q0 and t ⊥ (p ∧ q). Hence, by (4.7),

q ∧ (s⊕ t) = (q0 ⊕ (p ∧ q)⊕ q2) ∧ (s⊕ t) = (q0 ∧ s)⊕ ((p ∧ q)⊕ q2) ∧ t)

= (q0 ∧ s)⊕ (q2 ∧ t)
(4.13)
= q0 ∧ s ≤ q0 ∧ (b⊖ p0)

(4.12)
= 0.

Setting r = s⊕ t in Lemma 4.4(i), we get 0≪ q.

Denote by F the trail of all finite projections in Q = P (M) and by HHrel the set of all HH-
relations. It follows from Theorem 4.1 that

θ: ≪ → K≪ maps HHrel to KM and ϕ: K → ≪K maps KM to HHrel. (4.14) 3.1

C3.0 Corollary 4.7 (i) S≪ ∩ F = K≪ ∩ F is a trail for each HH-relation ≪ in Q.

(ii) ϕ is an injective map from KM to HHrel and θ ◦ ϕ = 1KM
.

(iii) If M is a finite W∗-algebra then S≪ = K≪ and ≪ = ≪
K≪ for each HH-relation ≪ .

Proof. (i) If p - q ∈ S≪ ∩F then p ∼ r ≤ q for some r ∈ Q. By Theorem 4.1(ii), r ∈ S≪. As q
is finite, r is finite. As p ∼ r, p is finite and p ∈ S≪ by Proposition 4.6. Thus p ∈ S≪ ∩ F, so that
S≪ ∩ F is a trail and S≪ ∩ F = K≪ ∩ F by (4.2).

Part (ii) follows from Lemma 4.2. Part (iii) follows from (i) and Lemma 4.3(iii), as F = Q.

Corollary 4.7 yields

T3.1 Corollary 4.8 If M is a finite W∗-algebra then all HH-relations in Q = P (M) are generated by
trails, the map ϕ is an isomorphism from KM onto HHrel and θ = ϕ−1.
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5 HH-relations in P (M) not generated by trails

If M is not finite then, apart from HH-relations generated by trails in P (M), there are also HH-
relations associated but not generated by trails, i.e., ϕ(KM ) $ HHrel. In this section we
consider such relations.

C3,0 Corollary 5.1 Let M be not finite and let ≪ be an HH-relation in Q not generated by a trail.
Then S≪ contains infinite projections. If p - s ∈ S≪ and p is finite then p ∈ S≪.

Proof. If S≪ = S≪ ∩ F then S≪ is a trail by Corollary 4.7(i). So S≪ = K≪ by (4.2). By
Lemma 4.3, ≪ = ≪

K≪ , i.e., ≪ is generated by a trail, a contradiction. Thus S≪ has infinite
projections. Furthemore, if p - s ∈ S≪ and p ∈ F , there is a finite r ≤ s such that p ∼ r. By
Theorem 4.1(ii), r ∈ S≪ ∩ F. As S≪ ∩ F is a trail, p ∈ S≪.

Let M be a W*-algebra of operators on a Hilbert space H. For p ∈ Q, let p⊥ = 1 − p and
Hp = pH be the range of p in H.

P5.1 Proposition 5.2 Let p ≤ q in Q. Then, for each r ∈ Q,

(q − p)⊥ ≤ (q ∨ r − p ∨ r)⊥; (5.1) 5.1

(q − p)⊥ - (q ∧ r − p ∧ r)⊥. (5.2) 5,2

Proof. We have Hq +Hr = Hq ⊕ q⊥Hr. Hence Hq∨r = Hq +Hr = Hq ⊕ q⊥Hr = Hq ⊕ q⊥Hr.

Thus s := (q ∨ r) − q is the projection on q⊥Hr. Similarly, t := (p ∨ r) − p is the projection on

p⊥Hr. As p ≤ q, we have q⊥ ≤ p⊥. Thus q⊥Hr ⊆ p⊥Hr. Hence s ≤ t.
Set λ = q ∨ r − p ∨ r. It is a projection, since q ∨ r ≥ p ∨ r. Set a = q − p, b = t − s.

Then λ = (q + s) − (p + t) = a − b. As λ2 = λ, we have 2b = ab + ba. Multiplying by a, we get
2ab = ab+ aba, so that ab = aba. Hence ab = ba. So b = ab = ba. Thus b ≤ a. Therefore λ ≤ a, i.e.,
(q ∨ r − p ∨ r) ≤ q − p. So (5.1) holds.

To prove (5.2), set s = q ∧ r. Then (5.2) becomes

(q − p)⊥ - (s− p ∧ s)⊥, where s ≤ q. (5.3) 5,3

We have (q − p)⊥ = q⊥ ⊕ p and

(s− p ∧ s)⊥ = (q ⊖ (q ⊖ (s− p ∧ s)))⊥ = q⊥ ⊕ ((q ⊖ s)⊕ (p ∧ s)).

Therefore in order to prove (5.3) it suffices to show that

p - ((q ⊖ s)⊕ (p ∧ s)). (5.4) 5,4

As s ≤ q and p ≤ q, consider the W*-algebra Mq = qMq with 1 := 1Mq = q. Then q ⊖ s = s⊥ and
to prove (5.4), we have to show that

p - (s⊥ ⊕ (p ∧ s)) in Mq. (5.5) 5,5

Replacing q by s in (4.12), we have that there p0 ≤ p and s0 ≤ s such that

p = p0 ⊕ (p ∧ s)⊕ (p ∧ s⊥) and s = s0 ⊕ (p ∧ s)⊕ (p⊥ ∧ s),

1 = b⊕ (p ∧ s)⊕ (p ∧ s⊥)⊕ (p⊥ ∧ s)⊕ (p⊥ ∧ s⊥) and p0 ∼ b⊖ s0,
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where b = p0 ∨ s0. Then s⊥ = 1− s = (b⊖ s0)⊕ (p ∧ s⊥)⊕ (p⊥ ∧ s⊥). As p0 ∼ b⊖ s0,

p = (p0 ⊕ (p ∧ s)⊕ (p ∧ s⊥)) ∼ ((b⊖ s0)⊕ (p ∧ s)⊕ (p ∧ s⊥))

≤ ((b⊖ s0)⊕ (p ∧ s)⊕ (p ∧ s⊥)⊕ (p⊥ ∧ s⊥)) = (s⊥ ⊕ (p ∧ s)),

so that (5.5) holds which completes the proof of (5.2).

For a trail K ∈ KM�Q, define the relation ≪K
⊥ in Q:

p≪K
⊥

q if p ≤ q and (q − p)⊥ /∈ K. (5.6) 5,6

T5.2 Theorem 5.3 (i) For each trail K ∈ KM�Q, ≪K
⊥

is an HH-relation in Q = P (M) and

S≪K
⊥ = {s ∈ Q: 0≪K

⊥
s} = {s ∈ Q: s⊥ /∈ K} = Q\{q⊥: q ∈ K}. (5.7) 5,7

(ii) If M is a finite W∗-algebra then R := S≪K
⊥ is a trail and ≪K

⊥
is generated by R.

(iii) If M is properly infinite then S≪K
⊥ is not a trail and ≪K

⊥
is not generated by a trail.

Proof. (i) Let p ≪K
⊥ q, i.e., p ≤ q and (q − p)⊥ /∈ K. For each r ∈ Q, p ∨ r ≤ q ∨ r and, by

(5.1), (q − p)⊥ ≤ (q ∨ r − p ∨ r)⊥. If (q ∨ r − p ∨ r)⊥ ∈ K then, as K is a trail, (q − p)⊥ ∈ K by
(1.4), a contradiction. Hence (q ∨ r − p ∨ r)⊥ /∈ K. So p ∨ r ≪K

⊥ q ∨ r by (5.6).
Similarly, using (5.2), we get p ∧ r ≪K

⊥ q ∧ r. Thus, by (2.1) and (2.2), ≪K
⊥ is an HH-relation.

So (5.7) follows from (4.2), Theorem 4.1 and (5.6).
(ii) Let M be finite and r ∈ R. Then r⊥ /∈ K. If p ≤ r then r⊥ ≤ p⊥. If p⊥ ∈ K then r⊥ ∈ K.

This contradiction shows that p⊥ /∈ K. Thus p ∈ R.
Let q ∼ r. Since M is finite, q⊥ ∼ r⊥ by Proposition V.1.38 [T]. As K is a trail and r⊥ /∈ K,

we have q⊥ /∈ K. Thus q ∈ R. So R is a trail by (1.4). By Lemma 4.3(ii), ≪K
⊥
= ≪R .

(iii) Let M be properly infinite, i.e., all z ∈ Q ∩ Z are infinite. Then (see Lemma 6.3.3 [KR])
there is e ∈ Q such that e ∼ e⊥ ∼ 1. If e⊥ ∈ K then 1 ∈ K and K = Q, as K is a trail, a
contradiction. Hence e⊥ /∈ K, so that e ∈ S≪K

⊥ . If S≪K
⊥ is a trail then 1 ∈ S≪K

⊥ , so that S≪K
⊥ = Q

which is impossible. Thus S≪K
⊥ is not a trail.

Suppose that ≪K
⊥

is generated by a trail C, i.e., ≪K
⊥
= ≪C . Then S≪K

⊥ = S≪
C = C is a trail

by Lemma 4.2, a contradiction which completes the proof.

In the last section we show that if M is a countably decomposable factor then each HH-relation
≪ in P (M) is either ≪K , or ≪K

⊥
for some trail K. If M is not a factor then the structure of HH-

relations is much more complicated. Apart from≪K and≪K
⊥
, K ∈ KM , there are also many other

”mixed type” HH-relations neither generated by trails, nor associated with them.
For example, let z ∈ Q ∩ Z and Mz be not a finite W*-algebra. Let K1 ̸= {0} be a trail in Qz

and K2 be a trail in Qz⊥. Consider the following relation in Q: for p ≤ q,

p≪ q if either p, q ∈ Qz and q − p ∈ K1, or p, q ∈ Qz⊥ and (q − p)⊥z⊥ /∈ K2.

Then ≪ is an HH-relation and S≪ = K1 ∪ S≪K2
⊥ , where S≪K2

⊥ = {q ∈ Qz⊥: q⊥z⊥ /∈ K2}. By
Theorem 5.3, S≪K2

⊥ is not a trail in Qz⊥. Hence S≪ is not a trail and there does not exist a trail
R in Q such that S≪ = S≪R

⊥ . Thus ≪ is neither generated by a trail, nor associated with a trail.
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6 HH-orders and RR-orders in the lattices of projections

If an HH-relation is transitive, we call it an HH-orders. A subset L ⊆ Q is a sublattice if

p ∧ q ∈ L and p ∨ q ∈ L for p, q ∈ L. (6.1) 3,4

P6.2 Theorem 6.1 (i) Let ≪ be an HH-relation. The following are equivalent.

1) ≪ is transitive; 2) S≪ is a sublattice;

3) if p, q ∈ S≪ and p ⊥ q, then p⊕ q ∈ S≪.

(ii) If ≪ is an HH-order then 0≪ p ∼ q implies 0≪ q. Also S≪ = K≪ and ≪ = ≪
K≪ .

(iii) A relation ≪ is an HH-order if and only if ≪ = ≪K and the trail K is a lattice.

Proof. (i) 1) ⇒ 2). Let ≪ be transitive and p, q ∈ S≪. As p∧ q ≤ p, p∧ q ∈ S≪ by (4.11). As
0≪ q, p≪ p ∨ q by (2.1). Since 0≪ p, we have 0≪ p ∨ q. So p ∨ q ∈ S≪ and S≪ is a sublattice.

2)⇒ 3) is evident. 3)⇒ 1). If p≪ q ≪ r then q−p, r− q ∈ S≪ by (4.2) and (q−p) ⊥ (r− q).
Hence (r − q)⊕ (q − p) = r − p ∈ S≪. By Lemma 4.3(i), p≪ r. So ≪ is transitive.

(ii) By (4.10), q − (q ∧ p) ∼ (q ∨ p) − p. As q − (q ∧ p) ≤ q ∼ p, it follows from (3.1) that
q − (q ∧ p) ∼ r for some r ≤ p. So (q ∨ p) − p ∼ r. As 0 ≪ p, we have 0 = 0 ∧ r ≪ p ∧ r = r by
(2.2). Since ((q ∨ p)− p) ⊥ p, also ((q ∨ p)− p) ⊥ r. As 0≪ r, 0≪ (q ∨ p)− p by Proposition 4.5.

As≪ is transitive, S≪ is a sublattice by (i). Hence ((q∨p)−p)∨p (4.6)
= ((q∨p)−p)⊕p = q∨p ∈ S≪.

Then q ∈ S≪ by (4.11), as q ≤ q ∨ p. Thus S≪ = K≪ by (4.2). So ≪ = ≪
K≪ by Lemma 4.3(iii).

(iii) If ≪ is an HH-order, ≪ = ≪
K≪ and K≪ = S≪ is a trail by (ii). By (i), K≪ is a lattice.

Conversely, if≪ =≪K for a trail K, then≪ is an HH-relation by Theorem 4.1(i) and S≪ = K
by Lemma 4.2. As K is a lattice, ≪ is transitive by (i).

Let HHord be the set of all HH-orders and Klat
M the set of all trails in P (M) which are lattices.

T5.1 Corollary 6.2 Let M be a W∗-algebra. The map ϕ in (4.14) isomorphically maps Klat
M onto HHord

and the restriction of the map θ in (4.14) to HHord is its inverse.

Proof. For K ∈ Klat
M , ϕ(K) = ≪K is an HH-order by Theorem 6.1(iii). So, by Corollary

4.7(ii), ϕ injectively maps Klat
M in HHord.

Let ≪ be an HH-order. By Theorem 6.1, ≪ = ≪K , where K is a trail and also a lattice. By
Lemma 4.2, S≪ = K≪ = K, so that K≪ ∈ Klat

M and ϕ(K≪) = ≪
K≪ = ≪ . Hence ϕ|Klat

M
is an

isomorphism of Klat
M onto HHord. Combining this with Corollary 4.7, we conclude the proof.

Note that R-orders or dual R-orders are not necessarily RR-orders as the example below shows.

E6.3 Example 6.3 Consider the following relation ≪ on Q: p ≪ p and p ≪ 1 for all p ∈ Q. It is
transitive and satisfies (2.1). For each p ∈ Q, the set [p,≪] = {p,1} has the least upper bound 1.
Thus ≪ is an R-order. However, it is not a dual H-relation. Indeed, let p < q < 1. Then p≪ 1,
but p = p ∧ q ̸≪ q, so that (1.2) does not hold. �

If, however, an R-order is generated by a trail in Q then it is also a dual R-order.

C6.1 Corollary 6.4 Let K be a trail. The following conditions are equivalent.

(i) ≪K is an R-order in Q; (ii) ≪K is a dual R-order in Q;

(iii) K = [0, z] where z = ∨K ∈ Q ∩ Z.
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Proof. (i) ⇒ (iii). Let ≪K be an R-order. By Theorem 4.1(i), ≪
K⊥=

←−−≪K =
−−→≪K . Thus

≪
K⊥⊥=

−−−→≪
K⊥ =

−−−→(←−−≪K

)
. Hence≪

K⊥⊥=≪◃
K
by (2.4). As≪K is an R-order, we have from Theorem

2.1(i) that ≪K= ≪◃
K

. Thus ≪
K⊥⊥= ≪K . By Corollary 3.2, K⊥⊥ = [0, z]. Hence 0 ≪

K⊥⊥ z by
(4.1). As ≪

K⊥⊥= ≪K , we have 0 ≪K z. So z = z − 0 ∈ K by (4.1). As K is a trail, [0, z] ⊆ K.
On the other hand, K ⊆ [0, z] by Proposition 3.1. Thus K = [0, z].

The proof of (ii) =⇒ (iii) is similar.
(iii) =⇒ (i), (ii). Let K = [0, z]. By Corollary 3.2, K⊥⊥ = [0, z] = K. So ≪K = ≪

K⊥⊥ is an
RR-order by Theorem 4.1(i).

T6.2 Theorem 6.5 Let≪ be an RR-order and r = ∨[0,≪] (see (2.6)) be the≪-radical. Then r ∈ Q∩Z,

K
≪

= [0,≪] = [0, r] = [≪, r], ≪ = ≪
[0,r]

and ρ = 1− r is the dual ≪ -radical.

Proof. By Theorem 6.1, ≪ = ≪K for some trail K which is a lattice. By Corollary 6.4,
K = [0, z] where z = ∨K ∈ Q ∩ Z. By Lemma 4.2, S

≪
= K

≪
= K = [0, z]. Hence we have from

Theorem 4.1 that S
≪

= [0,≪] = [0, z]. Thus r = ∨[0,≪] = ∨[0, z] = z. As [0, r] = [≪, r] by (2.6),
K

≪
= [0,≪] = [0, r] = [≪, r] and ≪ = ≪

[0,r]
.

As≪ is a dual R-order, ρ = ∧[≪,1] is the dual≪-radical by (2.7) and 0
−→≪ ρ≪ 1 by (2.5). As

≪ =≪
[0,r]

, we have ρ≪
[0,r]

1. So 1−ρ ∈ [0, r], i.e., 1−ρ ≤ r. Thus 0 ≤ r−(1−ρ) = ρ−(1−r) ≤ r.

So ρ− (1− r) ∈ [0, r]. Hence (1− r)≪
[0,r]

ρ, so that (1− r)≪ ρ. As 0
−→≪ ρ, 1− r = ρ by (2.3).

By Corollary 6.4, the map z → ≪
[0,z]

maps the set Q ∩ Z into the set of all RR-orders.

C3.2 Corollary 6.6 (i) For each trail K, the projection zK = ∨K ∈ Q ∩ Z is the ≪◃
K
-radical and z⊥

K
is

the dual ≪◃
K
-radical: 0≪◃

K
zK
←−−
≪◃

K
1 and 0

−−→
≪◃

K
z
K⊥ ≪◃

K
1.

(ii) The map z → ≪
[0,z]

is a one-to-one map from Q ∩ Z onto the set of all RR-orders in Q.

Proof. (i) By Theorem 4.1, ≪◃
K

= ≪
[0,z

K
]
is an RR-order. Hence, by Theorem 6.5, r = zK is

the ≪◃
K
-radical and ρ = 1− r is the dual ≪◃

K
-radical.

(ii) By Corollary 6.4, z → ≪
[0,z]

is an injective map from Q ∩ Z to the set of all RR-orders. If
≪ is an RR-order then, by Theorem 6.5, ≪ = ≪[0,r], where r ∈ Q ∩ Z. The proof is complete.

7 HH-relation in the lattices of projections in factors.

In this section M is a factor, i.e., Z = C1, and Q = P (M). So Corollary 6.6 yields

C3.5 Corollary 7.1 Let M be a factor.

(i) There are only two RR-orders : ≪{0} that coincides with = and ≪Q = ≤ .

(ii) For each trail K ̸= {0}, zK = ∨K = 1 is the ≪◃
K
-radical and 0 is the dual ≪◃

K
-radical.

As M is a factor, then (see [Sa, Corollary 2.1.7])

either p ≺ q, or p ∼ q, or q ≺ p for all p, q ∈ Q = P (M). (7.1) 4.3

Hence the set Ω of all orbits in Q is totally ordered and the set KM of all trails in Q is given in
(3.6): KΦ = ∪ω∈ΦKω, where Φ is a subset of Ω and Kω = ∪{ω′: ω′ - ω} (see (3.5)).
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Let M be a finite factor. By Theorems 8.4.3 and 8.4.4 [KR], there is a unique faithful tracial
weight τ : Q→ R+ ∪ {0} such that

1) τ(p⊕ q) = τ(p) + τ(q); 2) p - q if and only if τ(p) ≤ τ(q). (7.2) 3.7

If M is a type In factor, τ generates an isomorphism of Ω onto the set {0, 1, ..., n}. So Ω = {ωk}nk=0,
where ωk = {p ∈ Q: dim p = τ(p) = k}, ω0 = {0}, ωn = {1}. Then ωk - ωm if k ≤ m, and

KM = {Kωk
}nk=0, where Kωk

= ∪ki=0ωi = {p ∈ Q: τ(p) ≤ k}, Kω0 = {0} and Kωn = Q.

The corresponding HH-relations have form (see (4.1))

p≪Kωk
q if p ≤ q and q − p ∈ Kωk

, i.e., τ(q − p) ≤ k. (7.3) 4.b

If M is a type II1 factor, τ generates an isomorphism of Ω onto [0, 1] ⊂ R. So Ω = {ωt}t∈[0,1],
where ωt = {p ∈ Q: τ(p) = t}, ω0 = {0} and ω1 = {1}. Then ωt - ωs if t ≤ s, and

KM = {Kωt}t∈[0,1] ∪ {K−
ωt
}t∈(0,1], where

Kωt = ∪s∈[0,t]ωs = {p ∈ Q: τ(p) ≤ t} and K−
ωt

= Kωt�ωt = {p ∈ Q: τ(p) < t}.

For p ≤ q, the corresponding HH-relations have form (see (4.1))

p≪Kωt
q if τ(q − p) ≤ t; and p≪

K−
ωt

q if τ(q − p) < t. (7.4) 4.c

T4.1 Theorem 7.2 (i) If M is a type In factor then all HH-relations in Q have form given in (7.3).
Only two of them are transitive: ≪Kωn

= ≪Q = ≤ and ≪Kω0
= ≪{0} coincides with = .

(ii) If M is a type II1 factor then all HH-relations in Q have form given in (7.4)). Only two
of them are transitive: ≪Kω1

= ≪Q = ≤ and ≪Kω0
= ≪{0} coincides with = .

Proof. (i) follows from the fact that, if M is finite then the map ≪ → K≪ is an isomorphism

of the set of all HH-relations in Q onto KM by Corollary 4.8. As S
≪

Kωk = {p ∈ Q: dim p ≤ k} is
a lattice only if k = 0 or n, we have from Theorem 6.1 that ≪Kωk

is transitive only if k = 0 or n.

(ii) As in (i), we need to prove that only ≪Kω1
and ≪Kω0

are transitive. By (7.2),

τ(p⊕ q) = τ(p) + τ(q) for p, q ∈ Q, p⊥q, and τ(1) = 1. (7.5) 4.2

Let t ̸= 0. Then Kωt = {p ∈ Q: τ(p) ≤ t}. Let Kωt be a lattice.
If t ≤ 1

2 , choose p ∈ Kωt with τ(p) = t. Then τ(p⊥) ≥ 1
2 by (7.5). Hence, by (7.2) and (7.1),

p - p⊥. By (3.1), there is r ≤ p⊥ such that p ∼ r. Hence τ(r) = t. So r ∈ Kωt . As Kωt is a lattice,
p ⊕ r ∈ Kωt by (6.1), and τ(p ⊕ r) = τ(p) + τ(r) = 2t > t by (7.5), a contradiction. Thus Kωt is
not a lattice if 0 < t ≤ 1

2 .
If 1

2 < t < 1, choose p ∈ Kωt with τ(p) = 1
2 . By (7.5), τ(p⊥) = 1

2 , so that p⊥ ∈ Kωt . As Kωt is a
lattice, 1 = p⊕ p⊥ ∈ Kωt , a contradiction, since τ(1) = 1 > t. Hence Kωt is not a lattice. So only
Kω0 = {0} and Kω1 = Q are lattices. Similarly, all trails K−

ωt
= {p ∈ Q: τ(p) < t}, 0 < t ≤ 1, are

not lattices. Thus, by Theorem 6.1, only ≪Kω1
and ≪Kω0

are transitive.
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We will now describe HH-relations in Q = P (M) when M is a type I∞, or II∞ factor. By
Propositions 8.5.2 and 8.5.5 [KR] (see also Theorems VII.36.1 and VII.36.2 [Na]), there is a faithful
normal semi-finite tracial weight τ : M+ → [0,∞] such that, for p, q ∈ Q,

1) τ(p) = τ(q) if p ∼ q; 2) τ(p⊕ q) = τ(p) + τ(q) if p⊥q;
3) τ(p) < τ(q) if p ≺ q and p is finite; 4) p ∈ Q is finite if and only if τ(p) <∞. (7.6) 4.5

Thus τ is well defined on the totally ordered set of orbits Ω in Q: τ(ω) = τ(p), p ∈ ω. Set

Ωinf = {ω ∈ Ω : τ(ω) =∞} and ω∼1 = {p ∈ P (M) : p ∼ 1} ∈ Ωinf . (7.7) 7.4

If M is a type I∞ factor then range(τ) = N ∪∞. Thus (see (3.6))

Ω = {ωk}k∈N ∪ Ωinf , where ωk = {p ∈ Q: dim p = τ(p) = k}, ωk - ωm if k ≤ m,

and ωk ≺ ω for all ω ∈ Ωinf . This allows us to describe all trails in Q:

KM = {Kωk
}k∈N ∪KΦN ∪ {KΦ}Φ⊆Ωinf

, where ΦN = {ωi}i∈N,
Kωk

= ∪ki=0ωi = {p ∈ Q: τ(p) ≤ k}, KΦN = ∪
i∈Nωi = {p ∈ Q: τ(p) <∞},

Kω = ∪{ω′: ω′ - ω} and KΦ = ∪ω∈ΦKω for any Φ ⊆ Ωinf . (7.8) 4,2

If M is a type II∞ factor then range(τ) = [0,∞]. Thus (see (3.6))

Ω = {ωt}t∈[0,∞) ∪ Ωinf , where ωt = {p ∈ Q: τ(p) = t}, ωs - ωt if s ≤ t,

and ωt ≺ ω for all ω ∈ Ωinf . This allows us to describe all trails in Q:

KM = {Kωt}t∈[0,∞) ∪ {K−
ωt
}t∈(0,∞) ∪KΦR ∪ {KΦ}Φ⊆Ωinf

, where ΦR = {ωt}t∈[0,∞),

Kωt = ∪{ωs: s ≤ t} = {p ∈ Q: τ(p) ≤ t}, K−
ωt

= ∪{ωs: s < t} = {p ∈ Q: τ(p) < t},
KΦR = ∪{ωs: 0 ≤ s <∞} = {p ∈ Q: τ(p) <∞} and KΦ = ∪ω∈ΦKω for Φ ⊆ Ωinf . (7.9) 7.1

Recall that, for each K ∈ KM�Q, the relation ≪K
⊥

associated with K was defined in (5.6).

T4.2 Theorem 7.3 Let M be a type I∞ (resp., type II∞) factor. All relations {≪K}K∈KM
and {≪K

⊥
}K∈KM�Q are HH-relations in Q. All relations ≪K

⊥
are not generated by trails.

Only the relations ≪Kω0
, ≪KΦN

(resp. ≪KΦR
) and ≪KΦ

for all Φ ⊆ Ωinf , are transitive.

Proof. All the results of the theorem follow from (4.14) and Theorem 5.3 apart from transitivity.
Since the relation ≪Kω0

coincides with =, it is transitive. As relations {≪K
⊥
}K∈KM�Q are not

generated by trails, it follows from Theorem 6.1 that they are not transitive.
Let M = B(H) and dimH = ∞. By (7.8), Kωk

= {p ∈ Q: dim p ≤ k}. As it is not a lattice if
k > 0, ≪Kωk

is not transitive by Theorem 6.1 if k > 0.

By (7.8), KωN = {p ∈ Q: dim p <∞}. As it is a lattice, ≪KωN
is transitive by Theorem 6.1.

Let Φ be a subset of Ωinf and let s, t ∈ KΦ and s ⊥ t. As M is a factor, we may assume, for
example, that s - t (see (7.1)). So s ∼ a ≤ t. As s ∈ KΦ, it follows from (7.6) that it is properly
infinite. Hence, by Lemma 6.3.3 [KR], there is e < s such that e ∼ s ⊖ e ∼ s. Thus e ∼ a and
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s⊖ e ∼ s. As e ⊥ (s⊖ e) and a ⊥ s, we have from (3.2) that a⊕ s ∼ e⊕ (s⊖ e) = s ∼ a. Therefore
it follows from (3.2) that

t⊕ s = (t⊖ a)⊕ (a⊕ s) ∼ (t⊖ a)⊕ a = t ∈ KΦ.

Hence it follows from Theorem 6.1 that the relation ≪KΦ
is transitive.

Let M be a II∞ factor. By (7.9), Kωt = {p ∈ Q: τ(p) ≤ t}, t < ∞. Choose p ∈ Kωt such that
τ(p) = t. Then p is finite by (7.6), while p⊥ is infinite. Hence p - p⊥ by (7.1). By (3.1), there is
r ≤ p⊥ such that p ∼ r. Hence τ(r) = t, so that r ∈ Kωt and p ⊥ r. If Kωt is a lattice, p⊕ r ∈ Kωt

and τ(p ⊕ r) = τ(p) + τ(r) = 2t by (7.6), a contradiction. Thus Kωt is not a lattice. So ≪Kωt
is

not transitive by Theorem 6.1. Similarly, all relations ≪
K−

ωt

, t <∞, are not transitive.

By (7.9), KωR = {p ∈ Q: τ(p) < ∞}, i.e., KωR = F is the set of all finite projections in Q. As
it is a lattice, ≪KωR

is transitive by Theorem 6.1. Repeating the argument used for M = B(H),

we get that ≪KΦ
are transitive relations for all Φ ⊆ Ωinf if M is a type II∞ factor.

For type I∞ and II∞ factorsM, Theorem 7.3 gives a large variety ofHH-relations in Q = P (M).
Some of them are generated by trails and some are associated with trails, but not generated by them.
The question arises as to whether there are other HH-relations in Q which are neither generated
by trails, nor associated with them. In Theorem 7.7 we will show that no other HH-relations in Q
exist, if M is countably decomposable.

Recall that M is countably decomposable, if each family of mutually orthogonal projections in
M is countable (for example, M ⊆ B(H) and H is separable). By Proposition V.1.39 [T], in this
case

all infinite projections in Q are equivalent: Ωinf = {ω∼1} = {p ∈ P (M): τ(p) =∞}. (7.10) 6.0

As before, we denote by F the set of all finite projections in Q = P (M).

L4.1 Lemma 7.4 Let M be a not finite factor and ≪ be an HH-relation in Q. If ≪ is not generated
by a trail then F $ S≪. If M is countably decomposable then K≪ = Q.

Proof. By Corollary 5.1, S≪ contains an infinite projection s. By (4.11), [0, s] ⊆ S≪. If p ∈ F
then p ≺ s by (7.1). Hence there is a finite projection r < s such that p ∼ r. Then r ∈ S≪ ∩ F. As
S≪ ∩ F is a trail by Corollary 4.7(i), p ∈ S≪. Thus F $ S≪.

If M is countably decomposable, s ∼ 1 by (7.10). Thus 1 ∈ K≪, so that K≪ = Q by (4.11).

We need now the following general result.

L3.1 Lemma 7.5 Let M be a factor and p ∧ q = 0. Set a = p ∧ q⊥, c = p⊥ ∧ q, e = p⊥ ∧ q⊥.

(i) There is d ∼ p such that q⊥ = d⊕ e.

(ii) There is r ∈ Q such that r ∧ p = r ∧ q = 0 and either r ∼ q⊥ if a - c, or r ∼ p⊥ if c - a.

Proof. As p ∧ q = 0, it follows from (4.12) that there are projections p0, q0 such that

p = p0 ⊕ a, q = q0 ⊕ c, q⊥ = (b⊖ q0)⊕ a⊕ e, 1 = b⊕ a⊕ c⊕ e, where (7.11) 4;2

b = p0 ∨ q0, p0 ∼ b⊖ q0 ∼ q0 ∼ b⊖ p0 and (7.12) 4:1

0 = p0 ∧ q0 = p0 ∧ (b⊖ q0) = (b⊖ p0) ∧ q0. (7.13) 4;3
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(i) Set d = (b⊖ q0)⊕ a. By (3.2), (7.11) and (7.12), p ∼ d and q⊥ = d⊕ e.
(ii) As M is a factor, either a - c, or c - a. Let a - c. Then there is s ≤ c such that a ∼ s. As

c ⊥ a, we have s ⊥ a. Hence, by Lemma 4.4(ii), there is t ∈ Q such that

t ≤ s⊕ a ≤ c⊕ a, t ∧ a = t ∧ s = 0, t ∼ a ∼ s and t⊕ a = s⊕ a. (7.14) 4;1

Set r = (b⊖ q0)⊕ t⊕ e. By (7.11) and (7.14), p0, q0 ⊥ (t⊕ e) and (b⊕ e) ⊥ (a⊕ c). So

r ∧ p = ((b⊖ q0)⊕ t⊕ e) ∧ (p0 ⊕ a)
(4.7)
= ((b⊖ q0) ∧ p0)⊕ (t ∧ a)

(7.13)
= 0⊕ (t ∧ a)

(7.14)
= 0,

r ∧ q = ((b⊖ q0)⊕ t⊕ e) ∧ (q0 ⊕ c)
(4.7)
= ((b⊖ q0) ∧ q0)⊕ (t ∧ c)

(7.13)
= 0⊕ (t ∧ c)

= t ∧ (s⊕ (c⊖ s))
(4.7)
= t ∧ s

(7.14)
= 0,

since t ⊥ (c⊖ s). As t ∼ a by (7.14), it follows from (7.11) that r ∼ q⊥.
Similarly, one can prove (ii) if c - a.

We shall now study the sets S≪ for HH-relations ≪ when M are I∞ and II∞ factors.

P4.3 Proposition 7.6 Let M be a factor, ≪ be an HH-relation and τ : M+ → [0,∞] satisfy (7.6). If

τ(p⊥) = α <∞ for some p ∈ S≪, then {q ∈ Q: α ≤ τ(q⊥)} ⊆ S≪. (7.15) 7.2

Proof. If α = 0 then p⊥ = 0, so that p = 1 and S≪ = Q. Let now α > 0 and τ(q⊥) = α. By
(7.6), p⊥ ∼ q⊥. To prove that q ∈ S≪, we first show that there is r ∈ Q such that

τ(r) = α, r ∧ p = r ∧ q = 0 and r ∨ p = 1. (7.16) 4:2

Set s = p ∧ q, p1 = ps⊥ = p− ps, q1 = qs⊥ = q − qs. Then s⊥ − q1 = s⊥q⊥ = q⊥, as q⊥ ≤ s⊥. So

p1 ∧ q1 = ps⊥ ∧ qs⊥
(4.5)
= (p ∧ q)s⊥ = ss⊥ = 0, as s⊥ commutes with p and q.

Consider the factor Ms⊥ = s⊥Ms⊥ = {s⊥as⊥: a ∈ M}. Then p1, q1 ∈ Ms⊥ . As p1 ∧ q1 = 0,
it follows from Lemma 7.5(ii) that there is r ∈ P (Ms⊥) such that r ∧ p1 = r ∧ q1 = 0 and
r ∼ s⊥ ⊖ q1 = q⊥ ∼ p⊥.

As r ≤ s⊥ and p = p1 ⊕ ps, we have r ⊥ ps and r ∧ p = r ∧ (p1 ⊕ ps)
(4.7)
= r ∧ p1 = 0. Similarly,

r ∧ q = 0. Since r ∼ q⊥, we have τ(r) = τ(q⊥) = α by (7.6).
To prove that r ∨ p = 1, recall that r ∧ p = 0. Replacing q by r in (7.11)–(7.13), we get

r = r0 ⊕ (r ∧ p⊥), p⊥ = (b⊖ p0)⊕ (r ∧ p⊥)⊕ (r⊥ ∧ p⊥), b = p0 ∨ r0 and r0 ∼ b⊖ p0, (7.17) 4:3

where b = r0 ∨ p0. As τ(p
⊥) = α = τ(r), it follows from (7.17) and (7.6) that

α = τ(r) = τ(r0) + τ(r ∧ p⊥) and α = τ(p⊥) = τ(b⊖ p0) + τ(r ∧ p⊥) + τ(r⊥ ∧ p⊥).

As r0 ∼ b⊖p0 by (7.17), we have τ(r0) = τ(b⊖p0) by (7.6). Hence τ(r⊥∧p⊥) = 0. As τ is faithful,
r⊥ ∧ p⊥ = 0. So r ∨ p = (r⊥ ∧ p⊥)⊥ = 1 by (4.4). Thus (7.16) is proved.

By (7.16) and Lemma 4.4(i),

p ∈ S≪ and τ(p⊥) = τ(q⊥) = α imply 0≪ q, i.e., q ∈ S≪. (7.18) 7.0

Finally, let τ(q⊥) > α = τ(p⊥). Then p⊥ ≺ q⊥ by (7.6). So p⊥ ∼ t < q⊥ for some t ∈ Q. Thus
τ(t) = α by (7.6). As t = (t⊥)⊥, we get t⊥ ∈ S≪ from (7.18). By (4.11), q ∈ S≪, as q < t⊥.

Using Proposition 7.6, we will now show that, for a countably decomposable type I∞, or II∞
factor M , Theorem 7.3 gives a full list of HH-relations in P (M).
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T6.3 Theorem 7.7 Let M be a type I∞, or II∞ factor. Let ≪ be an HH-relation in Q = P (M) not
generated by a trail. Set

α = inf{τ(q⊥): q ∈ S≪} and let ωα = {p ∈ Q: τ(p) = α} ∈ Ω, if α <∞. (7.19) 6,0

(i) If M is a type I∞ factor and α <∞ then ≪ = ≪Kωα−1
⊥ .

(ii) Let M be a type II∞ factor and α <∞.

1) If α = τ(p⊥) for some p ∈ S≪, then ≪ = ≪K−
ωα

⊥ .

2) If α < τ(p⊥) for all p ∈ S≪, then ≪ = ≪Kωα
⊥

.

(iii) Let α = ∞ and M be countably decomposable. If M has type I∞ then ≪ = ≪KΦN
⊥ ; if M

has type II∞ then ≪ = ≪KΦR
⊥ .

Proof. (i) If M is a type I∞ factor then α ∈ N. So there is p ∈ S≪ such that τ(p⊥) = α. Then

S≪
Kωα−1
⊥

(5.7)
= {s ∈ Q: s⊥ /∈ Kωα−1}

(7.8)
= {s ∈ Q: α ≤ τ(s⊥)}

(7.15)

⊆ S≪.

On the other hand, since α ≤ τ(q⊥) for all q ∈ S≪ by (7.19), we have S≪ ⊆ S≪
Kωα−1
⊥ . Thus

S≪ = S≪
Kωα−1
⊥ . Hence, by Lemma 4.3, ≪ = ≪Kωα−1

⊥ .
(ii) Let M be a type II∞ factor. Then α ∈ R+ ∪ {0}.
1) Let α = τ(p⊥) for some p ∈ S≪. Then

S≪K−
ωα

⊥
(5.7)
= {s ∈ Q: s⊥ /∈ K−

ωα
} (7.9)

= {s ∈ Q: α ≤ τ(s⊥)}
(7.15)

⊆ S≪.

On the other hand, since α ≤ τ(q⊥) for all q ∈ S≪ by (7.19), we have S≪ ⊆ S≪K−
ωα

⊥ . Thus

S≪ = S≪K−
ωα

⊥ . Hence, by Lemma 4.3, ≪ = ≪K−
ωα

⊥ .
2) Let α < τ(p⊥) for all p ∈ S≪. For each ε > 0, there is pε ∈ S≪ such that α < τ(p⊥ε ) ≤ α+ ε.

By (7.15), {s ∈ Q: α+ ε ≤ τ(s⊥)} ⊆ S≪. Thus {s ∈ Q: α < τ(s⊥)} ⊆ S≪. As

S≪Kωα
⊥

(5.7)
= {s ∈ Q: s⊥ /∈ Kωα}

(7.9)
= {s ∈ Q: α < τ(s⊥)}, (7.20) 7.3

we have S≪Kωα
⊥ ⊆ S≪. On the other hand, as τ(p⊥) > α for all p ∈ S≪, we have S≪ ⊆ S≪Kωα

⊥ by

(7.20). Thus S≪ = S≪Kωα
⊥ . By Lemma 4.3, ≪ = ≪Kωα

⊥
.

(iii) Let α =∞ and M be countably decomposable. Then Ωinf = {ω∼1} (see (7.10)). As

τ(p⊥) =∞ for all p ∈ S≪ by (7.19), we have p⊥ ∈ ω∼1. (7.21) 7.5

Let M have type I∞. By (7.5), K := KΦN = ∪
i∈Nωi = {p ∈ Q: τ(p) <∞}. Then

S≪K
⊥

(5.7)
= {q ∈ Q: q⊥ /∈ K} (7.8)

= {q ∈ Q: τ(q⊥) =∞} = {q ∈ Q: q⊥ ∈ ω∼1}, (7.22) 7.6

so that S≪ ⊆ S≪K
⊥ by (7.21). (7.23) 7.8

By Lemma 7.4, F ⊆ S≪ and S≪ contains infinite projections. Then

S≪ = F ∪ S≪
∞ , where S≪

∞ = {p ∈ S≪: p is infinite} (7.21)
= {p ∈ S≪: p, p⊥ are infinite}. (7.24) 6,6
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As M is countably decomposable, p ∼ p⊥ for p ∈ S≪
∞ by (7.10). Thus, by Proposition 4.5,

if p ∈ S≪
∞ then 0≪ p⊥, so that p⊥ ∈ S≪

∞ . (7.25) 6,3

Let p ∈ S≪
∞ , p ≤ q and q⊥ be infinite. Then q⊥ ≤ p⊥ ∈ S≪

∞ by (7.25). By (4.11), q⊥ ∈ S≪. As
q⊥ is infinite, q⊥ ∈ S≪

∞ by (7.24). Hence, by (7.25), q = (q⊥)⊥ ∈ S≪
∞ . So

if p ∈ S≪
∞ , p ≤ q and q⊥ is infinite then q ∈ S≪

∞ . (7.26) 6,4

If p ∈ F then τ(p) <∞, so that τ(p⊥) =∞ by (7.6). So it follows from (7.22) that

S≪K
⊥ = F ∪ S

≪K
⊥∞ , where S

≪K
⊥∞ = {q ∈ Q : q and q⊥ are infinite}. (7.27) 6,5

Comparing (7.24) and (7.27), we have that in order to prove

S≪K
⊥ ⊆ S≪, we need to show that S

≪K
⊥∞ ⊆ S≪

∞ . (7.28) 7.7

Let q ∈ S
≪K

⊥∞ . Take any p ∈ S≪
∞ . If (p ∨ q)⊥ is infinite then p ∨ q ∈ S≪

∞ by (7.26), as p ≤ p ∨ q. As
q ≤ p ∨ q, we have q ∈ S≪ by (4.11). As q is infinite (see (7.27)), q ∈ S≪

∞ by (7.24).
Let now (p∨ q)⊥ be finite. As 0≪ p, we have q = 0∨ q ≪ p∨ q by (2.1), so that 0 = q ∧ q⊥ ≪

(p ∨ q) ∧ q⊥ by (2.2). Set r = (p ∨ q) ∧ q⊥. Then r ∈ S≪, as 0≪ r. It follows from (4.4) that

r⊥ = ((p ∨ q) ∧ q⊥)⊥ = (p ∨ q)⊥ ∨ (q⊥)⊥ = (p⊥ ∧ q⊥) ∨ q = (p⊥ ∧ q⊥)⊕ q,

as p⊥ ∧ q⊥ is orthogonal to q. Hence

r = (r⊥)⊥ = ((p⊥ ∧ q⊥)⊕ q)⊥ = q⊥ ⊖ (p⊥ ∧ q⊥). (7.29) 6,7

As q ∈ S
≪K

⊥∞ , q⊥ is infinite by (7.27). Hence r is infinite, since (p⊥ ∧ q⊥) = (p ∨ q)⊥ is finite
by our assumption. As r ∈ S≪, we have r ∈ S≪

∞ by (7.24). As q⊥ = r ⊕ (p⊥ ∧ q⊥) ≥ r by (7.29),
and (q⊥)⊥ = q is infinite, it follows from (7.26) that q⊥ ∈ S≪

∞ . Then q ∈ S≪
∞ by (7.25). Thus

S
≪K

⊥∞ ⊆ S≪
∞ , so that S≪K

⊥ ⊆ S≪ by (7.28). Combining this with (7.23) yields S≪K
⊥ = S≪. By

Lemma 4.3, ≪ = ≪K
⊥

= ≪KΦN
⊥ .

The proof of ≪ = ≪KΦR
⊥ if M has type II∞, is identical.

To summarize the results of Theorems 7.3 and 7.7, assume that M is a countably decomposable
factor. Then Ωinf = {ω∼1}. Hence if K ∈ KM contains an infinite projection then K = Q. For each
K ∈ KM , the corresponding HH-relations ≪K and ≪K

⊥
are given in (4.1) and (5.6).

If M has type I∞ then (see (7.8)) KM = {Kωk
}k∈N ∪KΦN ∪Q, where Kωk

= {p ∈ Q: τ(p) ≤ k}
and KΦN = {p ∈ Q: τ(p) <∞}. The corresponding HH-relations have form: for p ≤ q,

p≪Kωk
q if τ(q − p) ≤ k, and p≪Kωk

⊥ q if τ((q − p)⊥) > k, for k ∈ N;

p≪KΦN
q if τ(q − p) <∞, and p≪KΦN

⊥ q if τ((q − p)⊥) =∞. (7.30) 7.11

IfM has type II∞ then (see (7.9)) KM = {Kωt}t∈[0,∞)∪{K−
ωt
}t∈(0,∞)∪KΦR∪Q, whereKωt = {p ∈ Q:

τ(p) ≤ t}, K−
ωt

= {p ∈ Q: τ(p) < t} and KΦR = {p ∈ Q: τ(p) < ∞}. The corresponding HH-
relations have form: for p ≤ q,
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p≪Kωt
q if τ(q − p) ≤ t, and p≪Kωt

⊥
q if τ((q − p)⊥) > t for t ∈ [0,∞),

p≪
K−

ωt

q if τ(q − p) < t, and p≪K−
ωt

⊥ q if τ((q − p)⊥) ≥ t for t ∈ (0,∞)

p≪KΦR
q if τ(q − p) <∞, and p≪KΦR

⊥ q if τ((q − p)⊥) =∞. (7.31) 7.12

In both cases, ≪Q = ≤ . Therefore Theorems 7.3 and 7.7 yield.

T7.1 Theorem 7.8 Let M be a countably decomposable factor of type I∞ (resp. II∞). A relation in Q
is an HH-relation if and only if it coincides with one of the relations in (7.30) (resp. in (7.31)).
Only three relations are transitive: ≪Q = ≤, ≪KΦN

(resp., ≪KΦR
), ≪Kω0

that coincides with =.

Consider now HH-relations in Q = P (M), when M is a countably decomposable type III factor.
Note that M has no non-trivial faithful semi-finite normal tracial weights (Theorem V.2.15 [T]).

T6.1 Theorem 7.9 Let M be a countably decomposable type III factor. Then Q only has two trails:
K0 = {0} and K1 = Q and only three HH-relations. Two of them: ≪K1

= ≤ and ≪K0
that

coincides with = are generated by trails. Only they are transitive.
The third relation ≪K0

⊥
is not generated by a trail : p≪K0

⊥
q if p ≤ q and q − p ̸= 1.

Proof. As all projections in Q\{0} are infinite and equivalent to 1 ([T], V.1.39), Q only has
two trails K0 = {0} and K1 = Q and two HH-relations generated by them.

Let an HH-relation ≪ be not generated by a trail. If 1 ∈ S≪ then Q = [0,1] ⊆ S≪ by (4.11),
a contradiction. Thus 1 /∈ S≪. Let 0 ≠ p ∈ S≪. Then p ∼ p⊥ ̸= 0,1. Hence, by Proposition 4.5,

0≪ p implies p⊥ ∈ S≪, so that [0, p⊥] ⊆ S≪ by (4.11). (7.32) 6,2

If p ≤ q ̸= 1 then 0 ̸= q⊥ ≤ p⊥. Hence 0 ≠ q⊥ ∈ S≪. By (7.32), q = (q⊥)⊥ ∈ S≪. Thus
0 ̸= p ∈ S≪ and p ≤ q ̸= 1 implies q ∈ S≪. If p ∨ r ̸= 1 for some r ∈ Q, then p ∨ r ∈ S≪, as
p ≤ p ∨ r. So r ∈ S≪ by (4.11), as r ≤ p ∨ r.

Let p ∨ r = 1 and 1 ̸= r. Then 0 = 1⊥ = (p ∨ r)⊥ = p⊥ ∧ r⊥ by (4.4). As 0 ≪ p, we have
p⊥ = 0∨p⊥ ≪ p∨p⊥ = 1 by (2.1). Hence 0 = p⊥∧r⊥ ≪ 1∧r⊥ = r⊥. By (7.32), r = (r⊥)⊥ ∈ S≪.
Thus each r ̸= 1 belongs to S≪. So S≪ = Q\{1}. Therefore ≪ = ≪

Q\{1} = ≪K0
⊥

(see (5.6)).

P1 Problem 7.10 For a countably decomposable infinite factor M , the list of HH-relations in P (M)
given in Theorem 7.3 is complete by Theorems 7.8 and 7.9. Is it also complete if M is not countably
decomposable?
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