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Abstract: A tutorial of the generalized additive models for location, scale and shape (GAMLSS) is
given here using two examples. GAMLSS is a general framework for performing regression analysis
where not only the location (e.g., the mean) of the distribution but also the scale and shape of the
distribution can be modelled by explanatory variables.
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1 Introduction

This article introduces the generalized additive models for location, scale and shape
(GAMLSS) to a wider audience by concentrating on two intuitive examples, avoiding
the technical jargon associated with statistical model definitions. We assume that
the reader is familiar with simple regression analysis and generalized linear models
(GLMs).

Since their introduction by Rigby and Stasinopoulos (2005), GAMLSS have been
applied in a variety of different scientific fields such as: actuarial science (Heller
et al., 2007), biology (Hawkins et al., 2013), economics (Voudouris et al., 2015),
environment (Villarini et al., 2009), genomics (Khondoker et al., 2007), finance
(International Monetary Fund, 2015; Giraud and Kockerols, 2015), fisheries, food
consumption, management science (Budge et al., 2010), marine research, medicine
(Rodrigues et al., 2009), meteorology, and vaccines.

GAMLSS have also become standard for centile estimation, for example, Visser
et al. (2009), Villar et al. (2014) and Neuhauser et al. (2011). WHO (2007) and
WHO (2009) uses GAMLSS for centile estimation to produce growth charts for
children. Their charts are used by more than 140 countries as the standard charts
monitoring the growth of children. The Global Lung Function Initiative (GLFI),
[http://www.lungfunction.org, Quanjer et al. (2012)] uses GAMLSS to provide a
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unified worldwide approach to monitoring lung function, by obtaining centiles for
lung function based on age and height.

GAMLSS is a general framework for performing a ‘univariate’ regression.
‘Univariate’ refers to a single response variable, while there can be many explanatory
valuables. In a univariate regression we assume that the response (or target) variable
depends on the explanatory variables. This dependance can be linear, non-linear
or smooth non-parametric. For example, in the classical linear regression model
(LM), the mean of the response variable is a linear function of the explanatory
variables. In the GLMs, Nelder and Wedderburn (1972), a monotonic function
of the mean, called the linear predictor, is a linear function of the explanatory
variables. Since the late 1980s, non-linear relationships between the response variable
and the explanatory variables, within both LM and GLM, are dealt with by using
non-parametric smoothing functions, giving additive models (AM) and generalized
additive models GAMs, respectively. The GAMs introduced by Hastie and Tibshirani
(1990) and popularized by Wood (2017) have made the smoothing techniques within
a regression framework available to a wide range of practitioners.

GAMLSS can be seen as an extension of the LM, GLM and GAM. GAMLSS have
two main features. First, the GLMs and GAMs assume that the response variable
has a distribution that belongs to the exponential family. However, in GAMLSS, the
assumed distribution can be any parametric distribution. Second, within GAMLSS,
all the parameters (not only the location, for example, the mean) of the distribution
can be modelled as linear or smooth functions of the explanatory variables. As a
result, the location, scale and shape of the distribution of the response variable is
allowed to change according to explanatory variables. The GAMLSS models are an
example of a ‘Beyond Mean Regression’ model, Kneib (2013). Because an explicit
distributional assumption is made for the response variable, they also fall into the
category of the ‘distributional regression’ modelling approach, Fahrmeir et al. (2013).

GAMLSS allows a variety of smooth functions of explanatory variables.
Smoothers can be divided broadly into two categories: the ones that employ a
quadratic penalty and the ones that do not. For more details see Stasinopoulos
et al. (2017), Ch 10. The quadratic penalized smoothers include some very popular
smoothers: P-splines, cubic splines, thin-plate splines, tensor-product splines and
random effects. The second category of smoother includes: local regression, neural
networks, decision trees, etc.

This article is organized as follows. Section 2 provides a general form of the
GAMLSS model for any response variable distribution. Section 3 demonstrates
GAMLSS analysis of a continuous response variable. Section 3.2 models height
against a single explanatory variable age in Dutch boys, while Section 3.3 models
head circumference against two explanatory variables height and age. Both sections
focus on obtaining centiles for the response variable. Section 4 demonstrates
GAMLSS analysis of a discrete response variable using different discrete distributions.
Conclusions are provided in Section 5. The basic ideas of GAMLSS, see Stasinopoulos
et al. (2017), have been implemented in R in a series of packages, see Stasinopoulos
and Rigby (2007). All the material presented in this tutorial are reproducible using
the R code provided as supplementary material.
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2 The GAMLSS framework

GAMLSS are semi-parametric regression-type models. They are ‘semi’ in the
sense that the modelling of the parameters of the distribution may involve using
non-parametric smoothing functions of explanatory variables, and parametric in the
sense that they require a parametric distribution assumption for the response variable.
It provides a very general and flexible system for modelling a response variable.

The distribution of the response variable is selected from a very wide range of
distributions available in the gamlss.dist package in R, Stasinopoulos and Rigby
(2007), where the distribution of the response variable does not have to belong to the
exponential family and includes highly skew and kurtotic continuous and discrete
distributions. A GAMLSS model assumes that, for i = 1, 2, . . . , n, independent
observations Yi have probability (density) function fY (yi|!i, "i, #i, $i) conditional on
up to four distribution parameters, each of which can be a function of the explanatory
variables. The first two population distribution parameters !i and "i are usually
characterized as location and scale parameters, and #i and $i are usually characterized
as shape parameters, for example, skewness and kurtosis, respectively.

The model can be generalized to more than four distribution parameters; however,
the gamlss package includes distributions with up to four parameters. All the
parameters of the response variable distribution can be modelled using parametric
and/or non-parametric smooth functions of explanatory variables, thus allowing
modelling of the location, scale and shape parameters. Rigby and Stasinopoulos
(2005) define an original formulation of a GAMLSS model as follows.

Response variable observations Y1, Y2, . . . , Yn are independent with

Yi ∼ D(!i, "i, #i, $i)

for i = 1, . . . , n, where D is any distribution with (up to) four distribution parameters.
For k = 1, 2, 3, 4, let gk(.) be a known monotonic link function relating a

distribution parameter to a predictor !k, where

g1(") = !1 = X1ˇ1 +
J1∑

j = 1

s1j(x1j)

g2(#) = !2 = X2ˇ2 +
J2∑

j = 1

s2j(x2j)

g3($) = !3 = X3ˇ3 +
J3∑

j = 1

s3j(x3j)

g4(%) = !4 = X4ˇ4 +
J4∑

j = 1

s4j(x4j),

(2.1)
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where Xk is a known design matrix, ˇk = (ˇk1, . . . , ˇkJ
′
k
)⊤ is a parameter vector of

length J
′

k, skj is a smooth non-parametric function of variable Xkj and the xkj’s are
vectors of length n, for k = 1, 2, 3, 4 and j = 1, . . . , Jk. That is, a GAMLSS model
allows the modelling of the parameters of the distribution as linear, that is, Xkˇk or
smooth term functions skj(xkj) for k = 1, 2, 3, 4.

3 Centile estimation for a continuous response variable

3.1 The Dutch boys data
The Fourth Dutch Growth Study, Fredriks et al. (2000a,b) is a cross-sectional study
that measures growth and development of the Dutch population between the ages
of 0 and 22 years. The study measured, among other variables, height, weight, head
circumference and age for 7 482 males and 7 018 females.

Here we analysed 6 885 observations for head circumference, height and age of
males (having removed missing observations of these three variables from the original
dataset of 7 482 cases). The data are shown in Figure 1 where in panel (a) the head
circumference is plotted against age, in panel (b) head circumference is plotted against
height and in panel (c) height is plotted against age.

Section 3.2 shows the analysis of height (as response variable) against a single
explanatory variable age. This is a typical ‘centile’ estimation problem, one of the most
widely used applications of GAMLSS. In Section 3.3, we use the head circumference as
the response variable, and the age and height as explanatory variables. This will serve
us as an example of centile estimation for a response variable using two explanatory
variables (by surface interaction fitting).

3.2 Centile estimation using a single explanatory variable
Centile estimation of a response variable is widely used in medicine, nutrition, sport
science and other disciplines, where an individual is checked on whether they have
an abnormally low or high value of the response variable (given their values of the
explanatory variable(s)), and hence whether they are potentially at risk. For example,
children are checked whether they have an abnormal height for their age. A typical
centile estimation problem will involve two variables, the response variable Y of
interest and an explanatory variable x usually age. In this section, we will analyse
height (as the response variable) against age (as the explanatory variable).

3.2.1 Normal distribution model and extensions
In the classical linear regression model, a continuous response variable was modelled
using a normal distribution with mean ! and standard deviation ", that is,
Y ∼ NO(!, "), where ! is linear in explanatory variable x and " is a constant value
ˇ02, that is,
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Figure 1 Plots of (a) head circumference (head) against age (age), (b) head circumference (head) against
height (ht) and (c) height (ht) against age (age)
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6 Stasinopoulos et al.

Y ∼ NO(!, ")
! = ˇ01 + ˇ11x
" = ˇ02.

However, it is often found that modelling ! as linear in x is inadequate, so ! is
modelled using a smooth function of x, s1(x), giving a simple additive model. Also,
Y is often found to have heterogeneous variance, so " is not constant but potentially
depends on a smooth function of x giving the following model,

Y ∼ NO(!, ")
! = s1(x)

log(") = s2(x).
(3.1)

The function log(") ensures that " is always positive.
However, it is often found that the response variable Y (given x) has a skew

distribution, so a three-parameter distribution, for example, the Box–Cox Cole and
Green, BCCG(!, ", #), distribution, where # is a skewness parameter, may be needed
to model Y, for example,

Y ∼ BCCG(!, ", #)
! = s1(x)

log(") = s2(x)
# = s3(x).

(3.2)

Finally, the response variable Y may exhibit varying kurtosis, so a four-parameter
distribution, for example, the Box-Cox t, BCT(!, ", #, $), where $ is a kurtosis
parameter, may be needed to model Y, for example,

Y ∼ BCT(!, ", #, $)
! = s1(x)

log(") = s2(x)
# = s3(x)

log($) = s4(x).

(3.3)

This model can be generalized to model (3.4), given in the next section. Model (3.1),
(3.2), (3.3)and (3.4) are examples of GAMLSS models that can be fitted with the
gamlss R software.

3.2.2 LMS model and extensions
There are currently two major methodologies for creating centile curves, (a) the
lambda, mu and sigma (LMS) method and its extensions (Cole and Green, 1992);
(Rigby and Stasinopoulos, 2004; Rigby and Stasinopoulos, 2006) and (b) the quantile
regression method (Koenker et al., 1994; He and Ng, 1999; Ng and Maechler, 2007).

Statistical Modelling 2018; 18(3–4): 1–26
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More details about both methodologies can be found in Stasinopoulos et al. (2017),
Ch 13. Here, we concentrate on the LMS methodology and its extensions, which are
a subclass of GAMLSS and were also adopted by the World Health Organization
for the construction of worldwide standard growth (centile) curves for children (see
WHO, 2006, 2007, 2009).

The model for the extended LMS methodology can be written as:

Y ∼D(!, ", #, $)
g1(!) = s1(u)
g2(") = s2(u)
g3(#) = s3(u) (3.4)
g4($) = s4(u)

u = x%,

where D represents the distribution of the response variable Y, and !, ", # and
$ are parameters of this distribution. The g(·) functions represent appropriate link
functions (i.e., known monotonic functions of the distribution parameters, which
can also guarantee that the distribution parameter will be in the appropriate range).
The s(·) are non-parametric smoothing functions of u, where u is a power transform
function of the explanatory variable x and % is the power transform parameter. The
reason why a power transformation for x may be needed in the model is to facilitate
the estimation of the smoothing functions when spells of sharp growth in Y occur for
low values of x. The model in Equation (3.4) needs five parameters to be estimated,
that is, four smoothing parameters for the functions s1(.), s2(.), s3(.) and s4(.), and the
power transform parameter %.

The original LMS method of Cole and Green (1992) uses only three distribution
parameters, and it is equivalent to using the Box-Cox Cole and Green distribution,
BCCG(!, ", #), as D. The parameters !, " and #, in this case, are the approximate
median, approximate coefficient of variation and skewness parameters. That is,
! controls the location, " controls the scale and # controls the skewness of
the distribution D. The introduction of a fourth parameter $ for modelling
the kurtosis of the distribution leads to the creation of the Box–Cox power
exponential, BCPE(!, ", #, $), and the Box-Cox-t, BCT(!, ", #, $), distributions,
see Rigby and Stasinopoulos (2004) and Rigby and Stasinopoulos (2006),
respectively. The resulting centile estimation methods were called LMSP and LMST
respectively.

3.2.3 Analysis of height against age
The current R implementation of GAMLSS has two similar sets of functions to fit
the LMS, LMSP and LMST distributions: the functions BCCGo, BCPEo and BCTo,
and the functions BCCG, BCPE and BCT. Their only difference is in the default
link function g1(!) for !. The functions BCCGo, BCPEo and BCTo have a log link
for ! as a default, that is, g1(!) = log(!), (which ensures that ! is always positive),

Statistical Modelling 2018; 18(3–4): 1–26
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Table 1 Summary of the fitted models for the Dutch boys data, showing the effective degrees of freedom
(df) used in the model, the global deviance (GD), the AIC (k = 2) and BIC

Distribution df GD AIC BIC

NO 25.7 41 842.5 41 893.8 42 069.4
BCCGo 27.7 41 828.7 41 884.1 42 073.3
BCPEo 29.9 41 807.6 41 867.5 42 072.0
BCTo 30.4 41 806.4 41 867.3 42 075.5

while BCCG, BCPE and BCT have the identity, that is, g1(!) = ! (as was originally
used by Cole and Green (1992)). Note that alternative link functions can be tried
and the preferred link function is the one which gives the smallest value of the
generalized Akaike information criterion, GAIC(k), Akaike (1983), for chosen value
of k.

First, to avoid estimating the power parameter % in model (3.4), we use an
empirical method, which consists of plotting the response variable height (its log
since we use a log link g1(!) = log(!) function for !) against the age, log age
and square root of age (corresponding to % effectively equals to 1, 0 or 0.5,
respectively), and choose the one which looks more linear and is therefore easier
to smooth. The square root of age was the best choice in our case. In the rest of
the analysis, we use u = √

age. Note that estimation of the smoothing parameters
is done automatically in GAMLSS, using the methodology described in Rigby and
Stasinopoulos (2013) and in Stasinopoulos et al. (2017), Ch 3. [Note that there are
also functions in GAMLSS for automatically choosing the power parameter % see
Stasinopoulos et al. (2017), Ch 3].

To choose between the NO, BCCGo, BCPEo and BCTo distributions, we use the
generalized Akaike information criterion GAIC(k), where GAIC(2) is the standard
AIC, while GAIC(log n) is the bayesian information criterion, BIC, see Table 1.
According to the AIC, the BCTo distribution is best, while for BIC, all the values
were similar with the NO distribution best. Figure 2(a) presents the centiles curves
for the BCTo distribution.

Diagnostics plots based on the residuals are a good way of checking the
adequacy of a model. The GAMLSS methodology uses the normalized quantile
residuals (or z-scores; Dunn and Smyth, 1996) which apply to all distributions.
More on the residual diagnostic checks, including normalized quantile residuals
and the worm plots shown in Figure 2(b), can be found in Stasinopoulos et al.
(2017), Ch 12. Figure 2(b) presents the worm plot for the BCTo distribution.
A worm plot is a detrended Q-Q plot of the normalized quantile residuals, with
elliptical curves indicating approximate 95% point-wise confidence bands. Ideally
the points in the worm plot should be close to the horizontal line in the middle
with no systematic shape and 95% or more of the points inside the elliptical curve.
The worm plot in Figure 2(b) is acceptable as there are no points outside the
confidence bands.
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Figure 2 (a) Plot of the centile curves for the BCTo model and (b) worm plot of its residuals

The resulting BCTo model is given by

height ∼ BCTo(!, ", #, $)
log(!) = s1(u)
log(") = s2(u)

# = s3(u)
log($) = s4(u)

u = √
age.

(3.5)

[We also used the lms() function in the gamlss package, which uses an automated
procedure for the LMS (BCCGo), LMSP (BCPEo) and LST (BCTo) methods of centile
estimation, including an automated estimation of both the power parameter % and
the smoothing parameters for all the distribution parameters. It also chooses between
BCCGo, BCPEo and BCTo distribution models using criterion GAIC(k), with k
chosen by the user. Here, we used k = 4, a compromise between AIC(k = 2) and
BIC (with k = log(n)). The lms() function chose BCPEo with estimated power
parameter approximately 0.68, quite close to 0.5, that is, to the square root that we
chose earlier. The resulting fitted centile curves are very similar to the fitted centile
curves presented in Figure 2(a).]
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3.3 Centile estimation using two explanatory variables
This section shows how centile estimation can be constructed when we have two
explanatory variables. The response variable is head circumference (head), and the
explanatory variables are height (ht) and age (age). The objective here is to model
the distribution of head circumference using height and age. The data are shown in
two dimensions in Figure 1(a) and 1(b), and in three dimensions in Figure 3, where
we can see that the y variable, head circumference, is defined only in a limited joint
range of the age and height space. This has consequences in fitting a model to the head
circumference because prediction outside the data space of the explanatory variables
will rely on extrapolation and therefore will be unreliable.

height

age

head

Figure 3 A three-dimensional plot of head circumference against age and height

In order to fit a GAMLSS model to the data, we need:

1. to consider whether transformed versions of height and age will help the
analysis;

2. a suitable distribution for head circumference; and

Statistical Modelling 2018; 18(3–4): 1–26
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3. to determine how height and age affect the parameters of the distribution of the
response variable.

In order to choose a suitable transformation for age and height, we plotted head
circumference (its log since we use a log link g1(!) = log(!) function for !) against
each of (a) age and height, (b) the log age and height and (c) the square root of age
and height (the six plots are not shown here). The transformation that makes the
relationship between log (head) and each transformed explanatory variable closest to
linear was the log transformation for both of height and age.

To choose a suitable distribution, we used three distributions (BCCGo, BCPEo
and BCTo) defined for a positive response variable (since head circumference is always
positive) and fit initially a smooth function in log height for ! only. The distribution
that was ‘best’ using the AIC or BIC was the BCTo(!, ", #, $) distribution.

In order to find out how the explanatory variables, age and height, affect
the different distribution parameters of the BCTo(!, ", #, $) distribution, we use a
selection technique, which chooses between the following four possible models for
each distribution parameter:

• s(uh): main smooth effect for height;
• s(ua): main smooth effect for age;
• s(ua) + s(uh): additive smooth effect for age and height; and
• s(ua, uh): smooth interaction of age and height,

where uh = log (height) and et ua = log (age).
The chosen model was

head ∼ BCTo(!, ", #, $)
log(!) = s1(ua, uh)
log(") = s2(uh)

# = s3(ua)
log($) = s4(uh),

(3.6)

where s1(.) is a smooth surface and s2(.), s3(.) and s4(.) are smooth functions. The
worm plot for the final chosen model (3.6), given in Figure 4(a), showed some
extreme outliers in the tails (6 in the upper tail and 5 in the lower tail, out of 6 885
observations). These extreme outliers distort the fitted centiles of head circumference.
When the 11 extreme outliers were removed, the worm plot improved greatly.
Figure 4(b) shows the worm plot of the residuals for the BCTo model removing
the 11 observation with extreme residuals.

Model (3.6) can now be used to obtain the 5% and 95% centiles of head, each
of which is plotted as a contour plot against height and age in Figure 5. Figure 6
reduces the age range to 0–2 years to see more clearly the head contour values
for that age group. From a practical viewpoint, given the height and age of a
Dutch boy, an observed head circumference less than the 5% centile value indicates
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Figure 4 Worm plot of the residuals for the BCTo model (a) using all 6 885 observations and (b) removing
11 outlier observations with extreme residuals (right)

an unusually small head circumference (given the height and age), while a value
greater than the 95% centile value indicates an unusually large head circumference
(given the height and age). This can be used as a medical diagnostic tool. Note
that for the very young boys, (less then 1 year), the contours are slanted (i.e., not
horizontal or vertical), so both the height and age are important for determining
the 5% and 95% centile values of head. However, for older boys, the contours are
closer to horizontal, indicating that mainly the height determines the centile values
of head.

4 Modelling a discrete count response variable within GAMLSS

4.1 Demand for medical care data
The data analysed in this section originates from the United States National Medical
Expenditure Survey (NMES) conducted in 1987 and 1988, and is available from the
AER package in R and is called NMES1988. [The data is cross-sectional, i.e., not
repeated measurements.]

The response variable is the visits (i.e., number of physician office visits). The
data frame NMES1988 has 4 406 observations on 19 variables, but we consider only
the following:

• visits: number of physician office visits,
• hospital: number of hospital stays,
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• health: health status—a factor indicating whether self-perceived health is poor,
average (reference category) or excellent,

• chronic: number of chronic conditions,
• gender: a factor indicating gender,
• school: number of years of education and
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Figure 5 Contour plots for the (a) 5% and (b) 95% centiles of head against height and age (for all ages)
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Figure 6 Contour plots for (a) 5% and (b) 95% centiles of head against height and age (for age from zero
to two)

Statistical Modelling 2018; 18(3–4): 1–26



14 Stasinopoulos et al.

• insurance: a factor indicating whether the individual is covered by private
insurance.

Figure 7 shows plots of the visits against each of the earlier explanatory
variables and shows the complexity of this data. The response variable visits
is a count type of variable with range 0, 1, 2, . . .. The plots of visits suggest
possible relationships between mean visits and each of hospital, chronic and
school. The remaining box and whisker plots display how the number of visits varies
according to the categorical explanatory factors. The median of the number of visits
(the horizontal bar in the middle of each box) decreases as the health status improves
from poor to average and then to excellent. The median of the number of visits is
similar for both male and female with a few higher values for male. The median of
the number of visits is slightly higher for a person covered by a private insurance than
for a person not covered. The variation (as measured by the interquartile range, the
vertical length of the box) varies with the health status. The problem of skewness is
prominent with longer upper than lower tails.

Any statistical model used for the analysis of the earlier data should be able to deal
with overdispersion, high positive skewness and also an excess of zeros. The mean of
the response variable visits depends on explanatory variables. Also the variance of
the response variable visits may depend on its mean and/or explanatory variables.
There is a clear indication of skewness in the distribution, which may also depend on
explanatory variables.

4.2 Fitting different discrete distributions
One approach to deal with the complexity in this data is to fit different distributions
and model each of the parameters of the distribution as linear or smooth functions
of the explanatory variables.

The first natural attempt do deal with overdispersion is to fit the negative
binomial distribution, NBI(!, "), modelling the mean parameter ! and the dispersion
parameter " with linear or smoothing terms in the explanatory variables. However,
since it is only a two parameter distribution, it cannot also model the skewness or
kurtosis in the response variable. A three– or four–parameter discrete distribution
is needed for that. The Sichel, SICHEL(!, ", #), and the beta negative binomial,
BNB(!, ", #), are three–parameter distributions, but did not provide good fits to the
response variable in our case. This could be due to the excess of zeros in the response
variable. A solution to the excess or deficiency of zero values in a specific discrete
distribution is provided by the zero–inflated (ZI) or the zero–altered versions of the
discrete distribution, respectively. In the analysis of this data, we have tried the zero
inflated, ZI, and zero adjusted, ZA, distribution for the negative binomial distribution
(ZINBI, ZANBI), the Sichel (ZISICHEL, ZASICHEL), the negative binomial
family (ZINBF, ZANBF) and the beta negative binomial (ZIBNB, ZABNB). See
Rigby et al. (2017) for the probability function and properties of each of
these distributions.
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Figure 7 Plot of the visits against explanatory variables hospital, health, chronic, gender, school
and insurance
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The selection of the appropriate distribution is done in two stages, the fitting
stage and the diagnostic stage. The fitting stage involves the comparison of different
fitted models using a generalized Akaike information criterion (GAIC). The diagnostic
stage involves the normalized randomized quantile residuals, or ‘z-scores’ (Dunn and
Smyth, 1996), which provide information about the adequacy of the model and
can be used with diagnostic plots such as worm plots, van Buuren and Fredriks
(2001), or other test statistics, for example, Z-statistcs and Q-statistcs, Royston and
Wright (2000). See also Stasinopoulos et al. (2017), Ch 12 for an explanation of these
diagnostics. The initial selection of the link function is usually determined by the range
of parameters, but can then be selected using the generalized Akaike information
criterion, GAIC.

For each distribution parameter of each of the distributions considered, a step-wise
selection of explanatory variable terms,

√
hospital, health,

√
chronic, gender, school

and insurance, was applied using GAIC(4) with penalty equal to 4 for each parameter,
[since most terms have a single parameter and a 5% significance level, generalized
likelihood ratio test for a single parameter being different from zero is based on
an (asymptotic) Chi-squared distribution with critical value &2

1,0.05 = 3.84 ≈ 4]. The
transformations

√
hospital and

√
chronic were used because they were found to

substantially improve the fit as judged by GAIC(4). For more details about model
selection, see Stasinopoulos et al. (2017), Ch 11.

First consider the negative binomial, NBI, distribution where the chosen fitted
model using step-wise selection is given by

Y ∼ NBI(!̂, "̂)

log(!̂) = 0.80655 + 0.35579
√

hospital + 0.37545
√

chronic
+ 0.02645school + 0.23068(if health = poor)
− 0.29802(if health = excellent) − 0.10838(if gender = male)
+ 0.19523(if insurance = yes)

log("̂) = 0.61390 − 0.45973
√

chronic + 0.26774(if health = poor)
− 0.08061(if health = excellent) + 0.20590(if gender = male)

− 0.16696
√

hospital − 0.49579(if insurance = yes).

(4.1)

The NBI(!, ") distribution for Y has mean ! and variance ! + "!2.
However, the final chosen distribution was the zero inflated beta negative binomial,

ZIBNB with chosen fitted model using step-wise selection, given by
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Y ∼ ZIBNB(!̂, "̂, #̂, $̂),

log(!̂) = 0.980 + 0.382
√

hospital + 0.332
√

chronic
+ 0.025school + 0.255(if health = poor)
− 0.313(if health = excellent) − 0.112(if gender = male)
+ 0.123(if insurance = yes)

log("̂) = − 1.7026 − 0.208
√

chronic + 0.394(if health = poor)
− 0.345(if health = excellent) + 0.197(if gender = male)

log(#̂) = − 2.679 + 0.966
√

hospital

log[$̂/(1 − $̂)] = − 1.077 − 0.744
√

chronic − 1.546(if insurance = yes),

(4.2)

where Y = visits. The ZIBNB model (4.2) has a GAIC(4) of 24 030.55 which was
clearly better than that of the NBI model (4.1) with GAIC(4) = 24 150.62.

The four-parameter zero inflated beta negative binomial distribution, denoted
Y ∼ ZIBNB(!, ", #, $), is a mixture of Y = 0 with probability $ and Y = Y1 with
probability (1 − $), where Y1 ∼ BNB(!, ", #), (Rigby et al., 2017). Hence, $ is the
probability of excess zeros.

The beta negative binomial, BNB(!, ", #) distribution is a reparameterization given
by Rigby et al. (2017) of the distribution given in Wimmer and Altmann (1999),
p.19. [However, the parameterization BNB(!, ", #) only includes distributions with a
finite mean !.] It is also called the beta Pascal distribution or the generalized Waring
distribution.

The BNB(!, ", #) distribution has mean ! and is an overdispersed negative
binomial distribution. The Waring, WARING(!, "), distribution (which is an
overdispersed geometric distribution) is a special case of BNB(!, ", #), where # = 1.
The negative binomial distribution is a limiting case of the beta negative binomial,
since BNB(!, ", #) → NBI(!, #) as " → 0 (for fixed ! and #). If Y ∼ BNB(!, ", #),
then for large y, P(Y = y) ∼ ay−("−1 + 2), where a does not depend on y. Hence,
the BNB(!, ", #) distribution has a heavy right tail, specially for large ". Clearly,
parameter " is a right-tail heaviness parameter.

In order to interpret the parameters of Y ∼ ZIBNB(!, ", #, $), ! is the mean of the
BNB(!, ", #) component, " is a right-tail heaviness parameter for the BNB(!, ", #)
component, # increases the variance (for #2 > "/! and " < 1, while the variance is
infinite for " ≥ 1), and $ is the probability of excess of zeros. The mean of Y is
E(Y) = (1 − $)!.

Figure 8 displays the fitted parametric terms in log(!̂) in the final chosen model
(4.2). Their effects are additive for log(!̂) and hence multiplicative for the fitted
mean visits (1 − $̂)!̂. Assuming all other explanatory variables are fixed, then, due to
!̂, the fitted mean visits increases with the number of hospital stays (hospital),
the number of chronic conditions (chronic) and the number of years schooling
(school). A poor self-perceived health status results in a 29% [calculated from the
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Figure 8 Term plots for ! for the fitted ZIBNB distribution

parameter estimate by (e0.255 − 1) × 100] ‘increase’ in fitted mean visits (relative to
an average health) and an excellent health results in a 26.8% ‘decrease’ in fitted
mean visits (relative to an average health). A male results in a 10.6% decrease in
fitted mean visits. Being covered by a private insurance increases the fitted mean
visits by 13.1%, due to !̂, but also results in an additional increase due to (1 − $̂).
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Figure 9 Term plots for " for the fitted ZIBNB distribution

Also increasing chronic results in an additional increase in the fitted mean visits
due to (1 − $̂).

Figure 9 displays the fitted parametric terms in log("̂) in (4.2). Since "̂ controls the
heaviness of the right tail of the distribution of visits, this heaviness increases with
gender male and with poor health (relative to average health), but decreases with
the number of chronic conditions and if the health is excellent (relative to average
health), assuming all other explanatory variables are fixed.

Figure 10 displays the fitted parametric terms in log(#̂) in (4.2), showing that #̂
increases with the number of hospital stays.

Figure 11 displays the fitted parametric terms in log[$̂/(1 − $̂)] in (4.2). Since $̂
is the fitted probability of excess zeros, this decreases with the number of chronic
conditions and if the person is covered by private insurance. Since E(Y) = (1 − $)!,
the fitted mean number of visits increases with the number of chronic conditions and
with private insurance due to (1 − $̂).

Figure 12 compares the worm plots of the NBI(!, ", #) and the ZIBNB(!, ", #, $)
models given in (4.1) and (4.2), respectively, each with their distribution parameter
terms chosen by a step-wise selection.

Statistical Modelling 2018; 18(3–4): 1–26



20 Stasinopoulos et al.

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

hospital

P
ar

tia
l f

or
 s

qr
t(

ho
sp

ita
l)

Figure 10 Term plot for # for the fitted ZIBNB distribution
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Figure 11 Term plots for $ for the fitted ZIBNB distribution

The worm plot in Figure 12(a) indicates that NBI does not provide a good fit to
the data since many points lie well outside the elliptical (dashed) 95% point-wise
interval bands, in the right tail. The worm plot in Figure 12(b) shows that ZIBNB
provides a reasonable fit to the data. Clearly, the ZIBNB model provides a better fit
as judged by the worm plot, but is still inadequate in the right tail.

There is an outlier not show in the right tail of Figure 12(a) because of its (vertical
axis) deviation values is greater than 2. The outlier observation is case 1 522 and
has visits = 65 and health = ‘excellent’. It can be seen in the top-right plot of
Figure 7, where it is very unusual. Omitting case 1 522 change the variable selected

Statistical Modelling 2018; 18(3–4): 1–26



GAMLSS: A distributional regression approach 21

−2 0 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Unit normal quantile

D
ev

ia
tio

n

−2 0 2

−1
.0

−0
.5

0.
0

0.
5

1.
0

Unit normal quantile

D
ev

ia
tio

n

Figure 12 Worm plot of the randomized quantile residuals (a) for the NBI and (b) for the ZIBNB models.
Grey points show 10 different realizations of the randomized quantile residuals, while black points show
their median

in the NBI and ZIBNB models, but makes a considerable difference to the fitted
parameter estimates for health =‘excellent’ in ! and " for both the NBI and ZIBNB
models, that is, (4.1), and (4.2) respectively. So maybe observation 1 522 should be
omitted.

The worm plot provides a good diagnostic check of the fit of the discrete (count)
distribution (especially of the right tail). An alternative diagnostic check (especially
of the fit of the left tail of the discrete distribution) is given by the hanging rootogram,
Kleiber and Zeileis (2016). This plot compares the (square root) observed (Ov) and
expected (Ev) frequencies for v = 0, 1, 2, . . . , V , where v is the number of physician

visits. Hence, Ov =
n∑

i = 1

I(yi = v) is the observed number of patients having v visits,

while Ev =
n∑

i = 1

P(Yi = v|!̂i, "̂i, #̂i, $̂i) is the expected number of patients having v visits

obtained from the fitted model. Note I(.) is an indicator variable.
Figures 13(a) and 13(b) show the hanging rootogram for the chosen NBI

and ZIBNB models, respectively. The curve shows the values of
√

Ev, while the
vertical-shaded bars are drawn from

√
Ev, down to

√
Ev −

√
Ov, and hence the heights

of the shaded bars are
√

Ov, for v = 0, 1, 2, . . . , 40. For a ‘perfect’ fitted model, the
bottom of the shaded bars would be aligned along the horizontal axis at 0. The plots
also show the ‘warning limits’ of (Tukey, 1972, p. 314), set at ± 1 [which are very
rough 95% limits using the very rough approximate normal distribution with mean
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Figure 13 Rootogram (a) for the chosen NBI model and (b) for the chosen ZIBNB model

√
Ev and standard deviation 1/2, NO(

√
Ev, 1/2), for

√
Ov]. He also suggests ‘control’

limits set at ± 1.5 [which are very rough 99.8% limits].
Figure 13(a) shows six violations of the warning limits, including a potentially

important one at visits = 1, suggesting that the NBI model may be inadequate. In
addition, there is an important violation of the control limits for visits > 40 in the
NBI model [where E>40 = 10.20 and O>40 = 25 and

√
E>40 −

√
O>40 = −1.81],

indicating that the right tail of the NBI model is inadequate. In contrast, Figure 13(b)
shows only two violations of the warning limits (which is to be expected for 41 values
of v), suggesting that the ZIBNB model, is an improved and potentially adequate
model according to this diagnostic. In the ZIBNB model, there is no violation of the
control or warning limits for visits > 40, [since E>40 = 17.88 and O>40 = 25 and√

E>40 −
√

O>40 = −0.77].
The adequacy of the fitted models can be further investigated by multiple worm

plots (i.e., for different ranges of an explanatory variable), see van Buuren and
Fredriks (2001) or Stasinopoulos et al. (2017), pp. 428–433 and analogously multiple
rootograms.

5 Conclusions

This article illustrates the GAMLSS model using two real data examples, one with
a continuous response and one with a discrete response variable. The examples
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show the flexibility of the GAMLSS model, in that different distributions can be
fitted to the response variable and all distribution parameters can be modelled using
linear functions or smooth non-parametric functions or surfaces of explanatory
variables. The first example also shows how to obtain centile estimation curves
of a continuous response variable using either one or two continuous explanatory
variables.

The GAMLSS model is especially useful for data where modelling a response
variable Y using the GLM or GAM is inadequate. In particular, GLM and GAM
assume an exponential family distribution for Y. The exponential family is quite
restrictive in the shape of the distribution. For example, it is unsuitable if a continuous
response variable is negatively skew, or platykurtic, or leptokurtic unless positively
skew. The GLM and GAM also model only the mean parameter using explanatory
variables, and assume that the dispersion parameter (if there is one) is constant.
Therefore, GLM and GAM cannot model the scale or shape of the distribution
independently of the mean. The GAMLSS model in principle allows any distribution
for the response variable. The current implementation in the gamlss package in
R allows the user to choose between around 100 distributions with up to four
parameters, allowing changes in location, scale and shape (e.g., skewness and
kurtosis) to be modelled. The GAMLSS model includes the GLM and GAM as
submodels so they can be fitted in the gamlss package, although an alternative R
package is mgcv (Wood, 2017).

In a regression situation for a continuous response variable, especially for quantile
(or centile) estimation, two alternative approaches to the GAMLSS model and
packages are quantile regression Koenker (2017a), [using the quantreg R package
Koenker (2017b)] and conditional transformation models (e.g., Hothorn (2018a))
[using the mlt R package Hothorn (2018b)]. An introduction to quantile regression
is given by Waldmann (2018).

An alternative approach to GAMLSS for mean (and variance) estimation is
generalized estimation equation (GEE) Hardin and Hilbe (2003).

For regression models for count data, an alternative to the gamlss packages is
the countreg package on R-Forge, which also includes hurdle and ZI models to
incorporate excess (or depleted) zeros, and functions for zero-truncated regression
and finite mixture models. A Bayesian version of GAMLSS has been developed called
BAMLSS and implemented in the bamlss R package.

The GAMLSS model and gamlss package have become standard for centile
estimation (in particular using the BCCGo, BCPEo and BCTo distributions
giving the LMS, LMSP and LMST methods of centile estimation, respectively; see,
e.g., WHO, 2006, 2007, 2009). The alternative quantile regression approach is
implemented in the quantreg (Koenker, 2017b) and COBS (Ng and Maechler, 2017)
R packages.

The GAMLSS models are implemented in several packages existing in CRAN.
The R code used in the two data analysis is available from www. gamlss.org. Further
information about GAMLSS and using the gamlss packages is given in Stasinopoulos
et al. (2017). Further information about the distributions used in the gamlss packages
and their properties is given in Rigby et al. (2017).
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