
1

Keystroke Dynamics using Auto Encoders
Yogesh Patel (yop0043@my.londonmet.ac.uk), Prof. Karim Ouazzane (k.ouazzane@londonmet.ac.uk),
Dr. Vassil T. Vassilev (v.vassilev@londonmet.ac.uk), Ibrahim Faruqi (ibrahim.faruqi@callsign.com),

and George L. Walker (george.walker@callsign.com)

Abstract—In the modern day and age, credential based au-
thentication systems no longer provide the level of security that
many organisations and their services require. The level of trust
in passwords has plummeted in recent years, with waves of cyber
attacks predicated on compromised and stolen credentials. This
method of authentication is also heavily reliant on the individual
user’s choice of password. There is the potential to build levels of
security on top of credential based authentication systems, using a
risk based approach, which preserves the seamless authentication
experience for the end user. One method of adding this security
to a risk based authentication framework, is keystroke dynamics.
Monitoring the behaviour of the users and how they type,
produces a type of digital signature which is unique to that
individual. Learning this behaviour allows dynamic flags to be
applied to anomalous typing patterns that are produced by
attackers using stolen credentials, as a potential risk of fraud.
Methods from statistics and machine learning have been explored
to try and implement such solutions. This paper will look at
an Autoencoder model for learning the keystroke dynamics of
specific users. The results from this paper show an improvement
over the traditional tried and tested statistical approaches with
an Equal Error Rate of 6.51%, with the additional benefits
of relatively low training times and less reliance on feature
engineering.

Index Terms—Keystrokes Dynamics, Keystroke Analysis, Au-
toencoders.

I. INTRODUCTION

THERE is a rise in the field of computer technology
that has brought a lot of insecurity, such as credential

based attacks. Today user ID and password are widely used
methods of authentication to verify user identity. The notion
of password dates back to early 1960s, when Massachusetts
Institute of Technology produced a system called Compatible
Time Sharing System (CTSS) [21]. Initial theory was that
passwords provide “something you know”, which is easy to
remember and harder to guess by adversaries. However, in
practice users will commonly share passwords, use the same
password across multiple sites or will pick weak credentials
that are easy to guess or reverse engineer. Exploitation of these
flaws has resulted in the proliferation of threat vectors such as
masquerading and identity theft attacks.

These attacks are highlighted in several major studies:

• According to the World Economic Forum [19], in 2017,
the cost of cybercrime to businesses was more then $500
billion where different business verticals ranging from
government to utility services and financial services were
attacked.

• A recent Verizon Data Breaches Report [7] states that the
majority of data breaches (2 out of 3) were a direct result
of compromised passwords.

• Earlier in 2016 [20], a survey by MasterCard suggested
that more then 50% of users forget passwords more than
once a week, resulting in high abandonment rates and
poor customer experience.

The above facts suggest that the traditional password based
authentication scheme is insecure, costly and inconvenient.
There is a need to provide an additional layer of security
control to discriminate between the genuine user and an
imposter, without impacting customer experience.

An increasingly popular method to achieve this is via the use
of behavioural biometrics. This is the process of measuring the
unique patterns of human activity to learn the typical behaviour
of a user so as to prevent adversarial attacks. This is performed
by converting gathered biometric data into a numeric value
and comparing this mathematically to a dataset of normal
behaviour for the user. Examples of behavioural biometrics
include speech, mouse, touch and signature verification capa-
bilities.

Keystroke dynamics is another behavioural biometrics capa-
bility that captures the typing rhythms of the genuine user and
rejects authentication attempts that deviate away from these.
This can further be used to determine the difference between a
human typing or scripted programs such as malware [1]. One
of the major benefits of keystroke dynamics is that it can be
deployed as a covert operation and does not require any special
hardware, this makes it an attractive technique for defending
the cyberspace [2]. Yu and Cho [22] note that keystroke
dynamics is a more effective solution when compared to use
of passwords alone, since they are easily compromised.

Keystroke dynamics is a well researched topic and several
algorithms have been proposed for detecting anomalous be-
haviour and/or imposters. The research by Jiaju H, et al. [9]
summarises the latest comparison of the algorithms used and
suggests further benchmarking is required due to the lack of
an unconstrained dataset.

Several existing algorithms make use of features such as
dwell time and flight time [10] to create a user template
that encodes an individual’s keystroke dynamics. However,
in the real world, noise introduced by modifier keys such
as deletions and substitutions of the keystroke events creates
inconsistencies in the template creation process. Thus, making
it harder for algorithms to discriminate between genuine and
imposter. In order to compensate for such discrepancies, a
robust algorithm is required that can maximise the amount
of data available for training and testing to achieve better
performance.

This paper proposes an Autoencoder as an anomaly detec-
tion technique that can be used to establish a semantic corre-
lation between the keystrokes template and an approximately

2

matching query. An Autoencoder reconstructs the inputs as
outputs by compressing the representation via an intermediate
layer. The hypothesis is that the learnt representations accu-
rately encode features for the legitimate user with minimal
reconstruction error, but are less efficient at encoding features
for imposter users, represented as high reconstruction error.
The rest of this paper is organised as follows: Section II
background and related work. Section III describes the model
architecture. Section IV describes the performance evaluation
and results. Section V provides conclusion and a discussion.

II. BACKGROUND AND RELATED WORK

A. Background

The first use of keystroke dynamics in information technol-
ogy (IT) appeared in Spillance, R.j. in 1975 and made use
of keystroke timings to identify an individual user [18]. As
discussed in the introduction, keystroke dynamics captures
the unique characteristics that exist in individual’s typing
behaviour. According to Spillance, a keystroke dynamics tem-
plate can be created by tracing the timings that are represented
as a series of digraphs. A digraph captures the timing for two
adjacent keystrokes and provides a set of features as described
below [21]:

• Dwell Time: Time spend on the actual key
• Flight Time: Time taken to move from one key to the

subsequent key.

These features can then be concatenated into a vector and
used as a sequence of keystroke timings, which encapsulates
the behaviour of the user typing their credentials. Other
potential keystroke features include keydown-keydown and
keyup-keyup times. Trigraphs are also studied in the literature,
which are the time latencies between every three consecutive
key down press and similarly, n-graphs [30]. Flight and dwell
times are highlighted in Figure 1:

Figure 1. Demonstration of Dwell Time and Flight Time

In the above Figure 1, Tn represents the time at which
an event took place, Kn is the key pressed at time Tn, DTn
is the dwell time for the key Kn and FTn is the flight time
between keys Kn and Kn+1. Each key press event can be
stored in a database as a set of the timing features based on
the keystroke press/release timestamps. There are no standard
based approaches to represent this data, but most research and
literature utilises these features.

Performance Stats

Authors FAR FRR

Legget & Williams (1980) [23] 0% 4%

Joyce & Gupta (1990) [24] 0.25% 16.74%

Bleha et al. (1990) [25] 2.8% 8.1%

Gunetti & Picardi (2005) [26] 0.5% 5.1%

Ahmed & Traore (2008) [27] 0.0152% 4.82%

Kang et al. (2007) [28] 3.8% 3.8%

Yu & Cho (2003) [22] 0.0% 15.78%

Araujo et al. (2004) [29] 1.89% 1.45%

Table I
INVESTIGATION OF DIFFERENT AUTHORS AND THE PERFORMANCE.

B. Related Work

Establishing identity using the keyboard characteristics was
proposed in the RAND report [6], funded by the National
Science Foundation. They used a digraph representation for the
keystrokes and conducted experiments on a small population
of users. Keystroke dynamics relies on recognition of patterns
in the user typing, as such, its success depends on correlation
based feature selection as suggested by Mark, et al. [14].

Several research papers [2], [9] attempt to create a bench-
mark and compare keystroke dynamics algorithms. Their re-
ports seem to suggest that distance based algorithms (utilising
metrics such as Manhattan and Euclidean) and Neural Net-
works achieve reasonable amount of success, but are prone
to noise and outliers in genuine attempts. One particular
study highlighted in [2] by Gunetti and Picardi uses n-graph
flight times and sum of degree of disorder, which seems to
achieve False Acceptance Rate (FAR) of 0.5% and False
Rejection Rate (FRR) of 5%. However, for this algorithm
to be effective, information on the actual values of the keys
pressed is required, this may cause data privacy and security
issues when applied to credentials. A summary of the existing
research and results are detailed in Table I, but the diversity
of the datasets and evaluation criteria makes the results hard
to interpret and benchmark.

Hosseinzadeh [8] suggested the creation of a keystroke
dormancy feature and related its performance with existing
features using a Gaussian Mixture Model (GMM) based veri-
fication system. The results proved that the Up-Up Keystroke
Latency (UUKL) feature significantly outperformed the com-
monly used key hold-down time and down-down keystroke
latency features. Nevertheless, as the length of the text in-
creases, the change in the discriminability between the assorted
and aggregate vectors tends to decrease. Kevin [11] merged
keystroke dwell time for user authentication built on the
keystroke dynamics of the password entry. Instead of using
the complete dataset for training, only the keystroke dynamics
of a small subset of users, referred to as representatives, was
used along with the password entry keystroke dynamics of
the examined user. By doing this, the risk of over fitting is
reduced, while allowing scalability to a high volume of users.

Pawel K, et al. [10] makes use of the Recurrent Neural

3

Network topology, Long Short Term Memory (LSTM), to treat
keystroke events as a sequence to create a robust predictor that
can deal with modifier keys. However, such topology requires
a large amount of data and a lengthy training period which
may be difficult to obtain for an individual user in practice.

Keystroke dynamics have also been applied to the automated
teller machines (ATMs) [15] where users have been asked
to enter a Personal Identification Number (PIN). However
studies suggest that numeric keypads differ significantly from
keyboards as the use of the keypads are based on a single
finger and hand which makes it harder to determine individ-
uals due to less neuromuscular entropy. Several algorithms,
such as Neural Networks and minimum distance based, were
applied by Ord, et al. [16] on a small dataset of 14 users
entering a common six-digit PIN and found Neural Networks
outperformed other algorithms but still had a FAR of 9.9%
and FRR of 30%.

III. MODEL ARCHITECTURE

The model proposed in this paper aims to verify users
based on their keystroke dynamics using features suggested
in Section II. Verification differs from identification in that
classification is binary, the aim is therefore to find whether
a user is who they claim to be rather than discover the
user’s identity from a population. To achieve this a keystroke
dynamics dataset is required which can be subset into im-
poster and genuine attempts. A statistical model must then be
implemented which can provide an authenticity score for each
attempt and have overall performance measured using Equal
Error Rate (EER).

The system is therefore broken into two major bodies of
work:
• Data Acquisition: Firstly, several publicly available

datasets were examined and the Carnegie Mellon Uni-
versity (CMU) dataset was chosen, as detailed in Figure
2. Keystroke timing data was extracted from the dataset
along with individual user ids.

• Model Processing: Responsible for extracting relevant
features, executing a model that will; a) create the
behaviour template during the training b) create the
matching query during testing and prediction The output
of a prediction will be a similarity score that will be
normalised. A threshold will be applied to distinguish
between genuine and imposter attempts.

Figure 2. Keystroke System Component Diagram

A. Data Acquisition

For the purpose of this paper the authors have used the
CMU’s benchmark keystroke dataset proposed by Kevin S.,
et al. [12]. This dataset makes the comparison easier for
benchmarking. For example, the paper by Kevin highlights
many anomaly detectors such as Manhattan and Mahalanobis
achieving reasonable accuracy with EER of 9.6% and 10.0%
respectively. The data consist of keystroke-timing information
from 51 users, each typing a password (.tie5Roanl) 400 times.
Since, all users type the same password, test and training
sets can be easily partitioned, where negative data/imposter
attempts can be sampled from the other users.

B. Model Processing

The primary goal for model processing is to create an en-
vironment where models such as Autoencoders and Gaussian
Mixture Models can be implemented for anomaly detection.
As shown in Figure 2, this involves feature extraction(where
necessary) and splitting of the data into training and testing
sets, for validation of the model performance.The hyper pa-
rameters for each of the models were selected by evaluating
their performance on a small development set.

1) Autoencoder: Autoencoders are widely used today. They
work by mapping the output to the input representations with
minimal amount of distortion. An architecture of the typical
Autoencoder is similar to the Multi Layer Perceptron (MLP)
i.e. an input layer, one or more hidden layer(s) and an output
layer. An output layer has the same number of neurons as the
input layer. The architecture of an Autoencoder consists of:
• an encoder layer that provides a deterministic function

to map the input vector x into a hidden representation
called z. The deterministic function is given by:

f(x) = s(Wx+ b) (1)

Where, W is the weight matrix, b is the bias vec-
tor, s is the non-linear activation function such as
tanh, sigmoid,ReLU .

• a decoder layer takes the hidden representation z and
outputs a reconstructed version of the input x. A typical
non-linear squashing function is given by:

g(z) = s(W ′z + b′) (2)

In general, the predicted output, will not be an exact
representation of input x but rather a probabilistic output, that
defines a distribution p(X|Y = y) and hence, able to define
our reconstruction error that needs to be optimized as:

L(X,Y) ∝ −logp(x|y) (3)

Assuming the keystroke input as a Gaussian representation,
we can apply an L2 norm to derive:

L(x, y) = L2(x, y) = ||x− y||22 (4)

An overall objective function is given by:

Qt(θ) =
∑
x∈D

L(x, g(f(x))) (5)

4

Where, D is the training samples. The weight matrix W
and the bias vector b are initialised from a random uniform
distribution such that the scale of the gradients in each layer
is roughly the same.

Figure 3 illustrates the layout of the Autoencoders used
in this work, which is encoding and decoding the keystroke
sequences (during the testing phases, several additional hidden
layers may be added in order to fine tune model performance).
The individual input consists of a single attempt and the
output is a reconstruction of the attempt. Training will be
performed in order to minimise the reconstruction errors by
maximising the lower bound on entropy between input X and
reconstructed output Y .

Figure 3. Autoencoder for keystroke sequence

The extracted features from the initial layer are the encoded
representation of the input, that the Autoencoder learns during
training. The encoded samples are used to train a classifier,
either using only the encoded representation or in combi-
nations with other features, such as dwell time, flight time
and digraph. Tests were performed using Autoencoders, with
several different configurations, with the goal of learning how
an Autoencoder can be built and how it performs. Different
optimizers were tested in order to find a suitable method for
training an Autoencoder: Adam, Stochastic Gradient Descent,
Adadelta and RMSprop. Initially ReLU was used as the
activation function for the hidden layers. Later a Sigmoid
was chosen for the encoding layer as it resulted in a slight
improvement of the reconstruction error. ReLU is used as the
activation function for the other hidden layers.

IV. EXPERIMENTS, RESULTS & DISCUSSION

The CMU Dataset1 contains 20400 records with 34
columns. It has 50 subjects and each subject has 400 password

1Keystroke Dynamics - Benchmark Data Set
(https://www.cs.cmu.edu/ keystroke/)

entries. The evaluation will be based on the method described
by Steven F [4] where 80% of data will be used for training
(320 entries per user) and 20% will be used for testing
(80 entries per user) and validation of model performance
against positive data. Since, all subjects entered the same text,
imposter attempts can be simulated by sending a random user’s
data to contrast the similarity score. To generate negative data,
for each subject, a random user will be selected from the
remaining population (20% of the selected user’s samples will
be used to represent imposter attempts). This data will be used
to test and validate the model’s performance against potential
fraud attacks utilising stolen credentials.

In order to baseline the dataset and to validate the output
for correctness, the Euclidean distance from the centroid of the
training data will be used. To quantify performance, EER is
calculated. The experiments were repeated several times and
the mean EER is calculated. The mean EER is given as 0.19
with a standard deviation of 0.09. As observed, the obtained
values closely matches the value reported by Kevin, et al. [11]
for the ’Euclidean’ method.

A. Exploratory analysis

In order to explore the marginal distribution of each variable
in the dataset, several random subjects’ data were taken and the
Kernel Density Estimation (KDE) [3] technique was applied.
Figure 4 provides an output of mean distribution of 5 different
subjects.

Figure 4. KDE of keystroke timing features for different users. DD refers
to the key down-down latency, H refers to the hold time (dwell time) of the
key and UD is the up-down latency (flight time). The additional information
details the key/key combination for which these timings were observed

According to Figure 4, the majority of the marginal dis-
tributions are asymetric and unimodal. Marginal distributions
such as ‘H.Return’, ‘H.Shift.r’ appear to be relatively skewed.

5

Feature Transformation Equal Error Rate (ERR)

PCA (ngaussians = 1,
ncomponents = 35) 0.1028

KPCA (ngaussians = 1,
ncomponents = 20) 0.093

Table II
GAUSSIAN MIXTURE MODEL WITH FEATURE TRANSFORMATION USING

PCA AND KPCA

Whereas outliers appear to be present in some distributions
(e.g. ‘H.t’, ‘DD.period.t’). Based on visual inspection they
appear to be within one order of magnitude relative to the
standard deviation, hence relatively small.

For a few users, the data was split into training and testing
sets (80:20 split). The training set was used to plot the KDE
of the genuine user, which was then overlaid with the KDE for
imposter data. This is shown in Figure 5, where a clear split
in the density between genuine and imposter user behavior is
observed.

Figure 5. Applying Density Estimation to genuine and imposter data

B. Gaussian Mixture Model

In order to compare the results from the Autoencoder, a
Gaussian Mixture Model is used to obtain an anomaly score
for a given subject using the estimated probability density
associated with the instance. As independent variables, the
number of Gaussians (ranging from 1 to 7), and the type
of covariance matrix estimated for each Gaussian (full or
diagonal) were considered. Since assuming diagonal covari-
ance for each Gaussian potentially discards information about
correlated features [17], a preprocessing step was investigated
to evaluate the effects of decorrelating variables. This was
done by applying Principal Component Analysis (PCA) and
Kernel Principal Component Analysis (KPCA).

Figures 6 and 7 highlight EER plots for each Gaussian
covariance type / feature transformer combination. For the
case where no feature transformations are applied, the mean
EER is plotted for each of the number of Gaussians that were
investigated. For the cases where PCA or KPCA is applied,
the mean EER is plotted against the number of components
that were used in the PCA/KPCA, for each of the number of
Gaussians that were investigated.

A summary of the EER results are described in Table II:

C. Autoencoder

The implementation of the Autoencoders consists of two
encoder layers and two decoder layers, training is performed
using the ADAM [13] optimiser and the loss is calculated by

Figure 6. Gaussian Mixture Model with Principle Component Analysis

Figure 7. Gaussian Mixture Model with Kernal Principle Component Analysis

6

Network Hyperparameter

Parameter Values

Activation Function ReLU

Dropouts for Encoding 20%, 10%, 5%

No. of Epochs 50

Learning Rate 0.0001

Weight Decay 0.001

Table III
FINAL NETWORK PARAMETERS FOR AUTOENCODER

optimising the mean squared error of the reconstructed input.
To aid convergence and to quantify the similarity of different
samples, data normalisation is applied to rescale each sample’s
features to have zero mean and unit variance. To help prevent
the Autoencoder from learning the identity function, a sparsity
penalty is applied on the hidden activations using different
dropouts for each layer. After several trial and error runs, the
final list of hyperparameters used are shown in Table III.

Several runs were performed using the hyperparameters
highlighted in Table III and mean values are calculated to
represent the final evaluation. Using the above parameters the
model is trained on the individual subject using the 80% of the
samples, 20% are held back and used for testing. The mean
training losses for different activation functions are presented
in Figure 8.

Figure 8. Training using Sigmoid, ReLU and Tanh Activation Function

The training highlights that the ReLU converges quicker
than other two activation functions. Once the model is trained
on individual users, the 20% of the testing data will be used to
evaluate the performance along with that imposter dataset. The
Mean Squared Error (MSE) across all users and the imposters
is shown in Figure 9.

From Figure 8, the performance of different activation
functions can be compared. Using tanh resulted in poor

Figure 9. Mean Square Errors between users and imposters

performance, with the model not converging. Once the model
performance begins to diverge it is unable to recover and
continues to produce poor results. The performance of tanh
could have been improved by tuning the hyperparameters such
as the learning rate and weight decay. We observe a noticeable
benefit of using ReLU over Sigmoid, as the model learns the
user’s behaviour much faster. The loss was significantly lower
when using ReLU, especially for a low number of Epochs
(less than 10). This is particularly useful in the instance where
regular retraining of models is required to adapt to changes and
quirks in user behaviour over time. However, it is observed that
both ReLU and Sigmoid eventually converge to have relatively
the same performance, as the number of epochs is increased.
The mean EER for each activation function is shown in Table
IV.

Figure 10. Mean Equal Error Rate

Figure 9 highlights the proof of the original hypothesis: that
Autoencoders can discriminate between genuine and imposter
users, through the reconstruction error. The figure shows a
clear divide in the MSE between genuine and imposter users,
with imposters having a noticeably higher MSE. This is further
highlighted in Figure 10, where the EER is plotted against the
loss values. The best threshold value for the loss (to distinguish

7

Activation Regularisation EER

ReLU None 9.23%

ReLU Dropout 6.51%

Sigmoid None 14.526%

Tanh None 23.742%

Table IV
EER VS ACTIVATION FUNCTIONS

between genuine and imposter) can be observed visually by
looking at the point of intersection between the genuine and
imposter graphs. The optimal threshold in this research, was
found at a value of 0.28.

This paper evaluates two anomaly detection approaches,
namely Gaussian Mixture Models and Autoencoders, against
the CMU keystroke dynamics dataset. Based on reported EERs
in Tables II and IV and the considered methodology, the
best-performing approach yields an EER of 6.51%, obtained
using an Autoencoder with no feature transformation applied
besides standardisation. For the Autoencoder, dropout was
used as a regularisation method to increase the discrimina-
tive performance and it was observed that EER was further
dropped by 2.72%. It was also noted that the multi-layered
Autoencoder performed roughly the same as the single-layered
Autoencoder, even though it has a greater representational
potential capacity since it has more nodes. This might be due
to the lack of variance in the data, as well as the limited size
of the CMU dataset, hence the absence of any performance
benefit from using additional layers. Using GMM with KPCA
in combination with KDE yields performance of 9% EER as
shown in Figure 7.

V. CONCLUSION

As this paper demonstrates it is possible to create a risk
based authentication system that can utilize behavioural bio-
metrics such as keystroke analysis. The results highlighted,
that by utilizing a state of the art algorithm such as an
Autoencoder, it is possible to sufficiently compete with the
baseline performance of traditional statistical and machine
learning methods. Furthermore, it is possible to further achieve
performance improvement by utilizing techniques such as
regularisation. The advantage of Autoencoders, in the minimal
feature engineering that needs to be performed, is also high-
lighted along with the relatively quick training times. Since
one of the benefits of keystroke dynamics as a risk based
authenticator, is to minimise the impact on the end user’s
experience, needing less feature engineering means less time
being spent on data processing. This in turn can reduce the
total time taken to assess the risk of the login based on the
keystroke behaviour.

Based on the EER values obtained in this study, it can be
said that keystroke behavioural biometrics has the potential to
play an important role in creating risk based authentication
systems, however they cannot be relied on in silo’ed. In order
to create a more robust system with lower error rates, it
needs to be augmented with other risk factors by ensembling

other biometric traits such as mouse movement. Moreover,
initial exploration suggests that there is a learning effect in
subjects’ data so there might be another possibility to boost
performance using a time varying sampling technique, e.g. by
filtering across time. In future work, hyperparameters can be
evaluated more closely and a more extensive grid search can
be performed for Autoencoders.

In general, as the users move more towards mobile and
mobile application based usage, there will be a limited amount
of keystroke data that will be available, which will make be-
haviour biometrics using keystrokes more difficult. Also, users
may utilise Password Managers or use other techniques such
as copy and paste, which may render keystroke biometrics as
a less effective indicator of risk.

In addition future work could apply Autoencoders to a
dataset which is more representative of a user’s behaviour,
when interacting with an application or service. The CMU
dataset was gathered in a controlled environment, with users
typing in credentials consecutively, which may produce more
consistent typing patterns than is normal for end users. Further
study could also be augmented by the addition of extra data,
in the form of mouse behaviour data and (where possible)
touchscreen events, where the relationship between these in-
teractions and keystrokes can be investigated.

REFERENCES

[1] Rafay Baloch. An introduction to keyloggers, rats and malware.
[2] S. P. Banerjee and D. Woodard. Biometric authentication and identifica-

tion using keystroke dynamics: A survey. Journal of Pattern Recognition
Research, 7(1), 2012.

[3] Yen-Chi Chen. A tutorial on kernel density estimation and recent
advances. Department of Statistics, University of Washington, 2017.

[4] S. Finlay. Predictive Analytics, Data Mining and Big Data: Myths, Mis-
conceptions and Methods (Business in the Digital Economy). Palgrave
Macmillan, 2014.

[5] Europen Committee for Electrotechnical Standardization. European
standard en 50133-1: Alarm systems. access control systems for use
in security application. CLC/TC79, 2002.

[6] R. Stockton Gaines, William Lisowski, S. James Press, and Norman
Shapiro. Authentication by keystroke timing - some preliminary results.
1980.

[7] Verizon Group. 2017 data breach investigation report.
[8] D. Hosseinzadeh and S. Krishnan. Gaussian mixture modeling of

keystroke patterns for biometric applications. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews),
36(6), 2008.

[9] Jiaju Huang, Daqing Hou, Stephanie Schuckers, Timothy Law, and
Adam Shrewin. Benchmarking keystroke authentication algorithms.
IEEE - Information Forensics and Security (WIFS), 2017.

[10] Pawel K. and Khalid S. Application of recurrent neural networks for
user verification based on keystroke dynamics. Journal of Telecommu-
nications and Information Technology, 2016.

[11] Kevin S. Killourhy. A Scientific Understanding of Keystroke Dynamics.
School of Computer Science, Carnegie Mellon University, 2012.

[12] Kevin S. Killourhy and Roy A. Maxion. Comparing anomaly detectors
for keystroke dynamics. IEEE - Annual International Conference on
Dependable Systems and Networks, 39, 2009.

[13] Diederik P. Kingma. Benchmarking keystroke authentication algorithms.
IEEE - Information Forensics and Security (WIFS), 2017.

[14] H Mark. Correlation-based feature selection for machine learning.
Department of Computer Science, 5(23), 2000.

[15] Akio Ogihar, Hiroyuki Matsumura, and Akira Shiozaki. Biometric
verification using keystroke motion and key press timing for atm user
authentication. Intelligent Signal Processing and Communications, 2006.

[16] T Ord and S.M. Furnell. User authentication for keyboard-based devices
using keystroke analysis. ISpinnaker International Ltd., Plymouth, UK,
1999.

8

[17] M. A. Osborne, S. J. Roberts, A. Rogers, S. D. Ramchurn, and N. R.
Jennings. Towards real-time information processing of sensor network
data using computationally efficient multi-output gaussian processes.
International Conference on Information Processing in Sensor Networks,
2008.

[18] Spillane R.J. Keyboard appratus for personal identification. IBM
Technical Disclosure Bulletin, 17(3346), 2012.

[19] Victoria Golshani Shirazi. Lessons from the latest wave of cyber-attacks.
[20] Jennifer Stalzer. Mastercard identity check to simplify and strengthen

online shopping.
[21] John D. Woodward, Nicholas M. Orlans, and Peter T. Higgins. Identity

Assurance int he Information Age - Biometrics. McGrawHill Osborne,
2003.

[22] E. Yu and S. Cho. Keystroke dynamics identity verification-its problems
and practical solutions. Computers & Security, 5(23), 2004.

[23] J. Leggett and G. Williams. Verifying identity via keystroke character-
istics. International Journal of Man-Machine Studies, 1988.

[24] , R. Joyce and G. Gupta. Identity authentication based on keystroke
latencies. Communication of the ACM, 1990.

[25] S. Bleha and C. Slivinsky and B. Hussien. Computer-access security
systems using keystroke dynamics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1990.

[26] C. Picardi and D. Gunetti. Keystroke analysis of free text. ACM
Transactions on Information and System Security, 2005.

[27] A. Ahmed and I. Traore and A. Almulhem. Digital Fingerprinting
Based on Keystroke Dynamics. Proceedings of the Second International
Symposium on Human Aspects of Information Security and Assurance,
2008.

[28] P. Kang and S. Hwang and S. Cho. Continual retraining of keystroke
dynamics based authenticator. In Proceedings of the 2nd International
Conference on Biometrics, 2007.

[29] L. Araujo and L. Sucupira and M. Lizarraga and L. Ling and J. Yabu-uti.
User authentication through typing biometrics features. In Proceedings
of the 1st International Conference on Biometric Authentication, 2004.

[30] Y. Zhong and Y. Deng. Keystroke Dynamics User Authentication
Using Advanced Machine Learning Methods. Recent Advances in User
Authentication Using Keystroke Dynamics Biometrics. Vol. 2, pp. 23-40,
2015.

