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Abstract
In this paper, we are mainly concerned with oscillatory behavior of solutions for a
class of higher odd order nonlinear neutral difference equations with continuous
variable. By converting the above difference equations to the corresponding
differential equations and inequalities, the oscillatory criteria are obtained. In addition,
examples are given to illustrate the obtained criteria, respectively.
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1 Introduction
Difference equations have attracted a great deal of attention of researchers in mathematics,
biology, physics, and economy. This is specially due to the applications in various problems
of biology, physics, economy. Among the topics studied for oscillation of the solutions has
been investigated intensively. Please see [–].

In this paper, we deal with the nonlinear neutral difference equation with continuous
variable of the form

�m
τ

(
x(t) – px(t – r)

)
+ f

(
t, x

(
g(t)

))
= , (.)

where m ≥ , p ≥ , τ and r are positive constants, �τ x(t) = x(t + τ ) – x(t),  < g(t) < t,
g ∈ C([t,∞), R+), g ′(t) > , and f ∈ C([t,∞) × R, R). Throughout this paper we assume
that

g(t + τ ) ≥ g(t) + τ for t ≥ t (.)

and

f (t, u)/u ≥ q(t) >  for u �=  and some q ∈ C(R, R+). (.)

Let t′
 = min{g(t), t – r} and I = [t′

, t]. A function x is called the solution of (.) with
x(t) = ϕ(t) for t ∈ I and ϕ ∈ C(I, R) if it satisfies (.) for t ≥ t.

A solution x is said to be oscillatory if it is neither eventually positive nor eventually
negative; it is called nonoscillatory if it is not oscillatory.
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The organization of this paper is as follows. We will give the main results in Section  and
leave the proofs to Section . Three demonstrated examples will be presented in Section .
In Section , some lemmas will be given to prove the main results.

2 Statement of the main results
For later convenience, let

q̄(t) = α min
t≤s≤t+mτ

{
q(s)

}(
min

g(t)≤s≤g(t)+mτ

{(
g–(s)

)′})m
, (.)

where  < α < . Throughout this paper, the function q̄ will play an important role in the
oscillatory criteria for (.). Let

β = inf
t≥T

{
(g–(t) – t)m–q̄(g–(t))

(m – )!τm

}
(.)

and

β = inf
t≥T

{
(g–(t) – t)m–q̄(t)

(m – )!τm

}
, (.)

where T ≥ t is sufficiently large.

Theorem . Assume that (.) with  < p <  satisfies

rβ

n∑

i=

ipi ≥  (.)

and

 ≤ lim inf
t→∞

∫ t

t–r

(
g–(s) – s

)m–q̄
(
g–(s)

)
ds ≤ (m – )!τm( – p)e–

p – pn+ (.)

for some integer n ≥ . Also assume that q̄(t) given by (.) is nonincreasing. Then, for every
bounded solution x(t) of (.), either x(t) is oscillatory or lim inft→∞(|x(t)| – p|x(t – r)|) < .

Corrollary . The conclusion of Theorem . still holds if (.) is replaced by

 ≤ lim inf
t→∞

∫ t

t–r

(
g–(s) – s

)m–q̄
(
g–(s)

)
ds ≤ (m – )!τm

ep
. (.)

Corrollary . Assume that (.) with  < p <  satisfies

rβ

n∑

i=

ipi ≥  (.)

and

 ≤ lim inf
t→∞

∫ t

t–r

(
g–(s) – s

)m–q̄(s) ds ≤ (m – )!τm( – p)e–

p – pn+ (.)
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for some integer n ≥ . Also assume that q̄(t) given by (.) is nondecreasing. Then the con-
clusion of Theorem . holds.

Corrollary . The conclusion of Corollary . still holds if (.) is replaced by

 ≤ lim inf
t→∞

∫ t

t–r

(
g–(s) – s

)m–q̄(s) ds ≤ (m – )!τm

ep
. (.)

Corrollary . Assume  < p <  and r = kτ . Under the assumptions of either Theorem .
or Corollary . or Corollary . or Corollary ., every bounded solution x(t) of (.) is
oscillatory.

The following results are for the bounded solutions of (.) with p > .

Theorem . Assume that p > , r = kτ , k ∈ N , r ≥ t + mτ – g(t), and

rβ

n∑

i=

(i – )
pi ≥  (.)

for some integer n ≥ . Also assume that q̄(t) given by (.) is nondecreasing. Then every
bounded solution x(t) of (.) is oscillatory.

Corrollary . Assume that p > , r = kτ , k ∈ N , r ≥ t + mτ – g(t), and

rβ

n∑

i=

(i – )
pi ≥  (.)

for some integer n ≥ . Also assume that q̄(t) given by (.) is nonincreasing. Then every
bounded solution x(t) of (.) is oscillatory.

3 Examples
Three examples will be given in this section to demonstrate the applications of the ob-
tained results. From (.) and (.) it is clear that both β and β are nondecreasing func-
tions of T . The following examples show that β and β may be independent of T or in-
creasing functions of T .

Example  Consider the difference equation

�m


(
x(t) –




x(t – )
)

+
(

(m – )! +

t

)
x(t – ) =  (.)

for t > , where m is an odd positive integer m ≥ . Viewing (.) as (.), we have τ = ,
 < p = / < , r = , q(t) = (m – )! + /t and g(t) = t – . Then, according to (.),

q̄(t) = α

(
(m – )! +


t + m

)
.

So

β = inf
t≥T

{ (t +  – t)m– · α((m – )! + 
t+m+ )

(m – )! · m

}
= α
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with T ≥ . Since

β

∑

i=

irpi = α ·
(




+  × 


+  × 


)
=

α


≥ 

holds for α ∈ [/, ) and

 ≤ lim inf
t→∞

∫ t

t–
(s +  – s)m– · α

(
(m – )! +


s + m + 

)
ds = α · (m – )! ≤  · (m – )!

e

holds for any α ∈ (, /e], (.) and (.) are satisfied for n =  and α ∈ [/, /e]. Since
r =  = τ , by Corollaries . and ., every bounded solution x(t) of (.) is oscillatory.

Example  Consider the difference equation

�m
π
m

(
x(t) – x(t – π )

)
+ x(t – π ) +

σ

 + t x(t – π ) = , (.)

for t > , where m is an odd positive integer with m ≥  and σ is a positive real number.
Regarding (.) as (.), we have τ = π/m, p = , r = π , g(t) = t – π and q(t) = . Then,
for some α ∈ (, ), q̄ = α by (.). Moreover, r ≥ t + mτ – g(t) and r = kτ are satisfied. In
addition,

β = inf
t≥T

{
α · (t + π – t)m–

(m – )!( π
m )m

}
=

mmα

π (m – )!
,

where T ≥ π . So (.) is satisfied since

β

∑

i=

π (i – )
pi =

mmα

π (m – )!
× π ×

(


 +



)
= α

mm

(m – )!
≥ 

holds for α ∈ [(m – )!/(mm), ). By Theorem ., every bounded solution x(t) of (.) is
oscillatory.

Example  Consider the difference equation

�m
π
m

(
x(t) – x(t – π )

)
+ e– σ

t x(t – π ) = , (.)

for t > , where m is an odd positive integer with m ≥  and σ is a positive constant.
Regarding (.) as (.), we have τ = π/m, p = , r = π , g(t) = t – π , and q(t) = e– σ

t . Then,
for some α ∈ (, ), q̄ = αe– σ

t by (.). Moreover, r ≥ t + mτ – g(t) and r = kτ are satisfied.
In addition,

β = inf
t≥T

{
αe– σ

t · (t + π – t)m–

(m – )!( π
m )m

}
=

mmα

eσ /Tπ (m – )!
→ mmα

π (m – )!
,

as T → ∞. So (.) is satisfied when T is large enough since

β

∑

i=

π (i – )
pi → αmm

π (m – )!
× π ×

(


 +



)
= α

mm

(m – )!
> 
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as T → ∞ for α ∈ ((m – )!/(mm), ). By Theorem ., every bounded solution x(t) of (.)
is oscillatory.

4 Related lemmas
To prove the main results, we need to prove the following lemmas first. The first lemma
is about a function x(t) satisfying the differential inequality

x′(t) + q(t)x
(
τ (t)

) ≤ , (.)

where q, τ ∈ C([t,∞), R+), τ (t) ≤ t, and limt→∞ τ (t) = ∞. Let

η = lim inf
t→∞

∫ t

τ (t)
q(s) ds.

Lemma . Assume that τ is nondecreasing,  ≤ η ≤ e–, and x(t) is an eventually positive
function satisfying (.). Set

r = lim inf
t→∞

x(t)
x(τ (t))

.

Then r satisfies

 – η –
√

 – η – η


≤ r ≤ .

The above lemma can be found in [], p..

Lemma . Let  ≤ p < . Assume that x(t) is a bounded and eventually positive (negative)
solution of (.) with z(t) = x(t) – px(t – r) and lim inft→∞ z(t) ≥  (lim supt→∞ z(t) ≤ ). Let

y(t) =
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

z(θ ) dθ .

Then y(t) >  (< ), (–)ky(k)(t) >  (< ) for  ≤ k ≤ m eventually. Moreover,

�m
τ y(t) + q̄(t)

n∑

i=

piy
(
g(t) – ir

)
<  (> ) (.)

holds for any fixed natural number n and for all large enough t.

Proof Suppose x(t) is a bounded and eventually positive solution. Notice that g(t) < t and
g ′(t) >  for all t ≥ t. So there exists a t > t such that x(g(t)) >  for all t ≥ t. From (.)
it follows that

�m
τ z(t) + f

(
t, x

(
g(t)

))
= .

By (.), we have f (t, x(g(t))) ≥ q(t)x(g(t)) >  for t ≥ t. Therefore,

y(m)(t) + q(t)x
(
g(t)

) ≤  (.)
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for t ≥ t. According to q(t)x(g(t)) > , y(m)(t) <  for all t ≥ t. Thus, y(m–)(t) is decreasing
so either y(m–)(t) >  for all t ≥ t or y(m–)(t) ≤ y(m–)(t) <  for some t > t and for all
t ≥ t. If the latter holds, then

y(m–k)(t) → –∞, k = , , . . . , m,

as t → ∞, a contradiction to the boundedness of x and z. Therefore we have y(m–)(t) > 
for all t ≥ t. Thus, y(m–)(t) is increasing so either y(m–)(t) <  for all t ≥ t or y(m–)(t) ≥
y(m–)(t) >  for some t ≥ t and all t ≥ t. If the latter holds, then

y(m–k)(t) → ∞, k = , , . . . , m,

as t → ∞, a contradiction again to the boundedness of x and z. Hence, we must have
y(m–)(t) <  for all t ≥ t. Repeating the above process, we obtain (–)ky(k)(t) >  for  ≤
k ≤ m and all t ≥ t. Therefore, y(t) is decreasing so either y(t) >  for all t ≥ t or there is
a t ≥ t such that y(t) ≤ y(t) <  for t ≥ t. Suppose the latter case holds. Then

∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

x(θ ) dθ

= y(t) + p
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

x(θ – r) dθ

≤ y(t) + p
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

x(θ – r) dθ

· · ·

≤ y(t)
s–∑

i=

pi + ps
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

x(θ – sr) dθ

≤ y(t)( – ps)
 – p

+ psMτm

for t ≥ t + sr, where M = supt≥t x(t) and s is any positive integer. Let s → ∞ so t → ∞ as
well, psMτm then is arbitrarily small due to  ≤ p < . Thus,

∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

x(θ ) dθ < ,

which contradicts the assumption that x(t) is eventually positive. Therefore, we must have
y(t) >  for all t ≥ t.

From (.) it follows that

�m
τ z(t) + q(t)z

(
g(t)

)
+ pq(t)x

(
g(t) – r

) ≤ .

According to the definition of z(t), the above inequality becomes

�m
τ z(t) + q(t)z

(
g(t)

)
+ pq(t)z

(
g(t) – r

)
+ pq(t)x

(
g(t) – r

) ≤ .
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Proceeding in the same way as the above, we have

�m
τ z(t) + q(t)

n∑

i=

piz
(
g(t) – ir

)
+ pn+q(t)x

(
g(t) – (n + )r

) ≤ .

Since q(t)pn+x(g(t) – (n + )r) >  when t is large enough, the above inequality implies that

�m
τ z(t) + q(t)

n∑

i=

piz
(
g(t) – ir

)
< .

In order to integrate the above inequality, we need to show that z(t) is positive. If p = ,
then z(t) = x(t) >  holds eventually. Now suppose  < p < . Since y(m)(t) = �m

τ z(t) <  for
t ≥ t,

�m–
τ z

(
t + (h + )τ

)
– �m–

τ z(t + hτ ) = �m
τ z(t + hτ ) < 

so �m–
τ z(t + hτ ) is decreasing as h increases. By the boundedness of x(t) we know that

limh→∞ �m–
τ z(t + hτ ) exists. If limh→∞ �m–

τ z(t + hτ ) = S(t) �= , then

�m–
τ z

(
t + (h + )τ

) → –∞ or ∞

as h → ∞, a contradiction to the boundedness of �m–
τ z(t). Thus, for each t ≥ t,

�m–
τ z(t + hτ ) is decreasing and tends to  as h → ∞. Repeating the same procedure,

we see that �τ z(t + hτ ) is increasing as h increases and �τ z(t + hτ ) →  as h → ∞;
z(t + hτ ) is decreasing as h increases so limh→∞ z(t + hτ ) exists for each t ≥ t. By as-
sumption, lim inft→∞ z(t) ≥ . Then z(t + hτ ) is decreasing and limh→∞ z(t + hτ ) ≥  so
z(t + hτ ) >  for all t ≥ t and h ≥ . Integrating q(t)z(g(t) – ir), by the assumptions on g
and q, we obtain

∫ t+τ

t
ds

∫ s+τ

s

ds · · ·
∫ sm–+τ

sm–

z
(
g(θ ) – ir

)
q(θ ) dθ

≥ min
t≤s≤t+mτ

{
q(s)

}∫ t+τ

t
ds

∫ s+τ

s

ds · · ·
∫ sm–+τ

sm–

z
(
g(θ ) – ir

)
dθ

≥ min
t≤s≤t+mτ

{
q(s)

}∫ g(t+τ )

g(t)

(
g–(s)

)′ ds

∫ g(g–(s)+τ )

s

(
g–(s)

)′ ds · · ·

×
∫ g(g–(sm–)+τ )

sm–

z(θ – ir)
(
g–(θ )

)′ dθ

≥ min
t≤s≤t+mτ

{
q(s)

}(
min

g(t)≤s≤g(t)+mτ

(
g–(s)

)′)m
∫ g(t)+τ

g(t)
ds

∫ s+τ

s

ds · · ·

×
∫ sm–+τ

sm–

z(θ – ir) dθ

≥ min
t≤s≤t+mτ

{
q(s)

}(
min

g(t)≤s≤g(t)+mτ

(
g–(s)

)′)m
y
(
g(t) – ir

)

≥ q̄(t)y
(
g(t) – ir

)
.



Wu et al. Advances in Difference Equations  (2015) 2015:166 Page 8 of 17

Therefore,

�m
τ y(t) + q̄(t)

n∑

i=

piy
(
g(t) – ir

)
< 

holds for any fixed natural number n and for all large enough t. If x(t) is a bounded and
eventually negative solution, then the above proof with obvious changes shows the con-
clusion within brackets. �

Lemma . Let  ≤ p <  and r = kτ . Assume that x(t) is a bounded and eventually positive
(negative) solution of (.). Let

z(t) = x(t) – px(t – r),

y(t) =
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

z(θ ) dθ .

Then the conclusion of Lemma . holds.

Proof The proof is the same as that of Lemma . until limh→∞ z(t + hτ ) exists for each
t ≥ t. Suppose there is a t′ > t such that limh→∞ z(t′ +hτ ) = δ < . Then z(t′ +hτ ) ≤ δ/ < 
for h ≥ h >  so z(t′ + hr + hτ ) = z(t′ + (kh + h)τ ) ≤ δ/ for h ≥ . Thus, for h > ,

x
(
t′ + hr + hτ

) ≤ δ/ + px
(
t′ + (h – )r + hτ

)

≤ δ
(
 + p + · · · + ph–)/ + phx

(
t′ + hτ

)
.

This implies x(t′ + k(h + h)τ ) <  for large h, a contradiction to the assumption that x is
eventually positive. Therefore limh→∞ z(t + hτ ) ≥  for t ≥ t. Since z(t + hτ ) is decreasing
as h increases, z(t) >  for all t ≥ t. The rest of the proof of Lemma . is still valid here.

�

Lemma . Under the assumptions of Lemma . or Lemma ., let

v(t) =
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(θ ) dθ .

Then v(t) >  (< ), (–)kv(k)(t) >  (< ) for  ≤ k ≤ m eventually. Moreover,

v(m)(t) +


τm q̄(t)
n∑

i=

piv
(
g(t) – ir

)
<  (> ) (.)

holds for any fixed natural number n and for all large enough t.

Proof By the definition of v(t), v(t) has the same sign as y(t) for all t ≥ t. Furthermore, we
have

v′(t) =
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y′(θ ) dθ .
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Then v′(t) has the same sign as y′(t). Similarly, v(j)(t) has the same sign as y(j)(t) for all
j = , , . . . , m. Notice also that v(m)(t) = �m

τ y(t). If y′(t) < , then

v
(
g(t) – ir

)
=

∫ g(t)+τ

g(t)
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(θ – ir) dθ

≤
∫ g(t)+τ

g(t)
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(tm– – ir) dθ

≤ τ

∫ g(t)+τ

g(t)
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(tm– – ir) dtm–

· · ·
≤ τm–

∫ g(t)+τ

g(t)
y(t – ir) dt

≤ τmy
(
g(t) – ir

)
.

Hence, from (.) it follows that

v(m)(t) +


τm q̄(t)
n∑

i=

piv
(
g(t) – ir

)
< 

holds for any fixed natural number n and for all large enough t. If y′(t) > , then v(g(t)–ir) ≥
τmy(g(t) – ir) so

v(m)(t) +


τm q̄(t)
n∑

i=

piv
(
g(t) – ir

)
> . �

Lemma . Under the assumptions of Lemma ., for each t ≥ t there is a θ ∈ (g(t), t)
such that

∣∣v′(g(t)
)∣∣ >

(t – g(t))m–

(m – )!
∣∣v(m)(θ )

∣∣. (.)

Proof Under the assumptions of Lemma ., we know that (–)jv(j)(t) for j = , , . . . , m
have the same sign. According to Taylor’s formula, we have

v′(g(t)
)

= v′(t) + v′′(t)
(
g(t) – t

)
+




v()(t)
(
g(t) – t

) + · · ·

+


(m – )!
v(m)(θ )

(
g(t) – t

)m–

for some θ ∈ (g(t), t) and (.) follows immediately. �

The next lemmas are for the bounded solutions of (.) with p > .

Lemma . Let p >  and r = kτ , k ∈ N . Assume that x(t) is a bounded and eventually
positive (negative) solution of (.). Let

z(t) = x(t) – px(t – r),

y(t) =
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

z(θ ) dθ .
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Then y(t) <  (> ), (–)ky(k)(t) >  (< ) for  ≤ k ≤ m eventually. Moreover,

�m
τ y(t) – q̄(t)

n∑

i=


pi y

(
g(t) + ir

)
<  (> ) (.)

holds for any fixed integer n ≥  and for all large enough t.

Proof Suppose x(t) is a bounded and eventually positive solution. Since g(t) < t and
g ′(t) > , from the assumptions, there exists a t > t such that x(g(t)) >  for all t ≥ t.
Notice also that

�m
τ z(t) + f

(
t, x

(
g(t)

))
= .

According to (.), we have f (t, x(g(t))) ≥ q(t)x(g(t)) >  for t ≥ t. Therefore

�m
τ z(t) + q(t)x

(
g(t)

) ≤  (.)

for t ≥ t. By the definition of y(t), y(m)(t) = �m
τ z(t). Thus, from (.) it follows that

y(m)(t) + q(t)x
(
g(t)

) ≤  (.)

for t ≥ t. Due to q(t)x(g(t)) > , y(m)(t) <  for all t ≥ t. From the proof of Lemma . we
know that (–)ky(k)(t) >  holds for  ≤ k ≤ m and all t ≥ t. Thus, y(t) is decreasing. We
now prove that y(t) <  for all t ≥ t. Since y(m)(t) = �m

τ z(t) for all t ≥ t, from the proof of
Lemma . we know that z(t + hτ ) is decreasing for each fixed t ≥ t as h increases. Next
we show that z(t) < , so that y(t) <  for some t ≥ t and all t ≥ t. Suppose there is a
t′ > t such that z(t′ + hτ ) >  for all h ≥ . Under r = kτ , we then have z(t′ + hr) >  for all
h ≥  so x(t′ + hr) > phx(t′) for all h ≥ . So x(t′ + hr) → ∞ as h → ∞, a contradiction to the
boundedness of x. Therefore, for each t ∈ [t, t + τ ], z(t + hτ ) is decreasing as h increases
and there is an integer H(t) >  such that z(t + hτ ) < z(t + H(t)τ ) <  for all h > H(t). Since
z(t) is continuous for each t′ ∈ [t, t + τ ], there is an open interval I(t′) such that z(t + hτ ) <
z(t + H(t′)τ ) <  hold for all t ∈ I(t′) and h > H(t′). Since [t, t + τ ] is compact and {I(t′) :
t′ ∈ [t, t + τ ]} is an open cover of [t, t + τ ], there is a finite subset of {I(t′) : t′ ∈ [t, t + τ ]}
covering [t, t + τ ]. Therefore, there is a K >  such that

z(t + hτ ) ≤ z(t + Kτ ) < 

for all t ∈ [t, t + τ ] and all h ≥ K . Hence, there is a t > t such that z(t) < , so that y(t) < 
for all t ≥ t.

From (.), we have

�m
τ z(t) –

q(t)
p

z
(
g(t) + r

)
+

q(t)
p

x
(
g(t) + r

) ≤ .

According to the definition of z(t), it follows from the above inequality that

�m
τ z(t) –

q(t)
p

z
(
g(t) + r

)
+

q(t)
p

(
–


p

z
(
g(t) + r

)
+


p

x
(
g(t) + r

)) ≤ .
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Repeating the above procedure, we obtain

�m
τ z(t) – q(t)

n∑

i=


pi z

(
g(t) + ir

)
+ q(t)


pn x

(
g(t) + nr

) ≤ .

Since q(t)x(g(t) + nr) >  for sufficiently large t, we have

�m
τ z(t) – q(t)

n∑

i=


pi z

(
g(t) + ir

)
< .

Integrating q(t)z(g(t) + ir), by the assumptions on p and g , we obtain
∫ t+τ

t
ds

∫ s+τ

s

ds · · ·
∫ sm–+τ

sm–

z
(
g(θ ) + ir

)
q(θ ) dθ

≤ min
t≤l≤t+mτ

{
q(l)

}∫ t+τ

t
ds

∫ s+τ

s

ds · · ·
∫ sm–+τ

sm–

z
(
g(θ ) + ir

)
dθ

≤ min
t≤l≤t+mτ

{
q(l)

}∫ g(t+τ )

g(t)

(
g–(s)

)′ ds

∫ g(g–(s)+τ )

s

(
g–(s)

)′ ds · · ·

×
∫ g(g–(sm–)+τ )

sm–

z(θ + ir)
(
g–(θ )

)′ dθ

≤ min
t≤l≤t+mτ

{
q(l)

}(
min

g(t)≤s≤g(t)+mτ

(
g–(s)

)′)m
∫ g(t)+τ

g(t)
ds

∫ s+τ

s

ds · · ·

×
∫ sm–+τ

sm–

z(θ + ir) dθ

≤ min
t≤l≤t+mτ

{
q(l)

}(
min

g(t)≤s≤g(t)+mτ

(
g–(s)

)′)m
y
(
g(t) + ir

)

≤ q̄(t)y
(
g(t) + ir

)
.

Therefore,

�m
τ y(t) – q̄(t)

n∑

i=


pi y

(
g(t) + ir

)
< 

holds for any fixed integer n ≥  and for all large enough t. If x(t) is a bounded and even-
tually negative solution, then the conclusion within brackets follows from the above proof
with minor modification. �

Lemma . Under the assumptions of Lemma ., let

v(t) =
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(θ ) dθ .

Then v(t) <  (> ), (–)kv(k)(t) >  (< ) for  ≤ k ≤ m eventually. Moreover,

v(m)(t) –


τm q̄(t)
n∑

i=


pi v

(
g(t) – mτ + ir

)
<  (> ) (.)

holds for any fixed integer n ≥  and for all large enough t.
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Proof By the definition of v(t), v(t) has the same sign as y(t). Further, we have

v′(t) =
∫ t+τ

t
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y′(θ ) dθ .

Then v′(t) has the same sign as y′(t). Similarly, (–)kv(k)(t) for  ≤ k ≤ m and (–)jy(j)(t) for
 ≤ j ≤ m all have the same sign. Note also that v(m)(t) = �m

τ y(t). If y′(t) < , then

v
(
g(t) + ir

)
=

∫ g(t)+τ

g(t)
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(θ + ir) dθ

≥
∫ g(t)+τ

g(t)
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(tm– + τ + ir) dθ

≥ τ

∫ g(t)+τ

g(t)
dt

∫ t+τ

t

dt · · ·
∫ tm–+τ

tm–

y(tm– + τ + ir) dtm–

· · ·
≥ τm–

∫ g(t)+τ

g(t)
y
(
t + (m – )τ + ir

)
dt

≥ τmy
(
g(t) + mτ + ir

)
.

Hence, from (.) we have

v(m)(t) –


τm q̄(t)
n∑

i=


pi v

(
g(t) – mτ + ir

)
< 

for any fixed integer n ≥  and for all large enough t. If y′(t) > , then  < v(g(t) + ir) ≤
τmy(g(t) + mτ + ir) so

v(m)(t) –


τm q̄(t)
n∑

i=


pi v

(
g(t) – mτ + ir

)
> . �

Lemma . Assume that x(t) is an eventually positive (negative) and bounded solution
of (.). Let z(t) and v(t) be defined as in Lemma . and Lemma .. Then, under the
assumptions of Lemma ., for any given t ≥ t, there is a θ ∈ (g(t), t) such that

∣∣v′(g(t)
)∣∣ >

(t – g(t))m–

(m – )!
∣∣v(m)(θ )

∣∣. (.)

Proof The proof of Lemma . is still valid for Lemma .. �

5 Proofs of the main results
Here, the proofs of the main results will be presented.

Proof of Theorem . Suppose the conclusion is not true. Let x(t) be an eventually positive
and bounded solution of (.) with lim inft→∞(x(t) – px(t – r)) ≥ . Let y(t) be defined as
in Lemma . and v(t) be defined as in Lemma .. By Lemma ., we know that v(t) > ,
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(–)kv(k)(t) >  for  ≤ k ≤ m and (.), i.e.,

v(m)(t) +


τm q̄(t)
n∑

i=

piv
(
g(t) – ir

)
< 

holds for any fixed natural number n and for all large enough t. By Lemma ., we know
that

v′(g(t)
) (m – )!

(t – g(t))m– < v(m)(θ )

for some θ ∈ (g(t), t). Since q̄(θ ) ≥ q̄(t) by assumption and

v
(
g(θ ) – ir

) ≥ v
(
g(t) – ir

)
,

from (.) with t replaced by θ , it follows that

v′(g(t)
) (m – )!

(t – g(t))m– +


τm q̄(t)
n∑

i=

piv
(
g(t) – ir

)
< 

i.e.,

v′(g(t)
)

+
(t – g(t))m–

(m – )!τm q̄(t)
n∑

i=

piv
(
g(t) – ir

)
< . (.)

With the replacement of t by g–(t), (.) yields

v′(t) +
(g–(t) – t)m–

(m – )!τm q̄
(
g–(t)

) n∑

i=

piv(t – ir) < . (.)

Assume that (–)kv(k)(t) >  and (.) hold for  ≤ k ≤ m and t ≥ t ≥ t. Without loss of
generality, we may assume T ≥ t + nr. Let

w(t) =
–v′(t)
v(t)

.

Note that w(t) >  and v(t) = v(T) exp
∫ t

T –w(θ ) dθ for all t ≥ T ≥ t + nr. From (.) it
follows that

w(t) >
(g–(t) – t)m–q̄(g–(t))

(m – )!τm

n∑

i=

pi exp
∫ t

t–ir
w(s) ds, (.)

i.e.,

w(t) >
Q(t)

(m – )!τm

n∑

i=

pi exp
∫ t

t–ir
w(s) ds (.)

for all t ≥ Tx, where Q(t) = (g–(t) – t)m–q̄x(g–(t)) > .
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Let w(t) ≡  for t ≥ Tx – nr and let

wk+(t) =
Q(t)

(m – )!τm

n∑

i=

pi exp
∫ t

t–ir
wk(s) ds

for each k ∈ N and t ≥ Tx + nkr. Let

αk = inf
t≥T+(k–)nr

{
wk(t)

}
, k ∈ N̄ .

Then

αk+ ≥ inf
t≥T

{
Q(t)

(m – )!τm

n∑

i=

pieirαk

}

= β

n∑

i=

pieirαk .

Now, (.), (.), and the definition of {αk} imply that {αk} is an increasing sequence.
Suppose

lim
k→∞

αk = ρ < ∞.

So ρ ≥ β
∑n

i= pieirρ . Let

F(x) = β

n∑

i=

pieirx – x.

Then F ′
(x) = β

∑n
i= irpieirx –  and F ′′

 (x) > , so F ′
(x) is increasing. Since F ′

() =
β

∑n
i= irpi –  ≥  by (.), then F ′

(x) >  for x > . Hence F(x) is increasing. Thus, from
F() = β

∑n
i= pi >  we have F(x) >  for all x ≥ . This shows that no positive number

ρ satisfies ρ ≥ β
∑n

i= pieirρ . Therefore, we must have αk → ∞ as k → ∞. Note that
w(t) ≥ wk+(t) ≥ αk+ for t ≥ T + nkr. Thus w(t) → ∞ as t → ∞. Notice also that

w(t) ≥ wk+(t) ≥ αk+ for t ≥ T + nkr.

Thus w(t) → ∞ as t → ∞, which implies

v(t)
v(t + r)

= exp
∫ t+r

t
w(s) ds → ∞ as t → ∞. (.)

On the other hand, since v′(t) <  and v(t) > , (.) yields (by dropping the i =  term)

v′(t) < –
(g–(t) – t)m–

(m – )!τm q̄
(
g–(t)

) n∑

i=

piv(t – ir)

< –
(g–(t) – t)m–

(m – )!τm · p – pn+

 – p
· q̄

(
g–(t)

)
v(t – r). (.)

By (.) and Lemma .,

lim inf
t→∞

v(t)
v(t – r)

∈ (, ].
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Thus v(t + r)/v(t) has a positive lower bound so v(t)/v(t + r) has a positive upper bound.
This contradicts (.). Assume that x(t) is an eventually negative and bounded solution of
(.) with lim supt→∞(x(t) – px(t – r)) ≤ . Then the above proof with a minor modification
also leads to a contradiction. Therefore, the conclusion of the theorem holds. �

Proof of Corollary . The proof is the same as that of Theorem . except (.). The
conclusion still holds if (.) is replaced by

v′(t) < –
(g–(t) – t)m–

τm(m – )!
q̄
(
g–(t)

)
pv(t – r). �

Proof of Corollary . The proof of Theorem . is still valid after the replacement of
q̄(θ ) ≥ q̄(t) by q̄(θ ) ≥ q̄(g(t)). �

The proof of Corollary . is similar to that of Corollary ..

Proof of Corollary . The proof of Theorem . is still valid after the replacement of
Lemma . by Lemma .. �

Proof of Corollary . Suppose the conclusion is not true. Without loss of generality, as-
sume that (.) has an eventually positive and bounded solution x(t). Let y(t) be defined as
in Lemma . and v(t) be defined as in Lemma .. By Lemma ., we know that v(t) < ,
(–)kv(k)(t) >  for  ≤ k ≤ m, and (.), i.e.,

v(m)(t) –


τm q̄(t)
n∑

i=


pi v

(
g(t) – mτ + ir

)
< 

holds for any fixed integer n ≥  and for all large enough t. By Lemma ., we know that

v′(g(t)
) (m – )!

(t – g(t))m– < v(m)(θ )

for some θ ∈ (g(t), t). Since q̄(θ ) ≥ q̄(g(t)) and v(g(θ ) – ir) ≤ v(g(g(t)) – ir), with the replace-
ment of t by θ , (.) yields

v′(g(t)
) (m – )!

(t – g(t))m– –


τm q̄
(
g(t)

) n∑

i=


pi v

(
g
(
g(t)

)
– mτ + ir

) ≤ 

i.e.,

v′(g(t)
)

–
(t – g(t))m–

(m – )!τm q̄
(
g(t)

) n∑

i=


pi v

(
g
(
g(t)

)
– mτ + ir

) ≤ . (.)

With the replacement of t by g–(t), (.) becomes

v′(t) –
(g–(t) – t)m–

(m – )!τm q̄(t)
n∑

i=


pi v

(
g(t) – mτ + ir

) ≤ . (.)
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Assume that v(t), (–)kv(k)(t) >  ( ≤ k ≤ m) and (.) hold for t ≥ t ≥ t and, without
loss of generality, that T ≥ t + nr. Let

w(t) =
v′(t)
v(t)

.

Note that w(t) >  and v(t) = v(t′) exp
∫ t

t′ w(θ ) dθ for all t, t′ ≥ T . From (.), we have

w(t) ≥ (g–(t) – t)m–q̄(t)
(m – )!τm

n∑

i=


pi exp

∫ g(t)–mτ+ir

t
w(s) ds, (.)

i.e.,

w(t) ≥ Qm(t)
(m – )!τm

n∑

i=


pi exp

∫ g(t)–mτ+ir

t
w(s) ds (.)

for all t ≥ T , where Q(t) = (g–(t) – t)m–q̄(t) > .
Let w(t) ≡  for t ≥ T . For each k ∈ N̄ and t ≥ T , let

wk+(t) =
Q(t)

(m – )!τm

n∑

i=


pi exp

∫ g(t)–mτ+ir

t
wk(s) ds

and

αk = inf
t≥T

{
wk(t)

}
, k ∈ N̄ .

So w(t) ≥ wk+(t) ≥ wk(t) ≥ αk for all k ∈ N and t ≥ T . By assumption, we therefore have

αk+ ≥ inf
t≥T

{

Q(t) · 
(m – )!τm

n∑

i=


pi e[g(t)–t–mτ+ir]αk

}

≥ β

n∑

i=


pi e(i–)rαk .

Note that {αk} is a bounded nondecreasing sequence and suppose that

lim
k→∞

αk = ρ < ∞. (.)

So ρ ≥ β
∑n

i=(e(i–)rρ /pi). Let

F(x) = β

n∑

i=

e(i–)rx

pi – x.

Then F ′
(x) = β

∑n
i=((i–)re(i–)rx/pi)– and F ′′

 (x) > , so F ′
(x) is increasing. Since F ′

() =
β

∑n
i=((i – )r/pi) –  ≥  by (.), F ′

(x) >  for x > . Hence F(x) is increasing. Thus,
from F() = β

∑n
i= /pi >  we have F(x) >  for all x ≥ . This shows that no positive

number ρ satisfies ρ ≥ β
∑n

i=(e(i–)rρ /pi). This contradiction shows that the conclusion
holds. �
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Proof of Corollary . The proof of Theorem . is still valid after the replacement of
q̄(θ ) ≥ q̄(g(t)) by q̄(θ ) ≥ q̄(t). �
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