

T

Multicore Processors and Graphics Processing Unit

Accelerators for Parallel Retrieval of Aerosol Optical

Depth From Satellite Data: Implementation,

Performance, and Energy Efficiency
Jia Liu, Dustin Feld, Yong Xue, Senior Member, IEEE, Jochen Garcke, and Thomas Soddemann

Abstract—Quantitative retrieval is a growing area in remote
sensing due to the rapid development of remote instruments
and retrieval algorithms. The aerosol optical depth (AOD) is a
significant optical property of aerosol which is involved in fur-
ther applications such as the atmospheric correction of remotely
sensed surface features, monitoring of volcanic eruptions or for-
est fires, air quality, and even climate changes from satellite data.
The AOD retrieval can be computationally expensive as a result
of huge amounts of remote sensing data and compute-intensive
algorithms. In this paper, we present two efficient implementa-
tions of an AOD retrieval algorithm from the moderate reso-
lution imaging spectroradiometer (MODIS) satellite data. Here,
we have employed two different high performance computing
architectures: multicore processors and a graphics processing
unit (GPU). The compute unified device architecture C (CUDA-

C) has been used for the GPU implementation for NVIDIA’s
graphic cards and open multiprocessing (OpenMP) for thread-
parallelism in the multicore implementation. We observe for the

Manuscript received September 02, 2014; revised April 08, 2015; accepted

May 25, 2015. Date of publication June 10, 2015; date of current version

July 20, 2015. This work was supported in part by the Ministry of

Science and Technology (MOST), China under Grant 2013AA122801, Grant

2010CB950802, and Grant 2013CB733403, in part by the National Natural

Science Foundation of China (NSFC) under Grant 41271371, in part by the

Institute of Remote Sensing and Digital Earth Institute, Chinese Academy

of Sciences (CAS-RADI) Innovation project under Grant Y3SG0300CX, in

part by the Joint Doctoral Promotion Program hosted by Fraunhofer Institute

and Chinese Academy of Sciences, and in part by the graduate foundation of

CAS-RADI under Grant Y4ZZ06101B. (Corresponding author: Yong Xue.)

J. Liu is with the Key Laboratory of Digital Earth Science, Institute of

Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing

100094, China, also with Fraunhofer Institute for Algorithms and Scientific

Computing (SCAI), 53754 Sankt Augustin, Germany, and also with the

University of Chinese Academy of Sciences, Beijing 100049, China (e-mail:

liujia01@radi.ac.cn).

D. Feld is with the Fraunhofer Institute for Algorithms and Scientific

Computing (SCAI), 53754 Sankt Augustin, Germany, and also with the

Department of Computer Science, University of Cologne, 50923 Cologne,

Germany.

Y. Xue is with the Key Laboratory of Digital Earth Science, Institute of

Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing

100094, China, and also with the Faculty of Life Sciences and Computing,

London Metropolitan University, London N7 8DB, U.K. (e-mail: xueyong@

radi.ac.cn).

J. Garcke is with Fraunhofer Institute for Algorithms and Scientific

Computing (SCAI), 53754 Sankt Augustin, Germany, and also with the

Institute for Numerical Simulation, University of Bonn, 53115 Bonn, Germany.

Soddemann is with the Fraunhofer Institute for Algorithms and Scientific

Computing (SCAI), 53754 Sankt Augustin, Germany.

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2015.2438893

GPU accelerator, a maximal overall speedup of 68.x for the studied
data, whereas the multicore processor achieves a reasonable 7.x
speedup. Additionally, for the largest benchmark input dataset,
the GPU implementation also shows a great advantage in terms of
energy efficiency with an overall consumption of 3.15 kJ compared
to 58.09 kJ on a CPU with 1 thread and 38.39 kJ with 16 threads.
Furthermore, the retrieval accuracy of all implementations has
been checked and analyzed. Altogether, using the GPU accelera-
tor shows great advantages for an application in AOD retrieval
in both performance and energy efficiency metrics. Nevertheless,
the multicore processor provides the easier programmability for
the majority of today’s programmers. Our work exploits the par-
allel implementations, the performance, and the energy efficiency
features of GPU accelerators and multicore processors. With this
paper, we attempt to give suggestions to geoscientists demanding
for efficient desktop solutions.

Index Terms—Aerosol optical depth (AOD), graphics process-
ing unit (GPU), High performance computing (HPC), OpenMP,
quantitative remote sensing retrieval.

I. INTRODUCTION

HE CONTINUOUS increase of spatial and spectral reso-

lution of satellite sensors over the last years has led to a

substantial increase in data volumes, and this trend is expected

to continue in the future [1]. For instance, the Moderate

Resolution Imaging Spectroradiometer (MODIS) instruments

with 36 spectral bands and 12-bit radiometric resolution on-

board the Earth Observing System (EOS) satellite TERRA

and AQUA have been widely used for over 10 years after

being successfully launched in December 1999 and May 2002,

respectively. Large numbers of multidisciplinary geophysical

parameters are produced by each observation, thus the MODIS

Adaptive Processing System (MODAPS) was developed. It pro-

duces nearly 2.5 TB of data from land, atmosphere and ocean

measurements [2]. To retrieve a 10-year aerosol optical depth

(AOD) dataset at 1-km spatial resolution using the synergetic

retrieval of aerosol properties model from the MODIS data

(SRAP-MODIS), the input MODIS data acquired is expected

to sum up to 29 TB [3]. As a result, efficient processing and

analysis of the time series data accumulated from the multi-

source satellite instruments is crucial. In addition, this data are

also required for real-time or near real-time response in several

other applications such as the monitoring of volcanic eruptions

or forest fires. With a growing amount of data and an increasing

complexity of its processing, as well as for solving models with

1939-1404 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution

requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://ieeexplore.ieee.org/
http://www.ieee.org/publications_standards/publications/rights/index.html

i,j i,j j i j

j j

it, the demand for computing power increases significantly in

this field.

There are research efforts toward the incorporation of high

performance computing (HPC) technologies and practices into

the remote sensing community to address the aforementioned

computing needs. Lee et al. reviewed the recent develop-

ments in HPC for remote sensing in 2011 and summarized

them into three categories: 1) specialized hardware architec-

tures including field programmable gate arrays (FPGAs) and

graphics processing units (GPUs); 2) cluster computing includ-

ing traditional Beowulf cluster and clusters based on hardware

accelerators; and 3) distributed computing infrastructures [4].

Generally, remote sensing applications map relatively nicely

to clusters and networks of computers; therefore, develop-

ment efforts have been made to accelerate remote sensing

applications by using cluster, grid, and cloud infrastructures

[5]–[7]. Unfortunately, these systems require major investments

in working time and finances for their maintenance and it is

difficult to adapt them to on-board satellite or aircraft pro-

cessing scenarios due to their large space occupation [8], [9].

Therefore, low-weight integrated components such as FPGAs

have come up as feasible alternatives. However, making use

of them requires significant efforts with regard to code-design

and programmability. The multicore processors and commod-

ity GPUs are promising options, especially for recent desktop

and server-based processing, in future even for on-board solu-

tions. They offer very substantial computational power at low

cost and therefore provide the chance to bridge the gap toward

fast or even real-time data processing and analysis for remote

sensing applications [9].

So far, great efforts have already been put into the accelera-

tion of hyperspectral remote sensing based on GPUs and multi-

core platforms. For instance, Torti et al. presented new parallel

implementations of the widely used hyperspectral subspace

identification employing minimum error algorithm on GPUs,

multicore processors, and digital signal processors (DSPs), and

obtained real-time performance with the GPU and multicore

implementations [10]. Molero et al. exploited the computa-

tional power of GPUs and multicore processors for anomaly

detection using hyperspectral data. They also measured the

average power intake of implementations and calculated the

energy consumptions [11]. Bernabe et al. developed efficient

implementations of a full hyperspectral unmixing chain on

GPUs and multicore processors and gave a detailed compari-

son in terms of performance, costs, and mission payload [9]. In

addition to research on the acceleration of hyperspectral remote

sensing algorithms, GPUs and multicore processors have also

been utilized for a few quantitative remote sensing applica-

tions. Efremenko et al. developed and compared multicore and

GPU implementations of a radiative transfer model based on

the discrete ordinate solution method [12]. Su et al. proposed

a GPU implementation for the Monte-Carlo-based electromag-

netic scattering of a double-layer vegetation model [13]. For

Infrared Atmospheric Sounding Interferometer (IASI) in opera-

tional numerical weather prediction systems, Mielikainen et al.

developed a GPU-based radiative transfer model [14]. There

using hyperspectral data employing GPU accelerators [11].

Nevertheless, a study of performance versus energy consump-

tion on both multicore and GPU platforms, in the field of remote

sensing quantitative retrieval has, to the best of our knowledge,

not yet been conducted.

In this paper, we focus on two different kinds of parallel

desktop architectures: multicore processors and GPU accel-

erators. We implemented the time-consuming SRAP-MODIS

algorithm for the retrieving of AOD. It not only employs a set of

nonlinear equations but also requires a large set of input images.

The GPU implementation was carried out based on compute

unified device architecture C (CUDA-C) for NVIDIA GPUs,

while the multicore implementation was realized using open

multiprocessing (OpenMP). Furthermore, we measured and

analyzed the obtained accuracy for both considered platforms.

Their parallel performance and energy consumption were com-

pared in the context of a quantitative remote sensing retrieval

application.

This paper is organized as follows. Section II explains the

SRAP-MODIS algorithm and the multicore as well as the GPU

accelerated implementations. Section III describes the satel-

lite remote sensing data and the benchmark environment for

our experiments and presents an experimental evaluation of the

proposed implementations in terms of the retrieval accuracy,

parallel performance, energy consumption, and coding consid-

erations. Finally, Section IV concludes with remarks and future

research perspectives.

II. METHODOLOGY

A. AOD Retrieval Algorithm From MODIS Satellite Data

AOD is defined as the integrated extinction coefficient over a

vertical column of unit cross section. The extinction coefficient

is the fractional depletion of radiance per unit path length. AOD

represents the degree to which aerosols prevent the transmis-

sion of light by absorption or scattering of light and therefore,

it is of interest to several applications such as the atmospheric

correction of remotely sensed surface features, the monitor-

ing of volcanic eruptions or forest fires, air quality, health and

environment, earth radiation budget, and climate change [16]–

[20]. Many approaches have been developed for the retrieval

of AOD, including the use of advanced very high resolution

radiometer (AVHRR), medium resolution imaging spectrom-

eter (MERIS), scanning imaging absorption spectrometer for

atmospheric chartography (SCIAMACHY), MODIS, multian-

gle imaging spectro radiometer (MISR), advanced along-track

scanning radiometer (AATSR), and others [21].

SRAP-MODIS is a simple but practical algorithm that was

introduced in the research of [22] on an operational bi-angle

approach model for retrieving AOD and the earth surface

reflectance [23]. The algorithm employs a set of nonlinear

equations which can be written as

Ai,j =

(aAj −b)+b(1−Aj)exp[ε(b−a)(0.0879λ−4.09+β λ−α)bj]

energy consumption for hyperspectral unmixing algorithms on

multicore platforms [15] as well as for the anomaly detection

(aAj
i,j−b)+a(1−Aj

i,j)exp[ε(b−a)(0.0879λ−4.09+βiλ−α)bj]

(1)

have also been endeavors to analyze the performance and

jA

j

where Ai,j observes the constraints (2)

A1,j

A2,j

Aj
1,λ=2.12 µm

=
2,λ=2.12 µ m

(2)

where i = 1, 2 represents the observations of satellite TERRA

MODIS and AQUA MODIS, respectively, j = 1, 2, 3 stands for

three visible spectral bands at central wavelengths of 470, 550,

and 660 nm. Hence, a set of nonlinear equations consisting of

three equations is formed. The unknowns to be solved are β1,

β2, and α, which are then used to calculate AOD according to

the Angstrom’s turbidity formula

τA = βiλ−α. (3)

The other variables in (1) can be derived from the satellite

image data after preprocessing. More details can be found in

[3]. The input image datasets required by the SRAP-MODIS

retrieval part include:

1) The top of atmosphere reflectance information which

is extracted and preprocessed through georeferencing,

water vapor and ozone absorption correction, and cloud

mask from the MOD/MYD021KM—Level 1B Calibrated

Radiances—1 km from both the TERRA and AQUA

MODIS.

2) The angles and geolocation information for georeference

from MOD/MYD03—Geolocation—1 km.

3) The MOD/MYD04_L2—Level 2 Aerosol Products.

4) The parameter text including the longitude and latitude

information of retrieval spatial coverage, the spatial reso-

lution and others.

The satellite data from the MODIS instrument can be

downloaded from the Level 1 and Atmosphere Archive and

Distribution System (LAADS Web) supported by the National

Aeronautics and Space Administration (NASA) Goddard Space

Flight Center [24].

B. Implementation for Multicore Processors

A multicore processor is a single computing component with

two or more independent processor-cores. For quite a while

now, one sees only modest increases in clock speed for com-

pute cores since physical limitations make it extremely difficult

to increase CPU performance on this end. Going multicore

and increasing the performance of the CPU’s internal func-

tional units, e.g., better vector units with longer vectors such

as advanced vector extensions (AVX), seems, at least for now,

to be the way to go. Hence, programs have to adhere to these

levels of parallelism introduced with the hardware to leverage

the performance gain of modern CPUs.

In our multicore implementation of the AOD retrieval, we

used OpenMP which has established itself as the standard

for shared-memory parallel programming [25]. OpenMP is an

application programming interface (API) based on compiler

directives available for C, C++, and FORTRAN to exploit

shared-memory parallelism. It is based on the fork-join model

and processes parallel regions where computational work is

shared and spread across multiple threads. The main part of the

Fig. 1. Pseudo-code for the multicore implementation.

multicore implementation is given in the pseudo-code in Fig. 1.

The main techniques used in our implementation of the AOD

retrieval are summarized and explained as follows.

1) In our SRAP-MODIS AOD retrieval procedure, there is a

set of equations to be solved to calculate the AOD from

the solution and input parameters for each pixel inside the

prospected images. The calculation of the AOD accord-

ing to (1)–(3) is for each pixel independent from all other

pixels. Note that we use Broyden’s method to solve the

nonlinear equations, more technical details are given in

Section III-C.

2) Each pixel is treated entirely by one thread within a par-

allel for loop to solve its equations and perform the AOD

calculations. Each thread executes the same instruction

stream with multiple data. There is implicit barrier syn-

chronization at the end of the parallel region, a block of

code executed by multiple threads, under the directive

parallel for before the resulting images are written.

3) To tune the performance of the multicore code, we care-

fully investigated the impact of the underlying OpenMP

scheduling strategy. Fig. 2 shows that the implementation

using OpenMP in the standard configuration with static

scheduling can lead to an extremely unbalanced work-

load among the cores. The energy profile brings to light

that over time more and more cores become idle as they

are statically served with a fixed amount of iterations. As

soon as a thread finishes all of its iterations, it is not served

with additional work and is therefore not utilized for the

rest of the execution. The unbalance among the threads is

based on the facts that a) the algorithm has a pixel-based

nature; b) cloudy pixels which follow a different control

flow than “normal” ones are usually located in continuous

parts within an image and therefore are often assigned

onto the same core within the parallel calculation; and

c) even certain cloud-free pixels’ iterations finish quicker

than others. Thus, the performance with a static schedul-

ing depends significantly on the pixels’ distribution to the

cores. To overcome this imbalance, a dynamic scheduling

strategy was used with OpenMP. Fig. 2 shows that this

leads to a uniform usage of all cores during the whole

execution of the program and, as a result, to shorter run-

times (see Fig. 3). We give more details on the runtime

Fig. 2. Energy comparison of the static scheduling and dynamic scheduling for

the multicore implementation.

Fig. 3. Performance comparison of the static scheduling and dynamic schedul-

ing for the multicore implementation.

and also the energy consumption behaviour of the codes

in Sections III-D and III-E.

4) The local and global variables corresponding to multiple

input parameters for solving the equation are kept in the

private and threadprivate lists.

C. Implementation for GPUs

GPUs have in recent years evolved into highly parallel,

multithreaded, many-core processors with tremendous compu-

tational speed and very high memory bandwidth [4]. Therefore,

they are well suited for massively data parallel processing

with high arithmetic floating point intensity. With the dramatic

increase of the processing power of GPUs, it is possible to

use GPUs for efficient general purpose processing nowadays

[26], namely in the field of general purpose GPU (GPGPU)

computing.

Fig. 4. CUDA hierarchy of threads, blocks, and grids, with correspond-

ing per-thread private, per-block shared, and per-application global memory

spaces [35].

CUDA and the open computing language (OpenCL) are the

two main basic approaches for allowing general purpose pro-

gramming of GPUs. Taking into account that the GPU device

we are using is Tesla K20 from NVIDIA, and since early com-

parisons of CUDA and OpenCL suggest CUDA is consistently

faster than OpenCL using complex, near-identical kernels [27]

and equivalent implementations on the same hardware [26], we

decided to use CUDA for our GPU implementation of the AOD

retrieval.

The CUDA architecture enables NVIDIA GPUs to exe-

cute parallel programs. A CUDA program executes kernels

in parallel across a set of parallel threads organized in thread

blocks and grids consisting of those thread blocks as shown in

Fig. 4. Correspondingly, Fig. 4 also presents different levels of

memory, i.e., registers and local memory for a thread, shared

memory for the block and global as well as constant memory

and texture memory for the grid on the GPU. The GPU instan-

tiates a kernel program on a grid of thread blocks, whereas each

thread within a thread block executes an instance of the kernel.

The flowchart of the AOD retrieval supported by CPU and

GPU collaboratively is shown in Fig. 5. The CUDA kernel

and the main part of the GPU implementation are given in

pseudo-code in Fig. 6. The main implementation techniques

and strategies are described as follows.

1) A CUDA kernel called “retrievalOfAOD” was designed

and implemented to solve (1)–(3) and calculate AOD as a

whole with 15 input image bands, 6 output image bands,

and several necessary parameters, e.g., the pictures’ width

and size.

2) Each thread corresponds to the computation of the AOD

calculation of one pixel using the CUDA kernel “retrieval-

OfAOD.”

×

×

×

× × × × ×

Fig. 5. Flowchart of the CUDA implementation.

Fig. 6. Pseudo-code for the GPU implementation including the CUDA kernel.

3) The image data is organized as a one-dimensional float

type array, and the pixels are mapped to threads inside the

CUDA kernel “retrievalOfAOD” as shown in Fig. 6.

Fig. 7. Image data split pattern for images that do not fit into the GPU’s mem-

ory at once. This is a sketch of how the splitting can be realized including

data-transfers, etc., when using a GPU. Calculation and data-transfer could

additionally be overlapped by a double-buffering with halved batchSize per

load running asynchronously on two CUDA streams.

4) The global memory is used to store the input and output

image data directly on the GPU. For the largest image in

our experiments, which contains 11 500 4500 pixels,

the 21 image bands demand slightly over 4 GB mem-

ory. For the Tesla K20 device with 5 GB memory, the

image can be copied between host and GPU memory back

and forth at once, while the image data would have to

be split from the spatial domain when the memory of the

GPU device is smaller than the image data size. Such an

approach can also be advantageous on CPUs to prevent

cache misses or even paging. The split pattern can be per-

formed as shown in Fig. 7. A few temporary variables in

the procedure of solving the nonlinear equations are kept

in registers for the threads for faster access.

5) To tune the performance of our GPU implementation, we

analyzed the impact of the thread-block configuration on

the runtime. The largest number of threads per block is

256 for our implementation on a Tesla K20 with compute

capability 3.5 when taking the compiler chosen number

of registers (114 registers per thread). We therefore mea-

sured the runtime for all input sizes on a two-dimensional

block of 1 1, 2 2, 4 4, 8 8, and 16 16 threads,

while the dimensions of the grid are set dynamically cor-

responding to the image size as shown in Fig. 6 inside the

main function using the dim3 block and the dim3 grid.

The best performance is achieved when executing with

8 8 threads per block (see Fig. 8). Fig. 9 shows that this

configuration results in a slightly higher power intake than

with the maximum of 16 16 threads, but in exchange to

a much shorter runtime and, thus, also to a significantly

less overall energy consumption.

×

×

×

×

×
×

× ×

×

×
× × × ×

×

Fig. 8. Impact of block sizes on the runtime for the GPU implementation.

Fig. 9. Energy comparison of the block size 8 8 and 16 16 for the GPU

implementation.

6) Fixing the optimal 8 8 thread-block size, we varied the

registers per thread by the nvcc option (maxrregcount

amount) from 50 to 255, the maximum for K20, the rel-

ative improvement is shown in Fig. 10. As compared

to the compiler’s internal decision (which uses regis-

ters/thread = 114), the experiments show that none of

those configurations lead to a significant improvement of

the runtime for all of the prospected codes with 8 8

threads. Decreasing the maximum number of registers per

thread however allows executing more parallel threads.

For example, restricting the compiler to use only half the

number of registers (57) allows using 32 32 threads.

Even though this increases the amount of parallelism, data

has to be served from slower memory than the register-

memory. Hence, we measured a performance slow-down

of 30%–40% for 32 32 threads with 57 registers per

thread compared to the 8 8 thread optimum. Therefore,

we do not set the maximum number of registers per

thread manually for our experiments but stick with the

Fig. 10. Impact of registers per thread for 8 8 thread-block configuration on

the runtime performance.

Fig. 11. Thread distribution among the data arrays with coalesced memory

accesses on the GPU. The green grids represent regions that are processed in

parallel on the GPU; the red dots show appropriate parallel processed pixels for

the CPU.

compiler’s internal decision and our optimal thread-block

configuration of 8 8 threads.

The created thread distribution among the data leads to hard-

ware adjusted and coalesced memory accesses. An overview of

the process’s input and output images as well as the parallel

processing on CPU and GPU is illustrated in Fig. 11.

III. EXPERIMENT AND DISCUSSION

A. Satellite Remote Sensing Data

A test dataset from February 1, 2012 covering 35◦E–150◦E,

15◦N–60◦N was prepared and extracted for six image sizes for

performance analysis and comparison, to be precise: 500

100, 500 500, 1000 1000, 5000 1000, 5750 4500,

and 11 500 4500 pixels. The largest image size corresponds

to the spatial coverage over a very large part of Asia. The spa-

tial resolution of each pixel is 1 km. The MODIS dataset was

downloaded from the NASA LAADS web and extracted for the

needed information presented in Section II-A and stored in the

“.img” format for retrieval.

TABLE I

AVERAGE RELATIVE DIFFERENCE FOR THE FINAL AOD RESULTS

WITH THE UNCERTAINTY

B. Benchmark Environment

The multicore implementation benchmarks were performed

on a dual-socket system running Scientific Linux 6.4 (Carbon).

The system includes two Intel Xeon E5-2660 server CPUs run-

ning at 2.2 GHz with 8 cores each, and is equipped with 32 GB

of memory. The simultaneous multithreading (SMT) was dis-

abled, and the theoretical peak performance is 140.8 GFLOPs

each in base mode and 192 GFLOPs in turbo mode for dou-

ble precision calculations [28]. For single precision float there

is no official number available. The GPU implementation has

been benchmarked on the NVIDIA Tesla K20, combining 2496

processor cores with a core clock of 706 MHz and a theoret-

ical single precision floating point peak performance of 3.52

TFLOPs (double precision: 1.17 TFLOPs), 5 GB of memory

and a memory bandwidth of 208 GB/s. We performed our GPU

benchmarks with CUDA 6.0 and compiled the code on compute

capability 3.5.

C. Retrieval Accuracy Analysis

The SRAP-MODIS was implemented in the C language for

the OpenMP implementation and compiled using gcc from the

GNU compiler collection on optimization level “-O2.” The “-

O3” did not result in significantly faster code and was there-

fore not applied. Note, that the implementation’s calculations

can be executed with single or double precision floating point

accuracy, albeit the presented benchmarks were performed in

single precision floating point accuracy. To solve the non-

linear equations, the Broyden function from the “Numerical

Recipes in C” [29] was chosen. The C code was translated

and slightly modified to fit the GPU’s behavior to CUDA-C

for the GPU version. The CUDA compiler was used without

the “–use_fast_math” option. Between the single-threaded and

the multithreaded CPU version, no differences in the accuracy

of the results arose. The retrieval accuracy results comparing

the single-threaded C and the CUDA-C versions are presented

in Table I. The table shows the relative difference for the

final AOD results along with the uncertainties, whereas the

uncertainties were calculated as the standard deviations of the

mean of the relative differences [30]. Considering the MODIS

AOD products uncertainties, for instance, the relative errors

against the ground-based aerosol robotic network (AERONET)

Fig. 12. Accuracy analysis tracking auxiliary variables of a typical pixel’s con-

vergence states along with the iterations in case of slightly different results on

CPU and GPU.

observations are about 10% and 15% over ocean and land for

the Collection 6 MODIS AOD products that NASA provides

[31], the numerical differences in this paper are in comparison

relatively small and acceptable. These uncertainties of AOD

products can arise from multiple reasons such as the algo-

rithm consumptions, cloud masking, pixel selection, instrument

calibration and precision, and computation [32].

For illustration purposes we picked out one pixel which

obtains significant differences between the two architectures

within the iteration process of one pixel. Fig. 12 presents the

progress of three auxiliary variables within the first few itera-

tions of the AOD calculation. These interim variables in Fig. 12

x[1], x[2], and x[3] were solved from the nonlinear equation (1)

to further calculate the final AOD as described in Section II-A.

The x[1], x[2], and x[3] correspond to the variables β1, β2,

and α, respectively, in (1) and (3). The x[1] and x[3] of the

C and CUDA-C implementations converged to different val-

ues as the iteration increases because of the divergence of

calculations caused by added up and escalated numerical dif-

ferences due to the different architectures for both single and

double precision calculations. It should be noted that higher

level and complicated algorithms will ultimately boil down to

basic arithmetic operations which could yield to acceptably dif-

ferent results when performed in different environments. The

different environments including the processors, compilers that

translate the computations to machine code, math libraries,

and round-off errors can contribute to such slightly different

results. Specifically for the application in this paper with differ-

ences accumulating in hundreds of iterations for most pixels,

the AOD values might be affected with acceptable differences

for multiple implementations.

Early work using GPU to accelerate geo-science applications

also indicated result differences among multiple implementa-

tions; for instance, a HPC implementation of surface energy

balance system (SEBS) shows a difference among MATLAB,

C and CUDA-C implementations [33]. Their differences are in

a similar range as the ones in our records.

×

×

×

TABLE II

OVERALL RUNTIME OF THE MULTICORE IMPLEMENTATION

D. Parallel Performance Analysis

For each experiment we performed ten runs per measured

value. The maximum and minimum values were removed and

the mean values of the remaining runs were reported. The run-

times of the repeated runs for all code versions and input images

are, with an average relative deviation smaller than 1%, very

stable. We used the optimal configurations from Sections II-B

and II-C for our experiments, namely a dynamic OpenMP

scheduling for the multicore implementation and blocks of

8 8 threads for the GPU implementation.

1) Multicore Performance: Table II summarizes the over-

all runtimes measured on the considered multicore platform

while varying the number of utilized threads. By increasing

the number of threads from 1 up to 16, the overall runtime

decreases significantly from 2063.01 to 289.10 s for the largest

image with a size of 11 500 4500 pixels. The data input

and output (I/O) procedures were implemented on the basis

of the Geospatial Data Abstraction Library (GDAL). These

functions were implemented without parallelism either in the

multicore version or in the GPU version, and therefore, the

runtime of the I/O procedures remain constant under varying

number of OpenMP threads. The data input takes 0.05–3.18 s

for the six images with different sizes while the data output lasts

between 0.09 and 2.52 s. The relative amounts of data I/O for

the whole process are presented in Fig. 13. The figure enforces

the observation that the relative amount of data I/O is, due to

the high complexity in the calculation kernel, larger for small

image sizes than for the bigger ones. With an increasing num-

ber of threads in the multicore parallel version, the serial I/O

parts become relatively bigger and limit the overall speedup

(Amdahl’s Law). The same holds true for the massively paral-

lel GPU implementation. The overall speedup considering the

data I/O of multicore acceleration is shown in Fig. 14, with the

highest speedup of 4.58–7.14 for the different image sizes with

up to 16 threads.

2) GPU Accelerator Performance: Table III summarizes

the runtime results of the serial CPU version and GPU accel-

erated version. It should be noted that the overall runtime of the

GPU acceleration is the sum of the runtime for the GPU driver

start, data input, data transfer from host to device, calculation

Fig. 13. Percentage of the data input and output of the overall runtime.

Fig. 14. Overall speedup of the OpenMP-based multicore versions.

on the GPU, data transfer from device back to host, and data

output to the disc. Hence, the GPU accelerated version for the

500 100 image size takes 1.51 s and therefore almost as long

as a serial CPU version with 1.74 s. Due to the nature of the

architecture, the CPU version only includes the data input, cal-

culation and data output procedures but no driver start and no

additional data transfers. Even though the actual calculation on

the GPU only takes about 0.03 s, the overall runtime including

the mentioned overhead is a relatively long runtime of 1.51 s.

With increasing the image size, the overhead becomes smaller

and less significant compared to the kernel runtimes, whereby

the GPU can play out its advantage in terms of highly parallel

performance. For the largest image size, the GPU accelerated

version takes 22.78 s to calculate the AOD on the GPU and

31.51 s in total while we measured 2063.01 s for the overall

serial CPU implementation.

For illustrative purposes, Fig. 15 shows the percentages of the

driver start, AOD calculation on the GPU, data transfer between

host and GPU device and data I/O for different image sizes. As

the data I/O, which takes 9.48%–18.08% of the overall runtime,

×

TABLE III

RUNTIME OF THE SERIAL VERSION AND GPU ACCELERATION

Fig. 15. Summary plot describing the distributions of the overall runtime spend

in the GPU device initialization, calculation in GPU, data transfer between host

and GPU, and data I/O for the six image sizes.

is the same for all implementations, its runtime can be ignored

when analyzing and comparing the parallel performance of the

different implementations. Another common concern is that the

data transfer time between the host and GPU device or its ratio

to the overall program execution time can affect the parallel

performance and might be one of the bottlenecks in GPGPU

computing [8], [13], [33]. However, the data movement opera-

tions depicted in Fig. 15 only take 0.32%–5.19% of the overall

runtime what corresponds to 5.91%–18.50% of the respective

kernel calculation time. This indicates that most of the GPU

processing time is spent in the most time-consuming comput-

ing operations and the data transfer to GPU memory is not the

bottleneck for the proposed GPU implementation.

3) A Performance Comparison of Both Parallel Approaches:

Comparing the parallel performances of both approaches,

Fig. 16 shows the overall runtime for the serial version, the

multicore implementation with up to 16 threads and the GPU

accelerated version. The corresponding speedups of multicore

and GPU versions are presented in Fig. 17. The best per-

formance on the CPU, with a speedup of 7.x, is reasonably

achieved when using as many threads as the physical cores

Fig. 16. Overall runtime comparison of the serial, the fastest multicore and the

GPU accelerated versions.

Fig. 17. Overall and calculation speedup comparison between the fastest

multicore and GPU accelerated version.

and it is relatively stable for different image sizes. The near

linear speedup growth of the multicore version with increas-

ing number of threads is depicted in Fig. 14, which indicates

further enhancements for the multicore implementation in this

paper for evolving multicore platforms with shared-memory

parallelism that will assuredly emerge in the future.

As already stated, the overall speedup of the GPU version

compared to the single core CPU one generally increases with

enlarging the image size and achieves an overall speedup of

65.x for the image with 11 500 4500 pixels, while the mul-

ticore version is seven times faster than the serial one. The

GPU therefore outperforms the fastest CPU version by a factor

of 9. The pure calculation speedup of the GPU implementa-

tion compared to a single CPU core of 61.x–100.x is explicitly

shown in Fig. 17. These measurements support the thesis that

even near real-time quantitative retrieval could be achieved for

smaller image sizes due to the massively parallel processing

power offered by GPUs.

×

∼

∼

Fig. 17 presents different calculation speedup trends along

with the six image sizes for the OpenMP multicore and GPU

implementations. While the speedups of both versions’ cal-

culation kernels are relatively stable for the larger images,

the GPU’s overall speedup increases among almost the whole

range of image sizes. This is based on the decreasing relevance

of other overheads such as the driver start and data transfer

between the host and GPU device. Consequently, the GPU’s

overall speedup is expected to remain relatively stable as soon

as those overheads become negligible compared to the pure cal-

culation time. As the multicore versions do not contain such

overheads, their total speedups also remain relatively stable

for the larger images. While the GPU can play out its paral-

lel potential especially for larger images, Fig. 16 also shows

that, for very small inputs, the overhead of using the GPU due

to data transfers and driver start can be large enough to make

the CPU performing better concerning the overall runtime even

though the GPU kernel is by far faster than the one running on

the CPU.

E. Energy Consumption and Code Migration Considerations

Given that the energy consumption is a great concern in mis-

sions, the power intakes of the different implementations for the

largest image (11 500 4500 pixels) were measured using the

power consumption meter Christ CLM1000 Professional (Plus)

tracking data once per second. As the overall power can be

divided into the dynamic power and static power [34], the dif-

ference P diff between the idle and load conditions is presented

in Fig. 18 to evaluate the power we measured for the multicore

and GPU accelerated implementations. For all measurements,

we excluded the CPU’s and the main system’s idle power in

the statistics, as it is present and identical for both the multicore

and GPU accelerated implementations. However, the GPUs idle

power intake is included in the GPU statistics as it is only pre-

sented in the GPU node. For the multicore implementation, the

maximum recorded powers for 1, 2, 4, 8, and 16 threads are

35.7, 54.8, 67.9, 93.5, and 138.7 W, respectively, however, with

significantly decreasing runtime when more threads are served.

The average power intake of the GPU is 80 W and therefore

in a range comparable to the eight threads version on the CPU,

respectively, one CPU socket working with full capacity. It is

important to note that the GPU, due to the algorithmic proper-

ties and our implementation, is by far not consuming its peak

power intake (220 W).

The overall energy consumptions are calculated as the sum

of all power intake values per second, what is a reasonably

good approximation of the actual energy expended. The results

are presented in Fig. 19. The derived overall energy consump-

tions of the CPU version running on 1, 2, 4, 8, and 16 threads

are 58.09, 57.84, 41.98, 36.74, and 38.39 kJ, while the GPU

implementation consumes only 3.15 kJ. The multicore imple-

mentation has a principally decreasing consumption trend with

the processors increasing. The GPU implementation consumes

only 8.57% of the one serving eight threads, which is the most

energy efficient multicore implementation. When increasing

the number of threads from 8 to 16 for the multicore imple-

mentation, the results show that even though the runtime of

Fig. 18. Power intake curves of the multicore and GPU implementations.

Fig. 19. Overall energy consumption comparison of the multicore and GPU

implementations.

the method decreases significantly, the actual intake of power

increases significantly because configuring the OpenMP envi-

ronment to 16 instead of 8 threads enables the utilization of both

available sockets instead of only one. The overall consumed

energy for 16 threads is slightly higher than that for 8 threads

while the runtime is by far smaller with 16 threads, as the usage

of a second CPU adds a further notably energy overhead. This

also shows that in case of considering purely the energy effi-

ciency, not the fastest performing 16 threads version but the

8 threads version would be the implementation of choice.

Considering the application and available environments in

this paper, the GPU accelerator has demonstrated advantages

in both parallel performance and energy efficiency. This result

is of course specifically related to the fact that the investigated

application fits well to a GPUs parallel architecture’s proper-

ties. GPUs are generally considered to be extremely high energy

consuming and thus not suitable for on-board processing mis-

sions. Multicore architectures on the other hand are evolving

very quickly and, therefore, are expected to offer alternatives

with more tolerable radiation and energy consumption require-

ments [9], [15]. These results show that at least concerning the

energy consumption and performance, using GPUs would be

the best choice for this application.

Easy programmability is also an important evaluation cri-

terion in making use of HPC architectures in remote sensing

applications and it is undoubtedly easier and more conve-

nient for geoscientists to migrate algorithms and codes toward

a multicore implementation using OpenMP rather than GPU

CUDA-C codes.

IV. CONCLUSION AND FUTURE RESEARCH PERSPECTIVES

In this work, two implementations of an AOD quantita-

tive retrieval algorithm SRAP-MODIS from MODIS satellite

data have been developed on multicore processors and a GPU

platform. The multicore implementation provides a nearly 7.x

overall speedup for image analysis scenarios, which is consid-

ered reasonable. The GPU implementation offers a maximum

100.x calculation speedup and 68.x overall speedup including

the procedures data I/O and data transfer for the prepared six

image datasets. For smaller image size scenarios, near real-time

retrieval based on the GPU implementation could be achieved.

The experimental results in this paper indicate that further

applications which call for fast response of AOD retrieval

such as the monitoring of volcanic eruptions or forest fires,

air quality, and fast atmospheric correction could benefit from

the development of efficient parallel implementations of AOD

retrieval. Our work also provides implementation pattern sug-

gestions for similar quantitative remote sensing retrieval appli-

cations performing calculations with a pixel-based nature. The

comparison from the perspectives of the parallel performance,

energy efficiency and code migration considerations in this

work is intended to give actual suggestions for geoscientists

with different computational requirements.

Despite the promising results reported in this paper, bet-

ter understandings of the overall quantitative remote sensing

chain which also includes the time-consuming preprocessing

geometric correction and other procedures such as the image

cut, image resize, and cloud mask are needed. There are also

non pixel-based operations like the spatial neighborhood-based

operations and spectral domain operations which need compre-

hensive parallel pattern designs and implementations for both

multicore and GPU computing platforms to achieve the best

performance. Considering the speedups observed in this paper

gained from the multicore and GPU implementations, we will

accomplish a heterogeneous solution for the parallel retrieval

using the two platforms cooperatively.

ACKNOWLEDGMENT

The authors would like to thank Fraunhofer Institute for

Algorithms and Scientific Computing SCAI for the multicore

and GPU platform used in this paper. They would also like to

thank the anonymous reviewers for their constructive comments

and suggestions on this paper. MODIS data were available

through NASA MODIS LAADS.

REFERENCES

[1] A. Plaza, Q. Du, Y.-L. Chang, and R. L. King, “High performance com-
puting for hyperspectral remote sensing,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 4, no. 3, pp. 528–544, Sep. 2011.

[2] E. Masuoka, C. Tilmes, N. Devine, G. Ye, and M. Tilmes, “Evolution of
the MODIS science data processing system,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2001, pp. 1454–1457.

[3] Y. Xue, X. He, H. Xu, J. Guang, J. Guo, and L. Mei, “China Collection
2.0: The aerosol optical depth dataset from the synergetic retrieval
of aerosol properties algorithm,” Atmos. Environ., vol. 95, pp. 45–58,
2014.

[4] C. A. Lee, S. D. Gasster, A. Plaza, C.-I. Chang, and B. Huang, “Recent
developments in high performance computing for remote sensing: A
review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 3, pp. 508–527, Sep. 2011.

[5] Y. Xue et al., “A high throughput geocomputing system for remote sens-
ing quantitative retrieval and a case study,” Int. J. Appl. Earth Observ.
Geoinf., vol. 13, pp. 902–911, 2011.

[6] Y. Xue et al., “Grid-enabled high-performance quantitative aerosol
retrieval from remotely sensed data,” Comput. Geosci., vol. 37, pp. 202–
206, 2011.

[7] W. Guo, J. Gong, W. Jiang, Y. Liu, and B. She, “OpenRS-Cloud: A
remote sensing image processing platform based on cloud computing
environment,” Sci. China Technol. Sci., vol. 53, pp. 221–230, 2010.

[8] C. Gonzalez, S. Sánchez, A. Paz, J. Resano, D. Mozos, and A. Plaza, “Use
of FPGA or GPU-based architectures for remotely sensed hyperspectral
image processing,” Integr. VLSI J., vol. 46, pp. 89–103, 2013.

[9] S. Bernabe, S. Sanchez, A. Plaza, S. López, J. A. Benediktsson, and
R. Sarmiento, “Hyperspectral unmixing on GPUs and multi-core proces-
sors: A comparison,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 6, no. 3, pp. 1386–1398, Jun. 2013.

[10] E. Torti, M. Acquistapace, G. Danese, F. Leporati, and A. Plaza, “Real-
time identification of hyperspectral subspaces,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2680–2687, Jun. 2014.

[11] J. M. Molero, E. M. Garzón, I. Garcıa, E. S. Quintana-Ortı, and A. Plaza,
“Efficient implementation of hyperspectral anomaly detection techniques
on GPUs and multicore processors,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2256–2266, Jun. 2014.

[12] D. S. Efremenko, D. G. Loyola, A. Doicu, and R. J. Spurr, “Multi-core-
CPU and GPU-accelerated radiative transfer models based on the discrete
ordinate method,” Comput. Phys. Commun., vol. 185, pp. 3079–3089,
2014.

[13] X. Su, J. Wu, B. Huang, and Z. Wu, “GPU-accelerated computation for
electromagnetic scattering of a double-layer vegetation model,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 4, pp. 1799–
1806, Aug. 2013.

[14] J. Mielikainen, B. Huang, and H. Huang, “GPU-accelerated multi-profile
radiative transfer model for the infrared atmospheric sounding interfer-
ometer,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 3, pp. 691–700, Sep. 2011.

[15] A. Remón, S. Sánchez, S. Bernabé, E. S. Quintana-Ortí, and A. Plaza,
“Performance versus energy consumption of hyperspectral unmixing
algorithms on multi-core platforms,” EURASIP J. Adv. Signal Process.,
vol. 2013, pp. 1–15, 2013.

[16] Y. J. Kaufman and D. Tanré, “Strategy for direct and indirect methods for
correcting the aerosol effect on remote sensing: From AVHRR to EOS-
MODIS,” Remote Sens. Environ., vol. 55, pp. 65–79, 1996.

[17] L. Mei et al., “Integration of remote sensing data and surface obser-
vations to estimate the impact of the Russian wildfires over Europe
and Asia during August 2010,” Biogeosciences, vol. 8, pp. 3771–3791,
2011.

[18] M. Lin et al., “Regression analyses between recent air quality and visi-
bility changes in megacities at four haze regions in China,” Aerosol Air
Qual. Res., vol. 12, pp. 1049–1061, 2012.

[19] A. T. Evan, J. P. Kossin, and V. Ramanathan, “Arabian Sea tropical
cyclones intensified by emissions of black carbon and other aerosols,”
Nature, vol. 479, pp. 94–97, 2011.

[20] T. Stocker et al., IPCC, 2013: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge,
U.K.: Cambridge Univ. Press, 2013.

[21] L. Mei et al., “Validation and analysis of aerosol optical thickness
retrieval over land,” Int. J. Remote Sens., vol. 33, pp. 781–803, 2012.

[22] Y. Xue and A. Cracknell, “Operational bi-angle approach to retrieve
the Earth surface albedo from AVHRR data in the visible band,” Int. J.
Remote Sens., vol. 16, pp. 417–429, 1995.

[23] J. Tang, Y. Xue, T. Yu, and Y. Guan, “Aerosol optical thickness determi-
nation by exploiting the synergy of TERRA and AQUA MODIS,” Remote
Sens. Environ., vol. 94, pp. 327–334, 2005.

[24] NASA Goddard Space Flight Center, Level 1 and Atmosphere Archive
and Distribution System [Online]. Available: http://ladsweb.nascom.nasa.
gov/data/search.html, accessed on 2013.

[25] E. Ayguadé et al., “The design of OpenMP tasks,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 3, pp. 404–418, Mar. 2009.

[26] E. Christophe, J. Michel, and J. Inglada, “Remote sensing processing:
From multicore to GPU,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 4, no. 3, pp. 643–652, Sep. 2011.

[27] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison of
CUDA and OpenCL,” arXiv: 1005.2581, 2010.

[28] INTEL. (2012). Intel ® Xeon ® Processor E5-2600 Series [Online].

Available: http://download.intel.com/support/processors/xeon/sb/xeon_
E5-2600.pdf, accessed on 2014.

[29] B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. Vetterling,
Numerical Recipes in C. Cambridge, U.K.: Univ. Cambridge, 1992.

[30] S. Bell, A Beginner’s Guide to Uncertainty of Measurement. Middlesex,
U.K.: National Physical Lab., 2001.

[31] R. Levy et al., “The Collection 6 MODIS aerosol products over land and
ocean,” Atmos. Meas. Techn., vol. 6, pp. 2989–3034, 2013.

[32] A. Kokhanovsky et al., “The inter-comparison of major satellite aerosol
retrieval algorithms using simulated intensity and polarization charac-
teristics of reflected light,” Atmos. Meas. Techn., vol. 3, pp. 909–932,
2010.

[33] M. Abouali, J. Timmermans, J. E. Castillo, and B. Z. Su, “A high per-
formance GPU implementation of surface energy balance system (SEBS)
based on CUDA-C,” Environ. Modell. Softw., vol. 41, pp. 134–138, 2013.

[34] S. Hong and H. Kim, “An integrated GPU power and performance
model,” in Proc. ACM SIGARCH Comput. Archit. News, 2010, pp. 280–
289.

[35] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro,
vol. 30, no. 2, pp. 56–69, Mar./Apr. 2010.

http://ladsweb.nascom.nasa/
http://download.intel.com/support/processors/xeon/sb/xeon_

