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Abstract—Quantitative retrieval is a growing area in remote 
sensing due to the rapid development of  remote  instruments  
and retrieval algorithms. The aerosol optical depth (AOD) is a 
significant optical property of aerosol which is involved in fur- 
ther applications such as the atmospheric correction of remotely 
sensed surface features, monitoring of volcanic eruptions or for- 
est fires, air quality, and even climate changes from satellite data. 
The AOD retrieval can be computationally expensive as a result 
of huge amounts of remote sensing data and compute-intensive 
algorithms. In this paper, we present two efficient implementa- 
tions of an AOD retrieval algorithm from the moderate reso- 
lution imaging spectroradiometer (MODIS) satellite data. Here, 
we have employed two different high performance computing 
architectures: multicore processors and a graphics processing 
unit (GPU). The compute unified device  architecture  C (CUDA- 

C) has been used for the GPU implementation for NVIDIA’s 
graphic cards and open multiprocessing (OpenMP) for thread- 
parallelism in the multicore implementation. We observe for the 
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GPU accelerator, a maximal overall speedup of 68.x for the studied 
data, whereas the multicore processor achieves a reasonable 7.x 
speedup. Additionally, for the largest benchmark input dataset, 
the GPU implementation also shows a great advantage in terms of 
energy efficiency with an overall consumption of 3.15 kJ compared 
to 58.09 kJ on a CPU with 1 thread and 38.39 kJ with 16 threads. 
Furthermore, the retrieval accuracy of all implementations has 
been checked and analyzed. Altogether, using the GPU accelera- 
tor shows great advantages for an application in AOD retrieval 
in both performance and energy efficiency metrics. Nevertheless, 
the multicore processor provides the easier programmability for 
the majority of today’s programmers. Our work exploits the par- 
allel implementations, the performance, and the energy efficiency 
features of GPU accelerators and multicore processors. With this 
paper, we attempt to give suggestions to geoscientists demanding 
for efficient desktop solutions. 

Index Terms—Aerosol optical depth (AOD), graphics process- 
ing unit (GPU), High performance computing (HPC), OpenMP, 
quantitative remote sensing retrieval. 

 
I. INTRODUCTION 

HE CONTINUOUS increase of spatial and spectral reso- 

lution of satellite sensors over the last years has led to a 

substantial increase in data volumes, and this trend is expected 

to continue in the future [1]. For instance, the Moderate 

Resolution Imaging Spectroradiometer (MODIS) instruments 

with 36 spectral bands and 12-bit radiometric resolution on- 

board the Earth Observing System (EOS) satellite TERRA 

and AQUA have been widely used for over 10 years after 

being successfully launched in December 1999 and May 2002, 

respectively. Large numbers of multidisciplinary geophysical 

parameters are produced by each observation, thus the MODIS 

Adaptive Processing System (MODAPS) was developed. It pro- 

duces nearly 2.5 TB of data from land, atmosphere and ocean 

measurements [2]. To retrieve a 10-year aerosol optical depth 

(AOD) dataset at 1-km spatial resolution using the synergetic 

retrieval of aerosol properties model from the MODIS data 

(SRAP-MODIS), the input MODIS data acquired is expected 

to sum up to 29 TB [3]. As a result, efficient processing and 

analysis of the time series data accumulated from the multi- 

source satellite instruments is crucial. In addition, this data are 

also required for real-time or near real-time response in several 

other applications such as the monitoring of volcanic eruptions 

or forest fires. With a growing amount of data and an increasing 

complexity of its processing, as well as for solving models with 
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it, the demand for computing power increases significantly in 

this field. 

There are research efforts toward the incorporation of high 

performance computing (HPC) technologies and practices into 

the remote sensing community to address the aforementioned 

computing needs. Lee et al. reviewed the recent develop- 

ments in HPC for remote sensing in 2011 and summarized 

them into three categories: 1) specialized hardware architec- 

tures including field programmable gate arrays (FPGAs) and 

graphics processing units (GPUs); 2) cluster computing includ- 

ing traditional Beowulf cluster and clusters based on hardware 

accelerators; and 3) distributed computing infrastructures [4]. 

Generally, remote sensing applications map relatively nicely  

to clusters and networks of computers; therefore, develop- 

ment efforts have been made to accelerate remote sensing 

applications by using cluster, grid, and cloud infrastructures 

[5]–[7]. Unfortunately, these systems require major investments 

in working time and finances for their maintenance and it is 

difficult to adapt them to on-board satellite or aircraft pro- 

cessing scenarios due to their large space occupation [8], [9]. 

Therefore, low-weight integrated components such as FPGAs 

have come up as feasible alternatives. However, making use  

of them requires significant efforts with regard to code-design 

and programmability. The multicore processors and commod- 

ity GPUs are promising options, especially for recent desktop 

and server-based processing, in future even for on-board solu- 

tions. They offer very substantial computational power at low 

cost and therefore provide the chance to bridge the gap toward 

fast or even real-time data processing and analysis for remote 

sensing applications [9]. 

So far, great efforts have already been put into the accelera- 

tion of hyperspectral remote sensing based on GPUs and multi- 

core platforms. For instance, Torti et al. presented new parallel 

implementations of the widely used hyperspectral subspace 

identification employing minimum error algorithm on GPUs, 

multicore processors, and digital signal processors (DSPs), and 

obtained real-time performance with the GPU and multicore 

implementations [10]. Molero et al. exploited the computa- 

tional power of GPUs and multicore processors for anomaly 

detection using hyperspectral data. They also measured the 

average power intake of implementations and calculated the 

energy consumptions [11]. Bernabe et al. developed efficient 

implementations of a full hyperspectral unmixing chain on 

GPUs and multicore processors and gave a detailed compari- 

son in terms of performance, costs, and mission payload [9]. In 

addition to research on the acceleration of hyperspectral remote 

sensing algorithms, GPUs and multicore processors have also 

been utilized for a few quantitative remote sensing applica- 

tions. Efremenko et al. developed and compared multicore and 

GPU implementations of a radiative transfer model based on 

the discrete ordinate solution method [12]. Su et al. proposed 

a GPU implementation for the Monte-Carlo-based electromag- 

netic scattering of a double-layer vegetation model [13]. For 

Infrared Atmospheric Sounding Interferometer (IASI) in opera- 

tional numerical weather prediction systems, Mielikainen et al. 

developed a GPU-based radiative transfer model [14]. There 

 

using hyperspectral data employing GPU accelerators [11]. 

Nevertheless, a study of performance versus energy consump- 

tion on both multicore and GPU platforms, in the field of remote 

sensing quantitative retrieval has, to the best of our knowledge, 

not yet been conducted. 

In this paper, we focus on two different kinds of parallel 

desktop architectures: multicore processors and GPU accel- 

erators. We implemented the time-consuming SRAP-MODIS 

algorithm for the retrieving of AOD. It not only employs a set of 

nonlinear equations but also requires a large set of input images. 

The GPU implementation was carried out based on compute 

unified device architecture C (CUDA-C) for NVIDIA GPUs, 

while the multicore implementation was realized using open 

multiprocessing (OpenMP). Furthermore, we measured and 

analyzed the obtained accuracy for both considered platforms. 

Their parallel performance and energy consumption were com- 

pared in the context of a quantitative remote sensing retrieval 

application. 

This paper is organized as follows. Section II explains the 

SRAP-MODIS algorithm and the multicore as well as the GPU 

accelerated implementations. Section III describes the satel- 

lite remote sensing data and the benchmark environment for 

our experiments and presents an experimental evaluation of the 

proposed implementations in terms of the retrieval accuracy, 

parallel performance, energy consumption, and coding consid- 

erations. Finally, Section IV concludes with remarks and future 

research perspectives. 

 

 
II. METHODOLOGY 

A. AOD Retrieval Algorithm From MODIS Satellite Data 

AOD is defined as the integrated extinction coefficient over a 

vertical column of unit cross section. The extinction coefficient 

is the fractional depletion of radiance per unit path length. AOD 

represents the degree to which aerosols prevent the transmis- 

sion of light by absorption or scattering of light and therefore, 

it is of interest to several applications such as the atmospheric 

correction of remotely sensed surface features, the monitor- 

ing of volcanic eruptions or forest fires, air quality, health and 

environment, earth radiation budget, and climate change [16]– 

[20]. Many approaches have been developed for the retrieval 

of AOD, including the use of advanced very high resolution 

radiometer (AVHRR), medium resolution imaging spectrom- 

eter (MERIS), scanning imaging absorption spectrometer for 

atmospheric chartography (SCIAMACHY), MODIS, multian- 

gle imaging spectro radiometer (MISR), advanced along-track 

scanning radiometer (AATSR), and others [21]. 

SRAP-MODIS is a simple but practical algorithm that was 

introduced in the research of [22] on an operational bi-angle 

approach model for retrieving AOD and the earth surface 

reflectance [23]. The algorithm employs a set of nonlinear 

equations which can be written as 

 
Ai,j = 

(aAj −b)+b(1−Aj )exp[ε(b−a)(0.0879λ−4.09+β λ−α)bj] 
 

 

energy consumption for hyperspectral unmixing algorithms on 

multicore platforms [15] as well as for the anomaly detection 

(aAj
i,j−b)+a(1−Aj

i,j)exp[ε(b−a)(0.0879λ−4.09+βiλ−α)bj] 

(1) 

have also been endeavors to analyze the performance and 
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where Ai,j observes the constraints (2) 
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(2) 

where i = 1, 2 represents the observations of satellite TERRA 

MODIS and AQUA MODIS, respectively, j = 1, 2, 3 stands for 

three visible spectral bands at central wavelengths of 470, 550, 

and 660 nm. Hence, a set of nonlinear equations consisting of 

three equations is formed. The unknowns to be solved are β1, 

β2, and α, which are then used to calculate AOD according to 

the Angstrom’s turbidity formula 
 

τA = βiλ−α. (3) 

The other variables in (1) can be derived from the satellite 

image data after preprocessing. More details can be found in 

[3]. The input image datasets required by the SRAP-MODIS 

retrieval part include: 

1) The top of atmosphere reflectance information which    

is extracted and preprocessed through georeferencing, 

water vapor and ozone absorption correction, and cloud 

mask from the MOD/MYD021KM—Level 1B Calibrated 

Radiances—1 km from both the TERRA and AQUA 

MODIS. 

2) The angles and geolocation information for georeference 

from MOD/MYD03—Geolocation—1 km. 

3) The MOD/MYD04_L2—Level 2 Aerosol Products. 

4) The parameter text including the longitude and latitude 

information of retrieval spatial coverage, the spatial reso- 

lution and others. 

The satellite data from the MODIS instrument can be 

downloaded from the Level 1 and Atmosphere Archive and 

Distribution System (LAADS Web) supported by the National 

Aeronautics and Space Administration (NASA) Goddard Space 

Flight Center [24]. 

 

B. Implementation for Multicore Processors 

A multicore processor is a single computing component with 

two or more independent processor-cores. For quite a while 

now, one sees only modest increases in clock speed for com- 

pute cores since physical limitations make it extremely difficult 

to increase CPU performance on this end. Going multicore 

and increasing the performance of the CPU’s internal func- 

tional units, e.g., better vector units with longer vectors such 

as advanced vector extensions (AVX), seems, at least for now, 

to be the way to go. Hence, programs have to adhere to these 

levels of parallelism introduced with the hardware to leverage 

the performance gain of modern CPUs. 

In our multicore implementation of the AOD retrieval, we 

used OpenMP which has established itself as the standard    

for shared-memory parallel programming [25]. OpenMP is an 

application programming interface (API) based on compiler 

directives available for C, C++, and FORTRAN to exploit 

shared-memory parallelism. It is based on the fork-join model 

and processes parallel regions where computational work is 

shared and spread across multiple threads. The main part of the 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Pseudo-code for the multicore implementation. 

 

multicore implementation is given in the pseudo-code in Fig. 1. 

The main techniques used in our implementation of the AOD 

retrieval are summarized and explained as follows. 

1) In our SRAP-MODIS AOD retrieval procedure, there is a 

set of equations to be solved to calculate the AOD from 

the solution and input parameters for each pixel inside the 

prospected images. The calculation of the AOD accord- 

ing to (1)–(3) is for each pixel independent from all other 

pixels. Note that we use Broyden’s method to solve the 

nonlinear equations, more technical details are given in 

Section III-C. 

2) Each pixel is treated entirely by one thread within a par- 

allel for loop to solve its equations and perform the AOD 

calculations. Each thread executes the same instruction 

stream with multiple data. There is implicit barrier syn- 

chronization at the end of the parallel region, a block of 

code executed by multiple threads, under the directive 

parallel for before the resulting images are written. 

3) To tune the performance of the multicore code, we care- 

fully investigated the impact of the underlying OpenMP 

scheduling strategy. Fig. 2 shows that the implementation 

using OpenMP in the standard configuration with static 

scheduling can lead to an extremely unbalanced work- 

load among the cores. The energy profile brings to light 

that over time more and more cores become idle as they 

are statically served with a fixed amount of iterations. As 

soon as a thread finishes all of its iterations, it is not served 

with additional work and is therefore not utilized for the 

rest of the execution. The unbalance among the threads is 

based on the facts that a) the algorithm has a pixel-based 

nature; b) cloudy pixels which follow a different control 

flow than “normal” ones are usually located in continuous 

parts within an image and therefore are often assigned 

onto the same core within the parallel calculation; and 

c) even certain cloud-free pixels’ iterations finish quicker 

than others. Thus, the performance with a static schedul- 

ing depends significantly on the pixels’ distribution to the 

cores. To overcome this imbalance, a dynamic scheduling 

strategy was used with OpenMP. Fig. 2 shows that this 

leads to a uniform usage of all cores during the whole 

execution of the program and, as a result, to shorter run- 

times (see Fig. 3). We give more details on the runtime 



 
 

 

 
 

Fig. 2. Energy comparison of the static scheduling and dynamic scheduling for 

the multicore implementation. 

 

 

Fig. 3. Performance comparison of the static scheduling and dynamic schedul- 

ing for the multicore implementation. 

 

and also the energy consumption behaviour of the codes 

in Sections III-D and III-E. 

4) The local and global variables corresponding to multiple 

input parameters for solving the equation are kept in the 

private and threadprivate lists. 

 

 
C. Implementation for GPUs 

GPUs have in recent years evolved into highly parallel, 

multithreaded, many-core processors with tremendous compu- 

tational speed and very high memory bandwidth [4]. Therefore, 

they are well suited for massively data parallel processing 

with high arithmetic floating point intensity. With the dramatic 

increase of the processing power of GPUs, it is possible to  

use GPUs for efficient general purpose processing nowadays 

[26], namely in the field of general purpose GPU (GPGPU) 

computing. 

 

 
 

Fig. 4. CUDA hierarchy of  threads,  blocks,  and  grids,  with  correspond- 

ing per-thread private, per-block shared, and per-application global memory 

spaces [35]. 

 
CUDA and the open computing language (OpenCL) are the 

two main basic approaches for allowing general purpose pro- 

gramming of GPUs. Taking into account that the GPU device 

we are using is Tesla K20 from NVIDIA, and since early com- 

parisons of CUDA and OpenCL suggest CUDA is consistently 

faster than OpenCL using complex, near-identical kernels [27] 

and equivalent implementations on the same hardware [26], we 

decided to use CUDA for our GPU implementation of the AOD 

retrieval. 

The CUDA architecture enables NVIDIA GPUs to exe- 

cute parallel programs. A CUDA program executes kernels 

in parallel across a set of parallel threads organized in thread 

blocks and grids consisting of those thread blocks as shown in 

Fig. 4. Correspondingly, Fig. 4 also presents different levels of 

memory, i.e., registers and local memory for a thread, shared 

memory for the block and global as well as constant memory 

and texture memory for the grid on the GPU. The GPU instan- 

tiates a kernel program on a grid of thread blocks, whereas each 

thread within a thread block executes an instance of the kernel. 

The flowchart of the AOD retrieval supported by CPU and 

GPU collaboratively is shown in Fig. 5. The CUDA kernel 

and the main part of the GPU implementation are given in 

pseudo-code in Fig. 6. The main implementation techniques 

and strategies are described as follows. 

1) A CUDA kernel called “retrievalOfAOD” was designed 

and implemented to solve (1)–(3) and calculate AOD as a 

whole with 15 input image bands, 6 output image bands, 

and several necessary parameters, e.g., the pictures’ width 

and size. 

2) Each thread corresponds to the computation of the AOD 

calculation of one pixel using the CUDA kernel “retrieval- 

OfAOD.” 
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Fig. 5. Flowchart of the CUDA implementation. 

 
 

 

Fig. 6. Pseudo-code for the GPU implementation including the CUDA kernel. 

 

 
3) The image data is organized as a one-dimensional float 

type array, and the pixels are mapped to threads inside the 

CUDA kernel “retrievalOfAOD” as shown in Fig. 6. 

 

 
Fig. 7. Image data split pattern for images that do not fit into the GPU’s mem- 

ory at once. This is a sketch of how the splitting can be realized including 

data-transfers, etc., when using a GPU. Calculation and data-transfer could 

additionally be overlapped by a double-buffering with halved batchSize per 

load running asynchronously on two CUDA streams. 

 

4) The global memory is used to store the input and output 

image data directly on the GPU. For the largest image in 

our experiments, which contains 11 500 4500 pixels,  

the 21 image bands demand slightly over 4 GB mem- 

ory. For the Tesla K20 device with 5 GB memory, the 

image can be copied between host and GPU memory back 

and forth at once, while the image data would have to  

be split from the spatial domain when the memory of the 

GPU device is smaller than the image data size. Such an 

approach can also be advantageous on CPUs to prevent 

cache misses or even paging. The split pattern can be per- 

formed as shown in Fig. 7. A few temporary variables in 

the procedure of solving the nonlinear equations are kept 

in registers for the threads for faster access. 

5) To tune the performance of our GPU implementation, we 

analyzed the impact of the thread-block configuration on 

the runtime. The largest number of threads per block is 

256 for our implementation on a Tesla K20 with compute 

capability 3.5 when taking the compiler chosen number 

of registers (114 registers per thread). We therefore mea- 

sured the runtime for all input sizes on a two-dimensional 

block of 1  1, 2  2, 4   4, 8   8, and 16   16 threads,   

while the dimensions of the grid are set dynamically cor- 

responding to the image size as shown in Fig. 6 inside the 

main function using the dim3 block and the dim3 grid. 

The best performance is achieved when executing with 

8 8 threads per block (see Fig. 8). Fig. 9 shows that this 

configuration results in a slightly higher power intake than 

with the maximum of 16 16 threads, but in exchange to 

a much shorter runtime and, thus, also to a significantly 

less overall energy consumption. 
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Fig. 8. Impact of block sizes on the runtime for the GPU implementation. 

 
 

 

Fig. 9. Energy comparison of the block size 8 8 and 16 16 for the GPU 

implementation. 

 

 
6) Fixing the optimal 8 8 thread-block size, we varied the 

registers per thread by the nvcc option (maxrregcount 

amount) from 50 to 255, the maximum for K20, the rel- 

ative  improvement is shown in Fig. 10. As compared   

to the compiler’s internal decision (which uses regis- 

ters/thread = 114), the experiments show that none of 

those configurations lead to a significant improvement of 

the runtime for all of the prospected codes with 8 8 

threads. Decreasing the maximum number of registers per 

thread however allows executing more parallel threads. 

For example, restricting the compiler to use only half the 

number of registers (57) allows using 32 32 threads. 

Even though this increases the amount of parallelism, data 

has to be served from slower memory than the register- 

memory. Hence, we measured a performance slow-down 

of 30%–40% for 32 32 threads with 57 registers per 

thread compared to the 8 8 thread optimum. Therefore, 

we do not set the maximum number of registers per 

thread manually for our experiments but stick with the 

Fig. 10. Impact of registers per thread for 8 8 thread-block configuration on 

the runtime performance. 

 

 

 

Fig. 11. Thread distribution among the data arrays with coalesced memory 

accesses on the GPU. The green grids represent regions that are processed in 

parallel on the GPU; the red dots show appropriate parallel processed pixels for 

the CPU. 

 

 
 

compiler’s internal decision and our optimal thread-block 

configuration of 8 8 threads. 

The created thread distribution among the data leads to hard- 

ware adjusted and coalesced memory accesses. An overview of 

the process’s input and output images as well as the parallel 

processing on CPU and GPU is illustrated in Fig. 11. 

 

 
 

III. EXPERIMENT AND DISCUSSION 

A. Satellite Remote Sensing Data 

A test dataset from February 1, 2012 covering 35◦E–150◦E, 

15◦N–60◦N was prepared and extracted for six image sizes for 

performance analysis and comparison, to be  precise:  500 

100, 500 500, 1000 1000, 5000 1000, 5750 4500, 

and 11 500  4500 pixels. The largest image size corresponds 

to the spatial coverage over a very large part of Asia. The spa- 

tial resolution of each pixel is 1 km. The MODIS dataset was 

downloaded from the NASA LAADS web and extracted for the 

needed information presented in Section II-A and stored in the 

“.img” format for retrieval. 



 

TABLE I 

AVERAGE RELATIVE DIFFERENCE FOR THE FINAL AOD RESULTS 

WITH THE UNCERTAINTY 

 

 

 
B. Benchmark Environment 

The multicore implementation benchmarks were performed 

on a dual-socket system running Scientific Linux 6.4 (Carbon). 

The system includes two Intel Xeon E5-2660 server CPUs run- 

ning at 2.2 GHz with 8 cores each, and is equipped with 32 GB 

of memory. The simultaneous multithreading (SMT) was dis- 

abled, and the theoretical peak performance is 140.8 GFLOPs 

each in base mode and 192 GFLOPs in turbo mode for dou- 

ble precision calculations [28]. For single precision float there 

is no official number available. The GPU implementation has 

been benchmarked on the NVIDIA Tesla K20, combining 2496 

processor cores with a core clock of 706 MHz and a theoret- 

ical single precision floating point peak performance of 3.52 

TFLOPs (double precision: 1.17 TFLOPs), 5 GB of memory 

and a memory bandwidth of 208 GB/s. We performed our GPU 

benchmarks with CUDA 6.0 and compiled the code on compute 

capability 3.5. 

 

C. Retrieval Accuracy Analysis 

The SRAP-MODIS was implemented in the C language for 

the OpenMP implementation and compiled using gcc from the 

GNU compiler collection on optimization level “-O2.” The “-

O3” did not result in significantly faster code and was there- 

fore not applied. Note, that the implementation’s calculations 

can be executed with single or double precision floating point 

accuracy, albeit the presented benchmarks were performed in 

single precision floating point accuracy. To solve the non- 

linear equations, the Broyden function from the “Numerical 

Recipes in C” [29] was chosen. The C code was translated  

and slightly modified to fit the GPU’s behavior to CUDA-C 

for the GPU version. The CUDA compiler was used without 

the “–use_fast_math” option. Between the single-threaded and 

the multithreaded CPU version, no differences in the accuracy 

of the results arose. The retrieval accuracy results comparing 

the single-threaded C and the CUDA-C versions are presented 

in Table  I. The table shows the relative difference for the  

final AOD results along with the uncertainties, whereas the 

uncertainties were calculated as the standard deviations of the 

mean of the relative differences [30]. Considering the MODIS 

AOD products uncertainties, for instance, the relative errors 

against the ground-based aerosol robotic network (AERONET) 

 

 
 

Fig. 12. Accuracy analysis tracking auxiliary variables of a typical pixel’s con- 

vergence states along with the iterations in case of slightly different results on 

CPU and GPU. 

 

observations are about 10% and 15% over ocean and land for 

the Collection 6 MODIS AOD products that NASA provides 

[31], the numerical differences in this paper are in comparison 

relatively small and acceptable. These uncertainties of AOD 

products can arise from multiple reasons such as the algo- 

rithm consumptions, cloud masking, pixel selection, instrument 

calibration and precision, and computation [32]. 

For illustration purposes we picked out one pixel which 

obtains significant differences between the two architectures 

within the iteration process of one pixel. Fig. 12 presents the 

progress of three auxiliary variables within the first few itera- 

tions of the AOD calculation. These interim variables in Fig. 12 

x[1], x[2], and x[3] were solved from the nonlinear equation (1) 

to further calculate the final AOD as described in Section II-A. 

The x[1], x[2], and x[3] correspond to the variables β1, β2,  

and α, respectively,  in (1) and (3). The x[1] and x[3] of the    

C and CUDA-C implementations converged to different val- 

ues as the iteration increases because of the divergence of 

calculations caused by added up and escalated numerical dif- 

ferences due to the different architectures for both single and 

double precision calculations. It should be noted that higher 

level and complicated algorithms will ultimately boil down to 

basic arithmetic operations which could yield to acceptably dif- 

ferent results when performed in different environments. The 

different environments including the processors, compilers that 

translate the computations to machine code, math libraries, 

and round-off errors can contribute to such slightly different 

results. Specifically for the application in this paper with differ- 

ences accumulating in hundreds of iterations for most pixels, 

the AOD values might be affected with acceptable differences 

for multiple implementations. 

Early work using GPU to accelerate geo-science applications 

also indicated result differences among multiple implementa- 

tions; for instance, a HPC implementation of surface energy 

balance system (SEBS) shows a difference among MATLAB, 

C and CUDA-C implementations [33]. Their differences are in 

a similar range as the ones in our records. 
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TABLE II 

OVERALL RUNTIME OF THE MULTICORE IMPLEMENTATION 
 

 
 

D. Parallel Performance Analysis 

For each experiment we performed ten runs per measured 

value. The maximum and minimum values were removed and 

the mean values of the remaining runs were reported. The run- 

times of the repeated runs for all code versions and input images 

are, with an average relative deviation smaller than 1%, very 

stable. We used the optimal configurations from Sections II-B 

and II-C for our experiments, namely a dynamic OpenMP 

scheduling for the multicore implementation and blocks of 

8 8 threads for the GPU implementation. 

1) Multicore Performance: Table II summarizes the over- 

all runtimes measured on the considered multicore platform 

while varying the number of utilized threads. By increasing 

the number of threads from 1 up to 16, the overall runtime 

decreases significantly from 2063.01 to 289.10 s for the largest 

image with a size of 11 500   4500 pixels. The data input    

and output (I/O) procedures were implemented on the basis   

of the Geospatial Data Abstraction Library (GDAL). These 

functions were implemented without parallelism either in the 

multicore version or in the GPU version, and therefore, the 

runtime of the I/O procedures remain constant under varying 

number of OpenMP threads. The data input takes 0.05–3.18 s 

for the six images with different sizes while the data output lasts 

between 0.09 and 2.52 s. The relative amounts of data I/O for 

the whole process are presented in Fig. 13. The figure enforces 

the observation that the relative amount of data I/O is, due to 

the high complexity in the calculation kernel, larger for small 

image sizes than for the bigger ones. With an increasing num- 

ber of threads in the multicore parallel version, the serial I/O 

parts become relatively bigger and limit the overall speedup 

(Amdahl’s Law). The same holds true for the massively paral- 

lel GPU implementation. The overall speedup considering the 

data I/O of multicore acceleration is shown in Fig. 14, with the 

highest speedup of 4.58–7.14 for the different image sizes with 

up to 16 threads. 

2) GPU Accelerator Performance: Table III  summarizes 

the runtime results of the serial CPU version and GPU accel- 

erated version. It should be noted that the overall runtime of the 

GPU acceleration is the sum of the runtime for the GPU driver 

start, data input, data transfer from host to device, calculation 

 

 
 

Fig. 13. Percentage of the data input and output of the overall runtime. 

 

 

Fig. 14. Overall speedup of the OpenMP-based multicore versions. 

 

on the GPU, data transfer from device back to host, and data 

output to the disc. Hence, the GPU accelerated version for the 

500 100 image size takes 1.51 s and therefore almost as long 

as a serial CPU version with 1.74 s. Due to the nature of the 

architecture, the CPU version only includes the data input, cal- 

culation and data output procedures but no driver start and no 

additional data transfers. Even though the actual calculation on 

the GPU only takes about 0.03 s, the overall runtime including 

the mentioned overhead is a relatively long runtime of 1.51 s. 

With increasing the image size, the overhead becomes smaller 

and less significant compared to the kernel runtimes, whereby 

the GPU can play out its advantage in terms of highly parallel 

performance. For the largest image size, the GPU accelerated 

version takes 22.78 s to calculate the AOD on the GPU and 

31.51 s in total while we measured 2063.01 s for the overall 

serial CPU implementation. 

For illustrative purposes, Fig. 15 shows the percentages of the 

driver start, AOD calculation on the GPU, data transfer between 

host and GPU device and data I/O for different image sizes. As 

the data I/O, which takes 9.48%–18.08% of the overall runtime, 
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TABLE III 

RUNTIME OF THE SERIAL VERSION AND GPU ACCELERATION 

 

 

 

 

Fig. 15. Summary plot describing the distributions of the overall runtime spend 

in the GPU device initialization, calculation in GPU, data transfer between host 

and GPU, and data I/O for the six image sizes. 

 
 

is the same for all implementations, its runtime can be ignored 

when analyzing and comparing the parallel performance of the 

different implementations. Another common concern is that the 

data transfer time between the host and GPU device or its ratio 

to the overall program execution time can affect the parallel 

performance and might be one of the bottlenecks in GPGPU 

computing [8], [13], [33]. However, the data movement opera- 

tions depicted in Fig. 15 only take 0.32%–5.19% of the overall 

runtime what corresponds to 5.91%–18.50% of the respective 

kernel calculation time. This indicates that most of the GPU 

processing time is spent in the most time-consuming comput- 

ing operations and the data transfer to GPU memory is not the 

bottleneck for the proposed GPU implementation. 

3) A Performance Comparison of Both Parallel Approaches: 

Comparing the parallel performances of both  approaches,  

Fig. 16 shows the overall runtime for the serial version, the 

multicore implementation with up to 16 threads and the GPU 

accelerated version. The corresponding speedups of multicore 

and GPU versions are presented in Fig. 17. The best per- 

formance on the CPU, with a speedup of 7.x, is reasonably 

achieved when using as many threads as the physical cores 

 

 
 

Fig. 16. Overall runtime comparison of the serial, the fastest multicore and the 

GPU accelerated versions. 

 

 

Fig. 17. Overall and calculation speedup comparison between the fastest 

multicore and GPU accelerated version. 

 

 

and it is relatively stable for different image sizes. The near 

linear speedup growth of the multicore version with increas- 

ing number of threads is depicted in Fig. 14, which indicates 

further enhancements for the multicore implementation in this 

paper for evolving multicore platforms with shared-memory 

parallelism that will assuredly emerge in the future. 

As already stated, the overall speedup of the GPU version 

compared to the single core CPU one generally increases with 

enlarging the image size and achieves an overall speedup of 

65.x for the image with 11 500 4500 pixels, while the mul- 

ticore version is seven times faster than the serial one. The 

GPU therefore outperforms the fastest CPU version by a factor 

of 9. The pure calculation speedup of the GPU implementa- 

tion compared to a single CPU core of 61.x–100.x is explicitly 

shown in Fig. 17. These measurements support the thesis that 

even near real-time quantitative retrieval could be achieved for 

smaller image sizes due to the massively parallel processing 

power offered by GPUs. 
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Fig. 17 presents different calculation speedup trends along 

with the six image sizes for the OpenMP multicore and GPU 

implementations. While the speedups of both versions’ cal- 

culation kernels are relatively stable for the larger images,   

the GPU’s overall speedup increases among almost the whole 

range of image sizes. This is based on the decreasing relevance 

of other overheads such as the driver start and data transfer 

between the host and GPU device. Consequently, the GPU’s 

overall speedup is expected to remain relatively stable as soon 

as those overheads become negligible compared to the pure cal- 

culation time. As the multicore versions do not contain such 

overheads, their total speedups also remain relatively stable 

for the larger images. While the GPU can play out its paral- 

lel potential especially for larger images, Fig. 16 also shows 

that, for very small inputs, the overhead of using the GPU due 

to data transfers and driver start can be large enough to make 

the CPU performing better concerning the overall runtime even 

though the GPU kernel is by far faster than the one running on 

the CPU. 

 
E. Energy Consumption and Code Migration Considerations 

Given that the energy consumption is a great concern in mis- 

sions, the power intakes of the different implementations for the 

largest image (11 500 4500 pixels) were measured using the 

power consumption meter Christ CLM1000 Professional (Plus) 

tracking data once per second. As the overall power can be 

divided into the dynamic power and static power [34], the dif- 

ference P diff between the idle and load conditions is presented 

in Fig. 18 to evaluate the power we measured for the multicore 

and GPU accelerated implementations. For all measurements, 

we excluded the CPU’s and the main system’s idle power in 

the statistics, as it is present and identical for both the multicore 

and GPU accelerated implementations. However, the GPUs idle 

power intake is included in the GPU statistics as it is only pre- 

sented in the GPU node. For the multicore implementation, the 

maximum recorded powers for 1, 2, 4, 8, and 16 threads are 

35.7, 54.8, 67.9, 93.5, and 138.7 W, respectively, however, with 

significantly decreasing runtime when more threads are served. 

The average power intake of the GPU is 80 W and therefore 

in a range comparable to the eight threads version on the CPU, 

respectively, one CPU socket working with full capacity. It is 

important to note that the GPU, due to the algorithmic proper- 

ties and our implementation, is by far not consuming its peak 

power intake ( 220 W). 

The overall energy consumptions are calculated as the sum 

of all power intake values per second, what is a reasonably 

good approximation of the actual energy expended. The results 

are presented in Fig. 19. The derived overall energy consump- 

tions of the CPU version running on 1, 2, 4, 8, and 16 threads 

are 58.09, 57.84, 41.98, 36.74, and 38.39 kJ, while the GPU 

implementation consumes only 3.15 kJ. The multicore imple- 

mentation has a principally decreasing consumption trend with 

the processors increasing. The GPU implementation consumes 

only 8.57% of the one serving eight threads, which is the most 

energy efficient multicore implementation. When increasing 

the number of threads from 8 to 16 for the multicore imple- 

mentation, the results show that even though the runtime of 

 

 
 

Fig. 18. Power intake curves of the multicore and GPU implementations. 

 
 

 

Fig. 19. Overall energy consumption comparison of the multicore and GPU 

implementations. 

 

 
the method decreases significantly, the actual intake of power 

increases significantly because configuring the OpenMP envi- 

ronment to 16 instead of 8 threads enables the utilization of both 

available sockets instead of only one. The overall consumed 

energy for 16 threads is slightly higher than that for 8 threads 

while the runtime is by far smaller with 16 threads, as the usage 

of a second CPU adds a further notably energy overhead. This 

also shows that in case of considering purely the energy effi- 

ciency,  not the fastest performing 16 threads version but the   

8 threads version would be the implementation of choice. 

Considering the application and available environments in 

this paper, the GPU accelerator has demonstrated advantages 

in both parallel performance and energy efficiency. This result 

is of course specifically related to the fact that the investigated 

application fits well to a GPUs parallel architecture’s proper- 

ties. GPUs are generally considered to be extremely high energy 

consuming and thus not suitable for on-board processing mis- 

sions. Multicore architectures on the other hand are evolving 

very quickly and, therefore, are expected to offer alternatives 



 

with more tolerable radiation and energy consumption require- 

ments [9], [15]. These results show that at least concerning the 

energy consumption and performance, using GPUs would be 

the best choice for this application. 

Easy programmability is also an important evaluation cri- 

terion in making use of HPC architectures in remote sensing 

applications and it is undoubtedly easier and more conve- 

nient for geoscientists to migrate algorithms and codes toward 

a multicore implementation using OpenMP rather than GPU 

CUDA-C codes. 

 
 

IV. CONCLUSION AND FUTURE RESEARCH PERSPECTIVES 

In this work, two implementations of an AOD  quantita-  

tive retrieval algorithm SRAP-MODIS from MODIS satellite 

data have been developed on multicore processors and a GPU 

platform. The multicore implementation provides a nearly 7.x 

overall speedup for image analysis scenarios, which is consid- 

ered reasonable. The GPU implementation offers a maximum 

100.x calculation speedup and 68.x overall speedup including 

the procedures data I/O and data transfer for the prepared six 

image datasets. For smaller image size scenarios, near real-time 

retrieval based on the GPU implementation could be achieved. 

The experimental results in this paper indicate that further 

applications which call for fast response of AOD retrieval 

such as the monitoring of volcanic eruptions or forest fires, 

air quality, and fast atmospheric correction could benefit from 

the development of efficient parallel implementations of AOD 

retrieval. Our work also provides implementation pattern sug- 

gestions for similar quantitative remote sensing retrieval appli- 

cations performing calculations with a pixel-based nature. The 

comparison from the perspectives of the parallel performance, 

energy efficiency and code migration considerations in this 

work is intended to give actual suggestions for geoscientists 

with different computational requirements. 

Despite the promising results reported in this paper,  bet-  

ter understandings of the overall quantitative remote sensing 

chain which also includes the time-consuming preprocessing 

geometric correction and other procedures such as the image 

cut, image resize, and cloud mask are needed. There are also 

non pixel-based operations like the spatial neighborhood-based 

operations and spectral domain operations which need compre- 

hensive parallel pattern designs and implementations for both 

multicore and GPU computing platforms to achieve the best 

performance. Considering the speedups observed in this paper 

gained from the multicore and GPU implementations, we will 

accomplish a heterogeneous solution for the parallel retrieval 

using the two platforms cooperatively. 
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