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Abstract 

This paper examines several US monthly financial time series data using fractional 

integration and cointegration techniques. The univariate analysis based on fractional 

integration aims to determine whether the series are I(1) (in which case markets might 

be efficient) or alternatively I(d) with d < 1,  which implies mean reversion. The 

multivariate framework exploiting recent developments in fractional cointegration 

allows to investigate in greater depth the relationships between financial series. We 

show that there exist many (fractionally) cointegrated bivariate relationships among the 

variables examined. 
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1. Introduction 

This paper re-examines the statistical properties of a number of US financial series 

(such as stock market prices, dividends, earnings, consumer prices, long-term interest 

rates) contained in the well-known dataset which can be downloaded from Robert 

Shiller’s homepage, and which also are described in chapter 26 of Shiller’s (1989) book 

on “Market Volatility”.   

In the existing literature, the Efficient Markets Hypothesis (EMH) has recently 

been tested using the present value (PV) model of stock prices, since, if stock market 

returns are not predictable, as implied by the EMH, stock prices should equal the 

present value of expected future dividends, and therefore stock prices and dividends 

should be cointegrated, as pointed out by Campbell and Shiller (1987). In their seminal 

paper, they tested the PV model of stock prices adopting Engle and Granger’s (1987) 

cointegration procedure, an approach which is valid provided stock prices and dividends 

are stationary in first differences rather than in levels.
1
 They used the Standard and 

Poor’s (S&P’s) dividends and value-weighted and equally-weighted New York Stock 

Exchange (NYSE) 1926-1986 datasets. In the case of the S&P series they rejected the 

unit root hypothesis for dividends but not for stock prices, whilst they could not reject it 

for either when using the NYSE data. As for cointegration, their results were also 

mixed, some test statistics rejecting the null hypothesis of no-cointegration, other failing 

to reject it. Han (1996) used Johansen’s (1991) maximum likelihood (ML) method, and 

found that the deterministic cointegration restriction can be rejected on the basis of 

Canonical Cointegrating Regression (CCR) tests, and that stochastic cointegration is 

also rejected.
2
   

                                                 
1
 A constant discount rate is assumed in that study. In a subsequent paper (Campbell and Shiller, 1988) 

this assumption is relaxed to allow for time-varying discount rates in the PV model. 
2
 Other empirical papers analysing cointegration in stock markets are Hakkio and Rush (1987),  Baillie 

and Bollerslev (1989), Richards (1995), Crowder (1996), Rangvid (2001); other studies, such as Narayan 
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However, the discrete options I(1) and I(0) of classical cointegration analysis are 

rather restrictive: the equilibrium errors might in fact be a fractionally integrated I(d)-

type process, with stock and dividends being fractionally cointegrated. This is stressed 

by Caporale and Gil-Alana (2004), who propose a simple two-step residuals-based 

strategy for fractional cointegration based on the approach of Robinson (1994a): first 

the order of integration of the individual series is tested, and then the degree of 

integration of the estimated residuals from the cointegrating regression. They find that 

the cointegrating relationship between stock prices and dividends possesses long 

memory, implying that the adjustment to equilibrium takes a long time and that PV 

models of stock prices are valid only over a long horizon.  

The present study makes the following twofold contribution. Firstly, it applies 

univariate tests based on long memory techniques in order to establish the order of 

integration of the individual series and whether or not they are mean-reverting (which 

provides information about the empirical validity of the efficient market hypothesis). 

Therefore, compared to earlier studies, it extends the univariate analysis from the 

I(1)/I(0) cases to the more general case of fractional integration, which allows for a 

greater degree of flexibility in the dynamic specification of the series. Secondly, it 

examines bivariate relationships among the variables using the most recent techniques 

in a fractional cointegration framework, which also allows for slow adjustment to 

equilibrium. To our knowledge, although numberless studies exist analysing such 

relationships, ours is the first to do so within such a framework. The implications of the 

findings are also discussed. In particular, we argue that it is the presence of long 

memory in the cointegrating relationships (already documented in Caporale and Gil-

                                                                                                                                               
and Smyth (2005) and Subramanian (2008) use instead cointegration techniques to analyse linkages 

between stock markets. 
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Alana, 2004) that can explain the inconclusiveness of the results of other studies only 

allowing for integer degrees of differentiation.   

The layout of the paper is the following. Section 2 reviews the concepts of 

fractional integration and cointegration and the methods applied in this study. Section 3 

describes the data and reports the empirical results. Section 4 offers some concluding 

remarks. 

 

2. Methodology 

The methodology employed in this study is based on the concept of long memory or 

long range dependence. Given a zero-mean covariance stationary process { tx , 

,...1,0 ±=t } with autocovariance function γu = E(xt, xt+u), in the time domain, long 

memory is defined such that:  

∞=∑
∞

−∞=u
uγ . 

Now, assuming that xt has an absolutely continuous spectral distribution function, with a 

spectral density function given by: 

,)(cos2
2

1
)(

1
0 








∑+=
∞

=u
u uf λγγ

π
λ  

according to the frequency domain definition of long memory the spectral density 

function is unbounded at some frequency λ in the interval [0, π). Most of the empirical 

literature in the last twenty years has focused on the case where the singularity or pole 

in the spectrum occurs at the 0-frequency. This is the standard case of I(d) models of the 

form: 

,...,1,0,)1( ±==− tuxL tt
d     (1) 
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where L is the lag-operator (Lxt = xt-1) and ut is I(0).
3
 However, fractional integration 

may also occur at some other frequencies away from 0, as in the case of 

seasonal/cyclical models. 

In the multivariate case, the natural extension of fractional integration is the 

concept of fractional cointegration. Though the original idea of cointegration, as in 

Engle and Granger (1987), allows for fractional orders of integration, all the empirical 

work carried out during the 1990s was restricted to the case of integer degrees of 

differencing. Only in recent years have fractional values also been considered. In what 

follows, we briefly describe the methodology used in this paper for testing fractional 

integration and cointegration in the case of Shiller’s financial time series data. 

 

2a. Fractional integration 

There exist several methods for estimating and testing the fractional differencing 

parameter d. Some of them are parametric while others are semiparametric and can be 

specified in the time or in the frequency domain. In this paper, we use first a parametric 

approach developed by Robinson (1994a). This is a testing procedure based on the 

Lagrange Multiplier (LM) principle that uses the Whittle function in the frequency 

domain. It tests the null hypothesis: 

,: oo ddH =     (2)  

for any real value do, in a model given by the equation (1), where xt can be the errors in 

a regression model of the form: 

,...,2,1, =+= txzy tt

T

t β    (3) 

                                                 
3
 Throughout the paper we assume that xt = 0 for t ≤   0. In other words, we adopt the Type I definition of 

fractional integration (see Marinucci and Robinson, 1999 and Robinson, 2005, for the differences from 

other processes). 
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where yt is the observed time series, β is a (kx1) vector of unknown coefficients and zt is 

a set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with 

a linear time trend (zt = (1, t)
T
), or any other type of deterministic processes. Robinson 

(1994a) showed that, under certain very mild regularity conditions, the LM-based 

statistic )ˆ(r  

,)1,0(ˆ ∞→→ nasNr dtb  

where “ →dtb “ stands for convergence in distribution, and this limit behaviour holds 

independently of the regressors zt used in (3) and the specific model for the I(0) 

disturbances ut in (1). The functional form of this procedure can be found in any of the 

numerous empirical applications based on his tests (see, e.g., Gil-Alana and Robinson, 

1997; Gil-Alana and Henry, 2003; Cunado et al., 2005, etc.). 

 As in other standard large-sample testing situations, Wald and LR test statistics 

against fractional alternatives have the same null and limit theory as the LM test of 

Robinson (1994a). Lobato and Velasco (2007) essentially employed such a Wald testing 

procedure, and, although this and other recent methods such as the one developed by 

Demetrescu, Kuzin and Hassler (2008) have been shown to be robust with respect to 

even unconditional heteroscedasticity (Kew and Harris, 2009), they require an efficient 

estimate of d, and therefore the LM test of Robinson (1994a) seems computationally 

more attractive.
4
 

In addition, we employ a semiparametric method (Robinson, 1995a) which is 

essentially a local ‘Whittle estimator’ in the frequency domain, using a band of 

frequencies that degenerates to zero. The estimator is implicitly defined by: 

,log
1

2)(logminargˆ

1










−= ∑

=

m

s

sd
m

ddCd λ (4) 

                                                 
4
 Other parametric estimation approaches (Sowell, 1992; Beran, 1995) were also employed for the 

empirical analysis producing very similar results as those obtained using the method of Robinson (1994a). 
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where I(λs) is the periodogram of the raw time series, xt, given by: 
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and d ∈ (-0.5, 0.5). Under finiteness of the fourth moment and other mild conditions, 

Robinson (1995a) proved that: 

,)4/1,0()ˆ( * ∞→→− nasNddm dtb  

where d
*
 is the true value of d. This estimator is robust to a certain degree of conditional 

heteroscedasticity (Robinson and Henry, 1999) and is more efficient than other semi-

parametric competitors.
5
 

Although there exist further refinements of this procedure (Velasco, 1999, 

Velasco and Robinson, 2000; Phillips and Shimotsu, 2004; Shimotsu and Phillips, 2005; 

Abadir et al., 2007), these methods require additional user-chosen parameters, and the 

estimates of d may be very sensitive to the choice of these parameters. In this respect, 

the method of Robinson (1995a) seems computationally simpler and therefore 

preferable.  

 

2b. Fractional cointegration 

Engle and Granger (1987) suggested that, if two processes xt and yt are both I(d), then it 

is generally true that for a certain scalar a ≠  0, a linear combination wt = yt – axt, will 

also be I(d), although it is possible that wt be I(d - b) with b > 0. This is the concept of 

cointegration, which they adapted from Granger (1981) and Granger and Weiss (1983). 

                                                 
5
 Other semiparametric univariate methods (e.g. the log-periodogram –type estimators, Robinson, 1995b) 

will be employed in the multivariate analysis based on fractional cointegration. 
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Given two real numbers d, b, the components of the vector zt are said to be cointegrated 

of order d, b, denoted zt ~ CI(d, b) if: 

 (i)  all the components of zt are I(d), 

 (ii)  there exists a vector α ≠  0 such that st = α’zt ~ I(γ) = I(d – b), b > 0.  

Here, α and st are called the cointegrating vector and error respectively.
6
 This prompts 

consideration of an extension of Phillips' (1991a) triangular system, which for a very 

simple bivariate case is: 

),(1 γν −+= ttt uxy      (5) 

          ),(2 dux tt −=      (6)  

for t = 0, ±1, ..., where for any vector or scalar sequence wt, and any c, we introduce the 

notation wt(c) = (1 – L)
c
wt. ut = (u1t, u2t)

T
 is a bivariate zero mean covariance stationary 

I(0) unobservable process and ν ≠  0, γ < d. Under (5) and (6), xt is I(d), as is yt by 

construction, while the cointegrating error yt – νxt is I(γ). Model (5) and (6) reduces to 

the bivariate version of Phillips' (1991a) triangular form when γ = 0 and d = 1, which is 

one of the most popular models displaying CI(1, 1) cointegration considered in both the 

empirical and theoretical literature. Moreover, this model allows greater flexibility in 

representing equilibrium relationships between economic variables than the traditional 

CI(1, 1) prescription.  

Next, we focus on the estimation of the cointegrating relationship, and in 

particular on the estimation of ν in (5) and (6). The simplest approach is to estimate it 

using the ordinary least squares (OLS) estimator 

                                                 
6
 Even considering only integer orders of integration, a more general definition of cointegration than the 

one given by Engle and Granger (1987) is possible, allowing for a multivariate process with components 

having different orders of integration. Nevertheless, in this paper we focus exclusively on bivariate cases 

and a necessary condition is that the two series display the same integration order. 
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where the superscript “t“ indicates time domain estimation. Here, in the standard 

cointegrating setting, with γ = 0 and d = 1, it has been shown (see, e.g., Phillips and 

Durlauf, 1986) that in general 
t

olsν̂  is n-consistent with non-standard asymptotic 

distribution. In fractional settings, the properties of OLS could be very different from 

those within this standard framework. When the observables are purely nonstationary 

(so that d ≥  0.5), consistency of 
t

olsν̂  is retained, but its rate of convergence and 

asymptotic distribution depends crucially on γ and d.
7
 An alternative method of 

estimating ν is in the frequency domain. Consider the estimator 

( )

( )
,ˆ

1

0

1

0

∑

∑

=
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=
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=
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j
jxy

f
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I

I

λ

λ

ν      (8) 

where λj = 2πj/n, j = 1, ..., n, are the Fourier frequencies, and for arbitrary sequences 

,, tt ζξ  (possibly the same one as tξ ), we define the discrete Fourier transform and 

(cross) -periodogram 

( ) ( ) ( ) ( ) ( ) ( ).,,
2

1

1

λλλλλξ
π

λ ξξξζξξζ
λ

ξ IIwwIe
n

w
n

t

it

t =−′== ∑
=

 

Here, the discrete Fourier transform at a given frequency captures the components of the 

series related to this particular frequency. Thus, noting that cointegration is a long-run 

phenomenon, when estimating ν one could concentrate just on low frequencies, which 

are precisely those representing the long-run components of the series, hence neglecting 

                                                 
7
 Robinson (1994b) showed that under stationary cointegration (i.e. d < 0.5) the OLS estimator is 

inconsistent. 
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information from the high frequencies, associated with the short run, which could have 

a distorting effect on estimation. Robinson (1994b) proposed the narrow band least 

squares (NBLS) estimator, which is related to the band estimator proposed by Hannan 

(1963), and is given by 

( )

( )
,

Re

ˆ

0

0

∑

∑

=

=

=

m

j
jxj

m

j
jxyj

NBLS

Is

Is

λ

λ

ν     (9) 

where 1 ≤  m ≤  n/2, sj = 1 for j = 0, n/2, 2, otherwise, and (1/m) + (m/n) → 0 as n → ∞. 

Robinson (1994b) showed the consistency of this estimator even under stationary 

cointegration, using the fact that focusing on a degenerating band of low frequencies 

reduces the bias due to the contemporaneous correlation between u1t and u2t, which was 

precisely the reason why OLS was inconsistent in some cases. As with OLS, in general 

NBLS has a non-standard limiting distribution. 

With the aim of obtaining estimates of ν with improved asymptotic properties 

(optimal rate of convergence, median unbiasedness, asymptotic mixed-normality 

leading to standard inference procedures), more refined techniques to estimate ν have 

been proposed in a fractional setting. These are related to the work of Johansen (1988, 

1991), Phillips and Hansen (1990), Phillips (1991a,b), Phillips and Loretan (1991), 

Saikkonen (1991), Park (1992), and Stock and Watson (1993), who all proposed 

estimators with optimal asymptotic properties (under Gaussianity) in the standard 

cointegrating setting with γ = 0 and d = 1. However, for all these estimators knowledge 

of γ and d was assumed (usually after pretesting), which in fractional circumstances 

might be hard to justify.
8
  

                                                 
8
 Dolado and Marmol (1996) proposed an extension to the fractional setting of the Fully Modified (FM)-

OLS estimator of Phillips and Hansen (1990), assuming knowledge of γ and d. 
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Assuming that the process ut in (5) and (6) has a parametric spectral density 

( ) ( ),;θλλ ff =  where θ  is an unknown vector of short-memory parameters, Robinson 

and Hualde (2003), based on generalized least squares (GLS)-type corrections, propose 

methods to estimate optimally (under Gaussianity) ν when d – γ > 0.5 (named strong 

cointegration). Denoting  

))(),((),( ′= dxcydcz ttt , )0,1( ′=ζ , 
1

);();(
−′= hfhp λζλ , 

∑
=

−=
n

j

jdczjcxj wwhphdca
1

),()( )()();(),,( λλλ ,  ζλζλ 1
);();(

−′= hfhq ,    

),();(),( )(

1

jcx

n

j

j Ihqdcb λλ∑
=

=  and defining  ( ) ( )
( )

,
,

,,
,,ˆ

hcb

hdca
hdc =ν    

they considered five different estimators given by: 

),ˆ,ˆ,ˆ(ˆ),ˆ,,ˆ(ˆ),ˆ,ˆ,(ˆ),ˆ,,(ˆ),,,(ˆ θδγνθδγνθδγνθδγνθδγν   (10) 

where ,ˆ,ˆ,ˆ θδγ  are corresponding estimators of the nuisance parameters γ, d and θ. The 

estimators in (10) reflect different knowledge about the structure of the model, the first 

being in general unfeasible, the second only assuming knowledge of the integration 

orders (as was done previously in the standard cointegrating literature), whereas the last 

estimator represents the most realistic case. Under regularity conditions, Robinson and 

Hualde (2003) showed that any of the estimators in (10) is n
d-γ

-consistent with identical 

mixed-Gaussian asymptotic distributions, leading to Wald tests on the parameter ν , 

),ˆ,ˆ,ˆ(),ˆ,,ˆ(),ˆ,ˆ,(),ˆ,,(),,,( θδγθδγθδγθδγθδγ WWWWW    (11) 

where  ,}1),,(ˆ){,(),,(
2−= hdchcbhdcW ν  with a chi-squared limit distribution.

9
 

 

 

                                                 
9
 Hualde and Robinson (2007) propose an estimator of ν in (5) and (6) in the case when d – γ < 0.5 

(named weak cointegration).  As in Robinson and Hualde (2003), this method is based on a GLS-type  

correction. Hualde and Robinson (2007) showed that the estimators are n
1/2

-consistent and asymptotically 

normally distributed. 
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3. Data and Empirical results 

The monthly series analysed have been collected by Robert Shiller and his associates, 

and are available on http://www.econ.yale.edu/~shiller/. The sample period goes from 

1871m1 to 2010m6. They are described in chapter 26 of Shiller’s (1989) book on 

“Market Volatility”, where further details can be found, and are constantly updated and 

revised. Specifically, they are the following series: stock market prices (monthly 

averages of daily closing S&P prices, computed from the S&P four-quarter tools for the 

quarter since 1926, with linear interpolation to monthly figures); dividends (an index), 

earnings (also an index), a consumer price index (Consumer Price Index - All Urban 

Consumers) used for computing real values of the previous variables, a long-term 

interest rate (GS10, which is the yield on the 10-year Treasury bonds), and also a 

cyclically adjusted price earnings ratio. 

 

3a. Univariate analysis: fractional integration 

We first employ the parametric approach of Robinson (1994a) described in Section 2, 

assuming that the disturbances are white noise. Thus, time dependence is exclusively 

modelled through the fractional differencing parameter d. In particular, we consider the 

set-up in (3) and (1), with z
T
 = (1,t)

T
, testing Ho (2) for do-values equal to 0, (0.001), 2. 

In other words, the model under the null becomes: 

,...,2,1)1(;10 ==−++= tuxLxty tt
d

tt
oββ  

and white noise ut. 

Table 1 displays the estimates of d (obtained as the values of do that produce the 

lowest −r̂ statistics in absolute value)
10

 along with the 95% confidence band of the non-

                                                 
10

 This is standard practice in the context of Robinson’s (1994a) tests, and produces estimates that are 

very similar to the Whittle estimates in the frequency domain (Dahlhaus, 1989). Very similar values were 

obtained with other methods (Sowell, 1992; Beran, 1995). 
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rejection values of d using Robinson’s (1994a) parametric approach. For each series, we 

display the three cases commonly examined in the literature, i.e., the cases of no 

regressors (i.e, β0 = β1 = 0), an intercept (β1 = 0), and an intercept with a linear time 

trend. 

[Insert Table 1 about here] 

 The first noticeable feature in this table is that all the estimated values of d are 

above 1 and the unit root null hypothesis (i.e., d = 1) is rejected in all cases at the 5% 

level. In general the values are very similar for the three cases with deterministic terms, 

although the results change substantially from one series to another. Specifically, values 

of d above 1.5 are found in the case of dividends, earnings and real earnings. For the 

remaining series the values are slightly above 1, but still significantly different from 1. 

However, these results might be biased due to the lack of (weak)-autocorrelation for the 

error term. Therefore, in what follows we assume that the disturbances are weakly 

autocorrelated and model them first using the exponential spectral model of Bloomfield 

(1973). This is a non-parametric approach to modelling the I(0) error term that produces 

autocorrelations decaying exponentially as in the AR(MA) case. Therefore, it 

approximates ARMA structures with a small number of parameters.
11

 The results using 

this approach are displayed in Table 2. 

[Insert Tables 2 and 3 about here] 

 It can be seen that the values are much smaller than in the previous case of white 

noise disturbances. One series (long-term interest rates) has values which are strictly 

below 1, implying mean-reverting behaviour; for dividends and real stock prices the 

unit root null cannot be rejected. It is slightly rejected (at the 5% level but not at the 

10% level) for stock prices, consumer price index and price/earning ratio, and it is 

                                                 
11

 This model is extremely well suited to Robinson’s (1994a) tests (see Gil-Alana, 2004). 
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decisively rejected in favour of higher orders of integration for the remaining two series 

(earnings and real earnings). As a final specification, given the monthly frequency of 

the data, we assume that the error term follows a seasonal AR(1) process. The results 

(displayed in Table 3) are very similar to those based on white noise disturbances, with 

estimates of d which are all strictly above 1. Deeper inspection indicates that time trends 

are not required in any case, the intercept being sufficient for the deterministic 

component. Moreover, LR tests and other residuals-based tests suggest that the d-

differenced series may all be weakly (non-seasonally) autocorrelated, implying that the 

model with Bloomfield disturbances may approximate accurately the order of 

integration of the series. Nevertheless, in view of the sensitiveness of the results to the 

specification of the error term, we also apply a semiparametric method that does not 

specify a functional form for the I(0) disturbance term. 

[Insert Figure 1 and Table 4 about here] 

 Figure 1 displays for each series the estimates of d based on the semiparametric 

method of Robinson (1995a), i.e., d̂  as given by (4). The estimates were obtained based 

on the first differenced series, then adding 1 to get the proper estimates of d. The 

estimates of d are shown for a whole range of values of the bandwidth parameter m = 1, 

2, …, n/2 (on the horizontal axis)
12

; the 95% confidence bands corresponding to the I(1) 

hypothesis are also displayed. It can be seen that, for small values of m, the unit root 

null is rejected in favour of mean reversion (d < 1) in the case of earnings, real 

dividends, real earning and price earning ratio. For the remaining series (still with a 

small m) the estimated values of d are within the I(1) interval, except for the CPI series 

for which d is found to be strictly above 1. However, when the bandwidth parameter is 

large, the estimates are clearly above 1 in all cases, the only exception being long-term 

                                                 
12

 The choice of the bandwidth is crucial in view of the trade-off between bias and variance: the 

asymptotic variance is decreasing with m while the bias is growing with m. 



 15 

interest rates, with many values in the I(1) interval. Table 4 reports the numerical values 

for different bandwidth parameters, m = 25, 41 (= T
0.5

), 100, 200, 300 and 500: at the 

95% level, there are several cases where the unit root null cannot be rejected.
13

 

 Overall, the univariate results provide no evidence of mean reversion in any of 

the series examined. 

 

3b. Multivariate analysis: fractional cointegration 

A number of cointegrating relationships might exist between the individual variables 

examined in the previous subsection, in particular between: 

a) Stock prices and dividends 

b) Real stock prices and real dividends 

c) Price/Earning ratio and long-term interest rates 

and 

d) Real stock prices and real earnings. 

Some of these relationships have been extensively analysed in the literature. 

Campbell and Shiller (1987) and DeJong (1992) tested a present value model of the 

stock market using time series data for real US annual prices and dividends from 1871 

to 1986. In the first of these studies, they carried out ADF tests, with and without a time 

trend, on both individual series, and their results suggested that both series were 

integrated of order 1. When using the DF, ADF tests on the residuals from the 

cointegrating regressions, their results were mixed: the former test rejected the null 

hypothesis of no cointegration at the 5% level, while the latter narrowly failed to reject 

it at the 10% level. DeJong (1992) used a Bayesian approach to model these two 

                                                 
13

 Specifically, in the case of m = (T)
0.5

, which has been widely considered in the empirical literature, the 

unit root null hypothesis cannot be rejected for stock prices, dividends, long-term interest rates, real stock 

prices and real dividends, whilst it is rejected in favour of mean reversion (i.e., d < 1) for earnings and 

real earnings, and in favour of d > 1 for the consumer price index. 
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variables and found evidence in favour of trend-stationary representations. Similarly, 

Koop (1991), using a different dataset, came to the same conclusion that both variables 

are stationary around a linear trend, and, even when assuming unit roots, he found little 

evidence of cointegration with I(0) errors. 

Pereira-Garmendia (2010) finds that real stock prices and real earnings are 

related through inflation. The relationship between stock prices, earnings and bond yield 

is analysed by Durre and Giot (2007). Papers examining long-run linkages between the 

price/earnings ratio and interest rates include Phillips (1999), Campbell and Shiller 

(1998, 2001), and Asness (2003) inter alia.  

 In all cases, we follow the same strategy. We first estimate individually the 

orders of integration using now the log-periodogram-type estimator devised by 

Robinson (1995b). This is defined as: 
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and 0 ≤ l < m < n. The results for the individual series possibly involved in 

cointegration relationships are displayed in Table 5 (for m = T
0.5

 and l = 0, 1, …, 5).
14

 

 Next we test the homogeneity of the orders of integration in the bivariate 

systems (i.e., Ho: dx = dy), where dx and dy are the orders of integration of the two 

individual series, by using an adaptation of Robinson and Yajima (2002) statistic xyT̂  to 

log-periodogram estimation. The statistic is: 

                                                 
14

 We will examine later these tables in detail for each of the potential cointegrating relationships. 
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The results using this approach are displayed in Table 6. In general, we cannot 

reject the null hypothesis of equal orders of integration.
15

 In the following step, we 

perform the Hausman test for no cointegration of Marinucci and Robinson (2001) 

comparing the estimate xd̂  of dx with the more efficient bivariate one of Robinson 

(1995b), which uses the information that dx = dy = d*. Marinucci and Robinson (2001) 

show that 
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1ˆˆ8 2

1
2

* →+→−=
n

s

s
asddsH dtbiis χ  (14) 

with i = x, y, and where s < [n/2] is a bandwidth parameter, analogous to m introduced 

earlier; id̂  are univariate estimates of the parent series, and *d̂  is a restricted estímate 

obtained in the bivariate context under the assumption that dx = dy. In particular, 
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with Yj = [log Ixx(λj), log Iyy(λj)]
T
, and .log

1
log

1
∑−=
=

s

j
j j

s
jv  The limiting 

distribution above is presented heuristically, but the authors argue that it seems 

sufficiently convincing for the test to warrant serious considerations. The results using 

this approach are displayed in Table 7. 
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 As in the case of the previous table, the comments for the specific series will be presented later. 
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In the final part of the analysis, we apply the methods of Robinson and Hualde 

(2003) and Hualde and Robinson (2007). We identify parametric models for f(λ) with ut 

in (5) and (6) having the form, 

,)( tt LAu ε=        (16) 

where εt is supposed to be an i.i.d. process, and A(L) is diagonal, treating thus u1t and u2t 

separately. We approximate the two series as 

[ ],ˆ)1(
~

1 tolstt xvyLu −−= γ    (17)  

and 

,)1(
~

2 t
d

t xLu −=     (18) 

to obtain estimates of γ and d previously estimated using other methods, and follow 

Box-Jenkins-type procedures to identify the models within the ARMA class. The results 

based on this method are displayed in Tables 13a – 13d. 

 

[Insert Tables 5, 6 and 7 about here] 

 

 Next we examine the bivariate relationships. 

 

3.2.a Stock market prices and dividends 

[Insert Figure 2a about here] 

Figure 2a displays the plots of the two series. Both of them are relatively stable until the 

end of World War II, when they start increasing and also exhibit a higher degree of 

volatility. 

 Focusing first on the univariate results using the Whittle semiparametric 

estimator (Robinson, 1995a), it can be seen that for small values of m the unit root null 

cannot be rejected (see Table 4). Specifically, for m = (T)
0.5

 = 41, the estimates are 
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0.953 and 1.105 respectively for stock prices and dividends. Similar evidence of unit 

roots, though with slightly higher values, is obtained with the log-periodogram 

estimator of Robinson (1995b) (see Table 5). For example, for l = 0, 1, 2, …, 5, and m = 

(T)
0.5

, the estimates of d for stock prices range between 1.041 and 1.080 and those for 

dividends between 1.026 and 1.222. Testing now the homogeneity condition with 

Robinson and Yajima’s (2002) procedure (see Table 6), it is found that the two orders 

of integration are equal.
16

 The Hausmann test of no cointegration (Marinucci and 

Robinson, 2001) (see Table 7) indicates that the estimates of d for the individual series 

using the bivariate representation (
*

d̂ in (15)) are very close to 1 and not significantly 

different from 1 (using three different values for s), but evidence of cointegration is only 

obtained in one case out of the six considered. 

 

3.2.b Real stock market prices and real dividends 

[Insert Figure 2b about here] 

The same relationship as above but in real terms is examined in this subsection. A time 

series plot of the two series is displayed in Figure 2b. They exhibit a similar pattern to 

the previous case although with more volatility in the early part of the sample, and may 

have a common stochastic trend. Starting again with the univariate tests (see Table 4), it 

is found that, when applying the Whittle semiparametric method of Robinson (1995a), 

for m = (T)
0.5

 = 41, the estimates of d are 0.888 and 0.896 respectively for real stock 

prices and real dividends, and the unit root null cannot be rejected for either series. 

Similar evidence is obtained with the log-periodogram estimator (see Table 5), with 

values of d ranging from 0.972 and 1.085 for real stock prices, and from 0.822 and 

0.997 for real dividends. The test of homogeneity of the orders of integration (Table 6) 

                                                 
16

 Here h(n) is set equal to b
-5-2i

, with i = 1, 2, 3, 4 and 5 and b = (T)
0.5

, which is the bandwidth used in the 

estimation. 
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implies equality in the values of d, whilst testing the null of no cointegration with the 

Hausman test of Robinson and Marinucci (2001) suggests that the two series might be 

cointegrated. 

 

3.2.c Price / earning ratio and long-term interest rates 

[Insert Figure 2c about here] 

These two series are plotted in Figure 2c. Interest rates appear to be more stable than the 

price/earning ratio during the first half of the sample; however, during the second half, 

there is a sharp increase in interest rates but not in the price/earning ratio. As for the 

Whittle estimates of d (see Table 4), it is found that for the price/earning ratio the values 

of d are very sensitive to the bandwidth parameter: for small values (e.g., 25, 41 or 100) 

the unit root is rejected in favour of values of d below 1; on the contrary, the unit root 

null cannot be rejected for m = 200, and it is rejected in favour of d > 1 for m = 300 and 

500. For the long-term interest rates, the results are more stable and the unit root null 

cannot be rejected for any bandwidth parameter. These results are corroborated by the 

log-periodogram estimates, displayed in Table 5. Thus, for the price/earning ratio, 

different results are obtained depending on whether or not the series is first-differenced, 

while for long-term interest rates the evidence strongly support the I(1) case. 

Interestingly, when performing the homogeneity tests of Robinson and Yajima (2002) 

we cannot reject the null of equal orders of integration, and the Hausman test reject in 

all cases the null hypothesis of no cointegration in favour of fractional cointegration. 

 

3.2.d Real stock market prices and real earnings 

[Insert Figure 2d about here] 
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Plots of the two series are displayed in Figure 2d. They both have a very similar upward 

trend, which suggests that they may be cointegrated around a common trend. The 

estimated values of d using the Whittle method and for m = (T)
0.5

 (see Table 4) are 

1.071 for real stocks and 0.933 for real earnings, and in both cases we cannot reject the 

null of I(1) series. The same evidence in favour of unit roots is obtained with the log-

periodogram estimates in Table 5, and the homogeneity restriction cannot be rejected in 

any single case (see Table 6). The Hausman tests of Robinson and Marinucci (2001) 

also indicate that the two series might be cointegrated since the null hypothesis of no 

cointegration is rejected in all cases in favour of long-memory cointegrating errors. 

[Insert Table 8 about here] 

 Table 8 displays different estimates of the cointegrating coefficients for each of 

the four relations examined. These are found to be relatively stable across the different 

procedures. 

 Finally, on the basis of the coefficients displayed in Table 8, we estimated the 

orders of integration in the residuals of the cointegrating regression. First, we used the 

parametric approach of Robinson (1994a). However, the results varied considerably 

depending on the specification of the error term. Owing to this disparity, we estimate d 

with semiparametric methods. 

[Insert Tables 9 - 12 about here] 

 Tables 9 and 10 display the estimates of d based on the log periodogram 

regression  estimator of Robinson (1995b) for u = T
0.5

 and l = 0 and l = 2 respectively. 

In many cases the estimates are strictly smaller than 1, especially for the price/earning 

ratio – long-term interest rates and real stock prices – real earning relationships. 

 Tables 11 and 12 report the results from the semiparametric Whittle method of 

Robinson (1995a), again applied to the estimated residuals from the cointegrating 
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relationships. Two different bandwidth parameters, m = 25 (in Table 11) and m = T
0.5

 = 

41 (in Table 12) are considered. Virtually all estimated values are strictly below 1. For 

the first two relationships (stock prices and dividends and their real terms) the values for 

the order of integration in the residuals range between 0.6 and 0.8. Smaller values are 

obtained for the price/earning ratio – long-term interest rate relationship: if m = 41, the 

estimated value of d is about 0.55, however using m = 25, the values are in all cases 

0.50 suggesting that the residual series may be stationary.
17

 There is a wider range of 

values in the case of the real stock prices – real earnings relationship, although most of 

them are also in the interval (0.5, 1). 

Finally, we identify parametric models for f(λ) with ut in (5) and (6) on the basis 

of equations (16) – (18), using wide-ranging values for the orders of integration from 

the previous tables. Using a Box-Jenkins-type methodology we identified at most AR(1) 

structures in all cases. Therefore, we simply consider combinations of white noises and 

AR(1) processes in each bivariate relation. For each model, we apply the univariate 

Whittle procedure of Velasco and Robinson (2000), using untapered versions, and, as 

usual, the first-differenced data, then adding 1 to the estimated value. The results for the 

four bivariate relationships are summarised in Tables 13a – 13d and they are fairly 

similar for the different types of I(0) errors. 

[Insert Table 13 about here] 

 Although we do not report it, we also estimated a multivariate version of the 

Bloomfield (1973) model for I(0) autocorrelation, with fairly similar results to those 

presented in Table 13. In general, there is a reduction in the order of integration of about 

0.3/0.4 from the original series to the cointegrating relationship. The orders of 

integration in the latter are about 0.7 for three of these relations: stock prices/dividends; 

                                                 
17

 Note that these estimates are based on the first differenced data, and a value of 1 is then added to obtain 

the proper estimates of d. 
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real prices/real dividends, and real prices/real earnings. For the price-earning 

ratio/interest rates relationship, the reduction is slightly bigger, and the order of 

integration of the cointegrating relationship seems to be slightly above 0.5. 

 Overall, the four relationships examined in this paper appear to be fractionally 

cointegrated, with orders of integration for the individual series equal or slightly above 

1, and being in the interval [0.5, 1) for the cointegrating regression, which implies a 

slow mean-reverting behavior in the long run.  

 

4. Conclusions 

In this paper we have examined bivariate relationships among various financial 

variables using fractional integration and cointegration methods. In particular, we focus 

on the following bivariate relationships: stock prices and dividends; real stock prices 

and real dividends; price/earning ratio and long run interest rates, and real stock prices 

and real earnings, monthly, for the time period 1871m1 to 2010m6.  

 The univariate results strongly support the hypothesis that all individual series 

are nonstationary with orders of integration equal to or higher than 1 in practically all 

cases. In fact, mean reversion is not found for any of the series examined.
18

 The 

multivariate results indicate that the four bivariate relationships are fractionally 

cointegrated with the orders of integration of the cointegrating regressions being in the 

interval [0.5, 1) and therefore displaying mean reverting behaviour. The implication is 

that there exist long-run equilibrium relationships consistent with economic theory and 

that the effects of shocks are temporary, although the fact that fractional cointegration 

(rather than standard cointegration) holds means that the adjustment process is much 

slower, and that therefore the overall costs of deviations from equilibrium are bigger 

                                                 
18

 A small degree of mean reversion is found in the long-term interest rates when using the parametric 

method of Robinson (1994a) with Bloomfield (1973)-type disturbances. 
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than standard cointegration approaches would estimate. This is an important result that 

should be taken into account when formulating policies and deciding on policy actions. 

It also provides an explanation for the mixed evidence reported in other papers only 

allowing for integer degrees of differentiation and therefore not modelling long-memory 

properties. 

Other recently developed bivariate or multivariate fractional cointegration 

testing methods (e.g. Johansen, 2010; Nielsen, 2010; Nielsen and Frederiksen, 2011) 

could also be applied. Moreover, our analysis does not take into account other possible 

features of the data, such as structural breaks, non-linearities and other issues. Of 

course, these are also important issues whose relevance for fractional integration tests 

has already been investigated (see, e.g., Diebold and Inoue, 2001; Granger and Hyung, 

2004; Caporale and Gil-Alana, 2008). Our future research will consider them in the 

context of fractional cointegration. 
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Tables and Figures 

 

Table 1: Estimates of d in a model with white noise disturbances 

 No Regressors An intercept A linear time trend 

STOCK PRICES 
1.169 

(1.134,   1.208) 

1.169 

(1.135,   1.209) 

1.170 

(1.135,   1.209) 

DIVIDENDS 
1.906 

(1.874,   1.941) 

1.951 

(1.916,   1.988) 

1.951 

(1.916,   1.988) 

EARNINGS 
1.855 

(1.806,   1.910) 

1.856 

(1.806,   1.911) 

1.856 

(1.806,   1.911) 

CONSUMER 

PRICE INDEX 

1.210 

(1.185,   1.241) 

1.396 

(1.350,   1.454) 

1.401 

(1.354,   1.456) 

LONG INTEREST 

RATE 

1.111 

(1.070,   1.157) 

1.111 

(1.070,   1.157) 

1.110 

(1.070,   1.156) 

REAL STOCK 

PRICES 

1.156 

(1.121,   1.195) 

1.161 

(1.126,   1.201) 

1.161 

(1.126,   1.201) 

REAL 

DIVIDENDS 

1.311 

(1.279,   1.346) 

1.505 

(1.470,   1.544) 

1.505 

(1.470,   1.544) 

REAL EARNINGS 
1.756 

(1.713,   1.803) 

1.825 

(1.779,   1.877) 

1.825 

(1.779,   1.877) 

PRICE /EARNING 

RATIO 

1.237 

(1.198,   1.282) 

1.494 

(1.449,   1.542) 

1.494 

(1.449,   1.542) 

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using 

Robinson’s (1994a) parametric tests. 
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Table 2: Estimates of d in a model with Bloomfield-type disturbances 

 No Regressors An intercept A linear time trend 

STOCK PRICES 
1.052 

(1.000,   1.102) 

1.052 

(1.001,   1.102) 

1.052 

(1.001,   1.103) 

DIVIDENDS 
1.033 

(0.987,   1.083) 

1.037 

(0.986,   1.087) 

1.037 

(0.985,   1.088) 

EARNINGS 
1.568 

(1.499,   1.649) 

1.569 

(1.492,   1.653) 

1.569 

(1.492,   1.653) 

CONSUMER 

PRICE INDEX 

1.175 

(1.148,   1.206) 

1.187 

(1.160,   1.211) 

1.195 

(1.173,   1.224) 

LONG INTEREST 

RATE 

0.909 

(0.864,   0.964) 

0.908 

(0.863,   0.964) 

0.909 

(0.864,   0.964) 

REAL STOCK 

PRICES 

1.033 

(0.981,   1.083) 

1.037 

(0.991,   1.087) 

1.037 

(0.991,   1.088) 

REAL 

DIVIDENDS 

1.339 

(1.272,   1.419) 

1.448 

(1.388,   1.521) 

1.448 

(1.388,   1.521) 

REAL EARNINGS 
1.599 

(1.510,   1.671) 

1.600 

(1.517,   1.681) 

1.600 

(1.517,   1.681) 

PRICE /EARNING 

RATIO 

1.135 

(1.060,   1.231) 

1.269 

(1.171,   1.398) 

1.269 

(1.171,   1.398) 

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using 

Robinson’s (1994a) parametric tests. 
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Table 3: Estimates of d in a model with seasonal AR(1) disturbances 

 No Regressors An intercept A linear time trend 

STOCK PRICES 
1.169 

(1.135,   1.208) 

1.170 

(1.135,   1.210) 

1.170 

(1.135,   1.210) 

DIVIDENDS 
1.902 

(1.873,   1.935) 

1.953 

(1.921,   1.988) 

1.953 

(1.921,   1.988) 

EARNINGS 
1.875 

(1.830,   1.926) 

1.878 

(1.832,   1.928) 

1.878 

(1.833,   1.928) 

CONSUMER 

PRICE INDEX 

1.188 

(1.161,   1.220) 

1.374 

(1.326,   1.431) 

1.378 

(1.332,   1.434) 

LONG INTEREST 

RATE 

1.111 

(1.071,   1.157) 

1.111 

(1.071,   1.157) 

1.110 

(1.071,   1.157) 

REAL STOCK 

PRICES 

1.155 

(1.119,   1.194) 

1.161 

(1.125,   1.201) 

1.161 

(1.125,   1.201) 

REAL 

DIVIDENDS 

1.311 

(1.279,   1.346) 

1.505 

(1.469,   1.544) 

1.505 

(1.469,   1.544) 

REAL EARNINGS 
1.742 

(1.704,   1.787) 

1.836 

(1.793,   1.883) 

1.838 

(1.795,   1.885) 

PRICE /EARNING 

RATIO 

1.234 

(1.194,   1.278) 

1.491 

(1.447,   1.539) 

1.491 

(1.447,   1.540) 

The values in parentheses refer to the 95% confidence band of the non-rejection values of d using 

Robinson’s (1994a) parametric tests. 
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Figure 1: Estimates of d based on the semiparametric estimate of Robison (1995) 
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Figure 1: Estimates of d: semiparametric estimate of Robison (1995)-cont. 
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Figure 1: Estimates of d: semiparametric estimate of Robison (1995)-cont. 

Real Dividends 

 

Real Earnings 

 

Price / Earning Ratio 

 
The horizontal axis refers to the bandwidth parameter while the vertical one corresponds to the estimated 

values of d. We report the estimates of d along with the 95% confidence band of the I(1) hypothesis. 
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Table 4: Estimates of d using Robinson’s (1995) semiparametric method for 

different bandwidth numbers 

 25 41 100 200 300 500 

STOCK PRICES 0.850
*
 0.953

*
 1.004

*
 1.121 1.158 1.092 

DIVIDENDS 1.021
*
 1.105

*
 1.500 1.500 1.500 1.500 

EARNINGS 0.589 0.580 0.875 1.500 1.500 1.500 

CONSUMER 

PRICE INDEX 
1.500 1.500 1.417 1.228 1.235 1.278 

LONG INTEREST 

RATE 
0.893

*
 0.895

*
 0.983

*
 0.958

*
 0.990

*
 1.013

*
 

REAL STOCK 

PRICES 
0.768 0.888

*
 1.071

*
 1.107 1.099 1.086 

REAL 

DIVIDENDS 
0.538 0.896

*
 1.326 1.455 1.438 1.464 

REAL EARNINGS 0.500 0.500 0.933
*
 1.500 1.500 1.500 

PRICE /EARNING 

RATIO 
0.500 0.500 0.745 1.041

*
 1.377 1.431 

95% Confidence 

Interval 

(0.835,   

1.164) 

(0.871,   

1.128) 

(0.917,   

1.082) 

(0.941,   

1.058) 

(0.952,   

1.047) 

(0.963,   

1.036) 

* indicates that the I(1) hypothesis cannot be rejected at the 5% level. 
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Figure 2a: Stock market prices and dividends 

 

The thick line refers to the stock market prices and the thin one is for dividends. 

 

 

Figure 2b: Real stock market prices and real dividends 

 
The thick line refers to real stock market prices and the thin one to real dividends. 

 

 

Figure 2c: Price Earning ratio and long interest rate 

The thick line refers to the long-term interest rate and the thin one is for the price earning ratio. 
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Figure 2d: Real stock market prices and real earnings 

The thick line refers to the real stock market prices and the thin one is for real earnings. 
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Table 5: Estimates of d using Robinson’s (1995b) log-periodogram semiparametric 

method for different values of l and fixed m = (T)
0.5

 

m = T
0.5

 l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 

STOCK PRICES 1.080 1.070 1.061 1.041 1.018 1.017 

DIVIDENDS 1.095 1.048 1.026 1.037 1.134 1.222 

LONG INTEREST 

RATE 
0.956 1.010 0.972 0.914 0.832 0.803 

REAL STOCK 

PRICES 
0.972 1.000 1.085 1.077 1.018 1.016 

REAL 

DIVIDENDS 
0.822 0.851 0.981 0.975 0.996 0.997 

REAL EARNINGS 0.970 1.009 1.073 1.099 1.129 1.162 

REAL EARNINGS 0.279 0.128 0.059 -0.078 -0.142 -0.082 

PRICE /EARNING 

RATIO (*) 
0.913 0.931 0.945 0.920 1.010 1.127 

PRICE /EARNING 

RATIO (**) 
0.484 0.606 0.576 0.589 0.637 0.645 

(*) and (**) indicates that the results are based on the original and first differenced data respectively. 

 

 

Table 6: Testing the homogeneity in the order of integration (Robinson and Yajima, 

2002) 

m = T
0.5

    l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 

Stock prices  /  Dividends -0.145 0.214 0.340 0.038 -1.125 -1.970 

Real stock prices / Real dividens 1.471 1.455 1.009 0.990 0.215 0.185 

P.E.R.  /  Long interest rates -0.425 -0.776 -0.813 -1.617 -1.527 -0.675 

Real stock prices / Real earnings 0.580 0.676 1.356 1.520 0.078 -1.077 

In all cases we employ h(n) chosen as b
-5-2i

, i=1,2,3,4 and 5. 
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Table 7: Hausman test for no cointegration (Marinucci and Robinson, 2001) 

m = T
0.5

    H s = 25 s = 41 s = 50 

 

Stock prices  /  Dividends 

 

Has 4.205
*
 0.239 0.102 

Hbs 2.420 1.260 1.040 

*d̂  0.916 1.088 1.077 

 

Real stock prices / Real dividends 

 

Has 26.499
*
 11.469

*
 8.880

*
 

Hbs 13.520
*
 2.259 0.810 

*d̂  0.721 0.898 0.936 

 

P.E.R.  /  Long interest rates 

 

Has 24.780
*
 16.457

*
 13.209

*
 

Hbs 28.728
*
 20.664

*
 32.262

*
 

*d̂  0.593 0.721 0.688 

 

Real stock prices / Real earnings 

 

Has 71.520
*
 68.502

*
 74.649

*
 

Hbs 68.679
*
 64.952

*
 70.560

*
 

*d̂  0.487 0.628 0.653 

Χ1
2
(5%) = 3.84. * indicates rejection of the null hypothesis of no cointegration at the 5% level. 
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Table 8: Coefficient estimates in a fractional cointegration setting using different 

methods 

 Stock prices / 

Dividends 

Real stock 

prices / Real 

dividends 

P.E.R. / Long 

interest rates 

Real stock 

prices / Real 

earnings 

ν (OLS) 

time domain 
50.074 35.514 2.173 17.636 

ν (OLS) 

freq. domain 
69.214 46.539 1.707 32.267 

ν (NBLS) 

(m = 25) 
40.920 31.347 1.507 7.532 

ν (NBLS) 

(m = 41) 
37.650 29.506 1.149 10.494 

ν (NBLS) 

(m = 100) 
38.802 29.929 0.857 20.528 

ν (NBLS) 

(m = 200) 
43.209 32.361 1.241 20.577 

ν (NBLS) 

(m = 300) 
47.291 34.668 1.176 22.777 

ν (NBLS) 

(m = 400) 
51.397 36.957 1.263 24.523 

ν (NBLS) 

(m = 500) 
55.518 39.188 1.382 26.319 
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Table 9: Estimates of d on the residuals using the log-periodogram estimate of 

Robinson (1995b) 

m  =  T
0.5

 

l  = 0 

Stock prices / 

Dividends 

Real stock 

prices / Real 

dividends 

P.E.R. / Long 

interest rates 

Real stock 

prices / Real 

earnings 

ν (OLS) 

time domain 
0.775 1.082 0.811 0.723 

ν (OLS) 

freq. domain 
0.633 0.976 0.828 0.526 

ν (NBLS) 

(m = 25) 
1.012 1.112 0.837 1.129 

ν (NBLS) 

(m = 41) 
1.126 1.132 0.860 1.042 

ν (NBLS) 

(m = 100) 
1.083 1.128 0.878 0.600 

ν (NBLS) 

(m = 200) 
0.942 1.103 0.855 0.598 

ν (NBLS) 

(m = 300) 
0.832 1.087 0.859 0.560 

ν (NBLS) 

(m = 400) 
0.754 1.077 0.853 0.551 

ν (NBLS) 

(m = 500) 
0.708 1.070 0.846 0.532 

 

 

Table 10: Estimates of d on the residuals using the log-periodogram estimate of 

Robinson (1995b) 

m  =  T
0.5

 

l  = 2 

Stock prices / 

Dividends 

Real stock 

prices / Real 

dividends 

P.E.R. / Long 

interest rates 

Real stock 

prices / Real 

earnings 

ν (OLS) 

time domain 
0.991 1.273 0.650 0.805 

ν (OLS) 

freq. domain 
0.617 1.127 0.697 0.430 

ν (NBLS) 

(m = 25) 
1.260 1.304 0.725 1.283 

ν (NBLS) 

(m = 41) 
1.386 1.326 0.781 1.190 

ν (NBLS) 

(m = 100) 
1.337 1.322 0.827 0.623 

ν (NBLS) 

(m = 200) 
1.186 1.294 0.766 0.620 

ν (NBLS) 

(m = 300) 
1.066 1.277 0.777 0.557 

ν (NBLS) 

(m = 400) 
0.956 1.269 0.763 0.535 

ν (NBLS) 

(m = 500) 
0.853 1.263 0.744 0.486 
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Table 11: Estimates of d on the residuals using the Whittle estimate of Robinson 

(1995a) 

m  =  25 
Stock prices / 

Dividends 

Real stock 

prices / Real 

dividends 

P.E.R. / Long 

interest rates 

Real stock 

prices / Real 

earnings 

ν (OLS) 

time domain 
0.606 0.733 0.500 0.610 

ν (OLS) 

freq. domain 
0.608 0.709 0.500 0.500 

ν (NBLS) 

(m = 25) 
0.663 0.741 0.500 0.878 

ν (NBLS) 

(m = 41) 
0.683 0.744 0.500 0.843 

ν (NBLS) 

(m = 100) 
0.676 0.743 0.500 0.515 

ν (NBLS) 

(m = 200) 
0.648 0.739 0.500 0.514 

ν (NBLS) 

(m = 300) 
0.622 0.735 0.500 0.500 

ν (NBLS) 

(m = 400) 
0.599 0.730 0.500 0.500 

ν (NBLS) 

(m = 500) 
0.582 0.726 0.500 0.500 

 

 

Table 12: Estimates of d on the residuals using the Whittle estimate of Robinson 

(1995a) 

m  =  T
0.5

 = 41 

 

Stock prices / 

Dividends 

Real stock 

prices / Real 

dividends 

P.E.R. / Long 

interest rates 

Real stock 

prices / Real 

earnings 

ν (OLS) 

time domain 
0.778 0.803 0.612 0.715 

ν (OLS) 

freq. domain 
0.781 0.777 0.581 0.500 

ν (NBLS) 

(m = 25) 
0.827 0.814 0.567 1.047 

ν (NBLS) 

(m = 41) 
0.815 0.819 0.543 0.987 

ν (NBLS) 

(m = 100) 
0.811 0.817 0.526 0.623 

ν (NBLS) 

(m = 200) 
0.796 0.811 0.549 0.621 

ν (NBLS) 

(m = 300) 
0.784 0.805 0.545 0.562 

ν (NBLS) 

(m = 400) 
0.775 0.800 0.551 0.521 

ν (NBLS) 

(m = 500) 
0.770 0.794 0.559 0.500 
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Table 13a: Stock prices and dividends 

Model ν d γ 

u1t is white noise 

u2T is white noise 
52.754 1.161 0.773 

u1t is AR(1) 

u2T is white noise 
48.829 1.166 0.795 

u1t is white noise 

u2T is AR(1) 
48.829 1.188 0.609 

u1t is AR(1) 

u2T is AR(1) 
48.792 1.151 0.631 

 

 

Table 13b: Real stock prices and real dividends 

Model ν d γ 

u1t is white noise 

u2T is white noise 
57.435 1.047 0.780 

u1t is AR(1) 

u1T is white noise 
52.251 1.036 0.763 

u1t is white noise 

u2T is AR(1) 
52.249 0.996 0.526 

u1t is AR(1) 

u2T is AR(1) 
52.208 1.159 0.878 

 

 

Table 13c: P.E.R. and long interest rates 

Model ν d γ 

u1t is white noise 

u2T is white noise 
-1.566 1.165 0.779 

u1t is AR(1) 

u2T is white noise 
0.874 1.053 0.763 

u1t is white noise 

u2T is AR(1) 
0.876 1.115 0.527 

u1t is AR(1) 

u2T is AR(1) 
0.874 1.153 0.877 

 

 

Table 13d: Real stock prices and real earnings 

Model ν d γ 

u1t is white noise 

u2T is white noise 
20.253 1.081 0.780 

u1t is AR(1) 

u2T is white noise 
13.376 1.150 0.764 

u1t is white noise 

u2T is AR(1) 
13.387 0.984 0.521 

u1t is AR(1) 

u2T is AR(1) 
13.390 1.152 0.890 

 


