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Abstract
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asymptotically normal in the context of signal plosise models. Daily data on the
NASDAQ index are analysed. The results suggestublatility has a component of long-
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1. Introduction

In recent years international stock markets haveoine increasingly volatile, and the
persistence of volatility in asset returns hasivecka great deal of attention in the literature.
A high degree of persistence and time dependerc®ften been found in their conditional
variances. In particular, asset returns typica¥ileit high persistence in the autocorrelation
of some transforms such as squares or other pa¥aissolute values.

Two main approaches have been taken to model comalitheteroscedasticity. The
first is the Autoregressive Conditional Heteroslstdity (ARCH) model of Engle (1982),
which models the conditional variance as an exagtction of the squares of past
observations. Thus, volatility is a stochastic psscand both the mean and the volatility
equations have separate and independent error.t@éhsspaper uses the second approach,
namely stochastic volatility (SV) models, extenditiem to the case of long memory
behaviour.

Long range dependence (or long memory) processes become very popular in
recent years when modelling macroeconomic or fiigritne series (see, e.g., Diebold and
Rudebusch, 1989; Balllie, 1996; Gil-Alana and Rebimm 1997; etc.). Moreover, the
existence of long memory in powers of the absolatiee of asset returns was studied by
Ding et al. (1993). Later, Balillie et al. (1996pl@rslev and Mikkelsen (1996) and Ding and
Granger (1996) proposed the Fractionally Integré&R€H (FIGARCH) model. Breidt et al.
(1998), Harvey (1998) and, also, Deo and HurvicB0@@ and Arteche (2004) have
developed parametric and semiparametric methodstimate the memory parameter. In this
paper, we use the approach proposed in Artechetj260obtain a semiparametric estimate
in the frequency domain based on the Whittle fuumctiwhich is an approximation to the
likelihood function, but does not require Gausdimf the series, a feature that is rarely
satisfied in financial time series. This estimaeshown to be consistent and asymptotically

normal under very mild conditions in the contexsmnal plus noise models.
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The outline of the paper is as follows: Sectiobri2fly describes the model and the
estimation procedure for the memory parameter. datin 3 the procedure is applied to

daily data on the NASDAQ, while Section 4 contanse concluding remarks.

2. The model and the estimation procedure
The Long Memory Stochastic Volatility (LMSV) modploposed in Breidt et al. (1998),
Harvey (1998), Deo and Hurvich (2001) and Arte@@04) is given by:

X = 00 &, 1)

where x is the observed time seriesjs a positive constant; is i.i.d., with mean zero and

ot = exp(%tj, (2)

where vy is stationary with long memory. That means thatdbvariance structure of i¢ the

variance 1, andis given by:

following:
W(h) = Cov(v,vesn) = g h®7h ash & o, [gf<w,  (3)

and its counterpart in the frequency domain impliest the spectral density function qf v

satisfies:

f,(1) =429 as A - 0%, 0 < ¢ < w, (4)
where~ means that the ratio of the left-hand side amdright-hand side of (3) and (4)
converges to 1 as B « in (3) and as. — 0". Conditions (3) and (4) are not always
equivalent, but Zygmund (1995, Cap.V, Sect. 2),,andre generally, Yong (1974) derive

conditions under which both expressions are egemnta/A typical model satisfying the above

two properties is the fractionally integrated I(dddel, namely

Q- D% =y, (5)



where d can be any real number, apdsuan I(0) process, defined, for the purpose ef th
present paper, as a covariance stationary procébs spectral density function that is
positive and finite at the zero frequency. Notd tha polynomial on the left-hand side of (5)

can be expressed in terms of its Binomial expansioch that

a-1)9 = %(éj(—l)i L=1-qL+ 30@D2_
j=o\J 2

for all real d. Thus, higher the d is, the highell e the level of association between the
observations. This type of model was introduced@gnger (1980, 1981), Granger and
Joyeux (1980) and Hosking (1981), and it was thexaiy justified in terms of aggregation
by Robinson (1978), Granger (1980), and more récemterms of the duration of shocks by
Parke (1999) and othets.
Taking logs of the squares afir (1) and (2), we obtain:
v = logxg = p + v + &, (6)

where /,1=Ioga2 + Eloget2 and ¢ = Iog(st2 —Elog(st2 is i.i.d. with zero mean and

varianceag For example, it; ~ N(O, 1) thert; is a centred Iogrl2 variable with E Ioget2

=1.27 andag = /2. Apart from the constant, y; takes the form of a signal plus noise

model, where the signal is a long memory processmelated with the noise, which in this
case is (non-Gaussian) i.i.d. (see Arteche, 2004).
The autocovariance function afig then given by:
yy() = EyiYean = w(h) + 0f1(h=0), (7)

implying that the corresponding spectral densityction is:

1 Cioczek-Georges and Mandelbrot (1995), Taqqul.et1897), Chambers (1998) and Lippi and Zafferoni
(1999) also use aggregation to motivate long menprocesses, while Diebold and Inoue (2001) propose
another source for long memory based on regimechimig models.
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fA) = W) + 2% —m<i<nm 8)
y v 21 a

In the context of SV models, maximum likelihood hreads are hard to implement due
to the existence of separate errors in the meariagadolatility equations. Moreover, in the
presence of long memory, the problem is even ha@drer techniques, such as the one
based on the method of moments, were proposed HgrTd®86) and Melino and Turnbull
(1990), but these methods were shown to be inefficin the context of AR disturbances
with roots which are close to unity (see, e.g.,qld&r et al., 1994). Harvey et al. (1994)
proposed a quasi-maximum likelihood method basetherKalman filter in the context of
short memory SV models. However, for long memanys method requires a truncation in
the AR expansion of the process, which may lealtss of relevant information.

Different estimators have been suggested for 8)JnJome of them are parametric, in
the sense that the model is specified up to aefinimber of parameters of which d is just
one. Sowell (1992) analysed in the time domainetkect maximum likelihood estimates of
the parameter of a fractional ARIMA (ARFIMA) modalsing recursive procedures that
allow a quick evaluation of the likelihood functiof limitation of this procedure is that the
roots of the AR polynomial cannot be multiple ahd theoretical mean parameter must be
either zero or known. In the frequency domain, Bad Taqqu (1986) assumed Gaussianity
of the process, and, minimising the Whittle functidhey showed that the estimate is
consistent and asymptotically normal under appaterconditions, which are satisfied by
fractional models as in (5) with 0 < d < 0.5. Dahlb (1989) also assumed Gaussianity but
considered the exact likelihood function. He protieat this estimate and the one studied in
Fox and Tagqu (1986) are both not only asymptoticatirmal but also asymptotically
efficient in the sense of Fisher.

It is worth pointing out that all these parame#gtimates have the same asymptotic

properties of T*consistency and asymptotic normality, and, if frecess is Gaussian,
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asymptotic efficiency. Giraitis and Surgailis (199@lax the Gaussianity assumption and
analyse the Whittle estimate for linear processémwing that it is ¥%consistent and
asymptotic normal, although it is no longer asyrtipédly efficient, while Hosoya (1997)
extends the previous analysis to a multivariatenéaork.

However, in the case of parametric approachescdinect choice of the model is
crucial: if it is misspecified, the estimates ofatgle liable to be inconsistent. In fact,
misspecification of the short run components calidate the estimation of the long run
behaviour. Thus, there might be some advantagegstimating d on the basis of
semiparametric approaches. These parameterisahanlgng run characteristic of the series.
There is a price to be paid in terms of efficieimtyot using a correct parametric model, but
when the sample size is large the robustness oipaeametric procedures is important.
Examples in this context are the log-periodogramrassion estimator (LPE), initially
proposed by Geweke and Porter-Hudak (1983) and tatalified by Kinsch (1986) and
Robinson (1995b), the average periodogram estinmdt®obinson (APE, 1994) and a local
Whittle estimator (Robinson, 1995a). In the contekisignal plus noise and SV models,
Arteche (2004) showed that the latter procedurebidmn, 1995a) is consistent and

asymptotically normal The estimator is implicitly defined by:

~ - m
d:argmind(log ca@) —Zd%ZIog A ©)
=1
v 1 m 2d 27T m
C@) = & Yi(A)A29 po= 271 m_ o
@ =% Bupar =

where 1§) is the periodogram of the raw time serigsgien by:

1 |7 i t|?
IA) = ——|xx,e" 7 |.
;) 27T =1




and dO (-0.5, 0.5)® Under finiteness of the fourth moment and otheld nconditions,
Robinson (1995a) proved that:
Jm@d-4d) -, NOQLU4) asT - o,

where d is the true value of d, and with the only addiibrequirement that m- o slower
than T# Robinson (1995a) shows that m must be smaller 2o avoid aliasing effects. A
multivariate extension of this estimation procedeaa be found in Lobato (1999).

The other methods also based on semiparametriclsn(giech as the APE and the
LPE) have been applied to economic time series égeGil-Alana, 2002). Here we use the
Whittle approach, firstly because of its computagilosimplicity, as it does not require any
additional user-chosen numbers in the estimatieng(@he case with the LPE and the APE).
Secondly, it is not necessary to assume Gaussiendyder to obtain an asymptotic normal
distribution, Robinson’s (1995a) method being mefficient than the LPE.In addition,
several Monte Carlo experiments carried out, faneple, by Gil-Alana (2008) showed that,
in finite samples, the Whittle approach has bestatistical properties compared with the
other procedures.

Arteche (2004) shows that in the context of thiscpdure the spectral density of y
(fy(2)) inherits the asymptotic behaviour o) if the memory parameter d is positive.
Further, under very mild regularity conditions, #stimate of d based on Robinson’s (1995a)
method preserves the same consistency and asyoptothality properties as under normal

circumstances.

2 In fact, he showed that it satisfies these twopprties not only for the case of long memory &t tlero
frequency, but also when the spectrum is unbourdethy frequency in the interval (fi] (see also Arteche
and Robinson, 2000).

3 Velasco (1999a, b) showed that the fractionalifferencing parameter can also be consistently
semiparametrically estimated in nonstationary cdstby means of tapering.

*  The exact requirement is that (1/m) + {#h(log m¥)/(T*) — 0 as T— o, whereu is determined by the
smoothness of the spectral density of the shortcamponents. In the case of a stationary and fitier
ARMA, o can be set equal to 2 and the condition is (L/fir+log mP)/(T*) — 0 as T— .

® Velasco (2000) showed that Gaussianity is noesgary for the LPE either.

® Other recent approaches using the Whittle functiom Phillips and Shimotsu (2004) and Shimotsu and
Phillips (2005, 2006).



3. Persistence in the volatility of the NASDAQ-100
Over the past few years the presence of long meinoitye volatility of equity returns has
dominated the literature on temporal dependencieinancial volatility. Recently, both
Bollerslev and Jubinski (1999) and Ray and Tsay0Q20nvestigated the long memory
behaviour in the volatility of the Aluminum Corptian of American (AA) daily stock
returns. Bollerslev and Jubinski (1999) use Rohbis(1995b) bivariate version of the GPH
estimator to estimate the long memory parameteibeblute returns and volume, whereas
Ray and Tsay (2000) apply both the univariate GBtimator and Breidt et al.’s (1998)
QMLE to log-squared returns. Both studies find emice of strong persistence in the
volatility of the AA daily stock returns with a Ignmemory parameter estimate of
approximately 0.35. Jensen (2001) proposes a Bayesstimator based on wavelets, and
using the same dataset he concludes that the ehtliss around 0.36.

In this section we analyse the persistence in thatiity of the NASDAQ-100 Index.
It includes 100 of the largest non-financial doreeand international companies listed on
the NASDAQ National Market tier of the NASDAQ Stobkarket Inc. The index reflects
NASDAQ’s largest companies across major industougs. The frequency of the series is

daily and the sample covers the period from JanRaPP01 to February 20, 2004.

INSERT FIGURE 1 ABOUT HERE

Figure 1 plots the return series. These appehetstationary, although the variance
seems to exhibit a higher degree of volatilityhe first half of the sample. Figure 2 contains

the plot of the transformed series, ., which still appears to be stationary, but more

persistent. Figure 3 plots the periodogram of thesformed series, which has a large peak at



the smallest frequency, suggesting that the seaedong memory behaviour at the long run
or zero frequency.

Figure 2 displays the estimated values of d basedabinson’s (1995a) method, i.e.,

d is given by (9). The upper part of the figure mepohe results for all values of m from 1 to
T/2.” We also include in the figure the 95%-confidenagerival corresponding to the
hypothesis of d = 0. It can be seen that all thienases are above the interval, implying the

existence of a component of long memory behaviour.

INSERT FIGURE 2 ABOUT HERE

In the lower part of the table, we display theraates for a grid of values of m from
25 to 100. In general, lower values are obtainedhigher bandwidths, which may be
explained by the fact that negative biases areywed by the added noise to the SVLM
models. The estimated values range of d betweerafd30.5, implying stationary long
memory and mean-reverting behaviour. This resuk kame implications in terms of
financial policy and planning inference: any shadflecting the volatility process will die out
in the long run, though the adjustment processhwélslow, according to a hyperbolic rate of
decay. In this context, policy actions might berappiate to eliminate the effects of a shock

more quickly and accelerate mean-reversion.

INSERT TABLE 1 AND FIGURE 3 ABOUT HERE

” Some methods to calculate the optimal bandwidtimbers have been examined in Delgado and Robinson
(1996) and Robinson and Henry (1996). Howeverhendase of the Whittle estimator employed here ugee

of optimal values has not been theoretically jiedif Other authors, such as Lobato and Savin (1898)an
interval of values for m but we have preferreddpart the results for the whole range of values of
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Figure 2 also shows that the parameter d is mabtestvhen m is between 50 and 75.
In such a case the estimate of d is around 0.4kleTh reports the first twenty impulse
responses for a 1-unit shock in the context of(dh process with d = 0.41. It can be seen
that, 10 periods after the initial shock, 11.7%tsfeffect is still present in the series, 7.84%
being the corresponding figure after 20 periodgufé 3 plots the responses over a 50-period

horizon, and shows clearly the hyperbolic decaypeeffect of the shocks.

4, Conclusions
This paper has examined the long memory propertphenstochastic volatitlity models of
Harvey (1998) and Breidt et al. (1998) by usingaussian semiparametric or local Whittle
estimator of the fractional differencing parametBobinson, 1995a). In a recent paper,
Arteche (2004) shows that this estimator is coasistnd asymptotically normal in the
context of signal plus noise models. Moreover, ¢baditions needed for consistency and
asymptotic normality are less restrictive than éhosquired in Deo and Hurvich (2001) for
the estimator based on the LPE. Thus, for exan@éeissianity, which is a condition rarely
satisfied in financial series, is not necessary.

Daily data on the NASDAQ-100 Index \Xor the time period January 2, 2001 —

February 20, 2004 are used, and the analysis isedaout on the transformed series

y: =log xtz. The results show that the volatility process lagyImemory, with an order of

integration ranging between 0.3 and 0.5. The flaat the estimated values of d are strictly
smaller than 1 implies mean reversion, with the&fbf the shocks dying away in the long
run.

A drawback of analysis carried out here might keeuke of a semiparametric method
not taking into account the short-run dynamics he series. However, as mentioned in

Section 2, the use of parametric procedures igcdiffto implement due to the existence of
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separate errors in the main and log-volatility emumes. Theoretical work in this direction is

now under way.
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FIGURE 2

Estimates of d based on the Whittle method of Rsinn(1994a) for the transformed retur
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TABLE 1
Impulse responses for a value of d = 0.41
Period Value Period Value
1 0.4100 11 0.1111
2 0.2890 12 0.1056
3 0.2322 13 0.1008
4 0.1979 14 0.0966
5 0.1745 15 0.0928
6 0.1574 16 0.0893
7 0.1441 17 0.0862
8 0.1335 18 0.0834
9 0.1247 19 0.0808
10 0.1174 20 0.0784
FIGURE 3

Impulse responses for an I(d) process with d = 0.41
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