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Abstract

This note examines the stochastic properties otad® spreads with parametric and semi-
parametric fractional integration techniques. Sintbe observed data (rather than the
estimated residuals from a cointegrating regre$same used for the analysis, standard
methods can be applied. The results indicate tiafkdasury maturity rates are (1) in most
cases, although the order of integration decreasts maturity. Further, mean reversion
occurs for the 5, 7 and 10 year rates as well asdweeral term spreads, suggesting that the
expectation hypothesis of the term structure isfsad empirically.
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1. Introduction

The term structure of interest rates has been sty investigated given the information it
can provide about agents’ expectations on futuesrand inflation, as well as its role in the
transmission mechanism of monetary policy (see Manknd Summers, 1984). In an
influential paper Campbell and Shiller (1987) shdwihat in the presence of rational
expectations long-term interest rates should bealetju the present discounted value of
expected future short-term rates. The implicat®that the term spread should be stationary,
which the same authors found to be the case ilUBaising standard Dickey-Fuller tests.
Alternatively, cointegration between short- anddgdarm rates should hold, a result which

was reported by Hall et al. (1992) amongst others.

However, the discrete options I(0) and I(1) offel®dclassical unit root and cointegration
analysis might be too restrictive to model the tstmcture, as the adjustment to equilibrium
might in fact be a rather slow process. In a repaper, therefore, Barassi and Zhang (2009)
carry out fractional cointegration tests followiagesidual-based approach based on the exact
local Whittle estimator, which is shown to outpenforival methods by means of Monte
Carlo experiments, and report that the term strectu both the US and the UK is a mean-

reverting process with long memory.

In this present note we also consider a generaleiratbwing for long memory in order to
analyse the term structure of US interest rateseler, unlike Barassi and Zhang (2009), we
do not regress longer maturity rates against shartes with the aim of testing the
stationarity or long-memory properties of the estied residuals, but instead construct term

spreads and analyse their fractional integratioop@rties. In other words, we test for

! Caporale and Gil-Alana (2004) use fractional aeimation techniques to test present value modedtook
prices.



fractional cointegration under the assumption given (1, -1) cointegrating vector. This has
the advantage that the tests are based on theat@anrgtead of the estimated residuals, and
therefore standard fractional methods can be apgirectly to the observed data without any

prior estimation.

2. Methodology
The analysis carried out in this note is based ractibnal integration, which is a more
general framework than the standard unit root téstsed on the 1(0)/I(1) dichotomy.
Specifically, we obtain estimates of d based onwhmttle function in the frequency domain
(Dahlhaus, 1989) using parametric (Robinson, 19843 semi-parametric techniques
(Robinson, 1995). The model considered is the Wohg:

Yo =M+ % @-L)'% =u, t =12.., (1)
where y stands for the observed raw data, d is a reakyalnd uis assumed to be 1(0). In
the parametric model we assume first thaswncorrelated, and then an AR(1) structure is

imposed. Other methods of estimating d paramelyi¢8bwell, 1992) or semiparametrically

(Phillips and Shimotsu, 2005) lead to essentidlb/same results.

3. Data and empirical results
The dataset includes the US Treasury constant ityatates, monthly, for the time period
1982M1 — 2009M12, for different maturities, nam&lgnd 6 months (M3 and M6), and 1, 2,
3,5, 7and 10 years (Y1, Y2, Y3, Y5, Y7 and YIDNese series were obtained from the US
Federal Reserve Board.
[Insert Figures 1 — 4 about here]
Figure 1 shows plots of the raw time series, whidtline steadily with some

oscillations over the sample period under invesitga Figures 2, 3 and 4 display the term



spreads for the 10, 7 and 5 year maturity ratgseaely; there appears to be a relatively
small degree of dependence in the data.
[Insert Table 1 about here]

Table 1 reports the estimates of d for the origiimae series. Specifically, the second
and third columns show the estimates of d (Dahlhh889) along with the 95% confidence
interval using Robinson’s (1994) parametric apphoaec the former column, the errors are
assumed to be white noise, whilst in the latteA&{1) structure is imposed. It can be seen
that the estimates are all significantly above hiea case of uncorrelated errors. However,
when an AR(1) specification is adopted, the I(1pdthesis cannot be rejected for the M3,
M6, Y1, Y2 and Y3 rates, but it is rejected in favaf mean reversion (i.e. d < 1) for the
remaining three rates (Y5, Y7 and Y10). Owing te thsparity of the results depending on
the specification of the error term, we employ t@duditional methods. The first assumes that
the errors follow the Bloomfield (1973) model. This a non-parametric method that
produces autocorrelations for the error term tle@iagt exponentially as in the AR(MA) case.
The second approach is the Whittle semi-parametrathod of Robinson (1995). The
estimates based on these methods are displayée ifodrth and fifth columns of Table 1.
The results based on the Bloomfield model implyt tha 1(1) hypothesis cannot be rejected
in any case. By contrast, when using the semi-patraeriVhittle method, the parameter d is
estimated to be significantly smaller than 1 in ttases of Y5, Y7 and Y10. It is also
noteworthy that the estimated values of d decreas®otonically with the maturity rate.

[Insert Table 2 about here]

Table 2 has the same structure as Table 1 bueomhthe term spreads. In particular,
we focus on the following spreads: Y10-M3; Y10-M610-Y1; Y7-M3; Y7-M6; Y7-Y1,;
and Y5-M3; Y5-M6 and Y5-Y1. The first noticeableatare here is that the estimated values

of d are in all cases smaller, suggesting thaktier decrease in the degree of dependence



compared with the individual series. As before fedénces emerge depending on the
specification of the error term. Using the Bloordis (1973) approach and the Whittle semi-
parametric method (Robinson, 1995), mean reveisiéound for the following three series:

Y10-M3, Y7-M3 and Y5-M3. In the remaining caseshaligh the estimates are smaller than

in Table 1, the unit root hypothesis cannot bectep:

4. Conclusions

This note has analysed the stochastic propertiedSfterm spreads with parametric and
semi-parametric fractional integration methods. &pproach employed here is preferable to
other methods that test the Expectations HypothmBsimeans of standard stationary/unit root
tests, or by testing the order of integration of #stimated residuals from cointegrating
regressions as in Barassi and Zhang (2009). Tlsemeaa that, in addition to allowing for any
real values of the fractional parameter d, the ehosethod uses the raw data, without
requiring any preliminary estimation step. The mfamding is that the term spreads are non-
stationary but mean-reverting with orders of in&igmn strictly smaller than 1, implying that
the Expectations Hypothesis is satisfied in theylaim, which is consistent with the results

reported in Barassi and Zhang (2009).
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Figure 1: Treasury Constant Maturity Rates: M3, M6, Y1, Y2, Y3, Y5, Y7 and Y10
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Figure 2: Term spreads: Y10-M3; Y10-M6; Y10-Y1
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Figure 3: Term spreads: Y7-M3; Y7-M6; Y7-Y1
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Table 1: Estimates of d using the original time ségs

Robinson’s (1994) parametric approach Rob. (1995)
White noise AR (1) Bloomfield M = (P}
M3 (1.2215’18424) (0.9(%6(,)43233) (o.9§é%011.239) 1.159
M6 (1.23}'1?,’111.413) (o.9§é%zf.331) (1.0&1%73336) 1.148
vl (1.22%?,’33445) (0.934(,)017.262) (0.9;&23270) 1.104
Y2 (1.221%?211.445) (0.83?533132) (0.87121(,)211.182) 0.999
V3 (1.211'1?,’13442) (0.8(?.1?517.054) (0.72(3)543111) 0.926
o (1.191'1?,’03437) (0.73.68,6%).985) (o.agéa,wfmg) 0.815
e (1.16125711.406) (0.7(7).78,58969) (0_622345030) 0.753
V10 (1.13}%?43372) (0.7(7).08,23.964) (0.585?13.010) 0.708
In bold, statistical evidence of mean reversiothat5% level. M is the bandwidth number.
Table 2: Estimates of d for the term spreads
Robinson’s (1994) parametric approach Rob. (199'5)
White noise AR (1) Bloomfield M = (P
v10-M3 (1.091%?011.343) (o.eg'(?,sg.gsa) (0.73'98,23950) 0-995
v10-Mé (1.13}9?23335) (0.8;)5?93152) (O.8S;Lé(?lf.l42) 1.120
vio-vi (1.122513314) (0.926(,)83225) (o.9é6(,)8§208) 1.1236
Y7-M3 (1.03;912.340) (0.3?1'97,63938) (0.6(7)i7,9g.929) 0.900
Y7 - Mo (1.12153?117.333) (0.78'1?23120) (0.86(5)%.3?83124) 1.040
vr-vi (1.13}6?13312) (0.84:1Lé(,)6f.214) (o.9éé(,)7§209) 1165
Y5 -M3 (1.071%%93359) (0.48%‘?,9%.866) (0.6%37,33.881) 0.774
Y5 - Mo (1.11153?1?.340) (0.73?5212.054) (0.8§)é?311.086) 0.943
vo-vi (1.111:'3%93295) (0.8;(,)13189) (0.921é(,)3f.181) 1110




