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Abstract: Trends in compact device modeling and analog circuit simulation point
towards a growing interest among the modeling community in the standardization
of Verilog-A as an equation based modeling language for compact semiconductor
device model and circuit macromodel development. . This chapter introduces the
principles of compact device modeling with equation-defined devices and Verilog-
A models. For completeness circuit macromodel principles and construction are also
included. It also describes the use of the different types of equation based models in
analog and RF circuit simulation. Throughout the text the properties of a range of
analog and RF circuits with different levels of complexity are introduced and their
performance investigated with the “Quite universal circuit simulator” (Qucs) and
its related software package QucsStudio. All the device and circuit modeling tech-
niques introduced in this chapter form part of the standard features implemented in
Qucs and QucsStudio.
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6.1 Introduction

The structure of a conventional analog circuit simulator consists essentially of two
interlinked parts; firstly a simulation engine and secondly models of simple com-
ponents and more complex devices. Both parts are equally important, for without
adequate functionality in either the software is of little practical value. Early analog
circuit simulator engines [1] included linear and non-linear DC analysis , small sig-
nal AC analysis and transient circuit analysis. Later developments [2] added small
signal AC noise analysis , pole-zero analysis and in some instances large signal dis-
tortion analysis to the list of available analysis features. More recently, this list has
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been extended to include RF circuit analysis through the addition of scattering pa-
rameter simulation [3], harmonic balance techniques [4] and other high frequency
circuit analysis procedures [5]. Analog circuit simulation software is normally dis-
tributed with built-in component models. A very minimal set comprises models for
the fundamental R, C and L components, current and voltage sources, and a range
of diode, BJT, JFET and MOSFET semiconductor devices. In most circuit simula-
tors these are “hard wired” into the FORTRAN, C or C++ simulator code, making
the inclusion of new semiconductor device models difficult without a good work-
ing knowledge of advanced programming techniques and a simulators “Model Pro-
gramming Interface”. In many instances the effort involved in adding new models
to a simulator is considerable, taking significant amounts of time, particularly in the
case of models of nonlinear devices which require the partial derivatives of device
currents and charges to be generated for DC and transient simulation. Throughout
model construction considerable care is needed to ensure that new models work
correctly and do not inadvertently introduce current or charge discontinuities in the
modeled device characteristics. It is also worth noting however, that device models
built using a compiled programming language can result in very efficient run time
models which have reduced simulation times, especially during transient analysis.
For this reason compact semiconductor device modelling in FORTRAN, C or C++
has become one of the preferred techniques among the modeling community. Today,
modeling trends suggest that there is a growing interest in simulation software pack-
ages licensed under the GNU General Public license (GPL), or other open source li-
censes, which are linked to device modeling tools involving either the VHDL-AMS
[6] or the Verilog-AMS [7] hardware description languages. 1 One circuit simulator
in this category is the ’Quite universal circuit simulator’ (Qucs) [8] which employs
the ADMS analog Verilog-A model synthesizer [9] for compact model development.
To meet the diverse modeling needs of different groups of users, modern circuit sim-
ulation software is having to adapt to provide built-in device modeling facilities that
allow users the opportunity to experiment with new simulation models. 2 These can
be of widely differing complexity. One of the primary aims of Qucs is to offer users
a range of flexible simulation and device modeling tools which can be easily un-
derstood and applied to circuit design and model construction regardless of a users
knowledge of advanced electronics or device modeling techniques. This approach
has had a strong influence on the Qucs software development team by encouraging
the inclusion of features which support the construction of models built from simple
electrical networks to complex communications systems. This chapter presents a
number of different device modeling techniques, concentrating primarily on macro-
modeling, equation-defined device modeling and Verilog-A compact semiconductor
device modeling. All of these modeling techniques are part of the standard features

1 Analog hardware description languages include routines for the automatic generation of the par-
tial derivatives of device currents and charges, making compact model construction a simpler pro-
cess when compared to directly coding nonlinear models in C++ or other programming languages.
2 Feedback from the Qucs sourceforge.net Internet site indicate that users of the software range
from physics teachers in schools to PhD students, engineers, scientists and other established aca-
demic researchers
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implemented in Qucs and its closely related software package QucsStudio [10]. An
important general aim of this chapter is to encourage readers to try for them-selfs
developing device models using one or more of the described modeling techniques.
The text includes a number of example models taken from analog circuit design and
RF circuit engineering.

6.2 Circuit and system modeling using macromodels

6.2.1 Subcircuits and macromodels

The concepts underpinning subcircuits and their application in analog circuit sim-
ulation were introduced in Chapter 5 of this book. Subcircuits are a powerful tool
in the repertoire of modeling features commonly implemented in circuit simulation
software. Their primary task is to group a set of components as an independent
item which can be used over and over again. Subcircuits are identified by a unique
schematic symbol or netlist name. In general the circuit within the body of a sub-
circuit consists of a number of predefined components, user defined subcircuits and
macromodels, and Qucs library elements, which are connected to outside circuits
by a number of specified input and output signal terminals. Although macromod-
els are in many ways similar to subcircuits they are subtle different. Their primary
purpose is to functionally model the terminal characteristics of a device or circuit,
if applicable in all simulation domains, while minimizing the complexity of the cir-
cuitry within a macromodel body. In the early days of analog circuit simulation
macromodels allowed integrated circuit component level models to be replaced by
functional blocks which simulated with a significantly faster speed. One of the best
known integrated circuit macromodels was developed for operational amplifiers by
Boyle et al. [11]. The process employed for constructing macromodels is essentially
the same as that employed for subcircuits. Hence, many of the schematic capture
techniques introduced previously are also applicable to macromodels.

6.2.2 Building a special purpose signal generator
subcircuit/macromodel

Figure 5.9 illustrates a transient test circuit for a two phase switched capacitor inte-
grator with series input and output sample and hold circuits and a low-pass output
filter. Strictly, the subcircuits forming the switched capacitor integrator circuit are
not all pure subcircuits but models which have a mixture of subcircuit and macro-
model attributes. The simplest of these is the non-overlapping two phase clock gen-
erator shown in Figure 6.1. This model has a subcircuit structure but attributes which
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Fig. 6.1 Non-overlapping two phase clock generator macromodel symbol and internal electrical
network.

have the functional properties of a macromodel. The non-overlapping time signals 3

of outputs φ1 and φ2 are obtained by inverting output φ2 to give second output φ1.
Macromodel parameters Frequency and LEVEL set the output signal clock period
and voltage amplitude respectively.

6.2.3 A two phase switched capacitor sample and hold macromodel

The sample and hold circuit illustrated in Figure 6.2 also has the properties of a
subcircuit but the functionality of a macromodel. In this circuit the sample and hold
function is synthesized with Qucs voltage controlled switches and a number of other
fundamental electrical components. This macromodel in no way resembles the ac-
tual circuit of an integrated or discreet component version of a sample and hold
device. Switch S1 is closed when clock signal PH1 is high. 4 While S1 is closed
capacitor C charges with time constant C ·Ron, causing its voltage to follow the in-
put signal voltage. In the second half of the clock period switch S1 is open and S2
closed, Due to the fact that the time constant C ·Ro f f 5 is very large compared to
the capacitor charging time constant, the voltage across C now remains constant and
the voltage at output pin Pout becomes identical to the capacitor charging voltage.
Figure 6.3 presents a typical set of signal waveforms obtained from the transient
simulation of the sample and hold macromodel when driven by a two phase clock
generator with a period forty times smaller than the 1kHz input signal.

3 These signal are different at all points in a clock cycle except for the time when the both output
signals have an amplitude equal to LEVEL/2.
4 The reverse is true for voltage controlled switch S2 due to the non-overlapping nature of the two
phase clock generator.
5 Strictly, the series resistance of the path from C through switch S2 to the voltage controlled source
SRC2 is Ro f f plus the input resistance of SRC2, making the actual path resistance much greater
than Ro f f , ensuring that the capacitor voltage does not change during φ2 of the clock cycle.
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Fig. 6.2 A two phase sample and hold circuit symbol and internal electrical network.

6.2.4 A two phase switched capacitor inverting integrator
macromodel

The magnitude of the switched capacitor inverting integrator gain [27], gainInt,
shown in Figure 6.4 is given by equation 6.1
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Fig. 6.3 A two phase switched sample and hold test circuit and simulation waveforms; middle
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gainInt =
ω0 · (ω ·T/2)

ω · sin((ω ·T/2))
(6.1)

Where ω0 =C1/(T ·C2) radians, ω = 2 ·π · fs radians , and T = 1/ fc seconds. Here,
f s is the input signal frequency in Hz and fc is the two phase clock frequency in
Hz. The macromodel circuit shown in Figure 6.4 illustrates the construction of a
complex macromodel where the components forming the body of the macromodel
have differing hierarchies. In this particular example a mixture of fundamental com-
ponents plus two additional macromodels, SWcapPC and SPA, make up the circuit.
The value of component C2 is determined from the design equations located in
Qucs Equation block Eqn1 plus the numerical values of macromodel parameters C1,
gainInt, fs and fc. Macromodel SWcapPC represents a functional model of a par-
allel switched capacitor realisation of a continuous signal domain resistor of value
R = T/C1 = 1/( fc ·C1) Ohms. Macromodel SPA represents a basic single pole op-
erational amplifier. This macromodel is an extension of the Qucs simple operational
amplifier model produced by the addition of a DC input offset voltage source, differ-
ential input resistance, differential input capacitance, output resistance and a single
pole voltage gain transfer function to the basic Qucs operational amplifier model. 6
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Fig. 6.4 A two phase switched capacitor inverting integrator macromodel.

6 The single pole voltage transfer characteristic is determined by the macromodel parameters GBP
(differential gain bandwidth product), and AOLDC (open loop DC gain in dB).
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6.3 Qucs equation-defined device models

6.3.1 Background

A high percentage of device models include nonlinear current or charge character-
istics [12]. Modeling of nonlinear devices requires special simulation circuit ele-
ments which allow branch current to be expressed as a function of branch voltage
and branch charge to be expressed as a function of both branch voltage and cur-
rent. Often in the past, this form of highly nonlinear model was not implemented in
circuit simulators. However, with the implementation of polynomial nonlinearities
in SPICE 2g6 [13] this situation changed, providing subcircuits and macromodels
with the capability to model components with nonlinear I/V characteristics. A more
generalised form of nonlinear model was included in SPICE 3 with the introduction
of the B type nonlinear dependent source. The B dependent source can be specified
either as a nonlinear dependent current source or as a nonlinear dependent volt-
age source defined by algebraic equations written in terms of numeric constants,
mathematical operators, predefined functions, component values, node voltages and
branch currents. This was a significant break through as it allowed the performance
of nonlinear device models to be evaluated during simulation using generalised ex-
plicit algebraic expressions.

6.3.2 The structure and properties of Qucs equation-defined
devices (EDD)

The Qucs equation-defined device (EDD) [14] can be considered as a superset of
the SPICE 3 B type nonlinear dependent source. The EDD device is available in
both Qucs and QucsStudio. It comprises one or more 7 two terminal components
with electrical properties that are determined by branch current, branch voltage and
branch stored charge. Each EDD branch current can be defined by a symbolic volt-
age function (derived from any branch voltage in the same EDD). Similarly, the
EDD stored branch charge can be expressed as a symbolic function of branch volt-
age and current (again derived from any branch in the same EDD). Qucs EDD mod-
els may be combined with other EDD, Qucs built-in component models, user de-
fined and library subcircuits and macromodels and Qucs Equation blocks to form
new subcircuits and macromodels. Individual EDD branches are characterised by
current In, voltage Vn and stored charge Qn, with 1 ≤ n ≤ 8. The properties of the
Qucs EDD two terminal component are assumed to be explicit in nature, implying
that each branch is defined by:

7 In the current EDD implementation a maximum of eight two terminal components per EDD are
allowed.
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In = I(V 1,V 2...V n) and g =
dIn

dV n
(6.2)

Qn = Q(V 1,V 2...V n, I1, I2...In) and c =
dQn

dV n
=

dQ(V n)

dV n
+

dQ(In)

dV n
(6.3)

Where g is the branch conductance and c is the branch capacitance. EDD branches
with In = 0 and Qn = 0, that are connected to signals originating outside a specific
EDD, have the same properties as high impedance probes and may be used as volt-
age signal sensors. Similarly, EDD branches with In = Vn can be used to convert
a current to a voltage of the same amplitude. 8 EDD current and charge symbolic
equations can include numerical constants, branch variables, variables from Qucs
Equation blocks, subcircuit and macromodel parameters, and the mathematical op-
erations and functions defined in the Verilog-A hardware description language. Dur-
ing simulation Qucs automatically creates 9 the EDD branch current and charge
partial derivatives needed for nonlinear DC and transient simulation. Qucs EDD are
an essential element in equation-defined quantity modelling which implies that the
primary elements in the main body of a device model, or a macromodel, are physi-
cal quantities expressed as nonlinear equations rather than simple numerical values
[15].

6.3.3 A simple EDD signal multiplier macromodel

Conventional linear voltage and current controlled sources can be used to directly
add or subtract voltage and current signals. The same is not true for the multiply and
divide operations. Shown in Figure 6.5 is an EDD model of a two input multiplier
modeled at a functional hierarchical level. The central element in this macromodel is
the three branch EDD labelled D1 in Figure 6.5. Each branch is numbered for easy
identification. Branches two and three act as high impedance voltage probes sensing
the voltages connected to inputs IN1 and IN2. EDD branch one 10 generates current
I1 = X ·V 2 ·V 3. Current controlled voltage source SRC1 has a gain of one Ohm,
yielding a voltage of X ·V 2 ·V 3 amplitude at macromodel output MULT. Figure 6.6
shows an EDD multiplier with two sinusoidal signal inputs (one a carrier signal and
the other a modulating signal) that demonstrates the basic features of amplitude sig-
nal modulation. The multiplier post transient simulation date is also shown plotted

8 It is common practice with EDD modeling to use EDD branch currents to calculate the numerical
value of device model equations then to convert these to a voltage for use in other EDD (for
calculating the numerical values of further model equations) or as output variables.
9 These are generated in symbolic form by Qucs.
10 Note that EDD branch one has no voltage applied to it (V 1 = 0.0 V). It is simply used to generate
current I1.
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Fig. 6.5 A Qucs EDD macromodel for a two input functional signal multiplier with user definable
gain.

in Figure 6.6 for both the time and frequency domains, 11 demonstrating the power
of the Qucs post simulation data processing facilities.

6.3.4 Using Qucs EDD to model nonlinear two and multi-terminal
devices

One of the major reasons why the EDD element was developed for Qucs was to
allow nonlinear two and multi-terminal devices to be easily modeled. An example
of a two terminal device is a nonlinear resistance with

R = R0 · (1+A ·V R +B ·V R ·V R), (6.4)

where R0 is the nominal device resistance in Ω at zero applied voltage, and A and
B are voltage dependent resistive coefficients. A single branch EDD model for the
nonlinear resistance is presented in Figure 6.7. Notice that in this model the value
of R is written as a current contribution in terms of EDD Voltage V 1 and resistance
R. 12 Figure 6.8 shows the nonlinear resistor connected as a resistive voltage divider
network where the value of R is a function of applied input voltage V sw. The value
of R varies from 1kΩ to a value around 500kΩ when V sw is 100V. The plot of R
against V sw illustrated in Figure 6.8 confirms the nonlinear nature of resistor R.

11 Frequency domain signal spectra were generated using the fast Fourier transform (fft) data anal-
ysis function listed in Qucs post-simulation analysis template Equation blocks Eqn1, Eqn3 and
Eqn4, Figure 6.6.
12 To ensure that I1 can never be infinite if EDD parameter R0 is inadvertently set to a value of
zero Ohms a small positive value is added to R0 in the EDD expression for I1. In practical cases
this does not affect the accuracy of the nonlinear resistance model.
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Fig. 6.6 A Qucs EDD functional signal multiplier test circuit and example time domain signal
waveforms plus frequency domain signal spectra.

6.3.5 Building a Qucs EDD model for an n type RF MESFET
transistor

The Metal and semiconductor FET or MESFET is a Schottky barrier gate FET
which is often manufactured from Gallium Arsenide. It has become popular for RF
applications because of its high electron mobility and usable gain at high frequen-
cies. The device was developed and modelled by Walter R. Curtice in 1980 while
at the RCA Laboratory in Princeton, New Jersey USA [16]. An improved SPICE
model for this device was published by Statz et al. (Raytheon) in 1987 [17] and
adopted as the MESFET model for the SPICE 3 circuit simulator (semiconductor
device type Z). An equivalent circuit for a MESFET model is given in Figure 6.9.
Figure 6.10 presents a Qucs EDD MESFET model with a similar structure to the
equivalent circuit shown in Figure 6.9. For completeness the EDD model has lead
inductance (Lge, Lde and Lse) added. The Qucs EDD compact model of an n type
MESFET shown in Figure 6.10 is based on the Curtice hyperbolic tangent model
with subthreshold modification [18], D1 and D2 diode currents are modeled by the
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Fig. 6.8 A resistive divider test circuit for a nonlinear R with typical signal waveforms plus ex-
tracted values of R plotted as a function of applied voltage V sw.

full exponential diode equations with the exp function replaced by the Verilog-A
limexp function, MESFET charge is calculated from fixed capacitance plus transit
charge. A number of temperature dependent features are also modeled. However,
the example EDD Curtice MESFET model does not include any reverse voltage
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breakdown effects. Similarly, no attempt has been made to include in the model in-
ternally generated noise currents and voltages. 13 To allow easy conversion of the
EDD model to Verilog-A code the MESFET model equations are expressed in cur-
rent contribution form. Definitions for the MESFET parameters employed in the
Curtice model can be found in the Verilog-A parameter list for a Qucs Statz MES-
FET model given in Figure 6.19. Figure 6.11 shows an S-parameter test circuit for
simulating the performance of a MESFET transistor, over a wide frequency band,
plus a typical set of plotted output data.
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I(b2) = Igd
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Fig. 6.9 Qucs large signal n type MESHED model with internal branches and nodes numbered.

6.4 Qucs and QucsStudio compact model development with the
ADMS Verilog-A model synthesizer/compiler

6.4.1 Qucs implementation

Over the last few years Qucs has evolved from a basic circuit simulator, with RF
extensions, to a software package that offers stable analog simulation plus a range
of powerful modeling tools for the development of compact device models and in-
tegrated circuit macromodels. The simulator component list includes a very stable

13 See later sections of this chapter for comments on adding noise to compact device models.
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P_Q=1.602176462e$19
P_K=1.3806503e$23
Beta_T2=Area*Beta*1.01^(Betatc*(T2$T1))
Ah=1/(2*Vt_T2*Nsc)
Vt_T2=P_K*T2/P_Q
Eg_T1=Eg$7.02e$4*T1*T1/(1108.0+T1)
Eg_T2=Eg$7.02e$4*T2*T2/(1108.0+T2)
Is_T2=Area*Is*(Tr^(Xti/N))*limexp($(P_Q*Eg_T1)*(1$Tr)/(P_K*T2))
Vto_T2=Vto+Vtotc*(T2$T1)
Con2=$5.0*N*Vt_T2
Con3=1/(N*Vt_T2)

MESFET1
Area=1
Vto=$1.8
Beta=3e$3
Alpha=2.25
Nsc=1
Rg=5.1
Rd=1.3
Rs=1.3
Vtotc=0
Betatc=0
Alphatc=0
Eg=1.11
Is=1e$14
N=1
Xti=3.0
Lge=0
Lde=0.0
Lse=0.0
Temp=26.85
Tnom=26.85
Lambda=0.05
Rin=1e$3
Tau=1e$9
Cgd=0.2e$12
Cgs=1e$12
Cds=1e$12

Drain

Source

Gate

Where:
I(b1) = I1
I(b2) = I2
I(b3) = I3+ddt(Q3)
I(b4) = ddt(Q4)
I(b5) = V(b5)/Rin
I(b6) = ddt(Q7)
I(b7) = V(b7)/Rg
I(b8) = V(b8)/Rd
I(b9) = V(b9)/Rs
EDD D1 current I5 and voltage
V6 are used to calculate
subthreshold Ids correction.

Fig. 6.10 Qucs EDD large signal n type MESFET model and schematic diagram symbol plus
parameter list.

equation-defined device (EDD) which allows interactive development of nonlinear
component models. However, due to the interactive nature of the Qucs EDD model
it is not, in most instances, similar in simulation speed to native C++ models. The
great advantage of EDD models is the fact that they are easy to construct while
allowing changes to be simply made while testing. On the other hand Verilog-A
compact models are normally compiled to C++ code. The compiled code, when
linked to to the main body of Qucs code, allows faster operation often approaching
the speed obtained by hand crafted C++ device models. The main downside factors
to Qucs Verilog-A model development are as follows: a good working knowledge
of the Verilog-A hardware description language is an important prerequisite, a good
understanding of the Qucs C++ model interface code is essential, and time to com-
plete the development phase must be found. In general the development of Verilog-A
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Fig. 6.11 MESFET S-parameter test circuit plus a typical set of plotted simulation data.

models is normally restricted to components where the investment of model devel-
opment time is justified, for example complex semiconductor models for MOSFET
devices or advanced circuit macromodels for switched capacitor mixed-mode cir-
cuits. Moreover, it is also advisable to initially test the design of a new model using
Qucs EDD based models as a prerequisite to investing time on Verilog-A model
development. A series of examples outlining extended semiconductor diode model
construction based on a Qucs EDD and a Verilog-A template technique can be found
in a recent publication by Brinson, Jahn and Nabijou [19].

6.4.2 Construction of a Qucs Verilog-A model for a non-linear
resistor

Qucs version 0.0.16 includes a text editor which selectively colour highlights dif-
ferent statements, numbers and comments in the Verilog-A hardware description
language, making entry and checking of compact model code particularly easy. In
order to develop Qucs Verilog-A compact device models with the ADMS synthe-
sizer/compiler (version 2.3) it must be installed on a personal computer running the
Linux operating system. Illustrated in Figure 6.12 is the Verilog-A code for the non-
linear resistor introduced in a previous section. Once the Verilog-A code for a Qucs
model is entered and checked, pressing key “F9“ on the keyboard will automatically
generate a Qucs schematic symbol for the new model. This is in a simple block form
which can be edited using the Qucs ”Painting“ tools to give any desired schematic
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Fig. 6.12 Verilog-A code for the example non-linear resistor.

symbol outline. Figure 6.13 presents both the original block symbol and the edited
symbol for the nonlinear resistance model. Saving the model symbol causes Qucs

R=R0�(1.0+A � VR + B � VR � VR)

RnonLin1
R0=1000.0
A=0.1
B=0.01

(b)(a)

Fig. 6.13 Qucs schematic symbols for the example non-linear resistance: (a) original block symbol
and (b) final edited symbol.

to automatically generate C++ code for the new symbol. In the case of the Rnon-
Lin model this is held in file ”RnonLin.dat“ 14. This code, shown in Figure 6.14, is
needed at a later stage of the Verilog-A model development process. The next step in
the construction of a Verilog-A model for the non-linear resistor example involves
compiling the Verilog-A code with the ADMS Verilog-A compiler. First copy file
RnonLin.va from project directory QucsEDDVerilogA−pr j to Qucs source code di-

14 Note that file ”RnonLin.dat“ is stored in the development project directory with all the other
files associated with the current project. Project QucsEDDVerilogA−pr j (a sub-directory under
directory .qucs) in the non-linear resistor example.
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Fig. 6.14 Qucs generated schematic capture C++ symbol code for the RnonLin nonlinear resistor
example.

rectory /tmp/qucs-core/src/components/verilog. 15 From a terminal window change
your working directory to the Qucs Verilog-A directory and compile file RnonLin.va
with the command:

admsXml RnonLin.va -e qucsVersion.xml -e qucsMODULEcore.xml

Provided the compilation is error free the following message, or similar, is
displayed on the computer screen.

[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07
[warning] RnonLin: device not handled by the adms qucs interface
[warning] please ensure extra code to be added to the interface
[info...] RnonLin.core.cpp and RnonLin.core.h: files created
[info...] elapsed time: 0 (second)
[info...] admst iterations: 9246 (2127 freed)

Repeat the first compilation of file RnonLin.va by a second compile using the
command:

admsXml RnonLin.va -e qucsVersion.xml -e qucsMODULEdefs.xml

Again, provided the compilation is error free the following message, or similar, is
displayed on the computer screen.

[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07
[warning] RnonLin: device not handled by the adms qucs interface
[warning] please ensure extra code to be added to the interface

15 This directory reference assumes that the qucs package has been installed using the directions
given on the Qucs sourceforge.net web site. Other locations are allowed, using a home directory
like for example, /home/mike/qucs-0.0.16/qucs-core/src/components/verilog.
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[info...] RnonLin.defs.h: file created
[info...] elapsed time: 0 (second)
[info...] admst iterations: 7403 (1367 freed)

Repeat the second compilation of file RnonLin.va with a third compile using the
command:

admsXml RnonLin.va -e qucsVersion.xml -e qucsMODULEgui.xml

Again, provided the compilation is error free the following message, or similar, is
displayed on the computer screen.

[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07
[warning] RnonLin: device not handled by the adms qucs interface
[warning] please ensure extra code to be added to the interface
[info...] RnonLin.gui.cpp and RnonLin.gui.h: files created
[info...] elapsed time: 0 (second)
[info...] admst iterations: 7522 (1342 freed)

Repeat the third complation of file RnonLin.va with a fourth compile using the
command:

admsXml RnonLin.va -e analogfunction.xml

Again, provided the compilation is error free the following message, or similar, is
displayed on the computer screen.

[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07
[info...] RnonLin.analogfunction.h created
[info...] RnonLin.analogfunction.cpp created
[info...] elapsed time: 0 (second)
[info...] admst iterations: 4654 (1085 freed)

Provided the instructions above were correctly actioned directory
/tmp/qucs-core/src/components/verilog should contain the following files relating
to component RnonLin: RnonLin.va, RnonLin.core.cpp, RnonLin.core.h, Rnon-
Lin.defs.h, RnonLin.gui.cpp, RnonLin.gui.h, RnonLin.analogfunction.cpp,and Rnon-
Lin.analogfunction.h. Copy file RnonLin.gui.cpp, and file RnonLin.gui.h to Qucs
directory /tmp/qucs/qucs/components; while leaving a copy of all eight Rnon-
Lin files in directory /tmp/qucs-core/src/components/verilog. Change your work-
ing directory to Qucs directory /tmp/qucs/qucs/components and rename file Rnon-
Lin.gui.cpp to RnonLin.cpp and file RnonLin.gui.h to RnonLin.h. The next stage in
the Verilog-A model construction procedure involves making three changes to the
RnonLin.cpp C++ file (Figure 6.15); change the file name RnonLin.gui.h to Rnon-
Lin.h in line #include ’’RnonLin,gui.h‘‘, and the ”T” in the line Name
= “T”; to some other more appropriate abbreviation, like “RNL”; replace the text
“// put in here symbol drawing code and terminal definitions” at the bottom of file
RnonLin.cpp with the C++ code held in file RnonLin.dat, see Figure 6.14; replace
the tx and ty lines in file RnonLin.cpp with the following C++ code 16:

16 Each time a new model is constructed the initial values for tx and ty will have a different value
depending on the size of the new schematic symbol.
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Fig. 6.15 RnonLin.cpp C++ code.

// tx = x2+4;
// ty = y1+4;
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tx = -30; ty = -24;

Qucs directory /tmp/qucs/qucs/bitmaps contains 32 bit by 32 bit png graphics files.
These files are displayed on the left side of the Qucs main window when the ”Com-
ponents“ tag is clicked and represent a simple outline of the schematic symbol.
However, because of the 32 bit by 32 bit bitmap representation they are often only
very approximate pictures of the schematic capture symbol and in general do not
contain the detail of the schematic symbol. Fig.6.16 illustrates an enlarged view
of simple icon picture for the RnonLin icon. In this picture the non-linear resistive
equation has been replaced by the letters RNL. When finished the png file must be
saved in Qucs directory /tmp/qucs/qucs/bitmaps as file RnonLin.png, i.e. as the same
name as the model name in file RnonLin.cpp. The Gimp Image Editor or Kolour-
Paint program are ideal tools for constructing Qucs component icon pictures. After
constructing the RnonLin icon picture and saving it as file RnonLin.png the name
of the new model must be added to the component pictures list in file Makefile.am
located in directory /tmp/qucs/qucs/bitmaps. Add the name RnonLin.png to the end
of list ”XPMS = ....“ and save file Makefile.am. Having constructed the C++ code
for the new Verilog-A model, and its associated schematic capture symbol, all that
remains to do is to register the new symbol with (1) the qucs-core C++ code and
(2) with the qucs C++ code. In this section of these notes merging the new model
code with the qucs-core code is presented in detail. The next section continues the
same theme and introduces the procedure for registering the new model with the
GUI qucs C++ code. Figure 6.17 gives details of the RnonLin entries that have to
made to file Makefile.am in directory /tmp/qucs-core/src/components/verilog. After
adding the RnonLin model information to file Makefile.am save the modified file in
directory /tmp/qucs-core/src/components/verilog. All that remains to do when reg-
istering a new model with the qucs-core C++ code is to add the new model to two
additional files: change the working directory to /tmp/qucs-core/src/components and
open file components.h for editing with a text editor. Add an include statement for
the RnonLin model as indicated in the following code section:

#include "verilog/swcapZM1.core.h"
#include "verilog/swcapBLInt.core.h"
#include "verilog/RnonLin.core.h"
#include "verilog/dff_SR.core.h"
#include "verilog/tff_SR.core.h"

Change the working directory to /tmp/qucs-core/src and open file module.cpp
for editing with a text editor. Add a REGIST ER−CIRCUIT entry for the RnonLin
model as indicated in the following code section:

REGISTER_CIRCUIT (HPF);
REGISTER_CIRCUIT (swcapZM1);
REGISTER_CIRCUIT (swcapBLInt);
REGISTER_CIRCUIT (RnonLIN)
REGISTER_CIRCUIT (dff_SR);

Fig. 6.16 Enlarged picture of a 32 bit by 32 bit RnonLin icon picture
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Fig. 6.17 Additions to qucs-core Makefile.am located in directory /tmp/qucs-
core/src/components/verilog: the black arrows indicate a continuing list.

Note that the adjacent names of the Verilog-A models registered with the version
of Qucs that the new RnonLin model is being added too are most likely to vary from
the component names given in the last two code segments. The code lists shown are
different to the standard Qucs-0.0.16 SVN code due to previously added user con-
structed Verilog-A models. After editing files components.h and module.cpp make
sure that they are saved in their respective directories. Change the current directory
to /tmp/qucs/qucs/components and open file Makefile.am for editing with a text ed-
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itor. Add the RnonLin entry to Makefile.am as indicated below in the short segment
of C++ code:

libcomponents_a_SOURCES= ................................
:

LPF.cpp HPF.cpp swcapBLInt.cpp RnonLin.cpp
noinst_HEADERS= .........................................

:
LPF.h HPF.h swcapBLInt.h RnonLin.h

Again all that remains to do when registering a new model with the Qucs C++
code is to add the name of the new model to two additional files: change the working
directory to /tmp/qucs/qucs/components and open file components.h for editing with
a text editor. Add an include statement for the RnonLin model as indicated in the
following code section:

#include "swcapZM1.h"
#include "swcapBLInt.h"
#include "RnonLin.h"
#include "dff_SR.h"
#include "tff_SR.h"

Change the working directory to /tmp/qucs/qucs and open file module.cpp for
editing with a rext editor. Add a REGISTER−VERILOG statement for the RnonLin
model as indicated in the following section:

REGISTER_VERILOG (photodiode);
REGISTER_VERILOG (phototransistor);
REGISTER_VERILOG (nigbt);
REGISTER_VERILOG (RnonLin);

Note new Verilog-A models are normally added at the end of the module.cpp
Verilog-A model registration list. After editing files components.h and module.cpp
make sure they saved in their respective directories. The last phase in the construc-
tion of a new Verilog-A model for Qucs is to recompile the qucs and qucs-core C++
code. If a new Verilog-A model has been added to the Qucs correctly without prob-
lems then compilation of the modified C++ code should take place without error.
However, if the C++ compiler reports one or more compilation errors then check
the Qucs code section where the errors are reported to have occurred and make
the necessary changes to correct them. Finally, test that the new Verilog-A model
correctly operates in different simulation domains. In the case of the Verilog-A non-
linear resistor model testing indicates that the model functions correctly with the
same results as those shown in Figure 6.8 for the EDD model.

6.5 QucsStudio implementation

QucsStudio is the brain child of German Engineer Michael Margraf. The first ver-
sion of this software package was released for general use in February 2011. At
its core is a new analog simulator developed from Qucs. In some respects this is
a second generation Qucs that has evolved from the original project with the ex-
press aim of being a test project to create a complete development environment
for electrical engineers, incorporating a graphical user interface, an advanced cir-
cuit simulator, printed circuit layout and numerical data processing. Although the
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core circuit simulator has a lot in common with the original Qucs the new ana-
log simulator is not fully compatible with Qucs. QucsStudio is free software that
is allowed to be used and distributed freely. Currently, QucsStudio supports Mi-
crosoft Windows R©only. It runs without any special installation procedures. Decom-
pressing the QucsStudio distribution ”zip“ file creates directory QucsStudio with
the circuit simulator and other package components inside. It is run by executing
QucsStudio\bin\qucs.exe. The current production version of the package
is QucsStudio-1.2.0.zip. Versions of QucsStudio up to 1.2.0 do not include code for
generating Verilog-A compact device models. However, the next release (version
1.3.0) will include a full “turn-key” Verilog-A model development system. 17 One
important difference between the original Qucs and QucsStudio Verilog-A devel-
opment routes concerns the fact that QucsStudio model code is compiled into C++
dynamic linked libraries (dll) rather than the C++ static libraries adopted by Qucs.
This change allows model code to be written in Verilog-A, compiled to C++ and
then compiled again by a C++ compiler to form a dll component which in turn can
be linked to the main body of compiled QucsStudio code without having to recom-
pile the entire circuit simulator code. Hence, it becomes possible to design a user
transparent, and user friendly, compact device modeling system 18 which compiles
Verilog-A code, without user intervention, each time the code is changed and sim-
ulated. As an example of the steps involved in the “turn-key” modeling process the
stages needed to build a Verilog-A version of the EDD nonlinear resistor model
are described next. The QucsStudio built-in text editor displays Verilog-A code in a
colour coded highlighted format, making code entry 19 and debugging of Verilog-A
code a straight forward process. Figure 6.18 illustrates, using a simple flow chart, the
steps needed to construct a QucsStudio subcircuit version of a Verilog-A compact
device model. Starting with a blank schematic drawing sheet a copy of the compiled
model symbol 20 is dragged and dropped onto the empty drawing sheet. Notice at
this early stage in the process that the compiled model symbol has no numbered
pins attached to its square box outline. Stage two involves attaching a Verilog-A or
a C++ file to the compiled model symbol. 21 Both types of file must meet the require-

17 A “turn-key” Verilog-A model construction system is currently being developed by Michael
Margraf and Mike Brinson. At this time a working experimental system based on a new compiled
C++ model, Verilog-A model code compiled by ADMS 2.3, embedded within a subcircuit is un-
dergoing test. It is expected that QucsStudio 1.3.0 will be published for general use in the near
future. To be followed at a later date by a compact device model development system based on the
new series 3 version of ADMS.
18 Hence, removing the need for users to patch the QucsStudio C++ code by hand when adding
new models.
19 These notes make no attempt to explain the fundamentals of the Verilog-A hardware description
language or its use in device modeling and circuit macromodeling. Readers who are not familiar
with Verilog-A should consult the books by Patrick and Miller [20] and Kundert and Zinke [21].
Details of the latest specification for Verilog-A can also be found in the Verilog-AMS language
reference manual.
20 The compiled model symbol can be found in the QucsStudio “devices” icon list.
21 This is done using the compiled model icon drop down menu to change the file name entry in
the Edit Properties list.
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Fig. 6.18 A flow chart depicting the stages in the construction of a QucsStudio Verilog-A subcir-
cuit model.

ments of the QucsStudio “Model Programing Interface”. Verilog-A files attached to
the compiled model symbol are compiled by the ADMS 2.3 synthesizer/compiler,
yielding a C++ file with extension cpp. If either the ADMS compilation sequence,
or attaching a C++ file, are successful then model pins are added to the compiled
model symbol and a dll file is generated for the new compiled model. In the case
of the Verilog-A nonlinear resistor model pins 0 (P0) and 1 (P1) are added to the
compiled model symbol. These correspond to the named pins listed in the Verilog-A
module statement. However, if after the ADMS compile process the compile model
symbol does NOT have any pins attached then the ADMS compile sequence failed
and the Verilog-A code has one or more errors and must be debugged and recom-
piled. A similar comment applies to C++ attached files. Finally, to complete the new
subcircuit compact device model, subcircuit interface pins are added to the body of
the subcircuit. These pines are then given names (Pin1 and Pout1 in Figure 6.18) and
a symbol drawn to represent the subcircuit. If at any time in the future when the new
compact device model takes part in a circuit simulation, and the Verilog-A model
code has been changed, it will be automatically recompiled by QucsStudio/ADMS
prior to the start of a simulation. Testing the Verilog-A version of the nonlinear re-
sistance with the test circuit shown in Figure 6.8 yields the same simulation results
as the EDD waveforms.



24 M.E. Brinson

6.5.1 Building a QucsStudio Verilog-A compact device model for
an n type RF MESFET transistor

Figures 6.19, 6.20 and 6.21 list Verilog-A code for a Statz et al. model of an n type
MESFET. This model has become popular since its inclusion as a standard compo-
nent in SPICE 3. The Statz MESFET model can be regarded as a development of
the Curtice MESFET model introduced in section 6.3.5 where the Ids, charge and
noise equations are specific to the Statz model and the diode equations are similar
to those in the Curtice model but have been extended to add reverse bias break-
down effects. It is also worth noting that the charge equations in the Statz model
also include charge partitioning [18]. Part 1 of the Statz Verilog-A code gives defi-
nitions for the model parameters. Part 2 lists the internal variables, model branches,
@(initial−model) block code and drain to source current equation. Finally, Part 3
gives the Verilog-A code for the main physical components of the MESFET com-
pact model. The Statz MESFET compact model includes thermal noise generated
by Rg, Rd and Rs, channel noise, gate noise and flicker noise. Each of these noise
components are represented in Figure 6.21 by Verilog-A noise current contribution
statements. Package capacitance and inductance are not included in the main body
of the Statz Verilog-A code, mainly because these components can be easily added
to the subcircuit version of the Statz MESFET model as is shown in Figure 6.22.
The operation of the Statz MESFET model was checked by a series of basic DC,
AC and transient tests. Figure 6.23 shows the S-parameter simulation test results ob-
tained with the test circuit given in Figure 6.11. As expected these are very similar
to the Curtice EDD S-parameter simulation data.

6.6 More RF examples

Qucs and QucsStudio are complex software packages with many built-in simula-
tion and modeling capabilities whose properties and application are not obvious to
everyone. Since their first release for general use the open source nature of the soft-
ware has encouraged a stream of new features to be added by developers. Often new
simulation features or new models are added at the request of users. Moreover, de-
vice modeling with macromodels, EDD models and Verilog-A compact device code
add a measure of creativity to electronics circuit design which is only limited by the
imagination of individual device modelers and circuit designers. In this section a
selection of simulation and modeling features that demonstrate a number of the less
well known aspects of both packages are presented.
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Fig. 6.19 Statz et al. MESFET Verilog-A model : Part 1; Parameters.

6.6.1 Harmonic Balance analysis

Both Qucs and QucsStudio include Harmonic Balance simulation. The QucsStudio
implementation is more robust than the original Qucs version which still has the
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Fig. 6.20 Statz et al. MESFET Verilog-A model : Part 2; internal variables, model branches,
@(initial−model) block code and drain to source current equation.

status of experimental. Qucs and QucsStudio EDD and Verilog-A compact de-
vice models work with most of the implemented types of simulation 22 including
Harmonic Balance, making the software ideal for RF circuit simulation and design.
Figure 6.24 illustrates a number of EDD equation manipulation modelling tech-
niques, demonstrating how they function using Harmonic Balance simulation.

6.6.2 Qucs and QucsStudio filter synthesis

Filter synthesis forms part of both Qucs and QucsStudio built-in design capabil-
ities. 23 The low-pass stepped impedance filter illustrated in Figure 6.25 shows a

22 One exception is QucsStudio system simulation.
23 The Qucs design routines were originally intended for RF discrete circuit design but has evolved
in QucsStudio to include different RF manufacturing technologies.
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Fig. 6.21 Statz et al. MESFET Verilog-A model : Part 3; charge equations, diode DC equations,
current contributions and model noise equations.

QucsStudio designed circuit and its implementation in microstrip technology plus a
typical set of simulated S-parameter data.

6.6.3 QucsStudio System simulation

System simulation is not implemented in Qucs but is restricted to QucsStudio. This
is the latest type of simulation to be added to the software. Figure 6.26 shows a
model for demonstrating the difference between eye diagrams with and without
added noise noise in a signal channel.
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Fig. 6.22 Statz Verilog-A/subcircuit model for a n type MESFET: subcircuit internal circuit in-
cluding package capacitance and inductance parasitics plus subcircuit symbol and parameter lists.

6.7 From Qucs to QucsStudio: future directions in analog
simulation and device modeling

Qucs and QucsStudio are current generation circuit simulators with common origins
and development via an international group of developers. Over the last decade the
development team has invested much time and effort to produce the current versions
of the software. QucsStudio being the younger package is currently going through
the greatest number of changes. This should not detract from Qucs which is still an
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Fig. 6.23 Statz Verilog-A/subcircuit model S-parameter simulation data for a transistor with iden-
tical DC bias conditions to the device shown in Figure 6.12.

on going project with many thousands of regular users. So were does the future lie
for both packages? This question can probably only be answered by the current and
future users of the software. Today Qucs is a well established stable program with
a dedicated group of users. Conversely, QucsStudio has many new features to offer
but due to its current development status it is not as stable as Qucs. QucsStudio, at
this time, supports the following features: more than 100 different circuit component
types, linear and nonlinear DC analysis, small signal AC analysis (including noise
and noise distribution analysis), S-Parameter analysis (including noise parameter
calculations), transient analysis, harmonic balance analysis (including noise analy-
sis), system simulation, parameter sweeps and optimization of analog circuits [22],
Verilog digital simulation using ICARUS by S. Williams [23], VHDL digital simula-
tion by T. Gingold [24], printed circuit board layout and Gerber viewer using KCAD
by the KCAD team [25], numerical data processing with Octave by J. W. Eaton et
al. [26], RF transmission line calculation (coaxial, microstrip, coplanar etc.),filter
synthesis (LC, ladder, stepped-impedance, microstrip, active filter etc.), attenua-
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Fig. 6.24 Harmonic Balance simulation of series EDD models set up to demonstrate voltage
probes and current to voltage conversion functions.

tor synthesis (resistive pi, tee and bridge topology), GPIB device control, ADMS
Verilog-A interface for compact device modeling using compiled models and sub-
circuits, technical documentation for all models and types of simulation, and support
for the German and English languages. The following extensions to the QucsStudio
software are planned for future development: oscillations by Harmonic Balance, pe-
riodic steady-state analysis, mixed-mode analysis, EM field simulation, an extended
range of transistor models including HICUM, BSIM, EKV, TOM etc.,an improved
Verilog-AMS interface, bug fixes, small improvements and extensions. Which one
of the two packages you choose for your simulation and modeling projects is simply
a matter of personal choice so why not try both?
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Fig. 6.25 QucsFilter designed microstrip low-pass filter test bench and typical S-parameter simu-
lation data.

6.8 Summary

Qucs and the more recent QucsStudio are examples of engineering software that has
become freely available through the open source software movement. In ten years
or less the quality of open source circuit simulation software has improved to such
an extent that todays software provides users with tools capable of tackling highly
complex circuit design tasks. Packages like Qucs offer extensive simulation capa-
bilities linked with high quality graphical interfaces plus stable simulation engines
and extensive post-simulation data analysis tools. Probably, one of the most signifi-
cant recent changes to take place has been the merging of high class compact device
modeling tools with mature circuit simulators. Through the efforts of the “MOS
Modeling and Parameter Extraction Working Group” to standardise the use of the
Verilog-A hardware description language for modeling of compact semiconductor
devices the open source software community has been able to add to our understand-
ing of modeling techniques and their relationship to circuit simulation. This chapter
has attempted to outline a number of powerful approaches to device modeling and
to demonstrate their use in analog and RF simulation. By their very nature modeling
and simulation are dynamic entities which will change and develop in the future as
open source circuit simulation technology increases in sophistication.
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Fig. 6.26 A QucsStudio system simulation example which illustrates the effect of noise on channel
performance.
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