
Qucs-0.0.19S: a new open-source circuit simulator
and its application for hardware design

Mike Brinson
Centre for Communications Technology,

London Metropolitan University, UK,
e-mail: mbrin72043@yahoo.co.uk

Vadim Kuznetsov
Department of Electronic Engineering,

Bauman Moscow State Technical University,
Kaluga branch, Russia;

e-mail: ra3xdh@gmail.com

Abstract—Circuit simulation is widely used in communication1

and control equipment hardware design tasks. This article intro-2

duces an extended version of the popular Qucs circuit simulator3

called Qucs-0.0.19S. It is a simulation tool which supports4

multiple SPICE circuit simulators, including Ngspice and Xyce.5

The package includes a graphical user interface, component and6

compact device modelling tools, a choice of simulation engine,7

and advanced simulation data postprocessing facilities. It allows8

user to construct new component using XSPICE extension and9

construct new simulations using Nutmeg scripting. Qucs-0.0.19S10

is targeted at academic and industrial applications. Software11

implementation details and application cases are considered.12

Index Terms—Qucs, SPICE, Ngspice, Xyce, Nutmeg scripting,13

circuit simulation, EDA14

I. INTRODUCTION15

Open source software offers access and cost benefits to en-16

terprise information technology. However, not all sectors have17

a fully developed software base. One example is electronic de-18

sign automation (EDA) where General Public Licence (GPL)19

circuit simulation and printed circuit board layout packages are20

undergoing rapid development. The ”Quite universal circuit21

simulator” (Qucs) [1], [2] is one of a new breed of GPL circuit22

simulators. Qucs was started by M. Margraf and S. Jahn in23

2001. The initial intention was that Qucs should be an RF24

circuit analysis package which offered features not found in25

SPICE. Recently a new team took over responsible for Qucs26

development.27

Qucs-0.0.19S is a freely available package with versions for28

Linux, Windows © and MacOS © . It includes a simulation29

kernel called Qucsator. Although Qucsator has acceptable30

performance it is not fully compatible with SPICE 2g6 or 3f531

[3], [4]. Qucs has a unique netlist syntax and model format32

with SPICE support implemented via a software compatibility33

layer. It does not allow direct access to manufacturers SPICE34

models and libraries. The compatibility layer also prohibits35

access to a number of SPICE built in models, simulation36

types and the Nutmeg scripting language. A ”Spice4qucs”37

subsystem has been added to Qucs to form Qucs-0.0.19S38

[5], and hence overcome these limitations. Qucs-0.0.19S was39

presented during MOS-AK workshop at Graz, Austria [6].40

Spice4qucs is not another SPICE simulation kernel but41

acts as an interface to a number of established GPL SPICE42

engines. These have excellent performance, but usually lack43

a graphical user interface (GUI) for schematic capture and44

external simulator launch control. The reverse is true for Qucs45

which is distributed with mature GUI and modelling tools.46

Evaluation of GPL SPICE simulators, plus feedback from47

Qucs users, suggested; (a) Qucs should support several SPICE48

GPL kernels, (b) Qucs should not simple be a schematic49

capture and simulation software package but must also offer50

advanced data processing features, and (c) provide a range51

of compact device modelling facilities. Factor (a) is met by52

the Ngspice [7] and XYCE [8] SPICE simulators. More-53

over, Spice4qucs is able to launch both simulators from the54

Qucs GUI. Qucsator has excellent small signal AC and S-55

parameter simulation performance. But Qucsator time-domain56

simulation is not that stable. In particular, Qucsator cannot57

reliably simulate switching circuits. The addition of SPICE58

based simulation to Qucs allows this limitation to be largely59

eliminated, making Qucs-0.0.19S, a viable choice for research60

and industrial circuit design [9], [10].61

II. AN OVERVIEW OF QUCS-0.0.19S COMPONENT MODELS62

The Spice4qucs subsystem is designed for the simulation63

of Qucs circuit schematics with Ngspice or Xyce launched64

as external simulation engines [11]. In general legacy Qucs65

circuit doesn’t require tweaking to simulate it with Qucs-66

0.0.19S. Qucs legacy passive components can be simulated67

with Qucs-0.0.19S. In addition Qucs-0.0.19S introduces a68

group of passive component models with SPICE format. Qucs69

legacy semiconductor device models are SPICE incompatible.70

Similar to passive components active device models have a71

fixed list of named parameters [1], [12]. Moreover, some of72

these are SPICE incompatible. Qucs-0.0.19S allows users to73

construct SPICE device definitions from a name, a model spec-74

ifier and a SPICE style ”modelcard”. These can be attached75

to a schematic symbol and passed directly to a SPICE kernel.76

Qucs-0.0.19S subcircuit and library components form part77

of a file component subclass. These allow the construction of78

more complex components from pre-defined model primitives79

and manufactures models. Qucs-0.0.19S allows users access80

to the following types of file component:81

1) Subcircuits, for the construction of new components82

from predefined components. This form of subcircuit83

is identical to the original Qucs implementation [12],84

except that each subcircuit is stored as a .SUBCKT85

netlist;86

2) SPICE file components, for attaching SPICE .SUBCKTs87

to a circuit schematic. This component allows to pass88

unmodified SPICE netlist directly to simulator. Netlist89

is stored in a separate file;90

3) Library components, for the storage and recall of91

previously defined component and device models.92

Qucs/Qucs-0.0.19S libraries are encoded in text XML93

format. Library can store unmodified SPICE code.94

III. THE OPERATION PRINCIPLES OF MULTI-SIMULATOR95

SUPPORT IN QUCS-0.0.19S96

Algorithm 1 outlines the Qucs netlist building method.97

Qucsator does not use netlist sections [12]. A Qucs schematic98

is represented as a C++ class, consisting of a set of netlist pro-99

cessing methods. A single method scans a schematic file in one100

pass and outputs information describing located components.101

Algorithm 1:
Data: Qucs Schematic
Data: Qucs netlist filename
Result: Qucs netlist
begin

foreach (Component in Schematic) do
Netlist ← Component.getQucsNetlist()

end
end

102

In contrast, SPICE netlists consist of separate103

sections for equations, post-processor directives, and104

component specifications. Hence, building a SPICE105

netlist requires a multiple pass method, see Algorithm 2.106

Algorithm 2:
Data: Qucs Schematic
Data: SPICE netlist filename
Result: SPICE netlist
begin

foreach (Component in Schematic) do
if (Component is Parameter or directive) then

Netlist ← Component.getSpiceExpression()
end

end
foreach (Component in Schematic) do

if (Component is Device) then
Netlist ← Component.getSpiceNetlist()

end
end
// begin of .control section
foreach (Component in Schematic) do

if (Component is Simulation) then
Netlist ← Component.getBeforeSimScript()
Netlist ← Component.getSpiceNetlist()
Netlist ← Component.getAfterSimScript()
foreach (Component in Schematic) do

// find equations attached to simulation
if (Component is Equation) then

Netlist ← Component.getEquation()
end

end
end

end
// end of .control section

end

107

A Qucs schematic consists of a group of components where108

every item has a properties list. For example, let’s consider an109

RC-network schematic (see Figure 1). Qucs simulation icons110

and equations are considered to be a special forms of compo-111

nent. The Qucs netlist has declarative format. During scanning112

Qucsator automatically separates components, equations, and113

simulator directives. The order has no effect on the final result.114

V1
U=1 V
f=1000 kHz

R1
R=Rs C1

C=Cp

Equation

Eqn1
Cp=1000p
Rs=1k
Kv=out.v/in.v

ac simulation

AC1
Type=log
Start=1 Hz
Stop=1000 kHz
Points=121

transient
simulation

TR1
Type=lin
Start=0
Stop=10u
Points=200

outin

Simulations

Postprocessor
 equation

Parameter
equations

Component

Components
properties

Fig. 1. A Qucs RC circuit schematic with netlist sections labelled

The Qucs netlist for the RC network is:115

116
Qucs 0 . 0 . 1 9 RC1 . sch117

Vac : V1 i n gnd U=”1 V” f =”1000 kHz”118

R : R1 i n o u t R=”Rs ”119

C : C1 gnd o u t C=”Cp”120

Eqn : Eqn1 Cp=”1000 p ” Rs=”1k ”121

Kv=” o u t . v / i n . v ” Ex po r t =” yes ”122

.AC: AC1 Type =” l o g ” S t a r t =”1 Hz”123

Stop =”1000 kHz” P o i n t s =”121” Noise =” no ”124

. TR : TR1 Type =” l i n ” S t a r t =”0”125

Stop =”10 u ” P o i n t s =”200”126127

The Ngspice netlist for the RC network is:128

129
* Qucs 0 . 0 . 1 9 RC1 . sch130

* P a r a m e t e r s s e c t i o n131

.PARAM Cp={1000p}132

.PARAM Rs={1k}133

* Components s e c t i o n134

V1 i n 0 DC 0 SIN (0 1 1000K 0 0) AC 1135

R1 i n o u t {RS}136

C1 0 o u t {CP}137

* S i m u l a t i o n s e x e c u t i o n s e c t i o n138

. c o n t r o l139

AC DEC 21 1 1000K140

l e t Kv=V(o u t) / V(i n)141

* Wri t e r e s u l t t o t e x t f i l e142

w r i t e RC1 ac . t x t v (i n) v (o u t) Kv143

TRAN 5e−08 1e−05 0144

* Wri t e r e s u l t t o t e x t f i l e145

w r i t e RC1 tran . t x t v (i n) v (o u t)146

e x i t147

. endc148

* N e t l i s t ends h e r e149

.END150151

Qucs output data are translated into an XML dataset when152

simulation finishes.The Ngspice netlist format is very close153

to an imperative programming language, with .PARAM di-154

rectives in proper order for error free evaluation. At the155

end of a Ngspice netlist is a.controlendc group.156

This group contains a Ngnutmeg post-processor script that157

is executed after a netlist is scanned by Ngspice. During158

scanning, simulation and post-processor directives are placed159

between the control words .controlendc. The160

.controlendc group also supports Ngnutmeg file161

write directives for storing simulation datasets. Ngspice162

datasets are written in the SPICE-3f5 raw-ASCII format which163

in turn are converted and saved by Qucs-0.0.19S as part of a164

Qucs XML dataset.165

With Xyce multiple simulations are not supported. The166

Xyce netlist has the following format:167

168
* Qucs 0 . 0 . 1 9 RC1 . sch169

.PARAM Cp={1000p}170

.PARAM Rs={1k}171

V1 i n 0 DC 0 SIN (0 1 1000K 0 0) AC 1172

R1 i n o u t {RS}173

C1 0 o u t {CP}174

.TRAN 5e−08 1e−05 0175

. PRINT t r a n f o r m a t =raw f i l e =RC1 tran . t x t v (i n) v (o u t)176

.END177178

Spice4qucs operates at GUI level in distinct steps; netlist179

building followed by simulation and finally it uses a raw-180

ASCII output data parser to generate a Qucs XML dataset.181

All schematic symbols have an XML representation which is182

written to memory during schematic file loading.183

As the Xyce simulator does not include a data post-184

processor the netlist building algorithm for Xyce is much185

simpler, see Algorithm 3.186

The block diagram drawn in Figure 2 illustrates the in-187

teraction between schematic capture, simulation and data188

visualization for all used simulation backends.189

A number of the SPICE simulation types generate Qucs190

incompatible output datasets, implying that they require unique191

custom parsers. The parsers implemented in the current ver-192

sion of Qucs-0.0.19S are for SPICE-3f5 raw-ASCII (AC,193

DC, TRAN, and Parameter sweep simulation), Fourier sim-194

ulation, noise simulation and HB simulation (XYCE only).195

The Spice4qucs subsystem extracts output data from each196

simulation request and combines them into single Qucs XML197

dataset ready for processing by the Qucs data visualization198

system.199

Algorithm 3:
Data: Qucs Schematic
Data: SPICE netlist filename
Result: SPICE netlist
begin

foreach (Component in Schematic) do
if (Component is Parameter or directive) then

Netlist ← Component.getSpiceExpression()
end

end
foreach (Component in Schematic) do

if (Component is Device or Simulation) then
Netlist ← Component.getSpiceNetlist()

end
end

end

200

IV. QUCS-0.0.19S SIMULATIONS201

A. Common simulations and simulation data postprocessing202

The following simulation types are implemented .DC, .AC,203

.TRAN, .FOUR, .DISTO, .NOISE, and a new ”Ngspice Cus-204

tom” form. XYCE backend supports single-tone and multitone205

Harmonic Balance simulation. Qucs allows to get access to206

these simulations from the GUI.207

The Qucs data post-processor has many SPICE incom-208

patible functions. A way to overcome this is to pass post-209

processor directives directly to Nutmeg via a new component210

called ”Nutmeg equation”. Illustrated in Figure 3 is an RC211

network driven by an AC source. This demonstrates how212

.AC and .TRAN are defined and how ”Nutmeg” can be used213

Schematic

Component 1

Component 2

Component N

Component 3

... Qucs
netlist

Qucsator

SPICE
netlist

Ngspice
dialect

Xyce
dialect

Ngspice

Xyce

raw-SPICE3f5
dataset

Qucs GUI

Qucs Data
visualization

system

SPICE dataset
to Qucs dataset

converter

Qucs XML
dataset

Qucs XML
dataset

External
simulation kernels

Fig. 2. Spice4qucs subsystem dataflow block diagram

to determine, apparent, active and reactive power, given by214

S = |U · Ī|, P = <[U · Ī], Q = =[U · Ī]., respectively.215

Similarly, real power can be calculated from transient data,216

using P (t) = u(t) · i(t).217

V1
U=1 V
f=300 Hz

R1
R=1k C1

C=1u

Nutmeg

NutmegEq1
Simulation=ac
S=v(in)*(real(V2#branch)-i*imag(V2#branch))
Q=imag(S)
P=real(S)

Nutmeg

NutmegEq2
Simulation=tran
Pwr=v(in)*V2#branch

ac simulation

AC1
Type=lin
Start=10 Hz
Stop=10 kHz
Points=400

transient
simulation

TR1
Type=lin
Start=0
Stop=10 ms

V2
U=0in

* Qucs 0.0.19 /home/vvk/.qucs/RC_SPQ1.sch
V2 in _net0 DC 0
V1 in 0 DC 0 SIN(0 1 300 0 0) AC 1
R1 _net0 _net1 1K
C1 0 _net1 1U
.control
set filetype=ascii
echo "" > spice4qucs.cir.noise
AC LIN 400 10 10K

let S = v(in)*(real(V2#branch)-i*imag(V2#branch))
let Q = imag(S)
let P = real(S)

write RC_SPQ1_ac.txt v(in) S Q P
destroy all
reset

TRAN 2e-05 0.01 0

let Pwr = v(in)*V2#branch

write RC_SPQ1_tran.txt v(in) Pwr
destroy all
reset

exit
.endc
.END

SPICE netlist (auto-generated)

Fig. 3. An example of Nutmeg post-processor equation usage

B. Ngnutmeg scripting218

Qucs-0.0.19S has a powerful new feature, called ”Ngspice219

custom simulation”, where a Nutmeg script is added to a Qucs220

schematic, allowing SPICE statements and Ngnutmeg scripts221

to be passed directly to a SPICE netlist.222

It allows to get easy access to all Ngnutmeg functions from223

the GUI. It’s able to construct nonstandard simulations using224

Ngnutmeg scripting (for example scattering matrix and SWR225

analysis, Monte-Carlo analysis).226

For example, Z-parameter analysis is not available for the227

most of SPICE-compatible simulators including proprietary228

ones. But it could be easily constructed with Qucs-S, Ngspice,229

and Nutmeg scripting. Figure 4 illustrates this approach for a230

passive low-pass Butterworth LC-filter.231

C1
C=450.2nF

L1
L=1.125mH

V2
U=1 V

R2
R=50 Ohm

V1
U=1 V

R1
R=50 Ohm

Ngspice
custom simulation

CUSTOM1
SpiceCode=* open port#2
alter V2 AC=0
alter R2=100k
AC DEC 20 100 100k
let K=V(out)/V(in)
let Z11=V(in)/V1#branch
let Z21=V(out)/V1#branch
write Z1121_data.txt Z11 Z21
* open port#1
alter V1 AC=0
alter V2 AC=1
alter R2=50
alter R1=100k
AC DEC 20 100 100k
let Z22=V(out)/V2#branch
let Z12=V(in)/V2#branch
write Z2212_data.txt Z22 Z12

out
in

100 1e3 1e4 1e5
3

10

100

1e3

1e4

0.1

1

10

100

1e3

1e4

Frequency (Hz)

ng
sp

ic
e/

ac
.z

11

ng
sp

ic
e/

ac
.z

22

ngspice/ac.z12

ngspice/ac.z21

Fig. 4. Z-parameter extraction with Nutmeg scripting

Postprocessor directives are used to extract voltage and232

current data form AC-simulation results and convert it into233

desired Z-parameter value.234

V. XSPICE SUPPORT IN QUCS-S235

XSPICE is SPICE-3f5 extension targeted on system-level236

circuit design tasks. It is especially important for commu-237

nication equipment. XSPICE introduces a set of additional238

analog and mixed-signal models targeted on system-level239

design. Qucs-S with Ngspice backend supports a wide range240

of XSPICE blocks.241

The following XSPICE analog devices are presented in242

Qucs-S out-of-box: gain block, integrator, differentiators,243

adder, multiplier.244

These blocks allows simulate not only analog circuits, but245

also to solve control theory tasks. For example, PI-controller246

step response analysis is shown in the Figure 5.247

This simulation uses XSPICE blocks (analog gain, integra-248

tor, and adder) to define PI-controller elements and transient249

simulation to obtain step response.250

It’s able to construct a new XSPICE block using ”XSPICE251

generic device” component (Figure 7). It’s sufficient to provide252

port list and modelcard reference to create new device. It’s253

able to attach user symbol to a new device using standard254

Qucs subcircuit technique [12].255

XSPICE allows to develop new devices using CodeModel256

technique [13]. User can compile a set of CodeModels in257

a single dynamic-loadable binary library. Now it’s available258

inclusion of precompiled CodeModel libraries using special259

A_int_SE2
A=int2

A_gain_SE2
A=main_amp
A_Line 2=.model main_amp gain(gain=1)

A_int_SE1
A=int1

A_gain_SE3
A=obj_amp

ADD2
A =sum1ADD1

A =sum1

.MODEL

SpiceModel3
Line_1 =.MODEL int2 int(in_offset=0 gain=1
Line_2=+ out_lower_limit=-100 out_upper_limit=100 limit_range=1e-6 out_ic=0)

transient
simulation

TR1
Type=lin
Start=0
Stop=10s

.MODEL

SpiceModel2
Line_1 =.MODEL int1 int(in_offset=0 gain=5
Line_2=+ out_lower_limit=-100 out_upper_limit=100 limit_range=1e-6 out_ic=0)

A_gain_SE1
A=FBamp
A_Line 2=.model FBamp gain(gain=-1)

V1

in
outObject

PI-controller

Unity step source

Fig. 5. PI-controller analysis with XSPICE analog blocks

0 2 4 6 8 10

0

0.5

1

1.5

Time (s)
S

te
p

re
sp

on
se

 (V
)

Fig. 6. Simulated step response of PI-controller

circuit symbol (Figure 7). It’s sufficient to specify location of260

binary library file. New models form this library could be used261

using user-defined XSPICE block and general modelcard.262

Qucs-S will allow to attach CodeModels to schematic and263

compile it automatically during netlist building. This feature is264

under construction now and it will not be considered further.265

VI. CONCLUSION266

Qucs-0.0.19S is the first step in the development of an open-267

source circuit simulator that combines, and extends, the best268

features available with GPL circuit simulators. It can simulate269

a wide range of different size circuits, including those designed270

using manufacturer’s device models.271

Qucs-0.0.19S allows switching of simulation backends.272

Qucs-S covers the following application areas:273

1) Realistic analog circuit simulation in time domain with274

Ngspice backend. Full support of SPICE-3f5 standard275

allows to use wide range of component models provided276

by vendors;277

2) RF-circuits analysis (S,Z,Y-parameters matrix) using278

Nutmeg scripting and Harmonic balance analysis with279

XYCE backend [14]. This application is not available280

for many other SPICE-compatible simulators;281

3) Control theory applications using XSPICE analog282

blocks;283

The main advantages of Qucs-0.0.19S are:284

1) It’s free and open-source. It allows users to easily modify285

sources and propose new features;286

V1
U=0.5 V
f=5 kHz

R1
R=1k

XSPICE
v0 v1

A1
PortList=v,v
Model=Amp1

XSPICE

vd0+vd0-

v1

A2
PortList=vd,v
Model=Amp1

R2
R=1k

Precompiled CM-library

XSP_CMlib1
File=/home/vvk/projects/xspice_icm/advanced_gain.cm

.MODEL

SpiceModel1
Line_1 =.MODEL Amp1 ggain(gain=10 out_offset=0.01)

transient
simulation

TR1
Type=lin
Start=0
Stop=0.6 ms
Points=400

out
in

out2

0 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4

-5

0

5

Time (s)

ng
sp

ic
e/

tra
n.

v(
in

)

ng
sp

ic
e/

tra
n.

v(
ou

t)

ng
sp

ic
e/

tra
n.

v(
ou

t2
)

Fig. 7. User-defined XSPICE device construction

2) Switchable simulation backends allows user to select the287

most suitable one for every simulation task;288

3) Advanced postprocessing with Nutmeg Equations;289

4) GUI allows to get access to unlimited features of Nut-290

meg scripting. It allows user to construct new simulation291

types (for example RF simulation types) without modi-292

fication of Qucs and simulator backends sources;293

5) XSPICE allows system-level design. Also CodeModel294

technique allows to construct new XSPICE devices295

without modification of simulator sources.296

Considering all above, we can conclude that Qucs-0.0.19S297

is not simple GUI for SPICE backends. It allows also ad-298

vanced features in simulation result postprocessing, circuit299

parametrization, and user devices and simulation definition.300

And Qucs-0.0.19S could be recommended for communication301

and control equipment equipment hardware design tasks.302

REFERENCES303

[1] M. E. Brinson and S. Jahn, “Qucs: A GPL software package for circuit304

simulation, compact device modelling and circuit macromodelling305

from DC to RF and beyond,” International Journal of Numerical306

Modelling (IJNM): Electronic Networks, Devices and Fields, vol. 22,307

no. 4, pp. 297 – 319, September 2008. [Online]. Available:308

http://www3.interscience.wiley.com/journal/121397825/abstract309

[2] W. Grabinski, M. Brinson, P. Nenzi, F. Lannutti, N. Makris,310

A. Antonopoulos, and M. Bucher, “Open-source circuit simulation311

tools for RF compact semiconductor device modelling,” International312

Journal of Numerical Modelling: Electronic Networks, Devices and313

Fields, vol. 27, no. 5-6, pp. 761–779, 2014. [Online]. Available:314

http://dx.doi.org/10.1002/jnm.1973315

[3] A. Newton, D. O. Pederson, and A. Sangiovanni-Vincentelli, SPICE316

Version 2g User’s Guide. Department of Electrical Engineering and317

Computer Sciences, University of California, 1981.318

[4] B. Johnson, T. Quarles, A. R. Newton, D. O. Pederson, and319

A. Sangiovanni-Vincentelli, SPICE3 Version 3f User’s Manual. De-320

partment of Electrical Engineering and Computer Sciences, University321

of California, 1992.322

[5] V. Kuznetsov. Unofficial build with spice4qucs features enabled.323

Release candidate 3. Qucs project team. [Online]. Available: https:324

//github.com/ra3xdh/qucs/releases/tag/0.0.19S-rc3325

[6] M. Brinson, R. Crozier, V. Kuznetsov, C. Novak, B. Roucaries,326

F. Schreuder, and G. B. Torri. Qucs: An introduction to the new327

simulation and compact device modelling features implemented in328

release 0.0.19/0.0.19Src2 of the popular GPL circuit simulator. MOS-329

AK Workshop, Graz. [Online]. Available: http://www.mos-ak.org/graz330

2015/presentations/T 5 Brinson MOS-AK Graz 2015.pdf331

[7] Ngspice: mixed-level/mixed-signal circuit simulator based on Berkeley’s332

Spice3f5. Ngspice project team. [accessed August 2015]. [Online].333

Available: https://www.ngspice.org/334

[8] Xyce Parallel electronic simulator: version 6.2. Sandia National335

Laboratories. [accessed August 2015]. [Online]. Available: https:336

//xyce.sandia.gov/337

[9] A. Zonca, B. Roucaries, B. Williams, I. Rubin, O. D’Arcangelo, P. Mein-338

hold, P. Lubin, C. Franceschet, S. Jahn, A. Mennella, and M. Bersanelli,339

“Modeling the frequency response of microwave radiometers with340

QUCS,” Journal Of Instrumentation, no. 5(12):T12001, November 2010.341

[10] V. Kuznetsov and L. Kechiev, “Charged Board Model ESD Simulation342

for PCB Mounted MOS Transistors,” Electromagnetic Compatibility,343

IEEE Transactions on, vol. 57, no. 5, pp. 947–954, 2015.344

[11] M. Brinson and V. Kuznetsov. Spice4qucs-help documentation.345

User Manual and Reference Material. [Online]. Available: https:346

//qucs-help.readthedocs.org/en/spice4qucs347

[12] S. Jahn, M. Margraf, V. Habchi, and R. Jacob, Qucs. Technical papers.348

[Online]. Available: http://qucs.sourceforge.net/docs/technical/technical.349

pdf350

[13] F. Cox III, W. Kuhn, J. Murray, and S. Tynor, “Code-level modeling in351

xspice,” in Circuits and Systems, 1992. ISCAS ’92. Proceedings., 1992352

IEEE International Symposium on, vol. 2, May 1992, pp. 871–874 vol.2.353

[14] M. Brinson and V. Kuznetsov, “Qucs equation-defined and Verilog-A RF354

device models for harmonic balance circuit simulation,” in Mixed Design355

of Integrated Circuits Systems (MIXDES), 2015 22nd International356

Conference, June 2015, pp. 192–197.357

http://www3.interscience.wiley.com/journal/121397825/abstract
http://dx.doi.org/10.1002/jnm.1973
https://github.com/ra3xdh/qucs/releases/tag/0.0.19S-rc3
https://github.com/ra3xdh/qucs/releases/tag/0.0.19S-rc3
https://github.com/ra3xdh/qucs/releases/tag/0.0.19S-rc3
http://www.mos-ak.org/graz_2015/presentations/T_5_Brinson_MOS-AK_Graz_2015 .pdf
http://www.mos-ak.org/graz_2015/presentations/T_5_Brinson_MOS-AK_Graz_2015 .pdf
http://www.mos-ak.org/graz_2015/presentations/T_5_Brinson_MOS-AK_Graz_2015 .pdf
https://www.ngspice.org/
https://xyce.sandia.gov/
https://xyce.sandia.gov/
https://xyce.sandia.gov/
https://qucs-help.readthedocs.org/en/spice4qucs
https://qucs-help.readthedocs.org/en/spice4qucs
https://qucs-help.readthedocs.org/en/spice4qucs
http://qucs.sourceforge.net/docs/technical/technical.pdf
http://qucs.sourceforge.net/docs/technical/technical.pdf
http://qucs.sourceforge.net/docs/technical/technical.pdf

	Introduction
	An overview of Qucs-0.0.19S component models
	The operation principles of multi-simulator support in Qucs-0.0.19S
	Qucs-0.0.19S simulations
	Common simulations and simulation data postprocessing
	Ngnutmeg scripting

	XSPICE support in Qucs-S
	Conclusion
	References

