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Abstract 

Objectives: Internet gaming disorder (IGD) is becoming a matter of concern around the world. 

However, the neural mechanism underlying IGD remains unclear. The paper is to explore the 

differences between the neuronal network of IGD participants and that of recreational game 

users (RGU) participants. 

Methods: Imaging and behavioral data were collected from 18 IGD and 20 RGU participants 

under a probability-discounting task. The independent component analysis (ICA) and graph 

theoretical analysis (GTA) were used to analysis the data. 

Results: Behavioral results showed the IGD participants, compared to RGU, prefer risky 

options to the fixed ones and spent less time in making risky decisions. In imaging results, the 

ICA analysis revealed that the IGD showed stronger functional connectivity (FC) in reward 

circuits and executive control network, as well as lower FC in anterior salience network (ASN) 

than RGU; for the GTA results, the IGD showed impaired FC in reward circuits and ASN 

compared to RGU. 

Conclusions: These results suggest that IGD participants were more sensitive to rewards and 

they were more impulsive in decision-making as they could not control their impulsivity 

effectively. This might explain why IGD participants cannot stop their gaming behaviors even 

when facing severe negative consequences. 

Keywords: ICA; GTA; possibility-discount task; executive control; reward circuits 
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     1. Introduction 

As a typical non-substance related addiction, Internet gaming disorder (IGD) is defined as 

people unable to control their desires to play Internet games excessively. Studies have revealed 

that IGD can lead to severe negative consequences, such as impaired physical and 

psychological states, social deficits, and/or poor academic performance 1,2. In 2013, the DSM-5 

committee included the IGD in the section III of the DSM-5 as an issue warranting further 

study 3-5, and a diagnostic criteria for IGD was proposed, which facilitated potential studies 6. 

 

Most people like games, however, only a few of them are addicted to them, most of the players 

play games in a recreational way 7. They can play games in a controlled manner without 

showing psychiatric symptoms of addiction, such as craving, conflict and withdrawal 8-10. 

These people are defined as recreational Internet gaming users (RGU) 11.  

 

Similar to gambling addiction 12, the fifth edition of the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5) introduced Internet gaming disorder in the research appendix;  at 

the same time, the International Classification of Diseases (ICD-11) is also considering it as a 

behavioral addiction 13.The IGD participants shared similarities with traditional addictions 

including higher impulsivity, unsuccessful cognitive control, deficit in decision-making 14-16, 

higher sensitivity to rewards 17, and neglect their losses in daily-life situations 10,18. Studies 

have also found that IGD participants are more likely to make decisions with greater risk 

tendencies than healthy controls 16,19. Comparing to RGU, the IGD participants showed 

decreased frontal brain responses during processing of losing outcomes, suggesting their 
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decreased loss sensitivity during making-decision 11. These findings were consistent with the 

results using substance use disorders or pathological gambling participants 20-22. 

 

Rational decision-making describes one’s ability to make the best choice from multiple 

alternatives, which is important in exploring ones choice features in risky situations. 

Probability discounting (PD) tasks measures the tradeoffs between reward magnitudes and 

probabilities to examine the decision-making features under risky situations. Participants need 

to make a choice between a large amount of money with a low probability of winning and a 

small amount of money with a high and fixed probability of winning. Choosing the larger 

amount of money with lower probability of winning showed a higher subjective value for 

probabilistic rewards, which reflects the tendency to take risks. Although most people would 

choose the fixed one to avoid getting nothing , the IGD participants preferred to choose the 

larger amount of money with lower probability of winning 19,23. As this feature of PD, in this 

study, we would use PD task to explore the neuronal network underlying decision-making 

process of IGD participants. 

 

Previous IGD studies mostly focused on the specific functions of a brain region, but how these 

brain regions interact together is still lacking in understanding. In this study, we combined two 

analyses (independent component analysis (ICA) and graph theoretical analysis (GTA) to 

explore the differences between the neuronal network of IGD participants and that of RGU 

participants using a probability-discounting task. 

 

Independent component analysis (ICA) is a data-driven technique that can extract the 

information about the intrinsic neuronal functional connectivity without cognitive tasks 24. 
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Previously we found that IGD showed impaired executive control network compared with the 

healthy control 19 and they also exhibited enhanced sensitivity to reward and an impaired 

executive control ability when performing a delayed discounting task 25. Graph theoretical 

analysis (GTA) regards the whole brain as a complex network, composed of a set of nodes and 

edges 26. It quantitatively measures each node by incorporating connectivity information from 

the complete network, reflecting the integrated nature of local brain activity. Previous studies 

have demonstrated that human brain anatomical and functional networks have small-world 

properties 27,28 i.e. high level of clustering coefficient and short path length linking all nodes 29. 

Recently, a study has found that there are significant differences in regional nodal 

characteristics of IGD comparing to that of healthy participants during resting-state 30. The ICA 

focuses on a specific group of brain areas, while the GTA measures the nodes and edges of the 

whole brain. These two approaches are complementary in that they look at different aspects of 

the brain network 31. 

 

The second strength we have in this study is the subject selection. Most previous studies 

focused on the differences between the IGD and healthy controls (HC), which have some 

limitations. The IGD participants played online games frequently, however, the HC group are 

none or low-frequent game players, they have limited experience with online gaming. Hence, 

we selected the RGU as comparison group to overcome these limitations. Thus, the current 

study used RGU as control group to find some features of IGD in a PD task. 

 

In our previous studies and other studies, we found the IGD participants group show impaired 

decision-making in probability-discounting task.. They were also more impulsive in 

decision-making and could not effectively control their impulsivity 10,11,16,32. Based on these 
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results, in this PD task, we hypothesized that the IGD participants would chose lower 

probability discounting when making decisions, which may be related to the impairment of 

reward circuits and executive control ability. We combined the ICA and GTA methods to 

explore dysfunctional networks in IGD to gain a better understanding about the neural 

mechanism of IGD and to provide insights for better treatment strategies for people with IGD. 

 

2. Methods 

2.1 participants 

This experiment conformed to The Code of Ethics of the World Medical Association 

(Declaration of Helsinki) and was approved by the Human Investigations Committee of 

Zhejiang Normal University. All participants provided written informed consent before the 

formal scan session. 

 

Forty right-handed male university students (20 IGD, 20 RGU) were recruited in this study. 

Only males were included because of the high IGD prevalence in males. There was no 

significant age difference between the two groups (Table 1). All participants underwent 

structured psychiatric interviews (MINI) conducted by an experienced psychiatrist 33. The 

MINI results revealed that all participants were free from psychiatric/neurological disorders. 

No participants reported previous gambling or illicit drugs (e.g., marijuana, heroin) experiences. 

All participants were instructed not to use any medicine or substances including coffee, tea, and 

alcohol, on the day of scanning. 

 

IGD participants were selected based on a Young’s Internet Addiction Test (IAT) and the nine 

DSM-5 criteria of IGD 1,34. Participants were diagnosed with IGD if they satisfied the 
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following three criteria: (1) scored 50 or higher on the IAT scores; (2) reached at least five 

DSM-5 criteria; (3) spent at least 80% of online time playing games and spent at least 2 hours 

per day in online games during the last 2 years. 

 

For RGU participants, firstly, most of them scored less than 50 on the IAT, less than five 

DSM-V criteria and were not affecting their daily life. Secondly, RGU should be a minimum of 

2 years and without showing any symptoms of physical or psychological dependence. Thirdly, 

the RGU participants played online games more than 14 hours per week and a minimum 5 of 7 

days in a week 17. The two groups showed significant differences in IAT and DSM scores 

(Table 1). 

 

Table1. Demographic information and group differences. 

 

 

 

 

 

 

2.2 Task and procedure 

IGD (n = 18)       RGU(n = 20)       t         p 

Age 

IAT Score                         

DSM-5 Score                                   

Game Playing, Hours/Week   

 21.61 ± 2.40       21.84 ± 2.43       0.29   0.773 

0.000 

  0.000 

  0.858 

 66.72 ± 10.06      41.45 ± 9.04       8.16    

 5.89 ± 0.83        2.65 ± 0.99        10.86 

20.22 ± 7.09       19.85 ± 5.62      0.18    
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During the experiment, participants firstly completed an informed consent form and the 

Matters of Attention of functional magnetic resonance imaging (fMRI). Secondly, they were 

provided with a sample PD task. To motivate participants making their choices seriously, we 

told them that they would be paid after the experiment according to their choice in a randomly 

selected trial of the task. If they chose the certain option, he would receive the money in cash. 

If they selected the probabilistic option, he could select a card from many cards of two colors 

(red and black) reflecting the probability of receiving the money. Finally, they completed the 

PD task in the fMRI scanner. During the task, participants were told to make choices between a 

fixed but small amount of money and a probabilistic but larger amount of money available 

based on a probability value (i.e. 10 Yuan 100% versus 14 Yuan 40%) (Figure 1). 

 

Figure 1.  

 

The probabilistic choices ranged from 10% to 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 

and monetary amounts ranged from 11 to 12.5,14, 17, 20, 25, 33, 50 and 100 Yuan. There were 

81 trials in total and took approximately 15 minutes. Stimuli were randomly presented and 

behavioral data was collected using the E-prime software (Psychology Software Tools, Inc.). 
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2.3 Behavioral data analysis 

Two participants were excluded from data analysis because of large head movements and/or 

choosing the same options in all trials. As a result, the remaining data of 38 participants (18 

IGD, 20 RGU) were included in data analysis. PD task contains a large but probabilistic reward 

against a small but fixed reward. In PD task, discounting means the devaluation of an outcome 

when the outcome is obtained probabilistically. PD rates were calculated by using a hyperbolic 

function 23,35, which represented as follows: 

，O = (  -1)                                    (1) 

The V represents the discounted value, and the A is monetary reward. P represents the 

probability to receive rewards, and O represents the odds against receiving the rewards. The h 

value is a subject specific discounting constant. Notably, smaller values of h might suggest a 

tendency to take risks and more impulsivity. It can represent cognitive impulsivity features 

affecting decision-making process. One important procedure for calculating h is to determine 

indifferent points, which are points that the subjective value of a probabilistic option is 

equivalent to that of the other fixed option. The analysis procedure was composed of two steps: 

Firstly, a non-linear curve-fitting program was applied to data in Origin 7.0 to calculate each 

subject’s best-fit-h value from Eq 36. Secondly, a log 10 transformation of the h values was 

performed. By this transformation, the distribution of values was normal 37. 

 

2.4 Image acquisition and pre-processing 

All participants underwent the fMRI scan in a Siemens Trio 3-Tesla scanner (Siemens, 

Magnetom Trio Tim). The sequence parameters were as follows: repetition time (TR)=2000ms; 

echo time (TE)=30ms; flip angle 90°; interleaved sequence; 33 slice per volume; 3 mm 
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thickness; field of view 220 *220 mm2; and matrix 64 *64. All stimuli were presented by the 

Invivo synchronous system (Invivo Company, www.invivocorp.com/) through a monitor in the 

head coil. Structural images covering the whole brain were collected through a T1-weighted 

three-dimensional spoiled gradient-recalled sequence (176 slices, flip angle = 15°, echo time = 

3.93 ms, slice thickness = 1.0 mm, skip = 0 mm, inversion time 1100 ms, field of view = 240 × 

240 mm, in-plane resolution = 256 × 256). 

Imaging analysis was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Images were 

slice-timed, reoriented, and realigned to the first volume. Then, T1-co-registered volumes were 

normalized to an SPM EPI template and spatially smoothed by using an 8 mm FWHM 

Gaussian kernel. No participant was eliminated due to large head motion coefficients based on 

the criteria (head motion <2 mm and 2 degrees). 

 

2.5 Independent component analysis 

The group ICA was applied to the preprocessed fMRI data within a toolbox (GIFT v2.0) 

implemented in Matlab R2012a (http://icatb.sourceforge.net). The fMRI data was reduced 

through two principal component analysis (PCA) stages 38,39. The default component number 

was 20 and a spatial ICA was conducted to estimate the 20 mutually independent components 

using Fast ICA algorithm, which is a stochastic process 24. ICASSO algorithm 40 was 

performed to remedy the problem, which repeated the ICA analysis multiple times and then 

output a final set of independent components, providing a measurement of consistency between 

different ICA runs. Eventually, a single ICA time course and an independent functional spatial 

map for every subject were obtained. 

 

2.5.1 Component selection 
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There are two steps for selecting components of interest. Each ICA component spatial map was 

correlated with probabilistic maps of gray matter (GM), cerebral spinal fluid (CSF) and white 

matter (WM) within a standardized brain space provided by the MNI templates in SPM5. 

Firstly, components showing relatively high correlations with WM and CSF and low 

correlation with GM were considered as artifacts and should be discarded. Components that 

satisfied the threshold of r2 < 0.025 for CSF and WM and r2 > 0.05 for GM were reserved and 

considered as meaningful. Thus, this analysis would exclude noise related components that 

represented eye movement, head motion, ventricular pulsations, and other signal artifacts 41. 

The second step was to select the components that were highly correlated with the experimental 

tasks from the remaining components based on the first analysis. A multiple temporal 

regression was performed on the ICA time courses with the GLM design matrix to estimate the 

association between the experimental task and the independent components, which resulted in a 

set of beta weights for each subject and each condition (probability and certain). Then, an 

independent one-sample t-test (p < 0.05) on beta weights for the IGD and RGU groups were 

examined under each task condition. The beta weight of components that differed significantly 

from zero indicated a significant association with the experimental tasks, whereas components 

failed to show a significant relationship were diagnosed as task-irrelevant and discarded. 

 

2.5.2 Between-group comparison of components 

Components that passed the two criterions were subjected to between-group task-related 

activity comparison analysis. An independent two sample t-test (p< 0.05) on the beta weights of 

each remaining component between the RGU and IGD groups was performed in the GIFT 

toolbox. 
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2.5.3 Correlations between behavioral performances and brain activities 

We analyzed the correlation between behavioral performances and the beta weights for IGD 

and RGU participants separately. Specifically, we analyzed correlations among beta weights, 

reaction time (RT), and probability discounting rate (the h values). Further, the correlation 

between beta weights and the addiction severity (the IAT and DSM scores) were also 

examined. 

 

2.6 Graph theoretical analysis 

2.6.1 Components and voxels selection 

For this method, ICA was used to detect the strongest PD task-related components. One sample 

t-tests of beta values for each component were performed to define task-related components 42. 

According to the above results and the features of the task, we selected three components to 

perform the remaining analysis. In the study, we used 95 voxels to assess their small-world 

properties for three brain networks separately. All voxels in each component were sorted from 

high to low according to their Z-scores and the top 95 voxels (most task-related) constituted the 

three task-related networks. 

 

2.6.2 Estimation of the partial correlations 

We used partial correlation to measure connectivity between a given pair of voxels, and built 

undirected graphs respectively for three networks. The partial correlation matrix is a symmetric 

matrix, filtering out the contributions of all other variables; each off-diagonal element is the 

correlation coefficient between a pair of variables. The first stage was to estimate the sample 

covariance matrix S from the data matrix Y= (xi), i=1,…, 95, for each individual. Here xi was 

the time series of each ith voxel. If we introduce X= (xj  xk) to represent the observations in 
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the jth and kth voxels, Z=Y\X represent the other 93 time series matrices. Each component of S 

contains the sample covariance value between two voxels (say j and k). If the covariance matrix 

of [X, Z] was 

11 12

12 22

T
S

S

s s

s

 
  
 
 

,                                                         (2)         

In which S11 was the covariance matrix of X, S12 was the covariance matrix of X and Z and S22 

was the covariance matrix of Z, then the partial correlation matrix of X, controlling for Z could 

be defined formally as a normalized version of the covariance matrix, Sxy = S11 - S12
1

22S 

12

TS . 

Finally, a Fisher’s r-to-z transformation 43 was used on the partial correlation matrix to induce 

normality on the partial correlation coefficients. 

 

2.6.3 Constructing brain network 

An N × N (N = 120 in the present study) binary graph brain network, G, consisting of nodes 

(brain voxels) and undirected edges (connectivity) between nodes, could be constructed by 

applying a predefined threshold T to the partial correlation coefficients: 

 1 ,

0
ij

if z i j T

otherwise
e

 
 


                                                (3) 

If the absolute value of correlation between i and j was larger than the predefined threshold T, 

an edge was said to exist; otherwise it did not exist. The selection of threshold T will be 

discussed in following sections. 

  

2.6.4 Small-worldness 

The small-world properties including clustering coefficient (Cnet), normalized clustering 

coefficient (γ), characteristic path length (Lnet), normalized characteristic path length (λ), global 
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efficiency (Eglobal), local efficiency (Elocal), and small-worldness (δ). Small-world networks 

have lower path lengths but higher clustering coefficients, that is γ=Cnet/Crandom > 1, 

λ=Lnet/Lrandom=1 44,45. Combined these two conditions, we can get a scalar quantitative 

measurement of small-world networks, small-worldness, δ=γ/λ, which is typically > 1 46. We 

applied a wide range sparsity threshold T to all correlation matrices. The range of T was 

determined according to the following criteria: 1) the average degree of all nodes of each 

network was larger than 2×log (N) 47. N is the number of nodes (here, N=120); 2) the 

small-worldness scalars of each threshold network was larger than 1.0 for all participants. This 

criteria guaranteed the threshold networks had as few spurious edges in sparse properties as 

possible 28. Thus, the range of our generated sparsity threshold of C9 was 0.07<T<0.4 with an 

interval of 0.01. The range of our generated sparsity threshold of C10 was 0.10<T<0.28 with an 

interval of 0.01 (one RGU subject was excluded because most δ were smaller than 1.0). The 

range of our generated sparsity threshold of C20 was 0.23<T<0.4 with an interval of 0.01(one 

RGU subject was excluded because most δ were smaller than 1.0). Next, we calculated global 

network metrics at each sparsity threshold. Moreover, the area under the curve (AUC) that 

independent of single threshold was calculated for global network metrics in order to provide a 

summarized scalar for the topological organization of brain networks 28. 

 

2.6.5 Statistical analysis 

To determine the differences between the IGD and RGU groups in small-world properties, a 

two-sample two-tailed t-test with a threshold of p<0.05 was performed on the AUC of each 

metric for three task related networks (Cnet, Lnet, Eglobal, Elocal, γ, λ, and σ) separately. Also, we 

performed the two-sample t-test on each metric of three networks at each sparsity threshold 

level. 
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2.6.6 Relationships between Network Metrics and Behavioral Scores 

We calculated the correlations between small-world properties that group-level differences of 

each network and behavioral data and IAT and DSM scores. 

 

3. Results 

3.1 Behavioral performance 

The independent sample t-test on the logged h values indicated that the IGD group showed 

lower log (h) values than the RGU group, t = 2.22, p = 0.03. The mean h values for IGD and 

RGU were 1.94; 4.21 (Figure 2a), suggesting a more rapid rate of PD for IGD than the RGU 

group (Figure 2b). The R2 value for probability discounting functions (0.84 for IGD and 0.81 

for RGU) represented the accounted variance by Eq. (1). Finally, the data of RT (RT probability 

- RT certain) were subjected to an independent sample t-test, and the result showed that the RT 

(RT probability - RT certain) of IGD is much shorter compared with that of RGU ( IGD = 

47±132ms, RGU：129±255ms, t =1.22, p=0.23. Correlation analysis between the log (h) values 

and the RT showed that they were positively correlated (r=0.529, p<0.001) (Figure 2c). 

 

 

Figure2 
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3.2 ICA results 

3.2.1 Independent component 

Six out of twenty components (C4, C9, C10, C11, C15, and C20) passed our selection criteria. 

These six components had a relatively low spatial correlation with cerebral spinal fluid and 

white while a high correlation with grey. Also, these components showed significant correlation 

with the experimental task. 

 

3.2.2 Between-group differences 

A two-sample t test was used to determine whether the beta weights that were produced by a 

regression showed statistically significant difference under probability or certain conditions. C9, 

C10 and C20 showed significant difference under the two conditions (Table 2). 

 

 

Component Mean±SD t-value            p 

(RGU-IGD)   

RGU subjects   IGD subjects 

(n = 20)       (n = 18) 
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Table 2: Components that showed significant differences in two-sample t-tests of beta weights. 

 

 

Under the probability condition, C9 was positively modulated by the condition and the IGD 

group showed higher task-related activity than RGU. Under the probability and certain  

conditions, C10 was negatively modulated by the two conditions and the IGD group showed 

marginally lower task-related activity than RGU. For C20, the IGD and RGU group were 

modulated in different directions under the two conditions. C20 was positively modulated in 

IGD group and negatively modulated in RGU group under the probability and certain 

conditions. To identify which networks the three components belong to, we contrasted each 

component of these brain regions with the fourteen brain networks 48. Consequently, 

component 9 was involved in left executive control network (ECN), which mainly consists of 

the prefrontal and parietal cortices. Component 10 was involved in anterior salience network 

(ASN), primarily including anterior insula, dorsal anterior cingulate cortex. Component 20 was 

involved in Basal Ganglia Network (BGN), primarily including the striatum and the thalamus 

(Figure 3). 

 

C9  

Probability 

Certain 

C10  

Probability 

Certain 

C20  

Probability 

Certain 

 

0.44±2.16      1.78±1.87 

-0.74±1.94     1.02±1.84 

 

-1.76±2.52     -3.49±3.23 

-0.90±2.51     -2.90±3.07 

 

-0.64±3.94     2.32±3.56 

-0.86±3.65     2.03±3.28 

 

 

-2.14        0.04 

-3.02        0.00 

 

1.93         0.06 

2.32         0.03 

 

-2.56        0.01 

-2.71        0.01 
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Figure 3. 

 

3.2.3 Correlation analysis results 

We analyzed the correlation between task behavioral performances and the beta weights of C9, 

C10 and C20. There was a significant positive correlation between the beta values (beta probability 

– beta certain) of C10 and the logged h values only in RGU participants (r= 0.481, p= 0.032) 

(Figure 4). 

Figure
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Figure 4. 

 

3.3 Graph theoretical analysis results 

3.3.1 Small-world properties 

The results showed that the three functional networks of all participants had similar 

characteristic path lengths (λ≈1) but higher clustering coefficients (γ>1), and the 

small-worldness, δ=γ/λ (> 1). Hence, the IGD group and RGU all showed typical features of 

small-world topology in these networks. Despite common small-world architecture, the results 

revealed that significant differences in small-world attributions between IGD participants and 

RGU participants. A two-sample t test on AUC values showed group differences in these three 

networks. For the BGN, the IGD showed significant higher clustering coefficient than RGU on 

AUC values (t=2.388, p=0.022). Although other properties did not reach the significant, the 

trends are in existence. The IGD showed higher λ (t=1.749, p=0.088) and lower Eglobal (t= 
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-1.742, p=0.089) than RGU participants. For the anterior salience network, the IGD showed 

lower clustering coefficient (t= -1.807, p=0.079) and higher Eglobal (t=1.755, p=0.088) than 

RGU (Table 3). 

 

Table 3 Small-world properties that showed significant differences in two-sample t-tests of 

AUC values. 

 

 

 

 

 

 

 

  

For each threshold level, the IGD showed significantly lower clustering coefficient and higher 

Eglobal, and shorter path length in the anterior salience network (Figure 5a). In the BGN, the IGD 

showed significantly higher cluster coefficient and higher Elocal (Figure 5b) and lower Eglobal and 

longer path length and longer normalized path length in each 18 threshold levels (Figure 5c). In 

the ECN with 34 threshold levels, the IGD group showed lower Eglobal and longer path length 

than RGU group (not significant). 

 

Small-world 

properties 

Mean±SD t-value             p 

(IGD-RGU)   

RGU subjects   IGD subjects 

C10 

Cnet 

Eglobal 

 

C20 

Cnet 

λ 

Eglobal 

 

0.23±0.058      0.23±0.058 

0.17±0.008      0.18±0.006 

 

 

0.22±0.059      0.23±0.065 

0.41±0.107      0.42±0.017 

0.18±0.005      0.176±0.007 

 

-1.807         0.079 

1.755          0.088 

 

 

2.388          0.022 

1.749          0.088 

-1.742         0.089 
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Figure5 

3.3.2 Correlation between Network metrics and Behavioral measures 

We explored the relationships of network metrics with both behavioral and addiction severity 

(the DSM and IAT scores) of all participants. Correlation analysis demonstrated that the 

observed global abnormalities were correlated with the IAT scores and behaviors. Significant 

positive correlations (p<0.05) were found between IAT scores and AUC values of clustering 

coefficient in the BGN (r=0.324, p=0.047) (Figure 6a). The AUC value of Eglobal was 

negatively correlated with the logged h values in the ASN (r=-0.319, p=0.054) (Figure 6b). In 

the executive control network, the AUC values of normalized cluster coefficient negatively 

correlated with the RT (r=-0.284, p=0.085) (Figure 6c). Although some of these correlations 

did not reach the statistical significance, the trends are in existence. 
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4. Discussion 

The current study explored the potential changed neuronal networks of IGD participants using 

ICA and GTA. The behavior results showed that the IGD group were associated with lower 

probability discounting of risky options and spent less time during decision-making compared 

to RGU. The lower h values might suggest a tendency to take risks and increased level of 

impulsivity 49-51. This suggested that the IGD group was poor in risk evaluation and impulse 

control compared to RGU. Positive correlation between PD rate and RT indicated that the ones 

who were higher impulsivity with more quickly in making decisions without extra thinking. In 

imaging results, the ICA and GTA results both showed dysfunction networks connectivity in 

ASN and BGN. 

 

4.1 Executive control network (ECN) 

The ECN was involved in cognitive control and goal-directed behaviors 52. Previous studies 

have revealed that brain training games could improve executive functions for individuals 53,54. 

However, it was not the same for excessive Internet games. A study using the ReHo method 

found that IGD showed higher nervous activity of ECN compared with HCs 55,56. Our previous 

study found that the IGD group exhibited stronger FC in ECN when selecting small but 

immediate options 25. In this study, the ICA results showed that the IGD participants enhanced 

FC of ECN compared to RGU in probability and certain conditions, which may suggest that the 

ECN engaged more in IGD participants than RGU in making decisions. Even so, the IGD 

participants still failed to control their risky behaviors and preferred lower probability and 

higher risky choices. In behavioral performance, the IGD group showed lower probability 
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discounting than RGU, which suggests that the IGD group is more impulsive than RGU 49,50. 

Numerous studies had detected the possible neural mechanisms of the IGD and suggested that 

it may be related to the impaired cognitive control 25,57. Hence, we speculated that the IGD 

participants impaired the ability to inhibit their impulse and to make better choice under a risky 

circumstance. 

 

4.2 Anterior salience network (ASN) 

The ASN plays an important role in identifying relevant internal and external stimuli in order to 

guide and modulate cognitive behaviors 58. One theory is that the salience network, which 

includes the anterior cingulate cortex and insula regulates dynamic changes in other brain core 

networks to modulate cognitive behaviors 59,60. 

 

For ICA results, the IGD participants showed lower beta weights in ASN under the PD task, 

which suggested that the IGD participants decreased FC of ASN compared to RGU. A 

traumatic brain injury study has found the disruption of this network could lead to inefficient 

cognitive control 60,61. Additionally, reduced structural and effective connectivity within the 

salience network have been found to be related with impaired individuals’ cognitive control 

function 59,61. We found that the beta weights of ASN were positively correlated with the log(h) 

values, which suggested that the higher risk the weaker FC of the ASN. It was consistent with 

our ICA results. These results suggested that the IGD used less time to consider the different 

condition and could not efficiently control impulsivity and guide their behaviors. 

 

For small-world results, significant group differences were observed in the clustering 

coefficient, characteristic path length and Eglobal showed at each threshold level. IGD had lower 
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values in clustering coefficient, lower characteristic path length, and higher Eglobal values than 

RGU. A small amount of long-range connections are not only good for connection separation 

of local nerve and connection cost constraint, but also for long distance information 

transmission and integration for brain regions 62. A study has showed when the Eglobal of MCI 

patients has increased, their ability to process long-distance information ability has also 

improved 63. In our study, the small-world results showed that the inner brain regions’ 

connections have difference in IGD, with lower clustering coefficient than RGU participants. 

This may reveal that the ability of IGD participants to process local information is impaired. 

The IGD showed shorter path length and higher Eglobal, which suggested that the ability to 

process local information was decreased, under the compensatory mechanism, the ability to 

process the long distance information would have been improved. The Eglobal had negative 

correlation with the probability discounting of the ASN. In addition, the lower logged h values, 

the higher global efficient also suggested that the ASN of IGD was impaired: they cannot 

effectively identify the external risks, and failed to guide their behavior in a more rational way 

when making decisions. Combining these two results, we concluded that the disturbed 

connectivity within anterior salience network may be related to the failure of risky behavior 

regulation and this inefficient regulation was contributed in the impaired cognitive control in 

IGD participants. 

 

4.3 Basal ganglia network (BGN) 

Neuroimaging studies suggested that the BGN plays a critical role in mediating the subjective 

reward effects 64,65. Reward circuits mainly involve in evaluating the values of both stimuli and 

rewards before making a decision 66. 
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For ICA results, the IGD showed stronger FC in the BGN than the RGU, and this phenomenon 

was congruent with previous studies 67,68. The different levels of FC of BGN might be 

explained by the different sensitivities to the rewards 69,70. A review reported significant 

hyperactivity in BGN of gambling disorder 71. Some studies have suggested that the reward 

circuits have been changed in IGD participants 72-74. The IGD showed more sensitivity towards 

reward, and reduced sensitivity of punishment 18,25,75. A study has shown that the IGD are 

associated with enhanced FC of BGN, which suggests IGD participants have enhanced 

sensitivity to rewards when making decisions 25. In comparison with RGU, the participants 

with IGD showed shorter RT when choosing the risky options, which might suggest that the 

IGD participants with made their decisions hastily irrespective of the potential loss. 

 

For small-world results, the IGD group showed higher clustering coefficient, higher Elocal, 

longer path length and lower Eglobal compared to the RGU group at each threshold level. It has 

been suggested that lower clustering coefficient and lower Elocal mean relatively sparse local 

connectivity; a short path length and high Eglobal represent the high synchronization of brain 

functional networks 76. Higher clustering coefficient reflects disrupted neuron integration 

between distant regions, which has relatively sparse long-distant and relatively dense 

short-distant functional connections in the internet addiction disorder group 77. In this study, the 

clustering coefficient of the reward network has positively correlation with IAT scores, the 

higher IAT scores the higher the clustering coefficient. This reflects disrupted neuronal 

integration between distant regions with the severity of addiction. The addictive behaviors may 

lead to the disconnection of long distance connections and may encourage the establishment of 

short distance connections within clusters as an alternative path to keep information 

transmission between two distant regions. However, establishment of short distance 
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connections may introduce abnormal clusters, which increases the risk of creating an 

uncontrolled information flow through the entire network. The IGD groups were more likely to 

choose the lower probability discounting and spend less time making decisions in PD task. The 

IGD participants preferred the large monetary rewards with low probability to the certain small 

monetary rewards. Taken together, the dysfunction network connectivity in IGD might suggest 

that the IGD groups are more sensitivity to reward and neglect the potential risky when making 

choices. 

 

5. Conclusions 

The present study examined the functional organization of the brain networks for the IGD 

participants under a PD task using ICA and GTA. The results revealed connectivity of three 

brain networks (ASN, ECN and BGN) were altered in IGD compared to RGU participants. 

Taking the role of these networks into consideration, the current study suggests that Internet 

game addicts are more impulsive in decision-making and cannot effectively control their 

impulsivity because of their impaired executive control ability. The changes in these networks 

were involved in decision-making and cognitive control and may be a key mechanism 

preventing recreational game players from the risk of developing addiction. 

 

Limitations 

Several limitations should be mentioned for this study. Firstly, non-gamer group that have no 

experience of gaming can be collected to look at different between the three groups (healthy 

control, IGD and RGU). The results will be more interesting including the non-gamer group. 

And only male college students were recruited for this study. It will be necessary for further 

researches to include female participants and to explore gender effect in IGD. Secondly, the 
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IAT is not a specific test for IGD and we did not measure the impulsivity by BIS-11 or the 

UPPS. The lack of behavioral support for many of the results only provides a possible 

explanation that needs to be further explored later. In future research, we should collect more 

behavioral data, which could provide more supports to imaging results. Thirdly, undirected, 

unweighted networks are built in the present study 78. A weighted network could provide more 

information in the future studies 79. Besides, the data smoothing during preprocessing. Spatial 

smoothing could result in artificial correlations between voxels by previous voxel-based 

network analysis studies 80. Partial correlation will remove local correlations (including the 

correlation caused by smoothing) but preserve the unique voxel variance. Further researches 

are needed to determine the full effect of smoothing on correlations and partial correlations, 

including their relationship to variability between participants. 
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Figure Legends: 

Figure 1: The timeline of one trial in the PD task in the present study. 

The fixed (e.g. 10 Yuan 100 percent) options were presented on the left of the screen and the 

probabilistic (e.g. 14 Yuan 40 percent) options were presented on the right of the screen. In the 

examples, ‘元’ is the monetary unit of currency in China. 

 

Figure 2: Probability discounting value differences between the IGD and RGU participants. (a) The 

IGD participants showed the lower h value than the RGU group. 

(b) Probability discounting functions for IGD and RGU. Points show medial indifferent points for 

monetary rewards as a function of the odds against receiving the rewards. 

(c): Correlation between the log (h) value and reaction time in possible minus fixed option. 

IGD: Internet gaming disorder; RGU: recreational Internet gaming users. The log (h) represents the 
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probability discounting rate. 

 

Figure 3: Brain areas showing differences in IGD participants compared with RGU group ((IGD 

possible-IGD fixed)-(RGU possible-RGU fixed)). 

Figure 4: Correlation between the log (h) value and beta values (probability-certain) of C10. The log (h) 

represents the probability discounting rate. C: component. 

 

Figure 5: (a) The small-world properties of anterior salience network over a range of sparsity threshold. 

a (1) The IGD participants showed lower clustering coefficient than RGU participants; a (2) The IGD 

participants showed shorter characteristic path length than RGU participants; a (3) The IGD 

participants showed higher global efficient than RGU participants. Black dots above indicate 

significant group difference (p<0.05). 

(b) The small-world properties of reward network over a range of sparsity threshold. b (1)The IGD 

participants showed higher clustering coefficient than RGU participants; b(2) The IGD participants 

showed higher local efficient than RGU participants. Black dots above indicate significant group 

difference (p<0.05). 

(c) The small-world properties of reward network over a range of sparsity threshold. c (1) The IGD 

participants showed longer characteristic path length than RGU participants; c (2) The IGD 

participants showed lower global efficient than RGU participants; c (3) The IGD participants showed 

longer normalized path length than RGU participants. Black dots above indicate significant group 

difference (p<0.05). 

 

Figure 6: Correlation between small-world properties and behavior and IAT scores of three brain 

networks across all participants. 
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(a) The significant positive correlations (p<0.05) were found between IAT scores and the AUC values 

of cluster coefficient in reward network. 

(b) The AUC values of Eglobal was negatively correlated with the log (h) values in the anterior salience 

network (p<0.05). 

(c) The AUC values of normalized cluster coefficient negatively correlated with the RT (p<0.05). AUC: 

the area under the curve; the log (h) represent the discounting rate; RT: reaction time. Eglobal: global 

efficient. 

 

Table 1: values are presented as mean ± SD. IAT, Internet addiction test; IGD, Internet gaming 

disorder; RGU, recreational Internet gaming users.  

 

Table 2: Probability means the probability larger option in the PD task, certain means the certain smaller option in 

the PD task; RGU: recreational Internet gaming users; IGD: Internet gaming disorder; C: component. 

 

Components that showed significant difference between IGD group and RGU group in beta weights (p < 0.05). The 

beta weights of C10 under both two conditions showed marginally significant difference across the two groups, and 

the beta weights of C9、C20 were modulated in different directions under the certain condition across the two groups. 

 

Table 3: For the C20, the IGD showed significant higher clustering coefficient than RGU on AUC values (t=2.388, 

p=0.022). AUC: the area under the curve; RGU: recreational Internet gaming users; IGD: Internet gaming disorder; C: 

component; Cnet: clustering coefficient; Eglobal: global efficient; λ: normalized path length.  

 


