

IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

This PDF was created from the British Library's microfilm copy of the original thesis. As such the images are greyscale and no colour was captured.

Due to the scanning process, an area greater than the page area is recorded and extraneous details can be captured.

This is the best available copy

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

TITLE STUDIES OF COMPLEXES DERIVED FROM 5-ACETYLAMINO-1,2-BENZOQUINONE 2-OXIME AND RELATED LIGANDS

AUTHOR HENGAMEH BARJESTEH

INSTITUTION and DATE

................

(North London Polytechnic) CNAA. 1991

.

Attention is drawn to the fact that the copyright of this thesis rests with its author.

.....

.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

THE BRITISH LIBRARY

STUDIES OF COMPLEXES DERIVED FROM 5-ACETYLAMINO-1,2-BENZOQUINONE 2-OXIME AND RELATED LIGANDS

A thesis submitted to the Council for National Academic Awards in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

> by Hengameh barjesteh

The Polytechnic of North London in colaboration with SmithKline Beecham Pharmaceuticals

October 1991

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

BRITISH THESES NOTICE

The quality of this reproduction is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print, especially if the original pages were poorly produced or if the university sent us an inferior copy.

Previously copyrighted materials (journal articles, published texts, etc.) are not filmed.

Reproduction of this thesis, other than as permitted under the United Kingdom Copyright Designs and Patents Act 1988, or under specific agreement with the copyright holder, is prohibited.

THIS THESIS HAS BEEN MICROFILMED EXACTLY AS RECEIVED

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE Boston Spa, Wetherby West Yorkshire, LS23 7BQ United Kingdom

Dedicated to my parents and my brothers

Declaration

Whilst registered as a candidate for this degree the author has not been registered as a candidate for any other award.

H. Barjesteh

Hengameh Barjesteh

STUDIES OF COMPLEXES DERIVED FROM 5-ACETYLANINO-1,2-BENZOQUINONE 2-OXIME AND RELATED LIGANDS

ABSTRACT

5-Acetylamino-1,2-benzoquinone 2-oxime [5-AcqoH] results from the direct nitrosation of 3-acetylaminophenol together with its isomer 3-acetylamino-1,4-benzoquinone 4-oxime [3-AcqoH]. The quinone oximic structure of the former has been indicated by i.r. and n.m.r. studies. In the case of 3-AcqoH this type of structure has been established by X-ray crystallography.

Following a brief review of quinone oximic complexes, a study of the synthesis, properties and structure of Cu(II), Ni(II), Co(III), and Mn(III) complexes of 5-AcqoH is presented. The complexes Ni(5-AcqO), NH₂O (n = 2-6), Cu(5-AcqO), Co(5-AcqO), and Mn(5-AcqO), H₂O were prepared by the direct reaction of 5-AcqoH with the appropriate metal(II) chloride or by the nitrosation of 3-acetylaminophenol in the presence of the metal salt. Co(5-AcqO), was also prepared by the reaction of the ligand with Na₃[Co(NO₂)₈]. The complex Na[Co(5-AcqO), (NO₂)₂], resulted from the nitrosation of Na₃[Co(NO₂)₆] in the presence of Ni(5-AcqO), Co(5-AcqO), acetylaminophenol. Pyrolysis of Ni(5-AcqO), Co(2), Co(2

Magnetochemical measurements, indicated that all complexes, [except Ni(5-Acqo)₂], are magnetically dilute and hence monomeric. Ni(5-Acqo)₂ complex has a subnormal magnetic moment due to association. The diamagnetism of Co(5-Acqo)₃ and the low spin configuration of Mn(5-Acqo)₃.H₂O are indicative of the strong field character of the ligand. COSY, H- and ¹³C n.m.r. studies have shown that Co(5-Acqo)₃ is a mixture of facial and meridial isomers. For all complexes i.r. studies indicate the involvement of the ring CO in bonding. Their electronic spectra show strong absorption in the u.v. region which tails into the visible but d-d transitions have been clearly identified for Ni(5-Acqo)₂.6H₂O and Mn(5-Acqo)₃.H₂O.

Reexamination of the reaction of several complexes of type $M(Rqo)_2$ [M = Ni or Cu] with dimethyl acetylenedicarboxylate has confirmed the occurence of cycloaddition and the formation of oxazine. A metal-containing product, M(II) (butynedicate), and in some cases an additional organic product, 1,4-benoxazin-2-one, have been isolated. Mechanistic appraisals for the 1,4-benoxazinone formation are presented and the structure of one has been elucidated by X-ray crystallography.

The reaction of the new complex $Cu(5-Acqo)_2$ with DMAD leads to analogous products. The reaction of the complexes $M(1-nqo)_2$ [M = Cu, Ni] with methyl propiolate give the hydrated M(II) (propynoate)₂ and oxazine.

(iv)

Acknowledgements

I wish to express my sincere thanks to my supervisor Prof. J. Charalambous for his guidance and encouragement throughout the course of this work.

My thanks are also due to Dr. E. G. Brain (Senior Research Chemist at SmithKline Beecham Pharmaceuticals) for his many useful comments.

I would also like to thank those many colleagues in The School of Chemistry especially Dr. N. D. Pathirana for many helpful discussions and Mr. N. Choi for his help with the X-ray crystallographic studies.

Finally, my thanks to Dr. H. Parks for making n.m.r. facilities available at Birkbeck College.

A Research Scholarship from The A. G. Leventis Foundation to the author is gratefully acknowledged.

Abbreviations

Fig.	figure
i.r.	infra-red
n.s.	mass spectrum
n.m.r.	nuclear magnetic resonance
u.v./vis.	ultra violate/visible
m.p.	melting point
t.1.c.	thin layer chromatography
Ref.	reference(s)
h	hour(s)
chel	chelate
Amono	amyl nitrite
EtOH	ethanol
EtAc	ethyl acetate
hfac	hexafluoroacetylacetonato anion
hfacH	hexafluoroacetylacetone
ру	pyridine
dipy	2,2 -dipyridyl
3-AcqoH	3-acetylamino-1,4-benzoquinone 4-oxime
5-AcqoH	5-acetylamino-1,2-benzoquinone 2-oxime
5-Acgo	5-acetylamino-1,2-benzoquinone
	2-oximato anion
1-ngoH	1,2-naphthoquinone 1-oxime
1-ngo	1,2-naphthoquinone 1-oximato anion
2-ngoH	1,2-naphthoquinone 2-oxime

nqoH	1-nqoH or 2-nqoH	
qон	1,2-benzoquinone 2-oxime	
qo	1,2-benzoquinone 2-oximato anion	
DMAD	dimethyl acetylenedicarboxylate	
MP	methyl propiolate	
EGDE	ethylene glycol dimethyl ether	
bd ⁻	butynedioate anion	
pna	propynoate anion	

CONTENTS	
Title	(i)
Dedication	(ii)
Declaration	(iii)
Abstract	(iv)
Acknowledgements	(V)
Abbreviations	(vi)

Chapter One

SYNTHESIS OF 5-ACETYLANINO-1,2-BENZOQUINONE 2-OXIN	E AND
THE SINGLE CRYSTAL X-RAY STRUCTURE OF 3-ACETYLAMIN	0-1,4-
BENZOQUINONE 4-OXINE	
1.1 Preparation of Quinone Mono-oximes	2
1.1.1 Direct Methods	2
1.1.2 Indirect Methods	5
1.2 Structure of Quinone Mono-oximes	8
1.3 Synthesis of 5-Acetylamino-1,2-	12
benzoquinone 2-oxime	
1.4 Structure of 5-Acetylamino-1,2-	14
benzoquinone 2-oxime	
1.5 The Single Crystal X-Ray Structure of	23
3-Acetylamino-1,4-benzoquinone 4-oxime	
1.5.1 Crystal Data for 3-Acetylamino-	24
1,4-benzoquinon 4-oxime	
1.5.2 Crystal Preparation and Data Collection	24
1.5.3 Structure Solution and Refinement	28

1.6 Re:	ferences	33
Chapter	Tvo	
STUDIES	OF METAL COMPLEXES DERIVED FROM 5-ACETYLAN	INO-
1,2-BEN2	ZOQUINONE 2-OXIME	
2.1 In	troduction	37
2.2 Me	tal Complexes of 1,2-Quinone	37
Mo	ono-oxizes	
2.2.1 Pi	reparation of Complexes of	38
1	,2-Quinone Mono-oximes	
2.2.2 T	ypes of Complexes of	43
1	,2-Quinone Mono-oximes	
2.2.3 TI	he Structure of Complexes of	44
Q	uinone Mono-oximes	
2.3 Me	stal Complexes of 5-Acetylamino-	48
1	,2-benzoquinone 2-oxime	
2.3.1 S	ynthesis of Copper(II) Complexes of	49
5	-Acetylamino-1,2-benzoquinone 2-oxime	
2.3.2 S	ynthesis of Nickel(II) Complexes of	55
5	-Acetylamino-1,2-benzoquinone 2-oxime	
2.3.3 S	ynthesis of Cobalt(III) Complexes of	61
5	-Acetylamino-1,2-benzoquinone 2-oxime	
2.3.4 S	ynthesis of Manganese(III) Complexes of	68
5	-Acetylamino-1,2-benzoquinone 2-oxime	
2.3.5 S	tructure of Copper(II), Nickel(II),	70
H	(anganese(III), and Cobalt(III) complexes of	t

92

Chapter Three	
ADDITION REACTIONS OF COMPLEXES OF QUINONE HOW	0-0XIMES
AND THE SINGLE CRYSTAL X-RAY STRUCTURE OF 6-BR	OMO-3,4-
DIHYDRO-3-(2-0X0-2-METHOXY-ETHYLIDENE)-2H-1,4-	,
BENZOXAZIN-2-ONE	
3.1 Diels-Alder Reactions and other	99
types of Nucleophilic Addition Reactions	l I
3.2 Previos Studies of the Reactions	103
of the Metal Complexes of Quinone Mono-	
oximes with Dimethyl Acetylenedicarboxyl	late
3.3 Present Studies of the Reaction	112
of the Metal Complexes of Quinone Mono-	
oximes Towards Dimethyl Acetylenedicarbo	oxylate
and Methyl Propiolate	
3.3.1 Reaction of Nickel(II) Complexes of	114
Quinone Mono-oximes with Dimethyl	
Acetylenedicarboxylate	
3.3.2 Reaction of Copper(II) Complexes of	135
Quinone Mono-oximes with Dimethyl	
Acetylenedicarboxylate	
3.3.3 Studies of the Reaction of $M(qo)_2$	143
with Methyl Propiolate	
3.4 Mechanstic Appraisal of the Reactions	154

2.4 References

3.4 Mechanstic Appraisal of the Reactions1543.5 Single Crystal X-Ray Structure158

	ethylidene)-2H-1,4-benzoxazin-2-one	
3.5.1	Crystal Data for 6-Bromo-3,4-	158
	dihydro-3-(2-oxo-2-methoxy-ethylidene)-	
	2H-1,4-benoxazin-2-one	
3.5.2	Crystal Preparation and Data	158
	Collection	
3.5.3	Structure Solution and Refinement	159
3.5.4	Results and Discussion	160
3.6	References	167

Chapter Four

EXPERIMENTAL

171
171
172
173
211
212

APPENDIX II 224

Synthesis of 5-Acetylamino-1,2-benzoquinone 2-oxime and the Single Crystal X-Ray Structure of 3-Acetylamino-1,2-benzoquinone 4-oxime

1.1 Preparation of Quinone Mono-Oximes

A variety of direct and indirect methods for the synthesis of 1,2-quinone mono-oximes/2-nitrosophenols have been reported. In the direct methods the 1,2-quinone mono-oxime itself is obtainable from the reaction together with its 1,4-isomer.¹⁻⁶ In the case of the indirect methods a metal complex of the 1,2-quinone mono-oxime is first formed from which the free oxime may be isolated.⁷⁻¹⁵ The isolation of the free oxime is achievable by acidification of the complex¹³ or by passing a solution of the complex over an ion exchange resin.¹⁵ In the case of selected Lewis base adducts of copper(II) 1,2-quinone mono-oximato complexes the isolation of the free oxime has also been achieved by treating their methanolic solutions with silica.¹¹

1.1.1 Direct Methods

The principal method employed for the preparation of quinone mono-oximes involves the nitrosation of a phenol with sodium nitrite and dilute aqueous acid. Nitrosation of aromatic compounds is difficult unless activating groups are attached to the aromatic ring, e.g. hydroxy.

2

The hydroxy group is ortho/para directing and theoretically nitrosation of phenols can yield a mixture of 2- and 4-isomers. In practice for most phenols the predominant product of nitrosation with sodium nitrite/acid is the 4-isomer (Reaction 1.1) and the 2-isomer is only formed in a few cases, e.g. 3-methoxy phenol (Reaction 1.2).¹⁻³

Reaction 1.1

Reaction 1.2

Other direct methods which have been used for the preparation of quinone mono-oximes include the reaction of hydroxylamine hydrochloride with a quinone⁴ (Reaction 1.3) and photochemical syntheses. Both these

methods have very limited applications. In the case of photochemical synthesis only two reports have appeared

3

to date. These reports involve the photolysis of 2-nitrophenoxyacetic $acids^5$ (Reaction 1.4) and that of 1-naphthol in the presence of N-nitrosodimethylamine (Reaction 1.5).⁶

NH2OH-HCI alkolie

Reaction 1.3

X = H or RO

Reaction 1.4

Reaction 1.5

1.1.2 Indirect Methods

Nitrosation of a phenol in the 2-position occurs readily in the presence of a transition metal salt (Reaction 1.6).⁷⁻⁹ In this case the 1,2-quinone mono oxime is obtained in the form of its metal complex. Significantly, using this approach nitrosation in the 2-position has been accomplished even in the case of phenols which do not afford the 2-nitrosated product on treatment with sodium nitrite/acid.

Reaction 1.6

Nitrosation of 3-hydroxyphenols using amyl nitrite and sodium alkoxide leads to similar products (Reaction 1.7).¹⁰ This method has mainly been used for the preparation of 5-hydroxy-1,2-benzoquinone mono-oximes by acidification of their alkali metal complexes.

OH AmONO/EtONa Acid

Reaction 1.7

Recent studies have shown that potassium or sodium complexes of 1,2-naphthoquinone 1-oxime (1-nqoH) and 1,2-naphthoquinone 2-oxime (2-nqoH) can be obtained by reacting their complexes, $M(1-nqo)_2$, $M(2-nqo)_2$ (N = Cu²⁺ or Ni²⁺), Cu(2-nqo)₂(dipy) or Cu(2-nqo)(Ph₃P)₂ with potassium or sodium cyanide.¹¹ This route to potassium and sodium complexes has a potentially wide range of applicability.

The quinone mono-oxime of 1,10-phenanthroline has been prepared by the acidification of its sodium complex which is obtainable by the alkali induced rearrangement of 5-nitro-1,10-phenanthroline (Reaction 1.8).¹²

Reaction 1.8

The preparation of 1,2-quinone mono-oximes by the acidification of their transition metal complexes has also been reported by several workers.^{7,13,14} Generally these reports lack experimental details. In this procedure the metal complex is treated with an aqueous acid and the resultant oxime is extracted with an organic solvent. Solutions of several 1,2-quinone mono-oximes have been prepared but isolation of the oxime from the solution has only been accomplished in very few cases.¹³

Recently, the isolation of 1,2-quinone mono-oximes from their transition metal complexes has successfully been achieved by the use of ion exchange resins. The

technique has proved applicable to the preparation of 5-acetylamino-1,2-benzoquinone 2-oxime (5-AcqoH) from

7

×.

its nickel complex.15

A limited number of 1,2-quinone mono-oximes has been prepared by stirring methanolic solutions of bis(1,2-quinone mono-oximato)copper(II) adducts of 1,10-phenanthroline or 2,2'-dipyridyl with silica. The liberated ligand is isolated by removing the methanol from the reaction mixture and extracting the residue with an organic solvent (Reaction 1.9).¹¹

Cu(qo),X

Silica Cu(qo) X + qoH Methanol

Reaction 1.9

1.2 Structure of Quinone Mono-oximes

As noted earlier reaction of phenol with NaNO₂/acid involves mainly attack on the 4-position and leads to a product which has been isolated in two forms.¹⁶ One of these forms has been assigned a nitrosophenolic structure (Fig. 1.1a) and the other a quinone oximic structure (Fig. 1.1b). A tautomeric equilibrium between these two forms has been suggested to exist in solution. Two forms, yellow crystals and white fibres, have also been isolated in the case of the 4-nitrosated product

2-chloro-5-methyl-phenol.^{17,18} An X-ray crystallographic study of the yellow crystals has revealed it has quinone oximic structure with the OH of the NOH group syn to the chlorine (Fig. 1.2a).¹⁷ From chemical evidence and the knowledge of the structure of the syn form, an anti quinone oximic structure (Fig. 1.2b) has been suggested for the white fibres.¹⁸ Similar proposals have been made for the product of nitrosation of 2-bromo-5-methylphenol which has also been isolated in a yellow crystalline form and as white fibres.¹⁸

The 2-nitrosated products arising from the nitrosation of some phenols with NaNO / acid have also been isolated in two forms. For example, the product arising from the nitrosation of 3-methoxyphenol in the 2-position (Fig. 1.3, R = Me) was found to crystallise as green rectangular plates from benzene and as red needles from ethanol.¹⁹ Initially, the quinone oximic structure (Fig. 1.3b) was assigned to the red form (α -form) and the nitrosophenolic structure (Fig. 1.3a) to the green form (β -form). An X-ray crystallographic study of the α -form showed it to have quinone oximic structure with the OH of the NOH group anti to the CO group (Fig. 1.4a).²⁰ of the In the case 5-propoxy-1,2-benzoquinone 2-oxime which also exists in

Fig 1.3

 α - and β -forms, X-ray studies showed the latter to be quinone oximic rather than nitrosophenolic.²¹ However, in this case the compound has the OH of the NOH group syn to the CO group (Fig 1.4b). The significance of the oximic structure has also been demonstrated by the finding that the related 4-nitrosated product, 3-hydroxy-2-methyl-1,4-benzoquinone 4-oxime which has been characterised by X-ray crystallography has a quinone oximic structure in the solid state.²² In solution, i.r., u.v. and n.m.r. studies have indicated the presence of an equilibrium between quinone oximic and nitrosophenolic species for both 2- and 4-nitrosated compounds.²³⁻²⁷ In view of the above the 1,2-quinone mono-oxime/2-nitrosophenol system may be represented as shown in Scheme 1.1. Because of the important contribution from the oximic forms, in this thesis the compounds have been referred to as quinone mono-oximes.

Scheme 1.1

In the case of 5-hydroxy-1,2-benzoquinone mono-oximes additional contribution from the 1,4-quinone 4-oxime

Scheme 1.2

earlier X-ray crystallographic studies have shown that the product arising from the nitrosation of 3-hydroxy-2-methylphenol exists in the 1,4-quinone 4-oxime form (e in Scheme 1.2) rather than in an 1,2-quinone 2-oxime form.²²

1.3 Synthesis of 5-Acetylamino-1,2-benzoquinone 2-oxime

Previously 5-acetylamino-1,2-benzoquinone 2-oxime was obtained by ion exchange of its nickel complex (Scheme 1.3).¹⁵ It has also been reported that the direct nitrosation of 3-acetylaminophenol leads to a

mixture of products which shows no tendency to form complexes with various metal ions (e.g. iron).¹⁵

12

X = NCOCH

Scheme 1.3

During this study and contrary to previous reports it been has found that the nitrosation of 3-acetylaminophenol at room temperature gives an orange solid which readily reacts with iron(II) salts to give intensely coloured green products. This suggests the formation of a complexing ligand. T.l.c. examination of the crude product showed the presence of three components which were separated by column chromatography. Elution with toluene gave firstly a yellow product which is either 3-acetylamino-4nitrophenol or 5-acetylamino-2-nitrophenol. The second

yellow component eluted with toluene:ethyl acetate, was characterised as 3-acetylamino-1,4-benzoquinone 4-oxime.

13

The major product, 5-acetylamino-1,2-benzoquinone 2-oxime was also eluted with toluene:ethyl acetate. Significantly it was also observed that nitrosation of the phenol at low temperatures (*ca.* -10 $^{\circ}$ C) improves the yield of the latter considerably.

The formation of the nitrophenol is not surprising as nitrous acid, generated in *situ*, could oxidise the initially formed nitroso compound to the nitro product.²⁸ The formation of 3-acetylamino-1,4-benzoquinone 4-oxime has also been observed when the phenol is nitrosated in presence of transition metal salts.

5-Acetylamino-1,2-benzoquinone 2-oxime chelates transition and main group metal salts to give the corresponding metal complexes (see Chapter 2). In contrast 3-acetylamino-1,4-benzoquinone 4-oxime shows no reaction with transition metal salts and only limited reaction with main group metal compounds (e.g. sodium hydroxide).

1.4 Structure of 5-Acetylamino-1,2-benzoquinone 2-oxime

Some information regarding the structure of 5-acetylamino-1,2-benzoquinone 2-oxime has been obtained

Previously, on the basis of i.r. studies an anti structure has been suggested for 1,2-naphthoquinone 2-oxime (Fig. 1.5a) and a syn structure for 1,2-naphthoquinone 1-oxime (Fig. 1.5b).²⁵ Subsequently, the proposed structure for the latter was confirmed by X-ray crystallographic studies.²⁹ In the case of 1,2-naphthoquinone 2-oxime the absorption due to ν CO is observed at 1668 cm⁻¹ where as in the 1-isomer the corresponding absorption occurs at 1618 cm⁻¹. This difference reflects the absence of intramolecular hydrogen bonding in the former.

Fig. 1.5

In metal chelates derived from 1,2-naphthoquinone 1-oxime the absorption due to ν CO shifts slightly (ca. 10 cm⁻¹) to lower frequency relative to the ν CO of the protonated ligand (Table 2.1). In contrast in metal chelates derived from 1,2-naphthoquinone 2-oxime the corresponding shift is more pronounced (ca. 40 cm⁻¹)

Table 2.1 vCO Band Assignments for 1.2-OuinoneMono-oximes and some of their Metal Complexes

Compound	νCO (cm ⁻¹)	References
1-nqoH	1618	25
Cu(l-nqo)	1610	30
Mn (1-nqo)	1610	31
Mn (1-nqo)	1605	31
Fe(1-ngo)	1610	30, 32
Cr(1-nqo)	1608	31
Li(l-nqo)	1620	33
Li(l-nqo)(l-nqoH)	1665, 1618	33
Li(l-nqo)(l-nqoH).EtOH	1660, 1620	33
2-nqoH	1668	25
Cu(2-ngo)	1618	30
Mn (2-ngo) 2	1615	31
Mn (2-ngo)	1625	31
Fe(2-nqo)	1620	30
Cr(2-ngo)	1620	30
Li(2-nqo)	1620	33
Li(2-nqo).1/2EtOH	1618	33
Li(2-nqo)(2-nqoH)	1670, 1618	33
Li(2-nqo)(2-nqoH).EtOH	1668, 1620	33
5-Асдон	1642	15, •
Cu(5-Acgo)	1601	•
Ni(5-Acqo)	1601	•
Ni(5-Acqo) .6H 0	1639	•
Fe(5-Acqo)	1600	15
Mn (5-Acqo) .H O	1591	•
Co(5-Acqo)	1598	•
Na $[Co(5-Acgo), (NO_)]$	1598	•

In the case of of 5-acetylamino-1,2-benzoquinone 2-oxime two ν CO bands are observed at 1694 cm⁻¹ and 1642 cm⁻¹ assignable to the amide and the quinone oximic carbonyl groups respectively. On complexation the quinone oximic carbonyl group shifts to ca. 1600 cm⁻¹. By analogy to the above, an anti oximic structure (c in Scheme 1.4) is suggested for 5-acetylamino-1,2-benzoquinone 2-oxime in the solid state.

X = NCOCH

The ¹H n.m.r. spectrum of 5-acetylamino-1,2-benzoquinone 2-oxime in d_6 -dimethylsulphoxide (d_6 -DMSO) (Fig. 1.6a) shows the presence of two acidic hydrogens at 13.1 and

10.5 ppm. The former is assignable to the oximic hydrogen (NOH) by analogy to other related oximic

17

<u>Fig. 1.6a ¹H n.m.r. Nuclear Magnetic Resonance Spectrum of 5-Acetylamino-</u>

1.2-benzoquinone 2-oxime in d₆-DMSO

compounds such as 5-hydroxy-6-methyl-1,2-benzoquinone 2-oxime¹⁵ 4-oxime.³⁴ and 1,4-naphthoquinone Significantly, the ¹H n.m.r. spectrum (Fig. 1.7) of 3-acetylamino-1,4-benzoquinone 4-oxime also shows an acidic hydrogen at 13.6 ppm. The latter has been proven to exist in the quinone oximic form by X-ray chrystallography (see Section 1.7). In contrast, in the ¹H n.m.r. spectrum of the acetylated nitrophenol (Fig. 1.8) the acidic hydrogens are observed in the range 10-11 ppm, thus indicating the absence of an oximic hydrogen. The ¹H n.m.r. spectrum of 5-acetylamino-1,2-benzoquinone 2-oxime also shows the expected resonances due to the methyl and aromatic hydrogens. However, resonances due to the aromatic protons become better resolved after the addition of deuterium oxide (D_20) (Fig. 1.6b).

Fig. 1.7¹H n.m.r. Nuclear Magnetic Resonance Spectrum of 3-Acetvlamino-1.4-

benzoquinone 4-oxime in d₆-DMSO

Fig. 1.8¹H n.m.r. Nuclear Magnetic Resonance Spectrum of 3-Acetylamino

Nitrophenol in d₆-DMSO

Although 3-Aceylamino-4-nitrophenol is shown the n.m.r. results are also compatible for 5-acetymmio-2-nitrophnol

1.5 The Single Crystal X-Ray Structure of 3-Acetylamino-1,4-benzoquinone 4-oxime

As discussed earlier quinone mono-oximes can have various structures and in solution may exhibit nitrosophenolic/quinone oximic tautomerism.²³⁻²⁷ Similarly, 3-acetylamino-1,4-benzoquinone 4-oxime can exhibit a number of isomeric and tautomeric structures (Scheme 1.5).

The structure of several 1,2- and 1,4-quinone mono-oximes have been determined by X-ray crystallography.^{17,20,22,35-38} These studies have shown that the ligand is essentially quinone oximic in character. This is indicated by the presence of four long and two short C-C ring bond lengths, and relatively short C-O and C-N bond lengths (Table 1.2). During the present study an X-ray crystallographic structure determination of 3-acetylamino-1,4-benzoquinone 4-oxime has shown that in the solid state this compound has the 1,4-quinone oximic structure (b in Scheme 1.5).

1.5.1 Crystal Data for 3-Acetylamino-1,4-benzoquinone 4-oxime

 $C_{B_{7}}H_{2}N_{2}O_{3}, \quad M = 179.15, \quad a = 16.65(3), \quad b = 12.75(3),$ $c = 3.84(1), \quad \alpha = \gamma = 90.00^{\circ}(2), \quad \beta = 94.39^{\circ}(2),$ $U = 813 \text{ Å}^{3}. \quad F(000) = 320.00, \quad \mu(\text{Mo-K}_{\alpha}) = 10.00 \text{ cm}^{-1},$ $Z = 4, \quad D_{\alpha} = 1.26 \text{ gcm}^{-3}.$

1.5.2 Crystal Preparation and Data Collection

3-Acetylamino-1,4-benzoquinone 4-oxime was synthesized by nitrosation of 3-acetylaminophenol in presence of a transition metal salt (see Chapter 2) and was

Table 1.2 Bond Lengths of 1.2-Ouinone Mono-oximes from Previous X-Ray Studies

Quinone mono-ox	ine		Bond 1	ength (Å			Ref
tructure	No.	5	C-N	0-N	c-c+	c-c‡	
	(I)	1.25	1.28	1.36	1.33	1.45	22
	(11)	1.21	1.28	1.32	1.31	1.47	17
	(111)	1.20	1.25	1.39	1.33	1.46	35

Table 1.2 cont.

Quinone Mono	-oxime		Bond	Length (Å)		Ref.
Structure	No.	C-O	C-N	0-N	¢	*	
ð_z ∽ S	(IV)	1.23	1.22	1.36	1.34	1.46	50
(cHy)sC	(A)	1.24	1.30	1.36	1.37	1.47	36
žn g	(IV)	1.22	1.31	1.39	1.31	1.47	37

Table 1.2 cont.

	Line		Bond	length	(*		Ref.
Structure	No.	0-0	C-N	0-N	+	*	
8-	(IIN)	1.24	1.30	1.38	1.33	1.46	38
7							

f=Average bond length of the 2 short bonds, $\ddagger Average$ bond length of the 4 long bonds

.

0.30 X 0.16 X 0.12 mm. The data were collected on a Philips PW1100 diffractometer in the range $3^{\circ} \le \theta \le 25^{\circ}$, with a scan width of $0.9^{\circ}.^{39}$ Using a graphite monochromated Mo-K_a radiation source, a total of 1382 unique reflections with $I/\sigma(I) > 3$ were collected. The intensity relationship $I_{hkl} \equiv I_{hkl} \equiv I_{hkl} \equiv I_{hkl} \equiv I_{hkl}$ observed for selected strong reflections confirmed the presence of a primitive monoclinic crystal system. The data were corrected for absorption, the Lorentz and polarisation effects.

1.5.3 Structure Solution and Refinement

Systematic absences in the data of the type: OkO; k = 2n + 1 and hOl; h + 1 = 2n + 1 indicated a space group P2₁/n. This was confirmed by complete structure solution in this space group. The structure was solved by direct methods using SHELXS-86⁴⁰ structure solution programme for obtaining the coordinates of the phenol ring. Subsequent difference Fourier maps revealed the position of remaining non-hydrogen atoms. Also difference Fourier calculations, with $\sin \theta < 0.35$, revealed the position of all the hydrogen atoms. The hydrogen atoms were included in the structure factor with isotropic thermal parameters of 0.06599 Å²: Anisotropic thermal parameters were assigned to the

oxygen and nitrogen atoms in the final full-matrix least square refinement, which converged to R = 0.0539

28

 $\begin{aligned} (\mathbf{R} &= \boldsymbol{\Sigma}[\mathbf{F}_0 - \mathbf{F}_c] / \boldsymbol{\Sigma}[\mathbf{F}_0]), & \text{and} & \mathbf{R}_{\mathrm{M}} &= 0.0520 \\ (\mathbf{R}_{\mathrm{M}} &= \boldsymbol{\Sigma}[\mathbf{F}_0 - \mathbf{F}_c] \boldsymbol{W}^{1/2} / \boldsymbol{\Sigma}[\mathbf{F}_0] \boldsymbol{W}^{1/2}), & \text{with weights of } 1 / \sigma^2(\mathbf{F}) \\ \text{assigned to individual reflections.} \end{aligned}$

All the atomic coordinates, temperature factors, bond lengths, intra bond angles, intra and inter-molecular distances, are given in Tables 1-7 in Appendix 1.

1.5.4 Results and Discussion

Selected bond lengths and bond angles for 3-acetylamino-1,4-benzoquinone 4-oxime are shown in Fig. 1.10 and Fig. 1.11.

Comparison of the bond length of the ring CO group in the structure of 3-acetylamino-1,4-benzoquinone 4-oxime (Fig. 1.10) to those tabulated for compounds with established quinone mono-oxime structures in Table 1.2 shows that the bond C(4) - O(1) [1.232(7) Å] is within the range quoted for compounds (I - VII). The N-O bond length of 1.372(6) Å is also very similar to those reported previously. However, the bond length of N(2) - C(1) [1.301(7) Å], appears in the upper range of C=N bond distances reported for the related structures shown in Table 1.2. Furthermore the C=N and N-O bond distances are similar to those found in oximes, e.g.

Fig. 1.10 Selected Bond Lengths (Å) in 3-Acetylamino-1.4-benzoguinone 4-oxime

1,4-benzoquinone (1.22 Å).42 Significantly in the structure determined the ring C=0 has similar bond length to the C=O [1.22(5) Å] of the amide group. Another significant observation arising from this study is that in line with the structure of other 1,4-isomers (see Table 1.2) the OH of the NOH is anti to the group closest to it i.e. in this case the acetyl group. The ring C-C bond distances show that two C-C bonds are shorter than the remaining four C-C bonds (Fig. 1.10). The short bonds are the C(2) - C(3) and C(5) - C(6)which are 1,4 with respect to each other. The mean bond length of these bonds (1.339 Å) is 0.101 Å shorter than the mean of the remaining bonds, indicating that they have more double bond character.

1.6 References

- 1 H. H. Hodgson, J. Chem. Soc., 1931, 1494.
- 2 H. H. Hodgson and F. H. Moore, J. Chem. Soc., 1923, 2499.
- 3 H. H. Hodgson and λ. Kershaw, J. Chem. Soc., 1929, 1553.
- 4 H. Goldschmidt, Ber., 1884, 17, 213.
- 5 P. H. McFarlane and D. W. Russel, J. Chem. Soc., Chem. Commun., 1969, 475.
- 6 Y. L. Chow and Z. Z. Wu, J. Am. Chem. Soc., 1985, 107, 3338.
- 7 G. Chronheim, J. Org. Chem., 1947, 12, 7.
- 8 J. Charalambous, M. J. Frazer, and F. B. Taylor, J. Chem. Soc. (A), 1969, 2787.
- 9 J. Charalambous, M. J. Frazer, and F. B. Taylor, J. Chem. Soc. (A), 1971, 602.
- 10 T. Teshigawara, Jap. Pat. 13,918, Jul. 17, 1964. (Chem. Abs. no. 62:7688b).
- 11 K. W. P. White, Ph.D. Thesis, 1988, The Polytechnic of North London.
- 12 R. D. Gillard, R. P. Houghton, and J. N. Tucker, J. Chem. Soc., Dalton Trans., 1980, 2102.
- 13 R. G. Cawthorne, J. Charalambous, W. M. Shutie, F. B. Taylor, and A. Betts, Inorg. Chim. Acta, 1979, 37, 245.

14 O. Baudisch, Naturwissenschaften, 1939, 27, 768.

15 N. D. Pathirana, Ph.D. Thesis, 1991, The Polytechnic

of North London.

- 16 I. L. Finar, Organic Chemistry', Vol. 1,' Longman Inc., London, 1973.
- 17 C. Romers and E. Fischmann, Acta Crystallogr., 1960, 13, 809.
- 18 E. Fischmann, C. Romers, and A. J. H. Umans, Acta Crystallogr., 1960, 13, 885.
- 19 F. Henrich and H. Eisenach, J. Prakt. Chem., 1904, 70, 332.
- 20 G. W. R. Bartindale, M. M. Crowder, and K. A. Morley, Acta Crystallogr., 1959, 12, 111.
- 21 C. Romers, Acta crystallogr., 1964, 17, 1287
- 22 P. C. Christidis, A. Dodd, N. D. Pathirana, J. Charalambous, M. McPartlin, and N. Talee, Acta Crystallogr., 1991, C47, in press.
- 23 A. Burawoy, M. Cais, J. T. Chamberlain, F. Liversedge, and A. R. Thompson, J. Chem. Soc., 1955, 3727.
- 24 H. S. French and D. J. Perkins, J. Am. Chem. Soc., 1937, 59, 1182

25 D. Hadzi, J. Chem. Soc., 1956, 2725.

- 26 R. K. Norris and S. Sternhell, Aust. J. Chem., 1966, 19, 841.
- 27 T. Shono, Y. Hayashi, and K. Shinra, Bull. Chem. Soc. Jpn., 1971, 44, 3179.
- 28 J. March, Advanced Organic Chmistry, J. Wiley and

- 29 H. Saarinen and J. Korvenranta, Finn. Chem. Lett., 1978, 223.
- 30 A. Janowski and J. J. Cukrowski, J. Nol. Struct., 1970, 7, 185.
- 31 D. Baluch, Ph.D. Thesis, 1989, The Polytechnic of North London.
- 32 J. Charalambous, M. J. Fraser, and R. Sims, Inorg. Chim. Acts., 1976, 18, 247.
- 33 P. Gaganatsou, Ph.D. Thesis, 1987, The Polytechnic of North London.
- 34 A. Fischer, R. M. Golding, and W. C. Tannent, J. Chem. Soc., 1965, 6032.
- 35 C. Romers, C. B. Shoemaker, and E. Fischmann, Rec. Trav. Chim., 1957, 76, 490.
- 36 J. C. A. Boeyens, J. Cryst. Hol. Struct., 1976, 6, 217.
- 37 H. Saarinen, J. Korvenranta, and E. Näsäkkälä, Acta Chem. Scand., Ser. A, 1977, 31, 213.
- 38 H. Saarinen, J. Korvenranta, and M. Näsäkkälä, Finn. Chem. Lett., 1977, 47.
- 39 M. K. Cooper, P. J. Guerney, H. J. Goodwin, and M. McPartlin, J. Chem. Soc., Dalton Trans., 1982, 757.
- 40 G. M. Sheldrick, Program for crystal structure determination', University of Cambridge, England, (1976).

42 J. Trotter, Acta Crystallogr., 1960, 13, 86.

Studies of Metal Complexes Derived from 5-Acetylamino-1,2-benzoquinone 2-oxime

2.1 Introduction

The aim of this part of the thesis was to investigate the synthesis of copper, nickel, cobalt, and manganese complexes derived from 5-acetylamino-1,2-benzoquinone 2-oxime. This ligand was chosen due to the presence of the acetylamino group (-NHAC) which is expected to be hydrophilic and therefore of some value in the treatment of metal overload diseases. The complexes have been studied by elemental analysis, room temperature magnetic measurements, i.r., u.v./vis. and where possible n.m.r. spectroscopy.

2.2 Metal Complexes of 1,2-Quinone Mono-oximes

Metal complexes of 1,2-quinone mono-oximes have been known for a considerable length of time.¹ The ability of these chelating agents to precipitate certain metal ions has led to their extensive use as analytical and extraction reagents.^{2,3} Many such complexes have also found uses in catalysis,⁴ the dye industry and in the filtration of tobacco smoke,^{5,6} For example iron(II) quinone oximic complexes have shown potential as

organic compound⁷ and 1,2-naphthoquinone mono-oximes have been used in the dyeing of polypropylene fibres.⁸

2.2.1 Preparation of Complexes of 1,2-Quinone Mono-oximes

The methods of preparation of the metal complexes of 1,2-quinone mono-oximes may be classified into the following groups, namely:

- (a) The direct method.
- (b) The nitrosation method.
- (c) The interaction of the free ligand with a metal carbonyl.
- (d) The Baudish reaction.
- (e) The amyl nitrite method.
- (f) The nitro rearrangement reaction.
- (g) The reaction of transition metal complexes of 1,2-quinone mono-oximes with an alkali metal cyanide.

The direct method involves the interaction of a 1,2-quinone mono-oxime with a metal salt⁹ or hydroxide.¹⁰ As there are only a few 1,2-quinone mono-oximes available, this method has limited application but can be utilised for the preparation of

Reaction 2.1

Reaction 2.2

The nitrosation method was first reported by Cronheim¹¹ and later modified in these laboratories. This involves the nitrosation of a phenol, using sodium or potassium nitrite and acetic acid, in the presence of a transition metal salt (e.g. Reaction 2.3). Using this method many complexes of first row transition metals e.g. copper(II),⁹ nickel(II),^{12,13} iron(III),¹⁴ and cobalt(III),¹⁵ as well as those of some second row transition metals e.g. ruthenium(II)¹⁶ and iridium(III)¹⁷ have been prepared.

Reaction 2.3

Complexes of some transition metals such as those of iron(II) and cobalt(II) 1,2-quinone mono-oximato complexes have also been prepared by the direct reaction of the free ligand with iron pentacarbonyl or dicobalt octacarbonyl respectively, (e.g. Reactions 2.4 and 2.5).^{18,19,20,21}

Reaction 2.4

Some copper(II) complexes have been prepared by the Baudish method²² which involves oxidation of an aromatic

40

.

hydrocarbon by the action of hydrogen peroxide and hydroxylamine hydrochloride in the presence of a copper(II) salt. This method, however, must be treated with scepticism as limited preparative and no analytical data were presented in the relevant paper.

The amyl nitrite method, has so far been applied for the synthesis of main group metal complexes derived from 5-hydroxy-1,2-benzoquinone 2-oximes. This method involves treatment of a 3-hydroxyphenol with amyl nitrite and an alkali metal hydroxide or alkoxide in ethanol. (e.g. Reaction 2.6).^{23,24}

Reaction 2.6

The sodium complex of 1,10-phenanthroline-5,6-quinone 6-oxime has been obtained by the sodium hydroxide induced rearrangement of 5-nitro-1,10-phenanthroline (Reaction 2.7).²⁵ This method has also been used for the preparation of other sodium quinone mono-oximates derived from heterocyclic nitro compounds.

Reaction 2.7

Recent studies have shown that the reaction of nickel²⁶ and copper^{26,27} complexes of 1,2-quinone mono-oximes or their Lewis base adducts [e.g. $Cu(2-nqo)_2(dipy)$ or $Cu(2-nqo)(Ph_3P)_2$] with an alkali metal cyanide affords the corresponding alkali metal complex. This method has so far been employed for the preparation of the potassium complexes of 4-chloro-1,2-benzoquinone 2-oxime and the sodium and potassium complexes of the mono-oximes of 1,2-naphthoquinone (e.g. Reaction 2.8).

2.2.2 Types of Complexes of 1,2-Quinone Mono-oximes

The complexes derived from 1,2-quinone mono-oximes are of two basic types:

(i) Those involving the anion (qo^-) of a 1,2-quinone mono-oxime, e.g. $Cu(4-Clqo)_2$, $Ni(4-Meqo)_2$ and Li(1-nqo).^{9,13,10} As indicated in the previous section these complexes are prepared in a variety of ways and are by far the most common.

(ii) Complexes involving neutral 1,2-quinone mono-oximes (qoH) as the ligands, e.g. $(1-nqoH)_2FeCl_2$ and [Li(1-nqo)(1-nqoH)(EtOH)].^{10,28} These are obtainable by the direct reaction of the ligand with a metal hydroxide or halide (e.g. Reactions 2.2 and 2.9). In addition to the above, a complex involving a protonated 1,2-quinone mono-oxime species, $[qoH_2]_2[CuCl_4]$ has been reported to result from the reaction of bis(1,2-benzoquinone 2-oximato)copper(II) with hydrogen chloride gas in ethanol.⁹

2.2.3 The Structure of Complexes of Quinone Mono-oximes

A considerable number of X-ray crystallographic studies of several transition and main group metal complexes of 1,2-quinone mono-oximes have been reported. Some selected data are presented in Table 2.1.

These studies have shown that in all cases the ligands are quinone oximic in character (Fig. 2.1a) rather than nitrosophenolic (Fig. 2.1b).^{10,16,17,29-34} This feature is indicated by the presence of two short and four long carbon-carbon bond distances in the ligand. Furthermore it has been observed that the C-O and the C-N bond lengths of the ligand in these complexes are shorter than the C-O bond length in salicylaldoximates³⁵ (ca. 1.40 °A) and the C-N bond length in 1,8-dinitrosonaphthalene³⁶ (ca. 1.44 °A). Since the relevant bond lengths in salicylaldoximates and 1,8-dinitrosonaphthalene have essentially single bond character, these observations confirm the predominance of the quinone oximic structure in metal quinone

Mono-oximes
1.2-Ouinone
a
Complexes
Metal
4
Length
Bond
Selected
2.1
2
-

Complex		Bon	I Length	(¥)		Ref
(Hop)	c – 0	C – M	N - 0	c - c+	c - ct	
Cu(qo)(H,0)	1.28	1.35	1.26	1.39	1.44	3
(1,2-naphthoguinone 2-oxime)						
Cu(qo) ₂ (Me ₂ CO) ₂ (1,2-naphthquinone 1-oxime)	1.29	1.35	1.26	1.38	1.44	ñ
Cu(qo)(Ph ₃ P) ₂ (1,2-naphthoquinone 1-oxime)	1.26	1.37	1.29	1.40	1.44	ñ
Cu(qo) ₂ (py) (4-methyl-1,2-benzoquinone 2-oxime)	1.27	1.35	1.25	1.35	1.43	ë
K (Ni (qo) ₃) (Me ₂ CO) (4-chloro-1,2-benzoquinone 2-oxime)	1.25	1.33	1.27	1.35	1.45	ñ
Ru(qo) ₂ (py) ₂ (1.2-naphthoquínone 1-oxime)	1.28	1.38	1.27	•	ı	Ä
[UO ₂ (GO) ₂ (H ₂ O) ₂].1/2CH ₃ Cl (1,2-naphthquinone 2-oxime)	1.23	1.30	1.34	1.32	1.45	ń
UO(qo) ₂ (Ph ₃ PO)(H ₂ O) (1,2-naphthoquinone 1-oxime)	1.25	1.33	1.35	1.37	1.46	m
Li(qo)(qoH)(EtOH) (1.2-naphthoquinone 1-oxime)	1.25	16.1	1.36	1.33	1.48	-

mono-oximates. The X-ray crystallographic studies also indicate that apart from few exceptions, the ligand to metal mode of bonding involves chelation via the nitrogen atom of the NO group and the quinone oxygen (Fig. 2.1).^{10,16,17,29-33}

The possibility of ligand coordination to the metal via the oxygen atom of the NO group and the quinone oxygen has also been suggested but no such example has so far been established crystallographically.^{37,38} Another type of ligand attachment, involving bonding only through the nitrogen and the oxygen atoms of the NO group, has been reported in the case of the dioxouranium(VI) complexes and (Fig. 2.2) $UO_{2}(1-nqo)_{2}(Ph_{3}PO)(H_{2}O)$ UO2(2-ngo)2(H2O)2.1/2CHCl2. H Bonding involving the NO group has also been observed in platinum complexes related ligand the from derived 4-isonitroso-3(R)-isoxazol-5-one.³⁹ However in these complexes, the bonding to the metal is only through the nitrogen atom of the NO group (Fig. 2.3). Another type of bonding of the ligand to the metal has been observed in the potassium complex of 4-chloro-1,2-benzoquinone 2-oxime, K(Clqo). $^{1}/_{2}$ H₂O (Fig 2.4).⁴⁰ In this case , the X-ray crystallographic studies have shown that the ligand is bridging and is attached to different potassium ions via the oxygen atom of the NO group and

Fig. 2.2

Fig. 2.3

2.3 Metal Complexes of 5-Acetylamino-1,2-benzoquinone 2-oxime

Previous studies of quinone mono-oximic complexes have involved mainly ligands having substituents without hydrophilic properties such as 4-bromo-1,2-benzoquinone 2-oxime and 5-methoxy-1,2-benzoquinone 2-oxime.^{9,13} Some exceptions, involving ligands with hydrophilic substituents attached to the ring are a few complexes derived from sulphonated 1,2-naphthoquinone mono-oximes,⁴¹⁻⁴³ 5-hydroxy-1,2-benzoquinone 2-oxime and 5-acetylamino-1,2-benzoquinone 2-oxime.⁴⁴

As noted in the introduction, one of the aims of the present work has been to investigate complexes of 5-acetylamino-1,2-benzoquinone 2-oxime which are expected to show hydrophilic properties due to the presence of the acetylated amino group. Previously only two complexes reported from 2-oxime [sodium 5-acetylamino-1,2-benzoquinone tris(5-acetylamino-1,2-benzoquinone 2-oximato)ferrate(II) tetrahydrate and bis(5-acetylamino-1,2benzoquinone 2-oximato)bis(pyridine)iron(II)].44

In this study nickel(II), copper(II), cobalt(III), and manganese(III) complexes of 5-acetylamino-1.2-benzoguinone 2-oxime have been

complexes was achieved by the following two routes:

(i) The nitrosation of 3-acetylaminophenol in the presence of copper(II) sulphate pentahydrate, nickel(II) chloride hexahydrate, cobalt(II) chloride hexahydrate, sodium hexanitrocobaltate(III) or manganese(II) chloride tetrahydrate.

(ii) The direct reaction of the ligand with the metal compounds given above.

2.3.1 Synthesis of Copper(II) Complexes of 5-Acetylamino-1,2-benzoquinone 2-oxime

Nitrosation of 3-acetylaminophenol with sodium nitrite/acid in the presence of copper(II) sulphate pentahydrate gave a brown solid which was shown to contain two major products by t.l.c.. Separation of the mixture was achieved using Soxhlet extraction. This gave 3-acetylamino-1,4-benzoquinone 4-oxime and bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II). The complex also resulted in almost quantitative yield when 5-acetylamino-1,2-benzoquinone 2-oxime was reacted with copper(II) chloride dihydrate in methanol.

3-Acetylamino-1,4-benzoquinone 4-oxime was characterised by elemental analysis, mixed melting point

determination, and comparative i.r. and ¹H n.m.r. spectroscopy with an authentic sample.⁴⁴ Furthermore 49

during this study the structure of this compound was confirmed by X-ray crystallography (see Chapter 1).

The formulation of bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) was established by full elemental analysis and supported by thermal gravimetric analysis (Table 2.2) and i.r. spectroscopy.

The i.r. spectrum (Fig. 2.5) included two bands, at 3280 and 3321 cm⁻¹ which are assignable to ν NH of the acetyl group. Two strong bands were also observed at 1601 cm⁻¹ and 1683 cm⁻¹ assignable to the ring ν CO of the ligand⁴⁴ and the amide CO group respectively. As noted in Chapter 1, the ring ν CO in the free ligand appears at 1642 cm⁻¹. The lowering of the ν CO frequency upon complexation indicates the involvement of the ring CO in bonding.

Bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) reacted readily at room temperature with pyridine and 2,2-dipyridyl to give the adducts bis(5-acetylamino-1,2benzoquinone 2-oximato)bis(pyridine)copper(II) and bis(5-acetylamino-1,2-benzoquinone 2-oximato) (2,2-dipyridyl)copper(II). However in contrast to the analogous nickel(II) complex the copper complex failed to react with hydroxylamine.

Table 2.2 Thermal Gravimetric Analysis and Room Temperature Magnetic Moments of Cu(5-Acgo)₂ and its Lewis Base Adducts

compound	Weight of sample (mg)	T(°C) * . *	Weight Found	loss (mg) Calc.	Decomposition Temperature (°c) ¹	H
Cu (5-Àcgo) ₂	270	1	1		240 - 250	1.79
Cu(5-Acqo) ₂ (dipy)	184	1	1	•	220 - 240	1.7
cn (2-Acgo) ² (PY) ²	172	150 - 180	47	47	240 - 250	1.9

Fig. 2.5 Infra-red Spectrum of Cu(5-Acgo)

Fig 2.6 Infra-red Spectrum of Cu(5-Acgo) (DV)

Fig 2.7 Infra-red Spectrum of Cu(5-Acgo) (dipy)

 $Cu(5-Acqo)_2(dipy)_2$ (Fig 2.6 and Fig 2.7) included the expected bands due to the νCO of quinone oximic and the acetyl groups.

The formation of bis(5-acetylamino-1,2-benzoquinone 2-oximato)(2,2-dipyridyl)copper(II) is in accord with previous reports involving reactions of other copper(II) mono-oximates with 2,2-dipyridyl.^{26,45} However the formation of a diadduct with pyridine is novel. Previously all reported adducts of $Cu(qo)_2$ complexes with pyridine were found to be 1:1 adducts.⁹

The presence of two moles of pyridine per mole of complex has been established by full elemental analysis

53

as well as thermal gravimetric analysis (Table 2.2) and macroscale pyrolysis. Thermal gravimetric analysis of bis(5-acetylamino-1,2-benzoquinone 2-oximato)bis-(pyridine)copper(II) gave a quantitative loss of pyridine (2 mols/1 mol of adduct) over a temperature range of 150-180 °C with the parent complex decomposing at ca. 250 °C. Loss of pyridine in the region 150-200 °C has also been observed in the monopyridine adducts of other copper(II) complexes of quinone mono-oximes.⁹ the case However in of the bis(5-acetylamino-1,2-benzoquinone 2-oximato)-(2,2 -dipyridyl)copper(II) there was no similar loss of the base. Instead the adduct decomposed in a single step at ca. 240 °C. So far the formation of the bis Lewis base adducts by complexes of the type Cu(chel) has been Cu(hfac) observed only in the case of (hfacH = hexafluoroacetylacetone). The formation of this octahedral and isolable adduct is well established, 46,47 whereas an unstable monopyridine adduct has been reported for bis(acetylacetonato)copper(II).48,49 In the case of bis(hexafluoroacetylacetonato)copper(II) the attachment of two pyridine ligands has been correlated with the electron withdrawing nature of the CF, group which enhances the electrophilic character of the metal centre.44,50 By analogy, the formulation of the bispyridine adduct may indicate that the acetyl group

sufficiently so as to allow the attachment of two pyridine ligands.

2.3.2 Synthesis of Nickel(II) Complexes of 5-Acetylamino-1,2-benzoquinone 2-oxime

Nitrosation of 3-acetylaminophenol in the presence of nickel(II) chloride hexahydrate gave 3-acetylamino-1,4-benzoquinone 4-oxime and an orange residue whose elemental analysis indicated the formulation bis(5-acetylamino-1,2-benzoquinone 2-oximato)nickel(II) hexahydrate, Ni(5-Acqo)₂.6H₂O. Macroscale pyrolysis and thermal gravimetric analysis (Table 2.3) confirmed the loss of six water molecules on heating. This orange solid was also obtained from the direct reaction of 5-acetylamino-1,2-benzoquinone 2-oxime with nickel(II) chloride hexahydrate in 1:1 water-acetic acid. In contrast the direct reaction of 5-acetylamino-1,2-benzoquinone 2-oxime with nickel(II) chloride hexahydrate in methanol afforded a brown complex, Ni(5-Acqo)_.nH_O (n = 2-6), whose degree of hydration varied from preparation to preparation. Both the orange and brown complexes reacted with pyridine to give the same adduct, bis(5-acetylamino-1,2-benzoquinone 2-oximato) bis (pyridine) nickel (II).

Table 2.3 Thermal Gravimetric Analysis and Room Temperature Magnetic Moments of Ni(5-Acgo)₂ and its Lewis Base Adducts

punoduo	Weight of Sample (mg)	T ('C		Weight Los Found	s (mg) Calc.	Decomp	osition ature (°C) ^b	-
i (5-Àcqo) ₂	200	•	1	ı	ı	250 -	260	1.10
i (5-Acqo) 2.6H 20	156	100 -	120	32	31	250 -	260	2.99
i (5-Acgo) ₂ (NH ₂ OH) ₂	136	140 -	220	18	19	250 -	260	3.25
i (5-Acgo) ₂ (dipy)	166	ı	ı	•	1	260 -	270	2.98
i (5-Acqo) ₂ (py) ₂	155	ı	•	•	,	250 -	260	3.00

arTemperature of the loss of water and hydroxylamine, bellaxims on the (rate of weight loss) against temperature curve.

bis(5-acetylamino-1,2-benzoquinone 2-oximato)nickel(II).

Both the hydrated and anhydrous forms of Ni(5-Acqo)₂ reacted readily with 2,2-dipyridyl to give the adduct bis(5-acetylamino-1,2-benzoquinone 2-oximato)-(2,2-dipyridyl)nickel(II). However it was found that only the anhydrous Ni(5-Acqo)₂ reacts with hydroxylamine at low temperature to give the hydroxylamine diadduct Ni(5-Acqo)₂(NH₂OH)₂. Previously, adducts of the type Ni(β -diket)(NH₂OH)₂ have been prepared by the reaction of Ni(II) acetylacetonate or benzoylacetonate with hydroxylamine at 0 °C.⁵¹

In the i.r. spectra (Fig. 2.8 and Fig. 2.9) of $Ni(5-Acqo)_2.6H_2O$ and $Ni(5-Acqo)_2.nH_2O$, the presence of water is indicated by bands at $3572-3233 \text{ cm}^{-1}$ and $3320-3229 \text{ cm}^{-1}$ respectively. The expected bands due to ν CO are also evident in the spectra of the hydrated complexes as well as in the spectra of the anhydrous complex (Fig 2.10) and the adducts $Ni(5-Acqo)_2(py)_2$ (Fig 2.11), $Ni(5-Acqo)_2(dipy)$ (Fig 2.12), $Ni(5-Acqo)_2(NH_2OH)_2$ (Fig 2.13).

Thermal gravimetric analysis of $Ni(5-Acqo)_2(NH_2OH)_2$ showed a quantitative loss of hydroxylamine (2 moles/1 mole of adduct) over the temperature range of

140-220 °C with the parent complex decomposing at ca. 260 °C. However, in the case of the Ni(5-Acqo)₂ adducts

Fig. 2.8 Infra-red Spectrum of Ni(5-Acgo) 2.6H 0

Fig. 2.9 Infra-red Spectrum of $Ni(5-Acgo)_2 \cdot nH_2O$ (n = 2-6)

Fig. 2.10 Infra-red Spectrum of Ni(5-Acgo)

Fig. 2.11 Infra-red Spectrum of Ni(5-Acgo) (py)

Fig. 2.12 Infra-red Spectrum of Ni(5-Acgo) (dipy)

Pig. 2.13 Infra-red Spectrum of Ni(5-Acgo) (NH OH)

involving pyridine and 2,2-dipyridyl there was no similar loss of base, but the adducts decomposed in a single stage between 250 and 260 °C (Table 2.3).

2.3.3 Synthesis of cobalt(III) Complexes of 5-Acetylamino-1,2-benzoquinone 2-oxime

In the case of the synthesis of cobalt complexes of 5-acetylamino-1,2-benzoquinone 2-oxime three routes were investigated. Namely the direct reaction of the ligand with cobalt(II) chloride hexahydrate; the nitrosation of 3-acetylaminophenol in the presence of cobalt(II) chloride hexahydrate or sodium hexanitrocobaltate(III); and the direct reaction of the ligand with sodium hexanitrocobaltate(III).

The direct reaction of cobalt(II) chloride hexahydrate with the ligand in methanol gave a red solid as the major product together with smaller quantities of several soluble products. The elemental analysis of the red solid was in good agreement with that expected for tris(5-acetylamino-1,2-benzoquinone 2-oximato) cobalt(III), $Co(5-Acqo)_3$. This formulation which involves cobalt in oxidation state (III) was further supported by the diamagnetic character of the product and its unreactivity towards pyridine. This behaviour

compares well with previous reports on the formation of cobalt(III) complexes e.g. Co(1-nqo)₃, from analogous

reactions involving the mono-oximes of 1,2-naphthoquinone and cobalt(II) chloride hexahydrate.52,53 In these cases it has been suggested that oxidation of Co(II) to Co(III) involves reduction/deoxygenation of the naphthoquinone mono-oxime and that the stoichiometry of the reaction is as indicated by Reaction 2.10.15

Reaction 2.10

T.l.c. examination of the red solid product formulated as $Co(5-Acqo)_3$ indicated the presence of two major and

two minor components which probably correspond to isomeric forms of the complex. The presence of two or more isomers is to be expected as a trischelated cobalt(III) complex can exist in enantiomeric configurations about the metal atom (Fig. 2.14).⁵⁴ Furthermore, due to the unsymmetrical nature of the 5-AcqoH ligand, geometrical isomers (e.g. facial and meridial) can exist for each of the enantiomeric forms (Fig. 2.15).

Fig. 2.14

facial

Previously, several cobalt complexes of the type Co(chel)₃ (where chel is an unsymmetrical chelating ligand) which exhibit geometric isomerism have been reported^{55,56} e.g. tris(1,1,1-trifluoro-2,4pentanedionato)cobalt(III), tris(1-phenyl-1,3butanedionato)cobalt(III) and tris(glycinato) cobalt(III).

When the reaction of 5-acetylamino-1,2-benzoquinone 2-oxime with cobalt(II) chloride hexahydrate was carried out in either 50% aqueous acetic acid or 50% methanolic isomeric acetic acid only two forms of tris(5-acetylamino-1,2-benzoquinone 2-oximato)cobalt(III) resulted as indicated by t.l.c. The formulation of the product as Co(5-Acqo), was again established by full elemental analysis, t.g.a. and i.r. spectroscopy (Fig. 2.16). In addition, in this case it was possible to obtain more information about the molecular configuration of Co(5-Acqo), by COSY, ¹³C and ¹H n.m.r. spectroscopy (see Section 2.3.5).

The nitrosation reaction of 3-acetylaminophenol in the presence of cobalt(II) chloride hexahydrate gave a mixture of 5-acetylamino-1,2-benzoquinone 2-oxime, 3-acetylamino-1,4-benzoquinone 4-oxime and a black cobalt containing product. Elemental analysis for the black product indicated the presence of five Acqo⁻ ligands per two metals. The product had similar i.r.

Fig.2.16 Infra-red Spectrum of Co(5-Acgo)

Fig. 2.17 Infra-red Spectrum of [Co.(5-Acgo) 10

(Fig. 2.17) to $Co(5-Acqo)_3$, and failed to react with pyridine. On the basis of these observations the product has been tentatively formulated as penta(5-acetylamino-1,2-benzoquinone 2-oximato)- μ -peroxo-dicobaltate(III), $[Co_2(5-Acqo)_5]O_2$. Previously several dinuclear cobalt complexes containing one to three bridging groups have been reported.⁵⁷⁻⁵⁹

The formation of a dinuclear product from the nitrosation of 3-acetylaminophenol is in contrast to analogous reactions involving naphthols which result in the formation of $Co(ngo)_3$ and $Na[Co(ngo)_2(NO_2)_2]$.¹⁵

Previously, cobalt complexes of the type Co(ngo), have also been obtained together with the complexes of the type $Na[Co(nqo)_2(NO_2)_2]$ by the interaction of the ligand with sodium hexanitrocobaltate(III).15 In such reactions the relative ratios of the products depend on the molar amounts of the reactants (Scheme 2.1). Thus the reaction sodium hexanitrocobaltate(III) with of excess 1,2-naphthoquinone 2-oxime afforded the trischelate complex as the main product. Whereas when excess sodium hexanitrocobaltate(III) is used the main product is $Na[Co(nqo)_2(NO_2)_2]$. The yield of the sodium salt is increased when sodium nitrite is included in the reaction mixture. In line with the previous reports, the reaction of excess 5-acetylamino-1,2-benzoquinone

Scheme 2.1

formation of the trischelate, Co(5-Acqo)₃ in almost quantitative yield. In contrast to previous results, the systems other involving the reaction of 5-acetylamino-1,2-benzoquinone 2-oxime with excess sodium hexanitrocobaltate(III) in the presence of sodium nitrite gave a mixture which could not be separated. However, sodium dinitro(5-acetylamino-1,2-benzoquinone 2-oximato)cobalt(III), $Na[Co(5-Acqo)_2(NO_2)_2]$, was obtained when the phenol was nitrosated in the presence of sodium hexanitrocobaltate(III). The formation of the dinitro complex was established on the basis of its i.r. (Fig. 2.18), full elemental analysis, its diamagnetic nature and conductivity in water.

Fig. 2.18 Infra-red Spectrum of Na[Co(5-Acgo) (NO.)]

2.3.4 Synthesis of Manganese(III) Complexes of 5-Acetylamino-1,2-benzoquinone 2-oxime

When 3-acetylaminophenol was nitrosated in the presence of manganese(II) chloride tetrahydrate in acetate buffer a green-black solid was formed. T.l.c showed this solid to contain 3-acetylamino-1,4-benzoquinone 4-oxime and another product. Elemental analysis for the latter, which remained as a residue after extracting the mixture with diethyl ether, indicated the formulation tris(5-acetylamino-1,2-benzoquinone 2-oximato) manganese(III) monohydrate. This formulation was further

supported by thermal gravimetric analysis and the unreactivity of the product towards pyridine. Similar

behaviour has been observed in the case of 1-naphthol and 2-naphthol which when nitrosated in the presence of manganese(II) chloride tetrahydrate also afford the respective manganese(III) trischelate.⁶⁰ In contrast it has been found that the nitrosation under the same conditions⁶⁰ of other phenols such as 4-t-butylphenol, 4-chlorophenol and 4-methylphenol in the presence of manganese(II) chloride tetrahydrate only affords a mixture of organic products.

Manganese(II) chloride tetrahydrate showed no reaction with the ligand in methanol at 20 °C but under reflux conditions a dark solid resulted. The i.r. spectrum of this solid was ill-defined and its t.l.c. indicated the presence of a mixture of products. However when the reaction between 5-AcqoH and manganese(II) chloride tetrahydrate was carried out in the presence of ammonium buffer (pH 10) tris(5-acetylamino-1,2-benzoquinone 2-oximato)manganese(III) monohydrate, resulted in high yield.

The i.r. spectrum of $Mn(5-Acqo)_3$.H₂O (Fig. 2.19) indicated that the C=O vibrations assignable to the amide and the quinone oximic groups occur at 1701 and 1591 cm⁻¹ respectively. Two bands observed at 3485 and 3286 cm⁻¹ are characteristic of ν NH of secondary amides.

Electronic spectroscopy and magnetochemical measurements have been used extensively for the study of the structure of transition metal complexes. For diamagnetic compounds n.m.r. studies have also proved useful for structural characterisation. These techniques have been used for the structural characterisation of the complexes synthesized during this study.

Quinone mono-oximes and their complexes are noted for their strong absorption in the u.v. region which tails

into the visible. This gives intense colour to the compounds, a property which has been used in analytical purposes.

The electronic spectra of $Cu(5-\lambda cqo)_2$, $Cu(5-\lambda cqo)_2(py)_2$, and $Cu(5-\lambda cqo)_2(dipy)$ were found to be similar (e.g. Figs. 2.20) and their molar absorptivities are given in Table 2.4. As with other quinone oximic complexes the spectra show intense absorptions in the u.v. region which are comparable to absorptions shown by the protonated ligand (Fig. 2.21). The u.v. bands tail into the visible region and as a consequence bands due to d-d transitions appear as a broad shoulder which has a high extinction coefficient (Table 2.4). For all copper(II) compounds no structural conclusion could be drawn from the electronic spectra.

The electronic spectra of Ni(5-Acqo)₂.6H₂O (Fig. 2.22) and of the adducts Ni(5-Acqo)₂(py)₂, Ni(5-Acqo)₂(NH₂OH)₂, and Ni(5-Acqo)₂(dipy) were also very similar in the region 190 - 500 nm. All spectra exhibited absorptions expected from an octahedral geometry⁶¹ and assignable to the d-d transitions ${}^{3}A2q(F) \rightarrow {}^{3}T1q(P)$ and ${}^{3}A2q(F) \rightarrow {}^{3}T1q(F)$. As in the case of other quinone mono-oximic complexes all band have high extinction coefficient values (Table 2.5). In

Fig. 2.20 Electronic Absorption Spectrum of Cu(5-Acgo)₂ (9.26 X 10⁻⁵ mol dm⁻³) in Methanol

Fig. 2.21 Electronic Absorption Spectrum of 5-AcgoH (1.67 X 10⁻⁴ mol dm⁻³) in Methanol

Table 2.4 Electronic Absorption Results for $Cu(5-Acgo)_2$ $Cu(5-Acgo)_2(DV)_2$. $Cu(5-Acgo)_2(dipy)$. and 5-AcgoH In Methanol

Complex Concentration (mol dm ⁻³)	λ nax IM	E m ² mol ⁻¹
Сu (5-лсqо) 2	491	375
- 9.26 X 10 ⁻⁵	388	2011
	279	553
	230	1614
Cu(5-Acqo), (py),	509	537
6 55 Y 10-5	391	3377
0.35 x 10	292	710
	228	2976
Cu(5-Acqo), (dipy)	500	377
- 7-43 X 10 ⁻⁵	384	2922
/ · · · · · · · · · · · · · · · · · · ·	310	1221
	290	1587
	229	3573
5-Асдон	355	10204
1.67 X 10 ⁻⁴	244	4796
	210	11641

also recorded at high concentration. The latter showed a band at 900 nm which is assignable to the d-d transition, ${}^{3}Aa_{3}(F) \longrightarrow {}^{3}Ta_{3}(F)$.

Fig. 2.23 Electronic Absorption Spectrum of Ni(5-Acgo)_.6H_0 (1.97 X 10⁻³ mol dm⁻³) in Methanol

Table	2.5	Elect	ronic	Abs	sorption	<u>Results</u>	for
N1(5-	Acgo	6H_0.	Ni(5-Ac	<u>(op</u>	(DY)	Ni(5-Acgo)	(dipy)
and	N1 (5-A	(DD:	H OH)	in	Methano	1	-

Compound Concentration (mol dm ⁻³)	λ nax EM	ε m ² mol ⁻¹
Ni(5-Acqo), 6H,0	485	922
3.82 X 10 ⁻⁵	376	5335
	233	4440
1.97 X 10 ⁻³	900	10
Ni(5-Acqo), (py),	468	766
8.00 X 10 ⁻⁵	375	4232
0.00 x 10	238	3626
Ni(5-Acqo) (NH ₂ OH) 2	468	434
	370	3607
8.26 X 10	214	3808
Ni(5-Acqo),(dipy)	465	711
7 16 X 10 ⁻⁵	375	3822
/.10 A 10	300	1705
	290	1535
	238	4330

Manganese(III) has d⁴ configuration, which can lead to either a triplet $({}^{3}T_{ig})$ or a quintet $({}^{5}E_{g})$ ground state. Several spin-allowed transitions are possible for the triplet ground state. In contrast only one spin-allowed

Fig. 2.25 Electronic Absorption Spectrum of Mn(5-Acgo)_HO (2.29 X 10⁻⁴ mol dm⁻³) in Methanol

Table	2.6	Electr	onic	Absorption	<u>Results</u>	for
Mn (5-)	Acao	.H.O	in M	athanol		

Compound Concentratio (mol dm ⁻³)	×	c m ² mol ⁻¹
Mn(5-λcqo),.Η ₂ 0	820	608
	408	4210
1.00 A 10	330	1801
	230	4747
	210	8285
$Mn(5-Acqo)_{3}.H_{2}O$ 2.29 X 10 ⁻⁴	820	751
	690	353
	546	470

transition is possible for the ${}^{5}E_{g}$ ground state.⁴² The electronic spectrum (Fig. 2.24 and 2.25) for Mn(5-Acqo)₃ consists of two intense ligand bands at 210 and 408 nm and d-d bands at 546, 690, and 820 nm. The number of d-d bands points towards the triplet ground state (${}^{3}T_{ig}$). Molar absorptivities of Mn(5-Acqo)₃.H₂O are given in Table 2.6.

In their electronic spectra, low spin d⁶ octahedral cobalt complexes exhibit two spin allowed transitions due to ${}^{1}\text{Aig} \longrightarrow {}^{1}\text{Tig}$ and ${}^{1}\text{Aig} \longrightarrow {}^{1}\text{Teg}$.⁶³ In the spectrum of $[\text{Co}(\text{H}_{2}\text{O})_{6}]^{3*}$ these absorptions have been

observed at 602 and 402 nm respectively.⁶³ The complexes, $Na[Co(5-Acqo)_3(NO_2)_2]$ and $[Co_2(5-Acqo)_5]O_2$

Table 2.7 Electronic	Absorption	Resu	lts for
Na[Co(5-Acgo) (NO)]	[Co(5-Acgo) 10.	and	Co (5-Acgo)
in Methanol			

Compound Concentration (mol dm ⁻³)	λ	e m² mol ⁻¹
Na[Co(5-Acqo) (NO2)]	575	471
3.12 X 10 ⁻⁵	405	3413
	285	1926
	245	3381
	210	2910
[Co ₂ (5-Acqo) ₂]0 ₂	560	544
7.33 X 10 ⁻⁵	405	2766
	285	1627
	242	2725
	210	2478
Co(5-Acqo) ₃	412	532
2.11×10^{-5}	290	2280
	245	4654
	210	2749

have similar spectra (e.g. Fig. 2.26) which show two d-d transition bands at 575 nm and 405 nm assignable to ${}^{1}Aig \rightarrow {}^{1}Tig$ and ${}^{1}Aig \rightarrow {}^{1}Tig$ respectively. In the case of Co(5-Acqo)₃ (Fig 2.27) the former absorption is not observed. Molar Absorptivities of Na[Co(5-Acqo)₂(NO₂)₂], [Co₂(5-Acqo)₂]O₂, and Co(5-Acqo)₂ are given in Table 2.7.

Magnetically dilute copper(II) complexes have room temperature magnetic moments in the range $1.72 - 2.20 \mu_{B}$.^{64,65} The room temperature magnetic moments of the complex Cu(5-Acqo)₂ and its adducts were found to be in the range $1.79 - 1.94 \mu_{B}$. This indicates that the compounds are magnetically dilute and hence monomeric but does not allow unambiguous structural assignments. Previously,⁹ similar magnetic moments have been obtained for other copper(II) quinone oximic complexes such as Cu(4-Clqo)₂, Cu(4-Brqo)₂, Cu(4Me-qo)₂, Cu(5-MeOqo)₂ and Cu(1-nqo)₂.

The temperature magnetic moments of room $Ni(5-\lambda cqo)_2.6H_2O$, $Ni(5-\lambda cqo)_2.nH_2O$ (n = 2 - 6), Ni(5-Acqo) (dipy), $Ni(5-\lambda cqo)_2(py)_2$ Ni(5-Acqo)₂(NH₂OH)₂, lie between 3.0-3.3 $\mu_{\rm p}$ (Table 2.3) which are within the range expected for six coordinated nickel(II).¹² This indicates that the compounds are magnetically dilute with the nickel atom in an octahedral environment. In contrast the room temperature magnetic moment of the anhydrous complex, Ni(5-Acqo)₂, was found to be subnormal $(1.1 \, \mu_{\rm s})$. The subnormal magnetic moment of Ni(5-Acqo)₂ can be accounted for in terms of association (Fig. 2.28) and antiferromagnetic interaction between adjacent nickel atoms as suggested previously for the related complexes of Ni(1-nqo), and

X = NCOCH

Fig. 2.28

The room temperature magnetic moment of the complex $Mn(5-Acqo)_3$. H_2O was found to be 2.88 μ_a which is close to the spin only magnetic moment (2.83 μ_a) expected for the spin paired manganese(III) in an octahedral environment. So far only a few examples of spin paired manganese(III) complexes have been reported. These include $Mn(1-nqo)_3$, $Mn(2-nqo)_3^{60}$ and tris(dimethylaminotroponiminato)manganese(III) ⁶⁶ whose room temperature magnetic moments are 2.75, 2.70, and 3.12 μ_a .

All cobalt complexes were found to be diamagnetic in accord with their formulation as octahedral cobalt(III) complexes. The diamagnetism of the cobalt(III) complexes and low spin d⁴ configuration of the manganese(III)

complex are indicative of the strong field character of 5-acetylamino-1,2-benzoquinone 2-oxime, a feature which has also been observed for other quinone oximic ligands.⁶⁰

In the case of $Co(5-Acqo)_3$ it was possible to obtain more information about its molecular configuration by COSY ¹H and ¹³C n.m.r. spectroscopy.

Initially the ¹H n.m.r. spectrum (Fig. 2.29) of $Co(5-Acqo)_2$ was recorded in d_-dimethylsulphoxide at 270 MHz. This spectrum indicated the presence of three different aromatic hydrogen environments with the methyl protons of the acetyl groups appearing as a single broadened resonance. However, the number of lines in the aromatic region was not sufficient to account for the expected ortho and meta couplings. Consequently, a COSY spectrum (Fig. 2.30) of the product was recorded in order to determine the spectral assignment for the aromatic protons.

The COSY spectrum indicated that the aromatic hydrogens corresponding to the set of peaks I and III are coupled to those in the set II. Again broadening and overlapping of lines in the latter prevented the unambiguous assignment of the aromatic protons. The ¹H n.m.r.

spectrum of $Co(5-Acqo)_3$ was then run at 500 MHz. This spectrum (Fig. 2.31) was found to be better resolved and

pointed towards four different proton environments in the aromatic region. Preliminary examination showed the presence of eight lines in each of the sets I and III and that of fourteen lines in set II. However, further decoupling experiments (Fig. 2.32) revealed the presence of sixteen lines in the second set and thus accounting for all the expected ortho and meta couplings. As noted earlier the unsymmetrical nature of 5-AcqoH in Co(5-Acqo), could result in the formation of facial and meridial isomers. Further more the facial isomer has a three fold rotation axis where as the meridial isomer has no symmetry. Therefore in the facial isomer all three chelate rings are in identical environments, while in the meridial isomer all three chelate rings are in different environments. Thus in the ¹H n.m.r. of the facial isomer all three aromatic hydrogens (say at position A in Fig. 2.33) should exhibit a doublet resonance, while those corresponding to the meridial form would be expected to appear as three separate doublets. Previously, examination of ¹H n.m.r. spectra of several metal trischelate complexes with bidentate unsymmetrical ligands (e.g. benzoylacetone) has shown that in the meridial isomers (e.g. Fig. 2.15) all three chelate rings are in different environments.55 Therefore, In the spectrum (Fig. 2.33) of the Co(5-Acqo)₃, the observation of four different

environments is consistant with the presence of a mixture of facial and meridial isomers. A comparison of

Fig. 2.31 ¹H Nuclear Magnetic Resonance Spectrum of Co(5-Acgo), in d_g-DMSO at 500 MHz

Fig. 2.33 ¹H Nuclear Magnetic Resonance Spectrum of Co(5-Acgo)₃ at 500 MHz

the intensity of the peaks also shows that one set has approximately twice the intensity of the remaining three. Thus the resonances at A, B and C in Fig. 2.33 were assigned to the facial isomer and the remaining peaks in each set were assumed to correspond to the meridial isomer. off resonance decoupling experiments (Fig. 2.32) allowed the assignment of all protons in the meridial isomer as presented in Fig. 2.33. The integration pattern (Fig. 2.33) shows that 56% of the mixture consists of the meridial isomer. This result is consistant with previous findings⁵⁵ which on the basis of the lower dipole moment of the meridial isomer had shown it to be the more stable form. An examination of the ¹H n.m.r. of Co(5-Acqo)₃ over the temperature range of 20-80 °C showed no interconversion of the isomeric forms. This observation further substantiates the stability of the meridial isomer and is consistant with previous results for related systems.55

The broad band decoupled ¹³C n.m.r. (Fig. 2.34 and 2.35) also confirms the presence of *facial* and *meridial* isomers as it shows peaks corresponding to four different quinonoid (>C=0) carbons. The peaks for the quinonoid carbons were assigned by comparison with chemical shift data for similar compounds.^{44,67}

<u>Fig. 2.15 An Expansion (114-155 ppm) of ¹³C Nuclear Magnetic Resonance Spectrum of </u>

co(5-Acool, in de-DMSO at 270 MHz

2.4 References

- 1 M. Illinski and G. Von Knorre, Ber., 1885, 18, 699.
- 2 R. S. Young, 'Cobalt, its Chemistry, Metallurgy and Uses', Reinhold Publishing Corporation, New York, 1966.
- 3 I. V. Pyatnikiski, 'Analytical Chemistry of Cobalt', Translated from Russian by N. Kanar. D. Slutzkin Ed., Israel Program for Scientific Translations Ltd., 1966.
- 4 W. Federkiel, H. Pfitger, and H. Baumann, U.S. Pat. 2,726,920, 1955. (Chem. Abstracts, no. 50:7471h).
- 5 X. Bilger and P. Muller, Fr. Pat. 1,122,461, 1956. (Chem. Abs. no. 54:2761c).
- 6 J. Charalambous, L. I. B. Haines, and J. S. Morgan,
 U.K. Pat. Application, GB 2150 806A, 1983.
- 7 J. Charalambous, D. Baluch, unpublished data.
- 8 Hercules Inc., U.S. Pat. 479,629, 1965.
- 9 J. Charalambous, M. J. Frazer and F. B. Taylor, J. Chem. Soc. (1), 1969, 2787.
- 10 P. Gaganatsou, Ph.D. Thesis, 1987, The Polytechnic of North London.
- 11 G. Chronheim, J. Org. Chem., 1947, 12, 7.
- 12 J. Charalambous, P. Maple, N. A. Nassef, and F. B. Taylor, Inorg. Chim. Acta, 1978, 26, 107

13 J. Charalambous, M. J. Frazer, and F. B. Taylor, J.

Chem Soc. (A), 1971, 602.

- 14 J. Charalambous, M. J. Frazer, and R. Sims, Inorg. Chim. Acta., 1976, 18, 247.
- 15 J. Charalambous, G. R. Soobrramanien, A. Betts, and J. Bailey, Inorg. Chim. Acta, 1982, 60, 151.
- 16 J. Charalambous, W. C. Stoten, and K. Henrick, Polyhedron, 1989, 5, 103.
- 17 J. Charalambous, K. Henrich, Y. Musa, R. G. Rees, and R. N. Whiteley, Polyhedron, 1987, 6, 1509.
- 18 M. H. Johri, PhD. Thesis, The Polytechnic of North London, 1979.
- 19 J. S. Morgan, PhD. Thesis, 1985, The Polytechnic of North London.
- 20 J. Charalambous, L. I. B. Haines, J. S. Morgan, D. S. Peat, M. J. M. Campbell, and J. Bailey, Polyhedron, 1987, 6, 1027.
- 21 J. Charalambous and G. R. Soobrramanian unpublished data.
- 22 O. Baudish, Naturvissenschaften, 1939, 27, 768.
- 23 T. Teshigawara, Jap. Pat., 13,918, 1964 (Chem. Abs. no. 62:7688b).
- 24 F. Henrich, Ber., 1902, 35, 4191.
- 25 R. D. Gillard, R. P. Houghton, and J. N. Tucker, J. Chem. Soc., Dalton Trans., 1980, 2102.
- 26 K. W. P. White, Ph.D. Thesis, 1988, The Polytechnic of North London.

27 C. B. Castellani, O. Carugo, and A. Coda, Inorg.

Chem., 1987, 26, 671.

- 28 R. Sims, PhD. Thesis, University of London, 1974.
- 29 J. Korvenranta and H. Saarinen, Acta Chem. Scand. A, 1975, 29, 861.
- 30 H. Saarinen and J. Korvenranta, Acta Chem. Scad. A, 1975, 29, 409.
- 31 R. G. Buckley, J. Charalambous, M. J. Kensett, M. McPartlin, D. Mukerjee, E. G. Brain, and J. M. Jenkins, J. Chem. Soc., Perkin Trans. 1, 1983, 693.
- 32 M. McPartlin, Inorg. Nucl. Chem. Lett., 1973, 9, 1207.
- 33 P. W. Carreck, J. Charalambous, M. J. Kensett, M. McPartlin, and R. Sims, Inorg. Nucl. Chem. Lett., 1974, 10, 749.
- 34 R. Graziani, U. Casellato, P. A. Vigato, S. Tamburini and M. Vidali, J. Chem. Soc., Dalton Trans., 1983, 697.
- 35 L. L. Merritt, C. Guare, and A. E. Lessor, Acta Crystallogr., 1956, 9, 253.
- 36 C. K. Prout, T. S. Cameron, R. M. A. Dunn, O. J. R. Hodder, and D. Viterbo, Acta. Crystallogr., 1971, B27, 1310.
- 37 S. Gurrieri and G. Siracusa, Inorg. Chim. Acta, 1971, 5, 650.
- 38 J. R. Raju, S. V. Patil, Indian J. Chem., 1974, 12,

39 E. Leidl, U. Nagel, and W. Beck, Chem. Ber.,

1983, 116, 1370.

- 40 C. B. Castellani, O. Carugo and A. Coda, Acta Crystallogr., 1988, C44, 265.
- 41 M. Nāsākkālā, H. Saarinen, and J. Korvenranta, Finn. Chem. Lett., 1977, 42.
- 42 H. Saarinen, J. Korvenranta, and E. Näsäkkälä, Acta Chem. Scand. (A), 1977, 31, 213.
- 43 J. Korvenranta, H. Saarinen, E. Näsäkkälä, and
 M. Näsäkkälä, Finn. Chem. Lett, 1977, 234.
- 44 N. D. Pathirana, Ph.D., Thesis, The Polytechnic of North London, 1990.
- 45 C. B. Castellani, G. Gatti, and R. Millini, Inorg. Chem., 1984, 23, 4004.
- 46 L. L. Funk and T. R. Ortolano, Inorg. Chem., 1968, 7, 567.
- 47 R. D. Gillard and G. Wilkinson, J. Chem. Soc., 1963, 5885.
- 48 G. T Morgan and J. D. M. Smith, Trans. Chem. Soc., 1926, 912.
- 49 D. P. Graddon and E. C. Watton, J. Inorg. Nuclear Chem., 1961, 21, 49.
- 50 W. Partenheimer and R. S. Drago, Inorg. Chem., 1970,
 9, 47 and references there in.
- 51 R. Bennett, C. Bolos, J. Charalambous and J. S. Lota, Polyhedron, 1988, 7, 2233.

52 G. R. Soobrramanien, M. Phil. Thesis, The

Polytechnic of North London, 1979.

٠

- 53 G. R. Soobrramanien, Ph.D. Thesis, The Polytechnic of North London, 1983.
- 54 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry', John Wiley & Sons, Inc., U.S.A., 5th Eddition, 1988.
- 55 R. C. Fay and T. S. Piper, J. Am. Chem. Soc., 1962, 84, 2303.
- 56 A. J. Saraceno, I. Nakagawa, S. Mizushima, C. Curran and J. V. Quagliano, J. Am. Chem. Soc., 1958, 80, 5018.
- 57 A. Werner and A. Mylius, Z. Anorg. Allgem. Chem., 1898, 16, 245.
- 58 W. P. Schaefer, Inorg. Chem., 1968, 7, 725.
- 59 G. G. Christoph, R. E. Marsh, and W. P. Schaefer, Inorg. Chem., 1969, 8, 291.
- 60 D. Bluch Ph.D. Thesis, The Polytechnic of North London, 1987.
- 61 C. K. Jorgensen, Acta Chem. Scand., 1956, 10, 887.
- 62 K. Nakamoto and P. J. McCarthy, 'Spectroscopy and Structure of Metal Chelate Compounds', John Wiley & Sons Inc., U.S.A., 1968.
- 63 C. K. Jorgensen, Acta Chem. Scand., 1957, 11, 151.
- 64 B. N. Figgis and J. Lawis, Prog. Inorg. Chem., 1964,
 61, 37.
- 65 M. Kato, H. B. Jonassen and J. C. Fanning, Chem.

Rev., 1964, 64, 99.

66 D. R. Eaton, W. R. McClellan, and J. F. Weiher,

Inorg. Chem., 1968, 7, 2040.

67 A. Arnone, G. Fronza, and R. Mondelli, J. of Magn. Reson., 1977, 28, 69.

CHAPTER THREE

Addition Reactions of Complexes of Quinone Mono-oximes and the Single Crystal X-Ray Structure of 6-Bromo-3,4dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1,4benzoxazin-2-one

3.1 Diels-Alder Reactions and other Types of Nucleophilic Addition Reactions

Diels-Alder reactions are [4+2] nucleophilic cycloaddition reactions of dienes or heterodienes, containing 1,3 cisoid diene bonding, to activated ethylenic or acetylenic compounds known as dienophiles.^{1,2} In general terms Diels-Alder reactions which are also known as diene synthesis may be presented by Scheme 3.1.

These reactions involve the nucleophilic addition of the diene or the heterodiene, at the [1,4] position to the ethylenic or acetylenic multiply bonded carbon atoms and lead to the formation of carbocyclic or heterocyclic six membered adducts with a new multiple bond. Therefore in Diels-Alder reactions compounds which have their multiple bonds activated by conjugation with electron withdrawing substituents (e.g. CO_2R) serve as good dienophiles. Hence, ethylenic compounds such as maleic anhydride and acetylenic compounds such as dimethyl acetylenedicarboxylate and methyl propiolate are good dienophiles. Tetracyanoethylene is the most reactive dienophile discovered to date.³ Similarly dienes or heterodienes show increased reactivity if substituted with electron donating groups (e.g. Me, MeO, Ph).

Nucleophilic additions, involve addition of a nucleophile known as the donor, to an ethylene or acetylene known as the acceptor (Scheme 3.2).^{4,5,6}

Nucleophilic additions which involve addition of a carbanion to an ethylenic or acetylenic substrate are known as *Michael reactions*. All other nucleophilic additions which follow the Michael reaction mechanism are known as *Michael type reactions*.

Other types of cycloadditions are those of [2 + 2] and [2 + 3] additions.^{2,4,7} The former which involves addition between two ethylenes, is a photochemically initiated reaction and leads to the formation of a four membered ring. Whereas the latter reaction involves addition of 1,3-dipolar compounds to an ethylenic substrate and leads to the formation of a five membered ring. These reactions may be generally presented by Scheme 3.3.

Quinone oximato complexes (1) have diene and heterodiene character and in principle are expected to undergo Diels-Alder reactions and nucleophilic addition reactions. Diels-Alder adducts involving the heterodiene part of the complexes (1, M = Cu) have been isolated from their reaction with dimethyl acetylenedicarboxylate (e.g. Reactions 3.1 and 3.2).⁸⁻¹⁰

(1)

Reaction 3.1

Reaction 3.2

3.2. Previous Studies of the Reactions of the Metal Complexes of Quinone Mono-Oximes with Dimethyl Acetylenedicarboxylate

The first study of the reactions of copper(II) complexes of 1,2-quinone mono-oximes with dimethyl acetylenedicarboxylate was reported in 1976 (Reaction 3.1).⁸ The systems examined are shown in Table 3.1. It was established that these reactions occur readily in aqueous ethylene glycol dimethyl ether and that the presence of water is essential. However the

Cu(qo) ₂	Organic Product		
	[1,4-Oxazine (2)]		
Hop	Yield (%)	Ж.р. (°С)	
4-MeqoH	98	186-187	
4-ClqoH	93	186-188	
4-BrqoH	92	196-197	
5-MeOqoH	96	181-183	
5-Me ₂ NqoH	61	170-172	
1-nqoH	91	159-160	
2-nqoH	72	163-164	

Table 3.1 Reactions of the Cu(go) with DMAD (Systems Examined and Results Reported in the First Study)[®]

the heterodiene part of the complex and lead to 1,4-oxazine (2) formation. The presence of a copper containing residue was also noted. In contrast no reaction was observed with the free ligands 5-methoxy-1,2-benzoquinone 2-oxime, 1,2-naphthoquinone 1-oxime and 1,2-naphthoquinone 2-oxime, their methyl ethers or with their cobalt(III) complexes. These observations were accounted for in terms of (i) the coordinative unsaturation of copper in the $Cu(qo)_2$ complexes, (ii) the polarising ability of the metal which causes electron density shift towards the heterotermini of the ligand and (iii) the ability of the

metal to participate in bonding with the triple bond of the dienophile.

Subsequently other workers⁹ reinvestigated the reaction of bis(4-chloro-1,2-benzoquinone 2-oximato)copper(II) with dimethyl acetylenedicarboxylate in a mixture of ethylene glycol dimethyl ether and water and confirmed the earlier findings. However later they reported, that the analogous reaction of bis(4-chloro 1,2-benzoquinone 2-oximato)(2,2-dipyridyl)copper(II), whose octahedral¹⁰ structure has been established by X-ray crystallography, also leads to 1,4-oxazines. Therefore contrary to the earlier suggestions coordinative unsaturation of the metal is not a requirement for the reaction.

When the reaction of bis(4-chloro-1,2-benzoquinone 2-oximato)copper(II) with the dienophile was carried out in anhydrous methanol, a 1,3-oxazole (3) rather than a 1,4-oxazine (2) resulted (Reaction 3.3).⁹ An unidentified copper containing solid was also isolated, which was suggested to involve copper(I). The formation of the oxazole was accounted for in terms of reduction of copper(II) to copper(I) via a deoxygenation route analogous to that suggested for the $Cu(qo)_2/Ph_3P$ system.¹² However no mechanistic details were given.

A reexamination of the reaction of bis(4-chloro-1,2-benzoquinone 2,oximato)copper(II) with the dienophile showed that in anhydrous methanol the reaction leads to the 1,4-oxazine, and not the 1,3-oxazole.¹⁰ It was proposed that the oxazole arises from the oxazine via an oxidation process catalysed by the Cu(qo)₂ complex (Reaction 3.4).

Reaction 3.4

Studies in these laboratories showed that the metal containing solid arising from the reaction of $Cu(ngo)_2$ (ngoH = 1-ngoH or 2-ngoH) complexes with dimethyl acetylenedicarboxylate in aqueous ethylene glycol dimethyl ether is the hydrated copper(II) complex of the butynedioate dianion (4).^{10,13} These studies also indicated that water participates in these reactions as a reagent providing the proton necessary to the oxazine formation (Scheme 3.4). The OH⁻ anion which is thus formed causes the hydrolysis of the ester functions of DMAD to give methanol and the butynedioate dianion. The latter is isolated as the copper(II) complex.

Investigation of the the reaction of (1,2-naphthoquinone 1-oximato)lithium(I) with dimethyl

Scheme 3.4

acetylenedicarboxylate showed that Michael addition occurs and products 5 and 6 result. In contrast the lithium complexes derived from 1,2-naphthoquinone 2-oxime [e.g. Li(2-nqo).1/2EtOH and Li(2-nqo)(2-nqoH)], give the cycloadduct (2, R = 7,8-(CH=CHCH=CH)) as well as the open chain addition product (7). The major metal containing product arising from the reactions is the lithium derivative of the hydrolysed adduct (e.g. 8).¹⁰

(5)

A mechanism suggested for the formation of the open chain adducts from the reaction of the lithium quinone oximic complexes with dimethyl acetylenedicarboxylate is

Dioximes (9, $R = NH_2$, Ph) and their nickel(II) and copper(II) complexes have also been reported to react with dimethyl acetylenedicarboxylate under reflux conditions. In these cases 1,3-dipolar cycloaddition occurs to give a 2:1 isoxozalidine adduct (11).¹³ The main metal containing product has been formulated as the hydrated metal(II) butynedioate. Michael addition or cycloaddition was suggested to occur either intermolecularly or intramolecularly, thus leading to formation of different types of 2:1 adducts. A mechanism has been suggested for the formation of the 2:1 adduct from the reactions of the metal(II) dioximic complexes and is outlined in Scheme 3.6 in an improved form.

(9)

(10)

From the studies summarised above it can be concluded that in the reactions of metal(II) complexes of quinone mono-oximes with dimethyl acetylenedicarboxylate in aqueous ethylene glycol dimethyl ether, the metal, the type of the oximic ligand, and the reaction conditions have a pronounced effect on the nature of the organic products.

3.3 PresentStudies of the Reaction of Metal ComplexesofQuinoneMono-oximesTowardsDimethylAcetylenedicarboxylateandMethylPropiolate

During the present study the reactions of the nickel(II) complexes, $Ni(Rqo)_2$ [R = 4-Me, 4-Cl, 4-Br, 3,4-(CH=CHCH=CH), 5,6-(CH=CHCH=CH)] and of the new complex Cu(5-Acqo)₂ with dimethyl acetylenedicarboxylate were examined. The behaviour of some of these complexes [M(1-nqo)₂, M(2-nqo)₂ and M(5-Acqo)₂ (M = Ni, Cu)] with methyl propiolate, was also investigated. In addition the previously reported reactions of five copper(II) complexes [Cu(Rqo)₂ [R = 4-Me, 4-Cl, 4-Br, 3,4-(CH=CHCH=CH), 5,6-(CH=CHCH=CH)] and of Co(1-nqo)₃ with dimethyl acetylenedicarboxylate were reexamined.

In line with previous findings $Co(1-nqo)_3$ showed no reaction with dimethyl acetylenedicarboxylate.⁸ In the case of reactions involving M(Pgo) (DMAD (M = Ni Cu)

case of reactions involving $M(Rqo)_2/DMAD$ [M = Ni, Cu; R = 3,4- or 5,6-(CH=CHCH=CH)] it was found that both systems afford the 1,4-naphthoxazine cycloadducts but at

lower yields than reported previously.⁸ In contrast in the case of the $M(Rqo)_2/DHAD$ [M = Ni, Cu; R = 4-Me, 4-Br, 4-Cl] systems, the formation of another novel addition product was found to accompany the formation of the 1,4-oxazine cycloadduct. The new type of product was characterised as the 1,4-benzoxazinone (17). In the case of the Ni(Rqo)_2/DHAD systems, the yield of this product was found to be higher than that obtained from reactions involving the corresponding copper complexes. In particular in the case of the Ni(4-Brqo)_2/DHAD system the formation of the 1,4-benzoxazinone derivative was almost exclusively favoured to that of the 1,4-benzoxazine cycloadduct when the molar ratio of DMAD:complex exceeded four (Table 3.2).

R = Br, Cl, Me

(17)

Recently related compounds (e.g. 12) have been obtained by the stereoselective alkylation of the enolate synthon N-acyl-2,3,5,6-tetrahydro-4H-oxazin-2-one bearing either 5-phenyl or 5,6-diphenyl substituents.^{14,15} It has been

reported that these compounds have chemotherapeutic properties.^{16,17} Consequently an assessment of the

(12)

chemotherapeutic properties of benzoxazinones (17), obtained during this study will be desirable.

All 1,4-oxazine and 1,4-oxazinone products arising from the above reactions were fully characterised by elemental analysis, m.s., i.r., and ¹H n.m.r. spectroscopy. In addition an X-ray crystallographic study of the 1,4-benzoxazinone derivative (17, R = Br) isolated from the Ni(4-Brqo)₂/DMAD system has been carried out during this study. These results are presented in the following sections of this chapter.

3.3.1 Reactions of Nickel(II) Complexes of Quinone Mono-oximes with Dimethyl Acetylenedicarboxylate

An earlier study of the system Ni(4-Clqo) /DMAD has led 2to the conclusion that DMAD reacts sluggishly with the nickel complex in aqueous EGDE to give the benzoxazine (2, R = 6-Cl) . Furthermore no reaction was observed in

During the present study the reaction of six nickel quinone oximato complexes with DMAD was undertaken. These reactions were carried out under various experimental conditions.

In general it has been established that whereas short reaction times, low temperatures or low DMAD:Ni(qo)₂ molar ratios lead to high recovery of the metal complex, complete conversion can be achieved by using higher DMAD:complex ratios in refluxing EGDE/H₂O for 24 hours (Table 3.2).

All systems investigated afforded an insoluble metal containing solid and a mixture of two organic products. In general the products arising from these reactions were separated using the procedure outlined in Scheme 3.7.

The Nature of the Metal Containing Products Obtained from Ni(qo)_/DHAD Systems

Each of the Ni(qo)₂/DMAD systems investigated afforded a metal containing solid which was separated from the reaction mixture by filtration. These solids had very similar i.r. spectra (e.g. Fig. 3.1) and fairly similar elemental analysis. Small amounts of nitrogen found in these solids suggested the presence of nitrogen containing impurities which could not be removed by digesting the solids in refluxing methanol. However, in

al Complex	Molar Ratios		Products	
	C : D	1,4-oxazine (%)	1,4-oxazine 2-one (%)	Ni(bd).hH ₂ 0 (
l (1-ngo) ₂	1:8	70	•	70
i (2-ngo) ₂	1:4	27		44
i (4-Mego) ₂	1:4	65	20	99
i (4-Brqo) ₂	1:4	32	35	33
i (4-Brqo) ₂	1:5	•	88	42
i (4-Clqo) ₂	1:4	25	30	38
i (5-Acqo) ₂	1:4	68		11

Scheme 3.7

some cases these impurities were removed by washing the solids with water. The elemental analysis of the solids which did not contain nitrogen impurities, indicated the presence of four carbons per metal, thus suggesting their formulation as the octahydrated nickel(II) butynedioate (13). The i.r. spectra of all solids

Fig 3.1 Infra-red Spectrum of Nickel(II) Butynedioate Octahydrate

contained bands at 3400, 1650-1630 and 1359 cm⁻¹ assignable to the ν OH and ν CO. Their room temperature magnetic moments were found to be low ca. 2.00 $\mu_{\rm g}$. These values suggested association which is not unusual for metal carboxylates.¹⁸

In the case of the metal containing solids isolated from the systems involving $Ni(1-nqo)_2$ and $Ni(2-nqo)_2$ complexes, reaction with pyridine afforded solids whose elemental analysis is indicative of the formulation $Ni(bd)(py).nH_2O(n = 1, 2)$. These mono pyridine adducts

had well defined i.r. spectra (e.g. Fig. 3.2) with absorptions at 3401, 1682 and 1606 cm^{-1} indicative of

Fig 3.2 Infra-red Spectrum of Ni(bd)(py).nH.O (n = 1. 2)

 ν OH and ν CO respectively. The finger print region was in accord with the presence of pyridine.

The Nature of the Organic Products Isolated from Ni(qo)₂ /DHAD Systems

The organic products arising from the systems involving $Ni(1-nqo)_2$ and $Ni(2-nqo)_2$ were found to be the 1,4-naphthoxazine cycloadducts (14) and (15) respectively. This was indicated by melting point⁸, m.s., i.r. and ¹H n.m.r. spectroscopy.

(14)

(15)

In the case of the Ni(4-Brqo) / DMAD, Ni(4-Clqo) / DMAD and Ni(4-Meqo) / DMAD systems two major organic products were isolated from each system. These products were found to be the 1,4-benzoxazine cycloadduct (16, R = 6-Br, 6-Cl, 6-Me) and another novel type of product which has not been reported previously. An X-ray crystallographic study of the latter product arising from the Ni(4-Brqo) / DMAD system has shown it to be the (17, where R = 6-Br).1,4-benzoxazinone The corresponding products isolated from the other systems were fully characterised by elemental analysis, i.r., m.s., and ¹H n.m.r. spectroscopy. Previously,^{10,13} only

limited spectroscopic data have been reported on the these derivatives. The results of infra-red, ¹H nuclear magnetic resonance and mass spectroscopic investigations carried out during this study are presented in the following section of this Chapter.

<u>Spectroscopic Studies of the Organic Products Isolated</u> <u>from the Ni(qo)_/DMAD Systems</u>

The i.r. spectra of the 1,4-naphthoxazines (14) and (15), are very similar and include absorptions at ca. 3370, 1760, and 1720 cm^{-1} due to νOH of the hydroxy and ν CO of the ester carbonyl groups (Table 3.3). A typical spectrum is presented in Fig. 3.3. The ¹H n.m.r. spectra (e.g. Fig. 3.4, Table 3.4) of the naphthoxazines (14) and (15) exhibit resonances at ca. 3.90 and 4.00 ppm (singlets) due to six carbomethoxy protons, at ca. 7.00 ppm (singlet) due to the proton of the hydroxy group and at ca. 7.27 - 8.63 ppm (multiplets) due to the six aromatic protons. In the case of naphthoxazine 14 (Fig. 3.4), the third proton is coupled to the second and fourth protons and hence should give rise to a doublet of doublets. However, in the spectrum there are only three lines due to this proton. This may be explained by the overlap of the two centre lines. Similar explanation is also valid for the fourth proton. In the case of 1,4-naphthoxazine (15) the spectrum is complex (second order) and assignments can not be made. The mass spectra (e.g. Fig 3.5) of both compounds showed

Table 3.3 vOH and vCO Absorptions (cm⁻¹) of 1.4-Oxazine Derivatives

1,4-Oxazine	VOH	vco*	vc0*
14	3372	1760	1723
15	3422	1775	1719
16, $R = 6-Br$	3275	1770	1727
16, $R = 6-C1$	3240	1770	1728
16, R = 6-Me	3239	1767	1724

a, b=Ester carbonyl absorption frequencies

Fig. 3.4 ¹H Nuclear Magnetic Resonance Spectrum of 4-Hydroxy-2.3-dimethoxylcarbonyl-

1.4-naphthoxazine (14) in CDCl,

Compound	Assignment	Multiplicit (J/Hz)	y ∂/ppma
	1	8	7.39
	2	d (J _{2,3} =	8.92) 8.05
1/2	3		7.70
OH	C0,CH,	m	7.54
'LI	5	d $(J_{4,5} =$	8.93) 7.29
. 7 0	C02CH3 6	d (J =	8.06) 7.95
	7	d (J_ =	8.33) 8.61
	8	8	3.95
	9	8	3.88
	1	8	7.50
2 04	• 2	d $(J_{2,3} =$	2.43) 7.78
YY	3	dd (J2,3 &	J., 5) 7.62
	C02CH3 4	d (J =	8.62) 7.08
	5 5	8	3.90
	6	8	3.85
	1	8	8.98
2 04	6 2 (T).(T).	d (J _{2,3} =	2.56) 7.75
YY	3	dd (J _{2,3} &	J _{3,4}) 7.52
2 × 2	002043	d (J =	7.88) 7.22
•	5 5	5 3,4	3.92

Table 3.4 ¹H Nuclear Magnetic Resonance Spectral Assignments For the 1.4-Oxazine Derivatives

Table 3.4 cont.

Compound	λssignment	Hu	(J/HZ)	8 /PPM
	1	8		5.1
3	2	đ	$(J_{2,4} = 1.35)$	7.50
Harris	C02CH3 3	dđ	(J & J	7.2
6	4	đ	$(J_{4.5} = 8.29)$	6.9
5	°C02CH3 5	8		3.9
	6	8		3.9
	7	8		2.3
	1	8		8.6
	2	đ	$(J_{2,3} = 8.66)$	7.5
2 0	H 8 3	dd	(J _{2,3} & J _{3,6})	7.2
Î Î Ĭ	4	8		2.0
	CO2CH3 5	8		10.2
H 5	7 6	d	$(J_{3,6} = 5.67)$	7.2
	7	5	-,-	3.8
	8	8		3.7

m=Hultiplet

Table 3.5 Relative Aboundances of Ions in the Mass Spectrum of 4-Hydroxy-2.3-dimethoxycarbonyl-1.4naphthoxazine (14)

Ion Assignment	Intensity	m/z
(N)**	28	315
[H - NO]**	3	285
[N - HeCO'] *	82	256
[M - (MeCO; + MeOH)] *	100	224
[M - (MeCO + MeOH + CO)]	* 93	196
$[H - (MeOH + MeCO_{2}^{*} + 2CO)]$	* 34	168

intense molecular ion peaks at 315 and exhibit fragmentation patterns supporting the formulations (Table 3.5).

The i.r. spectra of the 1,4-benzoxazines (16, R = 6-Br, 6-Cl, 6-Me) indicate the presence of hydroxy and ester carbonyl groups (Table 3.3). In their ⁴H n.m.r. spectra (e.g. Fig 3.6) the six methyl protons of the ester groups appear at ca. 3.80 and 3.90 ppm as two singlets, the proton of the hydroxy group at ca. 7.00 ppm as a singlet and the three aromatic protons at ca. 7.06 - 7.78 ppm as a multiplet (Table 3.4). The mass spectra (e.g. Fig 3.7) of all compounds show fairly intense molecular ion peaks and exhibit fragmentation patterns involving loss of groups such as OH⁺, CHO⁺, and MeCO₂⁺ (Table 3.6).

Fig. 3.6 ¹H Nuclear Magnetic Resonance Spectrum of 6-Bromo-4-hdroxv-2.3-

dimethorycarbonyl -1.4-benzoxazine (16. B = 6-Br) in d_-DMSO

Fig 3.7 Electron Empact Mass Spectrum of 6-Bromo-4-hydroxy-2.3-dimethoxycarbonyl-1.4-benzoxazine (16. B = 6-Br)

Table 3.6 Relative Abundances of Ions in the MassSpectrum of 6-Bromo-4-hydroxy-2.3-dimethoxycarbonyl-1.4-benzoxazine(16. B = 6-Br)

Ion Assignment	Relative Aboundance (%)	m/z
[H]**	28	343
[M - OH.] *	3	326
[M - (CHO + OH)]**	31	297
[M - MeCO'] *	82	284
[M - (MeCO; + MeOH)]*	78	252
[M - (MeOH + CO + MeCO)]* 75	224

spectra The i.r. (e.g. Fig. 3.8) of the 1,4-benzoxazinones (17, R = 6-Br, 6-Cl, 6-Me) include absorptions at ca. 3400, 1770, 1640 cm^{-1} assignable to νNH of the imine and νCO of the ester carbonyl and the lactone groups (Table 3.7). Their ¹H n.m.r. spectra (e.g. Fig. 3.9) show the expected resonances due to carbomethoxy vinylic and aromatic protons. A singlet at 10.60 ppm also indicates the presence of an exchangeable proton due to the imino group (Table 3.8). In their mass spectra (e.g. Fig. 3.10) the parent ions correspond to the base peaks. Prominent peaks due to the loss of MeOH, CO and HCN from the parent ion are also present (Table 3.9).

Fig. 3.8 Infra-red Spectrum of 6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1.4-benzoxazin-2-one (17. B = 6-Br)

Table 3.7 vNH and vCO Absorptions (cm⁻¹) of 1.4-Oxazin-2-one Derivatives

1,4-Oxazin-2-one	VNH	vC0*	VC0 b
17, R = Br	3425	1781	1651
17, $R = Cl$	3369	1771	1630
17, R = Me	3441	1758	1656

s=Ester carbonyl absorption frequencies b=Lactone absorption frequencies

Table 3.8 ¹H Nuclear Magnetic Resonances Spectoral Assignments for 1.4-Benzoxazin-2-one Derivatives

Compound	Assignment	Mutipilicit	у б/ррв
	1	8	10.65
R A H	5 8 2, 3, 4	m	7.00 - 7.26
LII	5	s	5.78
3	6	8	3.78
	1	S	10.66
a 2 H	5 6 2, 3, 4°	m	6.96 - 7.26
YYY	5	5	5.98
1 0	6	8	3.78
	1	8	10.61
2 H	₅ ₇ 2, 3, 4 [•]	m	6.78 - 7.26
sc the	снсо ₂ сн ₃ 5	8	2.33
	≈₀ 6	8	5.92
5	7	8	3.78
s=Singlet;	m=Hultiple		Second order

Fig. 3.10 Electron Impact Mass Spectrum of 6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1.4benzoxazin-2-one (17. R = 6-Br)

Table 3.9 Relative Abundances of Ions in the Mass Spectrum of 6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxyethylidene)-2H-1.4-benzoxazin-2-one (17. R = 6-Br)

Ion Assignment	Relative Aboundance (%)	m/z
[M] ⁺ ·	65	297
[M - MeOH]**	93	265
[M - (MeOH + CO)]**	100	237
[H - (MeOH + CO + HCN)]] ^{*•} 30	210
(M - (MeCO [*] ₂ + HCN + CHO	D']* 30	181

3.3.2 Reactions of Copper(II) Complexes of Ouinone Mono-oximes with Dimethyl Acetylenedicarboxylate

As noted earlier in the first study⁸ of the reaction of copper(II) quinone oximic complexes with dimethyl acetylenedicarboxylate, the behaviour of seven complexes (Table 3.1) with the dienophile was examined. It was reported that in all cases the reactions lead to the formation of an oxazine in high yield and of a metal containing solid which was not identified.

Subsequently, further studies of the systems $Cu(1-nqo)_2/DMAD$ and $Cu(2-nqo)_2/DMAD$ led to the conclusion that both systems afford the same metal containing solid.⁹ Although the analytical data were not fully satisfactory, the solid was formulated as copper(II) butynedioate. The yield of the naphthoxazine arising from the system involving $Cu(1-nqo)_2/DMAD$ was found to be comparable to that reported in the first study. However the yield of the naphthoxazine obtained from the $Cu(2-nqo)_2/DMAD$ system was found to be much lower than reported initially.

During this work, most of the systems $Cu(qo)_2/DMAD$ systems reported in the first study were reexamined. In addition the reaction of bis(5-acetylamino

1,2-benzoquinone 2-oximato)copper(II) with dimethyl acetylenedicarboxylate was investigated. The systems examined are summarised in Table 3.10.

135

Table 3.10 Summary of the Reactions Copper of Complexes of Quinone Mono-oximes (C) with Dimethyl Acetylenedicarboxylate (D) Investigated during the Present Study

l complex	Molar Rat	tios	Products	
	C : D	1,4-Oxazine (<pre>%) 1,4-0xazinone (%)</pre>	Cu(bd).nH 0 ₂ (\$)
-ngo) ₂	1:4	70	ı	06
-nqo) 2	1:4	38	ı	92
-Brqo) ₂	1:4	54	11	87
-clgo) ₂	1:4	32	27	62
-Meqo) 2	1:4	75	1.4	67
-Acqo) 2	1:4	76	•	88

on copper content

The specific aims of this work were to (a) fully characterise all the products arising from the reactions, (b) identify the factors leading to their formation, (c) investigate the mechanism of the reactions.

In the present study in addition to the separation technique employed by the previous workers (Scheme 3.8)^{8,10} another technique (Scheme 3.9) involving chromatographic separation was used. In general irrespective of the separation technique used, the yield of the phenoxazine was found to be lower than reported previously.⁸

The Nature of the Metal Containing Solid Arising from <u>Cu(qo)</u>/<u>DMAD</u> Systems

Each of the $Cu(qo)_2/DMAD$ systems investigated afforded a metal containing solid. The i.r. spectra of all the solids were found to be simple and similar to those of the hydrated nickel(II) butynedioate species (discussed in section 3.3.1). However, small amounts of nitrogen containing impurities found in these solids could be neither removed by digestion in refluxing methanol nor by washing with water. The elemental analysis for these products indicated the presence of three carbons per

metal. On this basis the solids are formulated as crude copper(II) butynedicate. The solid obtained from the Cu(4-Clqo)_/DMAD system was stirred with pyridine. This

led to a product whose i.r. spectrum was well defined. The spectrum showed bands at 3500 and $1600 - 1700 \text{ cm}^{-1}$ assignable to ν OH and ν CO. Absorptions in the finger print region were indicative of pyridine. The elemental analysis indicated the presence of eight carbons per metal, suggesting the addition of a pyridine to each metal. However, no meaningful overall formulation could be deduced.

The Nature of the Organic Products Isolated from Cu(qo)_/DHAD Systems

In the case of the Cu(1-nqo)/DMAD and $Cu(2-nqo)_2/DMAD$ systems, the only organic products isolated by column chromatography were the 1,4-naphthoxazines (14) and (15).

As in the case of the Ni(Rqo)₂/DMAD (R = 4-Br, 4-Cl, 4-Me) systems the corresponding Cu(Rqo)₂/DMAD systems afforded the 1,4-benzoxazinone (17) in addition to the 1,4-benzoxazine (16). However the yields of these products vary considerably with the nature of the the ligand and the metal centre (Table 3.10).

Bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) reacted with dimethyl acetylenedicarboxylate in aqueous EGDE solution, to give 7-acetylamino-4-hydroxy-2,3dimethoxycarbonyl-1,4-benzoxazine (18) as the major product. Smaller amounts of a red organic product were

139

also isolated. On the basis of its elemental analysis the latter has been formulated as $C_{12}H_{14}NO_6$ but no further characterisation was possible.

<u>Spectroscopic</u> Studies of the Organic Products Isolated from the $Cu(5-\lambda cqo)_2/DNAD$ System.

The i.r. spectrum of the 1,4-benzoxazine (18) showed absorptions at 3557 and 3319 cm⁻¹ due to the ν OH and ν NH respectively. Three intense absorption bands were also observed at 1764, 1732, and 1675 cm⁻¹ assignable to the ν CO of the amide and the two ester groups respectively. The ¹H n.m.r. (Fig. 3.11) showed the expected resonances at 2.06, 3.80, and 3.85 ppm due to nine methyl groups and at 7.31 - 7.60 ppm due to three aromatic protons. The presence of two exchangeable protons assignable to NH and OH protons was observed at 8.7 and 10.4 ppm (Table 3.4). In the mass spectrum (Fig. 3.12) there was a prominent parent ion peak at 321.9 and fragments arising from the loss of MeO', MeCO', OH', and Ac' from

Fig. 3.11 ¹H Nuclear Magnetic Resonance Spectrum of 7-Acetylamino-4-hydroxy-

<u>2.3-dimethoxycarbonyl-1.4-benzoxazine (18) in de-DMSO</u>

<u>Fig. 3.12 Electron Impact Mass Spectrum of 7-Acetylamino</u> -4-hydroxy-2.3-dimethoxycarbonyl-1.4-benzoxazine (18).

Table 3.11 Relative Abondances of Ions in the MassSpectrumof7-Acetylamino-4-hydroxy-2.3-dimethoxycarbonyl-1.4-benzoxazine(18)

Ion Assignment	Relative Aboundance (%)	m/z
[M] ⁺ ·	59	322
[M - OH']*	36	305
$[M - (CO + OH^*)]^*$	49	277
[M - MeCO;]*	83	263
[H - MeCONH']*	67	264
[M - (MeOH + MeCO')]*	44	247
[M - (MeOH + MeCO_)]*	100	231
$[M - (Me^{+} CO + Me_{2}CO^{+})]^{+}$	50	220

3.3.3 Studies of the Reaction of M(go) with Methyl Propiolate

During this work the reactions of $M(Rqo)_2$ [R = 5,6-(CH=CHCH=CH), 5-Ac and M = Ni, Cu) with methyl propiolate were also investigated. Previously no studies involving methyl propiolate have been reported.

The reaction of Cu(1-nqo)₂ with methyl propiolate was investigated under several different conditions (Table 3.12). It was found that when the reaction is carried out in aqueous EGDE under reflux for up to 6 h, 60% of the metal complex is recovered unchanged and some yellow organic product is formed. However, when a 18 h reflux time was used, all the metal complex reacted to give a metal containing solid, a major yellow organic product and a small amount of a red organic product. In contrast, the complexes Ni(1-nqo)₂, Ni(5-Acqo)₂, and Cu(5-Acqo), (Table 3.12) showed little or no tendency to react with methyl propiolate even when an excess of the dienophile and long reflux periods were used. The complex Ni(1-nqo), afforded the same yellow organic product as Cu(1-ngo). However, the system involving Cu(5-Acqo)₂ gave a complex mixture of products which was not investigated.

The metal containing product isolated from $Cu(1-nqo)_2/MP$ system had a simple well defined i.r. spectrum (Fig. 3.13). This resembled that of methyl propiolate

143

Table 3.12 Summary of the Reactions of Complexes of Quinone Mono-oximes with Methyl Propiolate (D)

Complex			Complex	-	Products	
	Molar Ratio C : D	Reflux Time (h)	[% Recovery]	* (*)	8 (¥)	c (ð
cu(1-ngo) ₂	1:4	£	65		27	i.
cu (1-ngo) ₂	1:4	9	54	ţ	31	1
Cu(1-ngo) 2	1:4	18	1	11	65	0.13
Cu (5-Åcgo) ₂	1:4	18	73	1	•	0.16
Ni(1-ngo) ₂	1:4	18	64		21	!
Ni (1-ngo) ₂	1:8	72	54		29	•
Nİ (5-Acqo) ₂	1:4	18	95	•	ı	•

*=1,4-naphthoxazole (22); *=Mixture not investigated; **=Based on copper content

Fig 3.13 Infra-red Spectrum of Hydrated Copper(II) Propynoate (19)

and included absorptions at 3448, 1931 and 1697 cm⁻¹ indicating the presence of hydroxy, acetylenic and carboxylate groups. Its elemental analysis indicated the presence of six carbon atoms per copper, and suggested its formulation as the hydrated copper(II) propynoate, $Cu(pna)_2$. nH₂O (19).

(20)

(21)

Fig 3.14 Electron Impact Mass Spectrum of 4-Hydroxymono-methoxycarbonyl-1.4-naphthoxazine (20/21)

Table 3.13 Relative Aboundances of Ions in the MassSpectrum of 4-Hydroxy-mono-methoxycarbonyl-1.4-naphthoxazine (20/21)

Ion Assignment	Relative	m/z
	Aboundance (%)	
[M] [*]	66	257
[M - OH*]*	10	240
[M - CHO']*	100	228
[M - (MeOH + CHO')]*	91	196
$[M - (MeCO_2H + CO)]^*$	73	169

Fig. 3.15 ¹H Nuclear Magnetic Resonance Spectrum of 4-Hydroxy-mono-

methoxycarbonyl-1.4-naphthoxazine (20)^{*} in CDCl₃

•Although 4-Hydroxy-monomethoxycarbony1-1, 4-naphthoxazine (20) is shown the n.m.r.

Table 3.14NuclearMagneticResonanceSpectralAssignmentsfor1.4-Naphthoxazine(20)and1.4-Naphthoxazole(22)

Compound	Assignment	Multiplicity (J/Hz)	ð/ppm
	1	5	6.92
3	2	d $(J_{2,3} = 8.88)$	7.96
	9 3 H	m	7.67
3 7 7 7	. 4	m	7.50
1 7 0	COCH3 5	$d(J_{4,5} = 8.90)$	7.32
	6	d $(J_{6,7} = 7.94)$	7.91
	7	$d(J_{7,6} = 8.53)$	8.61
	8		4.05
	9	5	6.41
	1	d $(J_{1,2} = 10)$	8.14
2	2	m	7.80
3	3	n	7.68
	c0 ₂ CH ₃ 4	d $(J_{4,3} = 9.10)$	7.92
	5	$d(J_{5,6} = 10.0)$	8.14
	6	d $(J_{5,6} = 9.36)$	8.52
	7	8	4.08

#=Boublet; databublet of doublett; ==Singlet #=Although 1,4-naphthoxazine (20) is shown, the n.m.r. data are also compatible with 1,4-naphthoxazine (21) (see text page 146)

The red product which was isolated from the $Cu(1-nq_0)_2/MP$ system has been characterised as 1,3-naphthoxazole-2-carboxylate (22) on the basis of its ¹H n.m.r., i.r. and mass spectra. The ¹H n.m.r. spectrum (Fig. 3.17, Table 3.14) shows the expected resonances due to six aromatic and three methyl protons of the carbomethoxy group and the i.r. spectrum (Fig. 3.18) includes an intense absorption due to ν CO. An intense molecular ion peak and fragments arising by the loss of MeO', CO₂ and MeCO₂' are evident in the mass spectrum

Fig. 3.19 Electron Impact Mass Spectrum of 1.3-Naphthoxazol-2-carboxylate (22)

Table 3.15 Relative Abundances of Ions in the Mass Spectrum of 1.3-Naphthoxazole-2-carboxylate (22)

Ion Assignment	Relative Aboundance (%)	m/z
[M] ⁺ ·	100	227
[M - MeO'] *	22	196
[M - CO_]**	50	183
[H - MeCo']	42	168

Previously, 1,3-naphthoxazole-2-carboxylate was obtained by the oxidation of 1,4-naphthoxazine (14) in the presence of $Cu(1-nqo)_2$.¹⁰ Therefore it is reasonable to assume that its formation from the system Cu(1-nqo)/MPinvolves oxidation of the 1,4-naphthoxazine (20/21).

Significantly, when 1,4-naphthoxazine (20/21) was heated under reflux in the presence of catalytic amounts of $Cu(1-nqo)_2$, 1,3-naphthoxazole-2-carboxylate (22)

3.4 Mechanistic Appraisal of the Reactions

The reactions of dimethyl acetylenedicarboxylate and methyl propiolate with quinone mono-oximato complexes leads to two types of product, the 1,4-oxazine (16) and the 1,4-benzoxazinone (17) derivatives. This is not entirely unexpected, because in dimethyl acetylenedicarboxylate there are potentially two different electropholic sites. As indicated in Fig. 3.20 these sites are the acetylenic (α) and the carboxylic (β) carbon atoms.

Fig. 3.20

The formation of the 1,4-oxazine derivatives is a simple Diels-Alder 4 + 2 cycloaddition⁵ involving the polarized quinone oximic ligand.

The formation of 1,4-benzoxazinone may be rationalised as presented in Schemes 3.10 and 3.11. In both cases,

dienophile. In the first proposal the nucleophilic substitution involves the quinone imine anion (i in Scheme 3.10) which attacks the acetylenic carbon atom (C_{α}) . In the other proposal the reaction is assumed to involve the nitrene anion (ii in Scheme 3.11) which attacks the carboxylic carbon atom (C_{β}) . Both mechanisms assume involvement of water and the occurance of redox processes.

The proposed deoxygenation was assumed to be the result of the interaction of the multiple (acetylenic) bond system with a potentially labile oxygen. To examine this hypothesis, the reaction was carried out in the presence of octene.¹⁸ In this case it was found that the only product arising from the reaction mixture is the 1,4-benzoxazinone (17, R = 6-Br) suggesting that the C-C multiple bond is involved probably via the formation of an epoxy species.

Deoxygenation of quinone mono-oximes has previously been observed in reactions of their copper(II) complexes with triphenyl phosphine and amines.^{12,20} These reactions lead to the formation of the corresponding 1,4-benzoxazinones, aminophenols, phenazines and phenylimines. Deoxygenation of other aromatic nitroso compounds has also been reported to occur by low valent

 3.5
 Single
 Crystal
 X-Ray
 Structure
 of

 6-Bromo-3, 4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H

 1, 4-benzoxazin-2-one

3.5.1 Crystal Data for 6-Bromo-3,4-dihydro-3-(2-oxo-2methory-ethylidene)-2H-1,4-benzoxazin-2-one

$$\begin{split} & C_{11}H_{g}BrNO_{4}, \quad M=298.09, \quad a=13.785, \quad b=4.340, \\ & c=18.072 \ \text{\AA}, \quad \alpha=\gamma=90.00^{\circ}, \quad \beta=92.33^{\circ}, \quad U=1080.3 \ \text{\AA}^{3}, \\ & F(000)=592.00, \qquad \mu(Mo-K_{\alpha})=37 \ \text{cm}^{-1}, \qquad Z=4, \\ & D_{c}=2.03 \ \text{g cm}^{-1}. \end{split}$$

3.5.2 Crystal Preparation and Data Collection

6-Bromo-3,4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1,4-benzoquinon-2-one was isolated from the Ni(4-Brqo)_/DMAD system and was recrystallised from a mixture of dichloromethane and acetone to give needle like crystals. The crystal selected for the X-ray study had the dimensions of 0.46 X 0.22 X 0.10 mm. The data were collected on a Philips PW1100 diffractometer in the range 3° $\leq \theta \leq 25^{\circ}$, with a scan width of 0.9 - 0.01°.²² Using a graphite monochromated source, a total of 1021 unique reflections with $I/\sigma(I) > 3$ were collected. The intensity relationship $I_{hkl} = I_{hkl} = I_{hkl} = I_{hkl}$

3.5.3 Structure Solution and Refinement

Systematic absences in the data of the type: OkO; K = 2n + 1 and hOl; 1 = 2n + 1 indicated a space group P2,/c. This was confirmed by complete structure solution in this space group.²³ The coordinates of the bromine atom were deduced from a patterson synthesis, and the remaining non-hydrogen atoms were located from subsequent difference Fourier syntheses. The hydrogen atoms attached to nitrogen and carbon atoms were located in a difference Fourier synthesis calculated using data with sin θ < 0.35. These were included in the structure factor calculations with thermal factors of 0.08 k^2 which refined to 0.09 and 0.04 Å for the nitrogen, phenyl and methyl hydrogens respectively. Absorption correction were applied to the data after initial isotropic refined parameters for all atoms. The nitrogen and bromine atoms were assigned anisotropic thermal parameters in the final cycle of full-matrix refinement which converged to R = 0.0557 ($R = \Sigma[F_0 - F_C]/\Sigma[F_0]$), and $R_{w} = 0.0515$ $(R_{w} = \Sigma[F_{o} - F_{c}]W^{1/2}/\Sigma[F_{o}]W^{1/2})$, with weights of $w = 1/\sigma^2 F_0$ assigned to the individual reflections.

All atomic coordinates, temperature factors, structure factors, bond lengths and intra bond angles are given in

3.5.4 Results and Discussion

Selected bond lengths and bond angles for 6-bromo-3,4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1,4-benzoxazin-2-one are shown in Fig 3.21 and Fig 3.22 respectively.

The phenyl ring has a mean bond length of 1.381 Å which is in good agreement with those usually accepted (e.g. 1.387 - 1.410 Å).²⁴ The C(1) - Br bond length of 1.896 Å is within the range for the para substituted bromophenyl groups (e.g. 1.915 Å).²⁵ In the 1,4-oxazinone ring, the bond distances C(3) - N[1.371(15) Å] and C(4) = 0 [1.386(13) Å] are also very similar to those reported previously (Table 3.16). However the C-C single bond distances differ significantly from the standard value of 1.53 Å.²⁶ The shortened value of 1.483(17) Å for the C(7) - (8) and 1.441(18) Å for the C(9) - C(10) bonds can be explained by the conjugation of the adjacent double bonds i.e. C=0 and C=C. Similarly, C(11) - O(4) bond has a normal length of 1.445(16) Å while the C(10) - O(4) bond is shorter by proximity of the double bond to 1.345(16) Å. Such behaviour has also been observed in other related structures.^{24,27,28} A comparison of the bond length of the CO groups attached to the oxazinone ring under discussion, to those tabulated for compounds with established 1,4-benzoxazinone structure in Table 3.16 shows that the bond C(7) - O(2)

160

 Table 3.16 Reported Bond Lengths in Oxazinones. Oxazines. Phenazines and Phenothiazines

 Phenothiazines

 Compound
 Bond Length (Å)

 Compound
 C(3) - N
 C(4) - O
 C(7) - O(1)
 C - O(2)
 Re

C(3) - M C(8) - M C(4) - 0 C(7) - 0(1) C - 0(2) C - 0(3) Ref.1.22 1.18 1.37 1.38 1.36 1.37 -00H3 2

•

1.22 1.39 1.35 1.32 1.38 1.38 £

29

1.27

1.23 1.38 1.37 1.37 1.32

è

30

1

<u>rig. 3.22 Selected Bond Angles in 6-Bromo-dihydro-3-(2-oxo-2-methoxy-ethylidene)-</u>

2H-1.4-benzoxazine-2-one

[(1.169(16) Å)] is within the quoted range. Significantly, in the structure determined the ring C=0 has similar bond length to the C=0 [(1.223(15) Å)] of the carbomethoxy group.

The endocyclic bond angles of the 1,4-benzoxazinone (Fig 3.22) ring range from $117.0(1) - 123.5(9)^{\circ}$ these values do not deviate significantly from the expected value of 120°. Such a range in the bond angle may be a result of the slight puckering of the ring system. Table 3.17 gives the deviation of all atoms from two planes. In addition the short contact distance Hn...O(3) [1.87 Å] confirms the presence of an intramolecular hydrogen bond.

Table 3.17 LeastSquarePlanesfor6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1.4-benzoxazin-2one

Atom	Plane 1	Plane 2
C(1)	0.0047*	0.0971
C(2)	-0.0003*	0.0658
C(3)	-0.0052	0.0145
C(4)	0.0064	0.0085
C(5)	-0.0020*	0.0263
C(6)	0.0037*	0.0701
C(7)	0.0880	0.0146
C(8)	0.0622	0.0082
C(9)	0.1297	0.0468
Hn	0.2371	0.2336
H(2)	-0.2134	-0.1394
H(5)	-0.2842	-0.2744
H(6)	-0.2050	-0.1168
H(7)	0.1336	-0.0255
H(11a)	0.7305	0.6570
H(11b)	-0.5146	-0.5930
H(11c)	0.1841	0.0679
Br	0.0697	0.2252
N	-0.0123	-0.0195
0(1)	0.0297	-0.0210
0(2)	0.1577	0.0399
0(3)	0.1602	0.1413
0(4)	0.2151	0.1232

*=Atems included in the calculations of the Least square-planes

3.6 References

- 1 A.s. Onishchenko, 'Diene Synthesis', Academy of Sciences, USSR, 1964.
- 2 J. Hamer, '1,4-Cycloaddition Reactions', Academic Press, New York, 1967.
- 3 I. L. Finar, 'Organic Chemintry', Vol. 1, Longman Inc., London, 1973.
- 4 J. March, 'Advanced Organic Chemistry', J. Wiley and Sons Inc., U.S.A., 1985.
- 5 P. Sykes, 'A Guidebook to Mechanisms in Organic Chemistry', Longman Inc., U.S.A., 1981.
- 6 E. D. Bergmann, D. Ginsburg, and R. Pappo, in Organic Reactions, eds. R. Adams, A. H. Blatt,
 V. Boekelheide, A. C. Cope, D. Y. Curtin,
 F. C. McGrew, and C. Newmann, J. Wiley and Sons Inc., U.S.A., 1959, Vol. 10.
- 7 G. Desimoni and G. Tacconi, Chem. Rev., 1975, 75, 651.
- 8 A .McKillop and T. S. B. Sayer, J. Org. Chem., 1976,
 41, 1079.
- 9 C. B. Castellani and R. Millini, J. Chem. Soc., Dalton Trans., 1984, 1461.
- 10 P. Gaganatsou, Ph.D. Thesis, 1987, The Polytechnic of North London.
- 11 C. B. Castellani, G. Gatti, and R. Millini, Inorg.

Chem., 1984, 23, 4004.

12 R. G. Buckley, J. Charalambous, M. J. Kensett,

M. McPartlin, D. Mukerjee, E. G. Brain, and J. M. Jenkins, J. Chem. Soc., Perkin Trans. 1, 1983, 693.

- 13 G. Georgiou, Ph.D. Thesis, 1988, The Polytechnic of North London.
- 14 J. F. Dellaria, B. D. Santarsiero, Tetrahedron Lett., 1988, 29(47), 6079.
- 15 R. M. Williams and M. Im, Tetrahedron Lett., 1988, 29(47), 6075.
- 16 I. Wagner, H. λ. Musso, Angew. Chem. Int. Ed. Engl., 1983, 22, 816.
- 17 Yu. S. Andreichikov, L. A. Voronova, and A. V. Milyutin, Zh. Org. Khim., 1979, 15(4), 847.
- 18 J. Caterrick, P. Thornton, Inorg. Chem. Radiochem., 1977, 20, 291.
- 19 J. Charalambous, H. Barjesteh, and T. Thomas, unpublished data.
- 20 R. G. Buckey, J. Charalambous, and E. G. Brain, J. Chem. Soc. Perkin Trans. 1, 1982, 1, 1075.
- 21 G. Fochi and C. Floriani, J. Chem. Soc. Dalton Trans., 1984, 2577.
- 22 M. K. Cooper, P. J. Guerney, H. J. Goodwin and M. McPartlin, J. Chem. Soc., Dalton Trans., 1982, 757.
- 23 G. M. Sheldrick, 'Program for Crystal Structure Determination', University of Cambridge, England,

24 F. Garbassi and L. Giarda, Acta. Crystallogr., 1973,

B29, 1190.

- 25 L. E. Sutton, 'Tables of International Distaces and Configurations in Molecules and Ions', Chemical Society, England, 1970.
- 26 L. S. Bartell, J. Amer. Chem. Soc., 1959, 81, 3497.
- 27 J. W. Turley, Acta. Crystallogr., 1972, B28, 140.
- 28 D. C. Rohrer, M. Sundaralingam, Acta. Crystallogr., 1970, B26, 546.
- 39 W. M. Shutie, Ph.D. Thesis, 1981, The Polytechnic of North London.
- 30 R. G. Buckley, Ph.D. Thesis, 1980, The Polytechnic of North London.
- 31 F. H. Herbstien and G. M. J. Schmidt, Acta. Crystallogr., 1955, 8, 406.
- 32 A. Singhabhandhu, P. D. Robinson, J. H. Fang, and
 W. E. Geiger, J. Inorg. Chem., 1975, 14, 2.
- 33 S. S. C. Chu and D. Van der Helm, Acta. Crystallogr., 1977, B33, 873.

EXPERIMENTAL

4.1 Reagents and General Techniques

The reagents used were obtained commercially and used without further purification. Solvents for column chromatography were freshly distilled. The silica gel absorbent used in the chromatography columns was Merck silica gel 60 (70-230 mesh) supplied by BDH Chemicals Limited. Thin layer chromatography was performed using precoated Merck Kieselgel 60 F_{254} plates [Solvent system used for t.l.c.: $Cl_2CH_2(10)$, EtAc(6), MeOH(2), and Toluene(1)].

Preparation of Hydroxylamine. - To absolute ethanol at -10 $^{\circ}$ C, hydroxylamine hydrochloride (1 mol equiv.) and sodium metal (1 mol equiv.) were added with stirring (1/2h). The precipitated sodium chloride was removed by filtration to give a clear solution of hydroxylamine.

4.2 Analytical Techniques

Copper, nickel, cobalt, and manganese in the samples of metal complexes were determined quantitatively by the method of atomic absorption spectrometry, using a Pye-Unicam SP9 atomic absorption spectrometer. Wet

oxidation was achieved by heating a known mass (ca. 0.1 g) of the material in concentrated nitric acid (ca. $4-8 \text{ cm}^3$) and subsequent addition of hydrogen peroxide

(30%, *ca.* $1-3 \text{ cm}^3$). After allowing the mixture to digest, the inorganic residue was diluted to a known volume with water. Standard solutions were prepared using Analar grade metal chlorides.

Carbon, hydrogen and nitrogen analysis were carried out on a Carlo Erba 1106 microanalytical unit.

4.3 Physical Techniques

Thermal Gravimetric Analysis. - Thermal gravimetric analysis was carried out on a Stanton HT-SM Thermobalance. A heating rate of ca. 3 °C min⁻¹ was used.

Magnetic Measurements. - Room temperature magnetic moments were recorded using a Johnson Matthey magnetic susceptibility balance. The instrument was calibrated with a solution of manganese(II) chloride. The magnetic susceptibility values were corrected for the diamagnetic effect of the metal and the ligands.¹

Infra-red Spectroscopy. - Infra-red spectra in the region 4000-400 cm⁻¹ were recorded on a BIO-RAD FTS40 spectrometer. The samples were prepared as pressed potassium discs.

Mass Spectrometry. - Mass spectra were recorded on a Kratos Profile Spectrometer with a Sun Data Station.

Nuclear Magnetic Resonance Spectroscopy. - Fourier transform ¹H and ¹³C n.m.r. spectra were recorded on a Bruker AM250 or on a Joel 270 and 500 MHz spectrometer. Trimethylsilane was used as reference standard for spectra recorded in d_6 -dimethylsulphoxide and deuterated chloroform.

Ultra Violet/Visible Spectroscopy. - U.v./vis. spectra in the region 900-190 nm were obtained using a SUMATZU U.V.-2100 spectrometer.

Melting Points. - All melting points were measured on a Gallenkamp melting point apparatus and are uncorrected.

4.4 Reactions

4.4.1 Nitrosation of 3-Acetylaminophenol at 20 °C

To a mixture of 3-acetylaminophenol (6.9 g, 46 mmol) and sodium nitrite (11.4 g, 17 mmol) in water (70 cm³), acetic acid (11 cm³) was added dropwise with stirring (3 h). Filtration gave an orange solid (3.7 g) which was washed with water (5 X 50 cm³) and dried at 0.1 mm/20 $^{\circ}$ C to give a solid (solid S1) (Three component by t.l.c.).

Solid S1 (0.54 g) was mixed with silica and

chromatographed. Elution with toluene gave acetylaminonitrophenol (0.06 g, 11%) (Found: M^{*} , 196; C, 48.7; H, 3.8; N, 14.2. $C_{B}H_{B}N_{2}O_{4}$ requires: M^{*} , 196; C,

49.0; H, 4.1; N, 14.3%). Further elution with toluene-ethyl acetate (9:1) gave 5-acetylamino-1,4benzoquinone 4-oxime (0.1 g, 19%) (Found: M*, 180; C, 53.2; H, 4.4; N, 15.5. Calc. for $C_8H_8N_2O_3$: M*, 180; C, 53.3, H, 4.4; N, 15.6%). Final elution with toluene-ethyl acetate (7:3) gave 5-acetylamino-1,2benzoquinone 2-oxime (0.37 g, 69%) (Found: M*, 180; C, 53.1; H, 4.2; N, 15.4. Calc. for $C_8H_8N_2O_3$: M*, 180; C, 53.3; H, 4.4; N, 15.6%).

4.4.2 Nitrosation of 3-Acetylaminophenol at -10 °C

To a mixture of 3-acetylaminophenol (14.1 g, 94 mmol) and sodium nitrite (9.4 g, 14 mmol) in water (140 cm³) at -10 °C, acetic acid (14 cm³) was added dropwise with stirring (3 h). Filtration gave an orange solid which was washed with water (5 X 100 cm³), diethyl ether (5 x 50 cm³) and dried at 0.1 mm/20 °C to give 5-acetylamino-1,2-benzoquinone 2-oxime (14.7 g, 83%) (Found: M°, 180; C, 53.1; H, 4.2; N, 15.4. Calc. for $C_{\rm H_{\rm N}} O_{\rm 0}$: M°, 180; C, 53.3; H, 4.4; n, 15.6%).

4.4.3 Nitrosation of 3-Acetylaminophenol in Presence of Copper(II) Sulphate Pentahydrate

Copper(II) sulphate pentahydrate (6.4 g, 26 mmol) in

109 mmol) in methanol-water (75 cm³, 2:1). Sodium nitrite (8.5 g, 123 mmol) in water (50 cm^3) was added dropwise (1 h) and the mixture was stirred (24 h). Filtration gave a brown solid which was washed with water $(3 \times 150 \text{ cm}^3)$, methanol $(3 \times 15 \text{ cm}^3)$, and extracted (Soxhlet) with ethyl acetate. The brown residue was then dried at 0.1 mm/20 °C to give bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (9.8 g, 90%), m.p. 240-250 °C (decomp.), $\mu_{\rm B}$ 2.0 (Found : C, 45.7; H, 3.4; Cu, 14.9; N, 13.2. C, H, CuN 0 requires : C, 45.6; H, 3.3; Cu, 15.0; N, 13.3*). Concentration of the extract to low volume gave yellow crystalline 3-acetylamino-1,4-benzoquinone 4-oxime (0.35 g, 8%), m.p. 190 °C (decomp.) (Found: C, 52.9; H, 4.3; N, 15.7. Calc. for CHNO: C, 53.0; H, 4.4; N, 15.6%).

4.4.4 Reaction of 5-Acetylamino-1.2-benzoquinone 2-oxime with Copper(II) Chloride Dihydrate in Methanol

To a solution of copper(II) chloride dihydrate (1.5 g, 8.6 mmol) in methanol (50 cm³), solid 5-acetylamino-1,2-benzoquinone 2-oxime (3.0 g, 17 mmol) was added with stirring (24 h). The dark brown solution obtained was dried under nitrogen to give a brown solid. After washing with water (3 X 50 cm³), ethyl acetate

(3 X 50 cm³) and drying at 0.1 mm/20 °C, bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (2.9 g, 83%) m.p. 240-250 C° (decomp.), $\mu_{\rm B}$ 2.0 (Found:

C, 44.6; H, 3.3; Cu, 14.9; N, 13.2. Calc. for $C_{16}H_{14}CuN_4O_9$: C, 45.54; H, 3.3; Cu, 15.1; N, 13.3%) was obtained.

<u>4.4.5 Interaction of Bis(5-acetylamino-1,2-benzoquinone</u> <u>2-oximato)copper(II) with Pyridine</u>

To a suspension of bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (0.5 g, 1.2 mmol) in acetone (40 cm³), pyridine (0.4 g, 4.8 mmol) was added at 20 °C with stirring (24 h). Filtration gave a coffee coloured solid which was washed with light petroleum (b.p. 30-40 °C) (3 x 50 cm³) and dried at 0.1 mm/20 °C to give bis(5-acetylamino-1,2-benzoquinone 2-oximato)bis(pyridine)copper(II) (0.6 g, 90%) m.p. 240-250 °C (decomp.), $\mu_{\rm B}$ 1.9 (Found: C, 53.9; H, 4.1; Cu, 10.8; N, 14.8. $C_{26}H_{24}$ CuN₆O₆ requires: C, 53.8; H, 4.1; Cu, 11.0; N, 14.5%).

<u>4.4.6 Pyrolysis of Bis(5-acetylamino-1.2-benzoquinone</u> 2-oximato)bis(pyridine)copper(II)

Bis(5-acetylamino-1,2-benzoquinone 2-oximato)bis-(pyridine)copper(II) (1.4565 g) was heated at 0.1 mm/150-190 °C (3 h). The brown residue was bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II)

(1.0077 g, 95%) (confirmed by comparative i.r. with an authentic sample cf. 4.4.3).

<u>4.4.7 Interaction of Bis(5-acetylamino-1.2-benzoquinone</u> <u>2-oximato)copper(II) with 2.2 -Dipyridyl</u>

To a suspension of bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (2.0 g, 4.7 mmol) in acetonitrile (70 cm^3) , 2,2 -dipyridyl (1.5 g, 9.7 mmol) was added. The mixture was stirred at 20 °C for 24 h. Filtration afforded a brown solid, which was washed with acetone and 0.1 mm/20 °C dried at to give bis(5-acetylamino-1,2-benzoquinone 2-oximato) (2,2 -dipyridyl)copper(II) (2.6 g, 95%), m.p. 220-240 °C (decomp.), $\mu_{\rm H}$ 1.79 (Found: C, 54.0; H, 3.8; Cu, 10.4; N, 14.6. C H CUN 0 requires: C, 54.0; H, 3.8; Cu, 11.1; N, 14.6%).

4.4.8 Interaction of Bis(5-acetylamino-1.2-benzoquinone 2-oximato)copper(II) with Hydroxylamine

To a suspension of bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (0.8 g, 1.9 mmol) in absolute ethanol (60 cm³) at -20 °C, hydroxylamine (0.2 g, 5.4 mmol) in absolute ethanol (40 cm³) at -10 °C was added. The reaction mixture was stirred at -20 °C (4 h). Filtration afforded the unreacted complex (0.78 g, 96% recovery) (confirmed by comparative i.r. with an authentic sample cf. 4.4.3).

4.4.9 Nitrosation of 3-Acetylaminophenol in the Presence of Nickel(II) Chloride Hexahydrate

Nickel(II) chloride hexahydrate (6.0 g, 25 mmol) in water (50 cm^3) was added to a solution of 3-acetylaminophenol (7.6 g, 45 mmol), acetic acid (15 cm^3) and sodium acetate trihydrate (15.0 g, 109 mmol) in methanol-water (75 cm³, 2:1). Sodium nitrite (8.5 g, 123 mmol) in water (50 cm³) was added dropwise (1 h). The mixture was then stirred (24 h). Filtration gave an orange solid which was washed with water $(3 \times 150 \text{ cm}^3)$, methanol $(3 \times 15 \text{ cm}^3)$, and extracted (Soxhlet) with ethyl acetate to give orange bis(5-acetylamino-1,2-benzoquinone 2-oximato)nickel(II) hexahydrate (11.6 g, 87%), m.p. 250-260 °C (decomp.), μ₂ 3.0 (Found: C, 36.1; H, 4.9; Ni, 11.2; N, 10.5. C_H_N_NIO_ requires: C, 36.6; H, 5.0; Ni, 11.2; N, 10.7%). Concentration of the extract to low volume gave yellow 3-acetylamino-1,4-benzoquinone 4-oxime (0.5 g, 10.6%), m.p. 190 °C (decomp.) (Found: C, 52.9; H, 4.4; N, 15.7. Calc. for $C_{a}H_{a}N_{2}O_{2}$: C, 53.0; H, 4.4; N, 15.6%) which was filtered off and dried at $0.1 \text{ mm}/20 \degree \text{C}$.

4.4.10 Pyrolysis of Bis(5-acetylamino-1.2-benzoquinone 2-oximato)nickel(II) Hexahydrate

bis(5-acetylamino-1,2-benzoquinone 2-oximato)nickel(II), (0.8943 g, 87%) m.p 250-260 °C (decomp.), $\mu_{\rm g}$ 1.11 (Found: C, 45.5; H, 4.0; N, 14.0; Ni, 14.1. C₁₆H₁₄N₄NiO₆ requires C, 46.0; H, 3.4; Ni, 14.0; N, 13.5%).

4.4.11 Reaction of <u>5-Acetylamino-1.2-benzoquinone</u> <u>2-oxime with Nickel(II) Chloride Hexahydrate in Aqueous</u> <u>Acetic Acid</u>

To a solution of nickel(II) chloride hexahydrate (1.4 g, 5.8 mmol) in acetic acid-water (50 cm³, 1:1), solid 5-acetylamino-1,2-benzoquinone 2-oxime (2.0 g, 11 mmol) was added with stirring (3 h). Filtration gave an orange solid which was washed with water (3 X 50 cm³), and ethyl acetate (3 X 50 cm³) to give bis(5-acetylamino-1,2-benzoquinone 2-oximato)nickel(II) hexahydrate (2.0 g, 87%), m.p. 250-260 °C (decomp.), $\mu_{\rm B}$ 3.0 (Found: C, 36.1; H, 4.9; Ni, 11.2; N, 10.5. Calc. for $C_{16}H_{26}NiN_4O_{12}$: C, 36.6; H, 5.0; Ni, 11.2; N, 10.7%)

4.4.12 Reactionof5-Acetylamino-1.2-benzoguinone2-oximewith Nickel(II)Chloride Hexahydrate in Methanol

To a solution of nickel(II) chloride hexahydrate (1.3 g, 5.4 mmol) in methanol (50 cm^3) solid

5-acetylamino-1,2-benzoquinone 2-oxime (2.0 g, 11 mmol) was added with stirring (3 h). The resultant brown-red solution was dried under nitrogen to give a brown

residue. The latter was washed with water (3 X 50 cm³), ethyl acetate (3 X 50 cm³) and dried at 0.1 mm/20 °C to give a solid (solid S1) (1.8 g), m.p. 250-260 °C (decomp.), $\mu_{\rm B}$ 3.0 (Found: C, 34.1; H, 3.8; Ni, 11.2; N, 10.4%).

To a suspension of S1 (0.5 g) in acetone (40 cm³), pyridine (0.4 g, 4.8 mmol) was added at 20 °C with stirring (24 h). Dropwise addition of the resultant viscous orange solution to light petroleum ether (b.p. 30-40 °C) (100 cm³) gave an orange precipitate. this was filtered off, washed with light petroleum (b.p. 30-40 °C) (3 X 50 cm³) and dried at 0.1 mm/20 °C to give bis(5-acetylamino-1,2-benzoquinone 2-oximato)bis-(pyridine)nickel(II) (0.62 g, 90%), m.p. 250-260 °C (decomp.), $\mu_{\rm B}$ 3.0 (Found: C, 54.2; H, 4.3; Ni, 9.8; N, 14.5. $C_{26}H_{24}N_{6}NiO_{6}$ requires: C, 54.3; H, 4.2; Ni, 10.3; N, 14.6%).

4.4.13 Interaction of Bis(5-acetylamino-1.2-benzoquinone 2-oximato)nickel(II) with Pyridine

To a suspension of bis(5-acetylamino-1, 2-benzoquinone 2-oximato)nickel(II) (0.5 g, 1.2 mmol) in acetone (40 cm³), pyridine (0.4 g, 4.8 mmol) was added at 20 °C with stirring (24 h). Dropwise addition of the resultant

viscous orange solution, to light petroleum (b.p. 30-40 °C) (100 cm³), gave an orange precipitate. This was filtered off, washed with light petroleum

(b.p. 30-40 °C) (3 x 50 cm³) and dried at 20 °C/0.1 mm to give bis(5-acetylamino-1,2-benzoquinone 2-oximato)bis(pyridine)nickel(II) (0.65 g, 94%), $\mu_{\rm B}$ 3.0 (Found: C, 54.2; H, 4.3; Ni, 9.8; N, 14.5. Calc. for $C_{24}H_{24}NiN_6O_4$:C, 54.3; H, 4.2; Ni, 10.3; N, 14.6%).

4.4.14 Interaction of Bis(5-acetylamino-1.2-benzoquinone 2-oximato)nickel(II) with 2.2 -Dipyridyl

To a suspension of bis(5-acetylamino-1,2-benzoquinone 2-oximato)nickel(II) (2.1 g, 4.0 mmol) in acetonitrile (70 cm³), 2,2'-dipyridyl (1.5 g, 9.5 mmol) was added. The mixture was stirred at 20 °C for 24 h. Filtration gave a red solid which was washed with acetone and dried at 0.1 mm/20 °C to give bis(5-acetylamino-1,2-benzoquinone 2-oximato) (2,2'-dipyridyl)nickel(II) (2.0 g, 95%), m.p. 260-270 °C (decomp.), $\mu_{\rm g}$ 2.98 (Found: C, 54.7; H, 3.9; Ni, 10.1; N, 14.7. $C_{26}H_{22}NiN_{6}O_{6}$ requires: C, 54.5, H, 3.8; Ni, 10.3; N, 14.7%).

4.4.15 Interaction of Bis(5-acetylamino-1.2-benzoquinone 2-oximato)nickel(II) with Hydroxylamine

To a suspension of bis(5-acetylamino-1,2-benzoquinone 2-oximato) (0.8 g, 1.9 mmol) in absolute ethanol (60 cm³) at -20 °C, hydroxylamine (0.16 g, 4.9 mmol) in absolute ethanol (40 cm³) at -10 °C was added. An immediate colour change from orange to deep red was

observed. The reaction mixture was left to stir at -20 °C (4 h). Filtration afforded a red solid which was washed with water (3 X 5 cm³), ethanol (3 X 10 X cm³) and dried at 0.1 mm/20 °C to give bis(5-acetylamino-1,2-benzoquinone 2-oximato)bis-(hydroxylamine)nickel(II) (0.8 g, 87%), m.p. 250-260 °C (decomp.), $\mu_{\rm m}$ 2.9 (Found: C, 39.9; H, 4.3; Ni, 12.1; N, 17.6. $C_{16}H_{20}NiN_{60}$ requires: C, 39.8, H, 4.2; Ni, 12.2; N, 17.4%).

4.4.16 Nitrosation of 3-Acetylaminophenol in the Presence of Cobalt(II) Chloride Hexabydrate

Cobalt(II) chloride hexahydrate (11.4 g, 48 mmol) in water (50 cm³) was added to a solution of 3-acetylaminophenol (14.6 g, 97 mmol), acetic acid (30 cm³) and sodium acetate trihydrate (30.0 g, 217 mmol) in methanol-water (300 cm³, 2:1). Sodium nitrite (18.0 g, 259 mmol) in water (100 cm³) was then added dropwise (1 h) and the mixture was stirred (24 h). Concentration of the resultant red solution under nitrogen and filtration gave a black solid which was washed with water (3 X 150 cm³), ethyl acetate (2 X 25 cm³), and extracted (Soxhlet) with diethyl ether. The black residue was dried at 0.1 mm/20 °C to give, penta(5-acetylamino-1,2-benzoquinone 2-oximato)- μ -

peroxo-dicobaltate(III) (11.0 g, 54%), m.p. 260-270 °C
(decomp.), (Found: C, 45.9; H, 3.3; Co, 11.2; N, 13.4.
C₄₀H₃₆Co₂N₁₀O₁₆ requires: C, 45.9; H, 3.3; Co, 10.2; N,

13.4%). Concentration of the ether extract to low volume gave a mixture of 3-acetylamino-1,4-benzoquinone 4-oxime and 5-acetylamino-1,2-benzoquinone 2-oxime (2.5 g, 43%) (confirmed by comparative t.1.c. with authentic samples cf. 4.4.1)

In another experiment cobalt(II) chloride hexahydrate (11.4 g, 47.5 mmol) in water (50 cm³) was added to a solution of 3-acetylaminophenol (14.5 g, 97 mmol), sodium acetate trihydrate (30.0 g, 217 mmol), acetic acid (30 cm³) in methanol-water (300 cm³, 2:1). This was followed by the one step addition of sodium nitrite (17.0 g, 245 mmol) in water (100 cm³) and stirring (24 h). The concentration of the resultant red solution under nitrogen followed by filtration afforded 3-acetylaminophenol (12.0 g, 83% recovery) (confirmed by comparative i.r.). Further concentration of the filtrate gave an orange solid (9.2 g) (Found: C, 0.8; H, 0.7; Co, 22.1; N, 9.3%) which was washed with acetone and dried at 0.1 mm/20 °C.

4.4.17 Nitrosation of <u>3-Acetylaminophenol</u> in the Presence of Sodium Hexanitrocobaltate(III)

To a solution of sodium hexanitrocobaltate(III) (9.5 g, 23.5 mmol) and sodium acetate trihydrate (15.5 g,

11.2 mmol) in water-acetic acid (150 cm³, 10:1), solid 3-acetylaminophenol (7.1 g, 47 mmol) was added. Methanol (200 cm³) was then added to dissolve all the phenol.

Sodium nitrite (9.9 g, 14.3 mmol) in water (50 cm^3), was added dropwise (1 h) and the mixture was stirred (24 h). A deep red solution was obtained which was concentrated to a third of its volume under nitrogen. Filtration afforded a black solid which was washed with water (1 X 10 cm^3), extracted (Soxhlet) with diethyl ether and at to give dried 0.1 mm/20 °C sodium dinitrobis(5-acetylamino-1,2-benzoquinone 2-oximato)cobaltate(III) (10.5 g, 81%), m.p 190-200 °C (decomp.) (Found: C, 36.8; H, 3.32; Co, 11.3; Na, 4.5; N, 15.1. C_H_CONAN_O_ requires: C, 36.1; H, 2.6; Co, 11.1; Na, 4.3; N, 15.8%). Concentration of the extract afforded 5-acetylamino-1,2-benzoquinone 2-oxime (0.1 g, 1%) (confirmed by comparative t.l.c. with an authentic sample cf. 4.4.1)

4.4.18 Reactionof5-Acetylamino-1.2-benzoguinone2-oxime with Cobalt(II)Chloride Hexahydrate in Methanol

To a solution of cobalt(II) chloride hexahydrate (0.8 g, 3.3 mmol) in methanol (40 cm³), solid 5-acetylamino-1,2-benzoquinone 2-oxime (2.1 g, 1.2 mmol) was added and the mixture was stirred (3 h). The resultant red solution was dried under nitrogen to give a red solid which was washed with water (4 X 100 cm³), extracted (Soxhlet) with diethyl ether and dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone

2-oximato)cobaltate(III) (2.0 g, 91 %) m.p. 290-300 °C (Found: C, 47.9; H, 3.8; Co, 9.1; N, 14.2. C₂₄ ₂₁ CoN₆ ₉

requires: C, 48.3; H, 3.5; Co,9.9; N,14.1%). (four component by t.l.c. with Rf values of 0.39, 0.32, 0.24, and 0.26).

4.4.19 Reaction of <u>5-Acetylamino-1.2-benzoquinone</u> 2-oxime with Cobalt(II) Chloride Hexahydrate in Acetic Acid-Methanol Mixture

To a solution of cobalt(II) chloride hexahydrate (1.2 g, 5 mmol) in acetic acid-methanol (50 cm³, 1:1), solid 5-acetylamino-1,2-benzoquinone 2-oxime (2.7 g, 15 mmol) was added with stirring (3 h). Filtration afforded a red solid which was washed with water (4 X 100 cm³), diethyl ether (4 X 100 cm³) and dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone 2-oximato)cobaltate(III) (2.5 g, 84%), m.p. 290-300°C (decomp.) (Found: C, 47.9; H, 3.9; Co, 9.9; N, 14.0. Calc. for $C_{24}H_{21}CON_{6}O_{9}$: C, 48.3; H, 3.5; Co, 9.9; N, 14.1%) (two component by t.l.c. with Rf values of 0.39 and 0.32).

4.4.20 Reaction of <u>5-Acetylamino-1.2-benzoguinone</u> 2-oxime with Cobalt(II) Chloride Hexahydrate in Acetic Acid-Water Mixture

To a solution of cobalt(II) chloride hexahydrate (1.6 g,

4.9 mmol) in acetic acid-water (50 cm³, 1:1), solid
5-acetylamino-1,2-benzoquinone 2-oxime (3.2 g,
17.8 mmol) was added with stirring (3 h). Filtration of

the mixture afforded a red solid, which was washed with water (4 X 100 cm³), diethyl ether (4 X 100 cm³) and then dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone 2-oximato)cobaltate(III) (2.5 g, 85%), m.p. 290-300 °C (decomp.) (Found: C, 47.9; H, 3.9; Co, 9.9; N, 14.0. Calc. for $C_{24}H_{21}CON_6O_9$: C, 48.3; H, 3.5; Co, 9.9; N, 14.1%) (two component by t.l.c. with Rf values of 0.39 and 0.32).

4.4.21 Reaction of Excess 5-Acetylamino-1.2-benzoquinone 2-oxime with Sodium Hexanitrocobaltate(III)

To a solution of sodium hexanitrocobaltate(III) (0.5 g, 1.2 mmol) in methanol-water (50 cm³, 1:1), solid 5-acetylamino-1,2-benzoquinone 2-oxime (1.0 g, 5.6 mmol) was added with stirring (48 h). Filtration gave a red solid which was washed with water (2 X 100 cm³), dichloromethane (4 X 50 cm³) and dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone 2-oximato)cobaltate(III) (0.6 g, 83.3%), m.p. 290-300 °C (decomp.) (Found: C, 48.0; H, 3.7; Co, 9.9; N, 14.0. Calc. for $C_{24}H_{21}CON_{6}O_{9}$: C, 48.3; H, 3.5; Co, 9.9; N, 14.0%) (two component by t.l.c. with Rf values of 0.39 and 0.32).

4.4.22 Reactionof5-Acetylamino-1.2-benzoguinone2-oxime(2 moleguiv.)withSodiumHexanitrocobaltate(III)(1 mol eguiv.)

To a suspension of 5-acetylamino-1,2-benzoquinone 2-oxime (2.2 g, 12 mmol) in methanol (120 cm³) sodium hexanitrocobaltate(III) (2.3 g, 6 mmol) in water (20 cm³) was added potionwise. The resultant red mixture was stirred (12 h) and then concentrated to a third of its volume. Filtration gave a red brown solid which was washed with water (2 X 5 cm³), methanol (2 X 5 cm³) and dried at 0.1 mm/20 °C to give a solid (solid S1) (0.41 g) (Found: C, 36.5; H, 2.8; Co, 10.7; Na, 8.2; N, 16.1%). The filtrate was concentrated further to give a lighter colour brown solid (solid S2) (2.2 g) (Found: C, 32.2; H, 2.5; Co, 12.8; Na, 14.9; N, 16.8%).

4.4.23 Reaction of <u>5-Acetylamino-1.2-benzoquinone</u> 2-oxime with Sodium Hexanitrocobaltate(III) in the Presence of Sodium Nitrite

To a suspension of 5-acetylamino-1,2-benzoquinone 2-oxime (1.1 g, 6.1 mmol) in methanol (70 cm³), sodium hexanitrocobaltate(III) (1.1 g, 2.7 mmol) and sodium nitrite (3.8 g, 55 mmol) in water (15 cm³) was added with stirring (24 h). Concentration of the mixture to a

third of its original volume and filtration gave a deep red crystalline solid (1.2 g) which by t.l.c. was shown to contain traces of the tris chelate and another less

soluble component. Extraction (Soxhlet) with dichloromethane left a dark residue which was dried at $0.1 \text{ mm}/20 \text{ }^{\circ}\text{C}$ to give a solid (solid S1) (0.9 g) (Found: C, 36.0; H, 2.7; Co, 8.1; Na,7.0; N, 16.4%)

 4.4.24 Interaction
 of
 Penta(5-acetylamino-1.2

 benzoguinone
 2-oximato)-µ-peroxo-cobaltate(III)
 with

 Pyridine

To a suspension of penta(5-acetylamino-1,2-benzoquinone 2-oximato)- μ -peroxo-dicobaltate(III) (2.0 g, 1.8 mmol) in acetone (120 cm³), pyridine (3.0 g, 38 mmol) was added with stirring under reflux (10 h). Filtration gave the unreacted complex (1.9 g, 96% recovery) (confirmed by comparative i.r. and elemental analysis with an authentic sample cf. 4.4.16)

4.4.25 Interaction of Sodium Dinitrobis(5-acetylamino-1.2-benzoquinone 2-oximato)cobaltate(III) with Pyridine

Sodium dinitrobis(5-acetylamino-1,2-benzoquinone 2-oximato)cobaltate(III) (0.9 g, 1.6 mmol) was refluxed in pyridine (40 cm³) (12 h). Filtration gave a black solid which was washed with water (2 X 5 cm³), light petroleum (b.p. 30-40 °C) (7 X 20 cm³) and dried at 0.1 mm/20 °C to give a solid (solid S1) (0.30 g) (Found:

C, 41.1; H, 3.1, Co, 10.1; N, 15.5). The filtrate was dried under nitrogen to give a dark red solid which was washed with water $(2 \times 5 \text{ cm}^3)$, light petroleum ether

(b.p. 30-40 °C) (7 X 20 cm³) and dried at 0.1 mm/20 °C to give a black solid (solid S2) (0.37 g) (Found: C, 44.9; H, 3.6; Co, 6.8; N, 15.2%).

4.4.26 InteractionofTris(5-acetylamino-1.2-benzoguinone2-oximato)cobaltate(III)withwithPyridine

To a suspension of tris(5-acetylamino-1,2-benzoquinone 2-oximato)cobaltate(III) (0.5 g, 0.8 mmol) in acetone (50 cm^3) , pyridine (1.3 g, 16.7 mmol) was added with stirring under reflux (10 h). Concentration of the mixture to dryness under nitrogen gave a red solid. This was washed with light petroleum (b.p. 30-40 °C) and dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone 2-oximato)cobaltate(III) (0.5 g, 100% recovery) (identified by t.l.c. and comparative i.r. with an authentic sample cf. 4.4.19)

<u>4.4.27 Nitrosation of 3-Acetylaminophenol in the</u> <u>Presence of Manganese(II) Chloride Tetrahydrate</u>

Sodium nitrite (16.3 g, 236 mmol) in water (100 cm³) was added dropwise (1 h) to a mixture of manganese(II) chloride tetrahydrate (9.73 g, 49 mmol), 3-acetylaminophenol (15.1 g, 101 mmol), sodium acetate

trihydrate (30.4 g, 220 mmol) in methanol-acetic acid, (330 cm^3 , 30:1) and the mixture was stirred (12 h). A thick green mixture resulted which on filtration gave a

black green solid. This was washed with water (4 X 150 cm³), extracted (Soxhlet) with diethyl ether at 0.1 mm/20 °C and dried to give tris(5-acetylamino-1,2-benzoquinone 2-orimato)manganese(III) monohydrate (4.2 g, 20%), m.p. 250 °C (decomp.), µ 2.89 (Found: C, 46.6; H, 3.9; Mn, 8.9; N, 13.6. C H MNN 0, requires: C, 47.2; H, 3.8; Mn, 9.0; N, 13.8%). Concentration of the ether extract gave 5-acetylamino-1,2-benzoquinone 2-oxime (0.4 g, 3%) (confirmed by comparative t.l.c. with an authentic sample cf. 4.4.1). Concentration of the filtrate afforded 3-acetylamino-1,4-benzoquinone 4-oxime (1.8 g, 15%) (confirmed by comparative t.l.c. with an authentic sample cf. 4.4.1).

In a second experiment sodium nitrite (17.0 g, 246 mmol)in water (100 cm^3) was added in one step to a mixture of manganese(II) chloride tetrahydrate (9.9 g, 50 mmol), 3-acetylaminophenol (14.8 g, 99 mmol), sodium acetate trihydrate (30.2 g, 219 mmol) in methanol-acetic acid, (330 cm³, 30:1). The mixture was stirred (12 h). Filtration gave a black-green solid which was washed with water (4 X 150 cm³), extracted (Soxhlet) with diethyl ether and dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone 2-oximato) manganese(III) monohydrate (5.6 g, 28%) m.p. 250 °C

(decomp.) (confirmed by i.r. and elemental analysis with an authentic sample cf. above). Concentration of the extract gave 5-acetylamino-1,2-benzoquinone 2-oxime

(0.13 g, 1\$) 3-acetylamino-1,4-benzoquinone 4-oxime (5.2 g, 43%) (conformed by t.l.c. and comparative i.r. with authentic samples cf. 4.4.1) was obtained by concentration of the filtrate.

4.4.28 Reaction of <u>5-Acetylamino-1,2-benzoquinone</u> 2-oxime with Manganese(II) Chloride Tetrahydrate in Methanol at 20 °C

To a solution of manganese(II) chloride tetrahydrate (1.2 g, 6.1 mmol) in methanol (10 cm³), a suspension of 5-acetylamino-1,2-benzoquinone 2-oxime (2.2 g, 12 mmol) in methanol (50 cm³) was added with stirring (96 h). Filtration afforded the unreacted ligand (1.8 g, 82% recovery) (confirmed by comparative t.l.c. with an authentic sample cf. 4.4.1).

4.4.29 Reactionof5-Acetylamino-1.2-benzoguinone2-oximewithManganese(II)ChlorideTetrahydrateinMethanolUnderReflux

5-Acetylamino-1,2-benzoquinone 2-oxime (1.9 g, 11 mmol) and manganese(II) chloride tetrahydrate (1.1 g, 5.6 mmol) in methanol (50 cm³) were heated under reflux (4 h). Filtration gave a brown solid (1.4 g) (multicomponent by t.l.c.).

<u>4.4.30 Reaction</u> of <u>5-Acetylamino-1.2-benzoquinone</u> <u>2-oxime with Manganese(II) Chloride Tetrahydrate in</u> <u>Methanol in the presence of ammonium buffer</u>

To a solution of manganese(II) chloride tetrahydrate (0.2 g, 1 mmol) in methanol (20 cm³), solid 5-acetylamino-1,2-benzoquinone 2-oxime (0.46 g, 2.6 mmol) was added with stirring. This was followed by the addition of ammonium buffer solution (2 cm³, pH 10) and the mixture was left to stir (12 h). Filtration afforded a green-black solid which was washed with water (3 X 10 cm³), diethyl ether (6 X 10 cm³) and dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone 2-oximato)manganese(III) monohydrate (confirmed by t.l.c. and comparative i.r. with an authentic sample cf. 4.4.27).

4.4.32 Interacion of Tris(5-acetylamino-1.2-benzoguinone 2-oximato)manganese(III) with Pyridine

To a suspension of tris(5-acetylamino-1,2-benzoquinone 2-oximato)manganese(III) (0.5 g, 0.8 mmol) in acetone (50 cm³), pyridine (1.3 g, 17 mmol) was added with stirring under reflux (10 h). Concentration of the mixture to dryness under nitrogen afforded a green-black solid which was washed with light petroleum

(b.p. 30-40 °C) and dried at 0.1 mm/20 °C to give tris(5-acetylamino-1,2-benzoquinone 2-oximato)manganese(III) (0.5 g, 100% recovery) (identified by

comparative t.l.c. and i.r. with an authentic sample cf. 4.4.27).

4.4.32 Reaction of Bis(1.2-naphthoguinone 1-oximato)nickel(II) with Dimethyl Acetylenedicarboxylate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(1,2-naphthoquinone 1-oximato)nickel(II) (1.1 g, 2.6 mmol) and DMAD (2.8 g, 20.0 mmol) in EDGE-water (7.5:1) (85 cm^3) mixture were heated under reflux (24 h). Filtration afforded a brown solid which was washed with methanol $(3 \times 10 \text{ cm}^3)$, water $(3 \times 10 \text{ cm}^3)$ and dried at 0.1 mm/20 °C to give crude nickel(II) butynedioate (0.40 g, 70%), $\mu_{\rm R}$ 3.0 (Found: C, 21.9; H, 2.6; Ni, 28.0; N, 1.3) (confirmed by comparative i.r. with an authentic sample; cf. 4.4.34). The residue remaining after removal of the solvent from the filtrate was refluxed in toluene (60 cm^3). On cooling a yellow solid separated which was recrystallised from toluene to give 4-hydroxy-2,3-dimethoxycarbonyl-1,4-naphthoxazine (14) (1.14 g, 70%) m.p. 161-162 °C (lit.² m.p. 159-160 °C) (Found: M⁺, 315; C, 60.0 ; H, 4.1 ; N, 4.5 . Calc. for C, H, NO,: M*, 315; C, 61.0; H, 4.1; N, 4.4%).

4.4.33 Reaction of Bis(1.2-naphthoguinone 2-oximato)nickel(II) with Dimethyl Acetylenedicarboxylate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(1,2-naphthoquinone 2-oximato) nickel(II) (1.0 g, 2.5 mmol) and DMAD (1.4 g, 10.0 mmol) in EGDE-water $(85t \text{ cm}^3)$ (7.5:1) were heated under reflux (24 h). Filtration gave a pink solid which was washed with methanol (3 X 10 cm^3), water (3 X 10 cm^3) and dried at 0.1 mm/20 °C to give crude nickel(II) butynedicate (0.23 g, 44%), $\mu_{\rm R}$ 3.0 (Found: C, 12.9; H, 2.2; Ni, 28.0%) (confirmed by comparative i.r. with an authentic sample; cf. 4.4.34) and a dark brown filtrate. Evaporation of the solvent from the filtrate gave a residue (multicomponent by t.l.c.) which was refluxed in toluene (60 cm³) for 1 h. Filtration afforded a brown solid (1.54 g) and a red filtrate. Concentration and cooling of the filtrate gave yellow crystals of 4-hydroxy-2,3-dimethoxycarbonyl-1,4-naphthoxazine (15), (0.13 g, 8%), m.p. 163-164 °C (lit.² m.p. 163-164°C), (Found: M^{*}, 315; C, 60.1; H, 4.1; N, 4.5. Calc. for C, H, NO,: M^{*}, 315; C, 60.9; H, 4.1; N, 4.4%). Flash chromatography of the brown solid on silica gel with toluene gave traces of an oily yellow residue. Further elution with toluene-ethyl acetate (9:5) gave more of the cycloadduct (15) (0.3 g, 19%). Subsequent elution

with methanol gave a brown solid (multicomponent by t.l.c.) (1.2 g) (Found: Ni, 2.2%).

 4.4.34 Reaction
 of
 Bis(4-bromo-1.2-benzoquinone

 2-oximato)nickel(II)
 with
 Dimethyl

 Acetylenedicarboxylate
 in Ethylene Glycol
 Dimethyl

 -Water
 Mixture

Bis(4-bromo-1,2-benzoquinone 2-oximato) nickel (II) (1.0 g, 2.2 mmol) and DMAD (1.5 g, 11 mmol) in EGDE-water (85 cm^3) (7.5:1) were heated under reflux (24 h). Filtration gave a pink solid which was washed with methanol $(2 \times 5 \text{ cm}^3)$, water $(2 \times 5 \text{ cm}^3)$ and dried at 0.1 mm/20 °C to give nickel(II) butynedioate octahydrate (0.29 g, 42%), $\mu_{\rm g}$ 2.0 (Found: C, 14.5; H, 4.5; Ni, 18.6. CH_NiO requires: C, 15.3; H, 5.1; Ni, 18.8%). Concentration and cooling of the filtrate afforded a yellow solid which was filtered off and recrystallised from acetone-dichloromethane (2:1) to give 6-bromo-3,4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1,4-benzoxazin-2-one (17, R = Br) (0.65g, 48 %), m.p. 178-179 °C (Found: M^{*}, 297; C, 44.5; H, 2.7; N, 4.8. C, H_BrNO, requires: M^{*}, 297; C, 44.4; H, 2.7; N, 4.7%). Evaporation of the solvent from the filtrate and flash chromatography of the residue over silica gel with dichloromethane afforded more of the benzoxazinone (0.54 g, 40%) (identified by t.l.c. and i.r. cf. above). Further elution with ethyl acetate gave an orange oily residue (0.4 g) (multicomponent by t.l.c.) and final

elution with methanol afforded a solid (1.0 g) (multicomponent by t.l.c.) (Found: C, 30.2; H, 3.7; N, 1.0; Ni, 1.2%).

In another experiment, DMAD (1.2 g, 8.3 mmol) and bis(4-bromo-1,2-benzoquinone 2-oximato) nickel(II) (1.1 g, 2.4 mmol) were heated under reflux in EGDE-water (80 cm³) (7.5:1) for 24 h. Filtration of the mixture gave nickel(II) butynedioate octahydrate (0.26 g, 33%) (confirmed by elemental analysis and comparative i.r. with an authentic sample cf. above). Evaporation of the solvent form the filtrate and flash chromatography of the resultant residue over silica gel with toluene gave the 1,4-benzoxazinone (17, R = 6-Br) (0.47 g, 35%) (identified by comparative m.p., i.r., m.s., and ¹H n.m.r. with authentic sample cf. above). Further elution with toluene-dichloromethane (9:1) afforded 6-bromo-4-hydroxy-2,3-dimethoxycarbonyl-1,4-benzoxazine (16, R = 6-Br) (0.51 g, 32%), m.p. 214-215 °C (lit.²) m.p. 196-197 °C) (Found: M^{*}, 343; C, 41.9; H, 2.9; N, 4.1. Calc. for C_{12^H10}BrNO₄: M^{*}, 343; C, 42.0; H, 2.9; N, 4.1%). Elution with ethyl acetate gave a red-brown oil (0.33 g) (multicomponent by t.l.c.). Further elution with methanol gave a solid (1.0 g) (multicomponent by t.l.c.) (Found:Ni, 1.2%).

 4.4.35 Reaction
 of
 Bis(4-chloro-1.2-benzoquinone

 2-oximato)nickel(II)
 with
 Dimethyl

 Acetylenedicarboxylate
 in
 Ethylene Glycol
 Dimethyl

 -Water
 Mixture

EGDE-water (7.5:1) (85 cm³) were heated under reflux (24 h). Filtration gave a pink solid which was washed with methanol $(2 \times 5 \text{ cm}^3)$, water $(2 \times 5 \text{ cm}^3)$ and dried at 0.1 mm/20 °C to give nickel(II) butynedicate octahydrate (0.34 g, 38%), $\mu_{\rm B}$ 2.0 (Found: C, 14.5, H, 2.5; Ni, 18.6. Calc. for CH_NiO_: C, 15.3; H, 5.1; Ni, 18.8%). Evaporation of the solvent from the filtrate and flash chromatography of the residue with toluene 6-chloro-3,4-dihydro-3-(2-oxo-2-methoxygave ethylidene)-2H-1,4-benzoxazin-2-one (17, R = C1),(0.44 g, 30%), m.p. 188-189 °C (Found: M^{*}, 253; C, 52.2; H, 3.2; N, 5.6. C₁₁₄ClNO₄ requires: C, 52.2; H, 3.2; N, 5.5%). Further elution with toluene-dichloromethane (9:1) afforded 6-chloro-4-hydroxy-2,3-dimethoxycarbonyl -1,4-benzoxazine (16, R = 4-Cl), (0.42 g, 25%), m.p. 206-207 °C (lit.² m.p. 186-188 °C) (Found: M^{*}, 299; C, 48.2; H, 3.4; N, 4.7. Calc. for C₁₂H₁₀ClNO₆: M^{*}, 299; C, 48.2; H, 3.3; N, 4.7%). Elution with ethyl acetate gave a red-brown oil (0.66 g) (multicomponent by t.l.c.) and final elution with methanol afforded a solid (0.09 g) (multicomponent by t.l.c.) (Found: Ni, 1.21%)

 4.4.36 Reaction
 of
 Bis(4-methyl-1,2-benzoquinone

 2-oximato)nickel(II)
 with
 Dimethyl

 Acetylenedicarboxylate
 in Ethylene Glycol
 Dimethyl

 -Water
 Mixture
 Signature

EGDE-water (85 cm³) (7.5:1) were heated under reflux (24 h). Filtration gave a pink solid which was washed with methanol (2 X 10 cm^3), water (2 X 10 cm^3) and dried at 0.1 mm/20 °C to give crude nickel(II) butynedioate $(0.42 \text{ g}, 66\text{\$}), \mu_{\text{B}} 2.9$ (Found: C, 21.7; H, 3.1, Ni, 28.0; N, 1.5) (confirmed by comparative i.r. with an authentic sample; cf. 4.4.34). The filtrate on concentration afforded a yellow solid which was filtered off and recrystallised from toluene to give 6-methyl-2,3-dimethoxycarbonyl-1,4-benzoxazine (16, R = 6-Me), (0.14 g, 10%), m.p. 188-190 °C (lit.² m.p. 186-187 °C) (Found: M^{*}, 279; C, 55.8; H, 4.7; N, 5.0. Calc. for C H NO: M, 279; C, 55.9; H, 4.7; N, 5.0%). The solvent was evaporated from the filtrate and the residue was flash chromatographed on silica gel. Elution with 6-methyl-3,4-dihydro-3toluene gave (2-oxo-2-methoxy-ethylidene)-2H-1,4-benzoxazin-2-one (17, R = 6-Me), (0.29 g, 20, m.p. 144-145 °C (Found:

(17, R = 6-Me), (0.29 g, 20%), m.p. 144-145 C (Found: M^{*}, 233; C, 61.8; H, 4.9; N, 5.45. $C_{13}H_{11}NO_4$ requires: M^{*}, 233; C, 61.8; H, 4.7; N, 6.0%). Further elution with toluene-dichloromethane (9:1) gave more of the 1,4-benzoxazine (0.96 g, 55%) (identified by i.r. and t.l.c.; cf. above). Elution with ethyl acetate gave an oily orange-brown substance (0.11 g) (multicomponent by t.l.c.) and final elution with methanol afforded a solid (0.22 g) (multicomponent by t.l.c.) (Found: Ni, 5.9%).

4.4.37 Reaction of Bis(1.2-naphthoguinone 1-oximato)copper(II) with Dimethyl Acetylenedicarboxylate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(1,2-naphthoquinone 1-oximato)copper(II) (1.0 g, 2.5 mmol) and DMAD (1.4 g, 9.8 mmol) in EGDE-water (85 cm^3) (7.5:1) were heated under reflux (3 h). Filtration gave a brown solid which was washed with methanol $(3 \times 10 \text{ cm}^3)$, water $(3 \times 10 \text{ cm}^3)$ and dried at 0.1 mm/20 °C to give crude copper(II) butynedioate $(0.39, 90\%), \mu_{n} 2.4$ (Found: C, 15.7; H, 1.1; Cu, 36.0; N, 0.5) (confirmed by comparative i.r. with an authentic sample cf. 4.4.34). Evaporation of the solvent from the filtrate gave a residue (multicomponent by t.l.c.) which was mixed with silica gel. Flash chromatography with toluene-ethyl acetate (9:1) afforded 4-hydroxy-2,3-dimethoxycarbonyl-1,4-naphthoxazine (14) (1.1 g, 70%), m.p. 153-155 °C (lit.² m.p. 159 - 160 °C (Found: M^{*}, 315; C, 60.5; H, 4.2; N, 4.4. Calc. for C₁₆H₁₃NO₆: C,60.9; H,4.1; N, 4.4%).

4.4.38 Reaction of Bis(1.2-naphthoguinone 2-oximato)-Copper(II) with Dimethyl Acetylenedicarboxylate in Ethylene Glycol Dimethyl Ether-Water Mixture

(85 cm³) (7.5:1.0) were heated under reflux for 3 h. Filtration gave a brown solid which was washed with methanol (3 X 10 cm³), water (3 X 10 cm³) and dried at 0.1 mm/20 °C to give crude hydrated copper(II) butynedioate (0.40 g, 92%), $\mu_{\rm B}$ 2.4 (Found: C, 17.2; H, 1.1; Cu, 36.0; N, 0.6) (confirmed by comparative i.r. with an authentic sample; cf. 4.4.34). Evaporation of the solvent from the filtrate and flash chromatography of the residue on silica gel with toluene gave an orange oily residue (0.32 g) (multicomponent by t.1.c.). Further elution with toluene-dichloromethane (8:2) gave 4-hydroxy-2,3-dimethoxycarbonyl-1,4-naphthoxazine (15) (0.6 g, 38 %), m.p. 163-164 °C (lit.² m.p. 163-164 °C) (Found: M*, 315; C, 60.7; H, 4.2; N, 4.4. Calc. for C_H_NO_: M*, 315; C, 61.0; H, 4.1; N, 4.4%).

4.4.39 Reaction of Bis(4-R-1.2-benzoguinone 2-oximato)-COPPER(II) (R = Br. Cl. Me) with Dimethyl Acetylenedicarboxylate in Ethylene Glycol Dimethyl Ether-Water Mixture

The copper complex (1 mol equiv.) and DMAD (4 mol equiv.) in EGDE-water (85 cm³) (7.5:1) were heated under reflux (24 h). Filtration afforded a paramagnetic brown-green solid which was washed with methanol (3 X 10 cm³) and water (3 X 10 cm³) and dried at

0.1 mm/20 °C to give crude copper(II) butynedioate (see Table 4.1 for results; confirmed by comparative i.r. with an authentic sample cf. 4.4.34). Evaporation of the

200

solvent from the filtrate afforded a residue which was mixed with silica gel and flash chromatographed. Elution with toluene afforded the 1,4-benzoxazinone (17) followed by the corresponding 1,4-benzoxazine (16) which was eluted with toluene-dichloromethane (9:1) (see Table 4.2 for yields and other data; confirmed by comparative i.r., m.p., m.s., and ¹H n.m.r. with authentic samples; cf. 4.4.34, 4.4.35, 4.4.36). Further elution with dichloromethane-ethyl acetate (1:1) gave an oily residue (multicomponent by t.l.c.) and subsequent elution with methanol afforded a brown solid (multicomponent by t.l.c.).

 Table 4.1
 Yield and Elemental Analysis for Cu(bd).nH2
 Obtained from the Cu(4-Rgo).2/DMAD Systems

cu(4-1	tqo) ₂	Proc	duct					
		Cu()	o ² Hn. (bd					
		Yiel	PI	Found	(*)			н. Н
*	(6)	(6)	q (%)	U	×	5	×	
4-Br	1.08	0.38	87	17.5	6.0	33.6	0.6	1.6
4-C1	1.03	0.34	62	17.7	6.0	33.6	0.5	2.0
4-Me	1.02	0.36	67	21.2	1.5	36.0	1.8	2.3

a=Calc. for Cu(bd).H₂O: C, 24.7; H, 1.0; Cu, 33.0%

Calc. for Cu(bd).4H_20: C, 19.4; H, 3.22; Cu, 25.8X

b=Based on copper content

Cu(4-	-Rqo) ₂	A,	rod	uct										
		1,	4	enzoxazin	•	, L	4-Ber	Izoxazino	e					
*	(6)	×	Iel	-		x,	leid	×	ь. (.c)	Four Re	nd (%) quired	-	
		6)	-	(1)		(6)	(*)				υ	×	=	'n
4-Br	1.08	0.8	6	54		0.14	11	178		61	44.5	2.7	4.8	297
											44.4	2.7	4.7	
4-C1	1.03	0.54	9	32		0.39	27	188	- 1	68	52.2	3.18	5.6	253
											52.2	3.16	5.5	
4-Me	1.02	1.26	80	75		0.02		4 189	- 15	06	61.8	4.9	5.5	233
											61.8	4.7	6.0	

a=Satisfactory elemental analysis (confirmed by comparative m.s. and ${}^1{}_{\rm H}$ n.m.r.)

4.4.40 Reaction of Bis(5-acetylamino 1.2-benzoquinone 2-oximato)copper(II) with Dimethyl Acetylenedicaboxylate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (1.1 g, 2.5 mmol) and DMAD (1.4 g, 10 mmol) in EGDE-water (85 cm³) (7.5:1.0) mixture were heated under reflux (9 h). Filtration gave crude copper(II) butynedioate (0.37 g, 88%), μ_{2} 2.3 (Found: C, 18.6; H, 1.5; Cu, 36.0; N, 2.4 %) (confirmed by comparative i.r. with authentic sample; cf 4.4.34) and a red-brown filtrate. The filtrate was chromatographed on silica gel. Elution with toluene-ethyl acetate (7:3) gave 7-acetylamino-4-hydroxy-2,3-dimethoxycarbonyl-

1,4-benzoxazine (1.3 g, 76%), m.p 190-191 °C (Found: M^{*}, 322; C, 52.2; H, 4.6; N, 8.6. $C_{14}H_{14}N_{27}$ requires: M^{*}, 322; C, 52.1; H, 4.3; N, 8.7 %). Further elution with ethyl acetate gave a red eluate which on concentration gave an unidentified red solid (0.15 g) (single component by t.l.c.) m.p. 255 °C (decomp.) (Found: M^{*}, 279; C, 56.5; H, 5.3; N, 5.3%). Elution with methanol gave a brown solid (0.1 g) (multicomponent by t.l.c.) (Found: Cu, 18.9%).

4.4.41 Reaction of Tris(1.2-naphthomuinone 1-oximato)cobaltate(III) with Dimethyl acetylenedicarboxylate in

0.9 mml) and DMAD (0.9 g, 6.0 mmol) in toluene (50 cm³) were heated under reflux (48 h). Filtration gave unreacted complex (0.45 g, 85% recovery) (identified by i.r.).

4.4.42 Reaction of Tris(1.2-naphthoquinone 1-oximato)cobaltate(III) with Dimethyl acetylenedicarboxylate in Ethylene Glycol Dimethyl-Water Mixture

Tris(1,2-naphthoquinone 1-oximato)cobalt(III) (0.5 g, 0.9 mmol) and DMAD (0.9 g, 6.0 mmol) in EGDE-water (7.5:1) (85 cm³) mixture were heated under reflux (48 h). Filtration gave unreacted complex (0.42 g, 82% recovery) (identified by i.r.).

4.4.43 Reaction of Bis(1.2-naphthoguinone 1-oximato)copper(II) with Methyl Propiolate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(1,2-naphthoquinone 1-oximato)copper(II) (1.1 g, 2.5 mmol) and MP (0.86 g,10.0 mmol) in EGDE-water (7.5:1) (85 cm³) were heated under reflux (18 h). Filtration gave crude copper(II) propynoate (0.33 g, 78%) (Found: C, 39.2; H, 2.3; Cu, 36.7; N, 1.7%) and a brown filtrate. The residue remaining after removal of the solvent from the filtrate was mixed with silica gel

and flash chromatographed. Elution with toluene gave traces of an oily brown residue (0.08 g) (multicomponent

205

by t.l.c.) followed by 1,3-naphthoxazole-2-carboxylate (22) (0.13 g, 12%) (confirmed by comparative i.r. and m.s. with an authentic sample; cf. 4.4.47). Further elution with toluene-dichloromethane (9:1) afforded yellow 4-hydroxy-monomethoxycarbonyl-1,4-naphthoxazine (0.82 g, 65%), m.p. 159-160 °C (Found: M*, 257; C, 66.5; H, 4.4; N, 5.4. $C_{14}H_{11}NO_4$ requires : M*, 257; C, 65.4; H, 4.3; N, 5.4%). Subsequent elution with methanol gave a brown solid (0.35 g) (multicomponent by t.l.c.) (Found: Cu, 7.8 %).

4.4.44 Reaction of Bis(5-acetylamino-1.2-benzoquinone-2-oximato)copper(II) with Methyl Propiolate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (1.1 g, 2.6 mmol) and MP (0.85 g, 10.0 mmol) in EGDE-water (7.5:1.0) (85 cm³) mixture were heated under reflux (18 h). Filtration gave black bis(5-acetylamino-1,2-benzoquinone 2-oximato)copper(II) (0.8 g, 73% recovery) (Found: C, 45.2; H, 3.3; Cu, 14.9; N, 13.1. Calc. for $C_{16}H_{14}CuNO_6$: C, 45.6; H, 3.3; Cu, 15.2; N, 13.3%). Evaporation of the solvent from the filtrate gave a multicomponent oily residue which which could not be separated by chromatography.

4.4.45 Reaction of Bis(1.2-naphthoguinone 1-oximato)nickel(II) with Methyl Propiolate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(1,2-naphthoquinone 1-oximato)nickel(II) (1.0 g, 2.5 mmol) and MP (0.85 g, 10 mmol) in EGDE-water (7.5:1) (85 cm³) mixture were heated under reflux (18 h). Filtration gave a brown filtrate and the unreacted complex (0.64 g, 64%) (identified by i.r.). The residue remaining after removal of the solvent was refluxed in toluene 100 cm³). On cooling 4-hydroxy-monomethoxycarbonyl-1,4-naphthoxazine (0.30 g, 23%), m.p. 159-160 °C (Found: M°, 257; C, 65.5; H, 4.4; N, 5.4. Calc. for $C_{14}H_{11}NO_4$: M, 257; C, 65.4; H, 4.3; N, 5.4%) was filtered off and dried in air..

In another experiment bis(1,2-naphthoquinone 1-oximato)nickel(II) (1.1 g, 2.5 mmol) and MP (1.7 g, 21 mmol) in EGDE-water (7.5:1.0) (85 cm³) mixture were heated under reflux (72 h). Filtration gave a brown filtrate and the unreacted complex (0.59 g, 543 recovery) (identified by i.r.). The residue remaining after removal of the solvent was refluxed in toluene 100 cm³). On cooling 4-hydroxy monomethoxycarbonyl-1,4-29.0%) 159-160 °C. naphthoxazine (0.40 g, m.p. (confirmed by t.l.c. and comparative i.r. with an

authentic sample; cf above) was filtered off and dried in air.

207

4.4.46 Reaction of Bis(5-acetylamino-1.2-benzoquinone-2-oximato)nickel(II) with Methyl Propiolate in Ethylene Glycol Dimethyl Ether-Water Mixture

Bis(5-acetylamino-1,2-benzoquinone 2-oximato)nickel(II) (1.1 g, 2.6 mmol) and MP (0.85 g, 10 mmol) in EGDE-water mixture (7.5:1) (85 cm³) mixture were heated under reflux (18 h). Filtration gave the unreacted complex (95%, recovery) (identified by i.r.).

4.4.47 Aerobic Oxidation of 4-Hydroxy-monomethoxycarbonyl-1.4-naphthoxazine in the Presence of Bis(1.2-naphthoguinone 1-oximato)copper(II)

4-Hydroxy-monomethoxycarbonyl-1,4-naphthoxazine (0.1 g, 0.6 mmol) was heated under reflux in methanol (25 cm^3) in the presence of bis(1,2-naphthoquinone 1-oximato)copper(II) (0.009 g, 0.02 mmol). After 20 h the mixture was filtered. The filtrate was chromatographed on silica. Elution with toluene-ethyl acetate (2:1) gave methyl-1,3-naphthoxazole 2-carboxylate (22) (0.13 g, 94%) m.p. 141-142°C (lit.³ m.p. 140-141 °C) (Found: M^{*}, 227 C, 68.7; H,4.0; N, 6.2. Calc. for C, H, NO,: M*, 227; C, 68.7; H, 4.0; N, 6.1%).

4.4.48 Reaction of Hydrated Metal(II) Butynedioates with

pyridine (20 cm^3) at room temperature (24 h). Filtration afforded a solid which was washed with light petroleum $(30-40 \degree \text{C})$ and dried at $0.1 \text{ mm}/20 \degree \text{C}$ to give the corresponding adduct (see Table 4.3 for results).

						Found (* [Required		
Reactant	(6)	Product	(£)	U	=	×	X	I
¹ 0, Hn. (bd) i N	0.23	0, H2. (Py) . 2H ₃ 0	0.19	39.6	3.2	19.9	6.9	2.8
		•		37.8	3.1	20.6	4.9	
**0°Hu. (bd) in	0.18	Ni (bd) (py) . H _o O	0.21	40.8	2.9	21.8	1.1	2.8
				40.3	2.6	22.0	5.2	
Cu((bd).nH ₂ 0	0.31	Not Formulated	0.38	36.6	2.3	24.8	6.3	2.2

4.5 References

- 1 A. Earnshaw, 'Introduction to Magnetochemistry', Academic Press, London, 1968.
- 2 A. McKillop and T. S. Sayer, J. Org. Chem., 1979, 41, 1079.
- 3 P. Gaganatsou, Ph.D. Thesis, 1987, The Polytechnic of North London.

Details of the Crystal Structure of 3-Acetylamino-1,4benzoquinone 4-Oxime

Table 1 Fractional Atomic Coordinates and ThermalParameters (\$\$^2\$) for the Non-Hydrogen Atoms in3-Acetylamino-1.4-benzoguinone 4-oxime

Atom	X	¥	Z	Ued.
C(1)	0.1526(3)	0.9220(5)	-0.1413(15)	0.032(2)
C(2)	0.0790(4)	0.8820(5)	-0.3180(19)	0.041(2)
C(3)	0.0735(4)	0.7818(5)	-0.4188(18)	0.041(2)
C(4)	0.1403(4)	0.7099(5)	-0.3548(18)	0.041(2)
C(5)	0.2141(4)	0.7504(5)	-0.1836(17)	0.038(2)
C(6)	0.2215(3)	0.8508(4)	-0.0864(16)	0.031(2)
C(7)	0.3572(3)	0.8486(5)	0.2245(17)	0.033(2)
C(8)	0.4219(4)	0.9177(5)	0.3821(20)	0.045(2)
N(1)	0.2915(3)	0.8981(4)	0.0764(15)	0.033(3)
N(2)	0.1628(3)	1.0169(4)	-0.0215(50)	0.042(3)
0(1)	0.1332(2)	0.6175(3)	-0.4464(13)	0.060(3)
0(2)	0.0953(3)	1.0783(4)	-0.0736(15)	0.057(3)
0(3)	0.3630(2)	0.7529(3)	0.2235(14)	0.056(3)

Table 2 Fractional Atomic Coordinates for the Hydrogen Atoms of 3-Acetylamino-1.4-benzoguinone 4-oxime

Atom	x	Y	Z
H(N1)	0.2691	0.9560	0.0544
H(01)	0.0759	1.1020	0.0905
H(C2)	0.0415	0.9298	-0.3352
H(C3)	0.0206	0.7631	-0.5386
H(C5)	0.2593	0.7060	-0.1288
H1 (C8)	0.4521	0.8733	0.5620
H2 (C8)	0.4581	0.9504	0.2347
H3 (C8)	0.4032	0.9670	0.5279

Table 3 Bond Lengths(Å) for 3-Acetylamino-1.4benzoguinone 4-oxime

C(1)	- C(2)	1.448(7)
C(2)	- C(3)	1.338(8)
C(3)	- C(4)	1.448(8)
C(4)	- C(5)	1.445(8)
C(5)	- C(6)	1.337(8)
C(6)	- C(1)	1.467(7)
C(6)	- N(1)	1.414(7)
C(1)	- N(2)	1.301(7)
N(2)	- 0(2)	1.372(6)
C(7)	- N(1)	1.351(7)
C(7)	- 0(3)	1.224(6)
C(7)	- C(8)	1.485(8)
C(4)	- 0(1)	1.232(7)

Table 4 Bond Angles (.) for 3-Acetylamino-1.4benzoguinone 4-oxime

C(7) - N(1) - C(6)	126.8(5)
C(2) - C(1) - N(2)	125.2(6)
C(6) - C(1) - C(2)	118.3(5)
C(4) - C(3) - C(2)	121.4(6)
C(5) - C(4) - O(1)	122.1(6)
C(6) - C(5) - C(4)	121.8(6)
C(5) - C(6) - N(1)	126.0(6)
N(1) - C(7) - O(3)	121.7(6)
C(8) - C(7) - N(1)	115.7(5)
C(1) - N(2) - O(2)	113.3(5)
C(6) - C(1) - N(2)	116.5(5)
C(3) - C(2) - C(1)	120.6(6)
C(3) - C(4) - O(1)	120.1(6)
C(5) - C(4) - C(3)	117.8(6)
C(1) - C(6) - N(1)	114.1(5)
C(5) - C(6) - C(1)	119.9(6)
C(8) - C(7) - O(3)	122.6(6)

Table 5 Intermolecular Distances (Å) for3-Acetylamino-1.4-benzoguinone 4-oxime

Atom(1)	Atom(2)	Distance	s	a	þ	с
N(1) .	0(1)	3.12	2	0.0	0.0	-1.0
C(8) .	0(1)	3.15	2	0.0	0.0	-1.0
Hn(1) .	0(1)	2.68	2	0.0	0.0	-1.0
H2(C8).	0(1)	2.80	2	0.0	0.0	-1.0
H3(C8).	0(1)	2.61	2	0.0	0.0	0.0
C(2) .	0(2)	3.41	-1	0.0	2.0	0.0
H(2) .	0(2)	2.87	-1	0.0	2.0	0.0
0(3).	0(2)	2.67	2	0.0	-1.0	0.0
N(2) .	0(3)	3.26	2	0.0	0.0	0.0
Ho(2) .	0(3)	2.27	2	0.0	0.0	0.0
H(3) .	0(3)	2.89	-2	0.0	0.0	0.0
Ho(2) .	C(2)	2.79	-1	0.0	2.0	0.0
H2(C8).	C(8)	2.92	-1	1.0	2.0	1.0

Symmetry transformations: The second atom is related to the first atom, at (x, y, z) by the symmetry operation S with (a, b, c) added to the (x', y', z') of S. where S = 1/2

Table 6 Interamolecular Distances (Å) for3-Acetylamino-1.4-benzoguinone 4-oxime

(3) $0(1)$	2,33	$C(5) \dots O(1)$	2.34
(3) O(1)	2 64	B(5) 0(1)	2.60
	2.04	R(5)O(1)	2.00
	2.23		2.08
1(2)0(2)	2.29	N(1)O(3)	2.25
C(5)O(3)	2.83	C(6)O(3)	2.85
2(8)0(3)	2.38	H(5)O(3)	2.19
H1(C8)O(3)	2.44	H2(C8)0(3)	2.97
N(2)N(1)	2.63	$C(1) \dots N(1)$	2.42
C(5)N(1)	2.45	C(8)N(1)	2.40
H(5)N(1)	2.62	H2(C8)N(1)	2.87
H3(C8)N(1)	2.60	C(2)N(2)	2.44
C(6)N(2)	2.35	Hn(1)N(2)	1.93
Ho(2)N(2)	1.88	H(2)N(2)	2.53
C(3)C(1)	2.42	C(4)C(1)	2.83
C(5)C(1)	2.43	Hn(1)C(1)	2.07
Ho(2)C(1)	2.81	H(2)C(1)	1.94
C(4)C(2)	2.43	C(5)C(2)	2.82
C(6)C(2)	2.50	H(3)C(2)	1.96
C(5)C(3)	2.48	C(6)C(3)	2.83
H(2)C(3)	1.99	C(6)C(4)	2.43
H(3)C(4)	2.17	H(5)C(4)	2.10
C(7)C(5)	3.02	Hn(1)C(5)	2.90
C(7)C(6)	2.47	Hn(1)C(6)	1.63
H(5)C(6)	1.96	Hn(1)C(7)	2.08

.

<u>Table 7 Anisotropic Temperature Coefficients (Å²) for 3-Acetylamino-1.4-benzoquinone 4-oxime</u>

Atom	U11	U 22	U ₃₃	U 2	U13	U23
1174	0.033(3)	0.036(3)	0.030(3)	0.0 1(3)	-0.005(2)	0.001(3)
(T) N	0.042(3)	0.040(3)	0.044(4)	0.0 6(3)	0.011(3)	0.002(3)
(1)0	0.071(3)	0.044(3)	0.065(4)	-0.0 3(2)	0.006(3)	-0.014(3)
0(2)	0.038(2)	0.050(3)	0.083(4)	0.0 8(2)	-0.002(3)	-0.009(3)
0(3)	0.057(3)	0.040(2)	0.072(3)	0.0 6(2)	-0.003(3)	0.005(3)

4-ox1me	10F0 10FC	171 162	355 - 330	1273 1292	920 -913	631 -643	750 736	614 -621	61 -61	184 -195	81 90	302 272	48 21		68 -72	68 -72 317 328	68 -72 317 328 104 -104	68 -72 317 328 104 -104 199 -201	68 -72 317 328 104 -104 199 -201 91 106	68 -72 317 328 104 -104 199 -201 91 106 101 -103	68 -72 317 328 104 -104 199 -201 91 106 101 -103 77 75	68 -72 317 328 104 -104 199 -201 91 106 101 -103 77 75 76 65	68 -72 317 328 104 -104 91 106 101 -103 77 75 76 65	68 -72 317 328 104 -104 91 105 91 106 101 -103 77 75 77 75 76 75 -122 125 -122	68 -72 317 328 104 -104 91 106 -104 91 106 77 75 76 65 76 65 71 25 76 -123 360 -342	68 -72 317 328 104 -104 199 -201 991 106 101 -103 77 75 76 65 76 65 76 -53 125 -122 125 -122 125 -343 61 -543	68 -72 317 328 104 -104 199 -201 91 106 101 -103 77 75 76 65 76 65 76 65 123 128 123 128 125 -122 125 -122 125 147	68 -72 317 328 104 -104 109 -201 91 109 -201 109 -201 109 -201 104 -103 77 75 76 65 77 75 76 65 71 75 128 128 128 128 128 128 24 249 254 249	68 -72 317 328 104 -104 104 -104 119 -201 91 106 77 75 77 65 754 -122 360 -343 360 -343 360 -342 360 -342 361 -63 162 -163 361 -63 165 -165 361 -63 361 -6	68 -72 317 328 104 -104 199 -201 91 106 101 -103 77 75 76 65 77 75 76 65 1123 128 128 128 128 -122 360 -343 61 -63 61 -63 61 -63 75 64 75 64 75 64	68 -72 317 328 104 -104 199 -201 91 -104 101 -103 77 75 76 55 1123 128 1123 -128 360 -343 66 -343 152 -122 360 -343 152 -122 75 65 77 65 75 65 75 65 76 -428	68 -72 317 328 104 -104 199 -201 99 -201 99 -201 109 -201 77 75 76 65 77 65 75 75 75 65 7	68 -72 317 328 104 -104 199 -201 91 106 101 -103 77 75 77 75 76 -128 61 -63 61 -63 1122 -122 860 -343 61 -63 1122 -125 61 -63 1122 -125 1122 -125 1123 -125 125 1123 -125 125 125 125 125 125 125 125 125 125	68 -72 317 328 104 -104 199 -201 91 106 101 -103 77 75 76 65 77 75 76 -83 61 -63 61 -63 61 -63 7152 -122 360 -349 76 -84 76 -84 77 6 -84 77 76 -84 77 75 -132 76 -84 77 75 -132 76 -84 77 75 -132 76 -84 77 75 -132 76 -84 77 75 -132 77 75 -132 76 -84 77 75 -132 77 75 -132 77 75 -132 76 -84 77 75 -132 77 75 -132 76 -132 77 75 -132 77 75 -132 76 -132 77 75 -132 75 -132 77 75 -132 75 -132 75 -132 75 -132 75 -132 75 -132 75 -132 75 7	68 -72 317 328 104 -104 199 -201 91 106 101 -103 77 75 76 55 125 -122 360 -343 61 -63 152 -122 366 -343 61 -63 75 65 77 254 249 75 65 77 254 249 132 -135 205 -343 132 -135 205 203 205 205 205 205 203 205 205 205 205 205 205 205 205 205 205	68 -72 317 328 104 -104 91 104 -104 91 106 101 -103 77 75 76 55 1123 128 1123 128 1125 -122 360 -343 61 -63 75 65 75 65 75 -84 75 -64 75 -64 7	68 -72 317 328 104 -104 199 -201 99 -201 99 -201 77 75 76 55 105 -343 61 -63 1125 -122 1125 -122 1125 -122 1125 -122 1125 -122 1125 -122 1125 -122 1125 -122 1125 -122 1125 -122 254 249 75 65 77 65 75 -237 254 229 75 -237 254 229 75 -237 254 -237 256 -237 256 -237 256 -237
De	-	-	-	-	-	-	-	-	-	-	-	-	-		-																						
2	×	-	-	-	-	-	-	-	-	-	-	-	-		-						~																
zođu	-	٩	7		1	7	0	-	m	4	5	9	7	10	2	? =	2 = 2	2 2 2 2	25553	;=202¥2	;= 2 C = 2 C = 1	; = 5 E 4 5 E 5	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		2 2 2 2 2 2 2 2 2 2 9	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	5=5 = 5 = 5 = 5 = 5 = 5 = 5	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=o==o=o=o=o=o=o=o=o=o=o=o=o=o=o=o=o=o=	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;=;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-Den	10FC	165	#L-	178	-217	186	103	-91	-66	86	-90	-137	-72		20	13	-278	-278 -278	-278 -278 192 88	-278 -278 192 88 -59	-278 -278 192 -59 -165	-278 -278 192 88 88 -165 -81	-278 -278 192 -59 -165 -81 -81	-278 -278 -278 -278 -278 -278 -265 -255 -255 -255 -255 -255	-278 -278 -278 -278 -278 -255 -255 -255 -255 -255 -255 -278 -255 -278 -278 -278 -278 -278 -278 -278 -278	-278 192 -278 192 -59 -55 -255 -59 -255 -59 -255 -165	-278 192 192 192 192 192 -55 -55 -65 -165 -165 -161	-278 -278 -278 -278 -59 -192 -192 -65 -65 -61 -161 -161 -161 -161 -161 -1	-278 -278 -278 -278 -59 -192 -165 -65 -61 -177 -161 -161 -161 -162 -161 -161 -162 -161 -162 -162	-278 -278 -278 -278 -278 -152 -155 -155 -155 -155 -155 -156 -151 -152 -152 -152 -152	-278 -278 -278 -278 -192 -155 -155 -155 -155 -155 -155 -155 -15	-278 -278 -278 -255 -55 -155 -155 -155 -155 -155 -155	-278 -278 -278 -255 -555 -158 -158 -158 -158 -158 -158 -1	-278 -278 -555 -555 -555 -555 -555 -555 -555 -5	-278 -278 -278 -555 -555 -555 -555 -555 -555 -555 -5	-278 -273 -273 -278 -192 -192 -165 -177 -165 -177 -165 -177 -165 -177 -165 -177 -177 -177 -177 -177 -177 -177 -17	-273 -273 -273 -555 -155 -155 -155 -155 -156 -156 -156
-	10F0	158	17	172	210	168	103	11	51	93	88	142	11	-	5	25	73 270	53 270 198	270 270 198	53 270 198 91 53	53 270 198 91 91 53	53 270 198 91 91 93 93	53 270 91 91 93 93 93 93 93 93 93	53 270 91 91 91 93 93 257 257 257 257 93 257 93 257 93	53 270 198 198 168 168 93 257 266 266 266	53 270 198 198 168 195 255 255 255 195 161	53 73 73 73 73 73 91 91 93 257 73 93 257 758 758 758 758 758 758 758 758 758 7	73 257 233 257 258 255 255 255 255 255 255 255 195 1158 1158 1158 1158 1158 1158 115	73 73 73 73 73 73 73 73 73 73 73 73 73 7	73 270 198 198 198 195 195 195 195 195 195 195 195 195 195	73 270 198 198 191 195 195 195 195 195 195 195 195 195	270 270 198 198 195 195 195 195 195 195 195 195 195 195	73 73 73 198 198 195 195 195 195 195 195 195 195 195 195	53 73 73 73 73 73 73 73 73 73 73 73 73 73	73 73 73 73 73 73 73 73 73 73 73 73 73 7	73 73 71 198 1168 1158 1158 1158 1158 1158 1158 115	73 73 73 198 195 195 195 195 113 195 113 195 113 113 113 113 113 113 113 113 113 11
ġ	-	0	0	0	0	0	0	0	0	0	0	0	0	•	0	- c	c																				
TE	¥	=	=	=	Ξ	=	12	12	12	12	12	13	13	11		. 0																					
TATE	Ŧ	2	m	4	9	1	0	-	2	5	6	2	m	-		- 17	-17		59 F 6			5556655°	555964495	÷÷÷••••••	555 95 9 9 9 9 7 9 9 5 9 5 9 5 9 5 9 5 9	555595205 555595205											
3-AC	10FC	=-	-78	184	-88	#L-	62	297	- 157	-61	-91	75	-125	54		166	100	-104	-104	-104 -104 -69	-104 -104 -69	-104 -104 -69 -69	-104 -104 -69 -69 -77	-104 -104 -104 -134 -77 -77 -77 -77 -77	-104 - 104 - 104 - 134 - 125 - 17 - 125 - 49	-104 -104 -104 -134 -125 -125 -125 -125 -125 -125	104 74 93 -104 -104 -125 -125 -125 -125 -125	-104 -104 -104 -104 -125 -125 -125 -125 -125 -125 -125 -125	- 104 - 74 - 104 - 104 - 69 - 125 - 125 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126 - 126		-104 -104 -104 -104 -125 -125 -125 -125 -125 -125 -125 -125	-104 -104 -104 -104 -125 -125 -125 -125 -125 -125 -125 -125	-104 -104 -104 -104 -93 -125 -125 -125 -125 -125 -125 -125 -125	-104 -104 -104 -104 -93 -125 -125 -125 -125 -125 -125 -125 -125	-104 -104 -104 -104 -93 -693 -693 -125 -125 -125 -125 -125 -125 -125 -125		
IO	10F0	107	61	177	83	72	65	301	161	11	6	80	127	99	152	37.	32	128	1282	2828	135 89 73 135 135	12 8 2 8 5 8 E	28238288	2135 56 798 71 132 1335 298 21 219 219 219 219 219 219 219 219 219 219	22 68 2 3 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 88 23 86 28 89 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2135 219 2132 219 2132 219 2132 219 2132 219 2132 219 2132 219 2132 219 219 219 219 219 219 219 219 219 21	71 98 135 59 59 59 59 59 59 59 59 59 59 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	71 98 133 59 59 59 59 59 59 59 59 59 59 59 59 59	213 213 213 213 213 253 213 253 213 253 253 253 253 253 253 253 253 253 25	200 200 200 200 200 200 200 200	22 88 2 88 2 88 2 88 2 88 2 88 2 88 2	1288838555588555558855555555555555555555	2196 659 219 299 299 299 299 299 299 299 299 29	2000 100 100 100 100 100 100 100 100 100	2 88 2 2 88 2 88 2 88 2 88 2 88 2 88 2	20 2 2 2 8 8 3 3 2 2 2 8 8 3 3 2 2 2 3 8 2 3 2 2 2 3 8 3 3 3 2 5 2 3 2 5
N	-	0	0	0	0	0	0	0	•	•	0	•	0	0	0	,	0	00	000																		
CO	×	-	-	-	-	-	-	80	80	80	80	80	80	80	80		80	co co	co co co					***						***	***	***	∞∞∞ ∞∞∞∞∞∞∞∞∞∞∞∞∞00000	***	***	****	****
L'a	Ŧ	-	2	5	-	80	10	0	2	4	5	9	-	80	6		=	= ≌	= 2 =	= 2 z ~	= 2 = ~ m	= 2 = 2 0 m =					- 21 = 0 m = 0 0 - 0 0								- 2 3 3 0 0 3 5 5 7 8 5 7 9 9 5 5 7 9 9 5 5 7 9 9 5 5 7 9 9 5 5 7 9 9 7 9 7 9 7 9 7 7 9 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 7 7 9	- 23 2 0 m 3 0 0 0 0 0 - 0 3 0 - 0 3 0 - 0 3 0 - 0 3 0 0 0 0	- 23 2 0 m 3 0 0 0 0 0 - 2 0 - 0 3 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 0
ICCULE	10FC	-456	514	457	-119	125	- 103	-111	-40	-240	-43	- 122	- 19	242	122		99	-118	-118 -68	-118 -68 38 38	-118 -68 -68 -285	-118 -68 -68 -285 -285	-118 -118 -68 -285 -111	-118 -68 -68 -68 -68 -68 -68 -118 -110 -111	66 -118 -68 -68 -111 -111 -111 -111 -111	-118 -118 -68 -68 -111 -111 -111 -111 -1		66 -118 -68 -68 -111 -111 -111 -111 -117 -117 -117 -11	-118 -118 -118 -111 -111 -111 -111 -111		66 -118 -68 -68 -68 -111 -111 -111 -111	666 	666 	66 	666 	666 	666
SULU	0101	456	514	465	120	123	104	113	65	228	#8	116	45	241	123	33	00	107	107	101 .	107 - 51 - 51 - 51 - 51 - 51 - 51 - 51 - 51	551 64 - 107 - 93 - 54 - 54 - 54 - 54 - 54 - 54 - 54 - 5	107 - 51 - 52 - 53 - 107 -	107 - 51 64 93 - 225	64 64 51 93 93 107 122	51 64 64 51 53 93 93 93 93 93 93 93 93 107 107 1122	51 51 52 53 51 51 51 52 53 51 53 51 54 54 54 54 54 54 54 54 55 51 55 51 55 55 55 55 55 55 55 55 55	69 64 64 64 64 69 33 132 132 69	64 64 51 53 51 52 51 5 57 5 75	64 64 64 93 93 93 93 93 93 93 93 93 122 122 132 132 132 132 132 132 132 13	64 64 64 93 93 93 93 93 93 93 93 93 93 93 93 122 122 55 55 69 65	665 - 210 - 200 -	66 107 107 107 107 132 132 132 132 132 132 132 132	664 575 575 575 575 575 575 575 575 575 57	50 50 50 50 50 50 50 50 50 50 50 50 50 5	50 575 575 575 575 575 575 575 575 575 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ol	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	5							00000000	00000000	000000000	000000000000000000000000000000000000000	000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
are	¥	m	m	m	m	m	m	m	m	=	4	4	4	=	4	1		=														. ユ ユ う う う う う う う う う う う o o o	, 4 4 N N N N N N N N N N N N N N N N N N	, a a w w w w w w w w w w w w w w w w w	ດຈຸດຈຸດຈຸດທານທານພາບ ເສະ	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱	ݥݦݥݥݥݥݥݥݥݕݕݕݕݕݕݕݕݕ ݥ
CUL	Ŧ	9	-	80	6	10	=	12	14	•	N	m	5	9	-	•	•	• 0	• º ¤	-5 ū-	0 <u>5</u> <u>5</u> <u>-</u> <u>0</u>	00- 0 m	0 m - 0 m =	, 6	٥٥٤ - ٥٤ - ٥٥ ١	,0 - 0 u = 0 0 - 0	.0	๛๐๛๛๛๛๛๛๛๛	៴៰៑ <u>៳</u> ៹៷៷៹៷៷៴៙៷៰	๛๐๛๛ <i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>	๛๐๛๛ <i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>	๛๐๛๛ <i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>	๛๐๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	๛๐๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	๛๐๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	งอีพี- <i>ทพ</i> ส <i>พ</i> ゐ⊦®พือ-ทพส∞⊦อี	งอีพี- <i>ง</i> พรพดหตกัด-งพรดหอีรี
	10FC	- 1050	-131	81	-127	386	- 168	-73	-63	-88	219	-93	- 124	175	- 120	116		- 176	- 176	-176 48 -210	-176 48 -210 503	-176 -210 503 156	-176 -210 503 156 -141	-176 -210 503 156 379	-176 48 -210 503 141 -141	-176 -210 -210 503 503 503 141 -198 -198	-176 48 -210 503 503 156 -141 -141 -168 -198	-176 48 48 503 503 156 141 -141 182 -168 82 -168	-176 48 -210 503 503 156 -14 182 -198 -168 -91	-176 48 -210 503 503 156 -18 1379 182 -198 82 -91 82 -91 202	-176 -176 -210 -210 -210 -182 -182 -182 -182 -91 -91 -91 -91 -91 -91 -91 -91 -92	-176 48 -210 -210 -210 -1141 -141 -168 -168 -168 -168 -162 -134	-176 -210 -210 -210 -210 -141 -141 -182 -182 -91 -91 -91 -168 -168 -168 -168 -168 -168 -168 -174	-176 -210 -210 -210 -210 -156 -141 -141 -141 -124 -124 -124 -124 -124	-176 -210 -210 -210 -156 -141 -141 -148 -168 -168 -168 -168 -168 -174 -202 -202 -202 -202 -222 -222	-176 -210 -210 -210 -210 -141 -141 -141 -148 -168 -168 -168 -168 -134 -202 -202 -202 -202 -202 -202 -202 -20	-176 -210 -210 -210 -141 -141 -153 -168 -168 -168 -162 -134 -168 -162 -162 -168 -168 -168 -168 -168 -168 -168 -168
며 양	10F0	1052-	123	8	117	101	164	26	62	16	230	6	115	177	124	110	185	3	28	219	219	219 494	219 155 138	219 138 383 383 383	56 155 138 383 383	203 203 383 383 383 383 383 383 383 383 383 3	56 1123 203 203 203 203 203 203 203 203 203 2	55 1128 1128 1128 1128 1128 1128 1128 11	88 84 1203 383 383 383 383 383 383 383 383 383 3	70 203 203 203 203 203 203 203 203 203 20	2219 1129 1138 1138 1138 1138 1138 1138 1138 113	256 56 155 170 383 383 383 383 383 383 383 383 383 38	256 256 256 155 155 155 155 155 155 155 155 155 1	79 79	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2202 1494 155 170 170 230 230 230 230	555 555 555 555
	-	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	•		00	000																	
se	¥	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	•	-		~	~~	~~~	~~~~	~ ~ ~ ~ ~	~~~~	~~~~	~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	aaaaaaaaaaaaaaaaaaa	aaaaaaaaaaaaaaaaaamm	NNNNNNNNNNNNNNNNMMM
2	I	=	9	80	0	#		80	m	5	0	-	-	_	~	~			-																		

-51

10FC	86	-66	-176	143	-111	11	-114	35	-77	- 188	422	103	-297	11	- 150	545	-115	88	84	- 107	-120	- 107	136	189	151	-251	-224	-115	204	179	260	83	-250	- 126	-181	151
OFO	11	65	159	124	76	72	103	61	13	196	416	105	302	12	145	252	102	82	80	Ξ	127	86	124	188	147	267	230	113	203	187	261	88	549	125	111	161
5	-	-	-	-	-	-	2	2	2	2	2	2	2	2	~	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	~
×	12	12	12	12	13	13	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ŧ	-	2	e	=	~	2	- 14	-12	-10	9-	7-	0	4	9	80	10	- 15	-12	=	-10	6-	8-		-9	-2	11	e.	7	0	-	2	~	=	2	9	80
10FC	-54	-67	-119	116	110	200	-89	-136	-84	85	-94	129	-167	-206	104	120	208	93	- 109	-55	-79	-93	222	-239	78	90	81	-60	137	- 103	-114	148	-70	62	+6-	150
10F0	65	63	119	124	125	205	65	151	81	67	96	130	156	211	107	115	205	60	35	65	6	11	209	235	80	110	14	63	115	16	110	154	73	72	101	130
د	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
¥	6	6	6	6	6	6	6	6	6	6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	Ξ	=	=	Ξ	Ξ	=	=	=	12	12	12
Ŧ	-2	7	2	m	5	9	1	6	10	11	-12	=-	-10	6-	89	1-	9-	-5	÷.	-2	7	2	m	5	1	6-		÷	7	-	m	S	6	9-	-5	7
10FC	230	-51	-119	- 102	169	- 340	224	96	112	-57	-54	- 148	19	-73	58	- 120	87	200	-90	- 104	16	74	-98	-48	-160	301	204	-223	- 158	84	- 102	-41	145	110	- 107	- 128
10F0	222	61	124	66	165	349	235	102	113	59	55	142	20	62	17	104	66	207	95	101	112	73	66	51	170	302	199	235	168	72	110	60	145	110	104	122
د	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
×	9	9	-	-	2	-	-	-	-	-	-	-	-	2	-	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	6	6	6	6	6	6
Ŧ	5	=	- 10	8-	4-	÷	7	0	-	2	4	1	6	=	13	- 10	6-	89	9-	71	÷.	-2	7	0	-	5	9	8	6	12	-12	6-	8-	1-	-5	7
10FC	-269	182	-81	72	45	63	99	-138	-97	- 109	-54	108	11	57	143	271	-226	177-	- 157	- 144	83	119	-60	61	110	-73	-71	- 102	66-	174	-73	166	50	11-	- 108	- 120
10F0	268	178	84	65	64	99	85	129	93	104	58	109	83	46	152	291	227	187	143	160	6	102	62	89	95	73	69	103	93	163	67	163	55	11	118	129
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
×	4	=	4	=	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	9	9	9	9	9	9	9	9	9
Ŧ	9	2	6	10	15	- 16	-12	- 10	6-	-8	1-	9-	5-	7-	e.	-2	0	-	2	5	9	6	10		12	14	15	=	9-	-5	e.	-2	0	-	2	m
10FC	106	287	125	- 196	133	120	-63	63	-256	-88	66	-70	266	269	56	-54	-92	-484	269	-54	134	210	- 139	-75	- 39	86	-52	250	51	-245	- 189	-62	160	474-	271	204
10F0	118	290	118	189	119	103	69	19	271	93	115	14	253	269	55	50	16	453	255	99	129	209	129	94	99	76	61	262	65	249	188	51	154	474	274	193
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
¥	~	1		2	2	m	-	-	~	-	-	-	5	~	-	m	-	m	~	- ~	. m	m	-	m	=	4	4	4	4	4	4	4	=	=	=	4
Ŧ	1	. 00	10	12	13	-12	=	6-	8		9-	-5	'n	2	7	0	-	~	1	80	6	12	13	14	- 16	- 12	Ξ	- 10	6-	8-	9-	~	2	e	4	5

												•									•								•							
10F0	63	72	68	104	213	243	=	104	102	61	138	139	96	108	16	67	117	173	88	125	78	115	61	101	87	106	105	147	174	110	6	72	115	89	127	96
-	~	m	m	m	m	~	~	m	m	m	~	m	m	~	m	m	m	m	~	m	m	~	~	~	~	~	~	m	-	~	-	~	~	~	~	~
¥	~	~	m	m	m	~	~	m	m	~	~	m	m	=	4	4	#	4	=	=	=	5	5	5	9	9	9	9	9	9	9	9	-	1	-	1
Ŧ	2	=	6-	8	9-	-5	e.	-2	m	9	80	6	=	1-	9-	5	÷	0	9	1	6	9-	-	6	89	-2	-	2	~	5	9	6	- 10	0	2	m
10FC	-110	9	124	-135	-68	10	14	-63	-84	169	-117	114	+6-	142	-205	132	6	-175	-115	209	117	-205	124	-141	-52	72	-92	6	66	- 145	11	- 103	6	66-	53	-79
10F0	=	8	113	130	63	67	76	20	8	156	104	105	103	129	199	132	17	176	136	196	114	214	124	153	72	82	88	89	113	142	11	112	35	102	73	87
-	~	N	~	~	2	~	~	~	2	~	~	2	2	~	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	~	m
¥	6	6	10	10	10	10	10	=	=	Ξ	Ξ	=	12	12	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	2	2	2	2	2	2
Ŧ	5	6	0	~	=	5	9	7	~	0	2	m	~	2	6-	1-	-5	ŗ	7	-	e	5		9-	. -	0	-	2	1	80	-10	1-	5	7	÷	-
10FC	66	70	- 128	-86	- 105	112	37	- 105	72	-87	-84	-216	210	166	69	- 124	-33	+6-	-89	204	81	61-	-102	- 104	-50	136	138	83	-152	- 162	136	127	-81	-78	154	-90
10F0	86	80	101	92	118	136	64	93	73	80	11	227	207	179	16	131	99	109	66	204	16	16	106	16	65	138	163	83	133	157	141	132	76	73	141	88
-	~	N	2	2	~	2	~	2	2	~	~	2	2	~	2	2	2	2	~	2	N	2	~	2	~	2	2	2	2	2	2	~	~	~	~	2
¥	9	0	9	9	-	-	-	-	2	-	-	~	2	-	-	-	-	80	80	80	80	80	80	80	œ	80	80	80	6	6	6	6	6	6	6	6
I	= .	•	-	10	=	8-	1-	9-	ŗ	0	-	m	5	9	-	80	10		-10		7	~·	-	m	=	5	9	1	-10	6-	9-	-2	7	-	2	=
10FC	147	- 128	82	-85	-91	89	107	134	-112	130	-67	-118	84	-90	61	161	108	+6-	-68	+#+-	+6-	105	167	136	-102	-301	128	80	48	16	- 106	- 160	-37	11	-110	91
10F0	131	5	83	86	66	86	114	127	110	135	11	118	61	92	10	129	93	103	13	59	16	66	167	121	106	304	134	10	63	73	66	163	19	69	96	35
-	N	N	~	2	2	~	~	2	2	~	~	~	2	2	2	~	~	~	~	2	2	~	~	2	~	~	2	2	2	2	2	2	2	2	~	2
¥	-	4	4	4	4	4	4	4	#	#	4	#	4	4	#	#	5	5	5	5	5	5	5	5	5	s	5	5	9	9	9	9	9	9	9	9
Ŧ	-12	P	9	-	7	~-	~	7	•	~	m	5	6	9	=	12	-13	=	6-	9	7	~	7	-	2	m	=	1	9	5	7	ŗ	~	0	2	e
10FC	#L-	8	152	-215	214	-439	-207	528	-283	132	318	-69	- 150	-80	-89	124	- 141	+6-	252	-69	128	80	-83	196	-126	86	62	-257	43	34	-50	-115	227	-89	-62	58
10F0	22	2	128	223	218	611	210	557	303	138	316	11	153	86	96	121	138	102	255	72	122	65	6	213	110	8	99	256	59	54	55	118	222	72	73	81
د	~	N	2	2	2	2	2	2	2	2	2	2	2	~	~	~	2	N	2	~	2	2	2	N	N	~	2	N	~	N	2	N	2	~	~	~
¥		-	2	2	2	2	2	2	2	2	2	N	2	2	2	~	~	2	2	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	4
Ŧ	2:	2	=	-	9	5	7	ĩ	2	7	0	-	=	2	-	80	6	10	=	- 12	Ξ	- 10	9	7	ŗ	2	7	2	m	3	9	6	10	12	1	-13

 10FC

 82

 57

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 68

 28

 93

 93

 93

 93

 93

 93

 93

 93

 93

 93

 93

 94

 96

 98

 98

 96

 98

 97

 97

 97

 98

 97

 98

 97

 97

 97

 97

 97

 97

 97

 97

 97

 97

 97

 97

H K L 10FO 10FC H K L 10FO 10FC H K L 10FO 10FC H K L 10FO 10FC H K L 10FO 10FC 4 7 3 137 -131 0 8 3 113 -111 5 8 3 90 -74 -1 9 3 97 121 -4 3 4 85 -89 6 7 3 92 . 95 2 8 3 96 111 -3 9 3 73 -53

•

Details of the Crystal Structure of 6-Bromo-3,4dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1,4benzoxazin-2-one

Table 1 Atomic Coordinates and Thermal Parameters $(\vec{\lambda}^2)$ for the Non-Hydrogen Atoms in 6-Bromo-3.4-dihydro--3-(2-oxo-2-methoxy-ethylidene)-2H-1.4-benzoxzin-2-one

Atom	x	У	Z	neđ
Br	1.0619(1)	0.0930(4)	0.1068(1)	0.044(1)
C(1)	0.9406(8)	0.2643(32)	0.1307(6)	0.029(3)
C(2)	0.8926(7)	0.4583(31)	0.0790(6)	0.029(3)
C(3)	0.8053(7)	0.5891(34)	0.0989(6)	0.027(3)
C(4)	0.7703(8)	0.5247(27)	0.1680(6)	0.025(3)
C(5)	0.8172(8)	0.3322(30)	0.2178(7)	0.035(4)
C(6)	0.9031(8)	0.2025(32)	0.1980(7)	0.037(4)
C(9)	0.6208(8)	1.1322(33)	0.0268(6)	0.033(3)
C(7)	0.6328(9)	0.8649(34)	0.1442(7)	0.035(3)
C(8)	0.6708(7)	0.9291(33)	0.0702(6)	0.025(3)
C(10)	0.6545(9)	1.2182(32)	-0.0448(7)	0.034(3)
C(11)	0.6190(9)	1.5003(31)	-0.1546(8)	0.049(4)
0(1)	0.6839(5)	0.6589(19)	0.1879(4)	0.029(5)
0(3)	0.7287(5)	1.1302(23)	-0.0730(4)	0.042(5)
0(2)	0.5628(6)	0.9748(24)	0.1673(4)	0.057(7)
0(4)	0.5950(5)	1.4214(23)	-0.0798(4)	0.042(5)
N	0.7535(6)	0.7809(22)	0.0517(5)	0.027(6)

Table 2 FractionalAtomic Coordinates and ThermalParameters (\mathring{A}^2) for the HydrogenAtoms in6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxy-sthylidene)-2H-1.4-benzoxazin-2-one

λtom	x	У	Z
Hn	0.7741	0.8994	0.0087
H(C2)	0.9012	0.4750	0.0305
H(C5)	0.7705	0.2569	0.2602
H(C6)	0.9215	0.0508	0.2266
H(C9)	0.5731	1.1862	0.0474
H1 (C11)	0.6677	1.5778	-0.1560
H2 (C11)	0.6126	1.3986	-0.1961
H3 (C11)	0.5674	1.6441	-0.1715

Table 3 Bond Lengths (Å) for 6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1.4-benzoxazin-2-one

C(1) - Br	1.897(12)	0(1) - C(7)	1.369(15)
C(1) - C(2)	1.402(17)	C(7) - O(2)	1.169(16)
C(2) - C(3)	1.394(16)	C(7) - C(8)	1.483(17)
C(3) - C(4)	1.386(16)	C(8) - N	1.363(15)
C(4) - C(5)	1.370(17)	C(8) - C(9)	1.349(18)
C(5) - C(6)	1.371(17)	C(9) - C(10)	1.441(18)
C(6) - C(1)	1.367(17)	O(3) - C(10)	1.223(15)
C(3) - N	1.371(15)	0(4) - C(10)	1.345(16)
C(4) - O(1)	1.386(13)	0(4) - C(11)	1.445(16)

Table 4 Bond Angles (.) for 6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1.4-benzoxazin-2-one

C(2) - C(1) - Br	118.5(9)
C(6) - C(1) - Br	119.7(9)
C(2) - C(1) - C(6)	122.0(1)
C(1) - C(2) - C(3)	117.0(1)
C(2) - C(3) - C(4)	119.0(1)
C(2) - C(3) - N	121.0(1)
C(4) - C(3) - N	119.0(1)
C(3) - C(4) - C(5)	123.0(1)
C(3) - C(4) - O(1)	119.0(1)
C(5) - C(4) - O(1)	118.0(1)
C(4) - C(5) - C(6)	118.0(1)
C(5) - C(6) - C(1)	121.0(1)
C(3) - N - C(8)	124.0(1)
N - C(8) - C(7)	117.0(1)
N - C(8) - C(9)	125.0(1)
C(8) - C(7) - O(1)	117.0(1)
C(8) - C(7) - O(2)	125.0(1)
O(2) - C(7) - O(1)	118.0(1)
C(7) - O(1) - C(4)	123.5(9)
C(7) - C(8) - C(9)	117.0(1)
C(8) - C(9) - C(10)	121.0(1)
C(9) - C(10) - O(3)	127.0(1)
O(3) - C(10) - O(4)	121.0(1)
C(9) - C(10) - O(4)	112.0(1)
C(10) - O(4) - C(11)	115.9(9)

Table 5 Intermolecular Distances (Å) for 6-Bromo-3.4dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H-1.4benzoxazin-2-one

Atom(1)	λtom(2)	distance	S	a	b	с
Br	Br	4.23	-1	2.0	0.0	0.0
0(3)	Br	3.13	-1	2.0	1.0	0.0
H(n)	Br	3.14	-1	2.0	1.0	0.0
H(2)	Br	3.17	-1	2.0	1.0	0.0
C(5)	Br	3.70	2	2.0	0.0	0.0
C(6)	Br	3.93	2	2.0	0.0	0.0
H(5)	Br	3.27	2	2.0	0.0	0.0
C(11)	0(1)	3.36	-2	0.0	3.0	0.0
0(4)	0(2)	3.15	-1	1.0	2.0	0.0
C(11)	0(2)	3.25	-1	1.0	2.0	0.0
H2 (C11)	0(2)	2.97	-1	1.0	3.0	0.0
H3 (C11)	0(2)	2.44	-1	1.0	2.0	0.0
C(11)	0(2)	3.28	-2	0.0	3.0	0.0
H2 (C11)	0(2)	2.59	-2	0.0	3.0	0.0
H3 (C11)	0(2)	2.96	-2	0.0	3.0	0.0
H(9)	0(4)	2.95	-1	1.0	3.0	0.0
C(9)	C(3)	3.44	1	0.0	1.0	0.0
C(7)	C(5)	3.47	1	0.0	1.0	0.0
C(11)	H(5)	2.87	-2	0.0	2.0	1.0

Symmetry transformations: The second atom is related to the first atom, at (x, y, z) by the symmetry operation S with (a, b, c) added to the (x', Y', z') of S. Where S = 1/2

Table 6 IntramolecularDistances(Å)for 6-Bromo-3.4-dihydro-3-(2-oxo-2-methoxy-ethylidene)-2H--1.4-benzoxazin-2-one

C(2)	• • •	Br	2.85	C(5) O(1)	2.37
H(2)	• • •	Br	3.05	H(5) O(1)	2.46
0(2)	• • •	0(1)	2.18	O(3) N	2.73
C(3)	• • •	0(1)	2.39	C(8) O(3)	2.87
C(8)	• • •	0(1)	2.43	Hn O(3)	1.87
0(4)	• • •	0(3)	2.23	O(3) H1(C11)	2.57
C(9)	• • •	0(3)	2.38	O(2) C(8)	2.36
0(3)	• • •	H2 (C11)	2.93	C(9) O(4)	2.32
C(9)	• • •	0(2)	2.78	O(4) H1(C11)	1.86
H(9)	• • •	0(2)	2.36	O(4) H3(C11)	1.94
H(9)	• • •	0(4)	2.55	C(4) N	2.38
0(4)		H2(C11)	2.13	C(7) N	2.43
C(2)	• • •	N	2.41	H(2) N	2.47
C(9)	• • •	N	2.41	C(4) C(1)	2.71
N	• • •	C(10)	2.88	H(2) C(1)	2.08
C(3)	• • •	C(1)	2.39	H(6) C(1)	1.97
C(5)	• • •	C(1)	2.38	C(4) C(2)	2.40
H(5)	•••	C(1)	3.02	Hn C(3)	2.14
C(5)	•••	C(2)	2.81	C(6) C(3)	2.77
C(6)	• • •	C(2)	2.42	C(8) C(3)	2.41
C(5)	• • •	C(3)	2.42	H(2) C(3)	1.91
C(7)	• • •	C(3)	2.81	C(6) C(4)	2.35
Hn	• • •	C(2)	2.79	C(7) C(4)	2.43
Hn	• • •	C(9)	2.38	H(5) C(4)	2.03
C(6)	• • •	Br	2.83	H(6) C(5)	1.89
H(6)		Br	2.97	C(7) C(9)	2.42
0(1)	• • •	N	2.73	H(9) C(7)	2.36
C(8)	• • •	Hn	1.85	C(11) C(10)	2.37

Table 6 cont.

H(9)	C(10)	2.07	C(11)	0(3)	2.62
H1 (C11)	C(10)	2.56	C(8)	C(10)	2.43
C(8)	C(4)	2.81	H(9)	C(8)	1.78
H(6)	C(1)	1.99	C(10)	Hn	2.33
H(5)	C(6)	2.20	C(10)	H2 (C11)	2.88
					_

Table 2 Anisotropic Thermal coefficients [Å²] for 6-Bromo-3.4-dihvdro-3-(2-oxo-2-<u>methoxy-ethylidene)-2H-1.4-benzoxazin-2-one</u>

No.					
Atom U	11	U22	U ₃₃	U12	U, 13
Br 0.0	42(1)	0.045(1)	0.014(1)	0.044(1)	0.012(1)
N 0.0	(3) (2)	0.027(6)	0.011(6)	0.019(6)	0.006(5)
0(1) 0.0	40(4)	0.027(5)	0.001(5)	0.020(6)	0.004 (5)
0(2) 0.0	54 (5)	0.033(6)	0.001(6)	0.083(10)	0.028(6)
0(3) 0.0	35(4)	0.042(5)	0.001(6)	0.047(6)	0.008(6
0(4) 0.0	146(5)	0.029(5)	0.004(6)	0.050(6)	0.027(6

0.000(5) 0.009(4) 0.010(4) 0.004(4) 0.007(4)

0.027(6)

0.002(1)

U_23

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IV	laene																			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ŧ	×	د	10 FO	10PC	Ŧ	*	ъ.	10PO	IOFC	Ξ	¥	2	10F0	10FC	Ξ	×	-	10F0	10F
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	0	OOE	303	4	~	-	999	-420	4	0	~	946	-961	4	~	~	636	-60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13	m	0	254	265	5	~	-	274	-264	S	0	N	826	-815	ŝ	~	N	428	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	4	0	279	-261	2	~	-	161	178	9	0	~	876	-865	9	N	~	287	-30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-12	-	-	226	-220	æ	N	-	124	437	7	0	2	220	-230	80	N	~	385	-37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	-	-	211	-219	6	2	-	363	343	æ	0	~	310	-299	10	2	~	330	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 10	-	-	621	-621	=	~	-	520	525	10	0	~	348	347	12	N	2	223	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6-	-	-	514	-519	12	~		196	255	<u>i</u>	0	~	308	324	-10	m	2	236	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ŷ	-	-	466	181-	6-	m	-	236	213	12	0	N	104	#33	6	m	~	239	212
-4 1 826 857 -6 3 253 219 14 0 2 315 322 -6 3 2 211 -9 3 2 2 193 37 -1 3 1 395 -5 3 2 201 193 2 2 193 -6 3 2 31 2 2 193 -4 1 2 2 3 2 2 193 -4 1 2 4 1 1 2 4 1 3 3 2 2 193 -4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 <td< td=""><td></td><td>ŝ</td><td>-</td><td>-</td><td>182</td><td>83</td><td>٩</td><td>m</td><td>-</td><td>258</td><td>-246</td><td>5</td><td>0</td><td>~</td><td>224</td><td>251</td><td>5</td><td>m</td><td>~</td><td>640</td><td>55</td></td<>		ŝ	-	-	182	83	٩	m	-	258	-246	5	0	~	224	251	5	m	~	640	55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7	-	-	826	857	9	m	-	253	219	11	0	~	315	322	9	~	N	61 #	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		۳ -	-	-	384	397	7	m	-	196	-187	6	-	~	293	295	Ŷ	m	~	201	19
-1 1 776 762 4 3 1 297 174 -7 1 2 243 -661 -62 3 2 343 -66 1 2 557 547 -1 3 2 243 -260 -3 2 243 -260 -3 2 243 -260 -3 2 244 -460 -6		2	-	-	TABLE.	1491	0	m	-	329	-317	٩	-	~	379	366	2	m	~	351	-31
0 1 718 725 7 3 333 -6 1 557 545 0 3 2 253 541 1 3 5 26 -18 5 5 5 1 3 2 5 5 1 3 2 2 3 2 3 2 4 -1 3 5 5 -14 1 3 5 5 -14 1 3 5 5 1 2 5 5 1 2 5 5 5 5 5 5 5 1 3 2 2 3 2 5 5 5 5 5 5 1 4 4 4 1 3 3 2 2 2 2 2 2 2 2 4 1 4 4 4 1 3 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 3 3 3 </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>776</td> <td>762</td> <td>4</td> <td>m</td> <td>-</td> <td>297</td> <td>174</td> <td>5</td> <td>-</td> <td>~</td> <td>427</td> <td>442</td> <td>5</td> <td>m</td> <td>N</td> <td>631</td> <td>-62</td>		-	-	-	776	762	4	m	-	297	174	5	-	~	427	442	5	m	N	631	-62
2 1 608 -620 11 3 1 199 -168 -5 1 277 -235 237 237 23 244 -44 5 1 1 31 1 1 219 -275 -1 2 273 547 1 3 259 -259 -3 2 444 -44 1 233 -360 1 2 171 116 173 8 3 2 29 -279 259 -279 259 -279 259 -279 259 -279 281 -44 1 233 -350 1 1 2 171 11 2 171 199 -46 44 1 271 216 171 9 3 2 23 244 28 279 26 -48 279 28 244 28 28 244 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28		0	-	-	7 18	725	1	m	-	304	333	9	-	~	557	545	0	m	N	243	-26
3 1 790 802 -3 4 1 374 308 -2 1 2 227 -232 2 2 444 -446 2 3 2 259 -559 -559 -559 -559 -559 -59 -59 -59 -59 3 2 <t< td=""><td></td><td>2</td><td>-</td><td>-</td><td>608</td><td>-620</td><td></td><td>m</td><td>-</td><td>199</td><td>-168</td><td>ŝ</td><td>-</td><td>~</td><td>573</td><td>547</td><td>-</td><td>m</td><td>N</td><td>526</td><td>-48</td></t<>		2	-	-	608	-620		m	-	199	-168	ŝ	-	~	573	547	-	m	N	526	-48
A 1 4 31 - 4 47 1 4 1 219 -275 -1 1 171 116 3 2 259 -259 7 1 1 575 -671 5 4 1 273 -366 1 1 217 -219 29 3 2 216 276 279 28 28 27 27 27 176 10 3 2 279 289 -28 27 28 27 <		m	-	-	790	802	ñ	Ŧ		354	308	۷	-	N	227	-232	2	m	N	1111	-46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	-	154	Lint-	-	4	-	219	-275	5	-	~	-111	1166	m	m	N	259	Ş
6 1 551 -534 4 4 1 323 -360 1 1 12 1132 8 3 2 379 28 7 1 1 675 -671 5 4 1 277 -216 2 1 2 2 301 31 8 1 213 -333 -13 0 2 348 -276 4 1 2 2 2 301 31 10 1 1 213 -333 -13 0 2 348 -276 3 4 2 2 4 2 2 4 2 4 2 2 4 2 2 4 2 2 4 2 4 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5	-	-	869	-849	e	4	-	302	-299	0	-	~	136	-124	ŝ	m	N	246	261
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9	-	-	551	-534	4	4	-	323	-360	-	-	~	1178-	1132	80	m	N	279	28
8 1 366 -373 -3 5 1 266 -221 3 1 2 167 176 10 3 2 232 236 9 1 1 213 -334 -114 0 2 281 -276 4 1 2 255 251 -5 4 2 249 -280 -18 1 3 290 -280 <t< td=""><td></td><td>2</td><td>-</td><td>-</td><td>675</td><td>-671</td><td>ŝ</td><td>4</td><td>-</td><td>217</td><td>-216</td><td>~</td><td>-</td><td>~</td><td>-9611</td><td>6224</td><td>6</td><td>m</td><td>~</td><td>301</td><td>m</td></t<>		2	-	-	675	-671	ŝ	4	-	217	-216	~	-	~	-9611	6224	6	m	~	301	m
9 1 213 -234 -14 0 2 281 -276 4 1 2 255 251 -5 4 2 448 -448 10 1 1 314 -11 0 2 348 -378 6 1 2 255 533 44 2 29 -39 -39 -39 -39 -39 -39 -39 -39 -39 -38 -7 2 44 2 269 -30 4 2 259 -39 -2 269 -30 4 2 259 -39 -2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30 4 2 269 -30	-	80	-	-	366	-373	ŗ	ŝ	-	266	-221	m	-	~	167	176	10	m	~	232	26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	-	-	213	-234	-14	0	~	281	-276	7	-	~	255	251	Ŷ	7	N	448	Ť
14 1 312 314 -12 0 2402 -385 7 1 255 503 3 4 2 259 203 -34 2 259 203 3 4 2 259 203 -34 2 259 203 3 4 2 259 203 3 4 2 259 203 -36 237 210 1 1 1 2 259 203 -36 -36 233 12 2 239 230 -36 -31 -31 2 23 -33 -33 -32 -36 -33 -33 -4 2 23 23 -33 -36 -31 -31 2 23 -33 -33 -2 23 -33 -33 -2 23 -33 -33 -3 2 23 -33		10	-	-	364	-333	-13	¢	~	348	-378	9	-	~	279	298	ŗ	7	~	269	-20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	-	-	312	314	• 12	0	2	402	-385	-	-	~	463	466	2	4	~	329	-36
-8 2 1 354 334 -10 0 2 707 -710 9 1 2 470 426 4 4 2 228 24 -7 2 1 439 435 -9 0 2 346 -327 10 1 2 209 196 5 4 2 2 328 35 -5 2 1 679 669 -8 0 2 664 633 -12 2 2 304 -258 -14 1 3 229 -38 -4 2 1 493 511 -6 0 2 271 293 -5 2 155 114 -11 1 3 270 -28 -1 2 1 993 511 -6 0 2 771 293 -5 2 155 114 -11 1 3 270 -28 -1 2 1 340 -4 0 2 1006 956 -3 2 2 375 368 -7 1 3 280 27 -1 2 1 591 -582 -2 0 2 273 31 -1 2 2 132 10 -6 1 3 539 55 0 2 1 471 418 -3 0 2 1408 1403 -2 2 2 2 2 2 71 279 -8 1 3 280 27 -1 2 1 591 -582 -2 0 2 274 2 331 -1 2 2 152 195 -4 1 3 862 86 0 2 1 790 -770 2 0 2 224 -331 -1 2 2 152 155 -4 1 3 862 86 2 2 1 790 -770 2 0 2 224 -331 -1 2 2 152 155 -4 1 3 862 86	-	- 12	~	-	349	-317	Ē	0	~	382	-407	80	-	~	525	503	m	4	N	259	Š,
-7 2 1 435 -9 0 2 346 -327 10 1 2 209 196 5 4 2 328 35 -6 2 1 676 635 -8 0 2 664 633 -12 2 304 -258 -14 1 3 291 -38 -5 2 1 693 511 -6 2 717 416 -13 1 3 291 -38 -4 2 1 93 511 -6 0 2 71 293 -5 2 151 13 2 20 -28 20 -28 20 -28 20 -28 20 -28 20 -28 20 -29 -28 21 2 20 -38 2 20 20 20 20 -28 20 -28 20 -28 21 20 -28 20 28 20 28 28 21 29 28 21 29	-	8 1	~	-	354	334	- 10	0	~	707	-710	6	-	~	014	426	7	#	~	228	24
-6 2 1 676 635 -8 0 2 664 633 -12 2 2 304 -258 -14 1 3 291 -32 -5 2 1 679 669 -7 0 2 170 -137 -6 2 2 417 416 -13 1 3 270 -24 -4 2 1 943 511 -6 0 2 271 293 -5 2 2 155 114 -11 1 3 270 -26 -1 2 1 347 -340 -4 0 2 1006 956 -3 2 2 372 368 -7 1 3 2 80 27 0 2 1 474 -487 -3 0 2 1008 1403 -2 2 225 201 -6 1 3 539 55 1 2 1 591 -582 -2 0 2 225 231 -1 2 2 402 403 -5 1 3 984 105 2 2 1 790 -770 2 0 2 324 -337 1 2 2 152 155 -4 1 3 862 86 3 2 1 962 -994 3 0 2 433 -473 3 2 2 353 -374 -3 1 3 626 66	-	5	~	-	439	435	6	0	~	346	-327	10	-	~	209	196	ŝ	#	~	328	35
-5 2 1 679 669 -7 0 2 170 -137 -6 2 417 416 -13 1 3 230 -24 -4 2 1 552 526 -5 0 2 747 730 -4 2 2 71 -11 1 3 270 -26 -1 2 1 552 526 -5 0 2 710 -36 -3 2 375 368 -7 1 3 270 -26 270 270 -26 271 230 -36 -3 2 2 370 -26 271 230 -26 -27 230 270 -26 270	-	9-	~	-	676	635	9	0	~	199	633	-12	~	~	304	-258	41-	-	m	291	- 32
-4 2 1 493 511 -6 0 2 271 293 -5 2 155 114 -11 1 3 270 -26 -3 2 1 552 526 -5 0 2 747 730 -4 2 2 271 279 -8 1 3 280 27 -1 2 1 347 -340 -4 0 2 1006 956 -3 2 2 375 368 -7 1 3 207 21 0 2 1 474 -487 -3 0 2 1408 1403 -2 2 322 301 -6 1 3 394 102 1 2 1 591 -582 -3 0 2 1408 1403 -2 2 402 403 -5 1 3 984 102 2 2 1 591 -770 -2 0 2 324 -337 1 2 2 152 155 -4 1 3 862 86 3 2 1 962 -994 3 0 2 433 -473 3 2 2 353 -374 -3 1 3 626 60	1.00	ŝ	2	-	619	699	-	0	~	170	-137	9	~	~	114	416	-13	-	m	230	N
-3 2 1 552 526 -5 0 2 747 730 -4 2 2 271 279 -8 1 3 280 271 -1 2 1 347 -40 2 1006 956 -3 2 375 366 -7 1 3 207 21 0 2 1 47 -487 -3 0 2 1408 1403 -2 2 22 329 59 59 59 59 59 59 59 59 51 3 584 102 284 231 -1 2 1<2		7	~	-	493	511	9	0	~	112	293	5-	~	~	155	114	F	-	m	270	-26
-1 2 1 347 -340 -4 0 2 1006 956 -3 2 2 375 368 -7 1 3 207 21 0 2 1 474 -487 -3 0 2 1408 1403 -2 2 2 322 301 -6 1 3 539 55 1 2 1 591 -582 -2 0 2 225 231 -1 2 2 402 403 -5 1 3 984 102 2 2 1 790 -770 2 0 2 324 -337 1 2 2 152 155 -4 1 3 862 86 3 2 1 962 -994 3 0 2 433 -473 3 2 2 353 -374 -3 1 3 626 60	-	m	~	-	295	526	Ŷ	0	2	LAL	130	4	~	~	271	279	87	-	m	280	12
0 2 1 474 -487 -3 0 2 1408 1403 -2 2 2 322 301 -6 1 3 539 55 1 2 1 591 -582 -2 0 2 225 231 -1 2 2 402 403 -5 1 3 984 102 2 2 1 790 -770 2 0 2 324 -337 1 2 2 152 155 -4 1 3 862 86 3 2 1 962 -994 3 0 2 433 -473 3 2 2 353 -374 -3 1 3 626 60		7	~	-	THE	-340	٩	0	~	9001	956	~	~	2	375	368		-	m	207	5
1 2 1 591 -582 -2 0 2 225 231 -1 2 2 402 403 -5 1 3 984 102 2 2 1 790 -770 2 0 2 324 -337 1 2 2 152 155 -4 1 3 862 86 3 2 1 962 -994 3 0 2 433 -473 3 2 2 353 -374 -3 1 3 626 66		•	N	-	474	-487	ŗ	0	N	1408	E041	2	~	~	322	105	9	-	m	685	551
2 2 1 790 -770 2 0 2 324 -337 1 2 2 152 155 -4 1 3 962 96 3 2 1 962 -994 3 0 2 433 -473 3 2 2 353 -374 -3 1 3 626 60		-	N	-	165	-582	٩	0	~	225	231	5	2	~	102	£0#	5	-	e	984	102(
3 2 1 962 –994 3 0 2 433 –473 3 2 2 353 –374 –3 1 3 626 60		~	~	-	790	-770	~	0	~	324	-337	-	N	~	152	155	4	-	m	862	96
		~	~	-	962	#66-	m	0	~	#33	-473	m	~	2	353	-374	Υ	-	m	626	3

Observed and Calmulated Structure Factors for 6-Bromo-3.4-dihydro-3-(2-oxo-2-

10FC	236	314	285	703	414	158	-259	-802	-700	-172	1583	-671	-294	444	515	536	838	631	512		2			-	244	-216	- 25	6+6-	744-	602	-313	644	635	204	229	661	200
10F0	275	338	259	700	421	162	251	197	677	140	1559-	656	579	137	549	577	855	614	1120			101	114	413	227	214	5		005	221	345	422	909	215	237	011	440
-	9	9	9	9	9	9	9			0 0	9	-	6	9	9	9	-	v		•	•	•	•	•	0		0	•	•	0	0	•	•	•	0	0	0
×	0	0	0	0	0	0	0	0		0	0			0	0	0						0	0	0	-	-				-	-	-	-	-		- •	-
Ŧ	- 12	=-	-10	6-	89		5	1	-	24	7	•		•		-				- 0	• •	6	12	5	- 12	ę	-	9	•	ŗ	2	7	•	-	~	m	4
10FC	-514	444	-353	-759	-698	-752	-673	545	you a	571	162	264	Sol	2555	-170	205	222	191		-310	+60-	-632	-815	-420	276	680	934	1047	286	-338	-287	238	-163	-227	- 146	-235	539
10F0	529	435	338	111	645	797	109	425		528	011		200	100	202	183	020	146	201	604	669	623	855	417	269	700	934	1063	251	307	265	257	190	184	204	252	230
-	5	5	5	5	5			n u	n u	n v		•	-	•	2		•	-	•	•	5	5	5	5	5	5	ŝ	5	5	5	5	S	5	5	5	5	5
¥	-	-	-	-	-	-	-					• •		• •		• •	• •	• •	~	N	N	2	2	2	2	2	2	2	2	2	2	m	m	m	m	=	=
Ŧ	7	"	1	1				n u	~		- 00			2 2	11	2 2		- "	1	ę	ŝ	7	ŗ	~	0	-	m	4	9	=	12	ę.	e	5	8	-5	m
10FC	131	179	000	010	225	304	120	100	107	431	100-		100-	112			-	117-	-431	614-	-537	-573	-318	354	429	569	601	1160	-213	275	-175	303	327	495	551	435	342
10F0	417	148	288	375	010			202		55		633	500		275			210	103	111	574	634	335	340	426	550	591	426	215	262	226	286	310	487	549	395	363
-	4	-	- 4	-	r =	-	• •							• •	* =					#	#	4	#	-	-	4	=	=	4	4	5	5	5	5	5	5	5
¥	-						- •	•	N	~ ~	• •	~	N	~	~	~	~	m	m	m	m	m	~	-	-	m	~	m	m	=	-	-	-	-	-	-	-
Ŧ	4		•			2 :	2.0	9	•	ŝ			5	- :	= :	2	ę	ŝ	7	ę	~	7	0	~	=	5	9	1	=	-	-13	=	- 10	6-	80	1-	-5
10FC	26.4		244		525		170	613	181	782		-896	- 153	00/1	1534	516-	1037	-397	- 390	613	389	551	781	484	459	216	259	257	747	-480	-689	-633	-489	303	370	-256	292
10F0	cilc					202	210	168	161	108	220	927	151	1630-	1494-	216	1063-	106	385	607	386	560	819	518	170	228	251	274	337	470	715	667	173	202	415	275	287
د	-				-			=	4	=	4	=	4	4		4	=	4	#	4	4	4	4	-	- 4	-	=	4	4	4	4	=	4	=	=	=	4
¥	•						0	0	•	0	0	0	•	0	0	0	0	0	0	0	0	0	0	• •	• •	0		-	-	-	-	-	-	-	-		-
×	*	-	* :	-	2-	5	2	-	9	\$	1	2	7	•	-	~	m	#	5	9	1	. 00		5	2 =	: :	=	-10	80-	9	"	1	17			• •	. m
10FC	-	104	540-	5061	-451	-768	-591	350	256	201	211	355	255	420	393	481	#39	-420	-416	-766	-666	-508	100	225	000	683	478	586	203	-285	-202-	157	000	1007-	-310	111	211
10F0	-	101	651	-1102	011	LAL	519	328	275	605	255	346	214	392	100	462	544	420	386	740	653	103		277	893	858	463	503	AAM	328	10	205	101		1 2	250	233
-		m	~	m	m	m	m	m	m	~	m	~	m	m	m	m	m	m	~	• •	• •	• •	• •	• •	•••	• •	2 4	•	2 4	2	2 4	• •	• •	• •	2 .	2 .	n m
¥		-	-	-	-	-	-	-	-	-	-	-	~	2	~	2	2	~	2	1	10						10			10	• •		• •	-	-		=

2	299	9	3	6	3	0	9	-	=	6	8	6	2	6	2	5	-	9	80	8	9	~	2	6	-	0	0	2	=	5	5	~	9	2	=
101	2.2	2	2	ŝ	4	6	5	3	ž	-26	Ŧ	2	-	e.	-34	3	14	1	1	5	27	22	-20	-27	-3	-62	- 39	-30	-27	1	-40	36	-	-	-33
10F0	309	227	281	316	478	948	588	383	182	256	464	241	323	333	294	273	1490	437	469	503	270	211	222	305	332	626	374	290	278	196	425	328	243	264	338
-	6 6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	•	6	6	•	6	6	6	6	6	6	6	5	6	6	6	6	6	10	10
¥		-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	~	2	2	~	2	2	~	2	~	2	2	~	2	m	4	4	0	0
Ŧ	۲ 7	÷	-2	7	0	-	2	e	4	9	-	80	6	10	=-	9-	5	1	~·	-2	7	•	-	2	m	#	5	9	1	=	~	5-	m	-12	=
10FC	454	844	412	323	-342	- 184	-302	-243	-223	-115	-318	-170	189	300	188	163	-361	-216	-258	242	326	165	559	217	254	-137	-523	601-	-349	303	-268	-381	- 189	-518	-484
10F0	486	161	101	347	353	194	288	249	184	222	373	169	176	312	180	159	308	220	288	222	349	590	540	218	297	200	512	101	344	275	289	374	180	532	501
-	80 80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	æ	80	80	æ	6	6	6	6	•	6
¥		-	-	-	-	-	-	-	-	2	2	~	~	2	2	~	m	m	m	m	m	m	m	m	m	m	m	m	m	-	-	-	-	-	-
Ŧ	Ϋ́	7	0	-	m	4	5	9	1	9	-5	~	-	m	4	5	- 10	6-	1-	7	~	-2	7	0	-	m	5	9	80	-13	=	6-	89		9-
10FC	-424	-383	201	-215	-232	257	275	286	285	412	220	337	-541	-538	-470	-533	-879	-483	755	458	-348	1143	792	637	456	1005	242	-564	-483	-427	-386	-548	-400	424-	54
10F0	396	343	190	232	269	260	275	348	290	396	282	330	537	493	503	541	891	465	769	493	373	1092	776	618	462	1070	224	618	498	601	604	542	352	371	152
د	~ ~	-	-	-	2	2	-	-	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
*	~ ~	~	m	m	m	m	4	#	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-
Ŧ	r 80	6	-2	2	9	1	0	-	- 14	-13	- 12	=	6-	°	1-	9-	ŝ	4	~	7	0	-	~	m	=	5	9	1	6	10	=	12	- 10	1-	9
10FC	246	471	177	-467	- 390	-693	1087	745-	-462	252	658	661	190	768	402	271	- 126	-195	- 190	- 183	-296	- 188	- 392	-259	-458	-419	-453	257	472	617	564	550	472	159	-309
10F0	199	191	225	456	401	108	1113-	221	544	261	710	665	183	154	370	242	167	213	213	201	282	208	371	249	465	410	475	230	147	515	544	598	454	161	284
-	~~	-	-	2	1	-	-	-	-	-	-	-	-	1	1	-	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-	-	1	2	1
¥		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	~	~	~
Ŧ	÷=	- 10	6-	9	ŝ	7	۳	~	7	-	~	e	=	5	9	-	6	10	=	12	13	14	- 10	6-	8		9-	7	-2	7	•	-	2	~	9
10FC	-155	-385	-216	-436	-335	183	109	163	-225	-138	-519	-339	-207	-361	-207	1460	305	202	319	221	185	-401	011-	-317	-303	306	229	365	541	319	305	-321	-264	-247	-265
10F0	157	378	263	463	297	161	183	196	230	177	537	335	187	376	210	473	299	227	304	213	177	373	911	331	325	272	220	354	559	317	320	298	268	233	261
-	99	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
¥		-	-	-	-	2	N	N	2	~	N	N	2	N	N	2	2	N	N	N	2	~	~	~	~	~	~	~	~	~	~	~	~	~	=

10FC	-187	-330	-229	-238	329	191	121	306	-208	204	-294	-321	-237	196	346	192	227	- 358	-297	-331	-476	546	389	150	235	-224	-438	-266	289	253	275	252	- 184	-296	205-	- 302
10F0	213	280	271	269	320	459	197	291	221	218	255	324	256	222	309	208	215	315	549	282	478	247	335	210	223	535	369	227	291	219	232	223	234	286	694	309
-	#	14	1	1	14	17	1	1	=	1	1	=	14	1	1	15	12	12	12	12	12	12	15	15	15	15	15	15	12	15	12	15	16	10	2	2
¥	-	-	-	-	-	-	-	-	-	2	2	m	m	m	m	-	-	-	-	-	-	-	-	-	-	~	~	~	~	2	~	~	0	0	0 0	D
Ŧ	9	5	7	÷	-	2	4	5	6	9	7	~	7	m	2	-10	6	ŗ	2	7	2	4	9	-	80		5	7	0	-	2	4	9	5	7 '	7
10FC	-347	-229	187	370	551	493	-348	-510	-598	- 191	-226	242	-417	-234	-358	-476	-203	328	292	362	213	964	310	207	190	-351	-363	-369	-460	-315	-293	234	394	279	182	-125
10F0	312	231	225	376	531	510	354	486	588	185	266	208	389	274	348	453	208	317	293	356	249	559	294	254	217	361	320	368	463	283	241	252	445	277	229	185
-	12	12	12	13	13	13	13	13	3	13	13	2	13	3	3	5	5	13	13	13	1	1	=	1	1	1	1	1	1	1	1	1	14	=	2	1
¥	m	~	. m	-	-	-	-	-	-	-	-	-	2	~	~	~	~	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Ŧ	0	2	9		9	4	0	-	~	4	5	6	ŝ	7	~	0	-	2	4	5	-10	89		9-	5	-2	7	0	-	2	#	9	1	80	=	-
10FC	-585	172	350	218	-236	-265	-425	485	282	6#9	528	423	462	-277	-413	-603	-607	-503	-360	-438	305	312	371	364	-201	-386	- 199	-222	274	263	476	-350	-241	299	-424	-316
10F0	612	196	Ofte	196	240	266	416	493	309	686	519	419	442	290	426	557	608	515	367	462	340	282	396	366	176	385	230	246	241	216	Enn	324	279	322	397	320
د	=	:	=	=	12	2	12	12	2	12	12	12	12	12	12	12	2	12	12	12	2	12	12	12	2	12	12	12	12	12	12	12	12	12	2	12
×	~	2	10	2	0	0	0	0	0	0	0	•	0	0	•	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	2	2	~	~	m	m
Ŧ	~	-		- 00	-13	-12	=		9	-5	7	ŗ	~	7	-	~	~	4	5	9	10	=	1-	9-	7	0	-	~	5	9	0	4	1	6-	ę	-2
10FC	345	-288	-146	- 380	- 338	110-	- 368	- 138	-255	-204	-248	-306	-374	+11-	221	388	622	337	516	228	-498	-212	-387	-438	-371	-261	205	283	287	314	448	154	-442	-692	-250	-273
10F0	348	oye	204	346	287	254	115	233	254	226	241	236	374	182	218	401	647	325	524	208	519	215	413	412	388	221	196	264	297	325	438	203	413	682	211	268
-	9	2 9	2 9	2 9	2 2	2 2	2	2	2	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	:	=	=	Ξ
¥	~	• •	~ ~	2 4	2 1	2 4	2	• •	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	~	N	2
Ŧ	1	4 0		- 0		•=			0	-12	=	-10	6-	8		1	"	1	1	~		-			-	80	6-	80	1-	9-	5	1	-	0	-	~
10FC	190	162		26.2	801	000	750	010	202	787	543	- 373	-495	- 190	-557	-332	-256	308	333	900	-607	-213	-422	-407	-160	226	543	- 166	226	365	233	-227	-230	277	352	282
10F0	and			250	200	CHC	140	840	105	101	500	359	506	203	605	356	956	272	332	E HC	2005	1961	011	414	164	209	313	185	101	353	215	227	228	220	5.6	320
د	-	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 0	2	2 9	2 2	10	2	2	2 9	2 2	2	2 9	2 9	2 9	2	2 9	2 9	29	201	10	9	2	2	10	201	9	2	22	10
¥	•								0			0	0	0	0											-	-	~	10	10	1	1	10		n m	m
																				1.1		1.1	-			-					-		-			-

10FC	-210 307 216 210 -141
10F0	202 233 229 229 234 206
<u>د</u>	20 20 20
¥	-000-
Ŧ	စရက္ဂရစ
10FC	299 454 -258 -288 -174
10F0	274 467 271 253 253 212
د	88886
×	000
Ŧ	- 3005
10FC	-206 -304 -260 184 195
10F0	227 289 248 250 250 233
د	18 18 81 81
¥	~~~~
Ŧ	01910
10FC	-380 -380 268 176 208
10F0	277 330 237 237 236 210
د	22222
×	
Ŧ	NYNMO
10FC	-437 576 645 255 255 277 -184
10F0	457 579 664 263 279 255
د	222222
¥	00000-
Ŧ	0 4 0 F 0 F 0

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

TITLE STUDIES OF COMPLEXES DERIVED FROM 5-ACETYLAMINO-1,2-BENZOQUINONE 2-OXIME AND RELATED LIGANDS

AUTHOR "

HENGAMEH BARJESTEH

INSTITUTION and DATE

(North London Polytechnic) (NAA. 1991

.

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

