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(iii)

A CLASS OF FUNCTIONAL DIFFERENTIAL
EQUATIONS OF MIXED TYPE

ABSTRACT

This thesis is concerned with a class of linear functional differential equations of

mixed type having the form

Ax(t) -D(t, X)) = Lt X)+ L2(t. x?) + (1), )
where, foreach tit, D(t,.) and L,(t,.) from C m C([-r, O], C") to CN
Lj(t,.)from C(l10,0], IN) jn are bounded linear operators. The thesis consists
of three parts.

As a special case of (1), equations with piecewise constant arguments having
the form *

i *()-DW) = L,(x)+"(x,,p,) +f(t) 2
are investigated in Part 1, where D and I1"(k = 1,2) are from C to CN, psOisa
constant and [.] is the integer part function. Results on existence and uniqueness,
representation of solutions, exponential estimates and asymptotic behaviour are
obtained.

For the general equation (1), initial value problems are discussed and some
simple properties of solutions given in Part Il. If (2) is viewed as an instance of (1).
Lj(t. V) does not always involve the values of y in the vicinity of o. In Chapter 7,
another case when (1) has such a property is discussed, namely when there is a
sequence (tj ofZero Advanced Points (ZAPs; forall te [t.tj. Ljit, x) does not
involve any value of x on (t,,<»)).

With existence and uniqueness guaranteed by a sequence of ZAPs and other
suitable conditions, asymptotic solutions and asymptotic representation of solutions of
the equation

¢{x(1) - D(t. xj) = A@X(®) + Lt X) + Lj(t. X) (©)
arc studied in Part 11l when the N x N matrix A(t) is either bounded or diagonal
When 1ID{t, JII and 1IL,(t, )l (k = 1. 2) are small in a suitable sense as t  o0o. the
equation has N solutions X,. Xj, e, x* on [T -r. 00), for sufficiently large T 21,
such that every solution of the equation has the asymptotic representation
x(t) = X(t)c + o(c*<)-P*).
xM).ce IN dependson x. 5(t) is an exponential bound for

where X = (x,, X].
X,, are also given

X(t). and pi O is arbitrary. Asymptotic forms for x,. x,
when A(t) is either diagonal or constant.
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CHAPTER 0 INTRODUCTION

§0.1 TERMINOLOGY

We start by explaining some terms that are commonly used in the literature and
that appear throughout the thesis.

A functional differential equation i$a differential equation involving the values
of the unknown functions at present, as well as at past or future times. The word time
here stands for the independent variable. The concept of a functional differential
equation is in this thesis confined to ordinary differential equations although it suits
partial ones as well.

A differential difference equation is a functional differential equation in which
the functionals, or operators, are represented by series or finite sums, each term of
which involves the unknown function at only one time. General functional differential

equations involve the values of the unknown functions in a time interval [x,(t), Xjit)],
which includes the present time t. In general, the deviations from the present. T,(t) - 1
and Xjft) - 1, may be bounded or not. Only equations with bounded deviations are
considered in this thesis.

Functional differential equations can be classified into four types according to
their deviations; retarded, advanced, neutral and mixed

If the derivative at present is given in terms of past and present values of the
funedons in an equadon, the equadon is called retanted or delayed

A neutral equation is one in which derivatives of functionals of the past history
and the present state are involved but no future states occur in the equation.

An advanced equation involves only the present derivative, and future and
present values of the functions. Although an advanced equation can be transformed to

retarded one by replacing t by -t, this is not helpful if we are interested only in

equations on a half line [tg, 0o).



If an equation involves the derivative of functions at present, or derivatives of
functionals of the past history, and past as well as future states, we say that the
equation is of mixed type.

The type of an equation may depend on the time interval. If the equation
belongs to one type on a sequence of intervals within [tq «.) and another type on the
remaining intervals, it is also said to be of altematiny type nn 00).

Any other type can be viewed as a special case of mixed type. However, the

involvement of fumre states in a mixed equation is emphasized in this thesis.

§0.2 RECENT DEVELOPMENT OF MIXED EQUATIONS

It is well known that the topic of functional differential equations as a whole has
developed as a branch of differential equations only in the recent few decades.
However, a complete basic theory of retarded and neutral equations was fonned in late
seventies. We refer to Bellman and Cooke [3], Myshkis [26], Driver [11], and Hale
[17J for such a theory. Since then there have appeared a large number of research
results reflecting a variety of specialised interests. Rjr instance. Gydri and Ladas' book
[14] includes most of the recent results in the oscillation theory of functional differential
equations.

For advanced and mixed functional differential equations, miscellaneous
problems have been posed for some specific equations found in both physical and
theoretical contexts. Here some examples are mentioned.

Slater and Wilf [34] studied the equation

Ax(t) = k(t+ 1)x(t+ D)-k(O)x(t).



which describes the slowing down of neutrons in a nuclear reactor. In the classic work
of Pontryagin et al. (29), it is indicated that an optimal control problem involves an
equation of mixed type. Chi et al. [5] studied a biological model by numerical methods.

In the last decade, oscillatory solutions have been studied for some special

advanced and mixed equations, such as

n

JY() = X PyC+ Ny Pi>0, >0, i=12+ n
I-

by Ladas et al. [22],

~y (1) = pMya®)+a®)y(h(t), g(<t, h(t)>t
by Kusano [21], and

n

AXit)+ X (@) - ¥ %) + bijwj(t + Oij()l = 0,

Xjj()~o, Ojj(r)no, i,j=1,2,-,n
by Gopalsamy [13].

As a special class, equations with piecewise constant arguments have been
broadly studied since the beginning work by Cooke et al. in the early eighties ( see
Shah and Wiener [33]) and basic problems, such as the initial value problem, subility,
oscillation etc., have been solved for some particular equations. We refer to Cooke and
Wiener [9J and the references therein for more details.

Rustichini 131,32] studied a class of autonomous equations of mixed type. The
dynamics of the linear case was investigated by starting firom the infinitesimal generator
rather than from the semigroup of the solution map. Based on this analysis Rustichini
investigated Hopf bifurcations for the nonlinear case.

Lin (24) studied the bounded solutions of a class of advanced linear differential
difference equations on (tg, <»).

For a class of mixed equations with the form



X(t+Xdr(x) +j x(t+ X dts(t, x),

Murovtscv and Myshkis [25] studied the existence of bilateral solutions (i.e., solutions
on (- s& <))

Although many scholars have engaged in the study of advanced and mixed
equations and a large number of results have been obtained so far, there is no

systematic general theory available for such equations.

§0.3 MOTIVATION

In both theory and practice, there is an increasing need to investigate equations
cfmixed type. In contrast to the theory of retarded and neutral equations, that of mixed
equations is far from complete due to the difficulty coming from the involvement of
future states. But if we restrict ourselves to some particular problems for special
equations, various results can be found as mentioned above. However, any effort is
wOTth making to investigate a broader class of equations and to establish a thecny for
some basic problems such as the Cauchy problem, asymptotic behaviour at infinity,
and some qualitative properties.

This thesis aims to study some basic problems for a class of linear functional

differential equations of mixed type.



80.4 OUTLINE
The equations to be studied have the form

Ax(t)-D(t, X)) = Li(t, X) + Ljft, X) + no. (0.1)

where f isa locally integrable function from It,,, «) to (complex nnlimensional

space), the functions x, and x' aredefinedby

x,(0) = x(t+0) for Oe (-r, 0]

and

x*(@) = x(t+a) for a € [0, 0],
r and o are positive constants, and D(t,.). L,(t,.) and Lj(t,.) are linear mappings
whose detailed description is given later. Some basic problems for (0.1) in general
will be discussed in Part II.
As a special case of (0.1), equations with piecewise constant arguments

having the form

AX(O-D(x)} = LIxt) + L2 ") + o 02

are to be discussed in Part I. Here P>0 is aconstant, {] is the integer part function,
and D, L, and Lj are bounded linear mappings from C((-r, 0], (E® to
In Part 111, asymptotic solutions are to be studied for some special cases of

(0.1). The equations to be dealt with have the form

Ax(1) -D(t, X)) = A(t) x(t) + Li(t, X) + L2(t, x°). (0.3)

where A(t) isan N x N matrix function having some special forms, and D (t,.),

L,(t,.) and Ljft,.) are small at infinity in some sense.






CHAPTER 1 PRELIMINARIES

§1.1 INTRODUCTION

In the article of Myshkis [27], it was observed that a substantial theory did not
exist for functional diHerential equations with piecewise continuous arguments. Since
then some special equations with piecewise constant arguments (EPCA in short) have

been investigated by a number of authors. For instance, equations of the form

x(t) = f(t, x(), x(h()
with h(t) = (t), [t-nj, and t-n(tj were studied by Cooke and Wiener (8J, a second

Older equation

(fjtr)\((t) + px@2It+N/2) =0

was studied by Ladas et al. (23], a neutral equation

¢(y(0 +Py(t+ 121 = qy(lt +i/2j)

by Huang [18], and a system

Ax(t) = Ax()+ 5" Ajx([t+j]) +f(t), x(J) = G, -KSjSK -1
j- K

by Cooke and Wiener [9J.

In summary, most of the previous studies in this direction have had the
following features: (a) they dealt with special classes of differential difference
equations, (b) they solved the problems by fundamental methods in differential
equations. Moreover, only a few (such as [9]) investigated equations of mixed type
which are essentially different from retarded and neutral equations for the Cauchy

problem.



Clearly, there is still a lot of work to do for general functional differential
EPCAs of mixed type. In this part, we study a class of linear functional differential
EPCAs which we believe have not been studied by anyone else so far.

Throughout this thesis. C = C((-r, 0). 1*) stands for the space of continuous
functions from [-r, 0] to with the uniform norm litpll = sup{l(p(0)I: 0 e [-r, 0]).

The equations to be considered here have the form

AX(t) - D(x)) = Li(x,) + L2(q,"pj) + i) (11)
for ti 0. where f, from [0. oo) to 17, is locally integrable, D, L, and 1~ are

bounded linear mappings from C to represented by

D(tp) = 1 |d"0))g<0). Litp) = 1 (dTii(0))(p(0)

for i= 1,2 and tpe C, and r>0 and (i"O are constants. Here ~(0), ti,(0) and

TIjO) are N XN matrix functions of bounded variation and ~(0) satisfies

lim,,_"o Var,”0)(®) = 0.
We say that x:[-r, 00)*(IN satisfies (1.1) for t*"O if x(t) iscontinuous on

(-r, 00) and x(t) * D(x,) is locally absolutely continuous on [0, oo), and (1.1) holds

almost everywhere on [0, 00). The homogeneous equation corresponding to (1.1) is
Ax(t) - D(x)) = Li(x) + LAX["p,). (12)

We say that (1.1) and (1.2) are autonomous if the mappings D, L, and Lj
are independent of t. This is slightly different from the normal sense since the
deviations vary with t.

The initial value problem will be discussed and existence and uniqueness
theorems given in Chapter 2. Some other problems such as exponential estimates, the
representation of solutions, the relationship between solutions of (1.1) and those of

(1.2), asymptotic behaviour etc. will be investigated in Chapters 3-5.



§ 1.2 PRELIMINARIES

For convenience of later use, we state some results on linear autonomous

neutral functional differential equations with the forms

Ax(t) - D(x)) = Li(x,) (1.3)

and

HX(D) - D) = Lgx) + H). (L4)

All of the results in this section before Lemma 1.1 can be found in Chapter 12 of [17).
Forany tQ6 (0, o, ve C and any locally integrable f on [0, <®. there

is a unique solution x:(to-r, N of (1.4) such that x,» =tPo- *e-. x is
continuous on (tq-r, <), x(t) - D(X]) is locally absolutely continuous on [tg <»),
(1.4) holds almost everywhere, and x(tq+ 6) = 97(6) for 0€ {, Q).

Since (1.3) is autonomous, its solution satisfies

x(to.«P0o)(0 = x(0,90)<t-to)
for 12 1Q Also, forany t” 0, x(0, 99)(i) is linear and continuous in 9ge C. Thus

we can define a bounded linear operator T(t) on C by

x,(0, 90) = T(t)90, *" O (1.5)

By the definition of the symbol x, in 8§ 0.4, we have

x(0, 9,)(t +0) = x,(0, 90)(0) = T(t)90(0)
for 0€ (-r, 0]. Hence, the solution of (1.3) with Xg=90 can be represented by

either (1.5) or

x(0,90Xt) = T(t)90(0), tSO. (16)

The operator T(t) possesses the property

TE)T(EY) - T +1t7)

for t', t" >0. Moreover, there are real constants b2 1 and a such that
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ITOI S be“, t"O,
where T = sup(lIT®)(pll: (pe C. li<pll=l|. By (1.5) the above inequality is

equivalent to the exponential estimate

1,00, I 5 be* Ipal, t~ 0. 1.7)
It is shown in 117) that the trivial solution of (1.3) is asymptoUcally stable if

and only if the number a can be taken negative in (1.7).
Let Y(t) be the matrix solution of the equation
Y(t)-D(YJ = 1+ tho, 18

with Yfl given by Y(0) =1, the unit N x N matrix, and Y(t) =0 for t<0. Here

Y(t) is continuous from the right and is of bounded variation on any compact set.
Then, for tSt,,, the solution of (1.4) can be represented by the variation of

parameters fcHmula

x(t0,90.0(1) = T(t-t0)90(0) + | Y(t-s)f(s) ds. (1.9)

or alternatively by

*t(t0.90,0 = T(t-to)%0 + (110

From (1.10) it follows that

T(0)li Y,..f(s)ds| =J Y<2,8(s) ds (1.11)

for 12to and 0 2 0.

Itis also given in [17] that the solution of (1.4) satisfies

IMt0.90.0N S be*(* <aillgl + (112



n

for some constants b~ 1 and a”~ 0 and all tit g Clearly, these constants may be

different from those in (1.7) since a in (1.7) may take negative values. In order to
discuss the asymptotic behaviour of solutions of (1.1) in the later chapters, we need
another estimate for the solution of (1.4) in which the constants are the same as those

in (1.7).

LEMMA 11 The solution of (1.8) satisfies

IMIL T be", ti O, (1.13)
if the solution of (1.3) with x5 = (po satisfies (1.7) forevery (Rg.

Proof. Let be a sequence in C([-r, 0), satisfying Hd>J1= 1
and <I>J0)=1 for m il and Hm, _ ~<hJ0) =0 for Oe (-r, 0). Then, for each
m il, there is a unique matrix solution of (1.3), denoted by X,,(t), such that

~™n Foreach tiO, the solution x(0, tpg)(t) of (1.3) can be represented by

an integral

X(0,<po)(t) . elltpo0)
as (1.6) and (1.7) imply that x(0, .)(t) = T(t).(0) is a bounded linear operator from
C to CN. Thus
Xm(t) = x(0, <I>,)®) =j (den(t. 0)>4>m(0)

for tiO and mi 1 Since the solution Y(t) of (1.8) existsand lim 4» (0)»

Yo(0) holds foreach 0e [-r, 0), we have

"™ m-,-XJt) = x(0.Yo)(t) = Y(b)

for tiO. From (1.7) and the condition of (4>,), the inequality

IX,)(l' S be". tiO,
holds foreach m il. Then, by letting m-+«« foreach Oe [-r, 0) with t+0iO,

we obtain (1.13). #
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CHAPTER 2 EXISTENCE AND UNIQUENESS

The equation (1.1) is of neutral type when P =0 and this is effectively
covered by the standard theory of Hale [17]. If p>0, however. (l.1) is of mixed
type. For p~ 1, (1.1) involves past and future states forany t as [t+P 1>t holds
for ti 0. Butfor Pe (0. 1), (1.1) is of alternating type because for any k = 1,2, —
we have (t+p]St forie |k, k+1-P) and [t+ PI>t for te [k+1-p, k+ 1).

When P >0, itis natural to pose the initial value problem for (1.1) in the
same way as for retarded and neutral equations. If, for any given <36 C, there is a

continuous function x(t) on ]-r, <9 that satisfies (1.1) a.e. for t*O and

Xq = (pp, i.e., x(0) = ipo(e) for 6e [-r,0], (2.1)

then x(t) is said to be a solution of (1.1) with (2.1).
It will be shown that, under certain conditions, there exists a unique solution to
the initial value problem (1.1) with (2.1) if Pe (0, 1]. However, the initial

condition (2.1) is not enough to guarantee the uniqueness if P>1.

§2.1 THECASEOF 0<pSI

THEOREM 21 Assume Pe (0, 1]. Then there is a unique solution of
(2.1) with (2.1) if the matrix LjIXp) - 1 is nonsingular.

Proof. By the step method, we only need to show that (1.1) with (2.1) has
exacdy one solutionon (0, 1] under the stated condition. Since (1.1) is neutral for
t€ (0, 1-P) if P < 1, there is a unique solution of (1.1) with (2.1) on [0, 1-PJ.

Thus we need to show that there exists a unique solution of (1.1) on [1 - P, 1] for
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fiven X,.p. This is equivalent to verifying that there is a unique solution of the

equation

~y (1) -Dyi)l = Li(y,) + Li(yp) +f(t+ 1-P), te [0, P). (22
with the initial condition yg=Yge C.

Let V be aconstant in Then, by (1.9) and (1.17), the solution of the

equation

¢(y(O-D(ypl = Li(y) + V+ f(t+1-P)

with yg =Vg has the representation

y(t) = T(t)Vo(0) + X(t)v +j Y(t-s)f(s+ 1-P)ds, tSO. (2.3)

We notice that X(t) = Y(t) =0 for t<0. Denote the function

[ YP+0-9fs+1-P)ds
by Fp(0) for 0 e [-r, 0]. Then it follows from (2.3) that

L2(yp) = L2(T(p)vo) + L2(Xp)v + L:(Fp™

Since L,2(Xp) - 1 is nonsingular, the equation

V = L2(T(p)vo) + L Xp)v + L:(Fp) (2.4)

has a unique solution

V= (1- L2(Xp)) (LAt (P)Vo) + I"Fp)). (2.5)
By substituting (2.5) into (2.3), we obtain the unique solution of (2.2) with

Yo= Vo #

Theorem 2.1 says that, for any locally integrable f on [0, <), (1.1) with
(2.1) possesses a unique solution on [-r, oo) if det(Lj(Xp)-1) # 0. So does (1.2)

with (2.1). In fact, the converse of Theorem 2.1 is also true.



THEOREM 2.2 Assume pe (0, 1J. Ifthere is a unique solution of (1.1)

with (2.1) for every locally integrable function f on (0, «.). then the matrix

M X p)-1 is nonsingular.

Proof. From the proof of Theorem 2.1 we know that (1.1) with (2.1) has

solutions (a unique solution) for t in [0. IJ ifandonly if (2.4) has solutions

(a unique solution).

Suppose that - 1 is singular. It is to be shown that there exists an f
such that (2.4) with this f has no solution at all in (fN which is a contradiction to
the assumption of the theorem.

Without loss of generality, we assume that Lj(Xp) is in a Jordan form with
possible 1's under the main diagonal and that the entries in the first row of Lj(Xp) - 1
are zero. Then Lj(Xp) has a generalised eigenvector v = (p, 0, == 0)“ e (E" such
that Lj(Xp)v = v\ where cither v'=v or V=v+ (0.p....0)T. Now choose p
such that the first element of L2(T(P)\pp) + V' is not zero, and let f(t+ 1-P) =v for
te [0. P). From the definition of Fp. we obtain

L2(Fp) - 1-2(Xpv) = Lj(Xp)v = V.

Thus (2.4) becomes

(- Li(Xp))v * L2(T(p)yo) + V. (2.6)

By the choice of p. the first component equation in (2.6) is

0 = nonzero constant.

which means that (2.6) has no solution atall in 1~. #

Remark. The proof of Theorem 2.2 actually shows that, under the
condition of det(l - ~(Xp)) - 0. tiiere isan f forgiven C such that (1.1)

with (2.1) has no solution on (0. 1] and so no solution on [0. ~). Also, for Vo~

0 and f(t+1-P)=0 for te (0. p]. (2.4) has infinitely many solutions, and so
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does (2.2) with yQ=0e C. Therefore, the homogeneous equation (1.2) with
XQ«Oe C has infinitely many solutions on [-r, 1] if 1- Lj(X” is singular.
Remark. Since X(t) is continuous and Xqg=0, the matrix |- LjfX") is

Donsingular if A is small enough (including P = 0). Thus existence and uniqueness

always hold for small p.

§22 THECASEOF P>1

Suppose that P satisfies m< P~ m + 1 for some integer m”~ 1 and let

to =0, t" = k-p +[pl. k=1,2, -. 2.7)
Since 05 P-1Ip] <1, t~ satisfies k- 1<t ~ k foreach k™ 1

From (1.9) and (1.17) we know that the solution of the equation
Jy(1)-D(y.)) = L(y) + v -M()
for t~ f is represented by
y(©) = T(t-f)y,(0) + X(t - t)v +jrY(t-s)f(s)ds.

Hence (1.1) isequivalent to the equation

x(t) = T(t - 1K)Xi.(0) + X(t - IK)L2(Xlpl, Y(t e s)f(s) ds (2.8)

for te (tk, tk+i) and k=0, 1,2, eee.

THEOREM 2.3 Suppose that L,j(Xp.,) is nonsingular. Then (1.1) with

(2.1) has infinitely many solutions on |-r, <»).

Proof. Let
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Fk) = J Y (t-sWs)ds
for te I-r.tk +il and k =0,1, 2, == Then (2.8) is equivalent to the system
M*IPI +K) ~ k=0, 12, (2.93)

x(t) =T(t-tk)x,,(0) + X (t-tk)h" + FA(®), te (N, tAN ), k= 0. 1. 2, «=. (2.9b)
Sincex(t)  is continuous, (2.9b) can be extended to (17 tA”,) foreach k SO if

necessary.
Suppose P >1Ip) =m. If x(t) satisfies (2.9) on [0, ~), it follows from
(2.9b) and (2.7) that

xM0) = x(k +6) = T(k +0 - 1K) (0) + X(k + 0 - 1)hk + Fk(k + 0)

T(P - Ip])x,A(0) + Xp.|p|(O)hk + FA(k + 0) (2.10)

for 0 el-min{r, P-[P),0] and k=1,2. % For Oe ( r,(p)-p) if r>P-[p],

since

k+0 = (k-tk) +0+tk = P-IP1+0 +tk S tk,
we have FMNk+0) =0. Xp.|p,(0)=X(P-(P)+0)=0 and

itp-IPlkie) = x,Jp-[p) +0) = x(tk + p-(p]+0) = x(k +0).
Hence, (2.10) holds for 0e )-r, 0] and k= 1,2,— i.e,

XN = T(p-m)x,A+Xp ,,/+FMNk+.), k=1,2,-. (2.11)

By substituting (2.11) with k replaced by m-fk into (2.9a), we obtain

hk = MT(P-m)x, " +F,AM(m +k+.))+ Lj(Xp.Jh, ",

k=0,1,2,-. (2.12)
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Conversely, if x(t) satisfies (2.9b) and (2.12) on |0, <»), then (2.11) and (2.12)
imply that x(t) also satisfy (2.9a). Therefore, (2.9) isequivalentto (2.9b) with
(2.12).

Now we show that (2.9b) with (2.12) and the initial data (2.1) has infinitely

many solutions on [-r, ». In fact, for any given

ho. h|.

x(t) on |-r, t,,) is uniquely determined by (2.9b) and (2.1). Since L*Xp ,.,) is
nonsingular, h” is uniquely determined by (2.12) for k=0. Byemploying (2.9b)
and (2.12) alternately, we obtain |h~:k2m) aitd x(t) on |-r, °°), which is the
unique solution of (2.9b) with (2.12) and (2.1) for given lhg, h,, s h™ ).
Hence the arbitrariness of |hQ, h,, meh” || implies that (2.9b) with (2.12) and
(2.1) has infinitely many solutions on [-r, «.

Suppose P=[P]=m +1. Then (2.7) implies t,j=k for k=0, 1,2,— If

x(t) satisfies (2.9) on (0, oo), it follows from (2.9b) that
x(k +0) = T(1 +0)x~.,(0) + X1 +0)h~., + ., (k+0)

= T(x".,(0) +Xp,JO)h~ ., + . ,(k +0) (2.13)
for Oe |-min(r, 1), 0] and k=1,2, mm Since (2.13) can be extended to

0€ [-r, 0] if r> 1, we obtain

XN = T(DxA., + X,h, + FAL(K+ ), kK=1,2, o (2.14)

By substitution, (2.14) and (2.9a) lead to the equation

= L2(T(D)x,," + F,AM(m +k+ 1+.)) +Lj(X,)h,, A, k=0, 1 2, . (2.15)
Thus (2.9) isequivalent to (2.9b) with (2.15). Since LjlX,) is nonsingular, by
the same reasoning as above we can show that (2.9b) with (2.15) and (2.1) has
infinitely many solutions on (-r, <»).

In either case, by the equivalence of (2.9) to (2.9b) with (2.12) or (2.9b)

with (2.15), we have shown that (1.1) with (2.1) has infinitely many solutions on
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[-r, «m) and, moreover, that each solution is uniquely determined by
(ho, h,, -, h,.). #

Theorem 2.3 indicates that the initial condition (2.1) is not enough to
determine a unique solution of (1.1). From the above proof we notice that extra data

should be addrd to (2.1) and that the initial data should be given as

*0 ~ ‘P A(*131 “ *K h=0,12,—m-1 (2.16)
forany tpge C and hg, h,, =, h™ je I Then the proof of Theorem 2.3 also

proves the following result.

THEOREM 2.4 Assume that Lj(Xp ~) is nonsingular. Then (1.1) with

(2.16) possesses one and only one solution on |-r, oo).

We now show that, as an alternative to (2.16), % and m values of x(t) in
[0, t*J can be specified. Since Y(t), the special solution of (1.8), is continuous from

the right and Y(0) =1, (1.17) implies that X(t) is nonsingular if t>0 is small

enough. Suppose (t,', tj', e t"'l satisfies

tk ml < tk' Atk det X(tk' - 1k.i) A 0, k= 1,2, ses, m. (2.17)

Then alternative initial data to (2.16) can be set as
*0 = %" *(‘k) = U( k= 1,2, +".m. (2.18)

for any <Po® # >l 11 O

THEOREM 2.S Assume that Lj(Xp.”) is nonsingular. Then (1.1) with

(2.18) possesses a unique solution on [-r, 00).

Proof. By linking (2.9b) with (2.18), we obtain

“k kmfkmh ) * i k. k mfke)*k-1 "Kmd¥RN
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for k=1, 2, m. From (2.17) we sec that |ho, h,, eee, ,) is uniquely
determined by (U|. U< u”) and vice versa. Then the conclusion follows from

Theorem 2.4. #

Theorem 2.4 (Theorem 2.5) states that

m 0 (2.19)
is a sufficient condition for (1.1) with (2.16) ((2.18)) to have a unique solution on

[-r, ~). Indeed, (2.19) is also a necessary condition in the following sense.

THEOREM 2.6 Suppose that (1.1) with (2.16) or (2.18) has a unique

solution for every locally integrable f on (0, <»). Then (2.19) holds.

The proof of Theorem 2.6 is similar to that of Theorem 2.2. Also, the remark

after Theorem 2.2 adapts to the condition of Theorem 2.6.

52.3 EXAMPLES AND REMARKS

Example 2.1 Wiener and Chooke [37] studied the equation

Ax(t) = Ax(t) + Bx([t+ 1/2)) (2.20
with the initial data x(0) = Qp, where A and B are constant matrices and ( is an
N-dimensional vector, and obtained the following result;

Equation (2.20) with x(0) = @ has a unique solution on [0, o«) if A and
e<il2A  (g(- i2A. i)A*B are nonsingular.

We now use Theorem 2.1 to derive a uniqueness result for (2.20) which
slighdy differs from the above. Here p « 1/2<1 and D =0, L,(ip) = A<p(0) and
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Lj(9) = B<p(0)for9eC([-r. 0], CN) with any r>0. Since the mappings D and 1"
(k = 1, 2) only involve the value <p(0) of the function € C, the initial data space C

can be viewed as degenerating to j, isdear that

X({t) =j[ eOm)ds = j[ e-*ds, t" 0,

is the solution of the equation
X'(t) = | + AX(t), tSO. X, = 0
corresponding to (1.16) with X, =0. By Theorem 2.1, (2.20) with x(0) =c,, has a

unique solution on [0, °0) if

L2(X,/2)-1 = BX(1/2)-]1 = b| eAxds-I

is nonsingular. This condition differs from that in [37] even if a ' exists. However, if
either (4kni: k =0, 1, £2, =) does not contain any eigenvalue of A or AB = BA

and det A # 0, this condition coincides with that in (37).

Example 2.2 Consider the equation

Ax(t) = Ax(Dt- X AX((t+l) (2.21)
with the initial data

*0) =C. -K Sj SK-1 (2.22)
COoke and Wiener [9] defined a solution of (2.21) with (2.22) on (0, <») asa
continuous function x on [0, oo) and K values x(-K), x(-K + 1), e X(-I)

which satisfy (2.22) and (2.21) for t~ 0. They found that, in this sense, (2.21)
with (2.22) has a unique solution on (0. oo if a and (e* - DA ‘a” are

nonsingular.
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We now show that the initial value problem (2.21) with (2.22) can be dealt
with by Theorem 2.S and the same uniqueness condition is obtained. Here p = K> 1,

r=2K and
1209 = S Ajip(j-K)
j-K
for <pe C. Since X(t) is the same as in Example 2.1, we have

LiXp.Jd = L2(Xi) = £ AjX( +j-K) = AkX(1) = Ak ds .
J-K h

Clearly, detLj(Xp~)~0 ifandonly if dct A0 and detX(I)#0. Assume
det INfXp. m)~ *K *k~ If= 12, — K- 1 and give

the initial data as

X0 = 90- »0) = Ck- k= 1.2, -"K-I. (2.23)
By Theorem 2.S, (2.21) with (2.23) has a unique solution on |-r, <»). Notice that

the values of a solution for t*O are actually determined by (2.21) and (2.22). Thus
(2.21) with (2.22) has a unique solution on |0, <) if L"fX,) is nonsingular. If A"

exists, our uniqueness condition obviously coincides with the one in [9].
Example 2.3 (Consider the scalar equation

Nx(t)-aj exie)de| = bx(t) + cj X|,,.n..fi/2|(e)dO , (2.24)
where a0, b*#4a, c#0, m~ 1 and ri 1/2. Let

A o= Mb -Wh-4a) and X2 = Ab + YbM-4a).

Then, for te (0, 1],

X(t) = (br-4a)”(en>*-en") (2.25)

is the solution of the equation
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¢jx(0-a| OX/(e)E0/ = 1 + bX(t) (2.26)

with Xg=0. Since (P]=m and

<) = cj <i(0)do

for € C. we give the initial data as

xo = <Ro cj Xn*j(0)d0 = hj, j =0, L,ee m- 1 (2.27)

By Theorem 2.4, (2.24) with (2.27) has a unique solution on (-r, <) if

/2(0)d0 0,

that is,

We have seen through the examples that the efficient application of the theorems
depends on finding the solution X(t) of (1.16) with Xg=0 for te [0, IJ and
evaluating [~(X]j) or Lj(Xp _|p]) (if P> [p]). We end this chapter with some

remarks on these issues.

(1). For a special class of equations, X(t) can be represented explicitly in

terms of the coefficients involved in (1.16). For instance, the solution of (2.26) with

X,, =0 isgiven by (2.25) for te (0, r). Indeed, (2.26) with X" =0 can be

solved by the following method. Let

y(0 X(u) du.

Then, for te (-r, 01, we have
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y(t) = "y(t) =ry(t) = X)) = 0.

Thus, for t€ (0, r].

j 0X,0)do - J +0)d0 = -j iy(t40)d0 = -y().
By integrating (2.26) from 0 to t, we obtain

~y0) - bry() + ay(t) =t (2.28)
Therefore, X(t) on |0, r] is the solution of (2.26) with Xo =0 ifand only if y(t)
on (0, r) is the solution of (2.28) with y(0) = dy(0)/dt = 0. By solving (2.28)
with y(0) = dy(0)/dt =0, we can easily obtain X(t) =d*y(t)/dt2 as given by (2.25).
This method can be extended to (1.16) if D and L, have the f«ms

DCp) = [ Pi(OMe)d0 + X Aj<p(-rj)
J je0

and

U =1 pM o)t + X Bj<P(-0)),
j-o

where P,(0) and Pj(0) are polynomials in 0 with matrix coefficients, and

fj€ (0, r] and Oj€ [0, 1.

(IN. For Pe (0, 1], we can obtain sufficient conditions on IIDII, 1L, 1LjlI

and P for LjfXp) - 1 to be nonsingular. By Theorem 2.1, these conditions guarantee

that (1.1) with (2.1) has a unique solution on (r, ~). For this purpose, we first
define functions I1IDII,, 1L, 1Ljll, and 1IXII, as follows. We recall that D is

represented by ~(0) on (-r, QL. After extending the domain of ~ to (-oo, 0] by
letting ~(0) = ~(-r) for 0 S-r, we define IIDII, by

= Var,." 0,(4). tiO.



25

Qearly, UDII, is nondecreasing, UDII, = UDII, the usuai definition of the norm, and
UDII, = UDII, for t¢ r. Similarly, 1L, and lilili, are defined by
liLjll, = Var,.,0)0li). t*"0O. i=1,2.

Let IX()! be the norm of the matrix X(t) and deftne IIXII, by

IIXtlj = max( IX(s)l: OSsSt), t2 0.

LEMMA 2.7 The solution of (1.16) with Xp=0 satisfies

X1, A (1 -UDl,) 'texpld - WD) “t HLIL) (2.29)
for t; 0 aslongas UDII, < Im

Proof. For any f >0, by integrating (1.16) from 0 to t and then

estimating it. we obtain

IX@ A DX, +t + ids

for te [0, t'l, which implies that

X, ~ Wi, = £+ il t€ 10, fl.

If UDIl,. < 1, then it follows that

X1, S (I-11DI11,)-A + 1Ll -

for te [0, t]. By the Gronwall inequality, we have

X1, S (I - DI ' f exp((l - NDIL)-t HL11)
for t€ [0, t]. Thus (2.29) holds for t t. Since t' >0 is arbitrary, (2.29)
holds for t2 0. #

With the aid of Lemma 2.7, we obtain the following result.



26

THEOREM 2.8 Equation (1.1) with (2.1) possesses a unique solution on
[-r, o) if

1IDIp + PlHL2lpexp{(I-IIDllp)-'pilLllpj < 1 (2.30)

Proof. If (2.30) holds, then (2.29) implies

IL:(Xp)l S lizlipliXllp S (I-1IDilp) ‘pilL2lpexp{(I-IDIIp) >pliLlIp| < L
Let X be an eigenvalue of L~(Xp) and tie be a corresponding eigenvector

satisfying Idf)= 1. Then it follows that

X1 = Mot = IXol = ILj(Xp)al S IL2(Xp)llod = ILj(Xp)l < 1.
which implies that Lj(Xp) - I is nonsingular. By Theorem 2.1, (1.1) with (2.1)
possesses a unique solution on |-r, 00). #

Example 2.4 Consider the equation

¢ix(t)- X 2<mx(t-2 )

= ij xt+0)do+Ix([t+1/23)-5x(It+1/2]-1). (2.31)
M

Here p=1 |lI>p= £ =i |ILillp=I, and llL2lp=i. Since
i1 A A

IIDIp + pilLjllpexpl(I-11DI1p) 'pilLllpl = 1/2 + (1/8)e < 1

by Theorem 2.8 (2.31) with (2.1) has a unique solution on [-1, «),
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CHAPTER 3
REPRESENTATION OF SOLUTIONS

From § 1.2 we know that the solution xOgq, Ry neutral equation
(1.4) has the representation (1.9) for tStg, which shows the linear dependence on
and f explicitly. Together with the exponential estimate (1.13), (1.9) also shows
that x(tQ,., 0)(t) and x(tg,0, .)(t) are bounded linear mappings from C and L(tQ,t),
respectively, to forany tStg.
We will show that similar results hold for solutions of (1.1). Exponential
estimates, which are based on the representation, will be given in Chapter 4 so that the
boundedness of the solution mappings defined below is proved. In this chapter,

however, we only give the representation of solutions of (1.1) in terms of those of

(1.3) and (1.4).

§3.1 A LEMMA

In deriving the representation, the following lemma plays an important role.

LEMMA 3.1 Suppose that (A;: OSi<oo) is asequence of matrices and

{dj: 1Si<o0) asequence of vectors, with compatible dimensions. If |bj: 1Si<*“ I

satisfies the system of equations

AOK A kAL + AMLb, + 00 =0, k= 1,2, (3.1)

and (Ag)" exists, then we have the expression
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CHAPTER 3
REPRESENTATION OF SOLUTIONS

From § 1.2 we know that the solution x(tQ, ipg, O(t) of the neutral equation
(1.4) has the representation (1.9) for t"tg, which shows the linear dependence on
9g and f explicitly. Together with the exponential estimate (1.13), (1.9) also shows
that x(tg,., 0)(t) and x(tg, 0, .)(t) are bounded linear mappings from C and L(tg,t),
respectively, to forany tStg.

We will show that similar results hold for solutions of (1.1). Exponential
estimates, which are based on the representation, will be given in Chapter 4 so that the
boundedness of the solution mappings defined below is proved. In this chapter,
however, we only give the representation of solutions of (1.1) in terms of those of

(2.3) and (1.4).

§31 A LEMMA

In deriving the representation, the following lemma plays an important role.

LEMMA 3.1 Suppose that |[A 07 i<»l isasequence of matrices and
(d 17 i<<») asequence of vectors, with compatible dimensions. If (0% 1" i<<®

satisfies the system of equations

Agbjj + Alblj I+ = + Alj.jbj + dj =0, k=12 (3.1)

and (Ag)" exists, then we have the expression
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- j)-(i i‘l)*»()k(j) (("pi)((A0)“Apj)--((A0)"Apj,.)((Ao)“dp ) '(3|2)

for k~ 1, where

J
sil«.j) = I(Pi. P2. = Pj): Pi S linteger, » Pi = k). (3.3)
i>l
Proof. The expression (3.2) isclearly true for k=1. Suppose that (3.2)
holds for k=1, 2, K. Then, for k =K+ 1, wc have

bKti = « X ((A0)A)bK +i.i-(A0)"dK +i

=-i ((Aor'Al/l “{-iy X
i-1 il

X (("Api)...((A0)"'Ap. .i((Aovdpd - (Aol'Mic+i

«(KAL i)
K K+ 1-j

= £ (-ir* g ({Aoj-’Ail) X
j-1 i-1

I ((A0)-"ApJ..((A0)-"'Ap,.)((A0)->dpd - (AoNdK.i

e<Ktli.j)
= il .(K+||,j +) ((Aor*Ap,)...((Aor'Ap,)((Ao)-'dp,.,)
- 1 ((Ao)-'dp)
o<Kl. I)
Ktl

1 (-Dj 1 ((Aor'Ap.)...((Aor'Ap. .K(Ao)-'dp)
j.l KK+ 1J)

By induction, (3.2) holds for every integer kS1. #
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§3.2 REPRESENTATION WHEN Pe [0. 1

Suppose that P satisHes 0~ p~ | and

det(Lj(Xp) -2) ~ 0. (3.4)
where X(t) is the solution of (1.16) with X< =0. Then, by Theorem 2.1, the

solution of (1.1) with (2.1) uniquely exists on (-r, 00). As usual, we denote this

solution by X(<j,, f)(t). By the linearity of (1.1) and (1.2), it follows that

X<Pl. 0(t) = x(tpo, 0)(t) + x(0,0(t) (3.5)
for tSO. Moreover, the equations (1.1) and (1.2) imply the linearity of x(<po,0)(t)
and x(0, 0(1) in <o and f, respectively, foreach t~ 0. Indeed, x(., 0)(t) and
x(0, .)(t) are bounded linear mappings from C and L(0, t), respectively, to
Thus they have their own representations. We first summarize the above analysis as

follows.

THEOREM 3.2 Assume Pe |0, 1] and (3.4) holds. Then the solution of
(1.1) has the decomposition (3.5). Moreover, foreach t2 0, x(, 0)(t) and

*(0, .)(t) are bounded linear mappings from C and L(0, t), respectively, to d”.

To represent the solution x(3xq, 0(t), we need the following notation. Let

Bo = Ljj| Yp.dsj -1, Bj=Ljjl Yjp.ds|

Fi(ipo) = L2(T()<po) + jjj  Yj.jdsjLzitpo).

and

Gj(0 = Ljll Yj.f(s)dsj
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for j = 1, 2, ~m Here T(t) is the solution operator of (1.3) defined by (1.5) and

Y(t) is the special solution of (1.8). Since

|| Yp.ds|[e) =1 Y(P-s+0)ds =1 Y(s)ds = X(p +6) = Xp(0)

for 0 € [-r, 0), by the definition of Bg and (3.4), (Bg™ exists. Applying Lemma

3.1 to the system of equations

Bgb® + Bjbjj.i + e + B~.Jb| + PXPg + G|j(f) = 0, k=1,2,(3.6)
we see that each b can be represented in terms of |Bj), (Fj(g>g)) and (Gj(0)

according to (3.2). We denote this representation for b" by

bk = Fk(cpo) + GK(f). k= 1,2, ... 3.7)

Now we can represent X(ipg, f)(t) as follows.

THEOREM 3.3 Assume that Pc [0, 1) and (3.4) holds. Then the solution

of (1.1) is given by

X((po, F)(t) = T(t)<po(0) + |  Y(t-s)dsL2(<po) + | Y(t-s)f(s)ds

Y (t-s)ds(Fj«po) + Gj(0} (3.8)

for tE (0,1 - P) with k=0 and t€ (k-p, k-t-1-p) with k" 1
Proof. Viewing the equation (1.1) as (1.4) and applying (1.9) and (1.10)
to (1.1), we sec that the solution x((pQ, 0(0 of (I.l) satisfies both

() = T(Xpo(0) + 1 Y(t- s)(f(s) + L2(Xp*.])) ds, 12 0, (3.9)

and
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X - T)po + [ Y, [f(s) + LAX|p~,[)Jds. t20. Giq)

eHien. for te (0, 1- P) (if P< 1). it follows from (3.9) that

X(<Po.0(0 = T(t>po(0) + I Y(t-s){f(s) + L2(po)) ds

= T(t)(po(0) + Y(t - s) dsL2(<po) * ook o

which coincides with (3.8). For t6 (k-p, k+ 1-P) with kS 1, (3.9) implies

x«P0.0O(t) = T(t)<po(0) + 1  Y(t-s)dsL2(%0)

+ 1 Y(-9)f(s)ds + 5 i Y(t - s) dsL2(Xj).
j*ml #
CMomparing this with (3.8), we only need show that

La(xj) = Fi(go) + Gj(0, j=1,2.-...
Equivalently, by (3.7) and (3.6), we only need show that (L2(xj): j =12, 5

satisfies
®0"2(x k) + B,L2(xk. 1) + —+ IN(x )

+FK(PO) + GA(0 = 0,k= 1,2, =, (3.11)

From (3.10) we have

X = TR<po + 1 YK.Jf(s) + L2(x,p*.))) ds

= TK<po +j Yk..f(s)ds + I Yk.J.2(x,p*.|)ds
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= T(K<po + i Yk .dsLzitpo) + [ Yk.f(s)ds + [ Yj*p.,ds Lz(xk.j)
« J i-0 A

for ki 1 Then the definitions of Bj, FCpY) and Gj(f) yield

L2(XK) = Fkftpo) + GK(0 + Yp.jdsjirfxk) +  BjL2(xk.)

for kSI, ie, (Ljfxp: j=1,2. e) satisfies (3.11). Therefore, (3.8) holds for
t2 0. #

From (3.8) we immediately obtain

X<Po.0)(t) = T(<po(0) +1  Y(t - s) dsL2(90)

1] #>i

+ > | Y (t-s)ds Fj(tpo) (3.12)

and

x(0,0(t) = [ Y(t-s)f(s)ds + i Y(t-s)ds Gj(f)
i i3, G139

for te (0,1 -P) with k=0 and te (k-p, k+ 1-P) with kS 1 Thus, for each

tiO, (3.12) and (3.13) can be viewed as lepiesentations of x(., OKO and x(0, .)(t)

respectively.

§ 3.3 REPRESENTATION WHEN P> 1

We postulate that P satisfies m <P Sm + 1 for some integer m S 1 and that
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detLjiXp.J # 0. (3.14)

Then, for any locally integrable f on [0, <»), any vector

W = (h,,/.h,,.2'"*. -hoT)T e aNxXCN~.-xIN = jmN
and any &g€ C, Theorem 2.4 guarantees that (1.1) with (2.16) possesses a unique
solution on |-r, ~). We denote this solution by x((po, Vg, 0(t). Then, from the

equation itself, we obtain the following result analogous to Theorem 3.2.

THEOREM 3.4 Assume that Pe (m, m + 1] for some integer mi 1 and

that (3.14) holds. Then the solution of (1.1) has the decomposition

(<R Vo, 0(t) = (o, 0,0)(t) + x(0, Vp, 0)(t) + x(0, 0, 0(0 (3.15)
for t~ 0. Furthermore, foreach 12 0, x(0,., 0)(t) is a linear transformation from
(E>N to iN gntj 0,0)(t) and x(0,0, .Xt) are bounded linear mappings from C

and L(0O, t), respectively, to

Remark. The boundedness of x(., 0, 0)(t) and x(0, 0, .)(t) will be shown in
Chapter 4.

The method of obtaining the representation of the solution x(tpo, Mg. O(t) is
similar to that fw the case Pe [0, 1] but rather more complicated. We first define

{Pj: j =0, 1,2 "1 and (Pj: j=m, m+ 1, ee) by

Yp .ds - L (3.16)
Pm ~ + IP mml -« (317)
~ Yijrp.,..dsj (3.18)

for j =0, 1, m-1m+ 1 — and
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P = Ljjl Yjrip .,...d5] (3.19)

for j"m+1, where (t"J isgivenby (2.7). Clearly, P’ = Pj for j2 m if

P»m + 1 Let

UYaro) = ~("(j + IP - m)<Po).

Wj(0 = LAIlj Yj+|p.m).,f(s)ds|
for j2 m and
(3.22)
W, JOMNT (3.23)
k=0, 1,2, «) by
Pkm+ 1 Pkmem-1
Pkm Pkin me2 (3.24)
Pkin -m+2 Pkm

for k20, where Pj isgiven by (3.16) and (3.18) for j20 and Pj -0 for j<O.
Replacing Pj by Pj' in the last column of <> foreach k2 1, we also define a
sequence k2 1).

Since Y(t)=0 for t<0, by (1.17) we have

(I yp.,.dsjfe) = I Y(p-m-s +6)ds = | Y (s)ds

= X(p-m +0) = Xp.je)
for 06 (-r. 0]. Then, by (3.18), (3.14) and (3.24), both (Pq)' and (<>

exist. From Lemma 3.1 we know that the solution (v*: k 2 1) of the system of

equations
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+ |UN«Po) + O”vo + WA(f)l = 0. k=1,2. - (3.25)
can be represented in terms of {«¥Y) and [UNMtp,,) + «™Q + WA(0l according to
(3.2). We denote this representation for by Uk(<Po) + <kVo+ WK(0 (k ~ 1). We

also let Uo(g)o) = 0, <bo-l. and Wo(f)=0 and put

Ek(0 = Y (t-s)ds, J Y (t-s)ds, e, J Y (t-s)ds (3.26)

for tS0 and k=0, 1,2, « We can now give the representation of the solution of

(1.1) with (2.16).

THEOREM 3.5 Suppose that ~ satisfies m <32 m 1 for some integer
m i 1 and that (3.14) holds. Then the solution of (I.1) with (2.16) has the

representation

X(«po, MQ O(t) = T(t)<po(0) + | Y(t-s)f(s) ds

+ Z  Ej(t{Oj«po) + <i>ivo + Wj(f)} (3.27)
j-o

Proof. From the variation of parameters formulae (1.9) and (1.10), we

deduce that any solution of (1.1) with Xo= g must satisfy the equations (3.9) and
(3.10). Moreover, x(@o, v®, f)(t) is the unique solution of both (3.9) and (3.10)
with (2.16).

For te (0,t ], (3.9) with (2.16) results in

x(«o. MQ 0(t) = T()(po(0) +1 Y(t - s)f(s) ds + | Y(t-s)L2(X[p ,j)ds
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m | f-'
= T(%(0) +1 Y(t-9)f(s)ds+ £ | v(t-s)dshj
i-o3,

T(t)<po(0)+j Y (t - s)f(s) ds + Eo(t)vo.

Thus (3.27) holds for te ) with k=0.

To show that (3.27) also holds for k> 0, we let

MAipi+i) = hj, i=m, m+1, (3.28)

and

"I - ("jno+m./.hjm-m.27- e j= - (3.29)
By (2.16) and the deFinition of Vg (3.28) can be extendedto i20 and (3.29) to

j~"0. TTien, for ie 10.1. -.m-1). k~I. and 6 ( tt ~ ¢
i* k> *(k+i)m)* e follows from (3.9) that

x(«Po, MO (t) = T(t)<po(0) + ] Y(t-s)f(s)ds +]) Y (t-s)L2(x,p,.,) ds

= T(tpo(0) +1 Y (t-s)f(s)ds+ X Ej(t)vi. (330
Jt j-0

If we could show that (vj) satisfies (3.25), then

\Kk = Oklipo) + <R + WK(F)
for k” 0 and (3.27) is obtained by substituting this into (3.30).
Now we verify that (v.) satisfies (3.25).
(i). Suppose that Pe(m.m + 1. Then IP)=m, [P-mJ=0 and
Hro+iNMN "< lun +i+i- Since x(@iQ M, f)(t) satisfies (3.10), the substitution

of t=km-fi into (3.10) leads to

Xkm.i = T(km+i)90 +| Y ta*i..f(s)ds+| Yk,, ~,L2(x,p,.,) ds .
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From (3.28) and (2.7) we have

J Ykni*i»L2(Xip +,[)ds - J Ykm +i-»L2(*1P +1))ds

km*i n' '

=] vYiunti-tdsN)+ 58 ] Ybn+i.dshj

* km+i-1 r*
= 1 Yo, i ip.n,).,dsho+ X j>Yj+p.m .,ds hfan”i.j.
j*o

(ii). Suppose that P=m+1. Then (P]=m+1 [P-m] =1, and

t*km+i**kjn*i"M) =lkm +i,km +i+ I). By (3.10) again, we obtain

«te «iel
xion+i+1 = T(km +i+ Ltpo+1 Yjunei+:.if(s) ds
poxom
+ Ykm+i¢ 1-d.2(xip +») ds.
In this case.
km + i rl
Y km i+ 1e»
J-o0 ‘]i
t" Km*i 1
1 Akm+ i+ IP-mlmen A Yj+p'm'fd5 hfan+i'j'
lo j-o

By letting Lj(.) operate on the above equalities and taking (3.28) and

(3.16)-(3.21) into account, we obtain

**(k-1ym +i ~ A(*|P1I» (k. Dnn-ir “ A(*Kkin +i »I1P-nil)

km it
= Uwn+i(<&o) + Wkn, ¢ i(0 + Pkm+i'ho + _XO Pi*kme im +
j-
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+L m)me i - Prhkm)mei

if (k- )m +i 20, and

ho = uy(<Po) +w,, (0 +1||* Y ,,P.s,..ds|,0+X'pjh,.]

if (k- Dm +i=0. By the definition of and P,', the above equalities can be

written as
Poh|u,™i + Pihk,,,i., + e+ P A~ h, +PAA'ho + uMAPj(<Po)

km+i(f) =0, k2 L. OSiSm-1 (3.3D

eHien the definitions (3.22)-(3.24) and (3.29) lead to the equivalence of (3.3D and
(3.25). Therefore, {V") satisfies (3.25) and the proofis complete.  #

Remark. From (3.27) it follows that

X(«P0,0.0)(t) = T(t)<po(0)+ £  Ej(t)Uj(«po),

X0, 0 = £ FONM,
j-o

and

x(0,0,0(t) = | Y(t-s)f(s)ds+ £ Ej(Q)Wj(f)
Jo i>1

N km ‘(keDm) a'h k”™ 0. We can view these as representations of the
mappings x(., 0, 0)(t) and x(0, 0, .)(t) and the transformation x(0,., 0)(t). Based

on these representations, exponential estimates will be given in the next chapter.
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CHAPTER 4 EXPONENTIAL ESTIMATES

We mentioned in 8§ 1.2 that solutions of the neutral equation (1.3) are
exponentially bounded and that solutions of (1.4) satisfy the exponential estimate
(2.13). In this chapter, similar estimates are obtained for solutions of (1.1) and
(1.2).

For any finite set S. we denote the number of elements in S by (s).

lemma 4.1 The number of elements in s(k,j) is

N(s(k.j)) = (i
(4.1)

where s(k,j) isgiven by (3.3) in Lemma 3.1.

Proof. There is only one elementin s(I, 1). So (4.1) is true for k=1

Suppose that (4.1) holds for k=1,2. .,K. We show that (4.1) also holds

for k=K+ 1 Infact.

N(s(K+l, D) = 1 =

i.e.. (4.1) holds for (k.j) =(K+ 1 1). For (K+ 1j) with 1<jSK+ ],

N(s(K + 1.j)) = N|[(pi,p2, ..,pj): pi =K+ 1pinijj
= NJj(pi.p2....,pj.i, D X Pi=K,pi~ ijj

+ N|j(Pi.Pz.--.Pj.,,2): 1 Pi=K-1,pirl]J

+oset N({(Pi.P2.-...pj.,.K+2-]): | Pi=j-1,pi2 IjJ

» N(s(k.j-D) + N((K-1.j -D) +... + NSO - 1.j - 1))
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S bi: + NL2| e dsje-igpal * A e dsIF(po) (44)

for te [k-P,k+t1-p) with k2 1. From Lemmas.. and (3.s), We have

Fk«Po)= i1 o)) ((Bor’Bp.I((Bo)->BpJ..((Bo)-'Bp™.,)((Bo)-'"Fp,«po)) (4.5)

for kS 1. Nowwe use (1) and (1.15) again to estimate Fk(<Po)l. By the
definitions of Bj and H(tpo) given after Theorem s .2, we obtain

IBjl = |uj|| Yj*p.,ds| S blIL2ll| e*0-P *)ds,

IFj«po)l S |L2|T(jkpo)| +

m .

A blIL2H[1 -HIL211 el
i IR "

fw j i: 1. For the time being, we denote

bl(Bo)-LIIL2llj e*(P *)ds and  bl(Bo)-'LIL2I|l + IIA]j

by Mfl and M, respectively. Then, from (4.5) and Lemma 4.1,

[pki<Po)] S X I 1(Bo)w'liBp.|.|Bp,~."Bp,.,|.|Fp,((po)|
i-lk))

AX 1Mo "MeKipoll = M, (I+Mo)* e*(poall

for k2 1. Substituting thisinto (s .«), we obtain

S be“| 1+I1IL2ll] e-*“ds+ X | e0-*)dsMi(l +Mo)j ' Ikl
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Sbi+ 2l e dsjjl+ MoX (1+ M) e |e“dql

=b 1412 1 +Mo)fA"lhpoll

5 b li<Pollexpfa + In(l + M™))!
for te [k-P, k+ 1-P) with ki 1 and some constant b' il.

Summarizing the above discussion, we come to the following conclusion.

THEOREM 4.2 Assume that P€ [0, 1J and (3.4) holds. Then there are

constants a, and bj with

bi A~ 1 ai Sa+ In|l + bj(Bo)-*|NL2lI| e*<i *)(is| .6)

such that the solution of (1.2) with (2.1) satisfies

lIx,(«Po,0)Il S b,e«"ll<Poll 4.7

for tS 0.

To establish an exponential estimate for the solution of (1.1) with Xo =0, we

can imitate the above reasoning and obtain an inequality

11Xi(0,011 S bijP e»>(* *I[f(s)[ds. tiO.

where the constants a,' and b,’, after replacing aj and b,, satisfy (4.6) and a(t)
is to be defined later. But the most important conclusion a,' =a,, which will be used
in the next chapter, can not be drawn by this method. However, our goal can be

leached by employing a variation of parameters formula and the estimate (4.7).
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THEOREM 4.3 Assume thatpe [0, 1] and (3.4) holds. Then the solution
of (1.1) with Xq“ ® satisfies

Ix,0,011 S b2| ec(> “1f(s)|ds 4.8)

for t*O and some constant b j~ 1, where a, isthe same as in (4.7) and a(t) is

defined by

a(t) = max([t+P), t), t"O. 4.9
Proof. We first define (f,,) by

fo () = f(t+n). t20. n=0. 1 2, o= (4.10)
Notice that the homogeneous equation (1.2) is autonomous and that the function
(t + PJ -t is 1-periodic. Then, since (t +PJ = t+ {[t+PJ-t) for tS O, by

uniqueness and the decomposition (3.S), the solution of (1.1) with Xg=0 satisfies

x(0,0(t) = x(0,fo)(t)

for t"O and

x(0, 0(t) = x(x,(0, fo), f,)(t- 1) = x(x,(0, fo), 0)(t- 1) + x(O, f,)(t- 1)

for 12 1 Repeating the above procedure n times, we have
x(0,0(t) = x(x,(0, fo), 0)(t - 1) + x(x,(0, f,), O)(t - 2) + =
+X(x,(0, f,, ), 0)(t - n) +x(0, f,,)(t - n) (4.11)
for tAn~1I. Hence we need to estimate  x(0, fAXt-n) for t€[n, n-fl) and
ni 0. Foreach n” 0, it follows from (3.13) that
x(0. Y(t - s)f,(s) ds

for tE [0, 1-p) and
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x(0. £.)() = I Y(t-s)ds Gif,)

for te [1-P, 1). Since {Gj(f)) is the solution of (3.6) with <©=0. we have

Gi(f,) = -(B0)-'G,(f,) = -(Bol-'Lijl Y,.fri(s)ds| n=0, 1,2, ..

Then, from the representation of x(0, f,,)(t) and (1.15), we obtain

NO,f,)(1) S b | et* *|Ws)ds

for te [0, 1-P) and

X(0.F,)()] S b | e5<>-)|fn(s)lds +b | e*<* *)ds(Bo)->L2|| Y,.,Uu)du

Aboe f9)ds+bj e<m)drBo) LUAbS e wf, () du

5 bll+b[{Bo)-|.1IL21l| e*<'-)ds]|| e«<-*1f,{s)|ds

for te [L-P, 1). Thusthereisa p ¢(1 such that

[x, )W) S pi  ex<-*)[f,(s)ds, n20. (4.12)

for t€ (0, 1) and

Ixi(0,f,)Il S p e*i(i-Mfn(s)|ds, n20. (4.13)

Then, for te [n,n+ 1) with n2 1, Theorem 4.2 and the relations (4.10)-(4.13)

lead to the estimate
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IX(0, 0()1 S X 1i(0- fi i). OKt-)+1x(O, f,Kt- n)|

n r* =
S X M ** SIXiO,fi.i)l+p|  ec<* "mel|fn(s)|ds
i-> A

n fl / 11}
Sbh,pc*»Xj e*i(i ¢ )fi.i(s)lds +pj  c*>(i-.if[s)|ds

S bipl® e»'<*-*11'91ds .
This, together with (4.12), implies

Ix(0, 0(t)l S bipj" e*>(* Mis)|ds

for t~ 0. Then (4.8) follows from letting b2 = b,plle*i ||  #

(Combining Theorem 4.2 with Theorem 4.3, we see that there are constants a|

and b, satisfying (4.6) such that the solution of (1.1) with (2.1) satisfies

lIxi(<Po. OH 5 bie «I e *[fi[s)| ds (4.14)

for t*O.

Remark. Theorems 4.2 and 4.3 also show that the linear mappings x(., OXt)

and x(0, .Xt) are bounded foreach t~ 0.
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§4.2 ESTIMATES FOR THE CASEOF P> 1

We suppose that P satisfies m< P~ m 1 for some integer m2 1 and that

(3.14) holds. Then, by Theorem 3.5, the solution of (1.2) with (2.16; has the

representation
XG0 M 0)(t) = T(t)(po(0)+ 5" Ej(t)|u/(po) + <>\dl (4.15)
j.o
for te ltk,,,t(**,n) with k~O.
To obtain an estimate of Ix(q\,, g, 0)(t)l, we specify the norm of the nm-vector

\o by

MO = I(h,,. J.h, .28 "ho)Al = max{lhollhl, -,Ih,. 1|  (4.16)

and deduce the norm for matrices Ej(t) and <I>j. Let

f ! w'
M; = 1+bllL2llmax(l,e*("” '>)max|e*IPl,j e*<P "'-“)ds5~ e"ﬂ, 4.17)

where a and b are defined by (1.7).

THEOREM 4.4 Assume that Pe (m, m + 1] for some integer m A1 and

that (3.14) holds. Then there are constants a* and b* satisfying

b» A 1, a* S a+ (I/m)in(l + <=0 'l Mje “) (4.18)

such that the solution of (1.2) with (2.16) satisfies

‘s»i(*P0. Vo. 011 ~ b* e « “(llipoll + hol) (4.19)
for t20.

Proof. The representation (4.15) indicates that IEj(t)l and |0j((po) + <bj\Vo|

should be estimated first. By (3.26) and (1.15),

+ll-
IEiOI Y (i-s)ds S bl e ds



Vivg

for t70 adj=0 12 «= Sree {ukq)+<RY istresduinof (325 with
f«0 bylama3lweaetegaestaion

n k
WK(PO) + DR6 = X (@) X ((#0rpi. {{*0)"P)(*>0)'(Upi(Vo) + *>pjvo)
-1 A

k=12 = %)
Nticetret (3161320 ad (L15) realtintreirecsiiies

iPml S 11|+ M YB..ds, Sl+ld".2l| e $,
IP..'[5[1[+1)  Yp.ds S 1+l e*Pm ¢k,
P SHIL| e<*P ™ 9k (MQ rim).

PJ5bIMj e+ s SHILA e<* ™ 9k ().
ad

lurt(<po)| S bllL2He*<"+IPI )il (nSm).
Then, from (3.24), (3.22) and (4.17), we obtain

[<>ll = max| 5N |Pi+,|: i=0, l,- -,m- ||
I 8 m 1
S maxj 1 + blIL2llj e**"" ' K)ds e*": i=0,1,--em-11 » M2
(m-i I
ki'l = maxj £ |Pi*,|+|Pum’|: i=0, lLee-, m-1j ~ "2,

[4>)] = max|® |[Po-i)m+i+n: i-0,1,- -,m- 1] s MZ«(i »™,
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I<?ji = maxj X |P(j.i)n,*i-*n|+IPjn. +i’|: i=0. I| s Mze'O Di"
for j> 1 and
IUj(«po)l = maxi luri(90)l: i=0,1, %, m-1)

S bliLjlle » max(l, e <""'>) g

for j 2 1. Hence, from (4.20) and Lemma 4.1,

|Ok(«po)+<i>kvoU Z  Z IK)"11«J>p.I-Ii>p,I-'1*>p...|(JUp «Po)i+l‘«>p;l-ivoi)
e lik))

Zjn'j* jli<i>0)|M2e " )e*k'(li<poll-t-lvol)
= I(<0)1 Mi eX*e>>(1 + Ko | M2e-" ’f m(KPol + 1/d)
for Ic2 1. Asfor k=0, we have Uo(<po)+ <*owo = vq by definition.

Now, with the above preparation, we can derive the estimate (4.19). From

(4.15) we obtain, for te 10,t"),

Ix«Po,V0,0)(t)l S IT(t)(Po(0)l + IEo(t)vol

S be* litpall ds ol S b'e “ (Ikpoll + vql),
where
b' = b max e'e‘dsl

For te Itto,,t(",") with k2 1.

[X(<po, v0,0)(t)] S |T(t)«po(0)| + |Eo(t)vo| + £ |E/t)|.10j(<Po) + <>\
j-i
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S b e*Vi<Pall + o)

+ X b/|_ e*<' ‘>dsMj|(00)'|e*O i)ni(I+Mj(Oorle *")' ‘(qnd + Ivol)
J))

S beMgoll + Ivol)|l + Mj|(<I>0)le *™'£ (I +Mj(<Do)"|r*">r'j
\ j-i /

= MI+Mj|(<»0)"le*"fe*'(1l(poll + o).
e *(k+i)m) " A Q. since

(I +IWIMJC 'S bBrexp{~In (I +IM "Imjc*)}

A b"exp{jLIn(l + |(00)™'|M2C *")j

for some b" independent of k, it follows that

P<Po- V. 0)(H) S b'b” (ItpoH + Ng) exp{a + jjfin( 1 + 10" I Mje- “))t
forall t"O. Therefore, there are constant a* and b* satisfying (4.18) such that

(4.19) holds for tSO. #
Remark. Notice that

Eo(t) Y(t-s)ds, | Y(t-s)ds,- - | Y(t-s)ds
for t€ Iti.tj~,)c(0,t,) with ie (0, 1,-,m- 1). Ifwe define \MQj by

hali = max(lhol, Ih,1. s, 1), (4.22)

then the above proofenables us to derive

'««Po. Vg 0)()I S b*e»"XUNLL + hdlj) (4.22)

for te Iti.ti”,)c(0.t,), since

IEo(®)Vol S IEo()l.IVoli
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holds for t in this interval. Soon we will use (4.19) and (4.22) to obtain an

exponential estimate for x(0,0, fXt).

Let {fAl be defined by (4.10). To indicate the dependence on (Fo>V
we denote vA, defined by (3.28) and (3.29), by v*(ipo. g, 0 for k~ 1. Then, for
the same reason as in § 4.1, the solution of (1.1) with ((pg. Vg = (0,0) satisfies

x(0,0,f)(t) = X(0,0,fg)(t)
for t"O and

x(0,0,0(0

x(xJO,0,fo),v,(0,0,fg),fAKt-m)

x(x,,(0, 0, fg), v,(0, O, fg), 0)(t - m) + x(0, 0, f,))(t- m)

for 12 m. Repeating the above procedure k times, we obtain

x(0,0,0(0 = x(0,0, J(t - km)

+S  in(0, 0, f(i.i)m), Vi(0, 0, f(j.i),,), OXt-im) (4.23)

i- 1

for t"km. From (4.19), (4.22) and (4.23), we shall show the following result.

THEOREM 4.5 Assume that Pe (m, m 4 1] for some integer mi 1 and

that (3.14) holds. Then there is a constant ¢ * | such that the solution of (1.1) with
(% V) ° (0,0) satisfies

lIx,(0, 0, 01 i c'®mjP e**C “)[f(s)|ds (4.24)

for tS0, where a* is as in (4.9) and a(t) is defined by a(t)=t for
te (O,m+[Pi-P) and a(t) » max{t, [n-i-1-p)) for t€ [n-P,n-f 1-p) with

ni m+ (p].
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Proof. We first estimate  1x(0,0, O(t>I for te (0. m), Ilx~0, 0. OH
Iv,(0,0, f)li for i=0,1, «m-1 and Iv,(0, 0, f). By Theoiem 3.5. we have the
representation

x(0. Y (t-s)i[s)ds

for tE [0,t_) and

x(0.0. fXt) = | Y(t-s)Hs)ds + E,(t)W,(0

for te [t m). From the proof of Theorem 3.5 we know that

v~(0,0,0 = WK(0 (k* 1.2. «)
satisfies (3.25) with ((pQ v,,) = (0. 0). Thus

v,(0.0. f) = Wi(f) = -(<I>0)"w,(f).
Since Q by (3.24). has the triangular form

Po  Pi Pin m1
<o 0  Po Pm-2
0 0 Po ,

(Oq) ! isalso triangular. Then. From (4.21). (3.23) and (3.21). it follows that
Iv,(0.0.f)1i S 1(00) “LIW,(f)li

= I(«Po) 'l maxdw jf)L lw, A ,(F)l.. .. Iw,Ai(F)l)

wi
L ex1pI»1f[s)|ds

S b,
| e s (4.25)

for i=0.1.... m- 1 and some constant b, > 0. In particular.
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eee']|

Vi(0, 0, )l = [V](0.0.f)L 1s b ctom fl9ids.  (4.26)

Suppose that t€ (t m). Since

E() = 0.-;0.j Y(t-s)ds|

we have

[E.OW.(A] ~ | Y(t-s)ds«wiflo 5 bb,]| e*"<">*)|f[s)| ds.

i<tm

Then, by (1.15), thereisa bjS1 such that

(0, 0,001 ~ bj e*(“-*ilf(s)|ds S b2" e  m4f(s)| ds (4.27)

for te (0, tJ,

[x(0,0,0(01 S [j Y(t-s)Hs)ds |E(t)W,(01 S bzl elf(s)|ds (4.28)

for te (t,, m) (as [P)=m if tA<m), and

11x,,(0,0, Gl S baj* e <" moif(s)| ds . (4.29)

By the definition of a(t), (4.27) and (4.28) are equivalent to

(0, 0,0(01 S b2 (4.30)

for te (0, m).

We now show that (4.30), with an increased value of bj, actually holds for
12 0. Forany t2 m, thereisa k” 1 such thateither te (km +1j,km +tj.")c
[km, (k + I)m) forsome ie [0, 1, %, m-1) or te [km+t,, (k+ I)m). Inthe

first case, we see from (4.23), (4.19), (4.22), (4.25)-(4.27), and (4.29) that
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k-1
[X(0.0.0(t)] 5 £ >>%*C "»(lIx,,i0.0.f(,,.,),)11+]v,(0, 0.F(,,.,)I])

n«l

+h*e  “Un(lIx,0,0. 7, ) +1v,(0.0,f A )

+1%(0,0, J(t - kni)l

k-1

S b*e*’(x ™"

|lt)21r e *<>kIf(s + (n - N)ni)|ds + bijr e x|ffs + (n - )m)| ds|

+b*c**0 ™>hN <" F)[f(s + (k- 1)m)|ds + bij”* INF(s + (k- )m)|ds]
‘Ifls + km)| ds
< Da<{Vid
5 b*b e *<>-)|f(s)|ds + bi*| e»*<"*||f(s)|ds

for some positive constant b,* independent of k and i. Since

max|t, (k-I)m +1Ip] +il = max|t, [km + tj»,)) = a(t),
(4.30) holds for t in the first case if we replace bj by b*b2+b,*. For
te [km+ 17, (k + I)m), (4.26) and (4.28) indicate that we should replace i by
m - 1 and the upper bound t- km of the integral by m in the above inequality. We

then obtain

1X(0,0. HOI S B2*I  ec*(* «)|f(s)|ds

for some constant bj* (* 1) independent of k. Since te [km +t (k + I)m)

implies t,, =m- p+[pj<m and the relation
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(km + (k+Dm) c (km+t ,(k+Dm+i,)

holds, we have

a(t) = max(t, [(k+Dm +1t,]) = max(t, (k+I)m) = (k+ I)m.
Thus (4.30) holds for te [km +t”, (k+ I)m) if we replace bj by bj*. Therefore,
we have shown (4.30) for some constant bj~ 1 andall t2 0. Thus (4.24) holds

for some constant ¢c*” 1 andall t~0. #

From Theorems 4.4 and 4.5 we sec that the solution of (1.1) with (2.16)

sansfies

IIXi(<Po. vo, Al S bre*[lQoll+|vo] +jr e 1f[s)|ds|l (4.31)

for tSO, where a* and b* are constants satisfying (4.18).
The estimates (4.19) and (4.24) also indicate that the linear mappings

X(., 0,0)(t) and x(0,0, .)(t) are bounded for each tSO.
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CHAPTER 5 ASYMPTOTIC BEHAVIOUR

In this chapter, we employ the previous results to discuss the asymptotic
behaviour of solutions of (1.1) and (1.2). We assume that the conditions for

existence and uniqueness are satisfied.

§5.1 ASYMPTOTIC PROPERTIES OF SOLUTIONS

We fust define a space in order to unify the discussion for the two cases of

Pe [0, 1] and P> 1 If p€ [0. 1), we simply define
Cp = C = C(I-r, 0], (tN).
If Pe (m, m+ 1] for some integer m S 1, we define
Cp = ¢ X<"N
witha m»m LIl given by
= <o v, )Il = liipdl + Ivql,

where € C, v,e and qp=(<Po-Vg e Cp. Then, forany PO, Cp isa

Banach space. In this notation, we can simply denote the solution x(<Po. \g, f)(t) or

*(90'0(t) of (1.1) by x(ipp, O(t).

Definition 5.1 The equation (1.2) is said to be stable if, for any e >0,

there isa 5>0 such that the solution of (1.2) satisfies

lIx,(ipp, Q11 < e (5.0)
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for t*O provided that ll<ppll<5. We say that (1.2) is uniformly asymptotically

stable (UAS in short) if it is stable and if, forany e >0 and M >0, thereisa T20
such that each solution of (1.2) with llitpplISM satisfies (5.0) for tAT.

Definition 5.2 The solutions of (1.1) are said to be uniformly bounded if,
forany 6>0, thereisan M >0 such that each solution of (1.1) with ll<pplis5

satisfies

lIx,((pp,0Il S M

for tiO. The solutions of (1.1) are said to be uniformly asymptotic to zero (UAZ in
shon) if they are uniformly bounded and if, forany 6 >0 and e >0, thereisa T" 0

such that each solution of (1.1) with IlltpglKS satisfies

IIx,((pp. Gil < e

for tST.

Remarks, (i). The homogeneous equation (1.2) is stable if and only if its
solutions are uniformly bounded. Also, (1.2) is UAS ifand only ifits solutions are
UAZ. These conclusions are derived immediately from the definitions and the linearity
of (1.2).

(ii). The uniformity in Definitions 5.1 and 5.2 refers only to the initial data tp*

in C". For autonomous equations the choice of initial point to is immaterial. Thus the

definitions of stability, uniform asymptotic stability and uniform boundedness are
equivalent to those for autonomous delay and neutral equations (see [17]). Although the
term UAZ is not standard, it describes an important asymptotic feature of solutions.

In the following, we give some results concerning asymptotic properties of
(1.1) and (1.2). The first one reveals the equivalence of UAS to negative

exponential boundedness of (1.2).
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THEOREM 5.1 The equation (1.2) is UAS if and only if there are

constants a*<0 and b*S 1 such that each solution of (1.2) satisfies

lIx,(tpp. 011 ~ b*e**'li<ppll (5.1)
for t70O.
Proof. The "if part of the assertion follows immediately from Definition 5.1.

Thus we only need show that, if (1.2) is UAS, then (5.1) holds for some constants

a*<0 and b*” 1 If pe [0, 1], the proofis the same as for the neutral equation
(2.3) (see Ch.12 in [17]) and is also covered by the proof for P > 1.

Assume that Pe (m, m + 1] for some integer m ¢ land that (1.2) is UAS.
Then, for

£ = (201 +nL2n)>,
there is an integer K”O such that each solution of (1.2) with litppll = 1 satisfies

o 0Ll < e for t"Km. From the definition of Vj given by (3.28) and (3.29),

Vk(9p-0) = (L2(X,p[*Kn,-Mn.I('"Pp.0))"*.L2(X,p,.,Kin +m.2('Pp.0))T

=X p] oM™

It follows that

Ivu(9p,0)I 5 IILjlimaxl Hx,p|Km +i(<Pp.0)1L i=0,1,-, m-1} S ellLjll

and

0). V(< Il = IDKM<Pp. 011 + MK(<Pp.O)1 S £(1 + lILjI) > 2%
for llippll = 1. This, together with the linearity of (1.2), implies that the solution of

(1.2) satisfies

"(*iQmCPp. 0). WK(pp. O)II S 2-> llgipll (5.2)
forany ope Cp. Since [t+ P]-t is 1-periodic, by uniqueness the solution of (1.2)

satisfies

x(9p. 0)(t) = M. 0)(t) = Xx(x".,(9p, 0), vX(tpp, 0), O)(t - km)



58

for tSkm-r and k=0, 1,2, — Thus

«@KmiVp.0) = XKm(*Kn.(<Pp'0)-VPp.0).0)

and
VAPPO) = (M Tlpl ot in ACPR-O)” jfiPp.0))",
" LliXigj +2Km(Ay
= (L2(*PIt Kmemm "KAPp’
e MICKTCRY  KOPp*
LG +KMCK @ KR

= "KiXKmiVp. 0). VK(«Pp. 0). 0).
By (5.2) we have

BEXTHY 2K NN FRKIM R "KNPp’ n
Inductively, we obtain
"(WPp.0),v,K(Pp.0))II 5 2 Iippll (5.3)

for k2 1 Infact, (5.3) also holds for k=0 as

(*o(<Pp. 0), Vo(tpp, 0)) = (<o, M) = 9p.
Since (1.2) is stable, by remark (i) and the linearity of (1.2) thereisan M 21

such that each solution of (1.2) satisfies

lIx,(<po,01L ~ MI (5.4)
for t"O and @€ G

Now for any 120, there is an integer k20 such that
te (KKm, (k-i- )Km). Then, by (5.3) and (5.4),

I (1>p. o M »*t-xKm(*KKm(Ppo ).Vuc(«Pp.0),0 )l
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S M2NIi@ppll S 2Mexp{-t(Km) *In 2)lipgl.
Therefore, the solution of (1.2) satisfies (5.1) with some constants a*<0 and

b*~l #

The next result reveals the relationship between the asymptotic behaviour of

(1.2) and of (1.3).

THEOREM 5.2 Assume that the neutral equation (1.3) is UAS. Then, for
Pe (0, 1] and sufficiently small IILjll, (1.2) is also UAS.

Proof. Since (1.3) is UAS, there are constants a<0 and b2 1 such that

the solution of (1.3) satisfies

IIT@<Poll S be* ligm
for t~ 0 and tpg€ C (referto § 1.2). By Theorem 4.2, there exist constants b* and

a* satisfying
b*~l and a* S a + In|l +b|(Bo)-|.IL2IIJ[ e*<P »>ds|

such that each solution of (1.2) satisfies (5.1). From the definition of B,, in 5 3.2,

we have

Bo

Thus I(Bg) 'l » 1 as IILjll»0. Therefore, (5.1) holds for some a*<0 and
b *il if IILll is small enough. By Theorem 5.1, (1.2) is UAS if IILjll is small

enough. #

Remark. Theorem 5.2 cannot be extended to the case of p > 1. This will be

shown by Example 5.2 in $5.4.
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The next two results are for the boundedness of solutions of (1.1).

THEOREM 5.3 The solutions of (1.1) are uniformly bounded if one of the
following conditicxis is met:

(A) . (1.2) isstable and fe L(0, <o

(B) . (1.2) is UAS anc!’ I |f(s)|ds is bounded on [0, 6.

Proof. By Theorems 4.3 and 4.5, the solution of (I.1) with =0 satisfies

1%, Al S c* «1f(s)|ds (5.5)

for t*O as long as each solution of (1.2) satisfies (5.1).
Suppose (A) holds. Then, by (5.4), the stability of (1.2) implies that we can

take a* =0 in (5.1). Thus each solution of (1.1) satisfies

lix,((p. Oil S Iix,((op, Q1L + 11x, (0. Oil ~ b*ll(ppll+c*f|f(s)|ds

for t*O. By Definition 5.2, solutions of (1.1) are uniformly bounded.
Assume that (B) holds. Then Theorem 5.1 implies that each solution of (1.2)
satisfies (5.1) with a*<0. Let

~fr

Mo I<Is)|ds: te [O, oo)g' (5.6)

From (5.5) we obtain

[o® st
X001 S cre™(l  ME)Ids + x  crewr| [f(s)|ds

-m> l...
K+i
S ¢c*Moe « N e**" S c*Moe-»*(l-e**)”,
n«0

and so
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lx(<Pp. CH S bHlI(ppll + MoC*e ** (I-e *¥)«',

which implies the unifonn boundedness of solutions of (1.1). #

THEOREM 3.4 The solutions of (1.1) are UAZ if (1.2) is UAS and f

satisfies

lim. IHs)|ds = 0. (5.7)

Proof. By Theorem 5.1, (5.1) holds for some constant a* <0 as (1.2) is
UAS. Since (5.7) implies the boundedness of the integral in (5.6), by Theorem 5.3

solutions of (1.1) are uniformly bounded. Then, forany e>0 and 6>0, we only

need to finda T2 0 such that each solution of (1.1) with ItpMINS satisfies

IIx,((pp, OH< £ for ti T.
By (5.7) again, thereisa T ~ 0 such that
j [f(s)]ds < e(2c*) 'e‘-(l-e**) =d.f £

for 12 T, Since e** —*0 as t—><3 thereisa TS T + 1 such that

r

ec*(i T) < "IL*e*T'S +tc* If(s)lds[

holds for 12 T. Then, for IippNIS5 and ti T, we have

11x,(9p,01l S Hx(<ppO)ll + 1Ix,(0,011

S breetkppH + ¢l e**(‘-v)[fi[s)[ds

i bemqpH + c*| e (" M)[fis)|ds + c*|e <+ l+en*+.--|e’
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S e»*« T )jb*c»T’5 +g*j

Thus solutions of (1.1) are UAZ. #

§5.2 THE SPECTRUM

From the discussion in § S.I, we realize that the asymptotic behaviour of
solutions of (1.2) plays an imponant role in that of solutions of (1.1). For the neutral

equation (1.3), the asymptotic behaviour of its solutions can be studied by analysing

the spectrum of the solution operator T(t) for ta 0 (seea .12 in [17]). This idea can

also be applied to our equation (1.2). In the following, we fust define a "solution

operator” for (1.2) and then investigate the relationship between its spectrum and the

asymptotic behaviour of solutions of (1.2).

We define such an operator T~ on Cp as follows. If Pe (0, 1] and

«(*PcW¥*) is the solution of (1.2) with (2.1), we let

TpPp = Xi(<Pp. 0) (5.9)
for qgipe Cp (where, in fact, Cp=C and gp=1tp"). If p satisfies m<p mf1

for some integer m” 1, we let

0), v.(<pp. 0)) (5.9)

<Ppe Cp(Cp = CxE">N and Cp=(¢", yV), where v,(«pp, 0) is defined by

(3.28) and (3.29). We denote the spectrum of Tp by o(Tp) and the spectral radius
by P(Tp).

THEOREM 3.5 The equation (1.2) is UAS ifand only if there is an integer
ki 1 such that
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P(V) <1 (5.10)
If

P(Tp*) > 1 (5.11)
for some 1, then (1.2) is unstable.

Proof. (A). Assume Pe [0. 1). Then, by (5.8), we have
V*Pp = *(<Pp.0), j=0, 1,2,
Since Cp is a Banach space, by a spectral radius theorem (refer to § 19.5 in [28)), the

relation

p(Tp*) = limj*MdITpi'jloi/d = lim._.(lIx*.(.,0)I1)'/i (5.12)
holds for any integer k™ 1

If (1.2) is UAS, then Theorem 5.1 implies the inequality (5.1) with a*<0.
Thus we have
(INTpjD>/1 S (b*)>fje**, j = 1,2, o= (5.13)
Then (5.10) with k=1 follows from (5.12) and (5.13). On the other hand, if
(5.10) holds for some k~ 1, by (5.12) again, there is an integer J2 1 such that
(IXKj(.0 YA S (1/2K1 +p(Tpk)) e

for j 2J. Hence

lixkj(<pp, O1L ~ ejlitppll

for j ~J. By Theorem 4.2, there isan M S| such that

lix«pp, QL A M 19pll

for tE (0, kJ). Then, for te [kj, k(j + 1)) with j SJ, we have

lIx,(Pp.011 « 1Ix, Kji(XKi(<pp,0),0)ll S MIIXk(«pp,OLL i Meillippll.  (5.14)

Since e< 1, (5.14) implies (5.1) with a*<0. Therefore, (1.2) is UAS.
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If (5.11) holds for some k2 1, then, by (5.12) and the definition of
Hx,(., 0)11, there is a sequence (tp: tpjC C =Cp, lltpjli=l, j = 1,2, «) such that
Urnj_MIx?j(<p., 011 = oo.
By Definition 5.1, (1.2) is unstable.

(B). Assume that pe (m, m-i-1] for some integer m2 1. From (5.9) we

obtain

Tp(Tptpp) = (X.(Tp<pp, 0), M(Tp<pp, 0))

= (xIXmi'Pp.0). v,(tpp,0),0), v,(Xjtpp, 0), Vi(tpp, 0), 0)).

For the same reason as in the proof of (5.3), it follows that

Tp < = (X2m(Pp. 0), V2(9p, 0))

and, by induction.

Thus, instead of (5.12), we have

APV

S lim . _ jlUx?,, (o)l + VA, o)) (5.15)
for k2 1. If (1.2) is UAS, by Theorem 5.1 (5.1) holds with a*<0. Since the
definition of Vj, (3.28) and (3.29), implies

Vj(<Pp.O)l ~ HLjlimaxI 1Ix,p|j,Ni(«pp.O)Il: i=0,1,-, m-1)

5 b*lLjlle**<IW=*j" "SI,
from (5.15) we obtain
p(Tp) S limj_Jb*e*'J"" + b*IL2ll e*<W*>"))'(e = e**" < 1

(Conversely, we assume that (5.10) holds for some k2 1. Then, by (5.15), we

have
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X0 S liyill S 6i (5.16)
for some ee (0, 1), some integer and all jij. Since the solution of (1.2)

satisfies

*(<Pp.0) = *.k>,(CKj..(«Pp.0),vi((pp,0),0) » \.k"(TpJ<pp,0)
for t*jkm. Theorem 4.4 and (5.16) imply (5.1) with a* <0. Thus (1.2) is
UAS.

If (5.11) holds for some kil, then there is a sequence

i*Pj- <Fj€ Cp, litpjll = 1, j = 1, 2, *) such that

1°"j-.-(11XKj,,«Pj.O)Il + Iv(Pj,0)lJ = oo. (5.17)
Since the stability of (1.2) implies (5.4) which, together with the definition of Vj,

yields the boundedness of
(IXKM-O)l + 1Kj(., OLL j = 1,2, s,

(5.17) shows that (1.2) is unstable. #

Remark. Since further investigation on the spectrum of Tp“ is beyond the

scope of this thesis, we only give Theorem 5.5 for the general case of (1.2). For some
giecial cases of (1.2), however, some funher results can be easily obtained. In § 5.3
we shall deal with one of the special cases when the functional dinerential equation

(1.3) degenerates to an ordinary differential equation.

§5.3 THE CHARACTERISTIC EQUATION

The equation considered here has the form

*x(t) = Ax(t) + Lj(x,"p,) (5.18)
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and the equation corresponding to (1.3) for this special case of (1.2) is

dtx('[) = AX(1), (5.19)

where A isan N x N constant matrix.

THEOREM 5.6 There is an integer ki 1 and a matrix 4» such that the
spectrum of Tp* for (5.18) satisfies

= {0] u |X: Xe 0(4»)). (5.20)
Moreover. a('i>) determines the stability of (5.18). In other words, we have
(A) (5.18) is UAS ifandonly if I4< 1 for X6 0(40;
(B) (5.18) is stable if and only if IXSI1 for Xe 0(4") and. for I = 1, the
multiplicity of X as an eigenvalue is equal to its number of independent eigenvectors.

Proof. Since the fundamental matrix solution of (5.19) is e"*, by viewing

(5.19) as (1.3), we have

T(t)«po(0) = e™»®)<po(0), 6e (-r, O]
forany €ge C and t¢ r. Clearly, the range of T(t) in C is finite dimensional as
longas ti r. Thus, forany Pi 0, there isan integer k¢ 1 such that the range of
T(k) when pe (0, 1], orof T(km) when Pe (m, m+ 1] forsome m2 1, is

finite dimensional in C. We note that the matrix solution of (1.8) is

Y(t) « en' for t20; Y(t) » 0 for t<O.
Then, by the definitiwi of Tp and the representations (3.12) and (3.27), the range of
Tp~ in Cp is finite dimensional. Thus Tp" is compact. Since Cp is infinite
dimensional, O(Tp*) consists of zero and eigenvalues.
Forany Xe o(Tp") with X"O, the conesponding eigenvectors of Tp* must
be in Tp“Cp. Since Tp“Cp is finite dimensional, by choosing a basis of Tp“Cp
denoted by a « (a,, a”, ==, a”"), aje TpKTp, 1SiS g, we obtaina matrix 4*

such that
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Tp>a = a'v and Tp“9p - a*Hc
for 9p = otce Tp'K:~. If qp is an eigenvector of Tp™ corresponding to X, then it

follows that

ad»c = Tp9p = X9 = Xac,

which is equivalent to

a(H» - Xl)c = 0.
Since -.a” are linearly independent vectors in Cp, the above equation is
also equivalent to
(™ -Al)c =0 or det (»-XI) =0. (5.21)

Equation (5.21) means that Xe o fn By the equivalence of the above equations,
we also have o(Y) ¢ o(Tp*). Thus (5.20) holds.
By (5.20) the spectral radius of Tp™ is given by

P(fp*) = P(i") = max( IX; Xe ofY)).
Then the conclusion (A) follows from Thewem 5.5.

In order to prove the conclusion (B), we first show that (5.18) is stable if and
only if {Tpia. j~ 0) is bounded. The "only if part follows immediately from

Remark (i) in 5 5.1 and the definition of Tp. Suppose then that {Tp™Ja: ji 0) is

bounded. By Theorems 4.2 and 4.4, there is an M~ 1 such that each solution of

(5.18) satifies

||X,(9p, @]J.l M (5.22)
for 9p€ Cp with 119pll= 1 and te (0. k(Ip) + 1)]. Thus

{TpS: <Ppe Cp. 119pll=l)
isbounded in Tp~p. Since a is a basis of Tp>"p and (Tp~Ja: j 2 0) is bound«!,

then

A/N<Pp: <6 Cp, 9pll = 1. j =1 2. o)
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is also bounded. From the definition of T»

01 tppe Cp, ligoll = 1. j = 1. 2, «) (Pe 10, 1])

or

("jkn,(Pp. o )4 + IVMOp, 0 ) ipP€ Cp. N9l = 1.j = 1, 2. == (pe (M, m+ IJ.mS 1)
is bounded. Hence, from the proof of Theorem 5.5, (5.22) holds forall 12 0 and
tPpe Cp with li(poll = 1. i.e., solutions of (5.18) are uniformly bounded. By Remark
(i) in 85.1, (5.18) is stable.

Since Tp'ja =a*FJ for j S 1, the boundedness of (Tp'Ja: j ~ 0) is
equivalent to that of {'l'i), which is also equivalent to the condition on o(y) as stated

in (B). Thus (B) holds. #

Theorem 5.6 indicates that the behaviour of solutions of (5.18) is completely
determined by the eigenvalues of the matrix y. Therefore, we can call y, (5.21)
and its solutions the characteristic matrix, characteristic equation and eigenvalues,
respectively, of the equation (5.18).

To analyse the asymptotic behaviour for a given equation, we only need to

determine an integer kA 1. the matrix y for Tp*“ and its eigenvalues. Some

examples wUl now be given to show the application of the theorems in the next section.

§5.4 EXAMPLES

We give three examples in this section. The first one deals with a differential
difference equation which was studied by Wiener and Cooke 137] and also in our
Example 2.1. This shows that our general theory covers some previous work in this
direction. The second example verifies the remark after The«em 5.2. While the first

two examples involve degenerated equations in which r =0, i.e., the space C
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degenerates to the third example deals with a differential integral equation
with r>0.

Example S.1 Consider the equation

Ax(t) = AXx(t) + Bx([t+ 1/21) (2.20)
with x(0) = Cg. In [37] the following result is given;
Assume that A™ exists and let
Mg = M(-1/2) 'M(1/2), M(£l/2) = + (e<'«>" - 1)A *B,
Then (2.20) is UAS if and only if the eigenvalues of Mg satisfy [IXjl<lI,
j=12« N

Recall that the sufficient condition

detjoj e~ds - 1| #0

for (2.20) with x(0) = Qg to have a unique solution on [0, <&, obtained in Example

2.1, is different from the condition

detA ™ 0 and detM(-1/2) ~ 0
given in [37]. We will derive from Theorem 5.6 a necessary and sufficient condition

for (2.20) to be UAS, which also differs slightly from that in [37].
Here p = 1/2 and Ljfip) = B9(0) for pe C. Thus we have r =0. The

solution operator T(t) of (3.19) iscompact and satisfies

T(t)<pg = eN'tpfO)
forany t~ 0 and (pge C = (t* Hence we take k = 1. By the definition of T and

the representation (3.12),

Topo © Xi($0.0) = x(«pg,0)(l)

= T()<po(0) +1 Y(1 -s)dsL2(g>0) +1 Y(1 - s)ds Fi(tpo)
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=eNpo()+1 e dsB<po(0) + IFi(90)-
From the derinitions in $ 3.2 it follows that

Fi(<Po) = - (Bo)"*Fi(«po)

= JjLAJE Yp..dsj-ij jtjiTieR)+Ljjl Y, ..ds”2A<0)j

aAl2-») (5 | bcApo(0) + bl cAO-»)<isp<po(0)|

=tef B*<Po(0).

Thus, by substitution, we have
Tptpo = |LA +jr eA(i»)dsB +jf e"0 ds B*j]tpo(O)

" A |
eAx»ds-l| BjeO/2)Ale(>«)A+| i«Po(0)

-drf 'Fq)o(O).
By Theorem 3.6, (2.20) is UAS ifand only if the eigenvalues of S' satisfy

<l.j=12 N. This condition is different from that in [37]. However, if
either |4kRi; k=0, 1,2, m® does not contain any eigenvalue of A or detA~O

and AB = BA, we have V = Mg, i.e., our condition agrees with that in [37].

Example S.2 Consider the scalar equation

Ax(t) = -x(t) + Ex([t+2]), (5.23)
where e # 0 s aconstant. Here ~ =2 and Lj(9) » e<p(0) for gpe C. Thus we

have m=1, r=0 and C=(E As inExample 3.1, we take k ~ | and calculate ¥

for Tp.
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From the definition of Tp wc have

Tp<Pp = (%(<Pp. 0). v,(tpp, O»
F» Pp=(Fo VY€ Cp=CXc =c¢c 2 jj follows from (3.27) that

X|«Pp.0) = x((Po,Vo0,0){l) = T(I)tpo(0) + Eo(l)v,,

= ¢'<po(0) +j[ e« lds o = (e-i. | -e i)pT.

Since v,(<pp, 0) satisfies (3.25) with f =0, from (3.25), (3.24), (3.22), (3.20)
and (3.16)-(3.18), we obtain

VifVp.O) = (<I>0)’'IU,(<Po) + <i>'vo) = -(Po)'(u,,CPo) + Pm"ol

' [L2(T(m + (P-mJ)g)o)+ |L3|j[ Yp.,dsj- 1] voj

= -[eji Y (I-s)dsj [eT(2)tpo(0)+ |e | Y (2-s)ds-I| \q

= -|*ji e* idsj |Ee-2<po(0)+ |ejf e* 2
(c(/-e)’5enr'e)rPA-
Hence, by representing Tptpp as (pp”, we have
c* e'(l-e)"

(e-e ' e'(e-1) >e-e"
Since y has the eigenvalues

thereisa 5> 0 such that

p(y) = max{IX.,I, 1l > 1
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for 0 <lei5 6. By Theorem 5.6, (5.23) is unsuble if ¢ satisfies 0 <lei 5. This
example shows that (5.23) is always unstable for sufficiently small le| # 0 although
the equation Xx'(t) = - x(t) is UAS.

Example 5.3 Consider the equation

Ix(t) = Ax(t) +J H(e)x((t + 2J + 0) do, (5.24)

where A isa nonsingular Nx N matrix. In this example, P=2, r=1 and

LX<P) = 1 H(0)tp(0) dO

for g€ C. We assume that

det(e”-1) ~ 0 and dett] H(O)(eA<i*e).|)qo # 0.

Then, by taking k = 1(~r), we claim that the eigenvalues of (5.24) are the solutions

of the equation

det |x~j[ H(O)(eA(i e).j)d0.~j[ H(0)(eAe-1)eMO. XA+ Aerl = 0. (5.25)
In fact, by the same formulae as in Example 5.2, we have

Tp9p = (*i(9p.0), v,(9p,0)),

*i(9p. 0)(0) - T(Dtpo(0) +1 Y( +0-5s)ds\O

= eA(i+e)"0)+I cA(i»e..)ds;\p

eA(i*e)no) + (eA(i*e).,)A i \O

for Oe [-1, QJ, and



73

Vi(<Pp.0)= -jL*y Y p.,.,ds| jtzITiPXpol+jLjll Yp..dsj- 1jvoj
= H(6)i CcA(i-9..ys<ie| X
jiTH(e)cAa*e)de<po(0) +||» H(6)| eA<2*e..)d«,0.1jvoj
= -al| H(0)(eA(i*0)-1)d0| X

Jj1 H@O)eA(2+ 9dopo0) + 1 1 H(0)cA(l»eyeleA. D)N-1. jj voj

“ def AN
We denote thé Ith column ofa matrix M by col; (M) and let

Yu = (coli(en” *®>),coli(A,)) and = (coli((e-'<"e»)-1)A-").colj(A)))

for i=1,2, — N. Then, if we view

“ = <Yi,.Y,.2.".Yi.N-Y2.l.y2.2-".Y2.N)
as a basii of TACp, we obtain

V u = (c* “*“®coli(e") + (e “*®-1)A'colj(A,), AjColi(c”) + Ajcolj(A,))

and
*oY2i = (e “*®coli(e -DA') +(e " *8)- DA coli(Aj).
Acolj {e”~ - DA") + Ajcoli (A)))
for i=1 2, — N. That is.

. colj(eA) - coli((eA- da
TpYii = a .. and YpTii = a
coUAI). Colj(A2)
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for i=1,2, o N. Thus T.a =a*F, where

(cA-DA-i
Ai Aj
Since del (e* - )A**¥%0, by putting
FIW = en-x !
Ai (A2 - XDAEA- 1)
and
| 0
0 (eA- DA-
we obtain »P - XI = Since det 0, the equation det(M'-XI) =0 is

equivalent to det4*,(X) = 0. By changing the first N rows in det*F,(X)to (0.1),

we have

dety,(X) = {-I)N*det(A,-(A2-XI)A(eA-i)-i(eA.xi)).
From the definitions of A, and Aj,

A, - (Aj -XDAEA- ) iea. x1)

H(e)(eA(i+e).i)ti0

‘ 57 + AeAj(eA. i)-".

Therefore, X satisfies det (*F- XI) =0 ifand only if X satisfies (5.25).
Remark. For some special equations with r =0, it is possible to use specific

methods which may be simpler than our general method.
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PART TWO

LINEAR DIFFERENTIAL EQUATIONS
OF MIXED TYPE

In this part, wc mainly discuss existence, as well as uniqueness, of solutions
gl.c, "

estimates, boundedness, and finite limits in (iN

This pan is composed of two chapters. The first one. Chapter 6. covers the
discussion of some different ways of giving initial data. In Chapter 7. however we
concentrate on solutions on  (t,,-r. «) with the initial condition x/~=¢ / for
90e C. Conditions for uniqueness will be emphasized and some simple properties
discussed. Chapter 7 also serve as preparation for Pan Il in which we are going to

study asymptotic behaviour of solutions.
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CHAPTER 6 INITIAL VALUE PROBLEMS

The equations to be discussed in Chapters 6 and 7 have the forms

Ax(1)-D<t,x,)) = L,(tx) + L2(tx) + (1) 6.1)

and

X - D, xj) = L,(t, X) + Ljit, x*), (6.2)
where, foreach t~x and some constants r>0 and 0>0. D(t,.) and L,(t,.) are
bounded linear operators from C(-r) s C((-r. Q. C*) to (£". and Lj(t,.) isa

bounded linear operator from C(o0) = C(10, 0). (E") to Foreach t2 x and

P« C(-r), D{t, 9 is represented by

ot =1 (et ME), 6.3)
where " (t,.) isof bounded variation on (-r, Q) and satisfies

*n’e-.0-"(t.e) = 0 = 5(t,0). (6.4)

We assume that the operator D (t,.) is continuous in t in the sense that

limt_,JID(t..)-D{to..)Il - O (6.5)
fOrany t~ix. We also assume that, for each e C(-r) and ipe C(0), the
functions L,(t, 9), Lj(t, \p) and f(t) are Lebesgue measurable and that IIL,(t, )II,
IILjd, ) and If(t)l are locally integrable. As usual, x,€ C(-r) is defined by x,(0) =
X(t+6) for ee Jr,0] and x'e C(0) by x‘(a) =x(t+a) for a e [0, 0j.

Forany t"Sx and any t,>to, we say that x(t) isa solution of (6.1) on
[tO-r, t, +0J if x(t) iscontinuouson [t"-r,t, +0] and x(t)-D(t, x,) is locally
absolutely continuous, and (6.1) holds almost everywhere, on (tg, tjJ. If t|=o00,
then [tO-rit,+o0] and [t t,] arc replaced by [t,,-r, 00) and [t «),

respectively.
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§6.1 INTRODUCTORY REMARKS

Before we start dealing with (6.1), let us recall some facts about neutral
equations. For a neutral functional differential equation, not necessarily linear, we need
to specify an initial function 9,€ C(-r) and to find a solution x(t) on
1*0m”>*0 foe some a>0, suchthat ~ tpg. Under general assumptions on
the equation, such a solution uniquely exists provided that a is small enough. Then,
by viewing x on Jtg +a er, tQ+a] as the initial data and applying the same idea as
above, we can extend the unique solution with x,» =97 to a larger interval
(to - e. to + ot'l- If the equation is linear, the unique solution with x,* =9q on a finite
interval can be extended to (tQ-r, 00). Since C(-r) degenerates to when r=0,
ordinary differential equations can be viewed as degenerate neutral equations. Thus the
initial value problem for neutral equations, as well as the method of finding its solution
theoretically, is a natural generalization of that for ordinary differential equations.

For functional differential equations of mixed type, although there have
appeared some results in a variety of specific contexts (see the relevant references
quoted in §0.2), very few have dealt with the initial value problem in general. It is also
natural to wonder, for this problem, if we can generalize the ideas from neutral
equations to mixed equations.

The main purpose of this chapter is to discuss some different ways of posing

the initial value problem for mixed equation (6.1)

§6.2 SOLUTIONS ON A FINfTE INTERVAL

In this section, we consider the initial value problem for (6.1) on a finite

interval [to,t,], forany to”x and any t,>tQ. Ifa function x(t) satisfies (6.1)
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a.e. for t€(tQ, t,], then the equation itself implies that the values of x(t) on
1*0w’>*1 @I> father than on (tg, t,1, are involved. It is reasonable to guess that
such a solution on (tQ-r, t, +0J s in some way determined by its values on
1*0m ‘oi [t], tj +0j. Thus we pose the initial value problem for (6.1) as

follows.

IVPI. Forany given e C(-r) and e Cgio). where

Co(o) = (ye C(0): y(0) = 0),

we look for a solution x(t) of (6.1) on Ito-r.tj+0) satisfying

x,A =yo and x ‘i = yo + Xx(t,). (6.6)

First of all, we need to investigate existence and uniqueness of the solution to

IVPI.

THEOREM 6.1 Forany to”x and any t,>to. (6.1) with (6.6)

possesses a unique solution on (tg-r,t, + 0] if t, - 1g is small enough.

Proof. Itisclearthat (6.1) with (6.6) isequivalent to the integral equation

x(t) = yo(0) - D(to.yo) + D(t, x,)

)+L2(s, X*)+ Hs))ds, t€ [to. til, 6.7)
with (6.6). Let y*(t), y*(t) and x*(t) be defined by
(Y = g9 <p*t) = <pp(0) for te [to.t, +0].

(V*)" = Vo. V*(t) = yo(0) = 0 for te [to-r.t,I.

and

(**)., '0. (**)m = x*(ti). x*(t) = x(t)-90(0) for te [to-t,).
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Then x(t) is a solution of (6.7) with (6.6) on (to-r,t,+oj ifandonly if x*(t)

satisfies the equation

x*(t) = h(t) + D(, (Li(s, (x*),) + LZs, (x*)*)|ds, tE [t0 111  (6.8)

with x*(tq) =0, where

h(t) = D(t, (%)) - D(tQ, tpo) + I (Li(s, (<p*)) + Lis. (V¥)* + o(0) + f[s)) ds .

0

Since x*(t) isrequired to be continuouson |tq-r,t, +0j and constanton
fti.ti + 0], itisregarded as a function on [tQ, t,). Foreach t, we

define 1ID(t, I, by

IID(t. I, = Var,., 0, (4(t,.)) (siO)
as in Remailc Il'in 8 2.3 (p.24). Then
ID(t,(x*))I S HD(t, ), NMIx*),
for t€ (tfl.t,] as x*(t) =0 for t~tg. Since IID(t JII, is nondecreasing in s and
lIEKE I, = IID(t, I, = 1Dt I for s~ r, we have
HD(t.)I,., A $ 1D (t,.)-D(tg..)Il + 1ID(to.)ll,.,A.
Rtmi (6.3)-(6.5) it follows that
lim,_,~JID(t,.=0.

Therefore, when tj - 1q is small enough, we have

HD(, I+ | [HL(s, JI+HILTs, .H)ds S 8 < 1 ©.9)

fw t€ {tg,t,] and some constant 8>0. Ut Kc Cdtg-r, t, +0), 1*) such that
each u in X satisfies u,”(0)=0 for O0€[-r,0] and u‘i(0) =u(t,) fw
0 E (0,0j. Then X with the usual norm in C is a Banach space. Defining a map on

X by (6.8) and applying the contraction mapping principle, we see that (6.8) has
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one solution x*(t) in K, and so (6.1) with (6.6) possesses a unique

solution x(t) on Ito-r,t,+ol, if (6.9) holds. #

Remarks, (i). Theorem 6.1 indicates that, when t, -tg is small enough,
a solution of (6.1) on [tg-r, t,+0] is uniquely determined by its values on

1*0* *of (tJt 11 + o] in the sense of (6.6), butwe can not specify

x,A =<Pg and x'l - V (6.10)
forany <ye C(-r) andany € C(0). Indeed, for any given ¢ge C(-r) and
Vo ® Cg(0), let ctg=x(tj) and tp =a +tpg, where x(t) is the unique solution of
(6.1) with (6.6) on [tg-r,tj+o0]. Then, for acc=ctg, x(t) is also a solution of
(6.1) with (6.10) on [tg-r,t,+0). Forany a e and a Qg, if (6.1) with
(6.10) has a solution 4(t) on (tg-r, t,+o]|, then it*=<Pg, i(t,)=v(0)=a, and
i *' = a+ VYo=i(t,) +tpg. Thus i(t) isalso a solution of (6.1) with (6.6) on
[tg-r,t,+0J. By the uniqueness of the solution of (6.1) with (6.6) on
Itg-r, t,+0], we have i(t)s x(t) for t€ (tg-r,t, +0), which implies
o =i(t]) =x(t|) =otg. This contradicts the assumption a#otg. Therefore, if
ot’otg, (6.1) with (6.10) has no solution at all on [tg-r, t,+0J.

(ii). In Theorem 6.1, the condition that t,-tg is small enough is essential.
Indeed, for large t,-tg, (6.1) with (6.6) may have no solution at all. Even if there
is a solution, uniqueness may not hold. This is illustrated by the example below.

Consider the equation
Ax(t) = x(t- 1) x(t+ 1) (6.11)
for te [tg, t,1 =[0, T] with T S 1, together with (6.6), where r=0= 1 Qearly,
X(t) is asolution of (6.11) with (6.6) on [-1,T+1J ifandonly if x(t) satisfies

() = 9>0(0)-t-x(T)t+| (<po(s- 1) + Vo(s+I -T))ds (6.12)

for te [0, T]. Then (6.12) has a solution on [0, T] ifandonly if
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(1-T)X(T) = <po(0)+l («Ms-1) + Vfl(s+1-T))ds (6.13)

has a solution x(T) in (1~ for Te (0. 1). since (6.13) possesses a unique
solution x(T), (6.12) on (0, TJ, and thus (6.11) with (6.6) on (-1, T + 1],
possesses a unique solution. If T » 1, however, either (6.13) has infinitely many

solutions or it has no solution at all according as the relation

#00)+ | |(po(s- 1) + Vo(s))ds = 0 (6.14)

holds or not. Thus, if T=1, (6.11) with (6.6) has either infinitely many solutions,
or no solution at all, on (-1,2) depending on whether (6.14) holds or not.

(ill). Let t,>to and tj>t,. Suppose that x,(t) is a solution of (6.1) on
(tfl-r, t,+0) and Xj(t) asolutionon [t,-r, tj +0] satisfying (Xj), =(x,)j. If
Xj(t), defined by Xj(t) = x,(t) on (tQ-r, t,) and by Xj(t) = Xj(t) on [t,, tj +0),
is a solution of (6.1) on (tg-r, tj +0), we say that Xj(t) is an extension of the
solution x,(t) from Itg-r,t, +0) to (to-r,t~+0].

If Xj(t) = x,(t) also holds for te [t, t,+0), then Xj({t) must be an
extension of x,(t) as Xj(t) iscontinuous on [t~-r, t* +0j and satisfies (6.1) for
le 1to,t2l. Otherwise, Xjft) may not be a solution of (6.1) on [to-ntj+0], let
alone a solution on (tg -r, tj +o0).

As an example, we consider (6.11) again. Let x,(t) be a solution of (6.11)
on (-1,3/21 satisfying (x,)g=9o0 and (Xi)*/" =q + Xj(i/2), and Xj(t) a solution
on (-1/2,21 satisfying (x*),» =(x,),» and (Xj)» - Vo where v,, “d to
in C|,(I) satisfy

(0(2/2 +a) - Vqo) *constant for ae (0,1/21. (6.15)
If Xjft) isa solution of (6.11) on (-1,3/21,then, from the definition ofXjft) and
(6.11), itfollows that X2(t) =x,(t) forte (1,3/2]. On (1,3/2], since
X, (t) =x,(1/2) + (o(t - 1/2) and Xj®) . Xj(l) + Vo(t - 1), we have
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ii)(te 1+ 1/2) = yfl(t - 1) + Xjd) - x,(1/2), which contradicts (6.15). Thus Xj(t) is
not a solution of (6.11) on [-1, 3/2J.

This example also shows that we can not use Theorem 6.1 to extend a solution

of (6.1) on (tg-r,t|+0] to a larger interval, notto mention extending it to

Ito-r, 00).

§6.3 SOLUTIONS ON A HALF LINE

Inspired by the initial value problem for neutral differential equations, we expect

that a solution of (6.1) on (tp-r, <®, forany Ig” x, is determined by its values on

IVP2. Forany tqSx and any Q€ C(-r), we look fw a solution x(t) of
(6.1) on Uo-r, <) satisfying x, =(P(.

We suppose that 1ID(t, I, 1IL|t, JII and 1Ljft, )II are bounded on (X, <9

and let 1IDI, LIl and 1”1 be their suprema.

THEOREM 6.2 Suppose that 11D, LIl and 1IL2I are small enough that
DI+ X'(NLIL + 1ILjlle?) < 1, (6.16)
where X is a particular positive number, and that | f(s) dse is bounded. Then,

for every (tg, g>0)€ (X, <) x C(-r), (6.1) with x,j|=<Po has at least one solution,

and a unique solution of order e”, on [tg-r, <&

Proof. On [tg, 00), the equation (6.1) with x, «<Pg isequivalent to
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X(t) = <po(0) - D(t0, )+ D(t, Xi) + | (Li(s, X))+ L2(s, x*) + (s)) ds

23]
with X =<y and this can be written as
y(t) =hit) + D(t, y,) +j {Li(s, y.}+ Li(s, y)) ds (6.17)
with y A =0. where y, =X, - (%), and <p*(t) = 0(0) for t" tqg (<P*) , and

hi(t) = D(t, (9)i) - D(to, 0 + | (Li(s, (<p*))+ L2(s. (P(0)) + f(s)| ds.
lto

We show that (6.17) with y,j|=0 has, on [tg-r, <® a unique solution of

order e”. Let

S = |u6é C(|tQ-r, 00),IJN). u =0, u(t)e"” isbounded).

Then S with the norm

lullj = supjlu(t)le'”: t™tg)
is a Banach space. By the condition of the theorem, hj e S. Defining an operator A

on S by theright hand side of (6.17), we have

Jsu(®)le-~ S llhills+ D1+ (LNl + HLallereA-»dp  Nuls
\ /

for ue S and t2tg. Thus <due S. Then, by (6.16), the contraction mapping

principle leads to the conclusion that A has a unique fixed pointin S, i.e., (6.17)
has a unique solution on {tg-r, ~) ifrestricted to the space S. Therefore, (6.1)

with X =(pg has a unique solution of order e” and thus at least one solution on

[tg-r, ~). #

The method of the above proof provides us with a by-product.
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COROLLARY 6.3 Suppose that (6.16) holds for some X>0. Then, for
eny to St andany t,>tQ. no matter how large t,-to is. (6.1) with (6.6)
possesses a unique solution on (tg -r.t, +0j.

Proof. Since (6.1) with (6.6) is equivalent to (6.8). by applying the

contraction mapping principle on

S* = {ue C([to-r.t,+0l.aN); ,,,=0. u‘- =u(t,)|

with a norm [MIj, defined by

llullj, = max{lu(t)Je-*; te [to.t,1J.

we see that (6.8) has a unique solution in S*. #

Remarks, (i). Corollary 6.3 indicates that (6.1) with (6.6) always
possesses a unique solution on any finite interval Itg-r.t, + 0] provided that 1IDil.

lILjIl and IlILjII are small enough to guarantee (6.16). However, in order for (6.1)

with = tpo to have a solution on It" -r. 00). Theorem 6.2 also requires
|f(s)dse-~ be bounded on [t. ~). Itis not clear whether this is an essential

condition, but at least the proof of Theorem 6.2 fails without it

(ii). Although the smallness of 1ID(t. JII. 1IL,(t. )II and IILjft. )il may be in
some different sense, such as the alternative conditions given in Chapter 7, some such
condition is essential for both Theorem 6.2 and Corollary 6.3. In other words, the

required solution may not exist without such a condition. The following example will

Ulustrate this point. Let Bg. Bj. B" and Bj be 3 x 3 matrices given by

ro0o 0 05 0 -05 -05 0 0.5 0.5 0.25
100 1 0 -05 101 41 and 1 1 05
010 L 3 -2 0 2 2 151 1 1 051

respectively. We claim that, for some tin e C(-r) with N =3. the equation

. 3 3
JIx(t)-x(t-r)} = X Bjx(t+2j-r)- _ £ Bjx(t-i-2j) (6.18)
j-0 j.o ’
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with X - Ry has no solution atall on (-r, «). in fact, by letting

y(t) = X() - x(-t-n), (6.19)
(6.18) is transformed to

¢y(0 = 1 Bjy(t-2j). (6.20)

Kappel(19J showed that (6.20) is degenerate with respect to q =(0,0, OT at
t, = 6. i.e..forany tpe C((-6.0], ,he solution of (6.20) with vy, =9

satisfies qTy(t),o for t*6. Thus, forany y* g 13 gqTy*”o0. (6.20) has no

solution on [-6.6) satisfying y(6) =y*. Then (6.19) implies that, for any
*Fo® C([-r. 0). (13) satisfying

q”~«Po(0) - «oi<<)) b 0. (621)

(6.18) with x.j = (po has no solution at all on [-6 - r. 6). Since (6.18) is

autonomous. (6.18) with Xo= <P has no solution on [-r. 12). let alone on [-r. «0),
as long as «" satisfies (6.21).

(iii). According to Theorem 6.2. the smallness of 1ID(t. )H. [IL,(t. )II and

lL2(t. )l implies existence. However, uniqueness (except for solutions of order is

not guaranteed no matter how small 1IDIIl. 1ILII and lilili are. As an example, we

consider the equation

Ax(t) = Ax(t+ 1) + Bx(t- 1). (6.22)

where A and B are N x N matrices satisfying det A it0 and

X'(1Bl + IAleM) < 1 (623)
From Theorem 6.2 we know that, for every t~e (-~..0) and every 9"e C(-I).
(6.22) with x,=«Pq has. on [to* 1, 00), a unique solution of order e”~. We will

show that, without this order restriction. (6.22) with x, = has at least two

solutions on (-1, 00) for some specific 9,,e C(-I).
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For this purpose, we first analyse the distribution of the eigenvalues of (6.22),

Le., the solutions of the characteristic equation

A(p) > detlpl - Ae>* - Be-*) - 0. (6.24)
C3early, e”>*A(p) and A(p) have the same zeros and eAfp) isa polynomial in n
and e“. Funhermore, the highest powers of p and e“ are N and 2N respecUvely.
Let
N 2N
eN“A(p) = X X
i«0j>0

Since A™ exists and

eN“A(p) = det{pe“l - eA - B| = det(-A)detle™*! - petA-*  A-‘B|,
we have aj*=0 for i+j>2N, i€ {0, 1,-, N) and je (0, 1, -,2N), and

@NN “ * @XN = det(-A) * 0.
Because e Afp) has at least two terms with the highest indices i+j =2N
(i.e., eN“A(p) has no principle teim), by Theorem Al in [17] (p338), e"Afp) has an
infinity of zeros with arbitrarily large real parts. Thus (6.24) has infinitely many

solutions whose real pans can be arbitrarily large.

Ut p beasolution of (6.24) with Rep > X Then thereisa GQge I« ,u<h
that Xj(t) =e*“‘cQ is a solution of (6.22) on (-00, 00). Let
for Be [-1,0]. Weclaim that (6.22) with x,=co has at least two solutions on
[-1, <»). Indeed, (6.22) has a unique solution Xj(t) on [-1, 0.) with (xj)*«:A?
such that Xj(t)e-" is bounded. On the other hand, x,(t)e-" is unbounded on
[-1, 00). Thus x,(t) and Xj(t) are solutions of (6.22) with (x,)o0 = (x2q=% and
X, # X%.

We have shown that, for some <Po€ C(-r), (6.22) with Xo=tpo has at least
two solutions on [-1, ~) provided that (6.23) holds. Actually, for every
foe C(-r), (6.22) with x"«tp* has infinitely many independent solutions on

[-1, <&. This assertion will be shown in the next section.
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§6.4 SOLUTIONS ON A HALF LINE WITH EXTRA INITIAL DATA

We expect there to be some ideal initial condition with which the solution of
(6.1) on [to-r, «.) is unique if one exists. Theorem 6.2 and its remarks suggest that
the uiitial condition x is not enough for uniqueness. Although finding a way to
give a kind of ideal initial condition for the general equation (6.1) is a significant
problem, we do not tackle it in this thesis. For autonomous equations, however, it is

possible to give some data on [tg t*+0) inaddition to x " =t

In this section, we study only the simple equation

Ax(t) = Ax(t+ 1) + Bx(t- 1) (6.22)

in order to show the possibility of giving a kind of ideal initial condition. We assume
that A ' exists and that (6.23) holds throughout this section. We also denote the first

(second or nth) order derivative of x(t) by x'(t) (x"(t) or x<"X(t)).

Our first task is to find a suitable space Cj so that we can specify any gie Cj
as extra initial dataon (0, 1|. Since A’ exists, we denote -A™B by G. Let C, be

a subset of CT((-1,0J, (t*) such thateach cpe C, satisfies

<p(-) = 0, A*(p'(-]) = gKO), (6.25)
Vk.iM) = Vk(©0). k=2,3,- (6.26)
with
V2in0) = A <L i)(e)+ n AkjAV ™ Mfl)

i.jao;i+j.2n-s

+ X A «A JGA y2"-5)(e)
i.i.k20;i.].ja.k«2n-S

+oeot X G'A <GlJqgi'le) (6.27)

and
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Ve 1(0) = A<V 2"l(e) + X AMGA 210
Lji0; i +j m2nm])
+ X A kjA jGA V2n-4)(0)

ki.lIEiO-.i-fj +k-2(n 2
+.+ X G‘A ‘GJA 'GVle) + G™p(e) (028)
ij, kaO; i+j+k-n-1
for 6e i-1, 0] and n=1,2, e,

We need to show that C, isa nontrivial space.

THEOREM 6.4 If x(t) on (-1, <) is a solution of (6.22) with Xq=0,
then X € Cj. Moreover, C, isof infinite dimension.

Proof. As 0 E C|. we assume that x(t) on [-1, 00) is a nontrivial solution of
(6.22) with Xg=0 and show that x, € C, and X * 0.

Since x(t) satisfies (6.22) for ti O, then, for any integer k”~ 0 and
tE [k, k 4 1], we have

XA T(t-k-1) = AX[jr2(tek- 1) + BXjt-k- 1).

As A *exists, x(t) satisfies

Xk*2(®) = A'x",'(0) + Gx”(0) (6.29)
for OE (-1,0] and k=0,1, 2, Letting k=0 in (6.29), we have

Xj(0) = A>x/(0) + Gxg(0) = A *x,'(0),
which, together with XjC C’([-1,0], C*), implies x, e C/A([-1,0J, (I*). Thus, by
(6.29) and X E C*([-1,0], I'*), we obtain

Xj(0) = A'x2(0) -Kix,(0) = A-"x,"(0) + Gx,(0)
and X, E CA([-1, 0], (t"). Inductively, it follows from (6.29) and
XE C'([0, o00), 1) that

X2J0) - A<2" »x,(2n.1)0) + £ A K3A Jxi(2"-370) +
i,j20;i+j*2n-3
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+ X A kjA JGA kx,(2n 5)(e)
i,j.k2 0 i«j'i'’k>2n-3
toeeedt X G'A'Gix.ie) (6.30)
i,j20Cifj-nml
and
Xn+l(e) = A-<2")x,(2n)(e)+ n A KjA-iXiZ" wl(e)

.J20, i+ >2(n-1)

+ A GA JGAKxi(2n “Jle)

s
i,j, k20; i+ ¢k»2nm)

o 1 G‘A >GiA-iG"xite) + G"x,(e)
i.j.k20.i+j+k.n-1 VO3

+ o004
for n=1,2, = and Xe C“([-1,0), I"). By the continuity of x,

Xk"NiM) = VO). k=0.1.2, -. (6.32)

Then (6.30)-(6.32) with x5 =0 imply that x, satisfies (6.25)-(6.28). Thus
X, € C,. Since x is nontrivial, by (6.30) and (6.31), we must have X, itO.

Recall that, for every eigenvalue p of (6.22) with Rep>X. thereisa
Co€ IN such that (6.22) with 0e (-i, O], has at least two
solutions on (-1, ~); one is €*‘co and another is of order e”~. Then the difference of
the two solutions is a nontrivial solution of (6.22) on (-1, 00) with x5 =0. Since
(6.22) has infinitely many eigenvalues whose real parts can be arbitrarily large, (6.22)
with Xg> 0 has infinitely many independent solutions on [-1, 00). The infinity of such
solutions implies that Cj is of infinite dimension.  #

Since (6.22) with X =9q has a unique solution of order e” on (-1, 00),

we denote X of this solution by With the well defined space C,. now we can

pose the initial value problem for (6.22) as follows.

IVP3. Forany tpre C(-I) andany 9e Cj, we look for a solution of

(6.22) on (-1, oo) satisfying
X“ 90 and X, = N + 9. (6.33)
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THEOREM 6.S Forany (ppC C(-l1) and any tpe C,, (6.22) with (6.33)

possesses a unique solution on [-1, «).

Proof. We first show that, for any (pe Cj, (6.22) with Xq=0 and x, =qd
possesses a unique solution on [-1, <). By taking (6.25)-(6.28) into account, we

define a continuous function x on (-1, ~) by

{ 0 forte [-1,01,
<P(t-I) fottelO, 1,

VK(t-K) for te k-1, K], k=2 3, eee.

Since the definition of x is equivalent to

Xo(0) = 0, x,(6) = tp(0), and x*(0) = y*(0), k=2, 3, =
for Oe [-1,0], by (6.27) and (6.28) again x satisfies (6.30) and (6.31) for

n=12, Then we derive from (6.30) and (6.31) that
X2(0) = A x,’(0) = A>x,’(0) Gxo(0),
X, N ,(0) - A >X2,/(0) = GA-<2"m2>x/2" m)(0)
A 0r1,j,0:i.,-2(n.2)A 'GA V2" *)(0)
+G  ,,0:0.j.k.,. 2G'A 'GIA->G"X/i" 4)(0)

+ GG"'x,(0) = Gx2,.,(0),

and

20+ D@ 1 A Xjn*,0) “ C2n(®)
for Oe [-1,0] and n~Il. Thus x(t) satisfies (6.29), i.e., x(t) on [-1, <9 isa
solution of (6.22) with Xq=0 and X =tp.
If there are two solutions of (6.22) with Xg=0 and x, =tp, then their
difference is a solution of (6.22) with Xq=0 and x, =0. This solution is trivial as it

satisfies (6.30) and (6.31). Therefore, the function x on [-1, «) defined above is
the unique solution of (6.22) with Xg=0 and X~ 9.
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Forany €46 C(-1) and any (pe Cj, let Xj(t) stand for the unique solution
of (6.22) with (Xi)o=<Po such that x,(t)e'* is boundedon [-1, o«), and x"it) for
the unique solution of (6.22) on I-l, <») with (Xj)o»0 and (Xxj), =<p. Then
*(0 = x,(t) + X2(t) on (-1, oo) is a solution of (6.22) with (6.33). Since the
solution of (6.22) with x, = Xg=0 s trivial, x(t) = x,(t) + X2(t) is the unique
solution of (6.22) with (6.33). #

From Theorems 6.4 and 6.5 we see that C, and the set of solutions of

(6.22) with Xg=0 on I-l, <») ate in 1-1 correspondence in the following way.

COROLLARY 6.6 The initial data space Cj satisfies

Cl = |(pe C(-1); (6.22) with Xq=0 has a solution Xon (-1, oo) such that Xj = (p).

For equation (6.22) with (6.23), Theorem 6.5 indicates that IVP3 is well
posed. That is to say, existence and uniqueness always hold when 1Al and IBl are
small enough. Unfortunately, this virtue of 1VP3 is achieved with the high price of a
complicated description of the space C,. Because of this it is difficult to find concrete
examples fnnn C,.

For some special cases of (6.22), Corollary 6.6 can help us to find such

functions in C|. For instance, the advanced scalar equation

Ax(t) = ax(t-t-1), (6.34)
where a is a constant satisfying 0 < lal <e *, is a special case of (6.22) with A =a,
B=0 and N =1, and (6.23) holds for X= 1. Since there is no delay involved in
the equation, the initial data Xq= qQ isgiven in 1 instead of C(-1). Then, for any

pair of eigenvalues of (6.34), p, and Pj, the function

9(0) = - e*k/®, 0€ (-1,0],
belongsto C, as e*“-e*"* isa solution of (6.34) with Xg=0 on [0, °°).
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CHAPTER 7
SOLUTIONS TO IVP2 ON THE HALF LINE

Our main interest in this chapter and thereafter is in solutions of (6.1) and

(6.2) on the halfline (tp-r, <®. In Chapter 6, we discussed the three I\VVPs for (6.1)

and mentioned the shortcomings of each. Since the theorem on IVVPI can not provide

any information about solutions on [tp - r, 00), we will not discuss I\VPI any more.

The overwhelming defect of VP2 is that uniqueness is not guaranteed when existence
holds. The purpose of 1VP3 is to show the possibility of overcoming this flaw of IVP2
by providing extra initial data. But, in this thesis, we do not intend to go any further

along this line. Instead, we will probe another way to improve VP2, to find some

condition on L”It,.) rather than give extra initial data.
Such a condition on L jft,.) is to be discussed in § 7.1 and its relation to

existence and uniqueness in § 7.2. In § 7.3, we will prove a few simple properties of
the solution of (6.1) with x, =g>g.

§7.1 ZERO ADVANCED POINTS

Suppose that 1*t, y) in (6.1) has the representation

L2(t, V) datl(t. ot)y(a).

where, for each t” x, ii(t,.) is of bounded variation on (0, o]. The following

definition states a condition on which is important for the discussion of existence

and uniqueness in the next section.
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DEFINITION 7.1 A point t*e (t, <) is called a zero advanced point of

(6.1) , shortened as ZAP, if, forall 16 |x, t*), Ljft, x) does not involve any value of

X(t) on (t*, «).

From the representation of Lj we can see that t* isa ZAP of (6.1) if, for
every te [t, t*) satisfying t+o0 >t*, T)(t a) isconstantfor a € (t* - 1, 0j.

It is obvious that, for a linear neutral differential equation on [x, o»), every
point in (X, 00) is a ZAP as the equation can be viewed as (6.1) with L7 It, .)sO0.

Example 7.1 Suppose P € |0, 11 and consider the equation

"x(1)-D(xO| = Li(x) + L2(x,"pl), (1)

which was studied in Part I. For every integer n 2 0, each pointin (n,n-f-1-P) isa

ZAP of (7.1).

Example 7.2 Suppose that (”~(t,.) satisfies the same condition as L ,(t,.)
(see the beginning of Ch. 6) and that A(t) is a real continuous function of t. If t*

satisfies t + A(t) S t* for tSt*, then t* isa ZAP of the equation

Mx(0 -D(t xj) = Lt X) + Ljit, x,**(,p. (7.2)
If A(t) >0 holds forall t~ x and Lj(t, 99 always involves the value <p(0), then
(7.2) has no ZAP atall on [x, o»).

Example 7.3 The autonomous equation

Ix(1)-D (xj) = L,(x,) + Lj(x*) + f(t) (7.3)

on [0, <») has no ZAP atall if LjlV) involves the values of y(a) for ae (0, o].
Forany tg”x, if t*>tg isa ZAPand x(t) satisfies (6.1) a.e. on [tg, t*),
we say that x(t) is a solution of (6.1) on (tg-r, t*J, instead ofon [tg-r, t* 0),

as no values of x(t) on (t*,t* o] are involved.

LEMMA 7.1 Suppose that tg~x and tj>tg, and assume thatt, e (tg, tj)
isa ZAP. If x,(t) isasolutionof (6.1) on [tg-r,t,] and Xj(t) a solution on
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[t,-r, t2 +0] (or It,-r, 00)) with (*2)1, = xx o *3(%).  defined by
*3(t) = x,(t) on (tQ-r,t,) and by Xj(t) = Xj(t) on (t,.tj +0] (or [t,«>)), isan
extension of x,(t) from [tQ-r, t,] to [tg-r,tj + 0] (or (tQ-r, <))

Proof. Itisclear that X3(t) is continuous on [tg-r,tj +0] (or (tg-r, <<

and satisfies (6.1) a.e. on [tg, tj] (or [tg, <»). #

The remarks in §6.2 tell us that not every solution on a finiteinterval
[tg-r,t, +0) can be extended to a larger interval. However, if t, is a ZAP,

Theorem 6.1 and Lemma 7.1 ensure that every solution on (tg-r,tJ has an

extension to a larger interval. This suggests that a solution of (6.1) on a finite interval

might be extended to {tg-r, 00) by employing a sequence of ZAPs.

§ 7.2 EXISTENCE AND UNIQUENESS

We know from §6.3 that, if  f(s)dse is bounded for some X >0, then

the smallness of 1D, 1Yl and IILjIl implies existence of at least one solution of

(6.1) with x,"=(pg on (tg-r, 00), butdoes not imply the uniqueness. With the
help of a sequence of ZAPs, however, the smallness of IIDIIl, HLII and lilili
guarantees existence and uniqueness of such a solution on [tg-r, <») without any

restriction on the size of f. This will be verified soon.

THEOREM 7.2 Suppose that {x,,:n”l) is a sequence of ZAPs of (6.1)

satisfying T« as n—» o® Then (6.1) with X, =ipg possesses a unique

solution on Itg-r, «0) forevery (tg, <pg)e [x, ®0)XC(-r) if and only if (6.1) with
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*1, = Vo possesses a unique solution on ltg-r.tn+J foreach integer n2 0 and
every (to.«Po)e [X,, ,) X C(-r), where To=x

Proof. For convenience, we symbolize the above conclusion as "(A) holds if
and only if (B) holds".

Suppose that (A) holds. Then, for each niO and every (tg,«Pg)e
@ *n+j) A e *jo~V 0 possesses a unique solution x(t) on
[tg-r, 00). Clearly, x(t) is also a solution of (6.1) with x,"=<pg on [tg-r,X,",]|
as X, , isa ZAP. We show that this solution is unique. If (6.1) has another
soluuon x,(t) on [tg-r, x,,A,] satisfying (x,),* = (pg and x"*x. then, by (A)
and Lemma 7.1, x,(t) can be extended to (tg-r, o0o). Since the solution of (6.1)

with x,*=«pg on [tg-r, oo) is unique, we must have x,(t) » x(t) on (tg-r, o0),

which is a contradiction. Hence (B) holds.
Assume that (B) holds. We verify that, for every (tg, gge [x, 00) x C(-r),

(6.1) with x,"=<pg possesses a unique solution on [tg-r, oo). Since x, T oo as
n-»o0o0, there is an integer m such that tg€ [x,,,X,,.,.,). Thus (B) implies that
(6.1) has a unique solution x,(t) on |tg -r, x".,.] satisfying (x,), = (pg. By (B)
again, (6.1) also has a unique solution Xj(t) on 1Ix,*, -r,x, jl such that
The application of induction produces a sequence (X, (t)l such

that, fw each ni 1, x,,.,.,(t) on [x,, r, XA ,J is the unique solution of (6.1)
x0) = Xi(t) for te ftg-r,x,", 1 and x(t) =

*,0i(t) foreach n2 1 andall le [x,.",,X, Then, by applying Lemma 7.1
repeatedly, we see that x(t) on [tg-r, o0o0) is a solution of (6.1) with x,~=9g.
This solution is also unique since any solution of (6.1) with x,"=«Pg on [tg-r, 00)

can yield a sequence (x(t)) and such a sequence is uniquely determined by

Remark. Theorem 7.2 converts the initial value problem on the half line

(tg - r, 00) into that on finite intervals. The latter is much easier to cope with by

grplying Hxed point theorems.
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THEOREM 7.3 Assume that (v n” 1) isa sequence of ZAPs of (6.1)

satisfying x,, T as n and that there is a number Xi 0 satisfying

Dt 'Ij (L, (s, ) + IL2(s..) | leNJeX(.-)ds < j

foreach n~O andall t€ Then (6.1) with possesses a unique

loluUonon (tQ-r, oo) forevery (to,(Po)e (x. «>)XC(-r).

Proof. From Theorem 7.2 we need only show that, for each n” 0 and every

(0> e Ix,. x,*,) XC(-r), (6.1) with x, =tp* possesses a unique solution on

Let (¥ = and <p*(t) = /0) and

h(t) = D(t,«p*)J - D(to.<po) + f (Li{s.(9%),) + Lis.<po(0)) + fls)}ds

Then h(t) iscontinuousand h(t,) =0. Since (6.1) with

*to “ % 'Sequivalent to the equation

Y = h() + Dt y) + ( (Li(s, y) +L2s, v ds 75)
0
with yA=0 through the relation

X(t) * 9%(t) + y(1), te [to-rx,"iJ,
we show that (7.5) with y,*=0 possesses a unique solution on Ito-r,x,,"iJ.
It is known that the set
S = lu€ C((to-r.x,,n,).aN). 0,
with the distance

HUi-Ujllj - sup{lu,(t) - Uz(t)le'r: tortSx, |

ISa complete metric space. By viewing the right hand side of (7.5) (with y =0) as

the definition of a mapping A on S, we have A:S-» S and
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L4y, - /4u2dls - sup|Wu,(t)toStSx,",)

S sup(lID(t.)ILII(u,),-(u2),llc™ + F(t,u,.u2): toStSx,,",J.

where

F(E U, U2) = L (LG NAU), = U2)VI+L2( (01)* - (02)) e

+1 *®ZAP, it follows that, for v< L
ILjiv, (u,)"- (U2ni S IL2(v, JlIsup{lu,(s)-u2(s)l: v S's5 min(v +o0, Xx,,,))

5 HL2(v..)ller*<"Sly, -U2IIS.

Thus

IWu, - 4u2lls S llu, - LIS X

/ d
sup 1D, I+ 1 (HLi(v, I+ N2(v. Jller>cMy e¢)dv : 10StS x,,* ,II
Lo

Since (6.5) implies the continuity of 1ID(t, JII on (x, <9, by (7.4), A is
contractive. Therefore. (7.5) with y"=0 possesses a unique solution on

[to-r.x,,~,J. «

Remark. The proof of Theorem 7.3 is similar to that of Theorem 6.1. But
now with the aid of a sequence of ZAPs, existence with uniqueness is obtained
without any order restriction on Xx.

Theorem 7.3 is not convenient from the practical point of view for we have to

check (7.4) on every interval Ix,,.x,,*,J. However, this defect can be compensated

by a little sacrifice, replacing (7.4) by a slightly stronger condition.

COROLLARY 7.4 Assume that (x,. n2 1) isa sequence of ZAPs of (6.1)

satisfying x,t ~ as n-> (00, and that there is a number X~ 0 satisfying
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D(L, )+ M+IMs. HllerolcV.-t)ds < 1 (7.6)

forall tA"T. Then, for every ao.<Po)e (T, «)x C(-r), (6.1) with x,"=«Po
possesses a unique solution on (to - r, <»).
Proof. Since (7.6) implies (7.4) on every (t,,x,”,), this is an immediate

consequence of Theorem 7.3.  #

COROLLARY 7.5 Assume that {x,,:nil) isa sequence of ZAPs of (6.1)

satisfying x*Too as n 00, and that there is a number X>0 satisfying

DI+ XU + 1Ljller) S 1, 7.7)

where 1Dl and 1INl are the suprema of 1ID(t, )l and HLi(, I (k = 1,2) on
(X, -). Then, forevery (to,«Po)e (x. -.) x C(-r), (6.1) with x,_"=g>0 possesses a

unique solutionon [tg -r,

Proof. This follows immediately from Corollary 7.4.  #

Through Corollaries 7.4 and 7.5 we have seen the significance of (x|,
which, with the smallness of 1ID(t, JII and LA, Il (k = 1. 2). guarantees both
existence and uniqueness of the solution of (6.1) with x,*=9qon (tQ-r, <.

If 1D, )l and LA, I (k = 1,2) are bounded but not small enough for the
above to hold, it is still possible to have existence with uniqueness provided that every

¢lmMm *>* enough. Let

IIDIj = sup(lID(t, Jllj: xSt<o0),
where, for each te (x, 00), ||D(t, )Ilj is defined as in the proof of Theorem 6.1

(p.79). We claim that IIDIlj is nondecreasing in 8. In fact, from (6.3) and the Riesz

theorem (Theorem 13.1 in (28]), we have

ID(,)Ij = Var,.jo|(4(t,.)) (7.8)
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for t2x and 82 0. Thus, foreach t2x. IID(t )llj is nondecreasing for 8 2 0. For
any 8,20 and 82> 8|, since

IIDIIj™ « sup|lID(t, te (x, 00)j
and HD(t. JI5*2 1D, JI5_ forevery t2x, we have D2 1D, I fora» t2x,
which implies 1IDIIj*2 HIg®

COROLLARY 7.6 Suppose that (x,| isas in Theorem 7.2, that 8 >0

satisfies

IDIj + 8(ILI + HLjll) ~ 1 (7.9)

and that

<S (7.10)
forevery integer n2 0. Then, forevery (tQ, «Po)e (X, <») x C(-r), (6.1) with

X. =« possesses a unique solution on [tg -r, 00).
Proof. We refer to the proof of Theorem 7.3 with A=0. Since Uy =0 for

every ue S, we actually have

ID(t,(u,),-(u2) )l A 11D (L)L, Alu,-ujllj

for te |to,x,”i). Then

A, - AU2I0 ~ IY - LI X

sup HD(t),.,,+ | {HLi(v, )l + 1HL2(v,))dv - toit5x,, +il

5 Hu-UjlisdIDIAMA + (A1 + "MM-

By (7.9) and (7.10), A iscontractiveon S. #

Remark. Foreach t2x, itfollows from (7.8) and (6.4) that
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G (r )I8 « 0- (7.11)
Suppose that either D(t, ,) = D(.) does not depend on t, or (7.11) holds uniformly
for te (t, <® Then IIDIlj-»0 as 6 0* Thus, provided that IIL,(t, I and
IL2(t, )II are bounded, there must be a 5 >0 satisfying (7.9). By Corollary 7.6,
(6.1) with X =(po always possesses a unique solution on (to -r, «) as long as

every " i s small enough.

As a special case of (6.2), we consider conditions for existence and
uniqueness that might be imposed on the equation (7.2). Here we assume that A(t) is
piecewise continuous and satisfies -r, SA(t) So for t~ x and some r, >0, and
that (x,,) is a sequence of ZAPs satisfying

@). x,—><® as n—» 0o

(O "2k-DA K10 %K A b2

(c) . eachinterval (Xj%j.i). Xj™.,] iscomposed of ZAPs;

(d) . A(t)>0 a.e. oneach interval (Xjj pXijjjl.

Then (7.2) is a neutral equation on every interval (X”"j. X”.,] and a mixed
equation on every [X.,,X2kJ. Since, foreach tS x, L3(t, x.*"”",,) involves the
values of Xon [t-r+A(),t+A(t)] c (t-r-X,t+ 0], we should replace the initial
date space C(-r) by C(-r-r,) if we view (7.2) as (6.2). If (7.2) is restricted to
t*2k-1" "2kI> however, (d) implies that C(-r) can still serve as the initial data space.
We add a subscript  to the elements in C(-r - r,) so as to distinguish them from
elements in C(-r). For instance, x,e C(-r) but x, e C(-r-r,).

From Theorem 7.2 and existence and uniqueness for neutral equations, we

derive that (7.2) with x,». =cpg" possesses a unique solution on [tp-r-r,, oo) for
(lo**Po-M 1V AN C('fmX) ifand only if (7.2) with X|"=<Pq possesses a
unique solution on (to-r,X2j for each kil and every
(10> (P ~ [t2k- 272k) ~» C(-r).
If 1ID(t, )l is bounded on the intervals Xj. X2jjJ, k = 1,2, =, we define
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DI = sup{lID(t, JII: te Dk-i* ki’

and
IIDIIN = sup{lID<t, te k™)

for 570. Similariy, we can define HLjlI* and HLjIIN

THEOREM 7.7 Equation (7.2) with =*o, possesses a unique
solutionon [tg-r-r,. <) forevery (tq (PQ)e |x, »0)x C(-r - r,) ifone of the
following conditions holds.

(i). Thereisa X" 0 satisfying

DG, I -}J {llLi(s, )1+ s, Jlc>2)er* 0ds < 1 (7.12)

J

foreach k™ 1 andall te O j, X\

(i) . Thereisa X>0 satisfying

DI + X>MLIL, + 1ILjlI"en) S 1 (7.13)
(iii) .Thereisa S>0 such that

DI~ + (LI + 1ILjig 5 1. xMir-XjA., < 5. kAL (7.14)

Proof. For every te [X* XjAl with A(t) > 0, [*(t, .) can be
decomposed as Lj(t,.) =F,(t,.)+Fjlt,.), where Fjd. ) only involves the
values of x(s) for s~ t and Fj(t, x, ) the values of x(s) for sit. Then it

follows from the Riesz theorem (Theorem 13.1 in [28]) that

HLjIE, M= HFGE I+ HFj(E I,

For X~ 0, since
HLi(t,.) + F,(t, I+ NR(t, )le™ 5 0L E)I + 1R I+ 1Rt llen

5 Lt I+ 1IL3(E, lle
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(7.12) implies (7.4) on every [tj*. TjklI- Similarly, we can replace (7.7) by
(7.13) , and (7.9) and (7.10) by (7.14). Then the conclusion follows from

Theorem 7.3 and Corollaries 7.5 and 7.6.  #
Some examples are given below to show the application of our theorems.

Example 7.4 The equation

AX(t)-ix(t-2)] = (@) +7 | x(s)ds (7.15)

with X;‘0 =) possesses a unique solution on (to 2, ®) for every (tgR)e
[X 00) x C(-2) (X5 0). Indeed, by letting x,, = (1/2 + 2n)ji, n= 1, 2. e and Xq=X,
we have t+cos”i x, foreach n2 1 andall tS X, since t+cos” is an increasing

function. Thus each x* isa ZAP and “ as n—»>w». Obviously,

ol + (gl + 1Ljlle”) S U3 + 1/3 + e/3e = 1
Then the conclusion follows from Qjrollary 7.5.

Example 7.5 Consider the equation

AX(E)-A(t)x(t-r)} = B,(t)x(t) + BjiOxft + Isin ti) + f(t), ai6)
where r > Ji. fe C([0, <® I*"). the matrices A(t), B,(t) and Bj(t) are

continuous, and

1B, + IBjit)! ~ p < Ji‘ 120.
Since 1IDIlj=0 for 5e (0,r) and np<I, thereisa 5e (n,r) such that

IIDII5 + SOILII + IILjl) 5 5p ~ 1
It is obvious that x,, =nil. n2 1, are ZAPs for t + Isintl is increasing. By Corollary

7.6, (7.16) with x,"=<po possesses a unique solutionon (tQ-r, o«) fw every
(to,<Po)€ [X <«0)xC(-r). We note that the size of IA(t)l is not relevant to existence

and uniqueness as long as r > it.
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Example 7.6 Consider the equation

t;ﬁi{‘x(t) = x(t - asint) (7.17)
on [0. oo), where a isa constant satisfying 0<aSe ’. We claim that (7.17) with
*t, “ *Po possesses a unique solution on [taa « for every (tg, ipg)€
[0, ~)xC(-a). Viewing (7.17) as (7.2), we have D =L, =0, L3(<p)><p(0), and
A(t)=-asint. Thus r=0 and (with the notation given before Theorem 7.7)
r, =0 =a. Let =nn for n=0, 1,2, .Then, foreach k™ 1, t+A(t) St for

1"2(k .i)>""Xk il A(t)>0 and t+ A(t)<ty( for te (t2k. t2k)- Hence
{x,) isa sequence of ZAPS satisfying the conditions (a)-(d). Let X=t. we have

oI~ + XL 1IN + 1LjIre*") A~ X'e = 1

Then Theorem 7.7 (ii) implies the truth of our claim.

§7.3 SIMPLE PROPERTIES

In this section, we discuss a few simple properties of the solutions of (6.1),

such as an exponential estimate, boundedness, and the existence of finite limits at

infmity.
Suppose that, for i =1,2 and some X.>0, IIns, Jlier*")ds is bounded
iai 12 T, and denote its least upper bound by M;j(X). Then, for a e (0, X) and

t”~ X an integration by parts leads to

i (s, Jlle«t 9ds = e & o< >>»(U lLj(v, jH dv
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=j s, Jller '>ds + eX “>j HLj(v. ™ *)dvds
S Mix)|l + e“(* ")ds|.
Thus
j L, Jle“s »ds S Ne«® IIMi(xi >=1.2. (7.18)

For a ~ X and i=1, 2, itis obvious that

i LG lie<s »ds i Mj(x)

for t"T. Therefore, forevery a>0 and i=1,2, | jiMs. jHeotsm)ds is bounded

for 12 X
Let S(X) stand for the set of continuous functions on [T, <. where the value
T~ X may vary according to the context, such that u(t)e'”~ is bounded for each

ue S(X). Assume that

ol + M,(X) + M2(X)eM < 1 (7.19)
for some X>0. Ifthe integral of f belongs to S(X,) forsome X € (0, X], then,

foreach tj~x, thereisaconstant F(t,) such that

fls)ds S F(ti)er<' “0, t/ti. (7.20)

In this case, we let

K = (L + [IDIIMI m(lIDIl + M,(X) + M2(X)e")) * (7.21)

and

a = infis: X, Ss5 X DI+ K" + (X(s)(M,(X) + M2(X)e*®) S1). (7.22)
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If f =0, however, we define a by the unique solution of the equation

G(a) DI + (X/a)(M,(>.) + Mj(X.)e") = 1 (7.23)
in (0,X) and K by

K = (L + IIDIDI 1- 1IDIl - M,(X) - M2(X)e“ }' (7.24)
instead of (7.21) and (7.22) since the values of a and K determined by (7.23)
and (7.24) are smaller than those given by (7.21) and (7.22).

THEOREM 7.8 Assume that (7.19) holds for some X >0 and that f
satisfies  (7.20) for some X e (0,X). Then, for any given (tg, (Pg)e

[x, «0)xC(-r), (6.1) withx,"=<pg possesses a unique solution x in the class S(X).
Moreover, this solution satisfies

lixll S K(l<Pdll + F(tg))e*<' ‘o a25)
for t2tg, where a and K are determined by (7.21) and (7.22), or by (7.23) and

(7.24) if f=0. Furthermore, if there is a sequence (x,,| of ZAPs as in Theorem 7.2,

then this solution is unique in C(|tg -1, <»), E%).

Proof. The proof of Theorem 6.2 can be adopted almost verbatim to show
existence and uniqueness in S(X). Below, we employ the successive approximations

method to establish the estimate (7.25). We define a sequence of functions |X|j(t)|

by

*o(t) = <po(0) + (*o)io = P
and

*k+iW = 90(0)-D(tg,(pg) + D(t,(x"),)

+ I (Li(s, (xk),) + Ljis, (xkf)+f(s)) ds , (Xk»i)i, = g k=0, 1,2,...
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for t7tQ. Since (6.1) and the integral equation obtained by integrating (6.1) from

tQ to t, both with x,||=<Poi are equivalent for tStQ, it is sufficient to show that

(x7\(t)) satisfies

lI(x~),1I S K(litpoll + F(to))e*<* ‘s> k = 0. 1.2,- (7.26)
for t~tg and that

e ™k >x/M(t) = x(to.<pg,fXt) (7.27)
uniformly for t on any finite interval within |tg-r, oo), where X(tg, ipg,0(t) stands

for the unique solution of (6.1) with x,"=<Pg in the class S(X). Then (7.25)
follows from (7.26) and (7.27).

For k=0. (7.26) is obvious from (7.20)-(7.22). Suppose that (7.26) holds

for some k2 0. Then, from the definition of x*”,(t), we obtain the estimate

IXA ()1 S (1 +IDilli(pgll + NDIK(ll«Pgll + F(tg))e*<' >+ F(tg)eM* ‘&

+ 1 (lIL|(s, I+ 12(s, Jle*o)K(ll<poll + F(to))c*<*  ds
o

S K(I(Pgll + F(tg))er< ' <dx

JlIDIN + K 'maxj 1, (1+ IIDil)e*<< m}+3 {HLi(s, Il + 1L2(. llecjec<™ -» dsj

aXOKdltpgll+Ffiglle*« *.)

for t"tg. If (1+IDIe*<» 1, by (7.18) and (7.22) we have

() S IIDI + K' + (Va)(M,(X) + M2(X)e") 5s1

Otherwise, by (7.18), (7.21) and (7.22),
0)(t) 5 IIDI+ K *(1+1IDI)e**» S+](Xya)-((X;a)-1)e‘<« 9)(M,(X) + M2(A.)e")

58+ IK'IDI - ((X/a)- (M,@El) + M2(X)e"))e** «m0
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5 8+ |K->(1 +lIDI) + lIDI + M{X) + Mj(X)e>" - 8)e*‘« 9

=8+ (L-Sle*<» §S 1
for In either case, we have derived (7.26) with k replaced by k + 1. By
induction, (7.26) holds for k=0, 1,2, e

Let x(tQ<R*0(t) = y(tQ<gQ O(t)e™ for tStqg-r. Then, restricted to the
space of bounded continuous functions on [t"-r, ~), y(t0,9(,, 0(0 is the unique

solution of the equation

y(0 = («Po(0)-D(to,tp™)e-* + D(t.eLy,)

+ | fls)dse™ + I |1,(s e”ryJd +Lz(s, ery«))er* Ods, thto, (7.28)

A‘O Jto
Xi, =PoC Foreach k~O, by putting x/(t) = y*(t)e® for t” to-r and
substituting it into (7.26), we know that y”\(t) is bounded by KOltpo» + F(to))e-

on llg “)* From the definition of {x"|, {y"| satisfies

yo(0 = e-Mtpo(0)+J f(s)ds|, (yo),, = <e™<o )
and
yk-H(t) = e-*l f(s)ds+| (Li(s,eMyk)b) + L:(s,eMykf))er*»ds
M JtO
+ (tPo(0) - D(t 0. Po)e- + D(t, eL(y").),

(yk+i)i, = <Poer*° k=0, 1,2, - (7.29)
for tSto -r. Then, by (7.19) and the Cauchy convergence principle, there is a

bounded emtinuous function y* on [to-r, 00) such that

"yk-y*'l =def sup(lyk(0-y*(t)l: t~to-r) ~ 0 (7.30)
as k -» 00. Let k->00 in (7.29). It follows from (7.30) that y*(t) is a bounded

solution of (7.28) with (y*),» = (Po*~""’~% Since such a solution of (7.28) is
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unique, we must have y*(t) = y(tQ, ipQ 00) for t2 Iq-r. Thus (7.27) holds

uniformly for t on any finite interval within |tg-r, <.

If f=0 and a and K are determined by (7.23) and (7.24) rather than
(7.21) and (7.22), then, in the induction step,

XM ()] A Kiltpglle*cex)X
DI + K >( HIDlle™>« »)+ [ {IILi(s, )l + IMs. lte )= *>ds|
1 ) |

=fof ORKI(nlle*<" *==>

for t~ tg and
O ~ o + (X/a)(M,(X) + MjfXle")

+ (K'(I+11D11) - ((Xya)-1)(M,(X) + M2(X)e")je*<*« > = 1
Thus (7.25), with F(tg) =0, holds again.
If there is a sequence |x,,) of ZAPs as in Theorem 7.2, then the uniqueness of

the solution in C([tg-r, <, (E" follows from (7.19) and Theorem 7.3. #

The next result deals with boundedeness, as well as the existence of finite limits

at infinity, of the solutions.

THEOREM 7.9 Assume that

IEX [HL,(s, JI>1IL7s, Jlyds < 1 (7.31)

and that the integral of f from x to t is bounded for t~x. Then, for every

(tg, PP € [x, =) XC(-r), (6.1) with X,» =g possesses a unique solution in the

space of bounded continuous functions on [tg-r, <&} If, in addition, the integral of f

cm [X o0) is convergent, DIl < 1/3, and there isa Dg such that
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lim, JID(t,.)- Ddl = 0. (7.32)
then every bounded solution of (6.1) on ItQ-r, oo) has a finite limit in as
t -» 0o. Moreover, such limits exhaust If there is a sequence {t*| of ZAPs as in

Theorem 7.2, then uniqueness also holds in C(ItQ - r, «®), ®hi-
proof. Forany (tqg (Pg)e (x, 00) x C(-r), the existence, as well as

uniqueness, of the bounded solution of (6.1) on [tQ-r, oo) follows from (7.31),

the boundedness of f(s)ds, and the proof of Theorem 6.2 with the trivial

modification needed for X=0.

Suppose that f[s)ds is convergent and that D (t,.) satisfies IIDIl < 1/3 and

(7.32). Forany tStg +r andany 06 |-r, 0], the integration of (6.1) from t+6

to t yields

X(t) - x(t +0)

D(t, xi) - D(t + 0, x,20) + | {Li(s, X) + L2(s, x*) + f(s)l ds

= D(t, X-x(t) + D(t+0, x(t+0) - X"0) + D(t, IXx(t) - x(t + 0))

+(0(t, DeD(t+0,))x(t+0) + 1 {Li(s, X)+ L7s, X¥)+f[s))ds.  (7.33)
[1%e

We introduce the following functions;

U@t) = max{Ix(t) - x(t + 01 -rS0i0), W(t) = max|U(t+0): -rS0 50|,

and

V() = lix,llsup{ID(t,1)-D(t+ 0,I)I: -rS0SO|

+ maxil I {Li(s, x,) + L2(s, x*) +f(s)}ds: -rS0 So|.
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in order to show that x(t) has a finite limit in . f

solution of (6.1), then U(t) and W(t) are bounded and, by (7.31), (7.32) and the
convergence of the integral of f on (t, ~), V() 0 as t” By the definition of

W, thereisa yiO such that

#"t-»00W) = lim,. »w(t) =r
Moreover, from (7.33) we derive
U(t) S 3IIDIW({M) + V(t), t"to +r. (7.34)

Then, by letting t"«», it follows from (7.34) that y5 3lIDII7. We must have y=0

as lIDil < 1/3. Now forany p >0, replacing 0 by p in (7.33), we obtain

1 - HDI)ix(t) - x(t +p)l S HDIKU(E) + U(t + p)) + ILKL 1) - D(t + p, DLIX(t + p)l

+ ”f |Li(s, x,) +L2(s, x“) +f[s))ds ,
which implies

mm'nN«I>t(t) e x(t +p)l = 0
uniformly for piO. Thus limj_~x(t) exists by the Cauchy convergence principle.
Since (7.32) and IIDIl < /3 imply 1IDdll S [IDII < 1/3, then IDg(I)l i NIDILII <

1/3. If X isaneigenvalue of Dg(1) and Cq is an eigenvector with IGjl= 1, we have

X = IXegl = IDo()Col ~ ID((DLICOI < 1/3.
which implies det (1- DAd))* 0. Forany a e , we denote (1- Do(l))a by P

and ctxisider the equation

X(t) = P + D(txO - | |Li(s, x)+ L2(s, x*)+f(s)}ds (7.35)

for tAT. Since (7.31) holds, by applying the contraction mapping principle we can
show that, for every (to* <Po)« 1N ~) x C(-r) with ipo(0)-0, (7.35) with

*Fo has a unique bounded solution on [tQ-r, ~). Since each bounded



solution of (7.3S) is also a solution of (6.1) and every bounded solution of (6.1)
has a finite limit at infinity, every bounded solution of (7.35) has a finite limit at
infinity. Suppose such a solution satisfies x(tf) S as t-—»<» Then the equality

5«D ()5 + P follows from (7.35) by letting t —x<> Thus

8 = (I-Do(D)'p = a.
Hence, forevery ae (6.1) has asolution tendingto a as t- m».
Suppose that (t*| is a sequence of ZAPs as in Theorem 7.2. Since (7.31)
implies (7.6) with X =0, the uniqueness in C(|tg-r, <»), C") is an immediate

consequence of Corollary 7.4.  #

Remark. Forany M >0, Theorem 7.9 also implies that all of the bounded

solutions of (6.1) with *"=<Po’ I* C(-f) with litpgll » M,

have a common bound. Indeed, denoting the unique bounded solution by
X(tQ, K its bound by IlIxltg, (Pg. OH, and the bound of the integral of f from t

to t by F, we see that

Ix(tg,«Pg,0(0t i (1 +IDIDItPgll + NDIl.Ix(t g, tPg, CH

of If(s)dsu [IILi($, J-i-HLZ(s, )l}dsHx(to,(Po.Oll
0 (e}

A (1 £ 1IDHM + 2F-t- (lini > | {lILi(s, JH + 1L2(s, .)H| ds! 1Ix(to, (po, CH

for tStg Then

HX(to,<P0,OH S jI-11D I11-j {lILi(s.)H + L2, )Idsj {1 + HDHM+ 2F)

forall (tQ9g)€ [x, <») x C(-r) with litpgll ~ M. In this sense, we may say that the
solutions of (6.1) are bounded uniformly in (tg,tpg) if there is a sequence (t,) as

in Theorem 7.2.
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Wc notice that Theorem 7.9 applies to the homogeneous equation (6.2) when

f=0. From the above proof and the remark, we obtain a further conclusion for (6.2).

COROLLARY 7.10 Assume that (7.31) holds and that (x*) is as in
Theorem 7.2. Then (6.2) is uniformly stable but not asymptotically stable.

Proof. Since the uniform stability of (6.2) is equivalent to the uniform
boundedness of the solutions of (6.2) in the above-mentioned sense, by Theorem 7.9
and its remark (6.2) is uniformly stable. Forany P#0 and(to,tPo)e [t, «0)XC(-r)
'wih <P)(0) =0, (7.31) implies that the equation

x(t) = p + DO - | (L,(s, xJ + Ljjs, x*))ds (7.36)

*(i~ P ®unique bounded solution on (tg-r, 00), which isalso a

solution of (6.2). Since P~ 0 implies that the solution does not tend to zero as

t-» 0o, (6.2) is not asymptotically stable.  #
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PART THREE
ASYMPTOTIC SOLUTIONS
AND ASYMPTOTIC
REPRESENTATION OF SOLUTIONS

In the theory of asymptotic solutions of linear differential equations, there are
two classes of equations which are fundamental and much studied.

One is the asymptotically diagonal equation

x(V) = IA®D) + R() X(O). (1
where A = dg[X.,, X]j, *, X/] is a diagonal matrix and R an N x N matrix of
locally integrable functions from (t, -0) to I. In the various available results for

asymptotic solutions of (1*) (see, for example. Chapter 1 in Eastham (12)), it is

commonly assumed that R(t) is in some sense small as t —«o, and it is expected that

there exist N independent solutions of (1*) with asymptotic forms

*n@t) = (e, +o(l)jcxa | X,(s)ds , n=1,2,- - N, 2%

where e" is the nth coordinate vector and X, -~ as t-»<».

Another is the asymptotically autonomous retarded functional differential
equation
Ax(t) = L(XO + F(t, xi). (3%

where L and, for each 121, F(t,.) are bounded linear operators from
C((-r, 0], I to and 1R, Il is small as t —»«0. A typical result says that, if

A is aroot of the characteristic equation

detA(X) = 0 with AX) = Xl - L(e") (4%)
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satisfying certain conditions (see the details in Hale [16]), then (3*) has a solution

with the form

X(t) = [v +0(1)) & +x) (5%)
»* t —»«0, where ve is a constant vector depending on x and s(t) is small and
can be expressed in some way. Cooke [7] extended this result to a broader class of
equations including a term  A(t) (x(t - r(t)) - x(t - r')), where A(t) isabounded N x N
matrix. r(t) e C(|x, »0), (0, r]), r'e [0, rj, and r(t) -r' issmall as t -¢ <»

One of the special cases of (3*) is the equation

ex(t) = Ax(®) +F(t, X). (6%)
where A =dglX,,, Xj, e, Xfj] isa constant diagonal matrix and 1F(t, )l is small as
t-* 0o0. Then (6*) has N solutions of the form (5*%) which, in this case, are
consistent with the forms (2*). We refer to Haddock and Sacker |15]. Arino and
Gydri [2], and Ai 11) for detailed representations of such solutions.

A common feature of the results for the two classes of equations is that, when
the equation is in some sense asymptotic to a simpler equation, it has solutions
asymptotic to those of the simpler one. On the other hand, the essential difference due
to the infinite dimension of the solution space of (3*) seems not clearly emphasized in
the above references. Since the solution space of (1*) is N dimensional, it is well
represented by the N solutions in (2*). However, (6*) has infinitely many solutions
independent of those N solutions of the form (2*) and their asymptotic behaviour
draws our attention.

In a recent paper, Cassell and Hou [4] considered the equation

AX(E) = A)x() + F(t, X, (7

which can be viewed as a generalisation of both (1*) and (6*). Under appropriate
conditions, they not only proved the existence of the N solutions in (2*) but also

pointed out the order of smallness of the solutions independent of those in  (2*) as
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I -» »». Moreover, successive approximations of , N« 1,2 % N, in (2*) were
also given when 1IF(, )il e LPd. <») forsome pe [1.~).
In this pan of the thesis, we shall investigate the asymptotic behaviour of

solutions of the equation

Ax(t) - D(t, xO) = A(t) x(t) + Li(t, X) + L2(t, x'), (8%
where A(t) 1ISan N x N matrix of locally integrable functions and the mappings
D(t..), L,(t,.) and I7it..) are as in Part Il (p.76). We assume throughout the whole
pan that existence and uniqueness of the solution of (8*) with x\ =tp" on [T-r, 00)
holdforevery T”~x and tp"e C. We also assume that (t,j|. t"-»«» as k
is a sequence of ZAPs of (8%*).

Under some smallness conditions on D(t, .). L,(t,.) and 2*(1.). we shall
show that (8*) has N independent solutions x,(t), Xjit). « x(t) which

asymptotically approach, or behave like, those of the equation

Ax (1) = At) x(t) (9%)
as t”~ oo Further, we shall indicate the order of smallness of the solutions
independent of the N special solutions.

Three chapters (8-10) are included in this part. In Chapter 8, we study the

equation

(X (1) = Ax(t-r(t)) (10%)
as a special case of (8*). where A isan N x N constant matrix and r(t). not
necessarily non-negative as some previous work has required (refer to 88.1), is small at
infinity. We obtain a representation of the N special solutions of (10*) intcimsof A
and r(t).

Chapter 9 deals with the special case of (8*) when A(t) = A(t) is diagonal.
Results parallel to those in [4] will be obtained.
In Chapter 10, we assume that A(t) is bounded. We shall prove that a matrix

solution
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= (x,(t, to). Xj(t.to), = Xfj(t.to))
composed of N independent solutions XpXj. s, x,., exists and behaves like that of
(9*), though we can not give an explicit representation.

Since (10*) can be viewed as (8*) with

L.(t. X)) + Lj(t, x*) = AX(t-r(1) - x(1)
and the etjuations in Chapters 9 and 10 do not cover such a case, we shall point out the

possibility of extending the results of Chapters 8-10 to a broader class of equations in

the conclusion of this thesis.
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CHAPTER 8
ASYMPTOTIC SOLUTIONS OF DIFFERENTIAL
EQUATIONS WITH A SMALL DEVIATION

581 INTRODUCTION

In this chapter, we investigate the asymptotic behaviour of solutions of the

equation

~x(t) = Ax(t-r(t). (8.2)
where A isan N x N constant matrix, r(t) e C([t, «0), [-0, p)) for some constants
0>0 and p>0, and r(t) -¢ 0 as t~ oo We stress that the condition r(t) 2 0 in

the references quoted below is not required here. The results for (8.1) can be extended

to the scalar equation

Ax(t) = a(t) x(t) + b(t) (x(t - r(1)) - x(t)). (8.2)
where a(t) and b(t) are locally integrable functions, as well as to some other vector
equations.

(Ztooke [6] studied the particular case (8.2) when a(t) = b(t) = a is a constant,

and showed that every solution of (8.2) has the asymptotic form

X(t) = jexpj- at +a"j* r(s) dsjj (c +o(l)) (8.3)

as t-» o0 if r(t)e [0, p], r(t) -» 0 as t-» oo, and either r(t) e LP(x, 00) fo- some
pe (1,2) with r'(t) bounded or r(t) e L(x,-0). Kato [20] generalised the result to
(8.1) when r(t) e [0, p], and either r(t) e L(x, 00) or r(t) e L™(x, 00) and, in the
latter case, r(t) is either Lipschitzian or monotone for large t. This is not entirely

satisfactory as it does not cover the case of p > 2. Moreover, when ¢ =0 in (8.3),
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the order of smallness of x(t) is not clear enough. Further, the restriction r(t) 2 0 can
be eliminated. Our purpose is to try to son out these problems for (8.1) and (8.2).
In this chapter, we replace r by p in the usual definition of the space C, i.e.

C»C([-p, 0], (B®), in order to avoid any confusion with r(t).

§8.2 MAIN RESULTS

The usual way to prove that solutions of an equation have a certain asymptotic
form is to change the equation to one whose solutions have finite limits in (E® as

t oo As we shall see later, (8.1) can be transformed to an equation of the form

AXx(t) = F(O)x(t) + G(t)(x(t-r(t))-x(t)), (8.4)
where F(t) e L(x, 00), G(t) e L“(x, « and both are N x N matrices. Accordingly,

we give a result for (8.4) before we tackle (8.1).

Forany pe |1,H and any fe LP(x, «), we denote the norm of f by 1
or, to mark the relevance of [T, <&, by IIflip(T, «)* Since r(t) -» 0 as t" «, for

any T 2 x the function

e(T) = sup{ Ir®)l: t2T | (8.5)

tends to zeroas T -

THEOREM 81 Assume that F(t) € L(x,<» G(t)e L~(x, «3, and

r(t) »0 as t—>00. Then, for T S x satisfying

HFIi(T, 0o) + 2 e(T) IIGILCT, 00) < i, (8.6)

(8.4) has N solutionson [T-r, 00) with the forms
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M) = +o(l), n=1,2 ¢, N, 87
*s t-» 0o, where e, isthe nth coordinate vector. Furthermore, every solution of

(8.4) has the asymptotic representation

x(t) = X(t)c + o(e- »). (8.8)
where  X(t) = (Xj(t), Xj(t),  Xfj(t)), ce is a constant depending on  x, and

P 2 0 is arbitrary.

The proofof Theorem 8.1 is left to § 8.3. With the aid of Theorem 8.1, we can

prove the following result for (8.1). Let

no(t) = A, Tk+i(t) = AK(s)ds|, k=0, 1,2,e00 8.9)

for t~t and let all of them vanish for t<T.

THEOREM 8.2 Assume that r(t)-» 0 as t->«0 and llr,lle LP(x, <9 for
some pe(l,~). Then, forsufficiently large T " x, (8.1) has N solutions on

(T -r, 00) with the forms

Xn(t) tIM(s)ds }(en +o(l)), n«l, 2, -- N, (8.10)

as t-» oo, where M satisfies M<pSM + 1 and ti,,(t) isdetermined by (8.9).
Moreover, every solution of (8.1) has the form (8.8) as t-k oo. where X(t) is

composed of the N solutions in (8.10).

Proof. Since each Ti(t) in (8.9) can be expanded as a power series in A

with scalar functions as coefficients, they all commute with A and with each other. It

is clear from (8.9) that each TJ|j(t) is bounded. Let us first show that

IKfik - fik i)ill e LP<“>(x, 00) (8.11)
for k « 1, 2, e, where p(k) « max(l, pk ’) and as usual, (fi*- .,),(6)=
(fik-fik.i)(t + 6)for (-p,0] and ILIl is the norm in C. From (8.9) we have
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ITLi(t) - noft)l = IA (e-MO -1)1s CI Ir(t)l
for some c, >0. Then, by the assumptionon r(t), 1 1 ( 1 ) , LPit, s ie.,

(8.11) holds for k= 1. If (8.11) holds for k, then

hk*i(t)-Tik(t)] = |Alexpli Tik{s)ds|-exp|| ilk-i(s)dsj

A cjl  (nkCsl-Tik.iisljdsl ~ C2]f(t)].Ihlk-Tik-ill |t.p.i+0]

for some Cz2 >0, where

IITIk-nk. ill(i.p,tto] = max(l{nk-nkiXs)|]: S€ (t-p,t + 0)).
Since li(Tk - k. i)ll e LP«”, ~) implies "ilk - »lk. illi,.,m,+m e LP“°!l « for
any £>0 and r" >0, it follows that (", - ")l € *'>(x, 0«). Then we
have proved (8.11) for k=1, 2. o=

By transforming (8.1) with

X() = ex[J  dm(s)ds y(t). (8.12)

we obtain

¢y (0 = (tIM.pi(t) - tiM() y(t) + tim & t(t) (y(t - (1)) - y(1)). (8.13)
Since (MMM -T)Ne L(t,<») and N A, (t) is bounded, by Theorem 8.1 and (8.12)

the proofof the theorem is complete.  #

Remark (i). From Theorem 8.1 and the proof of Theorem 8.2, we can give a
condition in terms of the value T ”~ t for which the N solutions of (8.1) in (8.10)

existon [T-r, a®. In fact, forany T/t + Mp, we let GT) = 1Al and

&+i(T) = 1Alexp(e(T-Mp)Ck(T)), k=0, I,---, M. (8.14)
Then, from (8.9) and (8.14), HnolL = Co(T) and
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inik*iIL(T-(M-k)p,«.) = sup(JTiksi(t)]: tST-(M-k)p| S Ck*i(T)

for k=0, 1,— M, where e(t) is given by (8.5). Since (8.14) implies

co(T) & ci(T) i - S em+i(T)

and forany a. pe (
le* - ePi ~ 'P'lla - pi.
for 12 T we have

hM +i(t)-tIM(t)] S IAIeI(MMTj|  (tiM(s)-TIM.i(s))ds

A CMH(T) I r®)LITIM ='Hm - it p.i +oi
A Cm +i(T) Ir@®)] em (T) lirlin.p.i¢ oillMM ni 8 Hm n2Htu2p. i+ 20]
S (cm +i(T) IFlIG,. p,,+0)FIItIM -1 - AiM n zlln - 2p. 1+ 20]
s (cm +i(T) (M p. 1+ (M lo])“ 1M - violili-Mp. 1 Mo]
S (CM*i(T)IrN],.Mp..*Mol)* ', (8.15)
By (8.14), (8.15) and (8.6), TAt-t-Mr is asuitable value if it salsfies
(cm 4 (IWli..Mp..*Moi)” A'dt + 2e(T)cM-i(T) < 1 (8.16)
Remark (ii). For any panicular number pe [l,<x>), we can further simplify
the expressions in (8.10). If p=1, then M =0 and
Xpjj* Ym(s) dsj = e,

If p€ (1, 2], then M= 1 and ri,(t) = Ae' =A-A~"t) +L, where we let L

stand for any function in L(T, 00), not necessarily the same at each appearance. Hence
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(exd | iii(s)dsI{(fruri)) = risyasll (1+0(1)) B

for some constant matrix B. In this case, we can replace (8.10) by

X,(t) = jexp|At-AMNIN r(s)dsjj(e,, +0o(l)). n» 1,2, ees N. (8.17)

If p€ (2,3). then M=2 and

Ti2(t) = Aext] Ir Ae"<‘>ds\
A+AN] e ds+2'A N e-"f)dsj +L

= A-AN) =AM 1(s) ds + AANNO) + L

Thus we can replace (8.10) by
Xn(t) = lexp At- AN ds|r(s) - "Af2(s) + ad i(u)duj (e, +o(),

n=1,2, (8.18)

Step by step we can simplify (8.10) for M = 3,4, =
Remark (iii). Kato [20] requires O0Sr(t) Sp while we require that
-0Sr(t)5p, r(t)-»0 as t-»«», and (8.1) hasasequence (t,) of ZAPs. Setting
aside this difference, we compare our condition and result with Kato's (sec $ 8.1)
when p satisfies 1Sp S2 From the proof of Theorem 8.2 we can sec that the
condition llr,lle L(x, «0) can be replaced by r(t)€ L(t, «0) if p= 1 Inthiscase,our
condition coincides with Kato's. Since r(t) is bounded, the condition lIr,Ile LP(t,00)
for some p in (1,2) implies llrjie LA(t, «). For this case, our conditions and
Kato's are independent; the condition lIrll e L (t, ~) always implies r(t)e L"x, <5

(and is equivalent to it when r(t) is monotone), but it is unrelated to any Lipschitz
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condition. When p isin |1,2], Kato's result states that every solution of (8.1) has
the form
x(t) = jexpjAt- r(s)dsj (c+o(l)) (8.19)

as t tends to inOnity. When ¢ =0, (8.19) does not give the order of smallness of

x(t) unlike our result.

§8.3 THE PR(X)F OF THEOREM 8.1

(Consider the integral equation

x(H) tF($)x(s) + G(s)(X(s - () - X(s))) ds (8.20)

for tSx andeach ke {1,2,—N).

LEMMA 8.3 Assume that F(t), G(t) and r(t) satisfy the conditions of
Theorem 8.1 and that T At satisfies (8.6). Then, foreach k in (1,2,-~N),
(8.20) has a solution on [T - p, <9 satisfying x,j(t) = X|j(T) for te (T-p, T] and
x\t) =eM+0o(l) as t-»00.

Proof. Let Sc C((T-p, < 1) suchthateach xe S satisfies x(t) = x(T)
for te (T-p, T], Xx€ L~(T,~), and x(t - r(t)) - x(t) € L(T, ®). Define

1% = maxillxIL Ix(t-r<t))-x(t)|dt!

Then S with the norm ILIL is a Banach space. Let k in (1,2, -~N) be fixed.
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Forany x in S, we define 4x(t) by the right hand side of (8.20) for t2 T
and i4x(t) =i4x(T) for te (T-p, T). Then /4x(t) is continuous and bounded. Put

t* = max(t, T). Then, for t~ T, we have

[idx(t - r(t) --4x(@)] = | (F(s)x(s) + G(sXx(s - r(s)) - x(s))| ds

5 1 |F(s)x(s) + G(sXx(s - i(s)) - x(s))|ds e UJ. ~).

Jxorr
Thus A maps S into itself.
Let u=X -X and %= -4x2 for xi, Xe S. Then, for t~ T,

[X(0] =13 |F(s)u(s) + G(sXu(s - Its)) - u(s))| ds

5 FIIL(T, ~) iiulL + IGILCr, o) Hilo (8.21)

and

X (t-r(t)-X (1)l (F(s)u(s) + G(sXu(s - 1(s)) - u(s))) ds

IF(s)u(s) + G(s)(u(s - r(s)) - u(s))l ds .

Hence, by defining the above integrand to be zero for s< T, we obtain

IIXllo \ IF(s + t)u(s -t-0) -hG(s + tXu(s + 1-r(s + D) - u(s + )| ds

S 2e(T)J 1F(s) u(s) +G(s) (u(s - r(s)) - u(s)X ds

S 2e(M{IIFII(T, oo) llulL + 1HGIIJT, oo) Hullo). (8.22)

Thus
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lIxi - X2IL
IWKxi - /4x2IL ~ (IIFIfT, ~), IIGILfr. 0o)) (8.21%)
11X - X210
and
11X - XL
IWx, - AX2lI0 S 2£(T) (IIFIiCr. 00), IIGII(T, ®RY (8.22%)
11X] - X2110
Define U and V as follows:
IIFIIIfT,@®) IIGIUT,@®) im
U = .V =
2e(T) HRIi(T, ®®)2£(T) IK)IL(T, @) 1.

Then, from (8.21*) and (8.22*), we derive

IW"x, - /4"x2IL ~ (IFICT, 00y, HGIL(T,«)) U™+ >y lIxi - Xalls, (8.23a)

IL4"xi - A"x2llo S 2£(T) (IIPIiCT, 00), IGILfT, <)) U" mly lIx, - Xlls  (8.23b)
for n=1,2, Since (8.6) ensures that the eigenvalues of U satisfy jijl < 1,

i=1,2, which implies U" -» 0 as n ->»0, there isan m” 1 such that

max(l,2e(T)I(NFIi(T,00),IGH_(T,~))u™ ’V < 1
Then it follows from (8.23) that on S is contractive. By a contraction mapping
principle (see Theorem 5.2.1 in Smart [35]), (8.20) has a solution x(t) in S and
(8.20) itselfimplies Xjt)=er+o(l) as t-»«® #

LEMMA 8.4 Assume that the following conditions hold:

(i) a: [tfl, “) -»(0, 1) is decreasing,

(i) f€ C([tQ“). [0, <®) and there isa |t,), t,-»<«> as n—»d® such
that, foreach t,,~tg-*-p andall t€ [to+p.t,],

f(t) ~ a(t)max(f(s): t-pSsSt,,).

Then, for trtg-t-p, f(t) satisfies
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f(t) S max(f(s): to*sSto+p)cxp|j “~na(s)ds| (8.24)
Proof. Forany +p andany te [tg+p.t,), (i) and (ii) imply that

f(t) S max{f(s): tSsSt, | S a(t) max{f(s): t-pSsSt,,).

Suppose max|f(s): t-pSsSt~|>0. Then, since a(t)<l, we must have

max{f(s): tSsSt~l < max{f(s): t-pisSt,),

ilom which it follows that

max(f(s): t-pisSt,) = max{f(s): t-p~sSt|. (8.25)
Equality  (8.25) is obvious if max|f(s); t-pSsSt”~)=0. Hence, for

te [tg + p.t,l we obtain

f(t) S a(t) max{f(s): t-p~s~t). (8.26)
Since t,, 00 as n—»o0o, (8.26) actually holds for t2 tg+ p. Again, applying the

same reasoning as above to (8.26), we obtain

max(f(s): tSsSt +p) S a(t) max(f(s): t-p~rst| (8.27)
for 12tg+p. Aseach 12 tg-fp hasa unique represenution t=t, +kp, where
t,e [tg, tg-t-p) and k2 1 isan integer,on applying (8.27) to (8.26) repeatedly,

we have

f(t) S a(t 1+ kp) max(f(ti+kp +s): -p~s20)

k
S a(tl+ip) max{ftti+p +s): -p~s~0)

S max(f(s): toSsSto+2p)exp! A Ina(ti+ip)
li>1

5 max(f(s): to” sSto+p)expl | -1dna(s) ds
U. P
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S max|f(s): to SsSto +p)exp la(s) ds |

Thus (8.24) holds for ttQ +p. #

With the help of Lemmas 8.3 and 8.4 and an adaptation of the method used

in Driver (10], we now complete the proof of Theorem 8.1.

Proof of Theorem 8.1. Since each solution of (8.20) is also a solution of
(8.4), by Lemma 8.3 (8.4) has N solutions X,(t), n =1, 2, e N, of the form
(8.7) on [T -p, 00) and

X() = (X,(1), X2(1), *=+XN(1)
is a matrix solution of (8.4). The matrix X'’(t) exists for large t2T and X ’(t) —I
as t—»oo since X(t) »l as t—00 Without loss of generality, we assume that
X '(t) is bounded on some interval [T, -2p,00)c [T-p, 00) and x(t) = X(t)y(t) for

tA"Tj-2p. Then, by substitution, (8.4) is changed to

(eX(1) y(t) + X(®)Jy(t) = FOXOy() +G() (X(t - itt))y(t - 1)) - XOy(1)).

Since X(t) satisfies

AX() = F(t) X(t) + G (X(t-r(®) - X(1)),

by substitution again we obtain
~y(t) = X()G )X (t-r(t) (y(t-t(t)-y(1) (8.28)
for t~T,-p. Integration of (8.28) from t to t-r(t) leads to
z(t) *(S)G(S)X(s - 1(5))z(s) ds (8.29)
for t"T,, where z(t) = y(t-r(t)) - y(t). Put

a(t) = HIX'GIIXIU(),
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where E(t) is given by (8.5). Since a(t) -10ast-»ooandTj2Tcanbeas large
as we choose, we also assume a(t) < 1 for tiT,. We recall that the existence of
as n —>00, a sequence of ZAPs of the discussed equation, is assumed.

Thus, forany t,,ST, and t€ IT,,t,), (8.29) implies

Izl i a(tymaxllz(s)l: t-pSsSt,,|. (8.30)

Then the application of Lemma 8.4 yields

Iz(t)l S CCp la(s) ds (8.31)

fot tST,+ p, where Gq=max|lz(s)l: T, SsST, +p). Hence, forany 5>0 and
t2T,+p, (8.28) and (8.31) imply

ly+5) -y $ conx'Guaxn| dslexpli p >na(d) dd

As a(t) isdecreasing and a(t) < 1,

12(0) dO
i won i pand©

lexplj p'ina(0) "Op'Ina(Ti +p)}ds

i p(-Ina(Ti + p))-ex p 'Ina(0) dOlI

Thus

ly(t+8)-y®) S c®*p|j P'a(d)dd (8.32)
foi 12T, p and 8>0, where

Cl = cop(- Ina(Ti + p))-'IIX 'GHIIXIL.
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Since a(t)i 0 as t-» oo, forany Pi 0, we have

expjj p'Ina(d)ddj = ole Py (8.33)

o* *~* e Then, by (8.32), (8.33) and the Cauchy convergence principle, there is a
c€ such that y(t) -»c as t-4 <& Letting 5 00 in (8.32) and taking (8.33)

into account, we obtain

ly(t)-c| = oieP*)
as t->00, where p”~ 0 can be arbitrary. Therefore,

x(t) = X(tXy(t)-c) + X(t)c = X(t)c +o(e
i.e., every solution of (8.4) has the form (8.8). #

§8.4 EXTENSION

As a consequence of Theorem 8.1 and the proof of Theorem 8.2, some results
for the scalar equation (8.2) can be easily obtained. Let
bo(t) = b(t), bk(t) = b(t)explj* {bk.i(s)+ a(s) - b(s))ds| k= 1,2, -- (8.34)

for 12 T and let a(t), b(t) and all b/\(t) be zero for t<x.

COROLLARY 8.5 Assume that a(t), b(t) e L“(x, 00), r(t) -» 0 as t-¢ oo,
and lIr,Ile LP(x,00) forsome pe [l,00). Then, for sufficiently large T2x, (8.2)

has a solution on (T - p, 00) with the form
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X(@t) = (exJl (bM(s) +a(s)-b(s))ds )(1+0(1)) (8.35)

as t where M satisfies M <pS M+ 1 and b, (t) isdetennined by (8.34).

Mmeover, every solution of (8.2) has the form

X(t) = X(t)c + ofe- P). (8.36)
where X(t) is given by (8.35), c e | dependson x, and is arbitrary.

The proof erf Corollary 8.5 is parallel to that of Theorem 8.2.
When the condition a(t)e L“(t,~) docs not hold, the conclusion of Corollary
8.5 may not be true. However, it is still possible to determine the asymptotic behaviour

of the solutions of (8.2) under some other conditions.

COROLLARY 8.6 Assume that b(t) and a(s)ds arein L*“(t, <),

*t) 0 as t—»oo, and llr,lle LP(t, o») for some pe |L<»>). Then, for sufficiently
large T~ x, (8.2) has asolutionon IT -r, «g) with the form

X(t) = (exp i(s) +a(s)- b(s))ds i(1 +o(l)) (8.37)

as t-» o> where M satisfies M<pSM + 1 andb”™” ,(t) is given by (8.35).

Further, every soludon of (8.2) has the asymptotic form

X(® = XOc+f g as)ds - ptjj. (8.38)

where ce d dependson x and P~ 0 is arbitrary.

Proof. Let

Then (8.2) is changed to
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~y(t) = a®y() +b(®) (y(t- (1) - y(1)). (8.39)
where a = b)-bo and b =bi. Imitating (8.34), we define
bo(t) = b(t), bk(t) « b(t)exp]|| (bk.i(s)+a(s)-b(s))ds| k=1, 2, eee (8.40)

Since a(s) and b(s) are bounded, by Corollary 8.5 (8.39) has a solution of the form

Y(t) = \exp| I (bM(s) +a(s) -b(s))ds|(1+0(1)) (8.41)
as t—»00 and every solution of (8.39) has the asymptotic form

y(t) = Y (t)c+0(6 7).

Then, by the transformation from (8.2) to (8.39), we only need show that

bk(t) + a(t) - b(t) = bk™*i(t) - b(t) (8.42)
for k= M. Obviously, (8.42) holds for k =0. If (8.42) holds for k, then, from
(8.39), (8.40) and (8.34),

bkt i(t) +a(t) «b() = b(t)expj |  (bk(s) + a(s) - b(s)) ds - bt)

b()jexpl|l a(s)dsjjexpj|  (bk™i(s)-b(s))ds -b(t)

bk +2(t)-b(t).
By induction, (8.42) holds forall k” 0 and thus for k=M. #

COROLLARY 8.7 Assume that b(t) e L“(t, <), llale LKt,«) for some
ge (l,00) and lir,lle LP(t, 0o forsome pe Il,~). Then Corollary 8.5 holds if
we replace bM(t) by bm(t) in (8.35), where m satisfies m<p(l -qi)Sm+ 1 and
bmd) is given by (8.34).
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The proof of Corollary 8.7 is similar to that of Theorem 8.2.
When a(t) e L(t, 00) and b(t) e L*“(x, 00), the equation (8.2) can be treated

by Theorem 8.1. Thus, from Theorem 8.1 and Corollaries 8.5-8.7, the asymptotic
behaviour of solutions of (8.2) is known clearly if b(t) e L“(t, o0), llrjle u>(t, «.)

for some pe [1, oo), and either Ilajle L%(t, oo) for some g€ [l oo] or

| a(s) ds € L“(t, o0).

Remark. In some circumstances. Corollaries 8.S-8.7 for the scalar equation

(8.2) can be extended to vector equations. For instance, the equation

Ax(t) = a()A x(t) + b(t)B (x(t - r(t)) - x(t)), (8.43)
where A and B are commutable N x N constant matrices and a(t) and b(t) are

scalar functions, can be treated in the same way as (8.2) and the results obtained in

this section hold for (8.43) with some obvious amendments.
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CHAPTER 9

ASYMPTOTIC SOLUTIONS OF EQUATIONS
WITH A DOMINATING DIAGONAL MATRIX

§9.1 INTRODUCTION

The equation to be discussed in this chapter has the fonn

Ax(t) - D(t. X)) = ADX() + L(tx,) + Lilt, x9) (9.1)
for tS T, where A(t) = dg(X.,(t), Xjlt), e, Xfj(t)) is a diagonal matrix of locally

integrable functions and, foreach t~t, D(t,.). L(t,.): C([-r, Q) C") -» CN a,d
Lj(t,.): C([0, 0J, CN) ™~ (jN are bounded linear operators as described in Part Il

(p.76). Without loss of generality, we assume r = o.

As we mentioned at the beginning of this part, the delay differential equation

() = ADx() + Lt xj (9.2)
was studied in [4]. With a dichotomy condition on A(t) and appropriate requirements

for smallness of IIL(t, )Il, N special solutions of (9.2) with the forms

*n(t) = (en +o(l))exp|j*(X,(s) +ti(s))ds| n=1,2,-.-, N, 9.3)

were obtained and it was shown that each solution of (9.2) could be represented as

x(") = E 1Ir.xi(t) +H i X,s)ds-Ptj (9.4)

fw every X, and arbitrary P~O.

In this chapter, we shall investigate the equation (9.1) and obtain some results
parallel to those in [4]. In proving the existence of special solutions of (9.1) with the

forms (9.3), the method used in [4] is adapted. However, since the terms D(t, x,)
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and Lj(t. x*) are involved in (9.1), a method different from that in (4) needs to be

developed in order to obtain representations similar to (9.4). The norms

v] = max]||viUv2|...-.[vNIl, M| = max/X ISISn)

lj-i |
for V=(V,, Vj, =, vA)Te CN and M = (mp € AR Although other,
equivalent, norms could be used, there may be different multipliers corresponding to

different norms in some nwm-involved inequalities.

§9.2 SPECIAL SOLUTIONS

Let (djj) and (iS%jj), k=1,2, be the matrix representations of D and L*
where

Li(t, 9 = AMD( t) + Mt, (p). (9.5)

Forany function f on Re («o, 00), We define f, and ? by

fi(0) = expj I f(s)dsL ?(a) = exp (9.6)

fw 6e (-r,0] and ae [0, r]. Forconvenience, we extend the domain of definition

of A(t), L,(t,) and Ljft,.) to R by letting them vanish for t<x. Then, for

ne (1,2, — N), the functions

H,.(t) =def ID(t, (Kn\ )l = max! Idij(t, (Xn), JIIl; 1SiSN) 9.7)
_ li-i |

for t~ X where Ildij(t, (Xn)i )H is the ordinary uniform norm on (-r, 0), and

Pn(t) =def IILi(t,(X,,), Il + NL2(L,(X,,) ) 9.8)

for te R are well defined. Forany T ” x, let
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x(0 = (en+y(t))exJ | (X,(s) + Ti(s))ds 9.9)

for 12 T -r, where e,, isthe nth coordinate vector and TI(s) =0 for s ST. Then

(9.1) becomes

é{cn +y(t) - D(t, O + TI),(e,, + v,))i

= (A- (G +TiD(..) +L,(t (K +n)ien +Yy0) + Lz(t, (X, +")\e,, +y7)) (9.10)

for tST, where {ee¢| isequal to the term under d/dt. Put

Uk, n, T, y) = dk,(t + Ti) + X Ti(y))i). (9.11)

Vk(t, n, Tl y)

C ikne. (X,, + t)i) + 152kn(t. (K +n))

+ XU It (X, + Ti),(0)0 + r 2Kt (K > T)'yj)) - (9.12)

J-t
Then, interms of U* and (9.10) can be written as
Al oyn®)- Ut TLy) = -TIOE v (tn. T)y), (9.13)

AyK(t) - UKE n. TLY)) = (XK(@®) - X,,(1) - TIR) o)+ VK n, T, y), k* n. (9.14)

Instead of (9.13) and (9.14), we consider the system
Ti) = Wt n, Tl y), (9.15)

ynt) = u,(t,n, n,y), (9.16)

yk(t) = Uk(t. n, T1y) +J ds

(VA(SI n, TI' y) - V,,(S, n, T), y)(y,\(s) - UA(Sv n, T)! y)))v K i» n, (917)
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where is to be defined below. Each solution of (9.15)-(9.17) also satisfies (9.13)
and (9.14).
At this stage we suppose that, for some T 2 t, the following conditions hold.
0) . The indices 1, —n-1,n+ 1 — N can be partitioned into two classes

J| and J2 such that the function

gnO) =def ds [p.,(s) expji® Re(Xic(d)-X,,(d))dd||: kitn|  (9.18)

existson [T,<® and g,(t)—0 as t—»  where =T or o» according as
k€ J, or ke Jj, and P,(t) isgiven by (9.8).

(i) . Hrt(t) given by (9.7) satisfies H,,(t) —0 as t-» Q0.

(iii) . Hrt(), P,(t) and g,4t) satisfy

sup!max' 3 P, (s)ds, 3HL,t) + 13g,(1)j: t2xj < e-i. (9.19)

THEOREM 9.1 Suppose that the conditions (i)-(iii) are met. Then (9.1)

has a solution on [T -r, <9 with the asymptotic form

xn(t) = (e, +0(1))expli*(X.,(s) + Ti(s))ds| (9.20)

as t-»«», where |tXs)| S2cP,,(s) for s T

Although the proof of this theorem is an adaptation of (4], we present an outline
of it here because some of the estimates obtained will be referred to later.
Proof. With y(t) = (y,(t), y2(t), yN(t))* bounded and continuous on

[T-r, 00 and constant on [T -r, T], and with ri(t) locally integrable on [T, 00),

vanishing for t<T, and IT|(s)lds bounded, functions of the form

)= (y *(0).ri))" with
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r

y@l, 11 Jil(s)ldsj: X2T)

Iyll =dcf supjmax|

fonii a Banach space. We show that the system of the equations (9.15)-(9.17) has a
lolution in the closed unit ball B of this space.

Forany ye B, wedefine -4y(t) by the right hand sides of (9.15)-(9.17) for
tiT, idyk(t) =idyk(T) for t in [T-r, T] and k=1,2,N, and /lyN+i(t)=0
for t<T. Then, for t~ T, the equalities (9.15), (9.16), (9.11), (9.12), (9.7),

and (9.8) produce

MyN+I(DI = [v,(t n, T, y)| S 2eP,(t) (9.21)

and

My..()] = |u.(t, n,ti, y)| S 2eH,(t). (9.22)
Since (9.19) implies 3eH,,(t)< 1, from (9.17) and (9.18)

Myk(t)] S 2cHn(t)+]j" ds|2eP,,(s)(2 + 2eH,,(s))exp|| Re{Xk(d) - X,,(d))dd]

S 2cH,,(t) + 6eg,,(t) (9.23)
for k~n and t"T. By (9.19) again, A maps B into itself.

Forany y=(yT nl”e B and z=(zT,n)"e B, by letting

lﬂ‘l'
yal@) = J lti(s)|ds, I\|Ti(s)|ds, ly,IL, 1yl (9.24)

for tST, we have
ITi,-)i,ll Sej [tKs)-p(s)|ds 5 elly-a(t),

snifyj)i - iijzilill ~ Hii, - ihll + ellgik - @1 5 2elly - a(t).

Similarly,

Irf-iril S elly-zlI(t), ITFyjf - iT(zjyil S 2elly-ai(t).
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Then, from (9.15H9.17), (9.11), (9.12), (9.7), and (9.8),
I-4yN*i(t)--4zN .i(t)] S 3ep,,(t)lly-ai(t), 9.2

My,,(t) - Mz,,(t)] S 3eH,,(t) Ity - ai(t), 9.2

and for kK~ n,

l-4yk(t)--4ZK(®)| S 3cH,,(t) lly - 21(t) +

1J (9eP,,(s)lly - ai(s) +1v,,(s, n, T), y)i 1+ 3cH,,(s)lty - ai(s)))exp|| Re(Xk - X,,)dd|d:

i 3eHn(®)lly - ai(t) + 13cjJ |J,,(s) lly - ai(s) cxpjj Re(Xk - X,,) ddjds . (9.27)

Hence, since W) Sip, (9.25)-(9.27) and (9.19) show that A is contractive.
Thus, within B, the system of (9.15)-(9.17) possesses a unique solution
At) = (YA(), (@) Further, (9.21)-(9.23) and (i) and (ii) ensure that y(t)=o(l)
as t—»o00 and Iri(t)l S 2eP,,(t). Then (9.9) leads to a solution of (9.1) with the form

(9.20). #

Suppose, instead of (i) and (iii), we impose the conditions(iv) and (v).
(iv). There is a K20 anda division of (1,2, -sNI  such that
Q(k,n,s,t)S-K for tSsSt and keJj, and ()(k, n, s, t) SKfor 12 sS x and

Q(k, n, s, t) —=-« as t—00 when ke J,, where

Q(k, Re(Mi3)-X,,(d))dd.

(v). P, (te L(x, 0o

Then, from (ii), (iv) and (v), we have

13eK + 3sup{H,,(t): tST) < e > (9.28)
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for sufficiently large T 2 x, which implies (iii). Also, by (9.18),g”(t) 0ast—»<

THEOREM 9.2 Assume that (ii), (iv) and (v) hold for some ne
{1,2, *==.N). Then, for T St satisfying (9.28), (9.1) has a solution on [T -r, 00)

with the form

>n) = (e, + o(l))exid I Xn(s)ds (9.29)

as t-»a®
Proof. Since f € L(T, 0o), (9.29) is obtained by multiplying (9.20) by a

scalar constant.  #

When the conditions of Theorem 9.1 are met, T)(f) and the o(l) term in

(9.20) can be obtained by successive approximations. Let

y° =0, y*'(t) = Ay*(t), k=0, 1, 2, eee (9.30)
for t~T-r and let ye B be the fixed point of A . Since A is contractive and
y®e B, we must have Iy*-yil—=0 as k —00. Thus, in some circumstances, we
can obtain more precise representations than (9.20) if we can estimate Iy" - yil

effectively.

THEOREM 9.3 Assume that the following conditions hold:

(vi) there is a number 5 >0 such that, for each k # n, either
Re(X™\(t) - XNt) A8 forall t~ x or Re(XA(t) - XNt)) 5-8 forall ti x,

(vii) Pn(t)e L<(X, oo) forsome pe (1, oo),

(viii) I(H,). e LP(X, 00) and H,()» 0 ast oo
Then, for sufficiently large T S x, (9.1) has a solution on {T-r, 00) with the

uymptotic form
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*n(t) = (e, + o(l))expl I (Xn(s)+ Ti"(s))ds (9.31)

as t-» 0o, where m is determined by m<p”~ m 1 and Ti"(t)»)f2J",(t) by
(9.30).

Proof. Since (vi)-(viii) imply (i)-(iii) for sufficiently large Tit. the o(l)
term and Ti(t) in (9.20) (from the fixed point y = (yT, of 4 ) can be obtained by
successive approximations (9.30). If we show that hi(t)-yJJ* @)l e L(T, oo), then,
multiplying (9.20) by a scalar constant and replacing Ti(t) by iT~t), we obtain a

solution of (9.1) with the form (9.31).
From (vi). (vii) and (9.18), we have H(g,)ll e LP(T, 00). Hence, in view of

(9.21)-(9.24) and  (viii), Iyl € LP(T, oo). Moreover, it follows from
(9.25)- (9.27) that

In(t) - yj*Wol ~ 3eP,,(t) lly - yill(t). (9.32)
lyn(t) -y r '(t)] S 3eH,,(t) lly my>lit). (9.33)

and for k ”n.
[yk(t)-yir(t)] S 3eH,,(t)y-y)[I(t)+13ejj e-**+ p,(s) lly-yJl(s)ds (9.34)

for ti T and j =0, 1, 2, . Since ly -y li(t) = Iyli(t) e LP(T, o«), inductively we
obtain ly -vyil|(t) e LPifT, 00) for p. = max(l, p(j + 1)') and j =0, 1, 2, . Then,
by (9.32).

In(t)-i 3eP,®ly-y™ 'Y€ MT, 00).

The proofis complete.  #

Remarks, (@). When D(t, .) = I*ft, .) » 0, the results of this, as well as

next, section agree with those in [4] except that our condition (iii) slightly differs ftom

that of (4) due to the difference of norms.
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(b) . Theorems 9.2 and 9.3 are analogues for (9.1) of the Levinson and
Hartman-Wimner theorems for ordinary differential equations (see CA.1 in [12]).
Another main theorem for ordinary differential equations, Eastham's theorem (Theorem

1.6.1 in [12]), cannot be extended to (9.1) by the technique used here.

(c) . In some cases, we can impose conditions directly on 1D, I, L, )l

and IIL2(t, )II instead of on H,,(t) and P,(t). For instance, if X,,(s)ds is
bounded forall ae [-r,r] and t*t, then we have

H,(t) S CollD(t, JI and P,(t) S Co(lIL,(t, I + HL2(t, i)

for some Cq>0. If I  Xn(s)ds is bounded above forall 0e (-r,0] and t2T, we
also have

H.() S Collb(t, )l and 1IL,(t, (X.), JI 5 CoHL,(t, .

(d) . Theremarks (ii), (iv) and (v) ( p479 in [4]) also apply to this section.

§9.3 DECOMPOSITION OF THE SOLUTION SPACE

If the conditions of Theorem 9.1 hold for all n= 1, 2, e, N, then (9.1) has

N solutions of the form (9.20) on [T -r, 00), which compose a matrix solution

X(@®) = (x,(t), XA1),.. & xn(0) =def Y(t)exp|| A,(s) dsj (9.35)

of (9.1). Since Y (t)-»1 as t—x», thereisa T, ST andan a, S| such that

[Y(@®).IY >s)| i ao for t,sST,-r. (9.36)

Fixxn the proof of Theorem 9.1, we know that
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(Ai(s)-A(s)ds S 1, ee[-r, Q1 (9.37)

and

1J (Ai(s) - A(s))ds S 2eJ max(p,(s): 1SnSN}ds

fw tST. Thus, by the boundedness ofeach J pn(s)ds in (9.19), we also have

i* (a.(s)-A(s))ds| S 2cP(s)ds (9.38)

for 12 T, where

P(t) = max{|J,,(s): 1SnSN}ds; uStj. (9.39)

Obviously, P(t) isdecreasing.
We impose two more conditions below in order to analyse the structure of the
solution space.

(ix). There are g, Me (1,2, *=+,N) such that

(X<,(8)1-A(s))ds (A(s)-A.M(s)h)ds i ai (9.40)

for

X). I (p,(s) +PM(s))ds"0 as t—»0o(g, M asin (ix)).

Remark. The condition (ix) automatically holds under the Levinson
dichotomy condition (i.e., (iv) holds forall ne (1,2,—N)).
If (ii) for n=q and (x) hold, then a(t) defined by

a(t) - sup|(l+(l1+aoe)ai)ll(H<,),ll + 2aoe(ai)2| (Pq(d) + PM(0))d0: sStj (9.41)
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decreases to zero as t -» co. We therefore also assume that a(t) <1 for 12T,.

THEOREM 9.4 Assume that (i)-(iii), together with (ix) and (x), liold for

all n=1,2, e N. Then every solution of (9.1) on (T, -r, «0) has the forms

x(t) = X()lc+< (2cp(s) +|In a(s))ds (9.42)
and

X(®) = X(O)c *+oa(t) **pld  (V*) ] (9.43)
as t-»o00, where ce depends on x, a(t) is given by (9.41) and P(t) by
(9.39).

Remark. Since both a(t) and (J(t) arc decreasing and a(t) -»0 as t oo,

the order terms in (9.42) and (9.43) can be written as o(e' ) and

H I X,,(s) ds - ptjj,

respectively, for arbitrary P ~ 0. Thus the solution space S of (9.1) can be

decomposed by X(t) as S=S, ® Sj, where

Si = {X(t)c: ce

S: = (x®): xO g £ X<(9)ds-pt forany p~ol!

Homomorphically, after the transformation x(t) = X(t)y(t), the solution space has the
decomposition S = ® Sqg, where Sq is composed of all small solutions (tending
to zero faster than any exponential function) of the transformed equation. From this
decomposition it is clear enough that the asymptotic behaviour of solutions is

dominated by X(t).
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LEMMA 9.5 Assume that y(t) e C([to. <>, satisfies Hy(t) - yH S 7(t)
for tStfl +r, where 7(t) is continuous, strictly decreasing, and y(t)—»0 as t —m».

Also, forany 5>0, vyit+ 5)()f(t)) * is decreasing. Then there isa c e such that

jr(t) -» ¢ as t -»<«> and

ly(t) -cl S otoY(t+r) (9.44)
for t2tp, where Og=y(to + r)(y(to +r) - y(to + 2r))".

Proof. Forany s >0, there is an integer kO satisfying kr<sS(k + Ir.

Then, for t~ tq with t+sStq+r,
ly(t +s) -yl S ly(t+s)-y(t+ (k+ D)l +Ilyt+ (k+ Dr)-y(t+knl

+oeetly(t+r) -yl

S 7t + (k+ Dr) +7(t+ (k+ 1)r)+eee+y(t +1).

Since y(t) and 7(t +r)(y(t)) * are decreasing, we have
Iy(t +5) - y(O 5 Yt + 5) + y(t + 1)l 1+ y(t + 20)(y(t + 1)) *
+- +{ylt+ 20yt +)>)")
AY(t+s)+ T+ 1) - y(t+ 2rXy(t+ )

S7(t+s)+atyit+r ™ 0
as t-» o». Hence y(t) has alimit ce as t-» « and (9.44) is obtained by

letting s o0 #

Proof of Theorem 9.4. Applying the variation of parameters formula to

(9.1), we obtain

X(t) = D(t, X))+ expl | A(s)ds (x(t+0)-D(t+0, X+g))+
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A(d) dd  (Li(s, X) + L2s, x)) (9.45)

for tATi and 6e (-r, QU Let

x(t) = Xy (9.46)
Then the substitution of (9.46) into (9.45) vyields

X®y®) =jexpl|l A(d)dd]|(x(t+O0)y(t+0)-D(i+0, X.eVt +8))

+D(t, X7, +[ | nH | A») dd  (Li(s. X.y.) + L2(s, Xy¥). (9.47)

Since X(t) satisfies (9.45), replacing x(t) by X(t) in (9.45) and substituting it into
the left hand side of (9.47), we change (9.47) to

lexpjl A(d)ddx(t+0)(y(t)-y(t+0)

= -D(t X, (y(®) -y)) +lexp|| A(d)dd[t(t+0, X "ey()"y.+e)

-1 dsjexpl| A(d) dd|[L,(s, X,(y(t) - y.)) + Lj(s, X*(y(t) - ¥))). ~ (9.48)

Let (o(t) = sup(IW(t, 0L Oe 1-r,0)), where

W (t,0) =d«f X(t+0)(y(t)-y(t+0))ex\ { vy s)dsj (9.49)

for tAT, and Oe [*r,0]. Then, multiplying (9.48) by

we obtain an equation
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W(t, 6) = B)t+0. (X)), +eW(t+0,.))+ D(t+0, X,*eX '(t + 0)W(t, 0))

-jexpjl (X.!I-A) ddjjo(t- (X.,)-W(t.))

j dsjexpjl {V-A)(10jlLi(s.(X,).W (s. .))+!le-1I (9.50)
for W(t, 0) for t~ T, +r and 0€ I-r, 0), where
(=] = Li(s, X,X '(s)W(t. s - D) + Lils, X*X “(sXW(t, s -1 - W(s+ -.))).

From (9.50) an estimate of (iKt) will be derived. From (9.36), (9.37) and (9.40) it

follows that
IXAXXX (O - sup Y(t+0)jexp|l (Vs)I-Ai(s))dsjj Y '(t) : Be [r.0]

S aoaie, (9.52)

I(-XM)'x'X 'Ol S aoaie (9.52)
for t2Ti, so

MW, 0)1 i a]Hg(t)O)(t) + Ha(t + 0)(o(t + 0) + aoaieHq(t + 0)(O(«)

+ail {lILi(s, (Xg), I (to(s) + acaieto(t)) + lL2(s, (Xm) Il (IO(t) + lla/ll)acaiej ds

Jt*9

for tiX,+r and 0€ [|-r, 0). Then, in view of (9.41),

io(t) Sa(t)max{ci)(s):t-rSsSt +r) (9.53)
for tATj+r. Recall that (t"), t|j—»<« as k —» «, is a sequence of ZAPs of

(9.1). Thus, forany t|j>T, +r andall te (T,+r, tj], we also have

O S a(t) max{(o(s): t-rSsStn). (9.54)
Since a(t) <1, a(t)i 0 as t—«3 and oKt) is continuous, by Lemma 8.4 oKt)

satisfies



147

0)t) S lkon'llexpl]j jin a(s) dsj (9.55)

for ti T, +r. Then, from (9.49), (9.35), (9.36), (9.38), and (9.40),
lly(@)-yill i l(Y )l ciKOsuplexplj (X<I-Ai)ds+j* X<@©)lds : 6e [-r,O]’1
S dexpjd (2eP(s) + j-In a(s)) dsj =def TH() (9.56)
for tSTj +r, where

g = aocaill(i)™ll exjp|J 2eP(s) Re Xq(s) ds I

As both o(t) and p(t) are decreasingand o(t) i 0 as t—<& by Lemma 9.5
y(t) hasalimit c€ as t-»<> and ly(t) - ¢l = 0(Y(t +r)), and this gives the form

(9.42) for X Again, from (9.35) and (9.49),

X{tKy(t) -¢) = - X ('[)X0 (y(t+a + Dr) -y(t+jr)
J((

= - X)X x '(t+jW(+a + Dr, -r)exI f X(S)dﬂ

= - X Y(t)jexp|l (V-A,)ds HOW(t+ ( + Dr, -r)explj XA(s)ds|

Thus, by (9.36), (9.38), (9.40), and (9.55), we obtain

IX(tXy(t) - ¢)| S acaillio™™l X \] (2cP(s) + a(s)) dsjj)

exp|J Re xq(s) ds +J Ina(s) ds| (9.57)
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Since (2eP(s) r'In a(s)) i -<» as s” <» the series in (9.57) isbounded for

t2Tj. Also,

i
I i exp(lna(t)) = a(t).

Then (9.57) implies the form (9.43) for x. #

COROLLARY 9.6 Assume that the conditions of Theocem 9.2 are met for all

n=1,2, — N. Then every solution of (9.1) has the forms
x(t) = X(t)|c +ola(t) expj Aln a(s) ds|| (9.58)
and
X(t) = X(t)c +ola(t) J ("(s) +fin a(s)j dsj (9.59)

as t"oo, where a(t) is given by (9.41).

Proof. Since the conditions of Theorem 9.2 for all n ensure the existence of
X(t) satisfying (9.35) with Aj = A and imply (ix) and (x), from the proof of
Theorem 9.4, we can replace P(t) by 0. Then (9.58) and (9.59) follow from
(9.42) and (9.43). #

COROLLARY 9.7 Assume that the conditions of Theorem 9.3 hold for all
n= 1,2, — N. Then every solution of (9.1) has the forms (9.42) and (9.43).
Proof. As the conditions of Theorem 9.3 for all n imply (ix), (x) and the

conditions of Theorem 9.1 for all n, the conclusion follows from Theorem 9.4.  #
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§9.4 TWO EXAMPLES

As an application of the above theorems, we consider two simple cases of

(9.1).

COROLLARY 9.8 Assume that (9.1) satisfies the following:

() the condition (iv) (on p.138) holds forall n=1, 2, = N,

(b) Rel X,,(s) ds is bounded forall 12 x,a € (-r,r]and n =1, 2. s N,
(c) HA@D(, I, 1L, JI and HL2(t, I are in LP(t, <) for some p6 (1,2],
(d) 1ID(t, )l -0 as t-» oo and sup{lID(t+ 0, J: 0e {-r, QJ) e LP.

Then, for sufficiently large T 2 x, (9.1) has N solutionson [T -r, «.) with the

fonns

xXn@) = (e, + o(h))explj (x,(s)+tin(s))ds , n=12,2, -, N, (9.60)

as t—»00, where

Hn(0 “ " (0 droi(t. (Xn)i) + £nn(t, (Xn)t) + 252nn(t> ("n) )e (9.61)

Moreover, each st*ution of (9.1) has the form

X({) = X C,X,(t) +o(e P (9.62)
nml
as t-»00, where (c,,C2, ,Cf4)"e depends on x and P~O is arbitrary.

Proof. Since (a)-(d) imply (vi)-(viii) for all n, the existence of the N
solutions in (9.60) with (9.61) follows from Theorem 9.3. According to (b), there

are constants a >0 and g >0 such that

X, (8)ds S ae<)> (9.63)

forall t~T and n=1,2, « N. Then, as (ix) and (x) are implied by (a) and (c).
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(9.62) follows from Theorem 9.4 and (9.63). #

As another example, we consider the scalar equation
Ax(t) -eMx(t-1)F = X(O)x(t) + b(t)x(t + sin t) (9.64)
for 12 0. where A(t)- -t"sint and b(t)e L(0, ~). We claim that, for sufTiciently
large T2 0, (9.64) has a solutionon (T- 1, o) with the form
X(t) = (1 +o(l))exp (9.65)

as t”™ oo. and every solution of (9.64) has the form

x(t) = X(t)c + ( shsin s ds - Ptl (9.66)

forany p20. Infact, (t,,- nrt; n=0, 1, 2, «e) is a sequence of ZAPs and, if \
view the terms b(t)x(t +sint) as Ut, x,) + I'Ct, x°) and e *x(t-D as D(t, x,), »

have
IIL(E X, N+ 12, A I s |b(t)] e UO, 00),
O X, )l S exp|-+ 1 s2dsl S ew 0 as t-» oo
and

IXEODE X, M S the' w e L(0, 00).

Then (9.65) and (9.66) are obtained from Corollary 9.6.
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CHAPTER 10
MIXED TYPE DIFFERENTIAL EQUATIONS
WITH A DOMINATING BOUNDED MATRIX

§ 101 INTRODUCTION

In this chapter, we study the asymptotic behaviour of solutions of the equation

Ax(t)-D(t.x,)) = A(t)x(t) + L,(t, X) + LjO, x*) (10.2)

fm t~ T, where A(t) isabounded N x N matrix of locally integrable functions and,

foreach t~t, the linear operators D{t,) and L,(t,.) from C([-r, 01, (I1*) to
and LjO,.) from €(10,01,(1") to (1™ are as in Part Il (p.76). We assume 0 =r
fex convenience.

Driver [10] studied the delay differential equation

x(t) = Lt X) (10.2)
for te Rh (.00, 00). Under the conditionrek < 1, where L@, I Sk,
that (10.2) has a special matrix solution X(t, t,,) for te R and tgé€

behaves like the fundamental matrix solution of an ordinary differential equation. This
special matrix was first introduced by Rjabov 130] and Uvarov ]36]. Moreover, each

solution of (10.2) on 1-r, 00) with Xg=<$ has the asymptotic representation

X(t«p) = X(t,0)li((p) + 0(1)] (10.3)
as t -»mo, where i is an operator from C to
In the last chapter, we studied (10.1) when A(t) =dg(X,(t), Xj(t), =, X ()]

is diagonal and obtained N special solutions with the forms

)n(®) = len + o(l)) expl |X,,(s)ds Ln=1,2,--, N, (10.4)

heproved

R,which
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where e,, is the nth coordinate vector and each X, - Xo is small at infinity in some
eense. These N special solutions form a matrix solution X(t) and, as t -»<>e, each

lolutionof (10.1) has the asymptotic representation

X(t) = X(t)c + olexp|j* X,(s) ds - Ptj

forevery X/(t) and arbitrary P"O.

In this chapter, we do not expect to obtain solutions of any special forms, such
as (10.4), since we do not require that the matrix A(t) be of any special form.
However, under the assumption that A(t) is bounded, it is still possible to obtain a
matrix solution X(t) which enables us to analyse the asymptotic behaviour of the
solutions of (10.1).

Adapting the idea of [10], we shall show that, when 1ID(t, II, 1IL,(t, JII and
IILj(t, JII are small in a suitable sense, (10.1) has a special matrix solution X(t, t»

for tpST and t~t-r, and that each solution on (tQ-r, oo) of (10.1) with
Xl = ¢ has the form

x(t,to,tp) = X(t,to)lc(to,tp) + O(1)1 (10.5)
as t-» oo. With some further requirements, there is an exponential gap between the
loluions X(t, to)c(to,«p) and X(t,t,,)o(l) in (10.5). With additional smallness of
HD(t, Il and 1ILj(t, ), i = 1, 2, at infinity, each solution has the asymptotic

representation

X(t,to,<p) = X(t,to)c(to,(p) + o(e P) (10.6)

as t—»00, where P20 is arbitrary.
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§ 10.2 SPECIAL SOLUTIONS

Let Y(t,s) be the fundamental matrix solution of the equation

Jy(t) = A®) y® (10.7)

for t,s€ [t, ~). Then Y(t, s) satisfies

(10.8)
for t,se |x, 00), where
AL = sup{IA@®)I; t"x). (10.9)
Throughout this chapter, we assume that the functions
UKk(t, s) =def] HLk(p.)lle " H pldp (k=1.2) (10.10)

and HD(t, )l are bounded for t,se [x, <9 We put
DIl = sup|lID(t, )II: tix),
= sup|UA(t, s): tSx, s2x) (k=1,2),

A = (DIl + DI max(l, flAI) + M, + Mjjex**na",

and also define functions
u(tt,) =

v(a, K t, t,) = Ke<**n'>xg'

for tfl*x, t2x, a>0, and K>0.

THEOREM 10.1 Assume that A< 1 Then, forevery tQ”x and y®e
(10.1) with x(to) =y° has a unique solution on (x -r, < such that x*(0) » X(x)

for Oe [-r, 0] and x(t)/u(t, tg) is bounded for t 2 x.
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Proof. By a variation of parameters formula, every solution on (x-r, oo) of

(10.1) with x(to) =y° must satisfy

*(t) « EKLX)+Y(t t,)(YO-D(to.x,,))+i Y(t sX L3(s, X)) + L2(s, x*)| ds (10.16)

for t ~ X where Ljft, () - A(t)D(t, <) + Lj(t, tp). Extend the domain of u(t, tg) to
[x-r, 00) by u,(0.to) =u(x.to) for 0e (-r, 0] and let

X() = u(tto)y(), t Ax-r. (10.17)

Then y(t) satisfies

y(t) = (Y(t.to)/u(t.to))(yO-D(to.u,y, ")) + D(t, (u/u(t, to)y,)

,S)u(t, s))(L3(s, (u™u(s, t0))y,) + L7s. (uVu(s, to))y‘))ds  (10.18)

for t ~ X Here and in the following pages, u, and u‘ stand for u(t+ ., t,). Let S
be a subset of C(Ix-r, «), n such that each yeS satisfies
y(tO))~y** yt(®) = y(*") fot [@m O). Forany ye S, define 4y(t) by the
right hand side of (10.18) for t~x and Ay(t)=Ay(x) for te (x-r, x). Then, with
the usual norm in L“(x, oo) as distance, S isacomplete metric space. We show that
A is a contraction mapping on S so that the equation (10.18) has a unique solution
in S.

From (10.8) and the definition of u(t, to), we have
1Y (t,to)/u(t,to)l S e’ “» '0,

lu,/u(t,to)ll 5 and lufu(t, t )l S e>*"A*

fot t~ X Then, forany y€ S and ti X,

My®l S e" “e<'(ly“l + lIDe's™~1yll)

+ DI+ 1 ef “li- AQAAILIDI + 1ILi(s, I + NL2(s, Jll)ds  Piva g,
( o
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It follows from (10.10), (10.12) and (10.13) that
L4yl S lyV
+ {1IDId +r A+ M, + Mj + [IDIId - r HAI"  «J }e* +s%h|ly||

S |yOle ' “'m‘d + Allyll
for tit. TTtus A maps S into itself. Similarly, for any y],y2€ S and tit, we

have

Wy, (1)-Ay2(t)l S Ally, -y"l.

The mapping A iscontractive as A< 1l #

Following the teminology of Rjabov, Uvarov and Driver, we call the solution

of (10.1) given by Theorem 10.1 a special solution and denote it by x(t, tQ, y*9. Let

F@) = {1DI+ (ar) "D max(l, r DA + M, + M2) Je'<=*"). (10.19)

Then, under the condition A< 1, the equation

Fi@ = 1 (10.20

possesses a unique solutitMi in (0, r * and thus determines a unique value of

K= (1- (IDI + M, + M2)e'<*"n>] ', (10.21)

THEOREM 10.2 Assume that A< 1 Then, forevery Iqi! and y°€ (t*,

the special solution x(t,to,y*) of ("O.!) on (t-r, «.) satisfies

>t 10. yO)l T Iy“lv(a, K, t, 10). (10.22)
where a, K and v are given by (10.20), (10.21) and (10.15).

Proof. We derive (10.22) by the method of successive approximations. Let
xo(t) = Y(tt,)y0,

*K+HIW = Y(t to)(y® - D(to.(x"),") + D(t, (x"),) +
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J lLi(s.)lle * *ds 5 {(ar) *-((ar) >- 1)c » ‘o) Mi (10.25)

[(¢]

far Tand i=1,2. As

IAILIIDIl e % * ds a-* HAILIDIL (1 -¢ -**-'e"

5 {ar) * Wl max(l, r NAI) (1 - e (20.26)
substituting (10.25) and (10.26) into 7(t) and taking (10.19)-(10.21) imo account,

we obtain

mxt) S ¢ ¢ “A>[udii + (ar) ' (UDIl max(L r Al + M, + Mj)] + {K *

+e*  [udii + M, + Mj - (ar) ‘(IIDIl max(L r NAI) + M, + Mj)] }e'

= F(a)+{K '+ (1-K ")-F(a))e * » = 1
Thus (10.24) holds for k -f 1 and, by induction, forall k=0, 1,2, —
Lm YK(O = xM(t)/u(t, t~. From the proof of Theorem 10.1, we know that

yk™ 'S, =AY\ k=0, 12,
Since A is contractive, we must have llyj-yll -0 as k -» «0, where y is the

unique solution of (10.18) in S. Then, for t"x.

XN - x(t t,, YOI A u(tto)lly™ - yil ~ 0
as km and (10.22) follows from (10.24). #

From Theorem 10.1 there is a matrix X(t, s) for 12 1-r and s” x such that
X(s, s) =1, X(t, s) = X(x,s) for te [x-r,x], and each column of X(t, s) is a
special solution of (10.1) with respect to t. We call X(t, s) the special matrix

solution of (10.1) on (x-r, 00).
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THEOREM 10.3 Assume that A < 1. Then the special matrix solution of

(10.1) satisfies

0]

forevery tQ”"x, y®e and tSx-r,

x(t.to,y°) = X(t.to)y“

(ii) for tg, t] and t in [X, °0),

X(t.tg) = X(t.t,)X(t,.tg). X'(t,tg) = X(tg,t),

(iii) for tQ2 X and tS x-r,

{v(a.K.t,tg)| ' S IX(ttg)l S v(a K,t,tg). (10.27)

Proof. From the definition of x(t, tg, y°) and X(t, tg), (i) is obvious. For

tg, t, and t in [x, <»),

X(t tg)

where e,

= (x(t, tg e,), Xt tg, ej). = X tg, 01)

= (Xt tx (t, tg,e)) X t,, x(t, tg, ej)), *= x(t, t,, x(t,, tg, e")))
= (X(t, )X (1, tg, €,), X(t, t )X (L,, tg, e]), == X(t, t,)x(t,, tg, en))
= X t)(x(t], tg, ef), x(t  tg, e2), * x(t  tg, ev))

= X (t,1,)X(t,,tg),

is the nth coordinate vector. Letting t =tg in the above, we have shown

(ii) as X(tg,tg) = 1. By (i) and Theorem 10.2,

IX(ttg)y°l 5 ly“lv(a, K,t,tg)

forevery y°e 1. Since

we obtain

IX(t, tg)l = sup|IX(t, tg)y°l: y“e (™ Wl=1),

IX(t tg)l S V(@ K,t,tg)
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by (iOi (10.27) for Ig” x and tSx. Then (ill) follows from the fact that

X(t, t,) isconstant for te [x-r, xj. #

Remarks, (i). The boundedness of UA(t, s), k = 1, 2, is ensured if

jf Hms, Jllds is bounded for k=1,2, and this covers the case that the [ILA(E, I,

k» 1,2, are bounded. In the latter case, we may simply replace by rlILMI in the
definitions of A. a and K given by (10.13) and (10.19)-(10.21). However, for

the purpose of weakening the condition and improving the result, we would rather

define A’, a' and K' by
A’ = {lDd + max [IIDI, r (LAILIDI + LI+ HLjI)] et oA, (028

Fo(@) = 'e (10.29)

where

W =def {"DIl + (ar)-'max (IIDIl, r (NAILIDI + HLI1 + 1ilili)] Je«<*e (10.30)

and

K' = (1 - 2lIDlle'<*"»"" ) * (10.31)
since the numbers A', a' and K' are smallerthan A, a and K if rllAlI<I,

DIl * 0, and NILII + lLjILA 0. In fact, using these parameters in the pixxifs of

Theorems 10.1 and 10.2, we obtain

IAy®)l S lyOle r ** > + Allyll

and

skxiw 1 S Iylv(@, k-, +, to)|]Fo(a’) +e ** ‘oi(l-Fo(a"))).
Thus we can replace A, a and K by A, a’ and K' given by (10.28)-(10.31).
This remark also applies to later sections. When D (t,.) = A(t) = Lj(t,.) » 0, there is
no difference between A, a. K and A, a', K' and the condition A < 1 coincides

with that in (I0J mentioned in § 10.1.
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(ii). If the function

{u(t. “Ifis)l ds

is bounded for t, tge [x , <»), then Theorem 10.1 also holds for the

nonhomogeneous equation

Ax{t) - D(t, xO) = A()x(t) + L,(t,x,) + Lj(t,x") + fO) (10.32)

as the proof of Theorem 10.1 is still valid for (10.32). Moreover, Theorem 10.3

implies that each special solution of (10.32) satisfies

X(t, tQ YO = X(t, toyO + x(t, tq. 0). (10.33)

where X(t, tQ) is the special matrix solution of (10.1) and x(t, tg, 0) is the special
solution of (10.32) with x(tg)sO.

(iii) . We have assumed the existence and uniqueness on [tg-r, <») of the
solution Xx(t, tg, tp) of (10.1) with x,~ =tp, forevery tg2t and <pe C. Indeed,
from the condition A< 1, the existence of a sequence 11| of ZAPs with 1 -><» as
k — 00. Theorem 7.2, and the proof of Theorem 10.1, we can prove such existence
and uniqueness if necessary.

(iv) . The concept of a special solution is related to the interval [x-r, <») aswe
require the solution be constant on [x-r, x]. Ifwe extend (10.1) to R by letting
D(t,.) “ A®t) =L,(t,.) =" (t,.)=0 for t <X, then this concept agrees with that in
[10]. Since we have assumed existence and uniqueness, from Theorem 10.3 every
special solution of (10.1) on [x-r, oo) is uniquely determined by the N solutions
X(t, X, ipY), n=1,2, e N, where <P, (®) = for 0e [-r, 0]. Similarly, for any
Ti X, if we define special solutionson [T -r, < instead of [x -r, oo), then every
special solution on [T -r, °0) is identical to a solution x(t, T, (9) on [T -r, oo) with
9 constanton [-r, 0].

(v) . Theorem 10.3 indicates that the special matrix solution X(t, tg) of (10.1)

has similar properties to the fundamental matrix solution Y(t, tg) of (10.7). Since



161

A< 1 can be viewed as a smallness condition on 1ID(t, .J! and LA, I (k = 1, 2), if

we regard (10.1) as a perturbation of (10.7) then the similarity of the properties of
X(t,t,,) tothose of Y(t, to) seems natural. Indeed, from (10.8) and (10.27), there

U aclose relationship between their exponential bounds. However, no matter how

mall HD(, I and 1AL Il (k= 1,2) arc, we can not ensure that, after representing

X(t,tg) intermsof Y(t, 19 by

X(t,to) = Y(t,t0)6(t,to) (10.34)
for some matrix function 6(t, tg), 16(t, tg)l has a smaller exponential bound than

IY(t, tgl. For instatKe, the equation

(1) = Ax(Y) + Bx(t- 1), (10.35)
where

A~[Jdn ®'
with Eg> 0 sufficiently small, has a special matrix solution X(t, 0) = (Xjj(t))j j on
[-1, 00) given by X(t, 0) = X(0,0) =1 for te (-1,0),

X,jit) = e x2) =0, Xj2(t) = e *

for {¢0, and

I AZ-'('a!)+e<j(|-e') forte (0.1),
X2I(l)
| iz‘(llﬂe + 2e0)(e- L).(; +.’2‘I +eoe ’)(e-e2 ) for ti 1

On the other hand, the fundamental matrix solution of dy(t)/dt = Ay(t) is

0
Y (t,0) = eA>

Ne*-ef) e<
Since Y ’(t,0) =Y(0,t) =e ™ ¢, for t~ | (10.34) leads to

6(t,0) = Y'(t,0)X(t,0) =
Ne -2 +c2>Y)
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Clearly we have

>'n, »e-‘IY({tO) = c, and lim, "e‘2I5(t,01 = (10.36)
forsome ¢, >0 and Cj >0, so that the exponential bound of I8(t, 0)1 is twice that of

1Y (t,0)I, no matter how small £g>0 is.

§ 10.3 ASYMPTOTIC REPRESENTATION OF SOLUTIONS

Let

Mo = (L +K)(I -K V"), (10.37)

where a and K are given by (10.20) and (10.21).

THEOREM 10.4 Assume that A<1 and Mq< 1 Then, for any tQ”X.

every solution of (10.1) on (tg-r, o00) has the asymptotic representation

X() = X(ttg)(c + O(e«™>"  me>)) (10.38)
as t-» oo, where X(t, tg) is the special matrix solution of (10.1) and ce

depends on x.

To prove the theorem, we adapt the method of the proof of Theorem 9.4.

Proof. Suppose that x(t) is a solution of (10.1) on [tg-r, «0). Then, by a

variation of parameters formula, x(t) satisfies

X(t) = D(t,x,) + Y(t,t +0)(x(t +0)-D (t + 0,x,%g))

+ 1Y, s)(L3(s, x,)+L2(s, x*))ds (10.39)
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for tito +r and 6e (-r. 0], Let

X(t) = X(t,t,)z(t) (10.40)
for t2 to-r. Substitution of (10.40) changes (10.39) to

X(t. to)z(t) = D(t, X,z,) + Y(t, t+ 6)(X(t + € to)z(t + 0) - D(t + 0.

+ 1 Y(ts)L3(s. X,z.) + L2(s.X*z«))ds (10.41)

for t~to +r and 0€ (-r, 0]. Since X(t, t(P satisfies (10.1) as well as (10.39),
replacing x(t) by X(t, t) in (10.39) and substituting it into the left hand side of

(10.41), we obtain
Y(t t+0)X(t +0,t,)(z(t) - z(t + 0))

= Y(t, t+0)D(t +0, X,"g(z(t) - z,"g)) - D(t, X,(z(t) - z,))

S1Y(t s)(La(s, X,(2(t) - 2,)) + La(s, X*(z(t) - 2»))) ds (10.42)

[lce

for tStg +r and Oe [-r, Q. Put

w(t) = sup|[IwW(t, 0)L: 06 I-r, QU (10.43)

for tS tg, where

W(t, 0) = e* ee‘QX(t+0,tq) (z(t) - z(t + 0)). (10.44)

Then (10.42) ischanged to
W(t, 0) = EKt+0, X,2gX '(l +0.tg)W(t, 0)) + D(t +0, e- <¢"Ai)W(t +0,.»

SY(E+0, ) eke DL, e- <o A)W(L,.)

-1 Y(t+0,8)eCAiiAiXine..)|L3(s,e-U*"Aii).W(s, .))+(...]}ds (10.45)

/1%

for tStg +r and Oe [-r, 0], where
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[-1 = L3(s.X,X '(5.t0)W(t. s-t)) + e<»*AXi-«.)Lj(s.X*(z(t)-z*)).

By (10.27) we have

XA '(t,t0)ll = sup{IX(t +s,t)l: s€ 1-r,0]) S Ke«* +“Ali)

For se [t-t-6,t) and ae [0. r) with s-fa 21
Q(s. 1) le* ¢ "-"X*m0) X(s + a, tp) (z(t) - z(s + a))I

= e “<*-"NSIW(ts +a-t)]l S wl(t).

If sE(t 6,t], ae [0, 1] and s+a >t, then
Q(s. 1) = e<* "WXe9)IX(s+a.t)W(s+a.tes-a)l

N Ke<H NIk S (s +a) S KeMr»* A lwell,

Thus, for se [t+0,t),

ok X m X (z(t) - 7)l & Ke<t*  lwell

From (10.45)-(10.47) and (10.25) we obtain

IW(t6)< i exX™A>maxlw(p): t+6Spat +r)x

Ve

(i0.46)

(10.47)

[(K +1+e*91IDI+ j' e*0%9 {(1+K)IL3(s,)II + KIL(s, .)||)ds;l

5 e'<**i'xi)max(w(p): t+0SpSt +r)x

{(K+ 1+e&lDil + (1 + K)(ar) 'lIDI(I - e*®) max(l, rllAll)

+[(@n) " - (@n)-" - Ne*9) (1 + KM, + KMj)}

(e,+E2e*®) max(w(p): t+0SpSt +rd.

In view of (10.19)-(10.21) and (10.37),

e, = (1+K)F(a)-(ar) 'M2e'<* *'xii) = (i +K) - (ar) >M2C<*"A">,
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Ej = (2 + K)IDIe'(**"AiO.(i +K)F(a) + (ar)>Mjcrt«*"Aii)
+((1 +K)M,+KM2)er**"A")
S 1(1 + KK2IIDL + M, + Mj) + (arl "Mjl ce* -(1 +K)

I+K)(-K>-(1+K)+

K1 +K) + (ar)Mje'<*-Am,

and
Ci+eje*» S I+K-(ar)'M2Cr**"A")(l-c'fi)-K>(I+K)c*®

A @ +K)(L -K-ic -) = Mg

Hence, for 12 1g+r.

w(t) S M(,max(w(p): t-rSpSt +r). (10.48)

Since (10.1) has a sequence {t,| of ZAPs with t,,->00 as n-» <« and the

involvement of the values of w(p) on (t. t+rj in (10.48) is caused by the term

L2(s, X*z*), forany t">tQ +r andallte [tQ+r,1,], we actually obtain

w(t) S Momax(w(p): t-rSpSt,,). (10.49)

Then the application of Lemma 8.4 to (10.49) yields

w(t) S lwdlex e N (10.50)
for t~t,, +r. Thus, by (10.44) and (10.50),

liz(t)-z 1l i sup(le<r* X0 * @)X(t(,t TEN: Oe (-r, O]}w(t)

S Killwi>(le<' '« Mo (10.52)
for t"to +r. From (10.51) and Lemma 9.5, z(t) has afinite limit CE(E'* as

t-»00 and

I1z(t)-cl S K(1-M" 'llw'olle<' ""MoXi-io) (10.52)

for titQ. Therefore, x(t) has the representation (10.38). #
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Note that, since Mo<I, theordertenn in (10.38) can be replaced by o(l) if
we do not know the actual value of Mq,

By (10.13), the condition A<1 will hold for sufficiently small IIDIl and
(It = 2). Also, for DIl and the (k = 1,2) small enough, a, determined by
(10.20), will be sufficiently small and K, given by (10.21), sufficiendy close to 1
that, by (10.37), Mqg< 1. Thus the conditions of Theorem 10.4 ate met if IIDIl and

the (k = 1,2) are small enough.

Let

M» = [5(M, + M2) + |7 + 2max(l,/IAIIID e~ A", (1053)

COROLLARY 105 If M*S1, then the special matrix solution X(t, s) of
(10.1) on [T-r, ) exists and, forevery to”T, every solution of (10.1) on

[tg-r, 00) has the asymptotic representation

x(t) = X(ttg)(c + 0(1)) (10.54)
as t—»o0o.
Proof. Comparing (10.13) with (10.53), we have A<M *S1. Then, by

Theorem 10.4, we only need show that Mg<I. With the numbers b, and bj given

by
b, =7, (DIl + M, +M2)enr** A
and
=def (UDIl + WDl max(, r All) + M, + Mj) er**
it follows from (10.53) that bi<M*5 1, i=1,2, and
3b, + 2b2 - IIDIE**") S M* S 1.
Then

1- D™ ™) s 2 - 3b, - 202 S (1-b,XI -b2)(2-b,).

and so
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@1-b,)" 5 (I - lIDIe<*"AQ) >(I - bj)(l + 1-b,). (10.55)
Since, from (10.19)-(10.21), K» (I-b,)" and

ar » (1 - [IDIe<*+"">)-(b2-11DIle'<*+'A")),

(10.55) can be writtenas K S (1 - ar)(I + K'*). Hence

(1 +K)(1 -(1 -anK ') S 1,
which, together with e'" > (1 -ar), implies Mg< 1. #

§10.4 THE EXPONENTIAL GAP

THEOREM 10.6 Assume that A<l and Mqg<e* Then, for each

every solution of (10.1) on [tg-r, 00) has the asymptotic representation

X({t) = X(t,to)c + 0 (e - & « “ofe]) (10.56)

as t—»o00, where

e »-(2a + 2IAI + r'ln M,) > 0. (10.57)

Proof. We know from Theorem 10.4 that every solution of (10.1) on

[tj-r, oo0) has the tepresentation (10.38). Thus, by Theorem 10.3,

X({®) - X(t,to)c = X(t,to)0(e<” ““MoKl t0)) = 0(e(« +"AIU(IA)INM,Xt-tJ)

as t-» oo. From (10.57) we have

a+ lAl +r'In Mg = -(a + IIAI + ¢),

from which (10.56) follows. That e is positive is immediate from Mg<e'/A***A">_ #

Remark. Forany c€ since
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Id = IX{E0. OX(t to)cl S Ke<"AS" ' IX(t, to>d,

the solution X(t, tg)c satisfies

K >lcle <= )« *" S IX(tt,)cl S Kide<* ‘d
for ti T-r. This, together with Theorem 10.6, indicates that every solution of (10.1)
on [tQ-r, ®) can be separated by X(t, to) into two solutions between which there is

an exponential gap. In practice, it is almost impossible to make such a separation

without further knowledge of X(t, tq). However, as far as the exponential estimates
are concerned. Theorem 10.7, below, gives a more convenient separation. This will
provide a means of decomposing the solution space as the direct sum of the special

solutions and solutions smaller than any exponential as shown in § 10.S.

THEOREM 10.7 Assume that A< 1 and Moe"<**"A">< 1. Then, for each

torx and e C, there isa unique y“e such that the solution on (t"-r, <5

of (10.1) with x, = < has the representation

x(t, t,,, tp) = x(t, to,«Po) + 0(e (**"""*'X‘H)) (10.58)
as t-M», where <Po(0)=y“ for Oe [-r, 0) and e isgivenby (10.57). For
12 1Q x(t, tQ Ry satisfies

K >ly“le- < “sich-3 * Ak @ e * A (10.59)

Proof. Forany tQ”x, we consider the equation (10.1) on [tp-r, 00)
rather than on [x - r, <& Then, for any y®e Remark (iv) in $ 10.2 implies
that the solution x(t, t*, tp) of (10.1) with %(Q) =y° for Oe (-r, 0) is identical
to the special solution on (tg -r, «) of (10.1) with x(to) =y°. The conclusion

follows from Theorem 10.6. #

Remark. Following the idea of Corollary 10.5, sufficient conditions for

A<l and Mge”**"A'><| can be obtained in terms of IIDIl, M, and M,j.
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§ 105 SMALLNESS AT INFINITY

In this section, we denote the special matrix solution X(t, to) on [t-r, ~) by
X”t,to) and show the dependence on (T, ~) of the parameters lIAll, 1IDIl, M,, Mj,
A, a, K, Mg, and e determined by (10.9)-(10.13), (10.19)-(10.21), (10.37), and
(10.57) by HAII(), 1Dil(x), Mj(t), and so forth. As functions of X all of 1IAll, 1IDIl,
M~k =0, 1,2), A a, K and -E are decreasing as X increases. If 1IDII(T), M,(T)
and Mj(T) are o(l) as T —» then also A(T) —» 0, a(T) —» 0, K(T) — 1,
MqT) -»0, and e(T) -* ~.

THEOREM 10.8 Assume that the following conditions are met:
(i) A(x)<Il and Mfl(x)exp{2t(a(x) + HAI(X))) < 1,
(i) DG, M -»0 as t —M»,

(iii) for k=1, 2, lILk(s, JIds”~ 0 as t™ oo

Then, forevery tg~ X and (p6 C, there isa unique y°e such that the solution

on (tQ-r, oo) of (10.1) with x,” =« has the asymptotic representation

x(t, tfl, P = XA, to)y® + o(e') (10.60)
as t-» 0o, where P20 isarbitrary. Moreover, forany 5 >0, thereare T 2 tq,

¢, >0 and Cj>0 such that, for t2T, X/t tg) satisfies
<NQ.BRIAIDXE i< s IXALtg)l S c2e<tNMAT)X - (10.61)
Proof. From Theorem 10.7 and Remark (iv) in 8§ 10.2, there is a unique

y° € such that

X(t, tg,<p) = X, _tig)y® + x(tto,«p,)

and

x(t,tg,(p,) = CKexpl-(a(to) + HAll(tg) + e(to) Xt-t0))) (10.62)

as t-> 00, where »A = pmy®
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We first show that, as t -» ce,

x(t.to.<Pi) = o(c-") (10.63)
for arbitrary P~O. For any T2tQ, by Theorem 10.7 again, x(t, tg,<p,) on

(T -r,«a) has the lepicsemation

X(t, 10, 9,) = XAit, T)c + CKexpl- (a(T) + IALT) +e(T))(t-T)|) (10.64)

for some c€ We claim that ¢ =0. In fact. Theorem 10.3 implies

IXAIt T)el 2 (K(T))- < Id exp{- (a(T) + NAIT)Xt - T))

for 12 T. If ¢~ 0, then, for sufficiently large 12 T,

Ix(t,to.«Pi)l A (1/2)(K(D) *lclexp(-(a(T) + HAI(T)KL-T))

AN (1/2) (K(to)) ' Id expl- (a(to) + lAlI(to)Xt - to)].
which contradicts (10.62). Thus ¢ =0. Since (ii) and (iii) ensure that [IDIIfT),
M,(T) and Mj(T) ate o(l) as T —»<», we must have (a(T) + HAII(T) + e(T))

Then, forany P2 0, the inequality

- (a(T) + HAIICn+e(D) S -2P
bolds for sufficiently large T~tg and (10.63) follows from (10.64).
As X,A(t,to) is a matrix solution of (10.1) on [tg-r, «e), forany T"tg

Theorem 10.7 and the above conclusion show that XA(t, tg) on (T -r, ») has the
representation

XA ttg) = Xr(t,T)B + o(el**) (10.65)
as t—0a, where P~ 0 isarbitrary and B isan N x N constant matrix. Then, since

the inequality

IXAtg)( S (K(tg))'eXpl-(a(tg) + AII(tg))(t-tg)l

for tAtg implies B#0, from (10.65) we obtain

(I12XK(D)-"IBle <*f'A*"AX<T) A IXAttg) S 2K(T) IBle ul)
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CHAPTER 11 CONCLUSION

The aim of this thesis was to investigate some basic problems for a class of

mixed type equations having the form

gt{x(t) -D(t x)l = L,(t, X) + 1ML x9) + f(t) (11
for t~X where for each ti x, D(t,.) and Lj(t,.) are operators from
C([-r, 01, C") to and Lj(t,.) isan operator from C(10, 0), I'*) to (For
detailed requirements on D, L~k =1, 2) and f, refer to Part Il (p.76)). We are

interested in solutions on a halfline (tor, ~).

Equations with piecewise constant arguments having the form

J(x(t)-D(xO} = L,(x,) + L2(x,,p,) + f(t). t2 0. (112
were studied in Part I. Here P~ 0 isaconstant, D and Ljj(k —1, 2) arc from
C((-r, 0], dM) to and [.) is the integer part function. By applying the available
theory for neutral differential equations to (11.2), we managed to represent its

solutions in terms of f, 17, the initial condition, and the matrix solution of the

equation

gX(t)-D(X.)) = L,(X,) + I, trO, (11.3)
with Xq=0. From this representation we obtained an exponential estimate and also
analysed the relationship between the spectrum of the solution map and the
asymptotic behaviour of the solutions of (11.2).

In Part Il, some ways of posing the initial value problem were discussed in
Chapter 6 and some simple properties of solutions obtained in (Chapter 7, though we
have not found an ideal way of imposing initial conditions for (I1.1). As an
alternative, we considered imposing conditions on L.2(t,.) which, along with other
conditions, ensure existence and uniqueness of the solution to the usual initial value

problem. Note that the equation (11.2), viewed as a special case of (11.1), has the
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following property: Ljit, y) does not always involve the values of y ina
neighbourhood of o. With this in mind, we assumed the existence of a sequence of
Zero Advanced Points (ZAPs, see Definition 7.1) and discussed its relationship with
uniqueness of the solution in Pan 11 (Chapter 7).

Under the assumption of existence and uniqueness guaranteed by a sequence of
ZAPs, in Part Ill we concentrated on asymptotic solutions and asymptotic

representation of solutions of the htxnogeneous eejuation

¢Ix(t) - D(t, x,)l = L,(t, X) + Lj(t, »). (11.4)

As we have mentioned in each part, our investigation has been inspired by
previous studies and some of our results can be viewed as generalizations of results in
these.

For equations with piecewise constant arguments, previous studies have been
mainly for differential difference equations involving only a few values of x at single
points [at + bj, while our equation (11.2) is functional differential with a term

involving values of x on intervals. As regards the asymptotic behaviour
of solutions of (11.4), we have generalized some basic theorems for ordinary
differential equations and some results for delay differential equations to this mixed
type equation. However, the dimensional difference of C and leads to the
existence of solutions smaller than any exponential (as t -» «0) and hence to asymptotic
representations different from those for ordinary and delay differential equations.
Further, because of the appearance of the term Lj(t, x°) in (11.4), a completely
different method was needed to obtain such results.

There are a number of outstanding problems for (11.1) and new efforts should
be made on them to improve the existing theory. We list a few of them below. Some of
them may be treated by the methods of this thesis, but some of them may require new

techniques.
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I. Nonautonomous equations with piecewise comtam argument'i When the

operator Lj(.) in (11.2) is replaced by a one parameter operator L2(t,.), results

analogous to those in Pan 1might be obtained by the same method. But for the equation

Ax(t)-D (t,xJ) = L,(t,x,) + L2(t,x,p,) + f(t), (11.5)

a new method is needed as there is no variation of parameters formula available for
nonautonomous neutral differential equations.

Il Initial value problem. Without the existenre nfa wan.»nr.. ofZAPs.it
is not clear how the initial condition for (11.1) should be imposed so that natural

conditions for existence and uniqueness of the solution on [t r, «>) can be found. A

simple but very important case is the autonomous equation

Ax(1)-D(x,)] = L,(x,) + Lj(x) + f(t). (11.6)
Our theory does not apply to (11.6). However, the idea of 1VP3 used in § 6.4 might
be adapted to give initial data on (-r, o| for (11.6).

11I- Weaker conditions for asymptotic solutions and asymptotic nenrrsentatinn
of solutions.

For a bounded linear operator F(t,.) from C to with a parameter
t€ (X, @), there are two different meanings of the statement that F(t, tp) is small in
some sense as t -» « We might either mean that the norm [1IF({t, Il is small at
infinity, or that, foreach gre C, IF(t, 9)1 issmallas t 0o Clearly, the smallness
of IR, Il implies thatof IF(t, 91 foreach 9 e C, but not vice versa. In a particular
problem, therefore, the condition that IF(t, 9)1 is small at infinity foreach 9 € C is
weaker than that IR, Il is small at infinity.

In Chapter 8, the equation we discussed had a term

F(t,9) = A(9(-r(1) - 9(0))
satisfying IF(t, 9)! —»0 as t —»> foreach 9 € C((-r, 0), (E"). Under appropriate
smallness conditions on r(t) (i.e. on IF(t, 9)!) at infinity, we obtained the special

solutions and the asymptotic representation of each solution. In Chapters 9 and 10,
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however, we obtained the results under the assumption that 1ID(t, )H and HLAE, I
(i.e. 1IF(t, I are small at infinity. It is reasonable to ask whether similar results can be

obtained for equations which contain terms of both the above types, so that the same

equation involves terms Fj(t, ), i = 1, 2, with the natural assumptions that 1F](t, )l
and IF2(t,g>)l foreach gie C are small at infinity.
Indeed, by exploiting a different norm in a subspace of C. Cooke (7J achieved

this aim for a class of delay differential equations having the form

Ax(t) = L(x,) + F(t, X). (11.7)
where F(t, <) is a combination of terms of F, and F* smallas t ~ inthe above
senses.

As a special case, for each te [t,00), let F(t, tp) from C([-r,0), C*) i N

be defined by

Ft. B = 1j " i y.(1) - ax-rp), (ii.g)
where J is a finite or infinite set of nature numbers and foreach j € J, r e [0, 1],
Yj(t)e C((T. 00), [-0.r]) and f*e L“(t.<»). We assume that Ij”jlIfjIL exists and
that, as t-> oo, lypt) - rjl is small in some sense uniformly for j e J. Then IF(t, 91
is small at infinity foreach 9 e C.

Now consider the equation

Ax(t) - Do(t, xO - F|(t, X)} = A(tx(t) + L,(t, x,) + Lj(t, x) + Fjft, x) (11.9)
for tAT. where A(t) isan NxN matrix and Do(t, 9). L,(t, 9) and Lj(t,y) are
asin (11.1). We assume that F,(t, 9) iscontinuousin (t, 9) and that, for each
tAT. Fi(t,9) from C([-r, 0], (EN) to (E* and PCt, 9*) from C(l-r, o|. (EY) to

C" have the form (11.8). Note that x, in F2(t,x,) is defined by

x,(0) = x(t+0), Oe Ir, 0j

and so is different from X, in D(,(t, x,), F,(t, x,) and L,(t, x,).
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Recall that the representation of special solutions in terms of A and r(t) in

Chapter 8 is obtained by transformations of the type

X(t) F(A, r)(s)ds mt), (11.10)

where F(A, r)(s) is a matrix function of s represented in terms of A and r(s). This
provides a way for us to deal with (11.9) when N » 1. For a scalar equation of the
form (11.9), with the requirements that [1IDo(t, JII, HA(t)D,(t, I, 1L, ),
HL2(t, ), and 1F,(t, (), TA(DF,(t, I and IFMttp*)) foreach < and <* be small

at infinity in a suitable sense, we expect there to be a special solution of the form

X = @ +o(l))ex  (A(s) +A,(s))ds (11.11)

as t->«, where A”(s) can be determined by a repeated transformation method.

Further, we expect to be able to represent each solution asymptotically in the form

x(t) = X(t)c +( A(s) ds - pt (11.12

as t—>a®) where p 2 0 is arbitrary.

When (11.9) stands for a vector equation, the same results as in Chapters 9
and 10are to be anticipated if A(t) is either a diagonal or a bounded matrix. However,
due to the involvement of F,(t, ¥ and Fj(t, 9*) in (11.9), some tedious estimates
can not be avoided and more elaborate proofs are needed.

We are not sure whether similar results can be obtained if IFj(t, 9*)! (or
IF,(t, 91 or both) is small at infinity for each 9* € C but Fj(t, 9») does not have the
fOTm (11.8). The asymptotic behaviour of the solutions of (11.9) is nonetheless
worth investigating under these weaker conditions.

IV. Asymptotic behaviour when Aftl in (11.91 has other forms. By
borrowing a method used by Eastham (refer to § 1.10, [12J) for ordinary differential
equations and applying the results in Chapter 9, it is possible to treat (11.9) when

A(t) has the form
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