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ABSTRACT

In this thesis, we are concerned with the establishment of 
more accurate and easily implemented methods of modelling 
portfolio Value-at-Risk (VaR) . We establish this by taking 
the view that unconditional volatility estimates are inap­
propriate in VaR analysis.

To provide the motivation and the justification for for­
warding an alternative model we examine three empirical 
issues. The first issue is whether the traditional ap­
proach based on the use of unconditional measures of vola­
tility and correlation matrix of returns are inappropri­
ate. This thesis forwards the argument that unconditional 
(historical) variances and covariance are based on rigor­
ous assumptions which are not efficient, given the distri­
butional properties of speculative price changes, condi­
tional on the information set available, and therefore are 
not appropriate in estimating portfolio V a R .

Following this, the emphasis is placed in estimating vari­
ances and covariances as time-varying. Thereafter, we con­
sider whether conditional time series models, of the vari­
ances and covariances of asset returns, provide a better 
indication of a portfolio's VaR. We then propose a 
"simplified" VaR approach that is based on historical re­
turns of the current portfolio. This simplified VaR is 
faster to compute and offers flexibility in the economet­
ric specification of the portfolio volatility. Once again, 
conditional volatility models are proposed to estimate 
portfolio VaR. The results indicate that the VaR estimates 
from the simplified model are more accurate than those ob­
tained using time-varying correlations. "Stress" and other 
non-parametric analysis validate further our conclusions.

Finally, we use (conditional) systematic risk estimates to 
search for international volatility spillovers. This af­
fects the VaR estimates through the introduction of time-
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varying, possibly asynchronous components of portfolio 
volatility that are ignored in the original static frame­
work of portfolio theory. Consequently, we put forward the 
notion that VaR estimates depends on the recent history of 
other markets. However, unlike previous studies, the 
analysis considers the effect of exchange rate movements 
on VaR estimates and the nature of the relationship between 
national stock markets. Our findings highlights the impor­
tance of considering the exchange rate in the estimation 
of VaR and in determining which national market plays the 
role of market leader.

We found that VaR models using exponential smoothing tech­
niques are not inferior to those based on the more ad­
vanced multivariate GARCH volatility estimates. Further­
more, in this thesis we proposed a VaR methodology which 
overcomes many limitations of the above and other VaR mod- 
0]_s, i.G. dimentionality and stability of the correlation 
matrix, and unlike them does not requires a specification 
of the probability distribution of returns used in the 
calculation of the VaR and worst case scenarios. Our meth­
odology uses past (historical) returns but still maintains 
the multivariate properties of the data. As stress analy­
sis has shown, the model proposed here provides more effi­
cient and unbiased VaR estimates.

Lastly, we provide a summary of the investigations along 
with the innovations provided in the thesis. Discussed in 
the conclusion are the implications of the thesis to both 
practitioners and academics.

IX



Introduction

Over recent years, the number of different investment vehicles offered to 

professional and other investors has grown significantly. At the same 

time, the types of trading activities open to these investors has also 

grown. A number of these activities, such as dynamic asset allocation 

and hedging, market timing, arbitrage, as well as some forms of per­

formance measurement, require that investors quantify and control their 

portfolio risk on a frequent basis. Investors need to know the potential 

losses their portfolio may incur in the course of a day or week, and the 

largest cumulative loss that it is likely to be incurred at any time. For ex­

ample, banks need to evaluate their potential losses in order to set aside 

enough capital to cover them. Similarly, a company needs to track the 

value of its assets and any cash flows resulting from losses in the portfo­

lio. A pension fund may want to understand potential losses on its port­

folio, both to allocate its assets better and to fulfil its obligations and 

make the set of payments to investors. In addition, pension fund man­

agers face a constant constraint, the value of their portfolios must never 

fall below a threshold level, i.e. fund liabilities (minus any reserves). 

Therefore, they need to know the maximum losses their portfolio may 

incur in the short run.
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After some institutions reported heavy losses either because of inappro­

priate derivative pricing (i.e. Orange County, Procter and Gamble, Nat- 

West) or of fraudulent operations (i.e. Barings Bank and Sumitomo) 

regulators and owners become concerned more than ever about 

"catastrophic" risks and the adequacy of capital of the financial institu­

tion to meet such risks. Regulators are now demanding that banks and 

other financial institutions quantify on a regular basis the amount of risk 

in their portfolios. For example, the Bank of International Settlement 

(BIS) in its 1994 and 1995 proposal stresses the need for banks to monitor 

the "market" or Value at risk (VaR) of their portfolios. VaR is a concept 

developed in the field of risk management that defines the minimum 

amount of money that one could expect to lose with a given probability 

over specific period of time. The VaR number applies to current portfolio 

holdings, so an implicit assumption underlying its computation is that 

the current portfolio will remain unchanged throughout the holding pe­

riod. When the holding period is as short as one day, the VaR is referred 

to as portfolio daily earning at risk (DEaR). Throughout this thesis when 

we refer to one day periods we may use either term.

As it will be apparent in the next chapter, VaR is rapidly becoming a 

popular management tool. Its continuing success promises to increase 

the precision and the readability of risk management systems, therefore, 

reducing the chances of their failure in unusual market conditions. His­

torical estimates of asset returns, variances and covariances, traditionally 

used to estimate portfolio risk rely upon the crucial assumptions about 

the distributional properties of the data; mainly normality, stationarity 

and independence. However, the stylised facts about daily returns con­

tradict these hypotheses and make the use of the historical estimates in­

appropriate in VaR analysis. The accurate modelling of daily portfolio



volatility and its use in risk monitoring provides the main motivation of 

this thesis. Given the inappropriateness of unconditional estimates to 

measure portfolio risk, we will search for alternative methods in estimat­

ing volatility which use the information set more efficiently.

Essentially, this thesis is concerned with the examination of four empiri­

cal issues which are related to establishing an accurate method of model­

ling portfolio volatility on a daily basis and its use in monitoring risk.

The first issue to be considered is whether the models that use uncondi­

tional measures of volatility and correlation are appropriate. Following 

this, the thesis will move on to establishing whether the VaR solution 

obtained from a time invariant variance covariance matrbc of the portfolio 

assets is inefficient (see Markowitz (1952), (1956)). To elaborate, we will 

argue that unconditional (historical) variances and covariances are based 

on restrictive assumptions which do not comply with the distributional 

properties of speculative price changes and so are inappropriate in esti­

mating portfolio VaR. Consequently, the issue to consider is whether al­

ternative approaches can provide unbiased estimates of VaR which are 

computationally feasible and continue to utilise all available information 

efficiently.

The third issue to be considered is whether the results for VaR using 

conditional time series models provide a better indication of a portfolio's 

VaR. It is well documented that conditional volatility models are particu­

larly suited to daily financial data series since they allow for fat tails and 

other non-linearities present on the (unconditional) distributions of the 

latter. We will investigate the ability of a type of conditional volatility 

model, known as Generalised Autoregressive Conditional Heteroskedas- 

ticity or GARCH, in estimating portfolio VaR. Our conclusions are based 

on "stress" analysis and other non-parametric tests. The final issue to be



examined is to test the hypothesis that the volatility transmission 

mechanism and market linkages can be better explained using the condi­

tional second moments. Understanding the way "news is transmitted 

from one market to another will help to forecast volatility rises and pro­

tect portfolios from large (unexpected) losses.

To investigate these issues, the data-set employed throughout this thesis 

is daily closing prices on thirteen markets from the beginning of 1986 

until the end of 1995. Each market is selected so that it matches the re­

gional and individual market capitalisation of the world index. As a 

proxy to the world index, we use the Morgan Stanley Capital Interna­

tional or MSCI World Price Index. To isolate changes in the joint second 

moments, this thesis deploys a time-varying variance-covariance matrix 

through the use of the multivariate conditional time series. The time se­

ries analysis employed here is based upon the principles of the Autore­

gressive Conditional Heteroskedastic (ARCH) framework introduced by 

Engle (1982). We have chose a multivariate generalised ARCH (GARCH) 

over other types of conditional volatility models for three reasons. Its 

success in modelling variances and covariances of daily financial time 

series has been well documented. It is very flexible in the conditional 

mean and variance specification so it can be used to fit the distributional 

properties of a particular series of returns. Finally it is relatively easier to 

compute than other equivalent models, i.e. stochastic volatility (SV), 

while it is not inferior in performance.

As will be discussed in the subsequent chapters, there are computational 

problems in employing multivariate GARCH models even on small sized 

portfolios. In recognition of this, we will employ the Sharpe (1963) Single 

Index Model (SIM ) algorithm to simplify calculations. Following Engle 

et al (1984) and Bollerslev et a l (1988), the ARCH model has been ex-



tended to a bivariate specification to capture the path of both specific 

and systematic risk for each of the thirteen domestic portfolios in relation 

to the world market. This will overcome the dimensionality problem of 

estimating jointly the variance-covariance matrix, and yet still yield a 

reasonable, time-varying matrix.

This thesis makes an important contribution to the estimation of VaR 

risk management in general. It is known that correlations measured from 

daily returns are unstable. Even their sign is often ambiguous. For large 

portfolios, the number of pairwise correlations is unmanageable. The 

method proposed in this thesis does not require the estimation of corre­

lations and hence can be applied to portfolios of virtually any size. We 

calculate past portfolio returns holding current weights constant. Histori­

cal returns contain all the necessary information about asset co­

movement, hence, we fit a volatility model and forecast future portfolio 

volatility and VaR. Since we need to model a single time series of past 

portfolio returns, we have a lot of flexibility in selecting the volatility 

model. Such flexibility is missed in other studies that estimate portfolio 

VaR using a full correlation matrix.

A second important issue addressed by this thesis is the probabilistic cal­

culation of the Worst Case Scenario (W CS). Risk managers have been 

worried about catastrophic risk; they need to know what losses they will 

face if uncommon events occurs. Two popular methodologies used today 

to calculate the W CS is the setting-up of hypothetical scenarios and 

Monte Carlo simulation. The first method relies on a arbitrary hypothesis 

made by the risk manager. The second one has also a number of draw­

backs which are addressed in detail in chapter four. Our methodology is 

not based on the setting-up of ad-hoc hypothetical scenarios or arbitrary 

distributional assumptions of asset returns. Instead we estimate the W CS



from the empirical distribution of past portfolio returns. Yet, our method 

provides rapid estimates because it does not require structural Monte 

Carlo simulations; furthermore, and most importantly, it can be applied 

to any size of portfolio. In this thesis we use a non-parametric method 

when estimating the WCS.

This thesis also sheds light on the issue regarding the impact on portfo­

lio risk of any change in asset correlations. It is well documented that 

daily pairwise covariances and correlation coefficients of financial asset 

returns are changing through time. As portfolio risk depends on esti­

mates of all pair-wise correlations included in the portfolio, any changes 

will affect the riskiness of the portfolio. We show that although individ­

ual correlations coefficients may vary substantially from one period to 

the next, the overall impact on the portfolio riskiness may be modest if 

the portfolio is well diversified.

This thesis also makes a significant contribution in discovering the exis­

tence of market inter-linkages. Unlike any other previous study, we are 

searching for market inter-dependencies in the changes the systematic 

risk of national stock prices. By understanding how any volatility shock 

started in one country will be transmitted to the rest it can help in the 

measurement and control of market risk in a globally diversified portfo­

lio.

The rest of this thesis is organised as follows. In the first chapter, the 

theory surrounding the concept of VaR together with its relationship to 

modern portfolio theory is considered. The distributional assumption of 

portfolio theory is examined along with the consequences on portfolio 

VaR in the face of violation of these assumptions. This is followed by a 

theoretical discussion of the problems surrounding the computation of



the variance-covariance matrix and the introduction of the SIM by Sharpe 

(1963) to be used in this thesis as the means of overcoming the limita­

tions of constructing a 13x13 variance-covariance matrix. To justify the 

employment of GARCH models, (to be discussed in chapter two) we will 

examine the issues surrounding the distribution of speculative price 

changes where two issues of importance are discussed; first, the nature 

of the distribution itself and second, the issue of non-stationarity in the 

data.

Chapter two discusses the methodology to be employed in this thesis. It 

begins by outlining the empirical evidence about the distributional prop­

erties of speculative price changes and the methods proposed to model 

stylised facts, like volatility clusters and excess kurtosis. Its particular 

aim is to focus on the modelling of security betas. Following this, we in­

vestigate the various statistical methods used in previous studies for im­

proving portfolio volatility modelling. These include beta adjustment 

procedures based on ordinary least squares (OLS), exponential smooth­

ing (ES) and non-linear time series models of the GARCH family and 

stochastic volatility (SV) approaches. On the basis of the above discus­

sion, we justify the employment of the bivariate GARCH model on the 

basis that it is computationally easier and it best "fits' the variances.

In Chapter three we will use a dynamic specification of the SIM based on 

the bivariate GARCH in mean model to investigate whether such volatil­

ity modelling, to assess securities' risk, can be used to capture the time 

variation not only in the total risk of a security's return but also in its 

systematic and unsystematic components. The objective here is to con­

struct a time-varying correlation matrbc which can be used to estimate 

portfolio's market risk conditional on the information set available on the 

previous day; that is, the computing of a beta measure of security risk.



This chapter has three additional aims. First, it investigates whether the 

volatility of a portfolio based on time-varying variances and covariances 

estimated as above provides a better input for calculating the portfolio 

VaR than alternative simpler methods such as the ES. Next, it seeks to 

model as time-varying the systematic and unsystematic components of 

risk for portfolios diversified across a number of major stock markets all 

over the world. Finally, it applies a non-linear statistical technique for 

analysing the volatility components of returns.

Chapter four considers a "simplified" approach to the conditional esti­

mation of the VaR by estimating portfolio volatility conditional on its 

historical returns. This method has an appealing property; it estimates 

current (and past) portfolio volatility without the need to calculate the 

asset components' variance-covariance matrix and still takes fully into 

consideration all current and past pairwise correlations. This approach 

provides a fast, and flexible way of modelling volatility. Theoretically, it 

will provide an accurate VaR measure for portfolios of any size. Fur­

thermore, this chapter will analyse the issue of the worst case scenario 

(W CS). Worst case scenario goes beyond VaR since it tells us if the 

worst happens what the likely losses are. We estimate the portfolio's 

WCS by applying bootstrapping simulation on the portfolio scaled inno­

vations. Hence, by using the empirical distribution (which contain any 

fat tails and other non-normalities) of the past portfolio returns we take 

into account, in our W CS estimation, the catastrophic risk. Finally we 

analyse the impact that the aggregated correlation instability has on the 

portfolio risk.

Chapter five investigates market interdependencies amongst national 

markets. Given the integration of international markets, volatility origi­

nating from any country will be transmitted (to an extent) to others. The
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way volatility is transmitted may be not instantaneous but will occur 

with a lag. By studying the volatility transmission mechanisms, manag­

ers may improve the way they manage their portfolio risk, in particular if 

the portfolio contains non-linear positions {e.g. options). Unlike previous 

studies in this area, we model market dependencies in the second mo­

ments of national market returns as opposed to their first moments to 

monitor the systematic risk as opposed to overall risk. Further, interde­

pendence is explored through changes in the market betas with the 

world factor where the MSCI is used as a proxy for the world market. 

Market integration implies that excess volatility is transmitted from one 

national market to another. The most notorious example of volatility 

transmission across national markets is the October 1987 Crash. In this 

investigation, the GARCH methodology is employed to model national 

markets' time-varying volatility. This enables us to evaluate the volatility 

transmission mechanism and market linkages in a dynamic context. The 

betas generated through the use of GARCH are modelled using variance 

decomposition and impulse response function in a vector autoregression 

framework to analyse how "news" is transmitted across national indices. 

Further, this analysis provides us with a deeper understanding of the 

percentage error variance in a national market that is attributable to in­

novations in each of the other markets. It also aims to reveal the length 

of time that elapses before market volatilities return to their long run 

levels following a "news" shock. Our analysis goes further by allowing 

for asynchronous transmission of volatility between markets and sec­

ondly, by addressing volatility spillovers due to systematic volatility as 

opposed to total volatility.

Finally, chapter six summarises and concludes the thesis. The findings of 

all empirical chapters will be reviewed and a conclusion will be drawn on





Chapter 1

Portfolio Values-at-Risk

The deregulation and lifting of capital movement restrictions that took 

place in the 1980's (i.e. Big-Bang) and has provided professional investors 

particularly in many industrialised countries, with the opportunity to di­

versify their portfolios globally. The measurement and management of 

risk on a portfolio diversified across international equities motivates the 

empirical investigation of Value-at-Risk or VaR techniques which is the 

focus in this thesis. VaR is a popular technique currently widely used to 

measure a portfolio's market risk. It determines the minimum amount a 

portfolio's value could decrease over a given period of time with a given 

probability as a result of changes in the market prices or rates of return. 

The concept of VaR is very appealing because it is consistent with the 

objective of shareholder wealth maximisation, a central tenet in Markow­

itz (1952, 1956) portfolio theory. VaR quantifies the potential loss in 

shareholder wealth with a given probability over a specific period of 

time. Using VaR calculations an institution can judge how it should re­

allocate the assets in its portfolio to achieve the risk level it desires.
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This chapter introduces the concept of VaR and its relationship to port­

folio theory. It first describes the distributional assumptions upon which 

modern portfolio theory is based. Thereafter it examines the conse­

quences for portfolio efficiency and riskiness that follow from the viola­

tion of these assumptions. Finally, it discusses the issues surrounding 

the distribution of speculative price changes where it examines the form 

of the distribution and the non-stationary nature of price data. The moti­

vation of this discussion is to justify the use of conditional volatility 

models to be examined in chapter two and the implementation of one of 

these, the Generalised Autoregressive Conditional Heteroskedastic 

(GARCH) in the subsequent empirical chapters.

1.1 Portfolio Values at Risk

Using a probability level of y and a holding period of t days, the portfo­

lio's market risk, or Value-at-Risk (VaR), is the loss that is expected to be 

exceeded during the next t day holding period with probability VaR 

is rapidly becoming a popular management tool given that it summarises 

in a single statistical measure all possible portfolio losses over a short 

period of time due to "normal" market movements. Losses greater than 

the VaR are suffered only with a specified small probability. The level of 

probability that this loss in portfolio value has to be incurred is chosen to 

fit the investor's particular circumstances. The length of the time over

 ̂For risk management purposes we are only concerned with potential 
losses, not gains. However, as we will see later the VaR can also 
be extended to estimating the likely gains.
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which VaR is measured is set equal to the time period needed to close or 

neutralise all portfolio positions^.

The method for calculating VaR depends not only on the horizon chosen 

but also on the kinds of assets in the portfolio. The method we consider 

here is suitable for portfolios consisting of stocks, bonds and currencies 

over a short horizon. If the portfolio contains non-linear positions 

(derivatives) either these positions need to be linearised, e.g. by multi­

plying their delta by the volatility of the underlying asset, or a different 

VaR method may be employed, e.g. see Barone-Adesi et al. (1997).

In statistical terms, the VaR is the lower sided confidence interval for the 

change in portfolio value over a specified time horizon. Thus, given a 

probability level vand a time horizon t, the portfolio VaR is :

^ « ^ {v a R r '” < -  Pt}  ̂0  - (l.i.a)

where P is the value of the portfolio holdings at time T. The portfolio's 

expected daily loss, also known as Daily-Earnings-at-Risk (DEaR), de­

scribes the magnitude of the daily losses on the portfolio for a given 

probability. For example the 1% probability DEaR for a portfolio with 

value P will be

DEaR= Pao2.33 (1.1.b)

 ̂ In the 1996 amendment of the 1995 proposal the BIS required banks 
to compute the VaR on a daily basis with a horizon of 10 trading 
days and set the confidence level to 99%.
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where Cp is the daily volatility (standard deviation) of portfolios returns 

and 2.33 is the nun\ber of standard deviations which gives the one-tailed 

probability of 99%.

VaR uses standard statistical methods to look at portfolio risk over time. 

The most popular method today is the "variance-covariance" VaR ap­

proach. It is so named because it is derived from the variance-covariance 

of the relevant underlying market rates of return. If W denotes the Nx1 

vector of current portfolio weights and Q is the variance-covariance ma­

trix of their returns, the portfolio variance is given by:

= W^iiW (1.2)

Knowledge of the variance-covariance matrk of these variables for a 

given period of time implies knowledge of the variance or standard de­

viation of the portfolio over this period.

1.1.1 The Link Between VaR and Modern Portfolio Theory

The above approach to estimating a portfolio risk is rooted historically in

the pioneering work of Markowitz (1952) which laid down the corner­

stone of modern portfolio theory. Markowitz was the first to show that 

the risk in a portfolio of securities is equal to the weighted second mo­

ments of the multivariate distribution of their returns^. In Markowitz's 

framework risk can be seen as the uncertainty that surrounds the future 

value of a portfolio; as given by the spread of the probability density 

function of the portfolio around its expected value.

 ̂We use the term risk to refer to both variance and standard de­
viation of returns.
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This is shown in figure 1.1 by the area on the far left and right of the ex­

pected value of the portfolio. Portfolios with high expected returns are 

attractive but, assuming market efficiency, are associated with higher 

risk.

Fig 1.1 p.d.f. of Portfolio Exp. Value

There is a direct link between the way DEaR and VaR measure risk and 

the one defined in modern portfolio theory by Markowitz (1952, 1956).

In the Markowitz portfolio theory, the risk of an asset mbc is seen as the 

variability of actual return around its expected value, which is the centre 

of the distribution, at the end of the investment period. The area on the 

far left in figure 1.1 tells us that there is a 0.5% probability that at the 

end of the investment horizon, the portfolio with standard deviation of

15



20% faces a loss of 0.46% or more which also represents the VaR of an 

equal length holding period'^

Hence, this can be interpreted in a way that allows us to measure the 

number of days that a similar loss may take place over the entire invest­

ment period. An investor who holds a portfolio with a distribution simi­

lar to that in figure 1.1 can expect to make a loss equal to or greater 

than the VaR value once out of two hundred days. That is if the VaR 

measure is accurate, losses greater than the VaR value should occur on 

average 0.5% of the time. This is shown in figure 1.2 where a loss 

greater than 2.33 standard deviations occurs 27 times in the 2609 days in­

terval.

* Although upside risk is welcome by any investor, Markowitz treats 
upside and downside risk in the same manner. For risk management 
purposes, we are only concerned with potential losses, not gains. 
Given that on symmetrically distributed returns the DEaR is half 
the size of the risk in Markowitz definition, we will regard 
these two forms of risk as equivalent. Furthermore, DEaR and VaR 
are equally valid for calculating the potential for gain.

 ̂Of course this is valid only under the same assumptions on which 
Markowitz theory is based. These assumptions and their implica­
tions will be examined in the next paragraphs of this chapter.
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Fig 1.2 Portfolio Daily Profits & Losses
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There are additional common properties between VaR and modern port­

folio theory. VaR summarises the amount of risk embedded in a portfo­

lio as a single number and, like modern portfolio theory, takes into ac­

count the correlation between different types of risk. Since VaR comple­

ments itself with the associated likelihood that these losses will material­

ise, it gives a more objective assessment of the portfolio's risk exposure. 

Furthermore, the VaR method enables senior management of enterprises 

to assess the magnitude of the risks involved since the risk shown as the 

size of potential monetary losses can easily be compared with the port­

folio's expected return and with the firm's own capital.
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1.2 Distributional Properties of Security Returns and VaR

1.2.1 The i.i.d. Assumptions

To estimate the portfolio risk Op, Markowitz suggested using historical 

(unconditional) variances and covariances. To do so, he made two im­

portant assumptions about the distributional properties of securities re­

turns. These are: security rates o f return are independently and identi­

cally distributed {i. 'i.d.). These two properties form the basis of what is 

known as the "random walk" model of efficient markets . All asset 

pricing theories, /. e. the Capital Asset Pricing Model (CAPM) and the 

Black-Scholes option pricing formula, are based upon the assumption 

that markets are efficient. The independence property implies that a se­

ries of price changes has no memory: past history cannot be used to in­

crease expected profits. The second property, identically distributed re­

turns, states that the rate of return must conform to some, fixed, prob­

ability distribution. The theory does not specify what the shape of the 

distribution should be. Fama (1965) argued that any distribution which 

correctly characterises the process that generates the rate of returns is

® The credit for the random walk model is given to Bachelier
(1900). He, however, also assumed that price changes are normally 
distributed. Fama (1965) removed the assumption of normal distri­
butions. Later, Granger and Morgenstein (1970, pp 71-73) defined 
the "random walk" as a constant expected price change and zero 
correlation between the price changes for any two different days; 
hence they removed the identically distributed assumption.

 ̂The "random walk" model forms the core of Fama’s (1970) defini­
tion of efficient markets.
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consistent with the theory. The theory however implies that the statisti-
Q

cal moments of the distribution should remain constant .

When returns are i.i.d. and the moments of the distribution are known, 

any inferences made about potential portfolio losses will be accurate and 

unchanging over time. Under these circumstances, the historical vari­

ance-covariance approach can be used to estimate portfolio VaR. This is 

based on the assumption that the changes in the value of the portfolio 

are on average random and their frequency distribution can be estimated 

using a Gaussian statistical curve. Normality simplifies VaR calculations 

because all percentiles are assumed to be known as multiples of the 

standard deviation. Thus, to calculate the VaR we only need to know 

one estimate, the standard deviation of the portfolio's change in value 

over the holding period. Stationarity implies that the probability of oc­

currence of a specified loss is the same for each day. Independence im­

plies that the size of price movement in one period will not influence the 

movement of any successive prices. These assumptions simplify the 

VaR calculation for any holding period and probability. The longer pe­

riod's VaR can be found by multiplying shorter, /. e. daily, horizon stan­

dard deviations by the square root of the number of days t in that pe­

riod.

VaRjj+t = DEaRjVt (1.3)

® The series of returns (and in general any time series) with con­
stant statistical moments over different periods is known as sta­
tionary. Throughout this thesis under the term "stationarity", 
will refer to the "weak" form of stationarity, where the means 
and variances across time are constant. For a discussion see Ham­
ilton (1994), p 45.
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However, the convenience of these assumptions must be offset against 

the voluminous empirical evidence which has found that the tails of the 

distribution of daily changes in speculative prices exceed those of the 

Gaussian^. The presence of fat tails could be explained by non-stationary 

distributions. Studies investigating changes in asset means have been in­

conclusive. Others, as we will see later, found indisputable evidence that 

a security's risk not only changes over time but also follows an autore­

gressive process. This latter implies a conditional dependency in the dis­

tribution of returns. If that is the case, using a constant volatility method 

to calculate VaR could be very misleading since the probability of a large 

loss is not equal across different days. During days with higher volatility 

we would expect larger than usual losses. Furthermore if there is a ten­

dency for large price changes to be followed by more large changes, 

known as volatility clustering, the portfolio VaR for that period will be 

larger than under usual market conditions^®.

Today there is a large body of evidence which suggests that speculative 

price changes are fat tailed distributed returns with changing conditional 

moments. This will undermine the ability of VaR to quantify portfolio 

risk where unconditional estimates of means, variances and covariances

® The presence of fat tails found on the distribution of daily and 
weekly data is commonly accepted today but for monthly data there 
is weaker evidence, see Blattberg and Gonedes (1974) . In the let­
ter case, when an institution is interested in calculating VaR 
over a long horizon, the time-varying volatility may not be an 
important issue.
For some types of investments two or three consecutive adverse 
price changes may be sufficient to ruin the investor, i.e. con­
tingent claims and investments with leverage. In a leveraged 
portfolio investors borrow at a fixed rate and invest in a risky 
asset, usually equity. Leverage increases positive expected re­
turn because leverage magnifies volatility. The larger is the 
leverage factor, the higher the gains will be in case of positive 
returns. But large adverse returns increase the downside risk and 
chances of a disaster. Thus the DEaR and VaR are far more impor­
tant in the management of leveraged investments.
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are employed. Excess kurtosis will cause losses greater than VaR to occur 

more frequently and be more extreme than predicted by the Gaussian 

distribution. The variability of second moments itself causes an addi­

tional source of uncertainty. Under these conditions it will be inappro­

priate to use historical variances and covariances to estimate VaR.

1.3 Modelling Volatility and Correlation as Time-Varying

1.3.1 Historical vs. Conditional Volatility Models

The problem of fat tailed returns could possibly be alleviated by using a 

leptokurtotic distribution, although sometimes smoothing the data-set by 

using the normal curve may improve the prediction if the extreme obser­

vations are due to sampling error. When, however, the use of any 

(constant) known distribution is unsuitable, i. e. not all assets returns can 

be described by the same distribution, the use of simulation methods 

based on sample values of prices to build the distribution of portfolio re­

turns may be more appropriate to calculate VaR. Monte Carlo simulation 

uses unconditional variances and covariances of prices to generate a se­

ries of sample paths through price span.

Nevertheless, multivariate simulation methods which use historical vari­

ances and covariances to replicate asset returns will still provide ineffi­

cient portfolio VaR estimates when the second moments of asset returns 

are time-varying. The time changes of variance and covariances may be 

captured by using conditional time series models. This class of statistical 

models makes more effective use of the information set available at time 

t to estimate the means and variances as time-varying. Multivariate con­

ditional models such as GARCH (Generalised Autoregressive Condi-
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tional Heteroskedastic), the Harvey (1991) CAPM and state space tech­

niques have been successfully applied to capture time-varying covari­

ances and hence betas and correlations. The GARCH models of Engle 

(1982) and Bollerslev (1986) have been designed to remove the systemati­

cally changing variance from the data which could account for most of 

the leptokurtosis observed in the unconditional distribution. Among oth­

ers Bollerslev et al. (1988), Ng (1988) and Bodurtha and Mark (1991), 

modelled the conditional covariances as a function of past conditional 

covariances to test the CAPM.

Harvey (1989) uses Hansen's (1982) generalised method of moments 

(GMM) to test a version of the CAPM that allows for both time-varying 

expected returns and conditional covariances and found that 

"..conditional covariances do change through time" (pp315). Harvey's 

parameterisation, in contrast to multivariate GARCH studies, does not 

assume a functional form, e.g. autoregressive, that the second moments 

may need to follow.

The above methods have lower forecast error variance and allow for the 

unconditional distribution of the data to exhibit excess kurtosis and thus 

better describe the empirical distribution of financial data. They do not, 

however, come without cost since they are non-linear and computa­

tionally intensive. Furthermore, the number of unknown coefficients to 

be estimated increases with the square of the number of series included 

in the system. As a result, empirical studies that jointly estimate the 

conditional moments, have to restrict the number of assets to not more 

than half a dozen at a time^\ The fact is that in the mean-variance port-

Bollerslev et al. (1988) restricted their multivariate GARCH 
model to three assets while Harvey (1991) used seven variables to 
estimate the joint second moments.
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folio approach to asset allocation and risk measurement, the number of 

variances and covariances to be estimated increases with the square of 

the number of available assets, making the use of conditional models 

problematic. Moreover, risk managers would be mostly interested in the 

early identification of shifts in the risk parameters, but the sheer number 

of portfolio parameters (variances and covariances) to be monitored 

makes the task of distinguishing parameter shifts from sampling errors 

fraught with difficulties.

1.3.2 Specifying the Conditional Probability Distribution

As we have seen, two statistical elements are critically important in VaR 

analysis. The estimates of volatility over the horizon and the probability 

distribution that describes the portfolio (residual) returns. Time series 

models are helpful to model conditionally the moments of the distribu­

tion of portfolio returns and remove (most) non-linearities from the data. 

They usually assume that returns are distributed conditionally as normal 

but its moments are allowed to change over different periods; hence the 

unconditional distribution may be non-normal and exhibit the expected 

stylised facts that characterise security returns, mainly excess kurtosis 

and volatility clusters. The aim of each time series model is to leave any 

residual returns as i.i.d.

Assuming normality in the conditional distribution is advantageous in 

the model estimation but may not represent well the distributional prop­

erties of the data. In fact, the specification of the probability distribution 

that the portfolio return innovations are following represents the major 

challenge in the calculation of VaR. It is known that financial asset price 

changes are exposed to uncommon events which cause unusually large 

losses (and gains). Furthermore, it is difficult to find such a conditional
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time series model which leaves (scaled) residuals with a known 

(conditional) density that is able to describe uncommon but possible 

losses. Therefore, assuming (conditional) normality in calculating VaR 

may lead to the underprediction of tail events.

It is, however, possible to model the density of portfolio returns in a 

more general form, e.g. as a Student -t or as a semi-non-parametric dis­

tribution, see Gallant et al. (1991). A more general specification may be 

better suited to the financial data since it will allow the conditional re­

turn innovations to deviate further from normality. However, specifying 

the density of the asset's conditional (residual) returns in a more general 

form is subject to additional problems. These include loss of forecastabil- 

ity, possible overfitting and increased computational difficulties.

1.4 Sizeable Deficiencies In Computing the Variance- 
Covariance Matrix Conditionally

1.4.1 Partitioning the Variance-Covariance Matrix

The estimation of portfolio variance in (1.2) requires the knowledge of 

the variance covariance matrix il. The number of elements of this matrix, 

however, increases with the square of the number of assets in the port­

folio. When conditional time series models are employed to estimate 

jointly the statistical moments of even a moderate number of assets the 

number of unknown parameters exceeds above the point beyond which 

the model computation is not feasible. Hence, the number of different 

types of assets in the portfolio restrains the applicability of conditional 

time series models.
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(N-1)N ,
One possibility is first to partition this matrix into off-diagonal

elements and then to capture the joint dynamics of the second moments 

for each possible pair-wise combination of investment holdings. The 

volatility of current investment holdings is then computed as in (1.2). 

This, although computationally expensive, is a feasible solution since it

(N-1)Nrequires the estimation of bivariate systems. The problem this

simplification face stem from the way the variance-covariance matruc is 

partitioned. That is because unless certain preconditions are satisfied 

there is no guarantee that the resulting variance-covariance matrix comes 

from a NxN multivariate distribution, e.g. the absolute value of the de­

terminant may be greater than one. Hence the portfolio variance esti­

mates are very likely to be biased.

1.4.2 Using the SIM to Build a Conditional Variance-Covariance Matrix

An alternative solution to this problem can be found by applying the 

Single Index Model (SIM) of Sharpe (1963) to the conditional time series 

content. Sharpe (1963) proposed a simplified method to solve the prob­

lem of optimising a portfolio, which was mainly aimed at cutting down 

the computation in the variance-covariance matrix when a portfolio 

was to be diversified across a wide (large) set of assets. Sharpe (1963), 

based on a footnote of Markowitz's (1959) monograph, proposed the 

idea that in each market, a single factor (index) accounts for a greater 

proportion of the variability of security returns than any other factor. 

One such factor could be the market index itself.
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Let Yi be the return on stock i, and let Ym, be the return on the market 

index. The single index model assumes that we can write

Yi = Oi + piYm + £i e-N(O.aê ) (1.4)

Formally, the SIM assumes a one factor return generating process. In 

such a process, the variability of all stock returns can be completely cap­

tured by the market index plus firm specific events. The responsiveness 

of each security to the market is measured by its beta coefficient (P) 

which is the slope in the above linear equation.

The SIM makes the assumption that the idiosyncratic returns, £i, are in­

dependent across different firms, £|[eiej)=0. This leads to a significant 

simplification of the covariance matrix of returns. The off-diagonal terms 

of the covariance matrix will take the simple form;

Cov(Yi.Yj) = piPjVar(Ym) (1.5)

where Y¡, Y¡ are the returns of series and p¡, ft the beta coefficients of 

stock i and j respectively, Ym is series of returns of the common index. 

The above covariance expression brings a considerable saving in the 

number of terms need to calculate ÇI. The computational advantages of 

the SIM are expanded in many areas in finance where a variance- 

covariance matrix is indispensable, among others in the computation of 

the VaR. As we will see in chapter two, the SIM can be extended to 

multivariate non-linear time series models to overcome limitations in 

computing large conditional variance-covariance matrices.
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1.5 Time-Varying Volatility and Inter-Market Linkage

By the mid 1980s major stock markets became increasingly deregulated 

while investors began to make more use of the relaxation of the old bar­

riers to capital movement. To raise equity, companies started to look at 

different markets, outside their country of origin. The number of multi­

ple listed companies has expanded over the years. Multinational firms, 

such as Royal Dutch-Shell and Ciba-Geigy are traded on more than a
1 "ydozen markets .

The consequence of the deregulation and relaxation of capital move­

ments was a growing international integration of financial markets. In­

vestors began studying market cycles on a number of markets and were 

prepared to move their capital when they showed good buying oppor­

tunities. Integration or interdependency implies that a change in the 

prices in one market will affect, to some extent, prices in all other mar­

kets. This increasing integration has also been the cause of the transfer 

of disturbances from one market to others. For example during the 1987 

crash there was an "almost" simultaneous sharp drop in equity prices 

around the world. Similar disturbances are observed each time there is a 

big drop in prices in the US market.

The extent to which a price movement in one market will influence 

prices on other markets depends on the degree of their integration. In 

the Markowitz's portfolio model price changes across different securities 

are linked through the second moments of their joint distribution. Simi­

larly, the SIM allows security price changes to be linked through their 

common co-movement with the index. Common measures of interde-

Arbitrage among markets guarantees that the share value of mul­
tiple listing companies, after adjustments for exchange rate and 
transactions costs have been made, is the same across all mar­
kets .
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pendence are the correlation and beta coefficients against the world in­

dex. Historical correlations and betas are easy to compute but restrict the 

degree of interdependence to be constant over different time periods.

But as we have seen there is a large body of empirical evidence that 

finds conditional variances, covariances and betas of domestic securities 

do change over time. Among others Hamao et al. (1990) Chan et al. 

(1991) and Karolyi (1995) provide evidence that the conditional volatility 

on international markets changes over time.

Therefore, historical estimates will not reflect the actual interdependence 

in each period. Any changes in the joint second moments need to be 

taken into account when searching for market interlinks. We noticed for 

example that during the crash of 1987 along with other periods of tur­

moil, such as the Iraqi invasion of Kuwait, equity prices around the 

world collapsed together. Furthermore, these changes in volatilities may 

not be contemporaneous. Studying eventual leads and lags in the way 

the betas of national markets change may open the way to understand­

ing how volatility is transmitted from one market to others. This is the 

issue to be investigated in chapter five.

1.6 The Empirical Distribution of Speculative Prices Changes

As we have seen, the distributional properties of the changes in the 

prices of financial assets are critical in estimating VaR. Normality simpli­

fies calculations but the VaR analysis requires precision, not simplicity. 

Precision is waived if the data are not normally distributed. The random 

walk theory has stimulated a number of researchers, (Kendall (1953), 

Osborne (1959), Mandelbrot (1963), Fama (1965), Officer (1972), Praetz 

(1972), Blattberg and Gonedes (1974)), to analyse the distributional prop-
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erties of speculative prices by investigating the randomness and the form 

of the distribution of successive changes in speculative prices .

1.6.1 Independence

The investigation of independence has concentrated on testing for serial 

correlation in successive price changes. The general conclusion is that 

successive price changes are autocorrelated but are too weak to be of 

economic significance. This leads most studies to accept the randomness 

hypothesis. Fama (1965) examined thirty stocks and found small serial 

correlation coefficients with large standard errors. In only a few cases did 

the coefficient exceed its standard error by a factor of two or more but 

their significance may be overstated because the distribution of the data 

he examined was non-Gaussian. He concluded that "..dependency of 

such a small order of magnitude is, from a practical point of view, 

probably unimportant for both the statistician and the investor" (p. 70).

Given that the distribution of returns may be non-normal, lack of auto­

correlation does not imply serial independence. A number of studies 

found that returns are generated by non-linear processes which allow 

successive observations to be linked through their second moments. This 

phenomenon was initially noticed by Mandelbrot (1963), who observed 

that large price changes tend to be followed by large price changes in ei­

ther direction. Nevertheless, this observation was not explored until re­

cent developments in econometrics made powerful techniques available 

to model these dependencies in security returns. For instance, the

The form of the early studies was mostly technical and the first 
complete economic rationale for the random walk model was given 
by Samuelson (1965) .
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GARCH family of Engle (1982) and Bollerslev (1986) and the stochastic 

volatility models of Mellino and Turnbull (1990) and Harvey et al. (1994).

1.6.2 The Form of the Distribution.

In finance it is natural to assume normality in conditional predictions and 

unconditional prediction for risk analysis. The normal (or Gaussian) dis­

tribution has several advantages. All moments of positive order exist. It 

is mathematically tractable where results can be obtained in a closed 

form. It is completely characterised by its first two moments; thus, es­

tablishing the link with mean-variance analysis, Markowitz (1952, 1956). 

Indeed it was Markowitz who assumed that the rate of returns follows a 

multivariate normal distribution. He did this because it was convenient 

at that time for computing the optimal portfolio '̂ .̂ Since the normal dis­

tribution remains stable under addition any portfolio invested in station­

ary and jointly normally distributed assets will also be normally distrib­

uted with stable moments^^. Then two parameters, the mean and vari­

ance, are sufficient to describe it.

The Gaussian distribution, however, has several disadvantages which are 

especially relevant in VaR analysis. As the tails of this distribution decay 

exponentially towards the axis, extreme realisations are very unlikely. 

This seems to argue against the empirical evidence for the distribution of 

asset returns. Indeed, when researchers began to examine the form of 

the (unconditional) distribution of speculative price changes they found 

more kurtosis (fatter tails) than was predicted by the Gaussian distribu-

The optimal asset mix problem can easily be defined and solved 
if returns are multivariately normal.

15 Under the central limit theorem if XI and X2 are normally dis­
tributed, so is X=aXl + bX2.
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tion^ .̂ Leptokurtotic distributed returns were first reported by Kendal 

(1953) who analysed weekly price changes of British stocks. Moore (1962) 

plotted on normal probability paper the weekly log returns of eight 

NYSE common stocks and found that there were many values at the ex­

tremes of the histograms. However, these authors elected to drop the 

outliers from their analysis to allow returns to follow a Gaussian distri­

bution. The credit for being the first to observe that the rates of change 

in asset prices are not well described by the normal distribution goes to 

Mandelbrot (1963). Mandelbrot noticed that the outliers observed in the 

empirical distribution of stock and commodity returns are numerous and 

tests carried out on the "trimmed" data lost power. Mandelbrot sug­

gested that other probabilistic distributions can be used that can more 

properly represent both the main body of the data and the observed fat 

tails. He proposed that returns follow a stable symmetric Paretian distri­

bution with infinite variance.

Fama (1965) found that the extreme tails of the distribution in all thirty 

stocks that made up the Dow Jones Industrial Average contained more 

observations than would be expected under a Gaussian distribution. In 

order to explain this departure from normality Fama tested two varia­

tions of the Gaussian model. First he assumed that the distribution of 

daily within the week returns had a lower variance than that followed by 

weekend and bank holiday returns, but both distributions are Gaussian. 

Nonetheless in his empirical tests Fama failed to support this hypothesis. 

The alternative hypothesis he examined is that the distribution of returns

Excess kurtosis has been observed in daily (Mandelbrot (1963), 
Fama (1965)) and weekly (Kendal (1953)) returns. However, there 
is evidence that the distribution of monthly data conforms well 
to the normality hypothesis, Blattberg and Gonedes (1974) . Fama 
(1976) argued that the normal distribution provides a good ap­
proximation for monthly returns.
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is normal but its moments change across time. Shifts in the variances 

and/or means can explain the excess kurtosis in the empirical distribution 

of the security returns. But he restricted the empirical analysis to testing 

changes in means only. He rejected this hypothesis on all five stocks that 

he tested^^. Fama (1965) came to the conclusion that "..the Mandelbrot 

hypothesis fits the data better than the Gaussian hypothesis", (p 90).

The Paretian distribution, is described by four parameters. One of them, 

the characteristic exponent, known also as the peakdness parameter, 

determines the total probability contained in the extreme tails. This pa­

rameter, which measures the tail of the distribution, is bounded by the 

interval 0.0 and 2.0 and the lower the value is, the fatter are the tails of 

the distribution. The normal distribution is a special case of the stable 

symmetric Paretian with peakedness parameter of 2.0. This type of dis­

tribution is stable under addition; when observations with the same 

characteristic exponent are summed the characteristic exponent values of 

this distribution does not change. A problem however with this type of 

distribution is that the variance and other higher order moments are not 

defined except for the special case of the normal. However, Fama and 

Roll (1968) show through the use of simulation that even with an charac­

teristic exponent of less than 2.0, the parameter for the central tendency 

can be well approximated by the sample mean while the dispersion can 

also be redefined and can exist even if the characteristic exponent is less 

than 2.0. Fama (1971) shows that if all asset returns follow a stable and 

symmetric Paretian distribution, the traditional CAPM holds.

The analysis has been restricted to only the five stocks which 
"..seemed to show changes in trend that persisted for rather long 
periods of time..", p. 58.
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Other studies that have examined the distribution of stock returns, e.g. 

Officer (1972), Blattberg and Gonedes (1974) have found that the charac­

teristic exponent rises as individual daily stock returns are added to the 

portfolio. This indicates that daily equity returns do not follow a stable 

distribution including a stable normal. Praetz (1972) and Blattberg and 

Gonedes (1974) suggested that a Student's -t distribution is more appro­

priate in describing the daily returns on both stock price indices and in­

dividual stock prices. The Student -t distribution is described by three 

parameters, central tendency, dispersion and degrees of freedom. As 

long as the degrees of freedom are less than infinity the Student -t dis­

tribution has fatter tails than the normal and so is consistent with the 

datâ ®. Furthermore, the Student -t distribution fits well for daily or 

weekly data but, as the interval length over which returns are measured 

increases, the observed distribution converges to a normal. This has 

implications at a theoretical level since investors who have short hori­

zons should use CAPM based on the Student -f distribution. To date no 

such a model exists, (Hagerman, 1978, p 1215).

Others suggested that the speculative price changes follow a mixture of 

normal distributions. Thus, they are described by a combination of nor­

mal distributions possessing different variances and possibly different 

means. Clark (1973) examined a normal distribution which allowed the 

variance to follow a lognormal distribution and Kon (1984) examined a 

discrete mixture of normal distributions. Hsu et al. (1974) considered a 

normal process with random jumps in the variance that occur at discrete 

points in time. Bookstaber and McDonald (1987) proposed a more gen­

eral distribution, the GB2, to describe security returns. This distribution

18 The Student -t is not a stable distribution because, as obser­
vations are added, the degrees of freedom (d.f.) change and so 
does the distribution. However, d.f. do not change in the model­
ling of data.
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is extremely flexible and includes both the lognormal and the Student -t 

distributions but its generality comes at the cost of four parameters. 

Friedman and Vandersteel (1982) presented evidence more consistent 

with finite variance data that are non-stationary.

1.6.3 Non-Stationarity
Fama (1965) investigated the possibility that serial dependence in price 

changes may account for the observed fat tails in the empirical distribu­

tions of stock returns. Nevertheless, the serial correlation and runs tests 

he conducted ruled out dependency and suggested that the cause for the 

fat tailed empirical distributions must be found somewhere else. One 

such possibility, Fama argued, is non-stationarity. Changes in means or 

variances of returns across time will cause excess kurtosis in returns dis­

tribution. Fama himself failed to provide any evidence to support this 

hypothesis but he only investigated changes in means. Other studies 

have investigated the possibility that the second moments are time- 

varying as well. Mandelbrot (1963) was perhaps the first to recognise 

that asset volatility is not only constant but also autoregressive. Joyce 

and Vogel (1970) have noted that variance estimation is sensitive to the 

period over which the data are selected as well as to their periodicity. 

Bones et al. (1974) investigated non-stationarity of both means and vari­

ances in weekly price changes of 33 electric utility companies. Their evi­

dence is inconclusive for the means but the evidence with respect to the 

variances supports the time-varying hypothesis.

Excess kurtosis in the empirical distribution of financial returns can be 

caused by the conditional dependency in the second moments. If returns 

have some kind of conditional dependency, their unconditional distribu­

tion will always have fatter tails than the conditional one. With recent
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advances in econometrics, more powerful tests against heteroskedasticity 

have been developed and a number of models have been proposed to 

capture the dynamics governing the second moments of financial asset 

returns. Probably, the most popular of these techniques belongs to the 

family of generalised autoregressive conditional heteroskedasticity 

(GARCH) models of Engle (1982) and Bollerslev (1986). The GARCH 

methodology estimates current period's, variances as deterministic func­

tions of the previous period's squared innovations along with the 

(previous period's) conditional variances. A GARCH model is intended 

to capture the clusters in volatility of the financial data rather than to 

model variances in an economic sense. Among others, Engle and Boller­

slev (1986), Bollerslev (1986) and Engle et al. (1987)̂  ̂employed GARCH 

models to capture the changes in the variances of security returns. Pagan 

and Schwert (1990) used parametric (GARCH) and non parametric 

(Kernel and Fourier) methods to capture the volatility changes for the US 

stock data from 1834-1925. Further supportive evidence for time-varying 

second moments is reported in the numerous studies which examined

the informational content and predictive power of volatility implied by
20financial options .

Other authors have investigated the causes of the changes in the volatil­

ity of security returns. Beaver (1968) and Merton (1976) argue that 

changes in the variance are caused by the arrival of new information. 

Diebold and Nerlove (1989) who found autoregressive volatility (clusters) 

in weekly spot foreign exchange data from 1973 until 1985, argued that

A good review of studies which applied GARCH methods to model 
the changes in financial time series variances can be found in 
Bollerslev et al. (1992).
See for example Latane' and Rendleman (1976), Chiras and Manas- 
ter (1978), Day and Lewis (1992) and Jorion (1995).

35



these volatility clusters are due to a serially correlated news arrival proc­

ess which sometimes is of dubious relevance or significance. Christie 

(1982) shows that one type of news that influences the level of equity 

volatility is the change in the interest rate. However, his theoretical ex­

planation could not determine ex-ante if the two variables are positively 

or negatively correlated. Christie then carried out an empirical investiga­

tion and found firm evidence that the riskless interest rate has a strong 

positive effect on volatility. This is consistent with Fama and Schwert 

(1977) who reported earlier that on average, the value of the firm is in­

versely related to the expected (interest rate) and unexpected inflation. 

Christie also quoted a number of other variables, such as dividends, that 

can have an impact on volatility.

1.7 Conclusions
This chapter has highlighted the inappropriateness of the historical vari­

ances and covariances in the portfolio VaR analysis. VaR employing his­

torical portfolio risk estimates are based on the implicit assumption that 

returns are normally distributed with constant variances and covariances 

across time. However, the stylised facts on speculative prices changes 

point to the contrary. In the subsequent chapters, we will investigate the 

appropriateness of conditional volatility models in the VaR analysis. In 

chapter three we will empirically test the portent of using bivariate 

GARCH models, in conjunction with the SIM of Sharpe (1963), in the 

estimation of portfolio VaR. This will be followed by the introduction of 

a simplified approach through the use of historical returns. We will ar­

gue that the latter approach is superior to the traditional ones because it 

utilises more efficiently all available information regarding the dynamics
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Appendix 1A

A1.1 Th e  Implications of Non i.i.d. Returns.

A l.l . l  General Implications
In the mean variance framework and in pricing models like CAPM and 

contingent assets the distribution of returns of the underlying asset is 

assumed to be normal. But a number of studies, quoted earlier, provided 

strong evidence that the tails in the empirical distributions of security re­

turns exceed those of the Gaussian. The investor who holds such a fat 

tailed asset is exposed to a greater risk than implied by a Gaussian dis­

tribution. In statistical analysis the estimates of variances and covariances 

become inefficient and standard /and F  tests of significance are unreli­

able. Diebold (1988) shows that if the residuals are heteroskedastic the 

Ljung-Box test statistic, a commonly used test for serial correlation, tends 

to yield biased results because standard errors are likely to be underes­

timated. In some cases these tests are used to validate the modelling 

procedures applied in market efficiency testing\

 ̂The fact that returns are not i.i.d., and therefore potentially 
predictable, does not necessarily contradict market efficiency.
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The dependency of returns will affect, among, other things, the portfolio 

mix choice and the price of contingent claims. When returns are serially 

correlated, variances estimated from longer-interval returns may not be 

proportional to variances estimated from shorter-interval returns . When 

returns are positively (negatively) serially correlated the variance should 

grow at an increasing (decreasing) rate as the return interval increases. 

Hence, variances that increase disproportionately with time will affect 

portfolio selection decisions. For example when portfolio returns are 

positively serially correlated (portfolio variance increases at an increasing 

rate with time) then more conservative portfolios will be chosen for 

longer investment horizons. By contrast, when portfolio returns are 

negatively correlated, more aggressive portfolios will be chosen for 

longer investment horizons as their variance will tend to grow at a de­

creasing rate over time.

For investments like options, the future volatility of the underlying asset 

is of primary importance in pricing, e.g. Black-Scholes (1973), and a 

wrong assessment can have serious consequences for the investor. If for 

example returns are serially dependent and we estimate annual return 

variances, by extrapolating weekly return variances we will overestimate 

the price of the long term option. Investors possessing a more precise 

estimate of an asset's current or future risk level may use that informa­

tion in their trading tactics. The market sooner or later will re-evaluate 

the security's risk level and will adjust its price leaving some investors 

with excess profits.

The latter states that forecast errors of returns are not pre­
dictable; see Hsieh (1991).

 ̂Under the central-limit theorem the variances of independent and 
normally distributed returns will be proportional to the respec­
tive time interval. If is the variance of monthly returns the 
variance of annual returns will be 12a^.
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A 1.1.2 Errors in B eta  Estimation

Traditionally the betas in (1.4) are estimated using ordinary least squares 

(OLS). The natural context for OLS techniques and their application is 

that of stationary Gaussian time series since it assumes that the error 

terms 6i./ are independently distributed with zero mean and constant 

variance, 7A^0,</). When OLS is used for heteroskedastic series, i.e. 

stock returns, it produces erroneous risk estimates and severe problems 

of interpretation arise. The time-varying hypothesis in second moments 

of security returns has perhaps achieved more attention in measuring 

systematic risk than anything else in portfolio analysis. As a result a sub­

stantial volume of literature in finance has attempted to assess the time 

invariance of beta in speculative prices, mainly common stocks. Succes­

sive studies have investigated the process generating betas and tried to 

answer such questions as: are systematic risk changes stochastic? Are 

beta changes serially independent or serially correlated? If they are se­

rially correlated, is the process stationary? And how can these changes 

be measured? What are the implications for the mean of security returns 

of shifts in the systematic or unsystematic nature of their risk? Rosen­

berg (1985) argues that historical betas have little predictive power and 

identifies two main reasons to explain why historical betas fail to be the 

''true" (conditional) betas. First, estimates from OLS over a period of 

time are constant for that period. But beta is a measure of the relation­

ship between a stock's return and the market return over a time interval 

which can be as little as a week or a day. And because of the changing 

nature of the company, the changing nature of the market and the 

changing nature of the risks that exist in the market there is reason to 

believe that beta changes over time. Second, the residual returns of the 

stock cause the estimated regression coefficient to differ from the under-
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lying value by an estimation error. The historical beta differs from the 

average true beta by the amount of this estimation error.

Initial studies conducted by Blume (1968), Fisher (1970) and Gonedes 

(1973) suggest that security betas with the market are not stable over 

long period of time^. Among others Blume (1971), Fabozzi and Francis 

(1978), Sunder (1980), Alexander and Benson (1982), Ohlson and Rosen­

berg (1982) and Bos and Newbold (1984), provide evidence that security 

betas not only are time-varying but also can be better described by some 

type of stochastic model. In addition. Bos and Newbold (1984) found 

that the variation in beta is stochastic but they failed to reject the hy­

pothesis that those changes are serially independent. In contrast, Ohlson 

and Rosenberg (1982) provide evidence that systematic risk exhibits both 

a (stationary) first order autoregressive component and a serially inde­

pendent random element^.

Al.1.3 Implications on CAPM

The distributional assumptions about security returns also become a nec­

essary condition for commonly used econometric techniques employed in 

tests of the CAPM^ and studies of mean variance efficiency (MVE) .̂

Tests applied in these studies often use the variances and covariances of

 ̂Nevertheless, when securities are aggregated the portfolios 
formed tend to have stable betas with the market, e.g. Blume 
(1971) and Levy (1971) .

* Thus, security betas follow a stochastic but stationary process.
® Capital Asset Pricing Model, see Sharpe (1964), Lintner (1965) 
and Mossin (1966).

® Followed Roll's (1977) study, that the CAPM is essentially unsta­
ble because the market portfolio is unobservable, a number of 
studies have focused on tests of the mean-variance efficiency 
(MVE) of the underlying portfolio under consideration (e.g. stock 
market index).
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historical returns as measures of risk. It is therefore important for these 

studies to know what distribution should be used when testing these 

hypotheses. Most of these tests are based on the i.i.d. multivariate nor­

mality assumptions. Since they are depending on the distribution of the 

returns, these variances and covariances may not be a trustworthy or 

sufficient estimator to use and alternative measures of dispersion may be 

more appropriate.

When the CAPM is empirically tested it is usually written as follows:

(Yt - Rf) = a  + P(Rpt - Rf) + £t (A.1.1)

where Yt is the (Nx1) vector of returns of the asset i, ¡ = 1,..N in period t; 

Rpt is the return of the market portfolio whose efficiency is being tested, 

in the same period; R f is the riskless rate of lending and borrowing; a  

=(ai,...,(XN)' is a vector of regression intercepts; p = (Pi,...,Pn)' is a vector 

of regression slopes and Et = is a vector of error terms as­

sumed to be i.i.d. and normally distributed^ with zero mean and covari­

ance matrix n .  The Sharpe-Lintner CAPM states that the following lin­

ear relationship should exist:

£(Y,-Rf) = p£(Rp,-Rf)

The above relationship forms a testable hypothesis to verify the CAPM. 

If the CAPM holds then the null hypothesis below should hold:

Ho : a  = 0

 ̂As we can see later the normality assumption can be relaxed,
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The test of Ho relies on the assumption that the joint distribution of the 

rate of return of the risky assets and the market proxy is bivariate normal 

and stationary. Thus, the test results are valid as long these assumptions 

are true. The empirical evidence quoted earlier does not support the 

normality assumption.

Apart from all the concerns about normality raised by previous studies, 

most tests of asset pricing models have assumed normality in the re­

siduals and made similar distributional assumptions about the coeffi­

cients in the linear model in (1.4) (Fama and MacBeth (1973), Shanken 

(1985)). Gibbons et al. (1989) proposed a statistic to test the joint hy­

pothesis (ai,..,ON)=0. Nevertheless this test is still based on the assump­

tions that the error terms in (1.3) are multivariate normal. Affleck-Graves 

and McDonald (1989) used simulation to examine the effect that non­

normalities have on the Gibbons et al. (1989) test. They found that in the 

presence of severe non-normalities the "..size and power of the test can 

be seriously misstated" (p. 889).

The importance that the stability systematic risk over time of has for this 

type of testing was recognised by Blume (1971). Thereafter, the evolution 

of beta coefficients over time has been the subject of investigation in a 

large number of studies since the early 1970s (Blume (1971), Fisher 

(1970), Black et al. (1972), Vasicek (1973), Fabozzi and Francis (1978) and 

Alexander and Benson (1982)). All these studies provide evidence that 

both individual stocks and portfolio betas with the market proxy do 

change over time. Further evidence for time-varying joint second mo­

ments on security returns is provided in a number of studies that em­

ployed conditional multivariate time series to test pricing models and

43



capture the time variation in variances and covariances, i.e. Bollerslev et 

al (1988)

Al.1.4 Non-Stationary Returns and the Risk Premium

The relationship between risk and return in an investment is a major

concern in a wide range of academic and business applications. The 

CAPM expresses this theoretical relationship as;

E(Rp) = Rf + k Cov(Rp,Rm) (A. 1.2)

where Rf is the riskless rate of interest and Cov(Rp,Rm) is a measure of 

the risk of the portfolio. The second term on the right hand of the equa­

tion, known as the risk premium, quantifies the reward that the inves­

tors are expected to be paid for preferring to hold that risky portfolio 

over the risk free asset. The term E(R̂ )-R, alone is known as the market
m

price of risk and is the same for all efficient portfolios. Thus, in equilib­

rium the expected return on the portfolio, E(Rp), is equal to the riskless 

rate of interest plus a risk premium measured as the product of the scal­

ing factor k and its covariance with the market. In the unconditional 

CAPM, the expected return, its covariance with the market and the 

scaling factor k are all assumed to be constant over time. Investors can 

only increase their portfolio expected return by holding a portfolio with 

higher volatility. Since the variance of returns for individual series is un­

likely to be invariant over time, so is the joint second moment. Like the 

variances, covariances and so correlations betas, may change as well.

® A review of the studies which investigated the non-constant hy­
pothesis of security betas is in the next chapter.
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Shifts over time in a portfolio's covariance with the market implies that 

the compensation required by risk averse investors for holding that port­

folio must fluctuate as well. In addition, a misleading evaluation of an 

asset's covariance (beta) may lead to a significant miscalculation of its 

equilibrium price.

Heteroskedasticity, other than making future investments' risk exposure 

uncertain, undermines the validity of equilibrium pricing models, such as 

the CAPM. Several studies have pointed out that the empirical failure of 

the CAPM is due to a significant degree of variability over time of the 

variance-covariance matrix. Among them, Giovannini and Jorion (1987), 

have argued that the time variation of the conditional second moments 

might have important implications for the empirical performance of vari­

ous asset pricing models. As a result, a number of studies have formu­

lated the CAPM within the family of ARCH models and found that there 

is a substantial improvement in the performance of the CAPM. Engel 

and Rodrigues (1989) have estimated a six country CAPM in which the 

conditional covariance both follows an ARCH process and is related to 

macroeconomic variables. Frankel (1988) argued that the alternative 

ARCH models used to explain the time-varying path of the risk premium 

and beta seem to disclose a set of different beta magnitudes and paths.

Bollerslev et al. (1988) have applied a multivariate GARCH to the excess 

return of three portfolios (stocks, bonds, and bills) and they computed 

the time-varying or conditional betas for each of them. They found some 

evidence that the risk premia are better represented by covariances with 

the (implied) market than by own variances. Among others Baillie and 

Mayers (1991) and Ng (1991) have used multivariate GARCH models for 

estimating a time-varying covariance matrix among a set of financial time 

series.
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The assumption of normality for the distribution of asset returns is, in 

general, not necessary from a theoretical perspective to derive the mean 

variance efficiency models. Normality is rather adopted for statistical 

convenience to derive the finite sample properties of statistical tests on 

asset pricing models. Owen and Rabinivitch (1983) argued the CAPM 

and multibeta models remain valid under elliptically distributed returns^. 

Zhou (1993) showed that mean-variance efficiency, rejected under nor­

mality, can still be valid under alternative elliptical distributional as­

sumptions.

Today, a number of researchers have used more flexible statistical meth­

odologies that require much weaker distributional assumptions to derive 

mean-variance efficiency models. McKinlay and Richardson (1991) used a 

generalised method of moments (GMM) approach to test portfolio effi­

ciency. The GMM method is robust against departures from normality 

and allows the disturbance term to be serially dependent and condi­

tionally heteroskedastic. In a similar experiment Chou (1996) applied a 

bootstrapping simulation to test mean-variance efficiency. Bootstrapping 

simulation does not pre-impose the form of the distribution from which 

draw random numbers but this is imposed by the data themselves.

Al.1.5 Optimal Portfolio Choice

The question of the time invariability of the statistical moments in secu­

rity returns and the difficulty of measuring the necessary inputs to the 

portfolio optimisation problem, namely expected returns, variances and 

covariances has restricted the empirical application of the mean-variance

® The elliptical class of distributions embodies the multivariate 
normal, multivariate Student's -t and mixture of multivariate 
normals.
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framework to portfolio selection, at least in the form proposed by Mark­

owitz (1956). Empirical studies which examined the effect of error in 

these parameters have raised questions about the trustworthiness of the 

ex-post mean-variance analysis.

Frankfurter et al. (1971) used multivariate Monte Carlo simulation to 

study how errors in estimating the required parameters can affect the 

mean variance efficiency of a three asset portfolio. They found strong 

evidence that portfolios selected according to the mean-variance criterion 

are unlikely to be more efficient than portfolios selected at random. Their 

experiment allowed only for sampling errors for the multivariate normal 

process which was assumed to be time invariant. They argued that "this 

error can only be magnified when more realistic conditions, such as es­

timation on the basis of judgement and time dependency are taken into 

account" (p 1262). Jobson and Korkie (1980), on comparing the optimal 

weights to the distribution of sample values obtained in simulations, 

found that the portfolios selected using ex-post mean variance analysis 

performed very poorly. Their general conclusion is that small variations 

in sample means often lead to large portfolio re-adjustments^®.

A number of studies have examined the ability of various techniques to 

forecast the correlation matrix among a set of security returns and the 

impact that such forecast errors have on the portfolio mix. Eun and 

Resnick (1984) have evaluated the performance of twelve alternative 

forecasting models (a full historical, three mean models and eight index 

models) that may be used to estimate the correlation structure of inter­

national share prices. Their empirical test established, unexpectedly, that 

the full historical model Vi as the second best performing model. How-

The impact that errors in means have on the portfolio weights 
will depend very much on the investor's level of risk tolerance.
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ever, in another empirical study, Wainscott (1990) examined the correla­

tion coefficients between US stocks and bonds and he found the histori­

cal correlations to be an unsatisfactory predictor of future correlations. 

Although the portfolios examined in this study were diversified among 

only three classes of assets, cash, US government bonds and stocks, the 

author made the concluding remark that changes in the correlation be­

tween stocks and bonds significantly affects the asset mix. He also no­

ticed that the differences in the portfolio's mb< will increase as more as­

set classes and more uncertainty about the future covariance matrbc are 

added to the inputs of the portfolio optimiser. The above remarks can be 

interpreted as follows. The optimal portfolio for a target level of return, 

as produced by any exact optimiser is unlikely to be unique. As Michaud 

(1989) noted, because means, variances and covariance are estimated 

with error, then for every true point on the efficient frontier there is a 

neighbourhood that includes an infinite number of statistically equivalent 

portfolios. How large this neighbourhood is depends upon factors such 

as the target return, input number of assets for the quadratic algorithm, 

their risk and return trade-off, and the corresponding confidence inter­

val of the forecast.

Thus, the implications of errors in means, variances and covariances for 

the optimal portfolio may be severe. But even if these parameters are 

known with certainty at a particular time, changes in the means, vari­

ances or covariances of any asset eligible to be included in a portfolio 

will probably have an (instant) impact on its risk return trade-off and 

may move it away from the efficient frontier. That is because variances 

and covariances computed from historical prices will no longer be the 

true risk estimates, and the portfolio calculated using the unconditional 

mean-variance optimisation criteria will become sub-optimal. And as we
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Chapter 2

Data and M ethodology

As we have seen in the previous chapter it is important, when estimat­

ing a portfolio VaR, to model correctly the asset's volatility and correla­

tions. Given the empirical evidence about fat tails and heteroskedastic 

returns researchers started to look to different methods of improving risk 

estimates. In the early studies emphasis was given to improving beta es­

timates. Beta modelling is at the core of our analysis because we will 

employ the SIM algorithm to update, daily, a large correlation matrbc.

The first section of this chapter will begin by investigating the statistical 

methods and other techniques {i.e. adjustment, fundamental) proposed 

from early studies for improving beta estimation. Consequently we will 

outline modern time series methods used to capture the changes in se­

curity volatilities and betas. These include beta adjustment OLS tech­

niques and exponential smoothing. Finally we will examine non-linear 

time series, i.e. GARCH and stochastic variance, which model the joint 

second moments of a set of asset returns as autoregressive. These meth­

ods are unique because they are designed to capture any volatility clus­

ters. As we have seen in the previous chapters, daily changes of almost 

all speculative prices are known to contain clusters in their volatility. Af-
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ter considering what different models are aiming to achieve but also their 

computational feasibility, we concluded that (in the next stage of our 

analysis) the most appropriate model to use for estimating a portfolio's 

DEaR is the bivariate GARCH. Finally, the data-set to be employed in 

this thesis is described. This will consist of daily closing prices for thir­

teen national markets over a ten year period. Its use in the empirical 

chapters will be discussed thereafter.

2.1 Modelling the Correlation Matrix. Unconditional Models.

Researchers over the years have attempted different, mainly statistical, 

methods to handle the problems associated with changing volatilities and 

correlations. Given the difficulty in handling jointly the second moments 

of a large set of assets, these studies have focused on modelling betas 

which then can be used to build a correlation matrix. In this section we 

will describe early models designed mainly to adjust historical betas but 

also more recent techniques based on non-linear time series.

2.1.1 Adjustment Methods

To deal with time variability in security beta, early studies have sug­

gested a number of adjustment techniques. These are mainly based on 

the principle that the historical beta contains part of the true beta and a 

random error term. The adjustment techniques, e.g. Blume (1971) and 

Vasicek (1973), just weight a set of security betas toward a central ten­

dency value. Blume observed that the forecast betas tend to be closer to 

one (1.0) than the estimate obtained from historical data. That is because 

the true betas of any stock tend to have a value of one due to sampling 

error, the historical estimate deviates from that central value.
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Blume (1971) was the first who proposed to modify past betas to capture 

this tendency. Blume estimated historical betas of a set of stocks over 

two consecutive non-overlapping periods, 1948-1954 and 1955-1961. He 

then used a cross sectional linear regression. This required regressing the 

betas of the second period against a constant and the beta of the first 

period. Denoting Pi.a as the adjusted (forecast) values of beta and pi,h the 

current period betas he estimated the following equation form:

Pi.a = 0 . 3 4 3  + 0 . 6 7 7  Pi,i.h with i =1....N (2.1)

which measures the average tendency of the forecast betas to be one 

rather than their historical estimates. Hence the Blume adjustment gives 

the adjusted beta, pi,a, a 34.3% weight to the market beta of one and a 

67.7% weight to the past period's (historical) estimate of beta, Pi,h, of the 

same stock. Hence, the relationship described in (2.1) implies that the 

forecasting beta is 0.343 + 0.677 time the past period's beta. If the past 

period's beta for a particular stock was 1.5 the forecast would be 0.343 + 

0.677(1.5)=1.36. Similarly, historical betas less than one are made larger, 

but will still be less than one, hence the tendency of forecast betas to be 

equal to one. However, this technique has the undesirable property of 

forecasting with a trend \

Vasicek (1973) observed that the deviations from the average beta of a 

group of stocks are proportional to the sampling error (standard error of 

the estimate). Large standard errors imply greater chances of big devia­

tions from the true beta and so the adjustment should be greater. He

 ̂ If the average betas between the two periods has increased
(decreased) it assumes that the average beta will continue to in­
crease (decrease) over the next periods.
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therefore suggested a Bayesian approach to the adjustment of betas. In­

formation obtained from a weighted average of betas across a sample of 

stocks for a period t is used to adjust historical (sample) betas in keep­

ing with a minimum expected loss criterion.

Let us denote B the mean of the distribution of the historical estimates 

of beta over the same sample of stocks for the period t, and their 

variance. Further, denote as the variance of the historical estimate ofvJpi.f

beta for security i, and pi measured over the same period. The adjusted 

beta is given by:

P , , a  =  *
Ob.(

2 2
CTS,;

i.h
(2.2)

This technique, like that of Blume, tends to shrink betas toward one and 

hence may be the source of forecast bias. However, unlike the Blume 

technique, it does not force beta forecasts toward a trend. But the Va- 

sicek technique adjusts those betas with higher standard errors further 

toward the mean than it adjusts betas with low standard error. Hence, 

high beta stocks are adjusted more toward a mean than low beta stocks.

The ability of these techniques to forecast betas has been investigated by 

Klemkosky and Martin (1975). They examined three adjustment tech­

niques, the Blume, the Vasicek and the Merril Lynch, Pierce, Fenner, & 

Smith Inc. (MLPFS), This last method is very similar to the Blume 

method. Klemkosky and Martin verified that both techniques lead to 

more accurate forecasts of future betas than did the unadjusted betas. 

They noted that the forecasting accuracy of betas to predict subsequent
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time period (betas) grew progressively worse as beta levels departed 

significantly from average. In addition, they used a decomposition tech­

nique to uncover the origins of the beta forecast error. They partitioned 

the mean square forecast error^ (MSE) of beta predictability into three 

components, bias, inefficiency and random error. Klemkosky and Martin 

argued that, although the differences among the three techniques were 

small, Vasicek's technique had a slightly higher performance since it 

scored the lowest mean squared error in two out of three time periods.

2.1.2 Fundamental Adjustment

A different, causal or economic approach, assumes that the variation of a 

stock's beta can be explained by economic related factors. Such a model 

has been proposed by Beaver et al. (1970). The variables they used are:

♦ Dividend pay-out (dividends/earnings)
♦ Asset growth (annual change)
♦ Liquidity {cmedi assets/current liabilities)

♦ Leverage

♦ Asset size (total assets of a company)
♦ Earning volatility (standard deviation of earnings/price ratio)
♦ Accounting beta (the slope of the regression of the firm 's earnings against the 

average earnings of the market)

Other studies have followed this kind of analysis and a different number 

of factors was proposed by each study. For example Rosenberg and 

Marathe (1975) suggested that 101 factors are necessary to explain betas' 

variability. However, they restricted the number of factors affecting each

 ̂They define the MSE as the average squared distance between the 
estimated beta coefficient for the period t and the predicted co­
efficient which equals the last period's beta.
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stock's beta by imposing a set of industry dummy variables in the re­

gression equation. The ability of fundamental betas to predict future be­

tas has been examined by, among others, Breen and Lerner (1973), 

Gonedes (1973), Melicher (1974). The criticisms are mbced with some 

studies reporting significant improvement in forecasting capability of 

models when using fundamental variables while others do not.

2.2 Modelling the Correlation Matrix. Conditional Models.

Given all the evidence against the normal distributional hypothesis, valid 

statistical corollaries require statistical techniques robust to non­

normalities or corrections for non-normalities, (see Korajczyk (1985) and 

Krasker (1980)). The methods described above only seek to adjust sam­

pling errors. A different approach is to use statistical procedures to 

measure continuously the variation of betas. Usually these models em­

ploy only past returns. Thus, they are more restrictive than the funda­

mental ones but they require less data. On the other hand, they may be­

come more complex and present greater computational difficulties.

2.2.1 Stochastic Time Series Models

One type of conditional model uses stochastic analysis to describe the 

construction of volatility and betas. The simplest case is the constant co­

efficient vnodeX where the \th security's beta, pi,/, is equal to the previous 

period's beta :

Pi./= Pi./-/= P* for all t. (2.3)
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This estimate of beta is the most common one employed in finance and 

is the process assumed by OLS estimation. This is often used as the null 

hypothesis for most tests of beta variability, e.g. Fabozzi and Francis 

(1978). A related parameterisation is to allow Pi.r to deviate from its un­

derlying mean by a random error term. This is given by

Pi./ = Pi* + £i./ e,.,-/V(0.o^) (2.4)

In the above model specification, referred as dispersed coefficient by 

Schaefer et al (1975), the transient beta returns quickly to its underlying 

mean value. If, however, the beta follows a random walk then its path 

can be expressed as

Pi,, = p.,., + Ei. £i,/ ~/V (O.o^) (2.5)

Flence, although P/ is not-stationary, it is serially correlated. A more 

comprehensive model is the return to normality model, in Rosenberg 

(1973), given by

Pi,/= (XiPi./-/+ ( 1 -(Xi)pi* + £i,i./ £i,/~/V (O.o^) (2.6)

In the above process there is a tendency for beta to regress towards a 

mean level, which is measured by l-Oj. If the value of Oi is one, there is 

no tendency for beta to return to an underlying mean and the model re­

duces to the random walk equation. If Oi is set to zero, then it reduces 

to a dispersed coefficient one. The Vasicek adjustment technique is a re­

stricted case of (2.6) since it sets the p* to one and makes no restriction
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on the adjustment rate toward the underlying mean. This model at­

tracted a lot of interest in the financial literature over the years, e.g. Bos 

and Newbold (1984) and Collins et a l (1987).

Other time series models include time-varying regression parameters 

which are based on the principle that the systematic risk variation is due 

to a stationary part or trend and a random or noise component^. A gen­

eral parameterisation of such a model can be written as:

Yu = pi./ X, + Bi Vu + vu (2.7.a)

P u  =  Y i  +  5 +  U i . , (2.7.b)

where Y and 5 are unknown constants, is a deterministic function of 

time and Vi,/ and U\,t are zero mean and constant variance, serially inde­

pendent random disturbances. The vectors Xt (variables common to all 

stocks) and Vj.t form the set of explanatory variables that affect the mean. 

Accordingly, the randomly time-varying beta, Pu is distributed with 

mean

a:Pi./) = Y + s

and variance

Var(pi,,) = = a i

^ For example, see the variable mean response (VMR) random coeffi­
cients models described in Lin et al. (1992).
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Unbiased and consistent estimates of the parameters can be obtained by 

feasible generalised least squares (FGLS) estimation. Alternatively Kal­

man filter techniques may be employed to calculate the models in (2.6) 

and (2.7).

Other time series methods for estimating betas include Bayesian models 

suggested by Bawa et al. (1979).

2.3 Conditional Heteroskedastic Models.

The success of each model in producing estimators and predictors of 

stocks' volatility and beta is determined by its ability to take full advan­

tage of the information that is present in the available data. Among the 

properties characterising financial time series data is clustering in volatil­

ity. None of the models described earlier makes use of this information 

when estimating the changes in variances and covariances. Allowing for 

changes in variances is a more general specification than allowing for 

changes only in means and can also fit well with the speculative price 

changes which, as is known, show volatility clusters. As we have seen, 

changes in variances can also account for the fat tails in the empirical dis­

tribution of security returns.

One such family of models that allows the variance to change as new in­

formation becomes available can be found in the GARCH methodology 

based on the work of Engle (1982) and Bollerslev (1986). Suppose that a 

security's returns Y/ are modelled as:

Y,= 4>7 5+6/ (2.8.a)

58



where 4>t is a vector of variables with impact on the conditional mean of 

Y^and 6 is the corresponding vector of parameters. Conditional on It-u 

the information available up to time (t-1), the expected value of £/ is 

zero, i.e. £/-/(£/) = 0, and the corresponding conditional variance is;

- h/

Engle (1982) modelled the variance of the errors, Et.fiZt), as an autore­

gressive process, and referred to this as the Autoregressive Conditional 

Heteroskedastic (ARCH) model. Hence, the first order ARCH model is

e, I I N{0,ht)

where:

h/ = CO + a e‘t-i (2.8.b)

where co > 0 , a > 0. The variable denotes the conditional variance 

of Zt, and if a>0, h/ is time-varying. Thus, the conditional distribution of 

Y/ is normal but its conditional variance is a linear function of past 

squared errors. OLS is a special case since it restricts a to be zero and 

treats the conditional variance as a constant. Thus, linear models rule out 

the presence of heteroskedasticity in residual returns.

The ARCH model in (2.8.b), has one particularly interesting property. It 

allows the errors to be serially uncorrelated but not necessarily inde­

pendent, since they can be related through their second moments, when
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a is positive. Thus changes in the volatility of the series may be predict­

able. Predictability of variance arises from the non-linear dependence in 

the returns themselves, rather than exogenous change in other structural 

factors, e.g. fundamental models. An additional appealing property of 

ARCH models is that they allow the series to have excess kurtosis. As 

Engle (1982) shows, the ARCH(l) model requires that 3a<l for the un­

conditional fourth moment to exist. The fourth moment is given by

a  0-3®')
(2.9)

which, for a<l , is greater than 3, the corresponding coefficient of the 

normal distribution. Therefore, ARCH models allow the unconditional 

distribution of to exhibit fat tails (excess kurtosis) without violating the 

conditional normality assumption'^, and therefore to be symmetric. As we 

have seen earlier a number of empirical studies have found that the dis­

tribution of price changes, or their logarithm, in a variety of financial se­

ries tends to be symmetric, but with fatter tails than those of the normal 

distribution, e.g. Mandelbrot (1963), Fama (1965). In general, in the 

ARCH methodology the conditional variance of Y/ is expressed as a 

(non-linear) function of past information. It validates earlier concerns 

about heteroskedastic stock returns and meets the need for modelling 

the volatility as conditional on past information.

The estimates of an ARCH model are still consistent, even if the 
assumption of conditional normality for the distribution of £/ 
is violated. Engle and Gonzalez-Rivera (1991) argued that the 
assumption that the conditional density is normal usually does 
not affect the parameter estimates of an ARCH model even if it is 
false.
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A generalisation to model (2.8) by Bollerslev (1986) includes past values 

of h/ in the definition of conditional variance. This is known as a general­

ised ARCH or GARCH model. Engle and Bollerslev (1986) stated that a 

low order GARCH process may have properties similar to high order 

ARCH but with significantly fewer parameters to estimate. The GARCH 

model, in its simplest form, is given by:

h/ = 0) + ae .̂1 + ph/./ (2.10)

so the current variance depends upon yesterday's surprise, e^/, and vari­

ance, h/.f.

2.3.1 Exponential Smoothing (ES) or GARCH

Today perhaps the most popular volatility method is the exponential 

smoothing (ES) proposed by JP Morgan (see Riskmetrics (1995)). Given a 

series of returns, Y, the ES model^ for conditional variance is given as:

h,= Xh,., + (1-X)Y^, 0 < X < 1 (2.11)

where h/ is today's variance. From (2.11) it emerges that the current level 

of volatility, h/, is function of yesterday's volatility and the square of 

yesterday's returns, Ŷ ./. The above model has the advantage that it uses 

only one parameter, X. Optimal values for the X can be obtained by

 ̂Riskmetrics (1995), however, uses today's returns to estimate the 
today's volatility. In this study we will use the specification 
in (2.11) since it uses the same set of information as the GARCH 
model.
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minimising the sum of the normalised squared errors. This is equivalent 

to the maximum likelihood estimation used in GARCH models. How­

ever, it assumes that the conditional mean of Y is zero for each period t. 

When the conditional mean is different from zero the ES in (2.11) overes­

timates the variance. The ES can be written as a two equation system by 

introducing a conditional mean equation like the one of (2.8.a) but this 

will require maximum likelihood techniques, similar to those used in 

GARCH, to find optimal values for X, and any other parameters in the 

mean equation.

The ES and the GARCH models have many similarities, i.e. today's 

volatility is estimated conditionally upon the information set available at 

each period, t. Both the GARCH(1,1) model in (2.10) and the (ES) model 

in (2.11) use last period's returns to determine current levels of volatility. 

They imply that today's volatility is known immediately after yesterday's 

market closure^. Since the latest available information Yh , is weighted in 

a more effective way, it can be shown that both models will provide 

more accurate estimators of volatility than unconditional models, i.e. his­

torical volatility.

However, several differences exist in the operational characteristics of 

the two models. The GARCH model, for example, uses two independent 

coefficients, a  and P, to measure the impact of last period's errors and 

volatility in determining current volatility. On the other hand the ES 

model uses only one coefficient, X, and forces last period's innovation 

and volatility to have a unit effect on current period's volatility. Thus, a

Note that there is no stochastic term in either (conditional 
variance) equation.
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large shock will have longer lasting impact on volatility in the model 

(2.11) than in (2.10).

The terms a  and p in GARCH do not need to sum to unity and one 

parameter is not a complement of the other. Their estimation is achieved 

by maximising the likelihood function. This is a very important point 

since the values of a  and p are critical in determining the current levels 

of volatility. Incorrect selection of the parameter values will adversely 

affect the estimation of volatility. The assumption that a  and p sum to 

unity (see model 2.11) is, however, very strong and presents a hypothe­

sis that can be tested rather than a condition to be imposed.

Furthermore, the GARCH model has an additional parameter, o), that 

acts as a floor and prevents volatility dropping below that level. In the 

extreme case when a  and p equal zero, volatility is constant and equal to 

CO. The value of co is estimated together with a  and P using maximum 

likelihood estimation and the hypothesis co = 0 can be tested easily. The 

absence of the co parameter in the ES model allows volatility, after a few 

quiet trading days, to drop to very low levels, see Giannopoulos and 

Eales (1996).

Another appealing feature of GARCH modelling is that it allows a flexi­

ble parameterisation in the variance and mean equations. Among others. 

Black (1976) observed that volatility tends to be higher when prices are 

falling than when prices are rising. Thus, there is an asymmetry in 

volatility also known as the leverage effect. The GARCH(1,1) model in

(2.10) can be easily modified to allow for asymmetries in volatility. One 

such model specification is the exponential GARCH (EGARCH) of Nel­

son (1988). In the EGARCH(1,1) model the variance of the residual error 

term for the is given by
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In (h t)  =  CO +  p in (h t-i)  +  ^

f

h V n
V t-i y

(2.12)

This type of modification enables negative returns to have a greater im­

pact on the current estimate of volatility than positive returns. When the 

estimated value for y is negative, past errors have greater impact on cur­

rent variance than the analogous positive errors. Hence, ht in equation 

(2.12), is expressed as a function of both the magnitude and sign of 

lagged errors^.

In general, we can say that both ES and GARCH, use past information in 

a more efficient way to compute current variances®. The GARCH meth­

odology seems to be superior but the ES is computationally easier^

2.3.2 Other Conditional Heteroskedastic Models. Stochastic Volatility

An alternative approach in modelling the portfolio s volatility as time- 

varying and conditionally heteroskedastic is provided by the Stochastic 

Volatility (SV) family of models. Given the portfolio's return in (2.8.a) the 

variance, ô t, can be written as an unobserved variable which is pre­

sumed to follow a known stochastic process. Hence the SV can be writ­

ten as

 ̂Th©re are a number of other asymmetric specifications. For a sur 
vey of these models see Bera and Higgins (1993). In chapter four 
the Asymmetric GARCH (AGARCH) of Engle (1990) will be employed to 
estimate a hypothetical portfolio's volatility.

® Hereafter we will treat ES as a special case of GARCH, integrated 
GARCH, and will not quote it as a model itself.

9 Pq^ empirical comparison of the two models see Giannopoulos 
and Eales (1996).
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Y /  =  5  + e, I hr ^ /V(0,h,) (2.8.a)

ln(h/) = CO + pin(h/.f) + ti/ Tit N{0,(^r^) (2.13)

Hence the stochastic volatility, ht, follows a first-order autoregressive 

[AR(1)] process in logarithms. The two error terms, St and Ti/, may or 

may not be correlated. As Harvey (1993) argues, the major disadvantage 

of the SV models is in writing the likelihood function. He suggests writ­

ing the model in a state space form and using the Kalman filter to esti­

mate it. The model is not conditionally normal but Harvey suggests 

treating the model as if it was normal and maximising the resulting 

quasi-likelihood function. SV models can also be estimated using Han­

sen's (1982) generalised method of moments (GMM), (see Melino and 

Turbull (1990)). Danielson (1994) estimated a SV model using simulated 

maximum likelihood methods.

The SV and GARCH models have many similarities and can explain 

some stylised facts that characterise the changes in speculative prices.

For example both allow the unconditional distribution of the data to ex­

hibit fat tails. Further, in both models squared past innovations follow a 

positive autoregressive process. The obvious difference between the two 

models is that in the SV model, changes in volatility are explained ex­

clusively by changes in the information incorporated into prices. On the 

other hand, the volatility in the GARCH models is a function of past 

prices. Hence, the SV allows the processes of mean and variance of re­

turns to be independent of each other. Moreover, SV models do not as­

sume that the volatility in period t is known with certainty as at the 

previous period. Taylor (1994) employed both GARCH and SV type of
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models to estimate the volatility of daily Deutsche Mark to US dollar ex­

change rates. He argues that "..exponential ARCH(1,0) describes the 

DM/$ returns best within the ARCH family and hence the ARV̂ ® model 

is a credible choice when the distribution of the average variance is re­

quired", (p. 201). He recommends, however, to use ARCH models to ob­

tain the estimate for the average variance^^

2.4 Multivariate Conditional Heteroskedastic Models

All models described above are univariate. However, risk analysis of 

speculative prices examines both an asset s return volatility and its co­

movement with other securities in the market. Hence, these models 

could find more prominent use in empirical finance and in VaR analysis 

if they could describe risk in a multivariate context.

In a general multivariate GARCH(1,1) model, the conditional variance- 

covariance matrix H/ may be described as ;

vech(H¿ = Q + A  vech(e/./e/-7) + B vech(H/./) (2.14)

where Í2 is a [N(N+1)/2]x1 dimensional vector and A and B are 

[N(N+1)/2]x[N(N+1)/2] dimensional matrices. However in this model there

ARV stands for Autoregressive Random Variance, as Taylor (1994) 
refers to the stochastic volatility model.

“ In order to use ARCH estimates as initial values for the vari­
ance in the stochastic volatility simulation.
vech(*) is the operator which stacks lower triangular elements 
of the matrix (*) into a vector.
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are (N(N+1)+N^(N+1)^)/2 parameters to estimate which makes its use 

prohibitive in large portfolios.

When a conditional variance-covariance matrbc needs to be computed for 

a larger number of assets, then the above computational exercise may be 

simplified by re-specifying the full NxN variance-covariance matrbc to N, 

2x2 blocks. Each block is composed of the market return series and one 

of the N assets. Thereafter, a bivariate GARCH model can be used to 

compute the 2x2 conditional variance-covariance matrix between asset i 

and the market.

However, even in the two variable case there are 21 parameters to be es­

timated in the variance-covariance equation (2.14) alone. In practice, it is 

therefore usually necessary to restrict the model. Engle et al. (1984) re­

strict each element of the to depend only on its own lagged squared 

errors or cross products. Thus, a diagonal bivariate GARCH(1,1) is writ­

ten as:

Yi,/= O i7  6 i + £i./ (2.15.a)

Y2 ,/ = Oa.7 8 2  + £ 2 7
(2.15.b)

with
'2,t

-  /v (o ,h J

where Yi,/ represents the return on a single asset over the period (t-l,t) 

and Y2 ./represents the return on the market index over the same period. 

Conditional on information available up to time (t-1), the vector £/ fol-
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lows a bivariate normal distribution with zero mean vector and condi­

tional variance-covariance matrix H/. When it is restricted to its diagonal 

specification, H/can be decomposed as

hi./ = o>i + 3i e J , b i  hi,/-/ (2.16.a)

hl2,/ = + 3i2 £i,/-/£2,/-/ + 1̂2 hi2,/- (2.16.b)

h2,/ = CQ2 + 32 0 2 , . ,  2̂ h2,/-/ (2.16.C)

Here hi,/ and h2 ,/ can be seen as the conditional variances of a locally 

diversified portfolio and the World market index respectively. These are 

expressed as past realisations of their own squared disturbances. The co- 

variance of the two return series, hi2 ./, is a function of the cross product

*̂12between past disturbances in the two markets. The ratio forms the

local stock's time-varying beta. Thus, the conditional beta for each local 

portfolio with the market is estimated individually from the rest of the 

series.

The SV model can also be extended to include multiple assets, see Har­

vey etaJ. (1994). Like in the univariate cases, estimation of the multi­

variate SV model is not straightforward since volatility is a dynamic la­

tent variable and conventional estimation methods are not applicable. 

Simulated maximum likelihood techniques can be applied but at a high 

cost since multivariate SV models have a large number of parameters to 

estimate.
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An easy and relatively cheaper to implement solution is provided by the 

multivariate specification of ES. Based upon the univariate formulation in

(2.11) the covariance between Yi and Y2 in the ES can be written as

COV 12./ = X  COVi2.r-/ + ( 1 -X)Yi.,-rY2,,-/ 0 < X < ^ (2.17)

However, multivariate ES are exposed to the same limitations as that of 

univariate ES. When precision is important its use should be avoided.

2.5 Selecting the Right Model

The success of each model in producing estimators and predictors of 

stocks' betas is determined by its ability to take full advantage of the 

information that is present in the available data. Among the properties 

characterising financial time series data is clustering in volatility. None of 

the traditional OLS based models mentioned earlier (such as SIM) makes 

use of this property. However, conditional heteroskedastic models, like 

GARCH and SV take full advantage of current and past information 

when estimating variances and covariances. But the implementation of 

these model are restricted to 2 or three assets at a time. The empirical 

success of the GARCH family has been well documented in the financial 

literature. Furthermore, the likelihood of multivariate GARCH is defined 

and this makes their computation substantially easier to that of multi­

variate SV.

We will, therefore, adopt a bivariate GARCH model to estimate the cor­

relation matrix of a internationally diversified portfolio. Given that our 

portfolio consists of N assets, we will adopt the SIM of Sharpe (1963) in-
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stead of estimating jointly all possible pair wise coefficients. Thus we es­

timate conditionally N betas using N similar bivariate systems of equa­

tions. The above model parameterisation has the advantage that it can 

be repeatedly computed for any number of securities and for their con­

ditional beta to be estimated. Hall et al (1988) used a similar model to 

compute conditional betas for different sectors of the FT index. Hall and 

Miles (1992) used a bivariate ARCH in mean model to estimate the con­

ditional risk of local bond portfolios against a world bond portfolio. They 

noticed that because this procedure does not estimate jointly the condi­

tional variance-covariance matrix H/, it may involve some loss of effi­

ciency which is compensated by simplifying the computation process.

2.6 Data
In this thesis we selected closing daily price indices from thirteen na­

tional stock markets^^ over a period of 10 years, from the first trading 

day of 1986 (2 January) until the last trading day of 1995 (29 December). 

Hence 2608 consecutive price changes have been collected. The thirteen 

markets have been selected in a way that matches the regional and indi­

vidual market capitalisation of the world index. Our data sample repre­

sents the 93.3% of the Morgan Stanley International world index capitali­

sation '̂ .̂ The Morgan Stanley Capital International (MSCI) World Index 

has been chosen as a proxy for the world portfolio. The equity indices 

that have been chosen are reported in table 3.1.

The terms "local market", "national market", "domestic market", 
"local portfolio", "national portfolio" refers to the national 
indices and will be used interchangeably through this study.
Due to investment restrictions for foreign investors in the 
emerging markets and other market misconceptions along with data 
non-availability, our study is restricted to developed markets 
only.
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To quantify a portfolio's VaR, all investment returns need to be ex­

pressed in a common currency. It is a common practice among practitio­

ners to use the US dollar as a numerative currency. Hence our price se­

ries are multiplied by the daily spot dollar rates quoted by Barclays Bank 

International. Daily returns are computed for all indexes as

R/ = ln(closing price index at t) - ln(closing price index at t-1)

where In denotes the natural logarithm. When the data are translated in 

US dollars the closing prices are multiplied by their equivalent fx quota­

tion. The dollar value of the world index is published daily by MSCI.

Table 3.1 The data series
em bipe
Denmailt C o p e n h a g e n  S E  G e n e r a l ,  T o t a l  P r i c e  I n d e x  

M S C I ,  P r i c e  I n d e xFrai^
F r a n lr fu r t  C o m m e r z b a n k ,  T o t a l  P r i c e  I n d e x

B a n c a  C o m m e r c ia l e  I ta l ia n a ,  P r i c e  I n d e x

C B S  T o t a l  R e t u r n  G e n e r a l ,  P r i c e  I n d e x

Spain M a d r i d  S t o c k  E x c h a n g e ,  T o t a l  P r i c e  I n d e x
Sweden M S C I ,  P r i c e  I n d e x
Switzerland C r e d i t  S w i s s  G e n e r a l ,  P r i c e  I n d e x
UK F T - S E  1 0 0 - s h a r e .  P r i c e  I n d e x

Hong Kor̂ H a n g  S e n g  B a n k ,  P r i c e  I n d e x
Janan N i k k e i  S t o c k  A v e r a g e  ( 2 2 5 ) ,  P r i c e  I n d e x

Singapore S t r a i t s  T  I n d u s t r ia l ,  P r i c e  I n d e x

USA D o w  J o n e s  I n d u s t r ia l ,  P r i c e  I n d e x

iMiRXET
wodd M S C I  W o r ld ,  P r i c e  In d e x ^ ^ .

As with local indices, the Morgan Stanley provides a form of the 
world market index with the aggregated stocks not translated into 
a common currency. Thus, the one period world market return is 
just the weighted return of the aggregate local portfolios, net 
of any currency fluctuations.
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In chapter three we are going to use each national market's returns to 

estimate its conditional variance and covariance with the world index. 

The estimation is performed on both local currency and US dollar re­

turns. The variances and betas of the US dollar nominated returns are 

consequently used to estimate a hypothetical portfolio's DEaR over the 

10 year period. Furthermore, the US dollar returns are used as the his­

torical returns of a hypothetical portfolio, needed to conduct "stress" 

analysis on our DEaR estimate. These portfolio historical returns are 

also employed during the analysis in chapter four of a simplified ap­

proach of the conditional estimation of VaR. In chapter five, we will 

need to employ risk estimates net of any currency fluctuation (currency 

risk is fully hedged) to study volatility transmission mechanisms from 

one national market to the other.

2.7 Conclusions
In summary, the problem, of using historical estimates of assets means, 

variances and covariances in VaR analysis, is well known to market 

practitioners. As a result a number of methods have been proposed to 

overcome the instability problem and to estimate in the best possible 

way current variances and covariances. Perhaps today the most popular 

method is the exponential smoothing (ES) proposed by JP Morgan, 

RiskMetrics (1995). A more sophisticated approach can be found in the 

GARCH methodology based on the work of Engle (1982) and Bollerslev 

(1986). Both approaches use past information in a more efficient way to 

compute current variances. The GARCH approach allows for very flexi­

ble specification in the mean and variance equations, it is based on fewer 

assumptions and is estimated using maximum likelihood, which asymp-
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totically guarantees efficiency and consistency of the parameter esti­

mates. On the other hand, the one parameter ES is very restrictive, it is a 

particular specification of GARCH, but is easy to compute. In the next 

chapter, we estimate VaR and DEaR using the bivariate GARCH in 

conjunction with the Single Index Model of Sharpe (1963) where we 

evaluate its ability to measure portfolio risk and compare it with an ex­

ponential smoothing benchmark.
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Chapter 3

Building a Tim e- Varying 

Variance-Covariance M atrix

The estimation of VaR and DEaR requires an estimation of portfolio 

volatility. Unfortunately, the historical volatility on a bank portfolio is an 

ill-suited measure of its current volatility because investment weights 

may change rapidly and even individual security's volatility may shift 

over time  ̂ Moreover, the composition of the volatilities of individual 

components in portfolio volatility requires the knowledge of the correla­

tion matrix of returns of the different components. This correlation ma­

trix is also possibly subject to shifts over time. Multivariate GARCH has 

been successfully employed to capture changes in variances and correla-

 ̂ This chapter is based on the work of Giannopoulos (1995). How­
ever, here daily data measured on both local and US dollar terms 
are used. Further, some new paragraphs have been added (i.e. on 
VaR and stress analysis) to reflect the scope of this chapter, 
which differs from the above publication.
 ̂ I would like to thank, without implicating, the participants at 
the 1994 Annual Royal Economic Society Conference, held in Exe­
ter, the participants at the 1994 Southern Finance Association 
Meeting, Charleston, S.C. and the referees of the European Jour­
nal of Finance for helpful comments.
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tions. However, this is computationally intensive and its use is restricted 

to few assets at a time. In this chapter we will show how the GARCH 

methodology can be implemented in the estimation of large correlation 

matrices. We then evaluate the ability of such a matrb< to measure port­

folio risk and compare the results with a benchmark, the exponential 

smoothing technique. We find that both the systematic and the specific 

risk of national equity markets change over time where the bivariate 

GARCH captures a large part of this variation. However portfolio vari­

ance estimated upon these conditional betas is found to be a biased es­

timator with little explanatory power for portfolio volatility.

3.1 Preliminary Analysis

3.1.1 Univariate Statistics
Descriptive statistics on the return series are shown in table 3.2. Part 1 

contains the statistics when returns are expressed in local currency. The 

distribution of all local portfolios is characterised by negative skewness 

and kurtosis greater than that predicted by the Gaussian distribution. 

The Jarque-Bera (1980) test rejected the null hypothesis of normality 

across all series, providing further evidence that non-linearities are pres­

ent in the data. When returns are translated into US dollars, table 3.2 

part 2, the volatility for all series increases, further reflecting the extra 

source of uncertainty which is due to the foreign exchange fluctuations, 

while departures from normality remain large and significant across all 

national equity portfolios. The above indicates further that linear esti­

mates, i.e. OLS, of volatility are ill-suited measures of risk.
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Table Univariate statistics of local market return

Mean (p.a.) St Dev. (p.a.) Skewness Kurtosis normality p value
DENMARK 0.041 0.112 -1.087 13.290 512.700 0.000
GERMANY 0.048 0.197 -0.928 12.935 373.830 0.000
FRANCE 0.075 0.181 -0.719 8.177 224.000 0.000
HONGKONG 0.169 0.262 -6.446 146.799 17957.620 0.000
ITALY 0.025 0.201 -0.964 10.885 403.540 0.000
JAPAN 0.040 0.215 -0.244 13.661 25.890 0.000
NETHRLD 0.110 0.147 -0.948 25.317 387.850 0.000
SINGAPORE 0.120 0.213 -4.806 116.728 9993.820 0.000
SPAIN 0.112 0.177 -0.434 7.586 81.310 0.000
SWEDEN 0.137 0.197 -0.161 6.823 11.180 0.004
SWITZERL 0.033 0.157 -2.259 26.278 2216.010 0.000
UK 0.093 0.150 -1.737 26.184 1304.920 0.000
US 0.116 0.169 -5.557 135.458 13337.090 0.000

Part 2. Returns in US dollars
Mean (p.a.) St Dev. (p.a.) Skewness Kurtosis normality p value

DENMARK 0.080 0.161 -0.147 11.378 9.420 0.009
GERMANY 0.100 0.214 -0.680 9.659 200.190 0.000
FRANCE 0.117 0.196 -0.502 6.181 109.000 0.000
HONGKONG 0.170 0.263 -6.427 145.928 17851.460 0.000
ITALY 0.030 0.233 -0.847 9.028 311.840 0.000
JAPAN 0.104 0.242 -0.359 10.937 55.920 0.000
NETHRLD 0.139 0.177 -5.755 134.582 14281.910 0.000
SINGAPORE 0.158 0.220 -4.139 109.094 7394.860 0.000
SPAIN 0.130 0.206 -0.403 6.972 70.310 0.000
SWEDEN 0.150 0.224 -1.092 19.904 515.080 0.000
SWITZERL 0.089 0.193 -2.129 24.185 1964.050 0.000
UK 0.086 0.191 -0.735 10.257 234.060 0.000
N o te :  The t e s t  fo ^  
N ( (o^) V e  + (a ^ -3 ) /  
c a n c e  l e v e l ,

n o r m a l i t y  i s  t h e  J a r q u e  
2 4 ) .  T he l a s t  co lu m n  i s

-B e r a  t e s t ,  
t h e  s i g n i f i -

The serial correlation coefficients for the returns, together with the 

Ljung-Box Portmanteau statistics (Q statistic) are shown in table 3.3. For 

almost all markets there is strong evidence or the presence of first order 

serial correlation in both cases when returns are expressed in local and 

common currency. For some markets the serial correlation persists for 

even longer. The Ljung-Box statistic of order six reveals a significant 

higher order serial correlation for all local portfolios. However, the serial
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correlation on daily market indices, and especially on broad market indi­

ces, is most likely caused by thin trading. Serial correlation is still pres­

ent when returns are measured in US dollars but tends to be smaller.

Table 3.3 Autocorrelations of returns

Series r1 r2 r3 r4 r5 r6
DENMARK 0.206 0.020 0.028 0.023 0.011 -0.004 116.200 0.000
GERMANY 0.011 -0.036 -0.011 0.013 0.027 -0.045 11.450 0.075
FRANCE 0.086 0.023 -0.025 0.011 -0.016 0.003 23.250 0.001
HONGKONG 0.013 -0.007 0.080 0.012 0.044 -0.027 24.300 0.000
ITALY 0.147 -0.025 0.036 0.036 -0.005 -0.034 67.680 0.000
JAPAN 0.021 -0.073 0.005 0.037 -0.027 -0.024 22.200 0.001
NETHRLD -0.025 -0.028 -0.024 0.044 0.039 -0.014 14.550 0.024
SINGAPORE 0.143 -0.082 -0.010 0.060 0.027 0.046 88.180 0.000
SPAIN 0.220 0.055 0.016 0.042 0.009 -0.010 140.140 0.000
SWEDEN 0.144 -0.004 -0.006 0.059 0.037 -0.045 72.640 0.000
SWITZERL 0.034 0.029 -0.021 0.041 0.071 -0.013 24.600 0.000
UK 0.069 0.004 0.017 0.074 0.010 0.001 27.930 0.000
US 0.014 -0.075 -0.015 -0.041 0.060 -0.013 29.830 0.000

Part 2. returns in US dollars
Series r1 r2 r3 r4 r5 r6 Q(6)
DENMARK 0.104 -0.010 0.015 -0.001 0.007 -0.014 33.300 0.000
GERMANY -0.024 -0.025 -0.027 0.030 0.009 -0.036 13.270 0.039
FRANCE 0.067 0.006 -0.018 0.034 0.013 -0.011 20.040 0.003
HONGKONG 0.011 0.002 0.068 0.011 0.042 -0.036 25.160 0.000
ITALY 0.118 -0.025 0.020 0.027 -0.014 -0.039 54.980 0.000
JAPAN 0.022 -0.031 0.001 0.027 -0.031 -0.008 10.260 0.114
NETHRLD -0.043 -0.024 -0.028 0.038 0.041 0.001 19.950 0.003
SINGAPORE 0.115 -0.066 0.000 0.058 0.029 0.028 71.490 0.000
SPAIN 0.130 0.035 0.015 0.056 0.008 -0.016 69.180 0.000
SWEDEN 0.098 -0.020 -0.022 0.061 0.031 -0.043 53.990 0.000
SWITZERL -0.008 0.016 -0.037 0.044 0.040 -0.004 16.760 0.010
UK 0.056 0.027 0.028 0.049 0.007 0.008 22.660 0.001

In table 3.4, the correlations between squared contemporaneous and 

squared lagged returns are reported. The motive behind the analysis of 

correlation of squared returns is the same as the motive behind ARCH. 

The findings reveal that volatility clustering is present in all national 

portfolios of our data sample.
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Table 3.4 Autocorrelations of squared returns 
Part 1. returns in local currency
Sehes**2 r1 r2 r3 r4 r5 r6 Q(6)

175.380 0.000
317.380 0.000
576.930 0.000

25.650 0.000
241.340 0.000
232.650 0.000

1723.710 0.000
541.540 0.000
621.500 0.000
644.710 0.000
718.000 0.000

1297.220 0.000
117.230 0.000

DENMARK
GERMANY
FRANCE
HONGKONG
ITALY
JAPAN
NETHRLD
SINGAPORE
SPAIN
SWEDEN
SWITZERL
UK
US

0.243
0.174
0.131
0.034
0.175
0.223
0.442
0.268
0.261
0.289
0.120
0.603
0.089

0.052
0.188
0.337
0.005
0.076
0.081
0.478
0.244
0.291
0.138
0.232
0.274
0.145

0.035
0.153
0.146
0.033
0.171
0.109
0.302
0.249
0.158
0.247
0.186
0.140
0.065

0.036
0.094
0.095
0.002
0.103
0.116
0.199
0.100
0.176
0.210
0.103
0.151
0.013

0.037
0.132
0.234
0.086
0.075
0.080
0.280
0.019
0.139
0.148
0.394
0.109
0.104

0.038
0.080
0.070
0.004
0.102
0.030
0.164
0.062
0.100
0.129
0.079
0.054
0.024

Part 2. returns in US dollars
Series**2 r1 r2 r3 r4 r5 r6 Q(6) -p
DENMARK
GERMANY
FRANCE
HONGKONG
ITALY
JAPAN
NETHRLD
SINGAPORE
SPAIN
SWEDEN
SWITZERL
UK

0.086
0.154
0.147
0.035
0.122
0.201
0.019
0.249
0.158
0.064
0.059
0.476

0.045
0.181
0.282
0.006
0.074
0.055
0.014
0.242
0.185
0.031
0.090
0.251

0.037
0.149
0.137
0.033
0.182
0.084
0.010
0.234
0.075
0.049
0.069
0.173

0.012
0.086
0.069
0.003
0.085
0.110
0.005
0.088
0.085
0.038
0.041
0.182

0.008
0.094
0.174
0.086
0.036
0.079
0.012
0.016
0.089
0.023
0.126
0.152

0.024
0.053
0.076
0.005
0.075
0.034
0.013
0.059
0.103
0.025
0.029
0.068

33.460
308.840
509.300

30.910
213.610
221.760

3.130
592.380
286.690

31.920
110.130

1202.920

0.000
0.000
0.000
0.000
0.000
0.000
0.792
0.000
0.000
0.000
0.000
0.000

Cross correlations between world market returns and each domestic port­

folio are shown in table 3.5 Japanese and US stocks have the highest 

contemporaneous correlation with the world factor (0.70) and (0.68) re­

spectively, followed by the UK and the Netherlands at (0.63) and (0.61). 

Low correlation coefficient estimates are critical in risk diversification.

C olum ns - r l , . . - r 6  r e f e r  t o  t h e  nximber o f  d a y s  t h a t  r e t u r n s  i n  
l o c a l  m a r k e ts  l a g  t h e  w o r ld  in d e x .  T hus t h e  e n t r y  - r 3 ,  f o r  exam ­
p l e ,  i s  t h e  c r o s s - c o r r e l a t i o n  c o e f f i c i e n t  b e tw e e n  t h e  w o r ld  a n d  a  
d o m e s t ic  p o r t f o l i o  3 d a y s  l a t e r .  The co lu m n  rO c o n t a i n s  t h e  c o n ­
te m p o r a n e o u s  c o r r e l a t i o n s  an d  t h e  co lu m n s  r l  th r o u g h  r 6  r e f e r  t o  
t h e  num ber o f  d a y s  t h e  d o m e s t ic  p o r t f o l i o  l e a d s  t h e  w o r ld .
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The square of the correlation coefficient, known as the f f ,  tells us the 

proportion of a market's variance explained by changes in the world in­

dex. Hence the US stocks have a common volatility with the world index 

of 46% while Italian stocks have a common volatility of only 11%.

Table 3.5 Cross correlations of domestic portfolio returns with the 
Part 1: returns in local c u r r e n c y ____________________

world index

Senes -r6 -r5 -r4 -r3 -r2 -r1 rO r1 r2 r3 r4 r5 r6
DENMARK
GERMANY
FRANCE
HONGKONG
ITALY
JAPAN
NETHRLD
SINGAPO
SPAIN
SWEDEN
SWITZRL
UK
US

0.00 0.02 
-0.03 -0.01 
0.04 -0.02 

-0.04 0.14 
- 0.02 0.00 
-0.04 0.00 
0.01 0.00 
0.03 -0.01 
-0.01 0.04 
-0.04 0.01 
0.01 0.06 
0.02 -0.03 

- 0.02 0.00

0.03 0.01 
0.04 -0.01 
0.03 -0.02 
0.11 -0.13 
0.02 0.03 
0.06 0.00 
0.05 -0.01 
0.06 -0.03 
0.06 0.05 
0.04 0.00 
0.09 -0.02 
0.08 0.05 
0.02 -0.04

0.01
-0.05
-0.01
0.02

-0.03
-0.05
-0.05
-0.01
0.05

-0.03
0.01
-0.04
-0.05

-0.05
-0.05
-0.03
-0.03
-0.03
-0.07
-0.04
-0.09
-0.01
-0.02
-0.05
-0.02
-0.06

0.00 0.08 
-0.05 0.05 
0.01 0.04 

-0.01 -0.02 
0.00 0.04 

-0.02 0.06 
-0.06 0.05 
0.03 0.08 
0.00 0.04 

-0.04 0.06 
-0.04 0.04 
-0.02 0.07 
-0.03 0.00

0.00 0.00 
0.03 -0.02 
0.03 -0.01 

-0.01 0.00 
-0.02 -0.03 
-0.05 -0.02 
0.03 0.01 

-0.01 0.03 
-0.03 0.01 
0.02 - 0.01 
0.04 -0.03 
0.03 -0.01 
0.08 -0.04

Part 2: returns in US dollars
-r1 rO r1 r2 r3 r4 r5 r6
0.11 0.31 0.02 -0.05 0.01 0.03 0.01 0.00
0.06 0.45 0.10 -0.03 -0.05 0.06 0.02 -0.01
0.07 0.45 0.12 -0.03 0.01 0.03 0.03 0.00
0.12 0.30 -0.01 -0.02 -0.01 -0.01 -0.02 0.00
0.11 0.32 0.07 -0.02 0.01 0.05 -0.03 -0.03
0.17 0.65 0.01 -0.04 -0.02 0.05 -0.02 -0.01
0.07 0.44 0.08 -0.04 -0.04 0.04 0.03 -0.01
0.26 0.30 -0.01 -0.06 0.03 0.08 0.00 0.01
0.19 0.34 0.06 -0.02 0.01 0.04 -0.02 0.01
0.14 0.36 0.07 -0.02 -0.02 0.05 0.01 -0.01
0.08 0.43 0.09 -0.03 -0.01 0.04 0.03 -0.02
0.06 0.25 0.03 -0.01 -0.02 0.05 0.02 -0.02

-0.05 0.54 0.28 -0.06 -0.01 0.00 0.07 -0.04

Series
DENMARK
GERMANY
FRANCE
HONGKONG
ITALY
JAPAN
NETHRLD
SINGAPO
SPAIN
SWEDEN
SWITZRL
UK
US

0.01 0.01 
-0.03 -0.02 
0.03 -0.02 

- 0.02 0.12 
0.00 - 0.01 
-0.04 0.02 
- 0.01 0.00 
0.03 0.02 
-0.02 0.04 
- 0.02 0.01 
- 0.01 0.02 
0.03 -0.02 

- 0.02 0.01

0.03 0.01 
0.04 -0.02 
0.06 -0.02 
0.11 - 0.10 
0.03 0.03 
0.04 0.02 
0.07 -0.01 
0.05 -0.01 
0.06 0.05 
0.05 0.00 
0.08 -0.03 
0.04 0.02 
0.03 -0.02

Note: -rN indicates the number of days the world market 
return leads the local portfolio and +rN is the number 
of days the local portfolio return leads the world mar­
ket .
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For risk monitoring purposes, i.e. to estimate the portfolio DEaR, it is 

necessary to employ unbiased and efficient daily correlation estimates. 

Historical correlations, however, restrict the common volatility to be 

equal at each day over the sample. This is inconsistent with empirical 

evidence reported earlier.

Table 3.6

Part 1

Cross correlations of domestic portfolio squared returns with the 
world market

Series -r6 -r5 -r4 -r3 -r2 -r1 rO r1 r2 r3 r4 r5 r6
DENMARK 0.04 0.03 0.02 0.04 0.19 0.58 0.41 0.29 0.06 0.08 0.18 0.03 0.00
GERMANY 0.12 0.25 0.13 0.24 0.21 0.16 0.46 0.16 0.23 0.07 0.06 0.10 0.05
FRANCE 0.20 0.38 0.14 0.22 0.22 0.10 0.56 0.21 0.31 0.10 0.09 0.16 0.04
HONGKONG 0.05 0.74 0.34 0.39 0.02 0.05 0.33 0.05 0.04 0.00 0.08 0.03 0.01
ITALY 0.03 0.07 0.06 0.06 0.06 0.08 0.21 0.09 0.07 0.03 0.03 0.04 0.00
JAPAN 0.03 0.07 0.11 0.08 0.22 0.62 0.47 0.32 0.05 0.10 0.21 0.04 0.01
NETHRLD 0.12 0.29 0.16 0.27 0.46 0.46 0.86 0.36 0.34 0.18 0.15 0.19 0.05
SINGAPO 0.03 0.07 0.18 0.29 0.20 0.79 0.50 0.50 0.19 0.05 0.26 0.10 0.04
SPAIN 0.34 0.27 0.21 0.23 0.09 0.24 0.25 0.15 0.07 0.05 0.08 0.03 0.03
SWEDEN 0.17 0.20 0.15 0.22 0.12 0.23 0.39 0.20 0.12 0.06 0.09 0.06 0.03
SWITZRL 0.10 0.54 0.27 0.40 0.18 0.20 0.71 0.24 0.30 0.06 0.10 0.17 0.04
UK 0.04 0.15 0.10 0.21 0.28 0.69 0.83 0.49 0.29 0.12 0.24 0.17 0.04
US 0.03 0.08 0.05 0.07 0.13 0.12 0.84 0.38 0.42 0.09 0.08 0.27 0.04

Part 2 : returns in US dollars
Series -r6 -r5 -r4 -r3 -r2 -r1 rO r1 r2 r3 r4 r5 r6
DENMARK 0.00 0.00 -0.01 0.00 0.05 0.21 0.20 0.11 0.02 0.02 0.07 0.00 -0.01
GERMANY 0.05 0.10 0.08 0.11 0.11 0.09 0.24 0.09 0.10 0.03 0.02 0.03 0.02
FRANCE 0.13 0.17 0.08 0.10 0.10 0.06 0.26 0.12 0.14 0.04 0.03 0.06 0.02
HONGKONG 0.03 0.37 0.26 0.23 0.02 0.02 0.17 0.03 0.02 0.00 0.05 0.02 0.00
ITALY 0.01 0.04 0.02 0.05 0.03 0.05 0.11 0.06 0.02 0.01 0.02 0.00 -0.01
JAPAN 0.03 0.04 0.04 0.05 0.10 0.34 0.32 0.18 0.02 0.04 0.11 0.02 0.00
NETHRLD 0.02 0.03 0.03 0.05 0.08 0.10 0.15 0.07 0.05 0.02 0.02 0.02 0.01
SINGAPO 0.01 0.03 0.09 0.16 0.13 0.41 0.33 0.29 0.10 0.02 0.12 0.05 0.01
SPAIN 0.17 0.10 0.08 0.10 0.04 0.11 0.15 0.07 0.02 0.01 0.02 0.01 0.01
SWEDEN 0.04 0.04 0.03 0.05 0.03 0.07 0.12 0.06 0.03 0.01 0.02 0.01 0.00
SWITZRL 0.03 0.15 0.11 0.13 0.07 0.08 0.24 0.11 0.09 0.02 0.03 0.04 0.01
UK 0.02 0.09 0.08 0.11 0.15 0.30 0.45 0.28 0.17 0.05 0.10 0.08 0.02
US 0.01 0.04 0.03 0.04 0.06 0.08 0.43 0.28 0.24 0.05 0.03 0.13 0.02
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Changes in national equity indices, like single stocks, may be uncorre­

lated in the means, but may still be related through their second mo­

ments. Table 3.6 reports the cross and lagged cross correlations of 

squared returns between each national portfolio and the world index. A 

high coefficient of current and/or leading (lagged) squared returns re­

veals that an increase in volatility in the world portfolio tends to be fol­

lowed by an increase in current and/or past (future) volatility on a local 

portfolio. A lagged strong coefficient further indicates that shocks in the 

world market will affect price movements on domestic markets over the 

next few days. However, the response of the local portfolio does not 

necessarily have to be of the same manner (sign) with the changes in 

price of the world market. The econometric model reported in this chap­

ter has been designed to capture the conditional volatility for both world 

and local markets jointly with their cross-dependence.

Table 3.7 reports the OLS estimates and residual analysis of the linear 

SIM in equation (1.4). In the second column from the right are reported 

the Ljung-Box statistic for (non) serial correlation of order 6. Here again, 

we can observe on almost all residual series a significant serial correla­

tion. The last column reports the Jarque-Bera test for normality. We 

found strong deviations from the Gaussian distribution on almost all na­

tional equity portfolios, both in local currency and US dollars. This is not 

surprising since the model of (1.4) fits a linear relationship between local 

portfolios and market return and thus will not reveal any non-linear re­

lationship which might affect the second moments of the series.
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Table 3.7.
returns in local currency returns in U5$

Country a P QI6) JB a QI6) JB

0.000
(0.45)
0.000
(0.37)
0.000
(0.28)
0.000
(1.37) 
0.000 
(0.32) 
0.000 
(1.24) 
0.000
(1.37) 
0.000 
(1.11) 
0.000 
(1.32) 
0.000 
(1.45) 
0.000 
(0.61) 
0.000 
(0.83) 
0.000

0.347
(19.33)

0.893
(30.73) 

0.812
(30.38)

0.865
(20.68)

0.578
(17.68)

1.318
(49.80)

0.785
(38.91)

0.673
(19.61)

0.587
(20.74) 

0.755
(24.82)

0.766
(34.09)

0.824
(40.96)

1.004

87.640
(0.00)

17.802
(0.01)

12.501
(0.05)

67.253
(0.00)

35.210
(0.00)

15.222
(0.02)

52.969
(0.00)

27.242
(0.00)

65.948
(0.00)

24.449
(0.00)

19.567
(0.00)
6.192
(0.40)

110.391
(0.00)

255.40
(0.00)

160.19
(0.00)
18.14
(0.00)

11559.07
(0.00)

379.07
(0.00)

356.08
(0.00)

1.53
(0.47)

2955.11
(0.00)
73.%
(0.00)

0.07
(0.96)

338.81
(0.00)
62.45
(0.00)

267.56
(0.00)

0.000
(0.89)
0.000
(0.45)
0.000

(0.9
0.000
(1.41)
0.000
(0.40)
0.000
(0.27)
0.000
(1.61)
0.000
(1.65)
0.000
(1.25)
0.000
(1.34)
0.000
(0.47)
0.000
(0.85)
0.000
(1.03)

0.371
(16.39)

0.720
(25.38)

0.668
(25.78)

0.588
(15.85)

0.559
(17.13) 

1.179
(43.13) 

0.584
(24.75)

0.495
(15.94)

0.535
(18.72)

0.612
(19.77)

0.628
(24.42)

0.364
(13.32)
0.686

(32.46)

24.999
(0.00)

21.817
(0.00)
6.350
(0.39)

43.661
(0.00)

22.274
(0.00)

16.272
(0.01)

50.967
0.00

31.429
(0.00)

23.429 
(0.00) 

18.024 
(0.01)

23.063
(0.00)

18.806
(0.01)

44.480
(0.00)

17.66
(0.00)
29.42
(0.00)

0.13
(0.94)

13175.68
(0.00)

246.90
(0.00)

1369.22
(0.00)

25777.02
0.00

2318.21
(0.00)
55.10
(0.00)

636.85
(0.00)

1205.93
(0.00)
19.96
(0.00)

2023.04
(0.00)

Note: For columns a and 
thesis. For the columns 
are shown.

P t-values 
entitled Q(6

are shown in paren- 
) and JB, p-values

3.2 Empirical Results

3.2.1 Modelling the Conditional Betas.

To compute the portfolio DEaR and VaR, it is necessary to get daily es­

timates of the variance-covariance matrix il. The portfolio risk as esti­

mated in (1.2) relies upon a very strong assumption; the mean, m, and 

variance, o^, that the series of returns, Y, does not change over the
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measurement period. However, as we have seen in chapter two, empiri­

cal studies have found that asset variances and covariances are not con­

stant but change over time, e.g. Christie (1982).

Multivariate GARCH models are ideal to capture changes on the joint 

second moments of a set of security returns. However, the need to esti­

mate a large number of parameters on a 13 variable system makes multi­

variate GARCH computationally infeasible. As mentioned in chapter two 

an alternative solution is provided by using thirteen bivariate 

GARCH(1,1) systems, each one consisting of an individual local equity 

portfolio, and the world index. If Yi, Y2 are the series of returns for the 

locally diversified portfolio and the world index, the bivariate GARCH 

system can be written as'̂ :

Yi,/= + £1 ,̂ (3.1.a)

Y2,/ = ^2^2,t-1 + ^2,t (3.1.b)

i.t
2,t

-  N(o , h J  where H =^H,. J  is a 2x2 symmetric matrix:

The terms 4>i and O2 in the mean equation are set to capture any serial 

correlation which may be caused by thin trading (see Pagan and Schwert 

(1990) p. 271). For reasons explained in chapter two, it is more appropri-

 ̂ T he mean s p e c i f i c a t i o n  h a s  b e e n  b a s e d  on  a  num ber o f  d i a g n o s t i c  
t e s t s .  T he ARM A(0,1) a c c o u n t  f o r  s e r i a l  d e p e n d e n c ie s  w h ic h  w e r e  
p r e s e n t  i n  m o st s e r i e s .  A s we w i l l  l a t t e r  t h i s  mean s p e c i f i c a t i o n  
l e a v e s  w h i t e  n o i s e  r e s i d u a l s .  We a l s o  c o n s i d e r e d  a  h ig h e r  MA o r  
AR o r d e r  b u t  t h e  l i k e l i h o o d  r a t i o  t e s t s  r e j e c t e d  t h i s  h y p o t h e s i s .
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ate to restrict the variance to its diagonal specification, see Engle et al 

(1984). This is sM lar to the specification in (2.16). The specification of 

the conditional variance covariance equation is the following:

h i i , / =  co ii +  3 i i  +  b i i (2.16.a)

h i2 , /  =  Ci>12 + 3 i 2 +  b i 2  h i2 , / - / (2.16.b)

h22,/ = Cife2 ^22 ^22 h22,/-/ (2.16.C)

The conditional variance, hn.  ̂ and h22./, are expressed as past real­

isations of each return series squared disturbances. The covariance of the 

two return series, hi2./, is a function of the cross product between past

h
disturbances in the two markets. The ratio —̂  forms the local portfo-

^22.

lio's time-varying beta. The conditional beta for each local portfolio with 

the market is estimated individually from the rest of the series.

3.2.2 The Advantanges of our Factor Model

The above model can be seen as the conditional parameterisation of the 

SIM. From a statistical perspective, the SIM in (1.4) arises from the as­

sumption that the return on an individual asset and the return on the 

market have a bivariate normal distribution. The bivariate GARCH is 

based on the same assumption but allows the second moments of the
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joint distribution to be conditional on past returns. Another distinctive 

feature of this model is that it captures the shifts in time not only of the 

systematic component of a security's risk but also of its unsystematic 

counterpart. Thus, the above proposed model may provide an answer to 

questions such as it ' is true whether any change in a security's volatility 

is due to its systematic or specific counterpart or whether changes in 

various security betas are correlated.

King et al. (1994) used a multifactor model to explain the changes in 

variances and covariances on monthly returns of sixteen national stock 

markets. They model the variance-covariance matrix of excess market re­

turns as a function of the innovations in a set of both observable^ eco­

nomic variables (or factors) and unobservable factors. The unobservable 

factors are correlated with market returns but are constructed to be or­

thogonal with the observable factors. Both types of factors are zero mean 

and their conditional variances are modelled as GARCH(1,1) process.

The King et al. model has several similarities with the one followed in 

our study, of equations (2.16) and (3.1). Both models allows for national 

markets interdependence through their common movement with observ­

able factor(s)^. In addition the variance of these factors, as in our model, 

is modelled conditionally as a GARCH(1,1) process. Similarly, the King 

et al. model divides risk into systematic and specific time-varying com­

ponents. Moreover, in their investigation. King et al., the systematic risk 

is partitioned to further counterparts (which are due to observable and 

unobservable factors).

 ̂These factors however are not literally observable. They are 
mapped out from economic variables.

* One observable factor in our model.
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However, our approach differs in some aspects from that of King et al. 

in an attempt to overcome the limitations of their investigation. For in­

stance, King et al. use monthly data from 1970-1988 whereas in this 

study we employ daily data (approximately 2400 more observations for 

each returns series) collected during more recent period; hence, our 

model fits better with the current dynamics that govern the global mar­

ket prices^. Furthermore, our study also differs in the identification of 

the factors and the way factors are allowed to influence the conditional 

mean of the data. Our approach involves the use of the market model to 

explain the common movement of the different national equities. It aims 

to simplify the computation of a time-varying correlation matrix. It is not 

a pricing or arbitrage model. On the other hand, the King et al. model is 

more general since it includes unobservable factors as well observable 

ones. Furthermore, the King et al. study is based on an equilibrium 

pricing model which formulates the conditional mean of the market ex­

cess returns to be a linear combination of the risk premia associated with 

each factor. It, however, restricts the "price of the risk" (that is the sen­

sitivity of each market to the changes of the variance of the correspond­

ing factor) on each market to be constant across time. However, Harvey 

et al. (1992) shown that the "price of the risk" does change over different 

periods. In our model the conditional mean, on both market index and 

local portfolio returns, depends only on its own past returns.

The major advantage of our approach is that it allows different national 

markets to be linked through a single factor. This factor is observable 

(not notional) and its values are changing daily. In the King et al. study 

the (economic) factors are notional; they are calculated as unobservable 

factors (using Kalman filter) but correlated to economic variables, hence

 ̂Yet, both studies cover the 1987 crash.
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being denoted as observable. Given that these are economic variables 

they do not change each day. Our model is computationally feasible and 

can be applied to portfolios of any size (since in our model the number 

of unknown parameters grows linearly with the number of assets in the 

portfolio). The King et al. model is computationally intensive and relies 

on factors that change monthly; hence it is unsuited in the VaR analysis. 

On the other hand the King et al. is an equilibrium model and it can be 

used for arbitrage trading.

3.2.3 Testing for ARCH

The non-linear system in (2.16) has a large number of parameters, so hy­

pothesis tests are necessary before any estimation is attempted. A test 

for ARCH has been proposed by Engle (1982) and is based on the La­

grange Multiplier (LM) principle. It is straightforward since it only re­

quires estimates of the homoskedastic model. Engle et al. (1984) ex­

tended the test to deal with bivariate ARCH models.

For the diagonal model, the test consists of three times the sample size 

times the sum of the Ff of the three following regressions.

ÉGJ
i.i £ i.i -i=1

+ 6l,t (3.2.a)

052,0 + ¿05j, + 6 2 ,,
i=1

(3.2.b)

l , L r  ¿ " ’iz.i é t , ®'2'>t=1
(3.2.C)
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Where and are the residuals from the autoregression of Yi and Y2 

series respectively.

Table 3.8 LM test for ARCH.
COUNTRY return in 

local cur­
rency

return in 
U S$

DENMARK 1770.622 194.348
(0.00) (0.00)

GERMANY 3392.561 263.828
(0.00) (0.00)

FRANCE 4899.281 367.580
(0.00) (0.00)

HONGKONG 4152.499 335.350
(0.00) (0.00)

ITALY 2888.320 708.908
(0.00) (0.00)

JAPAN 1786.135 83.005
(0.00) (0.00)

NETHRLD 2952.367 20.140
(0.00) (0.512)

SINGAPORE 6556.192 2626.180
(0.00) (0.00)

SPAIN 5101.521 1474.213
(0.00) (0.00)

SWEDEN 3126.162 140.659
(0.00) (0.00)

SWITZERL 3784.999 73.221
(0.00) (0.00)

UK 2211.626 2058.508
(0.00) (0.00)

US 3124.471 968.839
(0.00) (0.00)

Note: Table shows the statistics with probability 
values in parenthesis.

When Hq for homoskedastidty is tested against an ARCH(p) process

then the LM statistic is asymptotically equivalent to 3N(/?r + /?̂  + /?//), 

where is the coefficient of determination in each equation. In this case
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0\
the LM statistic has a % (3p) asymptotic distribution, where p is the 

number of lagged regressors in each equation.

The test was performed on all thirteen local portfolios for a lag order of 

six and the results are shown in table 3.8. The test results reject the null 

hypothesis of non ARCH errors at the 99% confidence level, across all 

bivariate sets for both local and dollar returns. The LM tests here affirm 

the earlier hypothesis that stock return variances follow an autore­

gressive process. Furthermore, the above modified test indicates that 

each local portfolio's covariance with the world market, and so its beta, 

will probably follow an ARCH process.

3.2.4 Estimation Issues

A bivariate GARCH was constructed for each of the thirteen local port­

folios with the world market index as formulated in (3.1) and (2.7). Nu­

merical maximisation of the likelihood function for each individual 

bivariate set was achieved using the Berndt et al. (1974) algorithm. One 

condition that needs always to be satisfied when estimating multivariate 

GARCH models is that the determinant of the variance covariance matrix 

H be positive at each function valuation. Two methods are commonly 

used to achieve this. The first, introduced by Bollerslev (1990), treats the 

correlation coefficient, p, between Ei./ and £ 2 7  as an unknown (constant) 

parameter. The conditional variances hi,/ and h2 ./ are modelled as a 

GARCH(p,q) process and so the covariance hi2 ,/ estimated as conditional

h.
on hi./and h2 ,/ must guarantee the restriction p = 12,t at all periods.

The constant correlation method has been used in many bivariate speci­

fications, e.g. Baillie and Bollerslev (1990), Kroner and Sultan (1991).
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This bivariate specification guarantees that H is positive definite at each 

t. However, it relies on strong assumptions which have some adverse 

consequences on the results such as imposing the covariance hi2 ./ to be 

always of the same sign. An alternative solution has been suggested by 

Baba et al. (1990). Nevertheless, this method imposes some restrictions 

on the sign of the parameters and does not always guarantee positive 

definitiveness in Ht.

Rather than restricting the parameters in our calculations in any way, 

we imposed a penalty on the likelihood function to guarantee that H/ is 

always positive definite. Initial values for the parameters have been ob­

tained by maximising the likelihood with the downhill simplex algo­

rithm. This algorithm is almost insensitive to bad starting values and ro­

bust to discontinuities which may arise because of the penalty imposed 

in the likelihood function.

3.2.5 Parameter Estimates

Parameter estimates with the -t statistics for each bivariate GARCH are 

reported in table 3.9. The -t statistics on the conditional variances and 

covariance equations strongly support the existence of ARCH effects and 

appear to validate the model specification. The coefficients, an, 8 2 2  and 

3 i2 measure the impact of last period's squared innovation Ei,/./  ̂Ej,/./ on

conditional variances hi,/, h2,/and the cross product, Ej.t-iEj.t.i, on condi­

tional covariance hi2 ,/ . These are positive and significant in each bivari­

ate set.

The coefficients bn, b22 and bi2 which measure the long run joint 

GARCH process among each of the local equity portfolios and the world 

index are positive and significant across all thirteen systems of equa-
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tions. In addition, the condition a+b<1 holds for every variance and 

covariance equation indicating a stationary GARCH process. Further­

more, for every conditional variance and covariance equation we have 

a+b>0. Thus, the homoskedastic model, which is a special case when 

a+b=0, can be strongly rejected in all cases. In particular, the coefficient 

bi2, which accounts for the conditional covariance between national and 

world markets, is positive and statistically significant across each bivari­

ate system, supporting the existence of a strong interaction between 

domestic stock prices and the rest of the world. Thus, a strong and posi­

tive relationship between past errors and conditional variances is found 

to hold between every local market and the world index. Equally signifi­

cant results are obtained when returns are translated to US dollars. 

However the values of the likelihood functions are now smaller across all 

13 sets of equations indicating the difficulty of fitting a conditional model 

when returns are contaminated with exchange rates.

The results indicate that the bivariate GARCH model captures sizeable 

changes over time not only in stocks' overall risk but also in the two risk 

components as well. Such a model parameterisation overcomes previous 

criticisms of the linear SIM for not allowing assets' risk to change over 

time. The model proposed here treats both systematic risk and total risk 

as time varying. In contrast to smoothing techniques, described in the 

first chapter, which just filter the series from a noise term, our bivariate 

GARCH approach exploits the information contained in past realisations 

of returns which affect the whole structure of the variance-covariance 

relationship between an asset and the market. Thus, it allows each na­

tional market's volatility to be a function of the past disturbances arising 

in its own and the world market's return.
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Such a model specification is consistent with some stylised facts which 

characterise asset returns such as the clustering in time of large forecast 

errors. Thus, large past values in the error term e will lead to a covar­

iance matrix H with larger elements and to a greater likelihood of an­

other large value of e in the immediate future.

Almost all the parameter estimates were statistically significant in each 

set of GARCH equations therefore suggesting that our specification 

computes more efficient and more efficient risk estimates than those ob­

tained using the linear least squares method. In addition, the GARCH 

parameterisation presented here captures the time path of the risk and 

its components rather than their average value as is the case with histori­

cal risk analysis or with the various adjustment or smoothing methods 

described in chapter two.

3.2.6 Diagnostic Tests

Diagnostic tests have been carried out on the fitted residuals, e , derived

from each bivariate system. It is anticipated that the GARCH parameteri­

sation of the SIM will remove any heteroskedasticity and serial correla­

tion from the series and will leave white noise residuals. Failure of this 

test may reveal model miss-specification. Table 3.10 contains estimates 

of the regression;

(3.3)

with heteroskedasticity-consistent. White (1980), -t statistics given in pa­

rentheses. As Pagan and Ullah (1988) shows, if the forecasts of hi are
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unbiased then a=0 and p=1. This hypothesis is accepted for all local 

portfolios except Switzerland and US when returns are expressed in local 

terms and for the Netherlands when returns are in US dollars. The coef­

ficient of determination in (3.3), R \  measures the fraction of the total 

variation of everyday returns explained by the estimated conditional 

variance. Given the difficulty of forecasting daily stock market data, the 

coefficients are quite large, indicating a high degree of predictability 

in next day's volatility. When returns are in US dollars the GARCH 

model can on average predict one third of next day's (squared) price 

movements. Given the difficulty which arises with predicting the daily 

changes of speculative prices, this is a remarkable result.

A second test has been carried out to detect the presence of serial corre­

lation and higher order ARCH effects. This is based on the Ljung-Box 

statistic and has been applied to the standardised residuals and squared 

standardised residuals for the local market returns equation. The results 

are reported in the same table together with the p-values. As can be 

seen, the serial correlation has been removed for all series but four, Italy, 

Spain, Switzerland and US. Recalling that, based on the OLS residuals, 

the same test statistics were much higher this suggests that our ARMA 

specification has removed time dependence among the price changes. In 

the next column are reported the Ljung-Box statistics of order six on the 

squared standardised residuals.
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The GARCH effect have now been removed for most series. However, in 

some cases, i.e. Hong Kong, Japan and Spain, there is a need to encom­

pass a GARCH process of higher order. Finally, under the column JB re­

ports the Jarque-Bera statistics for normality. When returns are measured 

in US dollars, the null hypothesis of normality cannot be rejected for two 

local portfolios, Hong-Kong and Japan. Nevertheless, in all other cases 

the statistic is much lower than the OLS model, indicating that most of 

the excess kurtosis has been removed. The Jarque-Bera test, however, 

shows that it is easy to accept normality when the variance is non con­

stant.

Clearly, the diagnostic test results are very satisfactory and when com­

pared with the equivalent OLS tests then allow us to reach the conclu­

sion that the GARCH parameterisation followed in this chapter (although 

very general and simple), has removed the non-linearities for the major­

ity of the local portfolios examined. Furthermore, it has indicated the 

common origins of risk between national stocks and the world factor. 

However, it remains to be seen how effective these beta estimates are in 

measuring portfolio risk.

3.2.7 The Time Changes in the National Markets Risk

By defining a portfolio's residual variance to be the difference between

total variance, hn,/, and the market related variance. h22./ the time

path for each local portfolio's idiosyncratic variance can be obtained. The 

series together with the systematic (conditional) risk are graphically pre­

sented in the figures 3A.I to 3A.XIII, found in appendix 3A. In each 

page, the chart on the top shows the two beta series, the time varying 

(conditional) and the constant (historical). Given the significance and
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sign of coefficients ai2 and b 2̂, the decision to allow the covariance to be 

time varying rather than restrict it to be a constant is justified. Condi­

tional beta indicates the way each local portfolio responds to current 

(world) market conditions. Historical beta restricts a markets' response to 

be equal across different periods. Our study provides evidence against 

the constant beta hypothesis. We can notice that they are many similari­

ties and differences in the way various conditional betas behave over 

time. Understanding how national stocks may respond to current world 

market conditions may provide insights into the way volatility is trans­

mitted from one national market to another. Such information will be 

very valuable in predicting portfolio risk. Questions like did the volatil­

ity  during the 1987 crash increase because o f a rise in the systematic or 

the specific component o f a local market's risk? are the changes in na­

tional markets' systematic and specific risk related to, or independent of, 

the analogous changes in the rest o f the national markets! Such ques­

tions may be answered by studying the time structure of the conditional 

risk series. The analysis of the national conditional betas and the search 

for any patterns in the way volatility changes will be the focus of chapter 

five.

These questions can be answered partly in a less scientific way by ob­

serving the chart in the middle on each page. This shows the share of 

systematic in total risk. It is clear that both the volume of each risk com­

ponent and its share in the total volatility vary across countries. The 

share of systematic in overall risk remains unstable over time, indicating 

that an increase in volatility may arise from either, domestic uncertainty 

or international turmoil. For most country portfolios, on average less 

than a quarter of the volatility can be attributed to the world market fac­

tor while the remaining three quarters is due to that country's specific
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events. By contrast, for Japan and US equities, the systematic part ac­

counts for more than half of total risk. Given the relatively low volatility 

of US equities, it can be argued that purely domestic US factors have had 

a relatively small impact on US stocks' volatility. However, considering 

that together US and Japanese stocks count for over 70% of the world 

index capitalisation, it can be argued that their specific and world sys­

tematic risk cannot easily be segregated.

The lower chart on each page exhibits the time path of both systematic 

and specific conditional risk for each national stock market. The diagram 

shows the total (conditional) volatility at the end of each week with the 

two counterpart as overstacking series.

3.3 Estimating Portfolio DEaR

To illustrate how our methodology can be used to monitor portfolio risk 

we constructed a hypothetical portfolio, diversified across all thirteen 

national markets of our data sample. We then calculated its DEaR over 

the 1 0  year data period and used the exponential smoothing (ES) risk es­

timates to compare our GARCH model's effectiveness in monitoring 

portfolio risk.

To form this hypothetical portfolio we weighted each national index in 

proportion to its capitalisation in the world index as on December 1995. 

The portfolio weights are reported in the next table:
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Table 3.11 Portfolio weights at Dec. 95
country our portfolio world index

DENMARK 0.004854 0.004528

FRANCE 0.038444 0.035857

GERMANY 0.041905 0.039086

HONG KONG 0.018918 0.017645

ITALY 0.013626 0.012709

JAPAN 0.250371 0.233527

NETHERLAND 0.024552 0.022900

SINGAPORE 0.007147 0.006667

SPAIN 0.010993 0.010254

SWEDEN 0.012406 0.011571
SWITZERLAND 0.036343 0.033898

UK 0.103207 0.096264

US 0.437233 0.407818

The 10 year historical returns of the thirteen national indexes have been 

weighted according to the above numbers to form the returns of our hy­

pothetical portfolio. Since portfolio losses need to be measured in one 

currency, we expressed all local returns in US dollars and then formed 

the portfolio's historical returns. Table 3.12 reports the portfolio's de­

scriptive statistics together with the Jarque-Bera normality test. The last 

column is the probability that our portfolio returns are generated from a 

normal distribution.

mean (p.a.) std. dev (p.a.) skewness kurtosis JB test p value

10.92% 12.34% -2.828 62.362 3474.39 0.000

2 2N((0^) /6 + (0̂ -3) /24) . The last colximn is the signifi­
cance level.

Figure 3.1 shows our hypothetical portfolio's conditional volatility over 

the ten year period. The conditional beta risk estimates have been em-

1 0 0



ployed to compute the time varying variance-covariance of this portfo­

lio*. Therefore, the portfolio's daily volatility is computed as in (1.2). It is 

clear the increase in portfolio volatility occurred during the 1987 crash 

and 1990 Gulf invasion.

Fig 3.1 Portfolio Volatility
based on Bivariate GARCH volatility estimates

3.3.1 Evaluating the Effectiveness of GARCH Volatility Estimates

The bivariate GARCH methodology used so far has been complicated 

and computationally intensive. Its use can only be justified if we can 

demonstrate that it generates results superior to less intensive methods. 

Thus, to evaluate the effectiveness of the bivariate GARCH model at

® The off diagonal elements of the variance-covariance matrix Q  are 
estimated as in Sharp (1963) SIM.
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monitoring portfolio risk, we used a series of different criteria (tests) and 

compared the results with a benchmark methodology widely used by the 

industry, the exponential smoothing (ES).

We formed a 13x13 variance covariance matrix by using the thirteen 

bivariate ES systems^, each consisting of the world index and one of the 

local portfolios. The smoothing factor X has been set equal to 0 . 9 4  for all 

variance and covariance equations in each bivariate ES system^®. How­

ever, to keep the similarities in the mean equation with the bivariate 

GARCH systems, we modelled the mean equation as an ARMA(0,1) or 

ARMA(1,1) and then estimated the time-varying joint second moments 

on these residuals.

The statistical advantages in modelling the portfolio returns, using the 

GARCH estimates of variances and correlations, can be seen by examin­

ing the distributional properties of the residuals. The normality test on 

the portfolio standardised residuals has a value of 276.33, much lower 

than the value of the test on the unconditional distribution^\ This indi­

cates that the bivariate GARCH volatility estimates have removed most 

of the excess kurtosis from the data.

® The univariate ES, described in chapter two, can be expanded to a 
bivariate version to model the joint second moments of two return 
series.
The decision to keep the same value of X across all variance and 
covariance equations has been made because we want to keep compu­
tation efforts to minimum. The value of 0.94 is recommended by JP 
Morgan and is widely accepted by the industry (see Riskmetricks 
(1995) p 80. When X is allowed to take different values in each 
equation then optimal values can be found by maximising a likeli­
hood function. This method however is equally intensive as the 
multivariate GARCH but is less accurate since it imposes a zero 
mean process and a restrictive GARCH process.

11 We have used the residuals from an ARMA(0,1) fitted on the port­
folio returns.

1 0 2



We compared the DEaR estimates on the theoretical portfolio from our 

bivariate GARCH model against the realised daily losses and profits 

over the ten year period. This is illustrated in figure 3.2 where +DEaR 

and -DEaR form a confidence cone in which 98% of the daily profits and 

losses are expected to lie.

F i g  3 . 2 P o r t f o l i o  DEAR

0 .10
0 .0 5

0.00

- 0 . 0 5

- 0 . 1 0  -

based on bivariate GARCH volatilities

- 0 . 1 5
1986 1988 1990 1992 1994

Ideally, we expect to see that 1% of daily profits, which is 25 days out of 

our 1 0  year sample, and the same amount of losses to exceed each of the 

DEaR estimates. The number of portfolio daily profits and losses that 

exceed the DEaR are shown in table 3.13. The last two columns report 

how many times the portfolio's losses, exceed the ES smoothing based 

DEaR. Obviously the GARCH based DEaR underestimates daily profits 

more often than the normal probability predicts. However, in risk man­

agement we are interested in monitoring the downside risk. Upside risk
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(on long positions) is always desirable and we should only be concerned 

for the number of portfolio daily losses that exceed the DEaR threshold. 

As we see, portfolio losses exceed the GARCH based DEaR on 24 days, 

which is almost equal to what the normal distribution predicts. By con­

trast, the portfolio losses are greater than those predicted by the ES in 

only 18 days, which means that the ES overestimates the portfolio's risk.

Table 3.13 Number of time portfolio return exceed DEaR
Bivariate GARCH ES DEaR

DEaR

profits 41 24

losses 26 18

The ability of the bivariate GARCH to calculate portfolio risk can be 

evaluated further by applying the Pagan and Ullah test of (3.3). Table 

3.14 contains the estimates from the regression of the portfolio squared 

residuals against a constant and the bivariate GARCH variance esti­

mates. Clearly there is little power in the portfolio conditional variance 

(as computed from the bivariate GARCH estimates) to predict the port­

folio volatility. Unlike in the local portfolio returns where the GARCH 

variance estimate explains about one third of the squared return varia­

tion, the ^  on the above regression is only 2.58%. Furthermore, the 

GARCH volatility estimates seem to underestimate systematically the 

portfolio variance. The Ljung-Box statistic carried out on the standard­

ised residuals of the hypothetical portfolio returns provides strong evi­

dence that the portfolio conditional variance computed as the quadratic 

product of the bivariate GARCH variances and covariances did not re­

move all the volatility clusters present in the portfolio returns.
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In the same table we report the analogous test carried out for the 

benchmark risk estimate, the ES. Although the ES volatility estimates do 

not show evidence of systematic bias in its ability to explain the squared 

residuals, the Ff is still too small to justify the employment of ES in 

modelling portfolio volatility.

conditional variance a  3 R2 Q(6)-1

GARCH 0.002 2.141 0.0258 154.378
(1.441) (2.725) 0.000

ES 0.000 0.655 0.0514 2.707
(1.542) (1.499) 0.844

^  A X  W A *  f  ---- ------------- --------------------------- .

f i r s t  c o lu n m , t h e  t - s t a t i s t i c s  f o r  t e s t i n g  a = 0 ,  s e c o n d  
c o lu m n  t h e  t - s t a t i s t i c  f o r  t h e  h y p o t h e s i s  p = l .  The Q 
s t a t i s t i c s ,  o f  o r d e r  6 ,  a n d  s i g n i f i c a n c e  l e v e l s  f o r  t h e  
s q u a r e d  s t a n d a r d i s e d  r e s i d u a l s  a r e  i n  t h e  l a s t  c o lu m n .

3.4 Conclusions
The objective of this chapter has been to estimate portfolio VaR using 

conditional time series techniques to model changes in portfolios volatil­

ity over different periods. As we have seen in the earlier chapters, secu­

rity returns do not exhibit constant second moments, and this is one of 

the factors which causes the fat tails observed in the empirical distribu­

tion of security returns. We studied the unconditional empirical distribu­

tion of daily returns on thirteen developed equity portfolios across the 

world over a period of ten years and tested the hypothesis that their 

volatility is constant over different periods. We found that the distribu­

tions of returns on all national market returns we examined are non­

normal. Further investigation revealed that the returns are conditionally
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heteroskedastic which can explain the excess kurtosis. The negative large 

skewnes observed in most markets may be caused by changes in the 

means. Furthermore, we found evidence that the way national equities 

are linked with each other, changes over time.

We used multivariate GARCH to model daily changes in variances and 

covariances of the thirteen national portfolios in our sample. The 

GARCH methodology is ideal for capturing changes in the data volatility 

and for removing most of the excess kurtosis. In contrast to uncondi­

tional methods, such as historical volatility and least squares analysis, 

which restrict variables to be homoskedastic, the GARCH models regard 

homoskedasticity as a special case. We preferred GARCH models over 

other time varying models because they allow the conditional variance to 

be autoregressive, a property known to characterise daily security re- 

turns since the early days of modern finance .

Because the empirical use of multivariate GARCH is restricted to a few 

series at a time we adopted the SIM algorithm to overcome the problem. 

This is a approach that is similar to the multifactor model of King et al. 

(1994) in that it allows for national markets to interdepend through their 

common movement with observable factor(s). Furthermore, the variabil­

ity of these factors, is conditionally modelled as a GARCH(1,1) process 

and that it divides risk to systematic and specific time-varying compo­

nents. Our approach involves first partitioning the variance-covariance 

matrb< into N off-diagonal elements and then capturing the joint dynam­

ics of the second moments of each local equity index with a common in­

dex, i.e. the world market portfolio. Then all possible pair-wise combi-

12 M u l t i v a r i a t e  s t o c h a s t i c  v o l a t i l i t y  may b e  an  a l t e r n a t i v e  m e th o d  
b u t  f o r  r e a s o n s  we m e n t io n  i n  c h a p t e r  tw o  we p r e f e r  t h e  u s e  o f  
m u l t i v a r i a t e  GARCH.
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nations of the N asset returns can be constructed as in Sharpe (1963) and 

the portfolio volatility of current investment holdings be computed as in 

(1.2). In this method the number of unknown parameters grows linearly 

with the number of assets in the portfolio and because each beta is esti­

mated independently from the rest we overcome computational and 

other convergence problems which may arise in a higher order multivari­

ate GARCH. At the same time we can estimate the time-varying vari­

ance-covariance matrix on a large number of series, as long there exists 

an index to which all assets are correlated. Hence, the portfolio's VaR 

was determined by using the magnitudes of past changes in the market 

factor and the sensitivity of each asset in the portfolio to the daily 

changes of the market factor.

The GARCH methodology enabled us to make better use of the infor­

mation set available at each period to estimate portfolios market risk.

The results indicate that most of the excess kurtosis has been removed 

from the data and the distribution of portfolio residual returns is very 

close to normal. The portfolio losses which exceed the DEaR calculated 

upon the GARCH-SIM risk estimates are in line with what the normal 

distribution predicts. However, further tests have shown that the portfo­

lio variance based upon the bivariate GARCH is rather a biased estimate 

of the portfolio daily volatility and has little predictive power to foresee 

any changes in it. One of the reasons for that may be the way we esti­

mated the portfolio's conditional variance-covariance matrix. The break­

down of this matrix into factorised non-linear bivariate systems does not 

guarantee either the orthogonality conditions on the residuals or the 

multivariate properties of the data. In the next chapter we will see how 

this problem may be overcome by simplifying the way portfolio volatility 

is estimated but without sacrificing volatility precision.
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In addition, the GARCH-SIM approach allowed us to estimate both sys­

tematic and specific volatility as time varying. The results suggests areas 

for further study concerning the time path of risk among individual as­

sets or classes of assets. Studying the time structure of risk will signific­

antly help us to understand the dynamics which link volatility waves be­

tween national stock markets and improve volatility timing analysis be­

tween leading local markets. For example, between the US and smaller 

markets. The time-varying modelling of assets' systematic risk should 

also have implications for other investment decisions. For example, in 

portfolio analysis, if the asset returns have time-varying second mo­

ments, the mean/variance trade-off of optimal portfolios is not constant. 

Consequently, the portfolio weights are subject to frequent adjustment 

due to non-synchronous changes in assets' systematic and specific risk 

components. Serious implications may also arise in asset pricing, espe­

cially for those assets, such as options, whose prices are very sensitive to 

risk changes.
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Chapter 4

A  Sim plified Approach to the Conditional 

Estim ation o f Value at R isk (V a R f

Emerging risk-management techniques use VaR to assess the market risk 

of a portfolio. We propose a relatively simple method to estimate VaR to 

reflect conditionally new information about the volatility of securities 

held in a portfolio. While portfolio holdings might aim at diversifying 

risk, this risk is subject to continuous changes. In the previous chapter 

we used a multivariate GARCH methodology to estimate past, current, 

and to predicted future risk levels of our current position. The diagnostic 

tests showed that although the number of portfolio losses which exceed 

a DEaR of 99% probability were similar to what the normal distribution 

says, our estimates of portfolio risk were systematically biased. This can

 ̂The ideas in this chapter are the by-product of joint research 
work with Professor Giovanni Barone-Adesi. The simplified ap­
proach to portfolio VaR (section 4 . 1 . 1 )  is based on the model 
published in the 1996 joint article. This thesis, however, ap­
plies the same methodology to a complete new data set. I would 
like to thank the participants at the 5th annual conference of 
the European Financial Management Association, Innsbruck, 1996 
for helpful comments.
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translate into poor risk management when a lower DEaR threshold is 

used or when risk management is combined with asset allocation.

In this chapter we will use a different approach to estimate portfolio 

VaR. We will show that the use of historical returns of portfolio compo­

nents and current weights can produce accurate estimates of current risk 

for a portfolio of traded securities. Information on the time series prop­

erties of returns of the portfolio components is transformed into a condi­

tional estimate of current portfolio volatility without needing to use 

complex time series procedures. Stress testing and correlation stability 

are discussed in this framework.

The hypothetical portfolio of chapter three (table 3.11) is employed here 

to assess the VaR methodology presented in this chapter. In addition to 

being faster to compute, and more flexible in the econometric specifica­

tion, the results suggest that this "simplified approach" to VaR is supe­

rior to the correlation based model in chapter three.

4.1 A  Simplified Way to Compute the Portfolio’s VaR

In the previous chapters we have seen that the implementation of VaR 

models requires risk estimates for the portfolio holdings. Historical 

volatilities are ill-behaved measures of risk because they presume that 

the statistical moments of the security returns remain constant over dif­

ferent time periods. Conditional multivariate time series techniques are 

more appropriate since they use past information in a more efficient way 

to compute current variances and covariances. One such model which 

fits well with financial data is the multivariate GARCH. Its use, how­

ever, is restricted to a few assets at the time. In chapter three we have
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shown that it is possible to simplify the computation by adopting the 

SIM. However, this method requires the existence of one common factor 

capable of explaining a large part of the assets' variance and leave their 

residual risk being orthogonal. When a portfolio is diversified across a 

wide mix of different types of financial assets, e.g. equities, commodi­

ties, fbced income securities etc., a unique factor with the above proper­

ties may not exist^.

A further limitation with this method arises from the way the variance- 

covariance matrix is partitioned. Unlike the full multivariate GARCH, 

where all variances and covariances are estimated jointly, in the SIM 

multivariate GARCH there is no guarantee that the resulting variance- 

covariance matrbc comes from a NxN multivariate distribution. For ex­

ample the matruc may not be positive definite or may not describe well 

the changes in all covariances. Hence, portfolio variance estimates are 

quite likely to be wrongly estimated. As we have seen in chapter three, 

the SIM-GARCH produces biased risk estimates for portfolios with low 

1 .̂ But is the variance-covariance necessary when portfolio risk needs to 

be estimated? Are there other ways of estimating portfolio volatility? 

This is the issue to be investigated in this chapter.

4.1.1 Our Approach to Conditional VaR

A simple procedure to overcome the difficulties of inferring current port­

folio volatility from past data, is to utilise the knowledge of current port­

folio weights and historical returns of the portfolio components in order 

to construct a hypothetical series of the returns that the portfolio would

 ̂Obviously, a multi-factor model it may be more appropriate but 
this will increase the number of parameters in each GARCH system 
and it will make its use unwieldy.
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have earned if its current weights had been kept constant in the past. Let 

R/ be the Nx1 vector (Ri,/, R2 ,/, ..,Rn./) where Ri.̂  is the return on the \th 

asset over the period (t-l,t) and let W be the Nx1 vector of the portfolio 

weights over the same period. The historical returns of our current port­

folio holdings are given by:

Y, = W'^R, (4.1)

In investment management, if W represents actual investment holdings, 

the series Y can be seen as the historical path of the portfolio returns . 

Following Markowitz (1952, 1956) the portfolio's risk and return trade-off 

can be expressed in terms of the statistical moments of the multivariate 

distribution of the weighted investments as:

BUh = ¿(ŴR) = m (4.2.a)

var(YJ = W ’’£1W = (4.2.b)

where is the unconditional variance-covariance matrix of the returns of 

the N assets.

A simplified way to find the portfolio's risk and return characteristics is 

by estimating the first two moments of Y.

£(Y) = m (4.3.a)

 ̂when W  represents an investment holding under consideration, Y 
describes the behaviour of this hypothetical portfolio over the 
past.
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var(Y) = £[V  - £(Y)]^ = a* (4.3.b)

Hence, if historical returns, are known the portfolios mean and variance 

can be found as in (4.3). This is easier than (4.2.) and still yields identical

results.

The method in (4.3.b) can easily be deployed in risk management to com­

pute the value at risk at any given time t. However, will only charac­

terise current conditional volatility if W has not changed. If positions are 

being modified, the series of past returns, Y, needs to be reconstructed 

and o ,̂ the volatility of the new position, needs to be re-estimated as in 

(4.3.b).

This approach has many advantages. It is simple, easy to compute and 

overcomes the dimensionality and bias problems that arise when the NxN 

covariance matrix is being estimated. On the other hand, the portfolio s 

past returns contain all the necessary information about the dynamics 

that govern aggregate current investment holdings. In this chapter we 

will use this approach to make the best use of this information'^. For ex­

ample, it might be possible to capture the time path of portfolio 

(conditional) volatility using conditional models like GARCH.

4.2 An Empirical Investigation

To illustrate how our procedure can be used in measuring portfolio VaR 

and in order to evaluate its effectiveness, we will use the same hypo-

* Markowitz (1952, 1956) incorporates equation (4.2.b) in the ob­
jective function of his portfolio selection problem because his 
aim was to find the optimal vector of weights W. However if W is 
known a priori then the portfolio's (unconditional) volatility 
can be computed more easily as in (4.3.b).
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thetical portfolio returns constructed in the previous chapter. As has 

been shown, the empirical distribution of this portfolio is characterised 

by excess kurtosis. Further evidence of this is provided by examining 

figure 4.1 where the standardised empirical distribution of this portfolio 

returns is shown.

Fig 4.1 Empirical Distribution of Standardised
Portfolio Returns

The area under the continuos line represents the standardised empirical 

distribution of our hypothetical portfolio^. The dashed line shows the 

shape of the distribution if returns were normally distributed. The values 

on the horizontal axis are far above and below the (3.0,-3.0) range which 

is due to very large daily portfolio gains and losses^.

 ̂Throughout this thesis with the term "empirical distribution" we 
are referring to the Kernel estimators as described in Siverman 
(1986) .

® The statistical moments of the distribution are reported in table 
3.12.
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4.2.1 Modelling Portfolio Volatility
The excess kurtosis in this portfolio is likely to be caused by changes in 

its variance. We can capture these shifts in the variance by employing 

GARCH modelling. For a portfolio diversified across a wide range of as- 

sets, the non-constant volatility hypothesis is an open issue . The LM 

test and the Ljung-Box statistic are employed to test this hypothesis. The 

test statistics with significance levels are reported in table 4.1.

Table 4.1

LM  test(6 ) L iung-B ox  (6)

test statistic 352.84 640.64

p-value (0.00) (0.00)

Both tests are highly significant, indicating that the portfolio's volatility is 

not constant over different days and the squares of the portfolio returns
Q

are serially correlated .

One of the advantages that the model in (4.3) has is that it simplifies the 

econometric modelling on the portfolio variance. Because we only have 

to model a single series of returns we can select a conditional volatility 

model that bests fits the data. As we have seen in chapter two there are 

two families of models, the GARCH and SV, which are particularly 

suited to capturing changes in volatility of financial time series. To 

model the hypothetical portfolio volatility, we use GARCH modelling 

because it offers wide flexibility in the mean and variance specifications

 ̂ In a widely diversified portfolio, which may contain different 
types of assets, the null hypothesis of non-ARCH may not be re­
jected even if each asset follows a GARCH process itself.

® If the null hypothesis had not been rejected, then portfolio 
volatility could be estimated as a constant.
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and its success in modelling conditional volatility has been well docu­

mented in the financial literature. That will also enable us to make a 

comparison between the full variance-covariance model of chapter three 

and the univariate approach of (4.3).

We tested for a number of different GARCH parameterisations and 

found that an asymmetric GARCH(1,1)-ARMA(0,1) specification best fits  ̂

our hypothetical portfolio (see table 3.11). This is defined as :

Y, = Oe^/ + £/ £/ - M  (O.h/) (4.4.a)

h/ = CO + a  {zt-1 + Y)  ̂ + P h/./ (4.4.b)

The parameter estimates reported in table 4.2 are all highly significant, 

confirming that portfolio volatility can be better modelled as condition­

ally heteroskedastic. The coefficient a  that measures the impact of last

period's squared innovation, £, on today's variance is found to be posi-
2

tive and significant; In addition, >0 indicating that the uncon-
1 - a - P

ditional variance is constant.

® A number of different GARCH parameterisations and lag orders have 
been tested. Among these conditional variance parameterisations 
are the GARCH, exponential GARCH, threshold GARCH and GARCH with 
t distribution in the likelihood function. We used a number of 
diagnostic tests, i.e. serial correlation, no further GARCH ef­
fect, significant t-statistics. The final choice for the model in 
(4.4) is the unbiassednes in conditional variance estimates as 
tested by the Pagan-Ullah test of (3.3) and absence of serial 
correlation in the residual returns. Non-parametric estimates of 
conditional mean functions, employed latter, support this assump­
tion.
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Table 4.2_____ Parameter estimates of equation (4.4)
series O 0) a P Y Likelihood

estimate 0.013 1.949 0.086 0.842 -3.393 -8339.79

t-statistic (2.25) (3.15) (6.44) (29.20) (5.31)

Moreover, the constant volatility model, which is the special case of 

a=P=0, can be rejected. The coefficient y that captures any asymmetries 

in volatility that might exist is significant and negative, indicating that 

volatility tends to be higher when the portfolio's values are falling.

4.3 Diagnostics and Stress analysis

Correct model specification requires that diagnostic tests be carried out 

on the fitted residual, 8. Table 4.3 contains estimates of the regression:

2̂ i_ ^
e, =a+bh, (3.3)

with heteroskedasticity-consistent. White (1980), -t statistics given in pa­

rentheses.

Table 4.3_____ Diagnostics on the GARCH residuals
a b Q (6 ) on 8^ Q (6 ) on 8^ JB

statistic -7.054 1.224 0.373 3.72 10.13 468.89

significance (1-73) (1-83) (0.71) (0.12) (000)____

The hypotheses that a=0 and b=1 cannot be rejected at 95% confidence 

level indicating that our GARCH model produces a consistent estimator 

for the portfolio's time-varying variance. The uncentered coefficient of
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determination, in (3.3), which measures the fraction of the total 

variation of everyday returns explained by the estimated conditional 

variance, and has a value 37.3%. Since the portfolio conditional variance 

uses the information set available from the previous day, the above re­

sult indicates that our model, on average, can predict more than one 

third of next day's squared price movement. The next two columns in 

table 4.3 contain the Ljung-box statistic of order six for the residuals and 

squared residuals. Both null hypothesises, for serial correlation and fur­

ther GARCH effect, cannot be rejected indicating that our model has re­

moved the volatility clusters from the portfolio returns and left white 

noise residuals. The last column contains the Jarque-Bera normality test 

on the standardised residuals. Although these residuals still deviate from 

the normal distribution, most of the excess kurtosis has been removed, 

indicating that our model describes the portfolio returns better than the 

historical volatility model.

In figure 4.2 the standardised innovations of portfolio returns are shown. 

The upper and lower horizontal lines represent the 2.33 standard devia­

tions (0.01 probability) threshold. We can see that returns are moving 

randomly net of any volatility clusters. Figure 4.3 shows the kernel dis­

tribution of these standardised innovations against the normal distribu­

tion. It is apparent that the distribution of these scaled innovations is 

rather non-normal with values reaching up to fourteen standard devia­

tions. However, when the outliers to the left, (which reflect the large 

losses during the 1987 crash), are omitted, the empirical distribution of 

the portfolio residual returns matches that of a Gaussian.
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Fig 4.2 Portfolio Stress Analysis
(standardised conditional residuals)
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These results substantiate the superiority of the volatility model in (4.4) 

in monitoring portfolio risk. Our model captures all volatility clusters 

present in the portfolio returns, removes a large part of the excess kur- 

tosis and leaves residuals approximately normal. Furthermore, our 

method for estimating portfolio volatility using only one series of past 

returns is much faster to compute than the variance-covariance method 

and provides unbiased volatility estimates with higher explanatory 

power.

4.4 Correlation Stability and Diversification Benefits

Conditional VaR models which use the quadratic equation {1.2) to update 

portfolio volatility, e.g. RiskMetrics (1995), need first to estimate all the 

possible pair-wise covariances. In a widely diversified portfolio, e.g. con­

taining 100 assets, there are 4950 conditional covariances and 100 vari­

ances to be estimated. Furthermore, any model used to update the co- 

variances must keep the multivariate features of the joint distribution. 

With a large matrix like that, and is unlikely to get unbiased estimates 

for all 4950 covariances and at the same time guarantee that the joint 

multivariate distribution still holds. Obviously, errors in covariances as 

well as in variances will affect the accuracy of our portfolio's VaR esti­

mate and will lead to wrong risk management decisions. Our approach

10 The Pagan-Ullah (1988) test can also be applied to measure the 
goodness of fit of a conditional covariance model. This stands on 
regressing the cross product of the two residual series against a 
constant and the covariance estimates. The unbiasedness hypothe­
sis requires the constant to be zero and the slope to be one. The 
uncentered coefficient of determination of the regression tells 
us the forecasting power of the model. Unfortunately, even with 
daily observations, for most financial time series the coeffi­
cient of determination tends to be very low, pointing to the 
great difficulty of getting good covariance estimates.
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estimates conditionally the volatility of only one univariate time series, 

the portfolio's historical returns, and so overcomes all of the above 

problems. Furthermore, since it does not require the estimation of the 

variance-covariance matrix, it can be easily computed and can handle an 

unlimited number of assets. On the other hand it takes into account all 

changes in assets' variances and covariances.

Another appealing property of our approach is to disclose the impact 

that the overall changes in correlations have on portfolio volatility. It can 

tell us what proportion an increase/decrease in the portfolio's VaR is due 

to changes in asset variances or correlations. We will refer to this as cor­

relation stability.

It is known that each correlation coefficient is subject to changes at any 

time. Nevertheless, changes across the correlation matrix may not be cor­

related and their impact on the overall portfolio risk may be diminished. 

Our conditional VaR approach allows to attribute any changes in the 

portfolio's conditional volatility to two main components; changes in as­

set volatilities and changes in asset correlations. If ht is the portfolio's 

conditional variance, as estimated in (4.2), its time-varying volatility is 

cy,= . This is the volatility estimate of a diversified portfolio at period

t. By setting all pair-wise correlation coefficients in each period equal to 

1.0, the portfolio's volatility becomes the weighted volatility of its asset 

components. Conditional volatilities of the individual asset components 

can be obtained by fitting a GARCH type model for each return series. 

We denote the volatility of this undiversified portfolio as St. The quantity

tells us what proportion of portfolio volatility has been diversi­

fied away because of non perfect correlations. If that quantity does not
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change significantly over time, then the weighted overall effect of time- 

varying correlations is invariant and we have correlation stability. The 

correlation stability shown in figure 4.4 can be used to measure the risk 

manager's ability to diversify portfolio's risk. On a well diversified

(constantly weighted) portfolio, the quantity should be invariant

over different periods. Barone-Adesi and Giannopoulos (1996) have 

shown that a portfolio invested only in bonds is subject to greater corre­

lation risk than a portfolio containing commodities and equities, because 

of the tendency of bonds to fall in step in the presence of large market 

moves.

Fig 4.4 Portfolio Correlation Stability

1 . 0 0
volatility ratio (diversified vs non-diversified)

0 . 5 0

0 . 7 5

0 . 2 5

0 .0 0
86 88 90 92 94

The "weighted" effect of changes in correlations can also be shown by 

observing the diversified against the undiversified portfolio risk. Figure
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4.5 illustrates how the daily annualised standard deviation of our hypo­

thetical portfolio behaves over the tested period. The upper line shows 

the volatility of an undiversified portfolio; this is the volatility the same 

portfolio would have if all pair-wise correlation coefficients of the assets 

invested were 1.0 at all times. The undiversified portfolio's volatility is 

simply the weighted average of the conditional volatilities of each asset 

included in the portfolio. Risk managers who rely on the average stan­

dard historical risk measures will be surprised by the extreme values of 

volatility a portfolio may produce in a crash. Our conditional volatility 

estimates provide early warnings about this risk increase and therefore 

are a useful supplement to existing risk management systems.

Fig 4.5 Portfolio Conditional Volatility
diversified vs non-diversified

Descriptive statistics for diversified and undiversified portfolio risk are 

reported in table 4.4. These range of volatility are those that would have
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been observed had the portfolio weights been effective over the whole 

sample period. Due to the diversification of risk, the portfolio's volatility 

is reduced by an average of 40%“ . During the highly volatile period of 

the 1987 crash, the risk is reduced by a quarter.

Table 4.4 Portfolio risk statistic

portfolio risk minimum maximum mean

Diversified 0.0644 0.2134 0.0962

undiversified 0.01192 0.2978 0.1632

4.5 Portfolio VaR and "Worst Case" Scenario

4.5.1 Portfolio VaR
Using the hypothetical portfolio of the previous chapter, the volatility 

during the last trading day of 1995 (29 December) estimated by the 

GARCH model of (4.4) was 7.7063% p.a. Using this estimate in (1.1) the 

portfolio's DEaR for that day is 2.85% of its value. By substituting the 

above volatility estimate in (1.3), the portfolio VaR over the next few 

trading days can be estimated. However, the VaR estimate in (1.3) as­

sumes that the volatility will remain invariant during the period over 

which the VaR is estimated. But volatility prevailing at the end of 1995 

was very low indeed; below historical average and about one third of the 

peak levels observed during the crash and Iraqi invasion of Kuwait. One 

major advantage that our methodology has is that it forecasts portfolio

“ That is the average volatility of a diversified over the average 
of an undiversified portfolio.
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volatility recursively upon the previous day's volatility. Then it uses 

these volatility forecasts to calculate the VaR over the next days. Below, 

we discuss how this method is implemented.

By substituting the last day's residual return and variance in {4.4.b) we 

can estimate the portfolio's volatility for day t+1 and by taking the expec­

tation, we can estimate recursively the forecast for longer periods. 

Hence, portfolio volatility forecast over the next 10 days is

h /w =  co-H a  {£/-*- 7)̂  + P h/ if i= 1 (4.5.a)

huiA  = CO a7̂  (a+P)h/w-w if i >1 (4.5.b)

Therefore, when portfolio volatility is below average levels, the forecast 

values will be rising^ .̂ The portfolio VaR that will be calculated on these 

forecasts will be more realistic about possible future losses.

Figure 4.6 shows our hypothetical portfolio's VaR for 10 periods of 

length between one and 10 days. The portfolio VaR is estimated at the 

close business on 29 December 1995. To estimate the VaR we obtain 

volatility forecasts for each of the next business days, as in (4.5). The 

DEaR is 1.104% while the 10 days VaR is 3.62%.

The forecast of the portfolio variance converges to a con­
stant, (co+aŷ ) / (1-a-P) , which is also the mean of the portfolio’s 
conditional volatility.
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Fig 4.6 Portfolio VAR
1 0 0 . 0

9 7 . 5  -

9 5 . 0  -

9 2 . 5  -

9 0 . 0
10  11 12

VAR at .99

4.5.2 Worst Case Scenario
VaR measures the market risk of a portfolio in terms of the frequency 

that a specific loss will be exceeded. In risk management, however, it is 

important to know the size of the loss rather than the number of times 

the losses will exceed a pre-defined threshold. The type of analysis 

which tells us the worst that can happen to a portfolio's value over a 

given period is known as the "worst-case scenario" (WCS). Hence, the 

WCS is concerned with the prediction of uncommon events which by 

definition are bound to happen. The WCS will answer the question, how 

badly will it hit?
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For a VaR model, the probability of exceeding a loss at the end of a short 

period, is a function of the last day's volatility and the square root of 

time (assuming no serial correlation). Here, however, the issue of fat 

tails arises. It is unlikely, that there exists a volatility model that predicts 

the likelihood and size of extreme price moves. For example, in this 

study we observed that the GARCH model removes most of the kurto- 

sis but still leaves residuals equal to several standard deviations. Given 

that extreme events, such as the 1987 crash, have a realistic probability 

of occurring again at any time, any reliable risk management system 

must account for them.

The W CS is commonly calculated by using structured Monte-Carlo 

simulation (SMC)^ .̂ This method aims to simulate the volatilities and 

correlations of all assets in the portfolio by using a series of random 

draws of the factor shocks (£t+i). At each simulation run, the value of the 

portfolio is projected over the VaR period. By repeating the process sev­

eral thousand times, the portfolio returns density function is found and 

the W CS is calculated as the loss that corresponds to a very small prob­

ability under that area. There are three major weaknesses with this 

analysis. Firstly, there is a dimensionality problem which also translates 

to computation time. To overcome this, RiskMetrics (1995, p 98) pro­

poses to simplify the calculation of the correlation matrix by using a kind 

of factorisation. However, as will see in the next chapter, factorisation is 

sensitive to the ordering of the series when estimating the variance- 

covariance matrix^ .̂ Secondly, the SMC method relies on a (time invari-

For a discussion of the SMC see Riskmetrics (1995). For a dis­
cussion of other Monte Carlo Methods and their use in VaR see 
Pritsker (1996) (grid Monte Carlo) and Owen and Tavela (1997) 
(quasi Monte Carlo).

14 Changing that order will affect the simulation results.
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ant) correlation structure of the data. But as we have seen, security co- 

variances are changing over different periods and the betas tend to be 

higher during volatile periods like that of the 1987 crash. Hence, correla­

tions in the extremes are higher and the WCS will underestimate the 

risk. Finally, the use of a correlation matrix requires returns in the 

Monte-Carlo method to follow an arbitrary distribution. In practice the 

empirical histogram of returns is "smoothed" to fit a known distribution. 

However, the WCS is highly dependent on a good prediction of un­

common events, or catastrophic risk and the smoothing of the data leads 

to a cover up of extreme events, thereby neutralising the catastrophic 

risk.

Univariate Monte Carlo methods can be employed to simulate directly 

various sample paths of the value of the current portfolio holdings. 

Hence, once a stochastic process for the portfolio returns is specified, a 

set of random numbers, which conform to a known distribution that 

matches the empirical distribution of portfolio returns, are added to form 

various sample paths of portfolio return. The portfolio VaR is then esti­

mated from the corresponding density function. Nevertheless, this 

method is still exposed to a major weakness. The probability density of 

portfolio residual returns is assumed to be known^^.

In this study, to further the acceptance of the VaR methodology, we will 

assess its reliability under conditions likely to be uncorrelated in financial 

markets. The logical method to investigate this issue is through the use 

of historical simulation. Historical simulation relies on a uniform distri-

A second limitation arises if the (stochastic) model that de­
scribes portfolio returns restricts portfolio variance to be con­
stant over time.
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bution to select innovations from the past^ .̂ These innovations are ap­

plied to current asset prices to simulate their future evolution. Once a 

sufficient number of different paths has been explored, it is possible to 

determine a portfolio VaR without making arbitrary distributional as­

sumptions. This is especially useful in the presence of abnormally large 

portfolio returns.

To make historical simulation consistent with the clustering of large re­

turns, we will employ the GARCH volatility estimates of (4.4) to scale 

randomly selected past portfolio residual returns. First, the past daily 

portfolio residual returns are divided by the corresponding GARCH 

volatility estimates to obtain standardised residuals. Hence, the residual 

returns used in the historical simulation are i.i.d. which ensures that the 

portfolio simulated returns will not be biased. A simulated portfolio re­

turn for tomorrow is obtained by multiplying randomly selected stan­

dardised residuals by the GARCH volatility to forecast the next day's 

volatility. This simulated return is then used to update the GARCH fore­

cast for the following days, that is it as multiplied by a newly selected 

standardised residual to simulate the return for the second day. This re­

cursive procedure is repeated until the VaR horizon {i.e. 10 days) is 

reached, generating a sample path of portfolio volatilities and returns. A 

batch of 10 thousand sample paths of portfolio returns is computed and 

a confidence band for the portfolio return is built by taking the first and 

the ninety-ninth percentile of the frequency distribution of returns at 

each time. The lower percentile identifies the VaR over the next 10 

days.

Historical simulation is better known as bootstrapping simula­
tion. For a detailed discussion about this simulation technique 
see Efron and Tibshirani (1993).
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To illustrate our methodology we use the standardised conditional re­

siduals for our portfolio over the entire 1986-1995 period as shown in fig

4.2. We then construct interactively the daily portfolio volatility that 

these returns imply according to (4.4). We use this volatility to re-scale 

our returns. The resulting returns reflect current market conditions rather 

than historical conditions associated with the returns in figure 4.1.

To obtain the distribution of our portfolio returns we replicated the 

above procedure 10,000 times. The resulting -normalised- distribution is 

shown in figure 4.7. The normal distribution is shown in the same figure 

for comparison.

Fig 4.7: Normalized Estimated Distribution o f  Returns in 10 days 
versus the normal density (10,000 Simulations)
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Not surprisingly, simulated returns on our well-diversified portfolio are 

almost normal, except for their steeper peaking around zero and some 

clustering in the tails. The general shape of the distribution supports the 

validity of the usual measure of VaR for our portfolio. However, a 

closer examination of our simulation results shows how even our well- 

diversified portfolio may depart from normality under worst case scenar­

ios. There are in fact several occurrences of very large negative returns, 

reaching a maximum loss of 7.22%. Our empirical distribution implies 

(under the W CS) losses of at least 3.28% and 2.24% at confidence levels 

of 1% and 5% respectively^^.

0 .027 0 . 0 4 5 0 . 06 3 0 .0 8 1

Note that the empirical distribution has asymmetric tails and is 
kurtotic. Our methodology ensures that the degree of asymmetry is 
consistent with the statistical properties of portfolio returns 
over time.
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The reason for this departure is the changing portfolio volatility and thus 

portfolio VaR, shown in figure 4.8. Portfolio VaR over the next 10 days 

depends on the random returns selected in each simulation run. Its pat­

tern is skewed to the right, showing how large returns tend to cluster in 

time. These clusters provide realistic WCS consistent with historical ex­

perience. Of course our methodology may produce more extreme depar­

tures from normality for less diversified portfolios.

4.6 Conclusions
While portfolio holdings aim at diversifying risk, this risk is subject to 

continuous changes. The GARCH methodology allows us to estimate 

past and current and predicted future risk levels of our current position. 

However, the correlation based VaR, which employed GARCH variance 

and covariance estimates, failed the diagnostic tests badly. The VaR 

model used in this chapter is a combination of historical-simulation and 

GARCH volatility. It only relies on historical data for securities prices but 

applies the most current portfolio positions to historical returns. The use 

of historical returns of portfolio components and current weights can 

produce accurate estimates of current risk for a portfolio of traded secu­

rities. Information on the time series properties of returns of the portfo­

lio components is transformed into a conditional estimate of the current 

portfolio volatility with no need for using complex multivariate time se­

ries procedures. Our approach leads to a simple formulation of stress 

analysis and correlation risk.

There are three useful products of our methodology. The first one is a 

simple and accurate measure for the volatility of the current portfolio 

from which an accurate assessment of current risk can be made. This is
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achieved without using computationally intensive multivariate method­

ologies. The second is the possibility of comparing a series of volatility 

patterns similar to figures 4.5 with the historical volatility pattern of the 

actual portfolio with its changing weights. This comparison allows for an 

evaluation of the managers' ability to "time" volatility. Timing volatility 

is an important component of performance, especially if expected secu­

rity returns are not positively related to current volatility levels. Finally, 

the possibility of using the GARCH residuals on the current portfolio 

weights allows for the implementation of meaningful stress testing pro­

cedures. Stress testing and the evaluation of correlation risk are impor­

tant criteria in risk management models.

To test our simplified approach to VaR we employed the same hypo­

thetical portfolio used in chapter three. We fitted an asymmetric GARCH 

on the portfolio returns and we forecasted portfolio volatility and VaR. 

The results indicate that this approach to estimating VaR is superior to 

the correlation based model used in the previous chapter. This is implied 

by the GARCH model yielding unbiased estimators for the portfolio 

conditional variance. Furthermore, this conditional variance estimate can 

now predict, on average, one third of the next day's square price move­

ment.

We then applied the concept of correlation stability which we argue is a 

very useful tool in risk management in that it measures the proportion of 

an increase or decrease in the portfolio VaR caused by changes in asset 

correlations. In comparing the conditional volatility of our diversified 

and undiversified hypothetical portfolio, the effects of changes in corre­

lations can be highlighted. While we found that the volatility of the di­

versified portfolio is lower than the undiversified portfolio, the use of 

correlation stability has the useful property of acting as an early warning
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to risk managers in relation to the effects of a negative shock, such as 

that of a stock market crash, on the riskiness of our portfolio. This is ap­

pealing to practitioners because it can be used to determine the ability of 

risk managers to diversify portfolio risk. Correlation stability is appealing 

to practitioners because it can be used, both in working with the portfo­

lio selection and assessing the ability of risk managers to diversify port­

folio risk.

Thereafter, we show how "Worst Case" scenarios (W CS) for stress 

analysis may be constructed by applying the largest outliers in the inno­

vation series to the current GARCH parameters. While the VaR esti­

mated previously considers the market risk of a portfolio in relation to 

the frequency that a specific loss will be exceeded, it does not determine 

the size of the loss. Our exercise simulates the effect of the largest his­

torical shock on current market conditions and evaluates the likelihood 

of a given loss occurring over the VaR horizon.

In conclusion, our simulation methodology allows for a fast evaluation of 

VaR and W CS for large portfolios. It takes into account current market 

conditions and does not rely on the knowledge of the correlation matrix 

of security returns.
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Chapters

The D ynam ic M echanism s of Voiatiiity Transm is­
sion A m ong Nationai Stock M arkets

In chapter three we have shown that both the systematic and specific 

volatility on national equity markets changes each day. The changes in 

conditional betas among national markets neither seems to be independ­

ent or to occur simultaneously. The existence of any dependency in the 

way conditional betas across different markets are changing can be seen 

as market interdependency. The dynamic mechanisms of volatility 

transmission across markets is the subject of this chapter. These mecha­

nisms affect VaR measurements by introducing time-varying, possibly 

asynchronous components of portfolio volatility that are ignored in the 

original static framework of portfolio theory. In this framework, VaR 

measurements will depend on the recent history of other markets. A 

benchmark for the empirical relevance of this problem may be obtained 

from the error variance decomposition technique. If the recent history of 

other variables explains a large portion of portfolio variance over the
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portfolio horizon, these conditioning variables need to be included if an 

accurate measure of risk is desired. The resulting augmented model is 

Markovian and produces VaR estimates conditional on recent history. 

The ability to obtain estimates of volatility as transmitted across markets 

with a lag provide us with a warning to close down positions and reduce 

the VaR. We investigate the need for such an extension across six na­

tional equity markets. Our results suggest that, in most cases, only the 

first lagged return of a foreign market, mostly the US market, contrib­

utes to the volatility of our tested portfolio.

5.1 Previous Work on Interlinks Among Equity Markets

Since the early seventies numerous studies have examined the interde­

pendence among national stock markets, e.g. Granger and Morgensten 

(1970), Grubel and Fadner (1971), Hilliard (1979). Although these studies 

used a variety of statistical methods to support their conclusions they all 

agreed on one fact, price movement interdependence in international 

portfolios is much smaller than in domestic portfolios. The objective of 

most of these studies is to provide evidence for benefits arising from di­

versifying internationally. Therefore, they focused their analysis on the 

correlation matrix of a set of national equity indices. However, they used 

unconditional second moments of returns and the correlation coefficients 

were restricted to be constant over the estimation period. Consequently, 

any conclusion they made regarding national market interdependence 

was conditional on this assumption. Other studies investigated the 

mechanisms through which price movements are transmitted from one 

market to the other. This issue has been of major interest since the crash 

of October 1987. Many investors and academics have observed that eq-
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uity price movements around the globe are linked via short run depend­

encies, Roll (1989), Eun and Shim (1989), Von Furstenberg and Jeon 
(1989).

Eun and Shim (1989) searched for links across nine major national equity 

markets using the vector autoregressive analysis of Sims (1980), where 

they investigated the mechanisms for transmitting price movements from 

one national market to the rest. They used daily prices in local currencies 

covering the period 31 December 1979 till 20 December 1985. They ar­

gued that impulse response analysis and variance decomposition, part of 

the vector autoregressive methodology, are ideal for answering questions 

such as "how much movement in one stock market can be explained by 

innovations in other markets?", or "how rapidly are the price move­

ments in one market transmitted to other markets?", (see Eun and Shim 

1989 p. 242). Eun and Shim, among others, report that "innovations in 

the United States are rapidly transmitted to the other markets in a clearly 

recognisable fashion, whereas no single foreign market can significantly 

explain the US market movements", (p. 241).

In another study. Von Furstenberg and Jeon (1989) employed vector au­

toregressive models and principal components analysis to investigate the 

links between daily price changes among four markets; Japan, Germany, 

Great Britain and United States. They split the sample into 1987 pre­

crash and post-crash periods. The pre-crash sample covered the period 

from January 7 (6 for Japan) 1986 to October 14 (13) 1987, a total of 462 

observations. The post-crash period sample covered the period Novem­

ber 22 (21 for Japan) 1987 to November 24 (23) 1988. Thus, the few days 

prior and after the crash were considered to be outliers and excluded 

from both samples. They found that the correlations among those mar­

kets increased substantially after October 1987. This is not surprising
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since the after-crash period was characterised by high volatility and the 

data sample was relatively short, less than a year. As we have seen in 

chapter three, during highly volatile periods, and in particular during the 

1987 crash, both national betas and the proportion of the systematic risk 

tend to increase.

The findings of Von Furstenberg and Jeon (1989) and Eun and Shim 

(1989) have two additional weaknesses. First, they did not recognise that 

national market movements might be linked via their variances and co- 

variances as well as linked through their means. Being linked by their 

second moments implies that markets do not necessarily have to react 

always in the same direction to "news" from a leading market. For ex­

ample a drop in US prices might sometimes be followed by a fall and at 

other times by a rise on the far east markets. Secondly, they did not rec­

ognise that national market interdependence may not be constant over 

time. By contrast, if markets are linked through their second moments 

and if those moments are time-varying, as we have shown in the 

GARCH methodology in chapter three, then there might be reasons to 

believe that this market dependence may vary as well. This might ex­

plain why during, and immediately after, the crash of 1987 the correla­

tion coefficients increased well above historical levels. Moreover, by 

treating the volatilities as time series, it will be possible to reveal any 

existing non-synchronous patterns in the way shocks are transmitted 

among markets. This can help in developing various market timing 

strategies for trading or hedging purposes. Clearly, historical models will 

fail to recognise these changes in volatility levels and capture any asyn­

chronies that might occur.

Hammao et al. (1990) were the first to investigate the transmission 

mechanisms in volatilities across international stock markets. Using daily
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stock returns for Japanese, UK and US equities measured from close-to- 

open and open-to-close, they examined how volatility surprises in one 

market affect the other two. They used a GARCH parameterisation 

which allows the current volatility of a single market to depend upon the 

volatility surprises of the previously open foreign market. They found 

that the spillover effects from the US and UK stock markets to the Japa­

nese market are significant. However, the spillover effects on the UK 

and US markets are not. The major weaknesses in their analysis was 

their focus on short run dependencies only. They failed to answer ques­

tions like what are the longer run implications for other markets after a 

volatility surprise in one market.

Chan et al. (1991) investigated the intraday volatility transmission 

among the S&P 500 stock index returns and the S&P500 stock index fu­

tures returns. By using five minute return data for the two series they 

estimated the conditional volatility of each index as a bivariate AR(1)- 

GARCH(1,3) process with constant correlation. They then employed im­

pulse response analysis between the squared error of one market (origin 

of a shock) and the conditional volatility of the other in order to search 

for lagged volatility spillovers. They concluded that there is a strong 

dependence in both directions in the volatility of returns between the 

cash and futures markets. Previous studies found evidence that "news" 

disseminates in the futures market before the cash market. Chan et al. 

found that "news" disseminates in both futures and cash markets. How­

ever, earlier studies have distinguished between "good" and "bad" 

news, while Chan et al. treat both types of news as equal.

In another study, Karolyi (1995), employed a combination of vector au­

toregressive and bivariate GARCH techniques to investigate how inno­

vations are transmitted from US to Canadian markets and vice-versa. He
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specified the two return equations as vector autoregressive processes 

which allow for lagged innovations in one market to have an impact on 

its own as well as on those of the other markets' conditional mean and 

variance. The forecast errors was modelled as a bivariate GARCH proc­

ess, similar to that of (2.16). Hence, the vector autoregressive innovations 

are purified from volatility clusters and lagged return spillovers. He then 

employed impulse response analysis on these standardised residuals to 

simulate the way innovations are transmitted from the US to Canada and 

vice-versa. Nevertheless, this study investigated market transmission of 

"news" through the means rather than through the variance of returns. 

Furthermore, no confidence bands were shown so any market interde­

pendence studied was lacking appropriate statistical tests. In addition 

Karolyi's study suffers from a restrictive parameterisation that he im­

posed on the GARCH process\

Most of the previous work has searched for linkages across different na­

tional markets by examining changes in price levels. This study will fol­

low the same line of investigation as Hamao et al. (1990) by searching for 

market interdependencies in their conditional second moments. How­

ever, we will investigate volatility transmission mechanisms over a larger 

number of equity markets, six. Further, this study differs from others in 

two further aspects. Firstly, price interdependence will be investigated 

via each market's systematic risk rather the overall volatility. Secondly, 

confidence bands will be computed for each impulse response function.

We believe that it is very important to distinguish between systematic 

and specific volatility, since stocks (national markets) are inter-linked 

only through the systematic counterpart of their risk, Sharpe (1963). The

1 The conditional variance-covariance matrix was specified as in 
Baba et al. (1990) (BEKK).
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specific counterpart is due to idiosyncratic (domestic) factors affecting a 

particular stock only (national market) and has nothing in common with 

the volatility governing other stocks (national markets). Focusing the 

analysis on markets' common risk is both consistent with finance theory 

and is expected to strengthen the significance of the results.

5.2 Methodology

This study will search for national market interdependencies in the 

changes of their time-varying betas against the world index. The vector 

autoregressive methodology will be employed both to examine depend­

encies in beta changes and to simulate the way a local market's beta will 

respond when a shock to another markets' beta occurs^. The vector au­

toregressive methodology is ideal for studying the "impulse response 

function" of the conditional betas. The "forecast error variance decom­

position" of a unit increase in a local market's beta will disclose to what 

extent this is due to innovations in each of the other markets. The vari­

ables used in the vector autoregressive model are the six series of time- 

varying betas computed in chapter three with the bivariate GARCH sys­
tem.

This study intends to address, and seeks an answer to a number of 

questions with regard to the mechanisms that govern volatility spillovers 

between national markets. In addition, it will demonstrate the use of the 

impulse response analysis and variance decomposition as valuable tools 

for studying market timing. This will enable us to foresee how markets 

might behave after a major shock has occurred in one of them. It will

2 An increase (decrease) in a local market's beta is synonymous 
with an increase (decrease) in this market systematic risk.
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also help us to identify which national markets are active leaders and 

which one are followers when there are strong cross border price move­

ments. Monte Carlo simulation will be used to appraise the significance 

of the results.

5.2.1 The Vector Autoregressive Analysis

To explore the dynamic impact on the current level of a market's beta of 

past changes in its own and other betas, it is necessary to set-up a sys­

tem of simultaneous equations with at least as many equations as de­

pendent variables. Considering the complicated nature of national mar­

kets' interrelationships it will almost be impossible to specify a large 

scale structural model. Hence, the vector autoregressive analysis is an 

ideal tool for this case. It estimates a dynamic simultaneous equation 

system without imposing any restrictions on the structure of the rela­

tionships among the variables. Hence, "..the VAR (vector autoregres­

sive) model can be seen as a flexible approximation to the reduced form 

of the correctly specified but unknown model of the actual variable struc­

ture".., (Eun and Shim (1989) p. 242). Another great advantage of vector 

autoregressive models is the flexibility they offer for policy simulation. 

Once the vector autoregressive system has been estimated, the moving 

average representation can be used both to calculate the impulse re­

sponse function and to forecast variance decomposition. The first can be 

used to simulate the dynamic responses of a national market's beta to 

innovations in the beta of some other market while the latter can be used 

to measure the relative importance of each market in generating unex­

pected variations in other markets' (systematic) volatility. Hence, the 

vector autoregressive analysis has many appealing properties for investi­

gating the dynamic links between national markets.
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To model a N variable system, an unrestricted vector autoregressive 

parameterisation will be employed here. The vector autoregressive model 

is formulated as:

Y, = K + AiYr-; + A2̂ t-2 + •• + AsYr-5 + 6r (5.1)

where is a Nx1 column vector of weekly conditional betas for each of 

the thirteen markets, K is Nx1 vector of intercept coefficients, Ai,..,As 

are NxN matrices of coefficients, s is the system's order, and ê  is a 

Nx1 column vector of forecast errors of the using all past Yg. Hence, 

on the left hand side of each equation there is a time series variable with 

a local market's sensitivity to the world factor while on the right hand 

side there are its own and the other markets' past sensitivity values. The 

right hand side of each equation contains the same terms. The i]th ele­

ment of As measures the impact that a change in the beta risk to the \th 

market would have on the ith market in s periods. A positive (negative) 

but statistically significant coefficient implies that ]th market's volatility 

is expected to increase (decrease) as a result of a rise in the ith  market's 

beta occurring S periods earlier. Thus, the column Ai,s expresses the 

direction and magnitude of lagged volatility spillovers that originate 

from the ith  market s weeks before and go towards the vector of markets 

Y.

The model in (5.1) is often referred to as the unrestricted vector autore­

gressive model since it allows all the variables in the system to interact 

linearly with their own and other variables' past values and it uses only 

historical values to forecast the quantitative effect that each variable has 

on its own and the other variables values. Because each variable is a 

function of lagged values of all other variables, this vector autoregression
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can be seen as a general dynamic specification. The unrestricted vector 

autoregression of (5.1) is estimated by ordinary least squares (OLS); Zell- 

ner (1962) proved that OLS estimates of such a system are consistent and 

efficient if each equation has exactly the same set of explanatory vari­

ables.

Provided that the process is stable, (5.1) can be written as a vector mov­

ing average (VMA) process:

Y,= E(Y)+ e„ (5.2)
i = 0

where the ith element of the Nx1 vector Y represents the ith national 

market's systematic volatility at period t as a linear least squares pro­

jection on the past periods' systematic volatility of all markets on the 

system; ê -s is a Nx1 vector with unexpected changes in those volatilities 

at period t-s and, <I>s is a NxN symmetric matrix (variance-covariance) 

with the sensitivity coefficients to the unexpected innovations on ê s• 

The matrix Os can be interpreted as

axt+s _ . (5.3)
de.

that is, the i]th element of Os measures the sensitivity of the ith mar­

ket's beta value at time t+s to a one unit shock in the ]th market's 

beta, (ej,/)/ af time t, holding all other betas in the system constant. A 

numerical simulation of (5.3) will provide us with an understanding of
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how the rest of the markets react to a shock in the ith  market's common 

volatility.

One way of exploring the dynamics governing volatility spillovers is by 

simulation. This is done by setting ej,i = l  and Gj.t = 0 for \^\, as well as 

Y fi = Y/-2  = ..= Yt-s = 0- This is repeated for j=l,..,n to obtain the reali­

sations of the O matrix for the s periods. Thus, a sequence of s realisa­

tions is obtained for the ij th element of O. This is called the impulse- 

response function or dynamic multiplier of the j th beta. The impulse 

response function describes response of the ith beta to a single impulse 

(shock) in the j th (at time t) beta with all others dated at time t or earlier 

held constant. In other words, Oji,s represents the reaction of the j th 

market's systematic risk to a unit shock in the ith systematic risk s peri­

ods ago, provided of course the effect is not contaminated by shocks in 

any other market's risk (common or domestic) included in the vector au­

toregressive system.

5.2.2 Orthogonalised Shocks

To isolate the impact that innovations in one national market have in the 

vector autoregressive system from innovations in any other market, it is 

necessary for ^  to be a diagonal matrix, i.e. the innovation

processes contained in et should be orthogonal to each other. Although 

the vector elements of et are serially uncorrelated by construction, there 

is no guarantee that the contemporaneous components will be uncorre­

lated as well. It is however possible to transform the ê  into a new vector 

U/with .£(Ui,/Uj,/)=0, for î ĵ.

One popular method of transforming the variance-covariance matrbc of 

the vector autoregressive residuals into a vector of orthogonal innova-
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tions, Ut, is to use the Choleski factorisation. This consists in finding a 

NxN lower triangular nnatrix V that satisfies:

u=V^ e and VV^ = Í2

or V = I (5.4)

where I is the identity matrix. By replacing et with UtV and after omitting 

the mean term .^Y), equation (5.2) can be rewritten as

Y ,=  £ l > ,  V u « (5.5)
i= 0

By defining Qs=Os V (5.5) can be written as

Y r -  ]¿Qs Llf-5 (5.6)
s=0

The mean term, BiY), is dropped since it is of no interest in the simula­

tion process^. The elements of the NxN matrix Qs can be used to generate 

the effect of a shock in ei at period s=0 on the entire time paths of the 

vector of variables Y. Hence, the elements of Qs are impact multipliers. 

The sequence Qs from s=0,l,2.., shows the dynamic responses of Ŷ  to 

unit shocks in û =s- The i]th element of Qs is the impulse response of the 

]th national market's betas to a shock of one standard deviation in the

3 Every variable Yc in the system has two components, its best lin­
ear preiiictor based on past values of all variables and an inno­
vation term We are interested in simulating how Yt will react 
to unpredictable changes of any other variable where those unpre­
dictable changes are expressed by et.
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\th beta occurring S periods before. If the variables in Y are stationary 

then the impulse responses should tend toward zero as s becomes large.

Therefore, it is possible to trace the likely response in each of the six 

markets' systematic volatility to the innovations in the beta in one mar­

ket alone. This can provide insights in how common volatility originat­

ing in one particular national stock market is transmitted to the other 

countries. It should be noted however that the Choleski factorisation im­

poses a "Wold causal chain" in the vector autoregressive system imply­

ing that a shock in the first variable has contemporaneous effects on all 

the other variables, a shock in the second variable has contemporaneous 

effects on all following variables but not the first one, and etc. Hence, 

the Choleski factorisation is not unique but depends on the ordering of 

the variables.

5.2.3 Forecast Error Variance Decomposition

The vector autoregressive models, as well as being useful for forecasting, 

can also be used to disclose properties of the forecast errors, e/, and to 

desegregate further the relationships that govern the variables in the sys­

tem. It enables us to simulate how an artificial shock in one variable will 

affect the forecast error variance of itself and each other variable in the 

system in s=0,l,.., periods.

Let us presume that we have consistent estimates of the K and Ai, ..,As 

coefficients in (5.1) and we want to forecast the values of the various na­

tional market betas S periods ahead, Y/ ŝ, conditional on the known beta 

values at time t. This can be done by updating (5.1) recursively S periods 

in the future. The variance decomposition function (VDF) tells us in
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what proportion the variable k is accounting for the variance of the vari­

able V in s steps ahead; the VDF is given by:

s-1

VDRv,k,s) = ^
ivk k

i=0 j=1 IVJ I

xlCX) (5.7)

Hence, each period's forecast error variance is decomposed into N com­

ponents, each of them associated with innovations in one of the vari­

ables of the system at time t. This kind of analysis is often referred to as 

innovation accounting.

5.3 The  Data and Preliminary Analysis

To capture any potential interactions which may arise from the system­

atic risk, it is necessary to have accurate estimates of the markets' betas 

at time t. In the rest of this analysis we will employ the conditional beta 

estimates of the each national markets against the word index described 

in chapter 3‘̂. In our vector autoregressive analysis we will employ the 

time varying betas both in local currency, shown in appendix 3A, and 

3B respectively. Beta risk is synonymous with systematic risk, therefore 

the conditional beta series contains information about local markets' 

common risk only. Thus, the vector autoregressive analysis of the condi­

tional betas will provide us with information about the path and pattern 

of volatility transmission among markets. But in this analysis the volatil­

ity variables entering the vector autoregressive system will not be al-

 ̂The beta series bivariate GARCH model in that of (2.16) and the 
estimation and diagnostics are described in chapter 3.
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lowed to be contaminated by any components that are due to idiosyn­

cratic factors and have no impact on any other market.

Another reason for employing the G ARCH model of (2.16) is the fact that 

the estimated conditional betas form the best available estimator for sys­

tematic volatility at each measurement period and thus provide indis­

pensable information about the dynamic changes in local portfolios' 

market risk. The vector autoregressive modelling of those conditional be­

tas will explore further any market linkage and volatility spillovers.

We will first investigate the market interlinks with returns which are ex­

pressed in local currency and that any impact on the results due to for­

eign exchange fluctuations is excluded^. On a daily or weekly basis, re­

turns are subject to domestic and international economic and political 

news. Among others Eun and Shim (1989) and Lin et al. (1994) use mar­

ket indices expressed in local currency units.

The rationale for not expressing returns in a common currency is to seg­

regate market risk from currency risk. It is well known that these two 

risks are not additive^ and that expressing the various domestic portfolio 

returns in a common currency will have an adverse impact on their con­

ditional volatility. Likewise, when the prices of the aggregated stocks are 

expressed in a common currency, then will have a similar impact on the 

world index's volatility. Furthermore, the pair-wise correlation coeffi­

cients between a set of domestic portfolios tend to be smaller when the

 ̂Exchange rate fluctuations have an impact on stock price move­
ments but, ceteris paribus, prices adjust to exchange rate dif­
ferentials over a longer period.

® If is the foreign market risk in the local currency, G ^  the 
exchange rate volatility, Op̂  the total risk of the portfolio in 
the investor's currency, and r the correlation coefficient be­
tween the two risks, then ignoring non-linear terms,
Op̂ = Od̂  + Of2 + 2rOdO£, implying that Op < Od + Of, since r<l.
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currency factor is added to their returns. Thus, caution is needed to in­

terpret the results of such an analysis since often, in empirical studies, 

the various market returns are translated into a common currency. Many 

studies, when examining the cross correlation among different countries' 

financial data, do not dissociate these two risks.

To investigate the robustness of our results, we divide the data-set in 

two equal sub-samples and repeat the analysis . This will provide some 

insight as to whether our conclusions regarding the sources that generate 

volatility in the global markets are sample biased.

Since in the VaR analysis, the potential overall losses of the portfolio 

must be expressed in common currency, investors, when studying vola­

tility spillovers, distinguish currency from local risk. Therefore, we re­

peat the vector autoregressive analysis with the conditional betas esti­

mated when all domestic portfolio returns are translated into US dollars.

5.3.1 The Variables in the System
Both the impulse response analysis and forecast error variance decom­

position will require that the residuals, e, are separated into orthogonal 

innovations by calculating the Choleski decomposition described in sec­

tion 5.2.2. However, this statistical decomposition depends on the se­

quence in which variables are ordered in the vector Y. Therefore, the or­

thogonalisation of il requires a "Wold causal chain" among the current 

elements of all variables in the system . To limit the choice of arbitrary

 ̂ See p 198 for more details.
8 An alternative method to decompose the estimated vector autore­
gressive innovations into orthogonal shocks is the structural 
vector autoregressive approach, i.e. Bernanke (1986) and 
Blanchard and Quah (1989). These approaches are based on identi­
fying long run restrictions derived from a structural economic
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settings, it is necessary to establish the direction of causation among the 

variables in the vector autoregression. It is therefore necessary to deter­

mine a pyramid of causality order on the variables in the system so that 

shocks in any orthogonalised innovation will only affect variables below 

that ranking.

To determine the direction of causation, the Granger causality test has 

been applied on the conditional beta series for all possible pair-wise 

combinations. We found that the results are sensitive to the number of 

days in the lead-lag relationship. Volatility in country A may cause 

volatility in country B when a small number of lags is used but not when 

a larger lag is used. This will cause problems in interpreting the causality 

relationships. Since, in our study, the causality relationships are used to 

find the rank order in the vector autoregressive system, we set the cau­

sality lags equal to the lags in the vector autoregressive system. Hence, 

we selected the lag order using the two criteria described in section

5.3.2. We found that one day lag minimises both criteria.

The causality test helps to detect the presence of volatility spillovers 

among the thirteen local markets contained in our sample. To determine 

the order of causality, it is necessary to adjust for different time zones. 

Difference in the closure of the markets will play a role when we study 

volatility transmission from west to east .̂ While the US market is open, 

both the European and Asian markets will be closed^®. Consequently, 

this leads to testing the following lead-lag relationships:

model. However because financial variables are lacking such re­
strictions, this approach cannot be implemented here.

9 Throughout this analysis we will assvime that all markets on the 
same continent close at the same time.

10 For a detailed discussion on the opening times of major equity 
markets see Malliaris and Urrutia (1992).
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H I: If the US leads the European and Asian markets, a shock from the US 
markets at time t will not be reflected in the returns on these two until
the next trading day’ \

H2; If the European markets lead the US and Asian markets, a shock from 
the European markets at time t will be reflected in the returns of the US 
at the same period, but on the Asian markets at period t+1.

H3: If the Asian markets lead the US and European markets, then a shock in 
the first market at time t will have an impact on returns in both the 
European and US markets on the same day.

Given the importance of adjusting causality for time zone differences, 

Malliaris and Urrula (1992) propose a Granger regression model that cap­

tures the lead-lag relationship between different markets. Consequently, 

if it is hypothesised that if the US leads European markets (as most 

studies suggests) then the Granger regression model would be as fol­

lows:

tfU EU ̂  „ EUr^S . _ EU;iU . tEU
O  t+1 = Tto + 7Ci O  t-1 + 7t2 O  t + S t (5.8.a)

where are the conditional betas of the European and US

markets observed at period t. Similarly, to test the hypothesis that a 

European market leads the US, the Granger regression will be

11 since our data consists of end of day prices, we measure vola­
tility as at the end of daily trading. Hence we will assume that 
the impact of any news in a specific country will be reflected in 
the next closing prices of that market.
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(5.8.b)

To investigate the causality relationship between the European or Ameri­

can markets on the one side and Asian markets on the other, we fol­

lowed a similar set up in the Granger equations. The terms -EU- have 

been replaced with the term -AS- (Asia) and the terms -US- with the term - 

EU- when the Asia/Europe causality hypothesis was tested for, or left un­

changed if the AsiaAJS was studied.

Table 5.1 reports the F-statistics only for those significant, at 0.10 prob­

ability, pair-wise causality relationships. We find that the US and Japan, 

and to a lesser extent the UK market, plays a leading role in all three 

continents. Volatility originated in US is transmitted to Asia (Japan and 

Hong Kong) and Europe (Sweden, Spain and UK). Similarly, volatility 

originating in Japan is transmitted in the next trading day to both the 

European (Netherlands and Spain) and US markets. We found bi­

directional volatility spillovers between the UK and US markets but not 

between the UK and Japan^ .̂ We also found that Sweden, Switzerland 

and Spain play a dominant role, but their influence is regional, (central 

Europe and Singapore and Hong Kong). News in these countries, how­

ever, is not transmitted to the major markets^^.

12 However, tests of higher lag order revealed that there is a cau­
sality relationship between these two markets.

13 As we have said above, these results are to determine the rank 
order of the vector autoregressive system and not to conduct a 
rigorous analysis of the causality relationships among the dif­
ferent markets.
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Table 5.1 Granger causality tests on conditional betas

The symbol * indicate bi-directional causality.

Although there are many strong unidirectional causality relationships, 

there are also a number of bi-directional or feedback causalities which 

make the interpretation of the causality matrix rather complex. For ex­

ample there is a feedback effect between the US and Japan, the US and 

the UK and the Netherlands and Japan. While France transmits volatility 

to the US, other central European stock markets (Germany, Netherlands, 

Sweden, Switzerland and Spain) also have an impact on the volatility of 

French stocks. Therefore, this makes it difficult to determine which coun­

try will be in the top of the causality pyramid.
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Therefore, a ranking of all the thirteen national markets on a solid 

pyramid pattern based upon their volatility causalities and spillovers 

cannot be formed. Given the importance that causality plays within the 

vector autoregressive modelling, we decided to restrict the empirical 

analysis to sbc markets only. These are: France, Hong Kong, Japan, 

Switzerland, UK and UŜ '*.

UK, US and Japanese equities are included because of their large share in 

the world market capitalisation. Also, the 1987 crash originated from the 

US which affected stock markets world-wide. The capitalisation of the 

Japanese stock market is comparable to that of US market. In addition 

Japan forms the centre of the pacific region economy. The UK stock 

market is the third largest in terms of capitalisation and holds a leading 

position in supporting bilateral investments between Europe and US. In 

addition, because of the liberal legislation and the time zone differences, 

London has developed into a major arbitrage trading centre. The French 

stock market is chosen because the causality test reveals that shocks 

originating there are transmitted to US and Japanese markets. In addi­

tion, because of the way transactions are settled (once a month) the Paris 

bourse attracts many arbitrageurs from around the world, which makes 

the French stock market an integral part of the World market. Hong 

Kong is included in the vector autoregressive system because it has in­

fluence on two European and one Asian market. Also, as we have 

found, Hong Kong is linked with a number of European markets

14 The Granger causality test shows that perhaps two or three other 
markets had the same importance as the Swiss and Hong Kong mar­
kets, and therefore also should be included in the system. Be­
cause the computational complexity grows at an exponential rate 
as more variables are added in the system, we had to restrict to 
six the number of markets included in the vector autoregressive 
model. However, when a few markets are replaced, the general ver­
dict of this analysis remains unaltered.
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(Germany, Sweden, Spain) since the causality test reveals that changes 

in the volatility of these markets is transmitted, the following trading 

day, to Hong Kong. The choice for the last market in the system is 

among the remaining central European markets, Germany, Netherlands, 

Spain, Sweden and Switzerland. They are all medium sized markets and 

play a role in Europe and the Far East and possibly represent one com­

mon industrial central European factor. We preferred to include in our 

vector autoregressive system Switzerland because of the its foreign ex­

change stability and the accessibility that it offers to foreign investors.

5.3.2 Selecting the Lag Order

To set the correct lag order s in the vector autoregressive system, the 

Akaike information criterion (AIC) and Schwarz Bayesian criterion (SBC) 

were used. The two criteria were calculated as follows:

AIC = T//t(residual sum of squares) + 2n

SBC = T//Xresidual sum of squares) + n/n(T)

where T  is the number of observations used and n is the number of pa­

rameters estimated in each vector autoregressive equation. This is equal 

to the number of lags s, times the number of variables in the system, 

plus the constant term. The above test is computed for different values 

of s and the correct lag order is the one with the lowest statistic. Obvi­

ously, to compare adequately the various lag options, T  should be kept 

fu<ed. Both tests have been applied to the six variable vector autoregres-

184



sive system for lags one to eight and the corresponding statistics appear 

in table 5.2. As can be seen from the table, both tests indicate a lag of 
order one.

lag: 1 2 3 4 5 6

AIC
SBC

-32.52
-32.05

-32.15
-31.98

-32.14
-31.90

-32.13
-31.81

-32.11
-31.71

-32.10
-31.62

5.4 Estimating the Vector Autoregressive System

On the basis of the above analysis, a six variable vector autoregressive 

system of lag order one has been formulated. The causal ordering of the 

variables in the system are as follows: US, Japan, UK, France, Switzer­

land and Hong Kong. The US has been positioned at the top of the sys­

tem hierarchy because of its share in market capitalisation and also for 

the leading role that it plays during world-wide volatility fluctuations, 

e.g. the crash of 1987, and the mini crash at the end of 1989. Japan has 

been placed second before the UK market because of its large market 

capitalisation and the feedback effect that it has with US stocks, since 

volatility generated in the former is transmitted to the latter but not vice- 

versa. The UK market has been placed third; it only influences three 

other markets, among them the US. The UK stock market is also third in 

the world market capitalisation ranking over the sample period.

The conditional betas for France, Switzerland and Hong-Kong form the 

remaining three variables in the system. The order for these last three 

places in the vector autoregressive system has been chosen according to 

their order in the world index capitalisation. The results however were
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not sensitive to changes of order in the last three variables in the system. 

The coefficient estimates from the vector autoregressive model are re­

ported in table 5.3.

As expected in each country equation, the coefficient of its own lagged 

beta is large and very significant. In addition to that, in several equa­

tions, there are large coefficients for other countries' lagged values. For 

example, there is a significant negative impact from lagged French beta 

to the US beta. Other statistically significant impacts arise from lagged 

UK to French beta and vice versa. The adjusted coefficient of determina­

tion is quite high for most of the regressions, thereby validating the 

methodology used to explain intermarket volatility spillovers.

Table 5.3 Vector autoregressive estimates for dynamic betas
const U S JP UK FR S W HK R^'-adj D W

us 0.114 0.93 -0.015 -0.011 -0.021 0.008 -0.003 0.894 1.911
(7.62) (106.77) (3.31) (0.82) (1.87) (0.82) (0.56)

Japan 0.06 -0.023 0.974 -0.018 0.022 -0.001 -0.004 0.969 2.103
(4.02) (2.69) (213.28) (1.44) (1.97) (0.09) (0.79)

UK 0.054 -0.006 -0.006 0.939 0.009 0.007 -0.004 0.901 2.015
(5.13) (0.98) (1.80) (105.56) (1.13) (1.01) (1.05)

France 0.049 -0.02 -0.002 0.031 0.916 0.03 0.02 0.901 2.06
(3.72) (2.70) (0.53) (2.74) (94.27) (3.44) (0.45)

Switzt 0.029 -0.005 0.001 0.006 -0.005 0.942 0.009 0.895 2.056
(2.34) (0.67) (0.28) (0.59) (0.53) (114.54) (1.98)

Hong Kong 0.049 -0.017 -0.009 -0.025 0.019 0.008 0.966 0.941 2.134
(3.35) (1.95) (1.91) (1.94) (1.68) (0.83) (183.98)

-t statistics in parenthesis

Unfortunately, other studies cited earlier, which followed a similar ap­

proach to explain market inter-linkages, did not report the results of 

their vector autoregressive analysis. This makes it impossible to compare 

our results. However, in one study. Bos et al. (1995), reported more de­

tailed results. The highest adjusted coefficient of determination Bos et
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al. estimated was 0.18 while the lowest only 0.01. However, they used 

monthly returns for three countries, Finland, Sweden and the US, to 

study the international co-movement of Finish stocks. If we compare 

their study with the above results, we notice that markets are linked 

more strongly through their second moments than their first.

5.4.1 Impulse Response Analysis

After estimating the vector autoregressive system, impulse response 

analysis and variance decomposition can be computed. The variance- 

covariance matrix of the vector autoregressive residuals has been or- 

thogonalised as in section 5.2.2. The orthogonal matrbc V in (5.4) was 

used to simulate the dynamic responses to an artificial shock of one unit 

in each of the six markets. The results appear in table 5.4.

Table 5.4 Impulse response to a unit shock in a national market beta
shock in week impulse response in

US 5
US

0.0619
Japan

-0.0307
UK

0.0213
France

0.0153
Swiss

0.0048
Hong Kong 

0.0143
10 0.0434 -0.0338 0.0153 0.0082 0.0029 0.0079
20 0.0233 -0.0347 0.084 0.0012 0.0007 0.0019

FRANCE 5 -0.0040 0.0704 -0.0031 -0.0019 -0.0008 0.0045
10 -0.0069 0.0621 -0.0040 -0.0019 -0.0001 0.0016
20 -0.0090 0.0496 -0.0043 -0.0013 0.0006 -0.0013

UK 5 -0.0035 -0.0010 0.0411 0.0271 0.0154 0.0107
10 -0.0061 -0.0014 0.0315 0.0245 0.0123 0.0077
20 -0.0076 0.0000 0.0189 0.0185 0.0078 0.0052

JAPAN 5 -0.0038 0.0036 0.0022 0.0471 0.0182 0.0121
10 -0.0065 0.0076 0.0034 0.0332 0.0133 0.0145
20 -0.0080 0.0112 0.0035 0.0178 0.0079 0.0148

SWISS 5 0.0013 -0.0003 0.0014 0.0061 0.0495 0.0099
10 0.0016 -0.0002 0.0025 0.0096 0.0369 0.0104
20 0.0003 0.0005 0.0031 0.0103 0.0206 0.0103

HONG KONG 5 -0.0007 -0.0011 -0.0010 0.0006 0.0024 0.0674
10 -0.0011 -0.0020 -0.0016 0.0013 0.0042 0.0570
20 -0.0012 -0.0025 -0.0018 0.0021 0.0055 0.0414
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As can be seen from the findings in table 5.4, an innovation in the sys­

tematic risk in each national market is rapidly transmitted to all the other 

markets in the system. Moreover, the velocity with which the innova­

tions are transmitted and also their duration and the speed of decay vary 

across markets. Most importantly, dynamic responses may be inversely 

related, i.e. an increase in volatility in one market might lead to a reduc­

tion in volatility in another.

5.4.2 Simulated Confidence Intervals

It is premature to interpret the results in table 5.4 until confidence bands 

around these responses are computed. A confidence band for a statistical 

estimator quantifies its uncertainty and allows for correct interpretation 

and use of measurement information. Large confidence bands discourage 

decision making based on inadequate measurement and call into ques­

tion their credibility. Runkle (1987) says "..supplying impulse responses 

or variance decomposition without confidence intervals is tantamount to 

using regression coefficients without t statistics", p 438.

Hence, confidence bands for the dynamic responses and innovation ac­

counting will provide a statistical foundation for any verdict we reach 

regarding the timing and magnitude of volatility transmitted across mar­

kets. Standard errors for the impulse responses, and innovation account­

ing, can be calculated using Monte Carlo simulation. This is based on 

the method of Kloek and Van Dijk (1978) as implemented in RATS, see 

Doan (1992).

In figure 5.1, the time paths of each markets' dynamic responses to each 

market's innovations are shown. There are thirty six smaller charts, ar­

ranged in six columns by six rows. The label on the vertical axis of the
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first column of the charts indicates the local market where an innovation 

has occurred. The plots in the same row show the dynamic response of 

each local market to this innovation. The order in which these responses 

are displayed appears above in the first row of plots.

Hence, each graph displays the dynamic response of one local portfolio 

to a shock in one variable in the system, which could also be a shock to 

itself. The dynamic response is presented with a middle line, while the 

other two lines form the upper and lower confidence band, of two stan­

dard errors around that response at each time.

since we are interested in examining impulse values that are different 

from zero with probability of at least 95%, for the rest of this analysis, 

the term impulse function or dynamic response we refer to the confi­

dence band that is closer to the horizontal axis. Hence, if at any period 

the horizontal axis is positioned inside the upper and lower confidence 

bands then the impulse response is zero. That is, the impulse values are 

not different from zero with a probability of 0.95. On the other hand if 

the horizontal axis is below the lower band then value of the impulse re­

sponse is equal to the lower band. Therefore, an innovation in one na­

tional market will lead to a significant increase in the beta of the other 

market. Conversely, if the horizontal axis is above the upper band then 

the impulse response will be equal to the upper band. Consequently, 

any innovation from one market will have a negative impact on the beta 

of the other market. Under these scenarios, the impulse response values 

will be different from zero.
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The first row of charts displays how an innovation in the US beta is 

transmitted to the each national market. It is apparent that "news"^^ in 

US equities affects the volatility of all other national markets included in 

the system. The extent to which US "news" influences foreign stocks is 

not uniform. For all markets with the exception of Japan, there is a sta­

tistically significant increase in their beta. On the other hand, for the 

Japanese market, the beta responds negatively to the US innovation. Al­

though this might seem to contradict our ex-ante beliefs, there is nothing 

in our model preventing one country's sensitivity against the world from 

increasing when the sensitivity of another country does sô .̂

The dynamic responses also differ in duration and timing. There is an 

instantaneous volatility transmission from the US to all other countries, 

but the number of days that these countries need to return to normal dif­

fers. The longest shock are observed in Japan and UK. It takes at least a 

month for the Japanese and UK betas to return to their pre-shock levels. 

On the other hand, the Swiss equity market seems to discount US mar­

ket related news in only three days. The time it takes for local markets to 

discount common volatility can be seen as a test of efficiency. The more 

rapid the response to systematic news and the quicker the beta returns 

to normal levels, the more efficient the comparative local market is.

15 This term refers to the news that affect jointly that particular 
market and its covariance with the world. This type of news is 
the innovation in the local market's beta.

16 In the analysis that follows, we may not always distinguish be­
tween positive and negative responses and the reader is advised 
to refer to the corresponding chart in figure 5.1 to identify the 
sign of the response.
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US stocks are affected only by news in Japan. Although the impact is 

small, it lasts for an entire one month period in our simulation. News in 

Japan also has a significant impact on Hong Kong equities.

Shocks in the UK equity market are transmitted to all markets ranked 

behind it in the vector autoregressive system. In all three, France, Swit­

zerland and Hong Kong, there is an immediate positive response to an 

increase in the UK stock's beta. Hong Kong's volatility is re-established 

at pre-shock levels in only few days and the Swiss one in a month. For 

French stocks, it takes a little longer to return to normal levels.

Shocks in the French beta are quickly transmitted to Swiss and Hong 

Kong equities. However, the impact in the Hong Kong market decays 

quickly and vanishes after three weeks. No other market is significantly 

affected by French innovations. Innovations in the Hong Kong beta are 

not transmitted outside this market.

5.4.3 Forecast Error Variance Decomposition

As has been explained earlier, the forecast error variance in the system­

atic volatility for each national market can be partitioned according to its 

sources. These sources are past innovations in its own conditional beta 

or in that of any other national market beta included in the system. The 

method used to identify these sources of error variance is called variance 

decomposition or innovation accounting and is described in section 5.2.3.

To avoid any innovation accounting being contaminated by disturbances 

occurring in more than one market, the vector autoregressive residuals, 

e, have been transformed into orthogonal innovations, u, using the 

Choleski factorisation, explained in section 5.2.2. The variance decom-
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position in table 5.5 shows the average amount of the variance in each 

variable, after five, ten and twenty days, attributable to each shock.

The leading role that US equities play in transmitting volatility across 

national markets is now more evident. US innovations are a cause of er­

ror variance in almost all other national markets examined here. The US 

stock price movements have more influence in Japan and the UK where 

they account up to 21% of the error variance in the first and up to 22% in 

the latter market's beta. US news are less responsible for changes in the 

French and Hong Kong stocks and are not responsible for changes in the 

betas of Swiss stocks. On the other hand, innovations in "foreign" mar­

ket betas also have almost no repercussions in US equities. In a five day 

horizon, innovations which occurred in all foreign markets together ac­

count for less than 0.4% in the error variance of the US beta. However, 

this number rises to 5% after 20 days of trading. This variation is ex­

plained by innovations in the three largest markets, UK, Japan, and 

France.

According to the results, the UK seems to be another influential market. 

UK innovations can explain up to 26.2%, 8.16% and 2.6% of the changes 

in the betas of the French, Swiss and Hong Kong markets respectively. 

The influence of French news is responsible only for changes in the betas 

of nearby Swiss stocks and to a lesser extent Hong Kong. French news is 

also the most influential foreign news in the US market after Japan. The 

most important foreign news that influences the volatility of French 

stocks is the UK, followed by US and Swiss. Paradoxically, news in Ja­

pan has no impact on the French stocks.
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Table 5.5______ Accounting innovations in the national markets' beta
m a rk e t e x ­
p la in ed

weeks by innovation in

US Japan UK France Swiss Hong Kong
US 5 99.652 0.122 0.094 0.112 0.015 0.004

10 98.543 0.530 0.405 0.467 0.040 0.016
20 95.341 1.774 1.315 1.478 0.052 0.041

JAPAN 5 13.094 86.828 0.006 0.064 0.000 0.008
10 16.244 83.345 0.018 0.364 0.001 0.028
20 21.022 77.704 0.017 1.185 0.001 0.070

UK 5 21.933 0.235 77.716 0.074 0.028 0.015
10 21.057 0.469 78.035 0.269 0.119 0.056
20 19.899 0.976 77.945 0.643 0.386 0.151

FRANCE 5 9.066 0.071 18.426 72.072 0.360 0.004
10 7.662 0.103 21.847 69.038 1.330 0.019
20 6.112 0.134 26.237 64.019 3.409 0.088

SWISS 5 0.883 0.041 7.296 11.336 80.387 0.057
10 0.785 0.029 7.687 11.033 80.222 0.244
20 0.662 0.025 8.167 10.865 79.455 0.825

HONG KONG 5 5.364 0.650 2.616 1.911 1.574 87.885
10 4.201 0.455 2.295 2.975 1.954 88.120
20 2.972 0.305 1.982 4.811 2.673 87.258

The above results agree with the findings of Eun and Shim (1989) who 

report that the US stock market is the most influential in the word. Eun 

and Shim also found that innovations in foreign markets exert an influ­

ence on US stocks, but mostly in the longer run. However, although our 

study shares a common objective with that of Eun and Shim (to investi­

gate the international market transmission mechanism among stock mar­

ket movements) a detailed comparison between them is not possible be­

cause of the prevailing differences in the frequency and the nature of the 

variables used in the vector autoregressive analysis.

194



5.4.4 Confidence Intervals for Forecast Variance Error Decomposition

Like the impulse response analysis, any verdict regarding the sources of 

variation in the national portfolio's unexpected beta changes needs to be 

supported by confidence levels. Monte Carlo simulation, similar to that 

used with the impulse response analysis, has been employed to generate 

randomly Nx1 vector of residuals. In that way we estimated the VDF as 

in (5.7). The process is repeated for 1000 simulations to get the upper 

and lower band which contains the 95% of the paths for each markets 

innovation accounting.

The time paths of the simulated accounting national market innovations 

together with the upper and lower confidence bands are shown in Figure

5.2. Each single chart displays the time path of innovation accounting of 

one market to one shock in a variable in the system. Hence there are 36 

single charts arranged in six rows by six columns. The way the graphs 

are organised is identical with that of figure 5.1 and the methodology is 

explained fully in section 5.4.2

In each of the 36 graphs, the line in the centre shows the average value 

of the simulated time path for the innovation accounting corresponding 

to a particular market. The other two lines, above and below, bound the
1795% of the simulation outcomes .

Although innovation accounting can never have negative values, 
in order to facilitate the observation we display the two confi­
dence bands as symmetrical, plus or minus two standard deviations 
from the means. Consequently, some of them are shown as having 
negative values.
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Like the impulse response analysis, simulated confidence intervals tend 

to be wide and undermine many of the central tendency values esti­

mated. Hence, for most innovation accounting estimates, in particular 

the lower values associated with innovations in a foreign market, the 

simulation has generated standard errors that make them statistically not 

different from zero. As a result, out of the thirty innovation accounting 

of foreign market news, only half a dozen are significantly greater than 

zero. By contrast, the confidence bands for innovation accounting of 

domestic news are well above zero for the entire four weeks horizon in 

all six cases.

The simulated results once more shows that US is by far the most influ­

ential market in the system. We can now say with certainty that US 

news accounts for a significant variation in the unexpected changes in 

Japanese volatility; on average 15% during the first few days after a US 

news announcement, and up to 40% in the following four weeks. US 

equities are also responsible for a very large part in the UK beta error 

variation where they account for between 20% and 40%. US news can 

also explain a small but significant part of the unexpected changes in the 

French and Hong Kong stock markets' volatility. However, the US news 

does not exert any significant impact on the volatility of the Swiss 

stocks. On the other hand, we cannot reject the hypothesis, at the 95% 

confidence level, that US news fully accounts for its own volatility dur­

ing the first few weeks. That is because the upper band of simulated US 

accounting innovations is one. Four weeks after a US news announce­

ment, the upper band's values diminish and leave more space for foreign 

markets to explain US error variation.

We also identify a second factor, UK news, but its influence is restricted 

to Europe. UK news explains between 12% and 35% of the variation in
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the French stock's beta. Furthermore, UK news is also responsible for a 

small but significant share of the total systematic volatility of Swiss 

stocks.

Apart from a strong US factor and a regional UK factor, we can scarcely 

identify any other common source of news which acts as a driving force 

in cross-markets price movements. In fact, in only one of the remaining 

markets (France) the lower confidence bands, associated with a foreign 

market's innovation accounting (Switzerland), can be distinguished from 

zero. On the other hand, at 95% confidence level we cannot reject the 

hypothesis that the US volatility is exogenous to UK or French news.

Finally, for the remaining three markets, Japan, Switzerland and Hong 

Kong, the results suggest that they act like followers rather than active 

players in the international volatility transmission mechanism. There is 

no additional evidence that internationally relevant news in any of them 

will change the beta value of another market. On the other hand, foreign 

markets have a small but significant feed into the error variance in each 

of those six markets. It is impossible to identify with precision each in­

dividual external source that accounts for innovations in each market 

systematic volatility changes. Most of the findings agree with those of 

Eun and Shim but disagree in several other aspects.

5.5 Investigating the Robustness of the Results

To investigate the robustness of our results we divided the conditional 

beta series into two equal samples and repeated the vector autoregres­

sion analysis. The first sub-sample covers the period from the beginning 

of 1986 until the end of 1990. This period is characterised by higher than 

usual volatility which consists of the sharp rise in world equity prices
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along with the dramatic events of October 1987. Further, it also contains 

the mini crash of January 1990 and the Gulf invasion of the summer 

1990. On the other hand, the second period is characterised by stable 

growth in the world equity prices. Indeed, the annual historical volatility 

of the world index during the first period is almost twice as much of the 

second period volatility (13.5% and 8.75% respectively).

The Akaike information and Schwarz Bayesian criteria indicate that, for 

both data samples, a lag order of one was appropriate. Tables 5.6.a and 

5.6.b. report the F statistics from the Granger causality test of (5.8) used 

to identify the order of the variables in each of the two vector autore­

gressive systems.

There are a number of similarities as well as differences among the two 

tables. During the 1986-90 period Japan was found to be very influential 

in the movement of global equity prices. Volatility originating in Japan is 

transmitted to four other markets, among them the US and UK. The 

European markets, with the exception of the UK, are also very influential 

but their impact is confined to within Europe and the smaller Asian mar­

kets. It is a surprise to us that shocks from the UK are not found to in­

fluence any other countries with the exception of Sweden. On the other 

hand no market other than Japan influences UK stocks.

During the second period, 1991-95, we notice a diminishing role for Ja­

pan and increasingly dominating role for the US and the UK. In fact the 

results suggest that Japan has become very passive during that period 

when volatility originating from the UK and the other smaller European 

markets are quickly transmitted to Japanese stocks.
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Table 5.6.a Granger causality tests on conditional betas (1986-1990)
From To F-test From To F-test

US Japan 11.47* SPAIN France 5.54
Sweden 4.84 Germany 7.00

UK Sweden 3.54 Hong Kong 6.35
JAPAN Netherl. 5.68 Switzerl. 6.15*

Singapore 5.63* SWEDEN France 8.54
UK 6.35 Germany 8.53
US 3.66* Hong Kong 8.10

FRANCE Italy 2.99 Singapore 6.87*
Singapore 4.66 Switzerl. 3.53

US 5.92 SWITZERL France 11.90
GERMANY France 4.79 Germany 6.52

Singapore 3.29 Netherl. 3.58
DENMARK Singapore 3.35 Singapore 4.85

HONG KONG Germany 4.14 Spain 3.22*
Singapore 3.31 SINGAPORE Japan 8.03

ITALY Singapore 3.10 Netherl. 5.32*
NETHERL France 6.88 Sweden 3.13*

Singapore 7.35*
The symbol (*) indicates bi-directional causality.

Table 5.6.b Granger causality tests on conditional betas (1991-1995)
From To F-test From To F-test

US Germany 4.01 SPAIN Denmark 3.25
Sweden 4.60 France 4.96

Spain 4.30 Germany 10.35
UK Japan 3.01* Japan 7.13

Spain 4.69* Italy 8.18
JAPAN France 5.08 Netherl. 9.12

UK 4.42* UK 3.14*
GERMANY France 4.23 SWEDEN France 12.83

Japan 7.50 Germany 7.44
Italy 3.68 Hong Kong 4.58

ITALY Denmark 7.27 Italy 4.08
France 4.00 Netherl. 5.39
Japan 4.30 SWITZERL Spain 3.14

NETHERL France 8.95 DENMARK Japan 4.53
Japan 10.74 UK 4.18

UK 4.27
The symbol (*) indicates bi-directional causality.

When comparing the causality relationships reported in tables 5.6.a and 

5.6.b with those in table 5.1, we notice a number of differences. The
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most remarkable is the UK-Japan relationship. During the two sub­

periods, changes in volatility originating in Japan "cause" changes in the 

UK market. For the overall ten year sample period, however, the F sta­

tistic rejects the hypothesis that Japan plays a role in the volatility of the 

UK market. A closer examination of the causality test reveals that, al­

though during the two sub periods the coefficient for Japan is significant, 

for the overall period it becomes insignificant. This could be attributable 

to structural changes in the dynamics that govern the conditional betas. 

One limitation of the Granger causality analysis is that it does not allow 

such shifts. This problem could partially be solved if we allow for more 

lags in each of the regression pairs used to test for causality. As the aim 

of this study is to investigate the volatility transmission mechanism 

globally, the Granger causality test is employed to identify the order of 

the variables in the system rather than single pair-wise relationships.

Therefore, we use the same lag order of one in all the causality regres­

sions because this was found to be the most appropriate one for the vec­

tor autoregressive system.

In order to study the robustness of our impulse response analysis pre­

sented in sections 5.4.2, we repeat the Monte Carlo simulation for each 

of the two sub-periods. The results, shown in figures 5.3 and 5.4, indi­

cate some changes in the mean values for the impulse responses and in 

some instances, i.e. Japan, the confidence bands are wider. Simulated 

confidence bands for the forecast error variance decomposition for the 

period 1985-90 and 1991-95 are shown in figures 5.5 and 5.6 respectively.
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We notice that US innovations play an increasingly important role in Ja­

pan during the second sub-period. We also notice during the same sub­

period, the UK innovations account for about a quarter of the changes in 

the French betas and for one tenth in the changes of Swiss betas. The 

general conclusions, however, when compared with the overall set of 

figures 5.1-5.2 remain unchanged.

5.6 Volatility Transmission When Returns are in U S  Dollars

In the previous sections we applied the vector autoregressive analysis to 

the conditional betas estimated from domestic returns. Hence, the only 

risks to which investors are exposed are the losses that they may face in 

the value of foreign equity as measured in local currency. In VaR analy­

sis, however, any potential losses must be estimated in a common cur­

rency, e.g. US dollars. Therefore, when currency exposure is not per­

fectly hedged, investors, in addition to losses in local currency, are ex­

posed to foreign currency losses. When investors study the way volatil­

ity is transmitted from one market to other, they may want to know 

what is the aggregate (foreign stock and currency movement) effect on 

their portfolio. To account for the currency as well as the local risk in our 

volatility transmission mechanism, we employed conditional betas esti­

mated from returns expressed in US dollars to conduct the vector au­

toregressive analysis.

The F statistics from the Granger causality (only those significant) are re­

ported in table 5.7. The results indicate that there are now more unilat­

eral and instantaneous causality relationships than when returns are ex­

pressed in the local currency. Further, the role of the dominant markets 

in the global volatility transmission has also changed. Now Japan plays
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the leading role in determining global equity prices. Indeed, any changes 

in Japanese equities affects half of the national markets included in our 

sample; however, it has no impact on either the US or the UK stocks.

We also observe that the Singapore and most European markets are 

sources of volatility for large part of the global market. Given that each 

series is a combination of equity returns and dollar exchange rates, in 

each cross-pair for which we test for Granger causality, we have in effect 

four series. Hence, when we interpret the results, we should be cau­

tious. It may be that the Granger causality is attributable to the cross 

exchange rate movements rather than the changes in the prices of two 

foreign stock markets.

Figure 5.7 shows the Monte-Carlo simulation for the impulse response
18function for the six markets when returns are expressed in US dollars .

When comparing the results with those of figure 5.1, we notice a number 

of changes in the way some markets are reacting to "news" in Japan and 

the UK. Three markets, the UK, France and Switzerland, are found now 

to be reacting to "news" in the Japan stocks-dollarA'en series. For 

France, Switzerland and Hong Kong, the effect of news in Japan lasts for 

the entire month. When returns are in local terms, this has a minor im­

pact, which last few days only on the US and Hong Kong markets. Fur­

thermore, we notice some changes in the French forecast error variance 

decomposition. The results also indicate that although French prices are 

not responding to innovations in the UK stocks the French stocks- 

dollar/franc combination reacts positively to news in the UK stocks- 

dollar/sterling.

To be able to compare the results with those of section 5.4.2 
and 5.4.4., we used the same variables and kept the same order in 
the vector autoregressive system.
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Table 5.7._____ Granger causality tests on conditional betas (returns in US$)
From To F-test From To F-test

US Honq Konq 2.96 NETHERL France 2.95*
Sinqapore 3.45 Sinqapore 29.00*

JAPAN Germanv 4.22* SWEDEN France 8.38
France 7.66 Germany 14.40*

Sweden 10.95 Honq Konq 14.30*
Switzerl 5.55 Italy 7.99

Spain 7.47 Netherl. 7.96
Sinqapore 18.52 Switzerl. 3.48

FRANCE Germany 4.56* Spain 10.69
Netherl. 3.05* SWITZERL Germany 3.28

Spain 6.82 France 5.64
Sinqapore 3.72* Netherl. 4.29

GERMANY France 2.84* Sinqapore 9.26
Japan 4.58* Spain 8.76

Sweden 3.22* UK 4.29
Spain 4.51 US 3.46

Sinqapore 14.74* SINGAPORE Germany 9.41*
HONG KONG Sweden 3.85* Honq Konq 7.91

Spain 2.99 France 4.72*
ITALY Japan 5.03 Italy 2.94

DENMARK Sinqapore 14.92 Netherl. 10.75*
SPAIN Sinqapore 4.24* Spain 9.11*

The symbol (*) indicates bi-directional causality.

Figure 5.8 we show the forecast error variance decomposition with for­

eign market returns measured in US dollars. There are a few differences 

with the results of figure 5.2; the most remarkable ones is that domestic 

innovations in any of the markets, with the exception of Switzerland, 

account for a greater proportion of the variance. This is due to a non per­

fect correlation between exchange rates and stock price changes. In the 

case of Switzerland, we can see that domestic innovations explain to a 

lesser extent changes in its beta. About a fifth of the variance is now ex­

plained by French innovations.
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It is evident that the link between the Swiss and French Franc to the 

German Mark helps us to explain most of the two conditional beta 

changes. We also notice that the US innovations account for less in the 

variance of UK stocks.

5.7 Conclusions
In this chapter we first outlined the basic theory behind vector autore­

gressive models and then we used time-varying betas to search for link­

ages across national equity markets. Our approach differs from that of 

other studies because we allow for market interdependencies through 

both first and second moments of returns. In contrast, most of the previ­

ous studies have searched for market interdependencies only in the first 

moments of returns.

We used conditional second moments, as obtained with the bivariate 

GARCH model of chapter three, to analyse market interdependencies 

and search for volatility spillovers. Our approach to the search for volatil­

ity spillovers differs from that of Hamao et al. (1990) because we cau­

tiously restrict our analysis to each national market's systematic risk 

rather than to the overall risk. We believe that it is essential to distin­

guish the systematic from the specific risk since the latter is the result of 

domestic news whose impact is contained within the national market 

and which does not affect foreign stock prices. As we have seen in chap­

ter three, for many markets the systematic (conditional) volatility can be 

as low as a few percentage points below its total volatility, the rest being 

idiosyncratic volatility. In those cases, using the overall (conditional) 

volatility is contradictory with the SIM and may lead to a wrong verdict.
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We used the vector autoregressive methodology to simulate the way na­

tional news {systematic nevjs only) influences foreign stock prices. We 

used Monte Carlo simulation to compute standard errors for the impulse 

responses and innovation accounting. This allows us to draw a confi­

dence band around the central values of these estimates and to consoli­

date our findings about the volatility transmission mechanism that gen­

erates national markets' inter-linkages. By contrast, many of the studies 

published so far do not show any standard error for the impulse re­

sponse or variance decomposition estimates. It is true that simulated 

standard errors for impulse responses and variance decomposition tend 

to be relatively large (see Runkle 1987), but average estimates alone can 

not be used to ground any type of acceptable conclusions.

Using the vector autoregressive methodology, we uncover a strong US 

factor which dominates all but one of the foreign stock price movements 

examined. US news contributes to a larger share of systematic volatility 

in Japanese and UK stocks. This can possibly be explained by the fact 

that the dependence of the UK and Japanese economies on the US is 

greater than that of the other markets examined. We also identify a sec­

ond factor, the UK, which affects the other two European markets in the 

vector autoregressive system. However, the UK plays no role in US or 

Asian stocks' volatility and hence, UK news can probably be seen as an 

European factor.

To test the robustness of the above results, v/e re-estimated the vector 

autoregressive system and we repeated the Monte Carlo simulation on 

the conditional beta series divided into two equal sub-samples; 1986-90 

and 1991-95. The results from the Granger causality test provide evi­

dence that Japanese stocks play a significant role in generating global 

volatility. Nevertheless, other findings, including these from the impulse
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response analysis and variance decomposition, do not support the hy­

pothesis that the volatility transmission mechanisms during any of the 

two sub-periods differ from those found when the Monte Carlo simula­

tion is applied to the entire (10 year) data sample.

Finally, we focused on the relationship between stock indices using re­

turns in US dollars as opposed to the local currency. The usefulness of 

this approach lies in its relevance to the VaR analysis. Under VaR, po­

tential losses are measured in a common currency. Consequently, when 

the foreign currency is not perfectly hedged, investors will be faced with 

a combination of risks; any depreciation of the value of the foreign asset 

in local terms and any losses in the foreign currency market. Thus, in­

vestors are more interested in knowing what the two combined losses 

they may have to face are.

Upon explaining the results from the Granger causality tests we found 

that Japan is the dominant market. However, Japan has no influence in 

the US and UK stocks. The Monte Carlo simulation confirms the findings 

about Japan. News in Japan is quickly transmitted to the UK, France, 

Switzerland and Hong Kong. Nevertheless, the Granger causality test is 

only employed to help us to identify the ordering of the variables in the 

system; these results need be interpreted with caution. Indeed, while 

UK stocks do not react to Japanese news, according to the causality test, 

we found the opposite to be true when using Monte Carlo simulation.

Furthermore, we found differences in the results based on local currency 

returns when using Monte Carlo simulation to estimate confidence inter­

vals for the forecast error variance decomposition. Most notably, with 

the exception of Switzerland, most of the changes in systematic volatility 

is explained by the domestic innovations.
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The vector autoregressive analysis we conducted aims to shed light on 

the way volatility (of the combined with foreign exchange returns) is 

transmitted from one market to others. This can help risk managers in 

anticipating losses and so hedge risk before these losses incur. In addi­

tion, understanding the way national stock prices respond to news oc­

curring in a third country may help in the estimation of portfolio VaR, 

i.e. in a Markovian way.

214



Chapter 6

General Conclusions

VaR is an estimate of the minimum possible loss an investment or port­

folio of investments could face at a given probability over a period of 

time. The VaR methodology is essentially an extension of concepts from 

modern portfolio theory. Therefore, its effectiveness depends on the va­

lidity of the assumptions of the underlying portfolio theory, or their re­

laxation where necessary to fit the empirical evidence. The crucial ele­

ment upon which modern portfolio theory is based is the assessment of 

probabilities about the likely outcome of future security prices. These 

probabilistic assessments are better known as the mean-variance trade­

off because the unconditional first and second moments of the distribu­

tion of historical returns are used in their valuation. It is true that mod­

ern portfolio theory relies on many assumptions, the strongest of which 

perhaps is that expected returns, variances and covariances remain con­

stant over the holding period. Any changes in asset variances and co- 

variances will affect the portfolio's riskiness and its potential for losses.

Traditional VaR models are based either on the unconditional (historical) 

or the weighted (ES) estimate of portfolio volatility {e.g. Riskmetrics
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1995). The motivation for this thesis relates to the need to establish a 

more accurate method of modelling portfolio volatility for being em­

ployed in the VaR analysis. This is of particular interest for practitioners 

given that a more accurate estimation of VaR is of paramount importance 

for the reliability of risk management systems and hence reducing the 

likelihood of their failure in extreme market conditions. The traditional 

approach to estimating portfolio risk is based on historical returns, vari­

ances and covariances that rely on the implicit assumptions of normality, 

independence and homoskedasticity. However, the stylised facts about 

daily returns point to the contrary since the distribution of speculative 

price changes is rather non-normal, i.e. is leptokurtotic, and has second 

moments that change over time. The implications of using unconditional 

variances in VaR analysis is that it underestimates the possibility of in­

curring a predifined amount of loss. For this reason, this thesis has 

highlighted the inappropriateness of the traditional based approach to 

estimating portfolio risk and introduced an alternative approach that 

makes a more efficient use of available information regarding the dynam­

ics that govern investment holdings. This was achieved through a com­

bination of historical-simulation and GARCH volatility which avoids the 

use of computationally intensive multivariate methodologies in the tra­

ditional approach of correlation based VaR.

To capture any change in the variances and covariances, one can employ 

conditional volatility models, such as GARCH and SV. By removing the 

heteroskedasticity from the returns, which may account for much of the 

excess kurtosis, we seek to get residual returns close to normal. The fo­

cus of this thesis has been the investigation of the effectiveness and ap­

plicability of non-linear statistical techniques in portfolio risk analysis. In 

chapter three we investigated empirically the effectiveness of multivari-
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ate GARCH models in estimating portfolio risk. We constructed a hypo­

thetical portfolio invested across thirteen countries with investment 

weights that match the capitalisation of the MSCI world index of De­

cember 1995. We employed multivariate GARCH analysis to estimate the 

volatility of the portfolio and calculate its VaR at 29 December 1995 (last 

trading day of 1995). Since for the joint estimation of multivariate 

GARCH models of even a moderate size portfolio {e.g. half a dozen as­

sets) is prohibitive, we used the SIM of Sharpe (1963). The SIM allows 

asset price dependencies by linking the conditional mean of returns with 

the market index. We, therefore, estimated thirteen bivariate GARCH 

systems; in each system, one variable represents each local market and 

the other is the world index common to all thirteen bivariate models. To 

fit the GARCH model to this hypothetical portfolio we used the last ten 

years of daily historical returns of all assets.

Our results show that the variances and covariances of all assets in­

cluded in the portfolio are subject to daily changes. The GARCH meth­

odology used here is efficient in capturing a large part {i.e. about one 

third) of these changes and removing most of the non-linearity present 

in the unconditional distribution of the returns. Nevertheless, as stress 

analysis has shown, the VaR of the dummy portfolio when calculated 

using the above variances and covariances is biased and has little power 

to predict the portfolio's losses. When we compared the above VaR es­

timates (based on the multivariate GARCH) with those of the simpler ES 

we found no evidence that there is a significant improvement in measur­

ing portfolio risk.

The reason for the poor performance in the measurement of portfolio 

risk relates to the fundamental limitations of the multivariate GARCH 

approach, which was used in chapter three. First, simplifying the com-
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putation using the SIM factorisation requires the existence of a common 

factor that is capable of explaining a large portion of the assets variance 

whilst leaving their residual risks being orthogonal. The second limita­

tion acknowledged relates to the way that the variance-covariance matrix 

is partitioned. Using the bivariate GARCH does not guarantee that the 

resulting variance-covariance matrix will maintains the joint multivariate 

properties of the series. Consequently portfolio variance estimates are 

likely to be biased and/or have little explanatory power.

Therefore, one of the innovations of this thesis is to remedy this problem 

through a simplified approach to estimating portfolio risk. This is ap­

proach, which estimates VaR without the use of a correlation matrix, 

considered in chapter four. Assets' past returns are multiplied by current 

weights to create an univariate time series of historical portfolio returns. 

This series, which contains all current and past information about the as­

set co-movements, is used to estimate current and forecast future values 

of portfolio volatility. This method has the appealing property that it re­

duces portfolio VaR to a univariate time series analysis. Hence, it over­

comes the dimentionality problems arising from the estimation of the 

variance-covariance matrix, while it permits greatest flexibility in model­

ling the volatility conditionally, therefore accounting for clusters and lep- 

tokurtosis.

Securities with strong non-linearities such as options may be included by 

substituting them with the products of the current delta (/.e. the ratio of 

the change in the price of an option to the change in the price of the un­

derlying asset) of the option multiplied by the volatility of their notional 

underlying assets. Thereafter, the resulting time series of portfolio re­

turns is analysed to identify the best fitting time series model. Accurate
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point estimates of current volatility are then produced and VaR is com­

puted from them.

The same hypothetical portfolio from chapter three was used to test the 

proficiency of this simplified approach to portfolio VaR. The result sug­

gests that this univariate (simplified) approach to estimating VaR is su­

perior to the correlation based model estimated previously. The simpli­

fied VaR yields unbiased estimates for portfolio variance and it can pre­

dict about one third of next day's squared price movement. Hence, it 

uses (the information set available) in a more efficient way than the 

bivariate GARCH.

Another innovation in this thesis, not considered in previous studies, is 

the probabilistic approach to estimate the Worst Case Scenario or WCS 

thereafter. While the VaR only considers the market risk of a portfolio 

with respect to the frequency that a specific loss will be exceeded, it does 

not measure the size of the biggest loss possible in the event of an ex­

treme shock. This is investigated using the WCS. We show how the 

WCS for stress analysis may be constructed using the largest outliers in 

the innovation series scaled by current GARCH volatility. This approach 

enables us to simulate the impact of the largest historical shocks on cur­

rent market conditions. Further, we ascertained the likelihood that a loss 

of this magnitude is likely to occur over the VaR horizon.

Finally, we extended the analysis to focus on the issue of correlation 

stability. We defined this as the proportion of an increase or decrease in 

the portfolio VaR that is attributable to changes in asset variances or cor­

relations and can be used to measure the risk managers ability to diver­

sify portfolio risk. To ascertain the effects of changes in correlations, the 

conditional volatility of our diversified and undiversified hypothetical
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portfolio were compared. While it was found that the volatility of the di­

versified portfolio was lower than that of the undiversified portfolio, we 

found that the use of correlation stability has the useful property of act­

ing as an early warning to risk managers regarding the effects of an ex­

treme shock, such as a crash, on the riskiness of our portfolio.

This thesis also differed from previous research through the investigation 

in the way volatility is transmitted amongst national stock markets. Sev­

eral studies in the past searched for market interdependencies in first 

moments. They used correlation analysis and principal components on 

price changes to identify market interlinks. Whatever their conclusions, 

these studies suffer from two major weaknesses. They either assume that 

market relationships remain constant over time or they distinguish 

"'good" from "bad" news. We feel that national markets respond only to 

"common" news and in an interchangeable manner. What is good news 

for the world market may be viewed as bad news for a national market, 

and vice-versa. We also feel that the responses to world news are not 

necessarily contemporaneous.

An innovation of this thesis is that we use the systematic risk as op­

posed to overall risk to ascertain the interrelationships amongst national 

markets. Contrary to the approach adopted in earlier investigations that 

focus on the first moments of returns, we allowed for market interde­

pendencies through both first and second moments of returns. We know 

from the SIM that a national market's beta with the world index is syn­

onymous with its systematic risk. Hence, the time variation in these be­

tas can be seen as variations in the corresponding national market's sys­

tematic risk. If markets are interrelated through their first moments they 

will also be related through their second moments. The time varying 

volatility series produced in chapter three are ideal tools for investigating
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the dynamic patterns that might govern world-wide volatility transmis­

sion mechanisms. Conditional betas estimated using the bivariate 

GARCH model contain important information about the time path of 

national markets' systematic volatility.

The degree to which national markets are integrated has important im­

plications for a number of investment decisions. Those investing inter­

nationally are interested in the extent to which a market is correlated 

with others. Investment decisions based on market timing, i.e. dynamic 

hedgers and active traders, are also interested in understanding how and 

when markets will react to news. We believe that in this thesis we have 

provided an answer to these questions. Firstly, we found that national 

market integration may change in each period. Our results show that 

during international turmoil, for example the 1987 crash or the Gulf war, 

all national markets respond with a change in their systematic volatility. 

But these responses are neither synchronised nor they have an uniform 

magnitude. Studying the past behaviour of markets' conditional betas 

can provide us with important information about the extent to which 

each national market is integrated with the others during different news 

scenarios.

We employed the vector autoregression methodology on the time- 

varying betas to simulate how national markets react to each other's 

news. Because internationally relevant news will always be announced in 

one country first, typically it will first affect domestic equity prices.

News can then be interpreted as national or regional factors that can af­

fect other national markets. Studying the way national markets respond 

to those factors will provide valuable information for a number of in­

vestment decisions which are based on market timing. Contrary to the 

findings of past research, the use of conditional betas revealed strong in-
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terlinks amongst national markets as suggested by the high for all 

countries in table 5.3. Further, unlike previous studies, we use Monte 

Carlo simulation to estimate the confidence intervals and determine the 

timing and magnitude of volatility transmitted across markets. We found 

that there is a strong US factor that influences all stock prices across the 

globe. A second factor, UK news, has also been identified but its influ­

ence is limited to Europe.

To test the robustness of our result, we divided the data sample into two 

sub-periods dictated by periods where volatility was most profound and 

periods characterised by stable growth in the world equity prices. Using 

the Granger causality test to identify the order of the variables in each of 

the two vector autoregressive systems, we found that in the first sub­

sample 1986 to 1990, Japan played the dominant role, however, in the 

second subsample 1991 to 1995, this role diminished. On the other hand, 

in the first subsample, the UK and US plays an less important role 

whereas in the second sample, both markets are more influential.

However, these findings were based on returns expressed in local cur­

rency. Another innovation in this thesis is that we considered interlinks 

across markets when returns are expressed in both local currency and in 

US dollars. Unlike previous investigations, this invited a unique oppor­

tunity to determine whether the nature of the relationship amongst mar­

kets is attributable to movements in equity prices or due to exchange 

rate changes. Consequently we argued the implication for VaR analysis 

is that where currency exposure is not perfectly hedged, investors, in 

addition to loses in domestic terms, are exposed to foreign currency 

losses. To investigate this, Monte-Carlo simulation for the impulse re­

sponse function were conducted when returns are expressed in US dol­

lars. The results differed considerably when compared with earlier
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analysis based on returns expressed in local currency in relation to the 

role of Japan. Most notably, innovations originating from Japan was 

found to have a significant effect on other markets which lasted longest 

in France, Switzerland and Hong Kong. This is attributable to exchange 

rate movements as opposed to movements in equity prices.

Our results suggest that VaR models should be subject to empirical 

testing before regulators approve them. Back-testing on a trial period 

may ratify this requirement. A reliable VaR model, not only satisfies 

regulatory requirements, but it becomes a useful device for practical 

portfolio risk management. In particular, the incorporation of intermar­

ket volatility transmission mechanisms is a promising venue for future 

research because it has the potential to allow for a reduction in risk ex­

posure before foreign shocks work their way into domestic markets.
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