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p. 93:

p. 233:

p. 263:

p. 266:

p. 284: 

p. 285:

Eight lines up from bottom: anionic should read nonionic.

After Eq. (2.2): The quantity n/V is not the concentration of free

radicals in a locus, but the number of free radicals per unit 
volume in a locus.

Reference (5) should read reference (51).

Section 3.3, line 3: The name should read Verwey, not Verway. 

Last line: 'The, reference Jackel (112) should read Jackel, as 
quoted in O ttew iil and Walker (112).

Sixth line after (III): The quantity is 0.07 pm, not 0.07 p.

Second line: Barker should read Bruker.

Bottom: The formula should read

R02CCH2CH2C(CNXCH j )N=NC(CNXCH j )CH2CH2C02R.
Paragraph beginning 'Haines and Waters', line 3: The empty 
brackets should read ( t ) .

Sixth line from bottom: condenser should read condenser.

Section 5.7.5.2, lines 4 and 11: knowun should read known.

After equation: The empty space should contain the symbol (> . 

Paragraph 2, line 1: N M R  should read FVoton N M R .

Paragraph 2, line 3: >keto should readcC-keto.

Vertical axes: D  should read throughout.

Line 6: polymrisation should read polymerisation.

Last paragraph, first line: The word involves should be inserted 
after the word technique.

Table 7.6: In the column headed 'Electron microscope', the

symbol t  should be Inserted between the first and the second 
number in each case.

Page number missing.

Second paragraph, line 10: solubl should read soluble.

Second paragraph, line 2: F A (E O )^ E s  should read F A (E O ) Es.

First paragraph, line 10: FACECW^^Es should read F A (E O ) ^°Es .

Table 7.11: Last two columns should be headed [M ] and [M L  
respectively. ^ '*2*

Equation: Division line missing.

Second paragraph, line 2: iniiator should read initiator.

Ref. (160): A . S. Hassan should read S. A . Hassan.

Ref. (188): The year should be (1950), not (1980).
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by

E. B A R R U TIA

Derivatives of 4,4'-azobis-4-cyanopentanoic acid were prepared using its 
diacid chloride and various hydroxyl and amino compounds. The objective 
was to obtain substances that would act both as initiators for different 
modes of free-radical polymerisation and also as stabilisers for emulsion 
polymerisation reactions carried out in the absence of added conventional 
surfactant. During the preparation of the above compounds, it was 
discovered that 4,4'-azobis-4-cyanopentanoyl chloride appears to exist in 
two different forms called I and II. These forms yielded two different 
forms of esters when reacted with straight-chain aliphatic alcohols. 
These esters are called 'esters A' and 'esters B', respectively. 
Surprisingly, the esters A were found to act as effective 
initiator/stabilisers for the emulsion polymerisation of styrene in the 
absence of conventional surfactant. Unfortunately, during the course of 
the investigation, it was suddenly found to be impossible to prepare 
further batches of acid chloride I, and most subsequent attempts to 
prepare acid chloride I met with failure. The efforts which had been 
made to try to prepare acid chloride I and to elucidate possible structural 
differences between I and II that might account for the observed 
phenomena are described in detail.

The rest of this work is concerned with the study of the behaviour of 
esters derived from acid chloride II and a range of fatty-alcohol 
ethoxylates. Results are given for the use of these derivatives as both 
initiators and stabilisers for the emulsion polymerisation of styrene in the 
absence of added conventional surfactant. The effects of temperature, 
initiator concentration and the total volume of water upon the rate of 
polymerisation were studied. Also, the effects of these variables upon the 
shapes of the conversion-versus-time curves obtained when the esters 
were used as initiator/stabilisers were investigated. The surfactant 
properties of some of the initiator/stabilisers have also been investigated. 
The kinetics of the decomposition of these initiator/stabilisers is also 
included.
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C H A P TE R  O N E

IN TR O D U C T IO N  T O  EM ULSION  P O LY M ER ISA TIO N

1.1. Introduction to polymerisation. Polyrnerisation is a process by which 

a very large covalent structure is constructed from simple compounds. 

The molecular sizes involved are usually thousands of molecular weight 

units. Large molecular structures can be synthesised by two main 

processes:

( 1 ) condensation polymerisation;

(2) addition polymerisation.

Condensation polymerisation^^^ takes place by a step-growth mechanism 

and the reactions involved are entirely analogous to condensation 

reactions in low molecular-weight compounds. In polymer formation the 

condensation takes place between two polyfunctional molecules, with the 

elimination of a small molecule, such as water.

Addition polymerisation involves a chain-growth mechanism in which the 

chain carrier may be an ion or a free radical. Addition polymerisation via 

an ion can be either cationic or anionic. An example of anionic 

polymerisation is the ring opening of ethylene oxide to form polyethylene 

oxide.

C H ,0  + C H ,C H ^^ ( 2,  2 C H 30C H 2C H 20 '

Substituted ethylene oxides react in the same way:

r c h c : h 2 + O H ' H 0 C H 2C (R )H 0 '

H 0 C H 2C (R )H 0 ' R C H C H « 
\  / 2
O

H 0 C H 2C (R )H 0 C H 2C (R )H 0 '



Cationic polymerisation occurs when the chain carrier is a carbonium ion. 

Typical catalysts for cationic polymerisations are Lewis acids and 

Friedel-Crafts catalysts such as aluminium chloride and aluminium 

bromide. All these catalysts are strong electron acceptors,

BF3 + H2O + (B F^O H )'

enabling the monomer to acquire a proton, e.g..

H"" + (C H 3) 2C =C H 2 (C H 3) 3C^

Anionic polymerisation occurs when the chain carrier is a carbanion. The 

conventional method of initiation of ionic chains involves the addition of a 

negative ion to the monomer with the opening of a bond or ring, e.g..

N H 2 + C H 2=CHX H ^ N C H ^ C H X

Addition polymerisation can also be accomplished using free-radical chain 

carriers. The free radical is capable of reacting to open the double bond 

of an unsaturated monomer and adding to it, with an electron remaining 

unpaired. In a very short time, many more monomers add successively to 

the growing chain until two free radicals react to annihilate each other’s 

growth activity.

Like all free-radical chain reactions, free-radical addition polymerisation 

of unsaturated carbon compounds can be envisaged as occurring via three 

principal steps, namely ( 1 ) initiation, (2) propagation and (3) termination.

The initiation step is the stage of the reaction during which active centres 

are being generated. In the propagation steps, these active centres grow. 

The termination step is the stage of the reaction in which the active 

centres are destroyed. The overall reaction may be complicated by 

various transfer reactions, depending upon the reaction conditions. The 

stages of a free-radical polymerisation can be represented as follows:



(1) Initiation: tlie formation of free radicals:

----- ^2 R-

(2) Propagation: the rapid addition of inonomer molecules to the 

active centre:

R. + M ------- RM-

RM- + M -------- P ^ RMM- etc.

where M represents a molecule of the unsaturated monomer.

(3) Termination; the neutralisation of the active centre. This step

can have two different outcomes:

(a) combination, in which two radicals combine to give one

molecule; e.g.,

R(M ) M- + R(M) M- — ^ R(M ) MM(M) R n m n m

(b) disproportionation, e.g.,

R(M ) M- + R(M) M- ----- ^ ------ ►R(M) M' + R(M) M"n m n m

where M' denotes a monomer unit to which a hydrogen 

atom has been added, and M" denotes a monomer unit 

containing a double bond.

(4) Transfer of a radical. This can occur

(a) to modifier (H X ) —  in some cases this may be the solvent; 

in others it is an added substance:

R(M ) M- + HX n R(M ) MH + X- n

(b) to monomer (M);

R(M ) M* + M n R(M) MH + M- n

i



(c) to polymer (P):

R(M ) M- + P n R(M) MH + P- n

(d) to initiator (I):

R(M ) M* + I- n R(M ) M + I* n

Practically, free-radical polymerisation can be carried out in several 

ways.

(1) An initiator may be added to the monomer and the 

polymerisation carried out in bulk. With this procedure, there are 

problems of exotherm from the reaction and the increasing viscosity 

of the polymerisation mixture as polymerisation proceeds. To 

overcotne these problems of exotherm and high viscosity, a dilution 

medium is usually employed.

(2) The polymerisation can be carried out in a suitable solvent. It is 

then possible that the temperature of the reaction can be controlled 

by allowing the solvent to boil.

(3) The polymerisation can be carried out with the monomer droplets 

suspended in an aqueous medium, yielding the polymer in the form 

of beads which can be easily collected by filtration. The water 

removes the heat of polymerisation and facilitates stirring.

(4) The monomer can be emulsified with water. Again, the water 

controls the temperature and the viscosity. At the end of the 

reaction a latex is produced, i.e., a colloidal dispersion of polymer in 

water.

1.2. Introckjction to the mechanism of emulsion polymerisation. "Fmulsion

polymerisation” is the term which is used to describe one of the processes

employed for some free-radical addition polymerisations of olefinic
(2)monomers • Normally, this polymerisation process takes place in 

reaction systems which are in the form of emulsions, i.e., a dispersion of 

one liquid (in this case the monomer) in a second immiscible liquid^^\ 

although it is not essential that the monomer be dispersed in this way.
(4)

Blackley defines emulsion polymerisation as "an addition polymerisation 

process in which the several concurrent propagating centres are isolated



from one another".

1.2.1. Qualitative picture of emulsion polymerisation. If one considers a 

highly idealised emulsion polymerisation system, it will contain certain 

ingredients. These ingredients, with typical proportions, are as follows:

Ingredient Parts by weight

Dispersion medium 150

Monomer 100

Fmulsifier 5

Initiator 0.5

The dispersion medium is usually water. The emulsifier is not essential, 

although it is a usual ingredient to add to emulsion polymerisation 
reactions.

An emulsifier is a surface-active substance whose molecules usually 

comprise two distinct regions: one is a polar hydrophilic region which has 

an affinity for the aqueous medium, and the other is a non-polar 

hydrophobic region which is water-repellent. When a small portion of the 

surface-active agent is dissolved in the water, the bulk of the emulsifying 

molecules may aggregate together to form small colloidal clusters known 

as "micelles". In these micelles the hydrophobic regions are orientated 

towards the interior of the micelle and the hydrophilic regions are 

orientated towards the water. An average emulsifier micelle will have a 

diameter of approximately 5 nm, and is thus of colloidal dimensions. 

These aggregates are only formed when the concentration of surfactant in 

solution exceeds a certain value. This value is known as the critical 

micelle concentration (c.m .c.).

The initiator is the moiety that undergoes decomposition either 

thermolytically or by a redox-activated mechanism, producing primary 

radicals. Typically radicals are produced at the rate of ca. lO^^ml"^ s"^ 

at 50 C . This rate remains steady throughout the polymerisation as the 

half-life of typical initiators far exceeds the duration of the 

polymerisation reaction. Different kinds of initiators are used; e.g., redox



systems, azo initiators, persulphates, and peroxides. The most efficient 

initiators for emulsion polymerisation are those which are soluble in 

water. Ffficient stirring is desirable for at least the earlier stages of 

emulsion polymerisation. When such a system is studied, the emulsion 

polymerisation is carried out at constant temperature, since the rates of 

most chemical reactions are temperature-dependent. Because oxygen can 

affect the rate of polymerisation, an inert atmosphere, usually nitrogen, 

is often established above the reaction system. At the end of the 

reaction, a latex is produced, i.e., a colloidal dispersion of polymer in 

water. The size of the latex particles produced by emulsion 

polymerisation depends upon the recipe used. This could be between 50 

nrn and 500 nm, but is often in the range 50-150 nm.

Distinct stages —  or "intervals" —  of an emulsion polymerisation reaction 

are often revealed by examining the curve of conversion v ^  time. Figure 

1.1 illustrates the shape of the curve which is often obtained. It reveals 

that the reaction is divided into three distinct "intervals", known 

respectively as Interval I, Interval II and Interval III.

Fig. 1.1; A typical plot of extent of polymerisation 
against time of reaction for an emulsion polymerisation reaction.
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interval I: This is the initial stage of the reaction. It is interpreted as the 

period of the reaction during which particle formation takes place. It is 

often referred to as the "particle nucleation" or "locus-nucleation" stage. 

The number of particles, and consequently the polymerisation rate, 

increases during this interval, htjt eventually particle formation ceases 

(usually at less than 10%  conversion). Thereafter, all radicals generated 

are captured by existing particles.

Interval II; The second interval begins when the number of loci reaches its 

maximum and becomes constant. It normally lasts from the end of 

Interval I until the monomer droplets disappear as a separate monomer 

phase. This second interval is characterised by a constant rate of 

polymerisation, and, in the absence of agglomeration, the number of 

particles is commonly believed to be constant. The monomer 

concentration in the particles is also believed to be approximately 

constant at an equilibrium value which is determined by the size of the 

growing particle^^\ so long as a separate monomer-droplet phase remains. 

The reaction is first-order with respect to monomer concentration during 

Interval II; i.e., the rate is proportional to the monomer concentration. 

Interval II often extends from approximately 10% to about 60% 

conversion. The end of Interval II occurs when the monomer droplets 

disappear as a separate phase.

Interval III; The third interval begins when there is no more monomer to 

diffuse through to the growing polymer. Therefore monomer becomes 

depleted within the particle during this stage of the reaction. Finally 

polymerisation will cease completely when all the monomer in the 

particles has been used up; indeed in some cases it virtually ceases before 

all the monomer has polymerised. The rate of disappearance of monomer 

would be expected to be first-order with respect to monomer 

concentration during Interval III, but the rate of termination may fall to 

such an extent with increasing viscosity of the particles that a gel effect 

may be observed. This will cause a decrease in the termination rate and 

thus an increase in the molecular weight.

The physical state of the emulsion polymerisation reaction system makes 

it easy to control the polymerisation process. Thermal and viscosity



problems are much less significant than in bulk polymerisation. Fmulsion 

polymerisation is also a useful process in that it affords a means of 

increasing the polymer molecular weight without decreasing the 

polymerisation rate.

It is observed that the molecular weight of the polymer obtained by 

emulsion polymerisation is usually considerably higher than that obtained 

by a bulk polymerisation proceeding at the same rate and at the same 

temperature. The reaction in an emulsion polymerisation occurs much 

more rapidly than in the bulk at the same overall rate of initiation, and 

the degree of polymerisation of the product of emulsion polymerisation is 

nearly five times greater than that of the product of bulk polymerisation 

carried out under comparable conditions. To a large extent, the 

molecular weight and polymerisation rate can be varied independently of 

each other.

It is also observed that the surface free energy of the air-aqueous phase 

interface undergoes an increase at a certain stage in the reaction. 

Because of these differences in molecular weight and polymerisation 

rates, the mechanism of an emulsion polymerisation reaction must differ 

in some way from that of the bulk, solution and suspension polymerisation 

systems. What is the reason for these differences between emulsion 

polymerisation systems and other types of polymerisation systems?

According to one theory, when the surface-active agent is dissolved in the 

water, the bulk of the emulsifying molecules aggregate together to form 

micelles. If a water-insoluble monomer is added to this system, a very 

small fraction of the monomer dissolves and goes into solution in the 

water. As only a very small portion of the monomer dissolves in the 

water, polymerisation in the water phase is unlikely to occur to any great 

extent. This does not apply to monomers of high solubility in water. A 

larger, but still small, portion of the monomer enters the hydrophobic 

interior of the micelles. This is known as solubilisation. Because of this, 

many non-polar substances which are almost insoluble in water appear to 

be more soluble in aqueous solutions of surface-active substances. 

According to this theory of emulsion polymerisation, solubilisation is of 

critical importance, since it is believed that initially polymerisation takes
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plsc6 insid0 th6s© solubilised clustors. But a large part of the monorner is 

dispersed as monomer droplets that are believed to be stabilised by 

emulsifier adsorbed on their surfaces. The droplet size of the original 

dispersed monomer is at least one order of magnitude greater than the 

final latex particles. Experiments have been carried out to show that the 

monomer droplets are not an important locus of polymerisation, at least 

when water-soluble initiators are used. However, it is known^^^ that 

under certain conditions, namely ( 1) that the monomer contains dissolved 

polymer, (2) that an oil-soluble initiator is used, and (3) that the monomer 

droplets are small^^^ and numerous, monomer droplets can be the principal 
loci of reaction.

In the ideal system, it is assumed that the initiating free radicals are 

generated exclusively in the water phase. Within a very short time, 

radicals will meet the monomer-swollen micelles in which the 

polymerisation then starts. After initiation, therefore, a new phase is 

produced, namely, a polymer latex particle swollen with monomer. The 

monomer within the micelle is quickly used up, and more monomer 

diffuses into the micelle from the surrounding water phase. In order to 

maintain equilibrium, monomer diffuses out of the monomer droplets and 

goes into solution. Thus the principal function of a monomer droplet is to 

act as a reservoir of monomer from which it can diffuse through the 

water phase to the growing latex particles.

After initiation, polymerisation inside the micelles proceeds rapidly and 

the latex particles grow from within. Increasing amounts of emulsifier 

are adsorbed on the surface of the growing latex particles. This 

emulsifier functions as a colloidal stabiliser, preventing the latex 

particles from flocculating; i.e., the adsorbed layer which surrounds the 

particles prevents them from coagulating to form the thermodynamically 

more stable flocculated state. This in turn tends to cause the remaining 

micelles to dissociate, their molecules in consequence dissolving in the 

water phase. Thus, as polymerisation proceeds, micellar soap becomes 

adsorbed soap. Finally no micelles are left, since the concentration of 

emulsifier in the aqueous phase has been reduced to below the critical 

micelle concentration. At this point, the surface free energy of the air- 

aqueous phase interface increases. According to conventional theories of



emulsion polymerisation, at this point the number of latex particles is 

fixed and further polymerisation occurs only inside the latex particles.

Although the theory that particle nucléation occurs by the micellar 

mechanism is attractive and accounts for some of the experimental 

observations, it can not explain why emulsion polymerisation occurs in the 

absence of added surfactant. The mechanism of particle formation under 

such circumstances and also for relatively water-soluble hydrophilic 

monomers is believed to be what is now generally called "homogeneous 

nucléation". According to this theory, polymerisation initially takes place 

in aqueous solution. This is followed by precipitation of the polymer in a 

colloidal form. During the early stages of polymerisation, soluble 

oligomeric free radicals exist in solution. These would ultimately grow to 

some critical size above which they would precipitate out to form primary 

particles in which the subsequent polymerisation takes place.

The growing latex particles are continually supplied with monomer which 

diffuses through the aqueous phase from the monomer droplets. These 

droplets gradually decrease in quantity as the polymerisation proceeds, 

until at a conversion of about 60% they disappear completely. From this 

point on, the monomer in the latex particles is gradually used up and the 

rate of conversion of monomer to polymer will gradually fall off until no 

further appreciable reaction is taking place.

1.3, Role of the surfactant in emulsion polymerisation reactions.

Originally, it was believed that the main function of the surfactant in 

emulsion polymerisation reactions was to provide micelles in which 

nucléation of particles could occur. The secondary functions of imparting 

colloidal stability to the particles and of helping to emulsify the monomer 

droplets were also recognised. When particle nucléation occurs in the 

absence of micelles, and when the concentration of added surfactant is 

insufficient to form micelles, the likely major role of the added 

surfactant is to stabilise the particles and the polymer molecules from 

which they are formed.

Surfactants can be generally divided into two main groups: (i) ionic, and 

(ii) non-ionic. Ionic surfactants are anionic, cationic or amphoteric salts.
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such as carboxylic-acid salts, quaternary ammonium salts, and compounds 

which have amino and carboxylic-acid groups in the same rnolecule^^\ 

Figure 1.2 shows how these ionic surfactants stabilise the polymer 

particles. Amphoteric surfactants contain both acidic and hydroxylic

groups. They usually act as cationic surfactants in acid media and as
(9)anionic surfactants in alkaline media.

Figs. 1.2a and 1.2b: Graphical representation of 
surfactant molecules surrounding polymer particles. 
Fig. 1.2a shows an anionic surfactant; Fig. 1.2b, a cationic surfactant.

Non-ionic surfactants comprise compounds such as the esters of 

polyalcohols and the ethoxylates and ethoxylate-propoxylates of alkyl and 

alkylaryl condensates, compounds which can contain one or more active 

hydrogen atoms. These compounds can exert the solubilising action 

described in section 1.2.1. above^^^\ The most common anionic 

surfactants contain either an alkyl or an alkylphenyl group as the 

hydrophobic portion and a long polyoxyethylene or polyoxyethylene- 

propylene chain as the hydrophilic portion. The polar portion of such a 

non-ionic surfactant consists of a long, uncharged chain which is much 

bigger than the hydrophobic group. Therefore it is not surprising that the 

solution properties of these surfactants are quite different from those of 

the ionic surfactants from which the classical ideas of micellar behaviour

11



and structure were derived.

Possible structures for the micelles produced with non-ionic surfactants 

have been put forward by Dennis et These include non-classical

micellar structures, such as oblate ellipsoids, and classical spherical 

micelles, in which part of the polyalkylene oxide chain extends into the 

hydrophobic region, giving rise to a less well-defined interface region.

How stability is conferred on latices where only non-ionic surfactants are 

used will be discussed later when the theories of colloid stability are 
reviewed.

It can be deduced from the foregoing discussion that the balance between 

the hydrophobic and the lipophobic portions of the molecule will be 

crucial in determining the behaviour of non-ionic surfactants. Methods of 

measuring the hydrophobic-lipophobic balance (H LB) which can be used 

under certain conditions to check and measure the efficiency of non-ionic 

emulsifiers are described by Blonchard . A definition of hydrophobic- 

lipophobic balance is given by Bourrel et al^^^^ as follows;

HLB value -  :̂ent ethylene oxide
5

Non-ionic emulsifiers are used because they exhibit useful characteristics. 

The effectiveness of ionic emulsifiers can be dependent upon the pH of 

their environment, whereas the behaviour of non-ionic surfactants is 

virtually independent of pH. Another advantage of non-ionic emulsifiers 

is that they do not form insoluble precipitates in the presence of heavy 

metal ions. The disadvantage of non-ionic emulsifiers is that, while 

soluble at room temperature, they are often insoluble above a certain 

critical temperature. This inverse solubility phenomenon can be 

troublesome.

1.4. Emulsifier-free emulsion polymerisation. Although the role of a 

surfactant is important in conventional emulsion polymerisation reactions, 

the presence of an added surfactant is not essential for emulsion 

polymerisation to occur. Several workers, for example Goodwin et al^^^\ 

have obtained monodisperse polystyrene latices by emulsion

12
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polymerisation in the absence of added surfactant, using potassium 

persulphate as initiator. The particles are stabilised as a colloidal 

dispersion by surface groups derived from the initiator. These groups are 

an integral part of the particle and are not removed by dialysis. 

Conductimetric titrations reveal the presence of sulphate, carboxyl and 

hydroxyl groups on the particle surfaces. Goodall et al^^^^ have studied 

the emulsion polymerisation of styrene in the absence of emulsifier, using 

a persulphate compound as initiator. They find nucléation and growth 

processes similar to those found during the initial stages of conventional 

emulsion polymerisation. In a subsequent paper, Goodall et al^^^^ discuss 

the mechanism of emulsion polymerisation of styrene.

In the case of surfactant-free emulsion polymerisations, the polymer 

content of the resultant latices is much lower than those of latices 

produced by conventional emulsion polymerisation (approximately 5%  is 

typical of surfactant-free emulsion polymerisations) and the particles are 

large (ca. 500 nm is typical).

Fitch and Kasargod^  ̂ have synthesised disodium-bis-(4- 

sulphomethylbenzoyl) peroxide, and this has been used as an initiator for 

the emulsion polymerisation of styrene in the absence of added emulsifier.

1.5. Initiation in emulsion polymerisation reactions. Initiation is defined 

as the process or processes by which a propagating centre is generated in 

an addition polymerisation reaction system. In emulsion polymerisation 

reactions, the initiating species can be formed by:

(a) the decomposition of initiator in the aqueous phase to yield 

initiator radicals;

(b) the reaction of initiator radicals with water molecules to form 

other radicals;

(c) the reaction of initiator radicals with monomer molecules 

dissolved in the aqueous phase;

(d) the transfer of radicals from the oligomeric propagating centres 

in the aqueous phase to the polymerisation loci.

If the initiator is oil-soluble, the production of initiating radicals can also 

occur in the monomer droplets. A great variety of initiators can be used
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in emulsion polymerisation reactions. In all cases, the effectiveness of an 

initiator depends upon the liberation of active free radicals. These active 

free radicals are produced by either of two means;

(1) By thermal decomposition of the initiator; The most commonly 

used initiators are those containing a peroxidic bond ( - 0 - 0 -), where 

the initiation step takes the form ROO R '--------- -- RO* + ‘OR'.

One very important initiator which is widely employed in emulsion 

polymerisation is the persulphate ion, which may be used as the 

sodium, potassium or ammonium salt. It is represented as 

decomposing thermally to give sulphate ion radicals as the initiating 
species;

---------------- ^2 - S O -

However, the production of sulphate groups is dependent upon the 
(18)pH of the system^ .

No such restrictions apply to azo compounds. One commonly 

encountered initiator is 2,2*-azobisisobutyronitrile:

C H , C H ,
I ^ I ^

C H ,-C -N = N -C -C H ,
I 5

C N  C N

2 C H ,-C *
^ I

+ N,

CN

The above initiator is oil-soluble. An example of a water-soluble 

azo initiator is 4,4'-azobis-4-cyanopentanoic acid sodium or 

potassium salt;

C N  C N
+- ' I

K O ^ C C H 2C H 2C -N = N -C C H oC H oC O o K
I
C H I

3 C H ,
■2""’ '2'^""2

2 0 < ,C CH ,C H ^C - + L L
C H ,
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The above initiator is water-soluble, and the rate of decomposition 

to give free radicals is independent of pH .

(2) By interaction between a reducing and an oxidising agent; These 

are known as "redox*' initiating systems. They comprise two or more 

substances whose mutual interaction produces free radicals which 

are able to initiate polymerisation, e.g.,

^ 2^2 *
2 + HO - + HO" + Fe 3+

The production of free radicals alone is not the only consideration to be 

borne in mind when choosing an initiation system. The initiating species 

should have a solubility such that the distribution between the aqueous 

and the organic phase makes them available for initiation in the 

appropriate locus. If it is too water-soluble, the free radicals produced 

may have difficulty in reaching the locus of polymerisation. If it is too 

soluble in the organic phase, too many radicals may enter the swollen 

micelles and excessive termination may prevent polymer of high 

molecular weight from being formed.

1.6. Objectives and original plan of the present investigation. During a 

research project carried out previousIy^^^\ the writer discovered that 

certain straight-chain esters of 4,4'-azobis-4-cyanopentanoic acid not only 

acted as initiators of free radical polymerisation but also as stabilisers for 

latices produced by emulsion polymerisation of styrene in the absence of 

added conventional surfactant. It was clear that this was an interesting 

observation which merited further investigation.

The objective of this investigation was the synthesis of a range of 

compounds which might simultaneously function as emulsifiers and 

initiators for emulsion polymerisation reactions based upon derivatives of 

4,4'-azobis-4-cyanopentanoic acid. Initially, straight-chain esters of 

varying chain length were synthesised by reacting 4,4'-azobis-4-  

cyanopentanoyl chloride with hydroxyl compounds. In order to investigate 

further the effect of structural variations, straight-chain esters were 

synthesised from various other hydroxyl compounds. Aromatic derivatives 

were also synthesised from aromatic compounds which contain various
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numbers of hydroxyl groups. In addition, a range of esters derived from a 

range of commercia! fatty-alcohol ethoxylates were prepared and 

evaluated. The ethoxylates used were those supplied by ABM Chemicals 

as the "Texofor A" series. They are elhoxylates derived from a mixture 

of cetyl and oleyl alcohols. The ethoxylates are therefore compounds in 

which two distinct regions can be distinguished: one hydrophobic, derived 

from the cetyl/oleyl alcohol, and the other hydrophilic, derived from the 

chain of ethylene oxide units. It is well-established that the ether chains 

act as a hydrophilic moiety.

C N  CN 
I i

2 C^7H33(0C2H^)^0H + C10CCH2CH2C-N=N-CCH2CH2COCl

C H 3 C H 3

C N  C N
Ci7H„(OC2H^)n02CCH2CH2C-N=:N-CCH2CH2CQ2(C2H^O)^C^7H33

C H 3 C H 3

2 HCl

Amides were also synthesised by reacting long-chain amines with 4,4'- 

azobis-4-cyanopentanoyl chloride. It was of interest to compare the 

results of the emulsion polymerisation of styrene using these compounds 

with those obtained using the straight-chain esters, since the only 

difference between the two compounds is an N -H  linkage instead of an 

oxygen linkage. Amide acids were the next type of compounds whose 

preparation was attempted, since the sodium or potassium salt could be 

readily synthesised to give ionic, water-soluble compounds.

Finally the synthesis of derivatives of hydroxy acids was attempted. Once 

the hydroxy acids were obtained, the corresponding esters could be readily 

synthesised. The sodium or potassium salt would yield ionic derivatives.

An assessment was made of the effectiveness of all these compounds as 

initiators for

(1 ) bulk polymerisation of styrene;

(2) conventional emulsion polymerisation of styrene, i.e., an 

emulsion polymerisation in which a standard surfactant was also
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present;

(3) surfactant-free emulsion polymerisation of styrene.

It was proposed that, when the results of the above programme were 

available, suitable compounds would be selected for more detailed study 

of their behaviour as initiators for emulsion polymerisation. This more 

detailed study would include investigation of the kinetics of emulsion 

polymerisation of styrene, where the selected compounds would be used as 

initiators/stabilisers in the absence of added surfactant.

1.7. Summary of the alcohols and amines used in preparing the esters and 

amides of 4,4'-azobis-4-cyanopentanoic acid. Below is a list of these 
alcohols and amines.

ethanol

nonanol

decanol

undecanol

hexadecanol

octadecanol

ethylene glycol

trimethylol propane

pentaerythritol

C^H^OH

C10H21OH

C11H23OH

C 16H 33OH

^ 1 8 ^ 3 7 ° ^
H O C H 2C H 2OH

CH2OH
CH,CH„CCH^OH3 Z I 2 

CH2OH

CH2OH
HOCH,CH,CCH„OHL 2 I 2

CH2OH

cyclohexanol ■OH

phenol OH

resorcinol OH
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phloroglucinol

o-benzoic acid

£-benzoic acid

decylamine 

dodecylamine 

tetradecylamine 

decylammonium salt 

ricinoleic acid

OH

C 12H 25N H 2 

C^^H29NH z 

C i q H z i N H 3 O 2C

C H 3(C H 2)5C H (0 H )C H 2C H = C H (C H 2)2C 0 2 H 

1 1 -hydroxyundecanoic acid 

fatty-alcohol ethoxylates

where n = 2, 4, 6, 10, 14, 24, 

30, 45, 60

H 0 (C H 2)jq C 0 2 H

1.8, Outline of the progress of the investigation. All the esters

enumerated in the previous section and all the amides have been

synthesised using 4,4*-azobis-4-cyanopentanoyl chloride and the

appropriate alcohol or amine. However, the synthesis of the amide acids

could not be accomplished. The synthesis, like those of the esters, had to

be carried out at room temperature, because the azo group in 4,4'-azobis-

4-cyanopentanoic acid decomposes slowly at room temperature and
(19)rapidly at higher temperatures . Furthermore, the amino acids are 

soluble in water and glacial acetic acid only. Because acid chlorides of 

high molecular weight react very slowly with water, amide acids of high 

molecular weight have been synthesised from aqueous solution^^^^\ 

Nevertheless, the application of this method in this particular case did not 

yield the desired product. Solid-phase reaction too was attempted, but 

without success.

All the compounds synthesised were used in the emulsion polymerisation 

of styrene (i) in bulk polymerisation, (ii) in the presence of a conventional 

surfactant and (iii) in the absence of added surfactant. Chapter Five
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describes the synthesis of the compounds and gives the results of the 

polymerisation experiments and the conclusions drawn from them. The 

nonyl, decyl, undecyi and hexadecyl esters behave as stabilisers, giving 

very monodisperse latices. Although the esters varied considerably in 

their capacity to act as stabilisers, all the compounds synthesised at this 

stage behaved as initiators for emulsion polymerisation in the presence of 

a surfactant, and almost all of the esters initiated bulk polymerisation.

However, after the completion of this preliminary investigation, the time 

came to choose suitable compounds for detailed study of their properties. 

It was then found that, although the straight-chain esters for more than a 

year had been yielding monodisperse latices in the absence of 

conventional surfactants, they now failed to produce latices. 

Furthermore, no polymerisation took place at all. The problem appeared 

to lie in repeating the preparation of the acid chloride. Chapter Five 

deals with the attempts which were made to synthesise the original 

compounds again. This was never achieved. As a consequence, the 

original programme had to be modified. These modifications are 
summarised below.

1.9. Objectives and plan of the present investigation. Using this second 

type of acid chloride, a second range of esters was prepared. The esters 

derived from the "Texofor A" series of ethoxylates were the only type of 

ester synthesised that yielded stable latices when used in the

polymerisation of styrene in the absence of added conventional 
surfactant.

The first step was the synthesis of the esters of a range of "Texofor A" 

ethoxylates which varied in respect of the average number of ethylene 

oxide units per mole of hydrophobe base in the ethoxylate. The average 

number of ethylene oxide units per molecule varied from two to sixty. A 

preliminary study was carried out to establish the effectiveness of these 

compounds as initiators for emulsion polymerisation in the absence of 

added conventional surfactants. The most suitable examples were chosen 

for more detailed study of their behaviour. In particular, a study was 

made of the kinetics of the emulsion polymerisation of styrene initiated 

by these compounds in the absence of added conventional surfactant. The
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iriLention was to study the effect of the following variables:

(1) The effect of temperature upon the rate of polymerisation;

(2) The effect of ester concentration upon the rate of

polymerisation;

(3) The effect of phase ratio upon the rate of polymerisation;

(4) The stability of the latices produced;

(5) The molecular weight of the polymer produced;

(6) The particle size of the latex produced and its variation with
time.

In addition, the rate of decomposition of the azo group in the ethoxylate 

esters was also studied. The effect of temperature upon the solubility of 

the ethoxylate esters in water was also investigated, since it is known 

that fatty-alcohol ethoxylates show the phenomenon of reverse solubility. 

Finally, surface tension experiments were carried out in order to 

determine the critical micelle concentration, if any, of the fatty-alcohol 

etboxylates in water. It was hoped that the results of the above 

investigation would throw some light upon the mechanism of the kinetics 

of styrene emulsion polymerisation, where the initiator and the emulsifier 

are combined in the same molecule, and when no added conventional 

surfactant is present.
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C H A P T E R  TW O

TH EO R IES O F E M JL S IO N  P O LY M ER ISA TIO N

2.1. Introduction. The early investigations into the possibility of emulsion 

polymerisation probably had their origin in the desire to synthesise 

materials analogous to natural rubber latex. Relatively little progress 

was made in the utilisation of emulsion polymerisation for several years 

following the initial discovery of the reaction at the beginning of this 

century. By the early 1930's, emulsion polymerisation had established 

itself as the preferred method of polymerisation in many cases, 

particularly for the preparation of synthetic rubbers.

Fikentscher is usually regarded as the first person to have realised that 

the principal locus of emulsion polymerisation reactions is not the 

monomer droplets but somewhere in the aqueous phase^^^^’ Harkins was 

the first to describe qualitatively a mechanism for emulsion 

polymerisation . According to the Harkins theory, micelles containing 

solubilised monomer are the initial loci of polymerisation.

(23)
Smith and Ewart then used the Harkins qualitative mechanism as the 

basis for their quantitative theory. The Smith-Ewart theory has two 

distinct aspects to it: (1) prediction of the number of particles formed by 

micellar nucléation, and (2) kinetics of free-radical polymerisation 

occurring within a large number of separate loci with the possibility of 

exchange of radicals between reaction loci and the external phase. 

Modifications and extensions of the general Smith-Ewart theory have been 

carried out by several workers^^^"^^\ most of whom have accepted the 

basic concepts of the Smith-Ewart theory but have rejected some of the 
original assumptions.

Grancio and Williams^^^*^^^ have claimed that the polymerising latex 

particle is not homogeneous, presumably because of restrictions on the 

diffusion of monomer to and within the particle. They therefore proposed 

a heterogeneous "core-shell” tnodel for which a monomer concentration 

gradient exists within the particle. This proposal has been questioned by 

Napper^^^^ and by Gardon^^^^.
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The view that particles are nucleated by a micellar mechanism, as 

postulated by Harkins and by Smith and Fwart has also been disputed. An 

alternative view is that the presence of micelles is not important as such 

for nucléation in emulsion polymerisation reactions. According to this 

view, the polymer particles are formed by the collapse of polymer 

molecules which have been formed by polymerisation in the aqueous 

phase. Priest , Roe and Fitch^ are the names associated with

this mechanism of particle formation, which is known as "homogeneous 
nucléation".

Because of the complexity of emulsion polymerisation, it has proved 

impossible to construct an adequate general theory. The existing theories 

are not able successfully to account for many of the reported data.

2.2. The Harkins theory. The most important qualitative theory of 

emulsion polymerisation is that of Harkins^^^\ published in 19A5. In this 

paper he proposed that the principal locus for the initiation of polymer 

particle nuclei was the soap micelles. In a second paper^^^\ the same 

author pointed out that new evidence had been found to show that the 

principal function of a monomer droplet was to act as a reservoir of 

monomer from which it diffuses through the water phase to the micelle.

In two subsequent papers^^^*^^\ Harkins developed a theory for emulsion 

polymerisation. The main points are summarised below:

(1) In emulsion polymerisation using relatively water-insoluble 

monomers, e.g., styrene, all the polymer particle nuclei are initiated 

in the interior of the soap micelles.

(2) The monomer present in the micelle is insignificant in amount in 

comparison with the polymer produced. Therefore the monomer 

must diffuse from the monomer droplets to the micelles as 

polymerisation proceeds.

(3) A free-radical polymerisation mechanism is assumed.

(4) The function of the monomer droplets is to act as reservoirs of 

monomer.

(5) Very little polymer is formed in the water phase. The free 

radicals are produced in the water phase. They collide with other 

single molecules of this type much less frequently than with
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micelles. Therefore, the slow rate of polymerisation in soap-free 

water as compared to that in micellar solutions is explained as being 

a consequence of the much smaller number of polymer particles 

present at any time in the soap-free system.

(6) Growth of the polymer-monomer particle leads to an increase in 

its surface area. It therefore tends to adsorb molecular emulsifier 

from the aqueous phase. This in turn leads to the dissociation of 

micelles containing monomer in which polymerisation has not 

started. Continual adsorption of micellar emulsifier onto growing 

polymer-monomer particles eventually leads to the disappearance of 

micellar emulsifier as such. This stage is reached relatively early in 

the reaction (approximately between 10 and 20% conversion). Also, 

the disappearance of the micelles is assumed to imply the cessation 

of particle nucléation.

(7) Continual diffusion of monomer into growing polymer-monomer 

particles eventually leads to the disappearance of the monomer 

droplets as a separate phase. This happens after the micellar 

emulsifier has disappeared. In consequence, the system now 

contains only monomer-swollen polymer particles dispersed in the 

aqueous phase.

It was the above qualitative theory developed by Harkins that served as a 

basis for the quantitative theory developed by Smith and Ewart.

2.3. The general Smith-Ewart theory. Smith and Ewart^^^^ gave the 

following quantitative treatment of polymerisation occurring in a large 

number of separate loci, exchange of radicals possibly occurring between 

the reaction loci and the external phase. Consider a system which
3

consists of 1 cm of dispersion medium (usually water), having suspended 

in it N  number of actual or potential loci, each of which has a volume V 

and an interfacial area a. Suppose that free radicals are initiated only in 

the external medium. The rate of entrance of free radicals into a single 

locus will be

dn o ' 
dt ^ ^ (2. 1)
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where p  is the overall rate of entrance of radicals into all the N loci, and 

n is the number of radicals in one locus. The rate of transfer out of a 
locus is written as

( 2. 2)dn/dt = -  a (n/V)

where is the rate constant for the process, (n/V) is the concentration of 

free radicals in a locus, and a is the interfacial area through which 

transfer takes place. If destruction of free radicals takes place by mutual 

termination only, then the rate of destruction in a given locus is

dn/dt = -  2 kj, n [(n -  1)/V] (2.3)

The factor 2 arises because two free radicals are destroyed for each 

termination. In this equation, k  ̂ is the rate constant for mutual 

termination, and (n -  1)/V is the concentration of free radicals with which 

any one of the n free radicals in a locus can react. Smith and Ewart 

derived the following steady-state equation for the number of loci 

containing various numbers of propagating radicals:

Nn.iiPS'N) ♦ N̂ ĵk̂ aKn+D/V] . =
N ^|(P^N) .  k^ain/V) .  k^n[(n-l)/V]| (2.a)

This equation is derived on the assumption that, in the steady state, the 

rate of formation of reaction loci containing n free radicals is equal to 

the rate of disappearance of these loci.

Smith and Ewart considered the solution of these equations for three 
limiting cases:

Case 1, for which n «  1 where n is the average number of

Case 2, for which n S 0 .3  free radicals in a polymer particle

Case 3, for which n »  1

Case 1 is applicable in situations where the rate at which radicals are 

transferred out of the loci by diffusion is great compared with the rate at 

which they are gained from the aqueous phase. Case 2 will apply if (a) 

there is no readily available mechanism by which the activity of the 

growing radical can be transferred out of the polymerisation locus, and (b) 

mutual termination of a propagating centre occurs almost instantaneously 

when a second radical is acquired by the locus. Case 3 will occur if
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radicals enter the loci much more rapidly than they are destroyed by 

mutual termination. The rate law obtained for reaction systems 

conforming to Case 3 is exactly equivalent to that observed with 

reactions taking place in the oil phase and hence does not depend upon the 

size of the reaction loci. The results obtained for the emulsion

polymerisation of styrene are best explained by assuming conformity to 

Case 2, where the number of free radicals per reaction locus is 

approximately 0.5. According to Smith and Fwart, the features of Case 2 

explain the extraordinarily high rates of polymerisation and high 

molecular weights which are obtainable by emulsion polymerisation. The 

fundamental equation for the overall rate of polymerisation is remarkably 

simple, since it involves only the rate of polymerisation of a free radical 

and the number of reaction loci present. The rate of polymerisation 

during Interval II for reaction systems conforming to Case 2 is given by

Rp = k kp[M] N (2.5)

where is the rate of polymerisation, kp is the rate coefficient for the 

propagation reaction, [M ] is the monomer concentration in the particles, 

and N is the number of particles in a unit volume of the reaction system.

In order to find the total number of particles formed by micellar 

nucléation. Smith and Fwart considered how effective a given interfacial 

area is in collecting radicals from the dispersion medium. If the ordinary 

laws of diffusion hold, then the number of radicals entering a particle will 

be proportional to the radius of the particle. Hence the number entering 

a given area will be inversely proportional to the radius of the particle. 

This makes the problem rather complicated. However, the problem can 

be solved by considering separately two idealised situations, one of which 

should give too many particles and the other of which should give too few 

particles. Rather surprisingly, the two results are not greatly different. 

The actual situation lies somewhere in between.

2.3,1, Case of too many particles. For the case of too many particles, it 

is assumed that the very small micelles capture all the free radicals 

generated in the external phase, as long as micelles are still present. This 

will give a greater number of particles than are actually formed. The
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expression for the number of particles obtained is 

N = 0.53 ( 2. 6)

where p  is the rate of formation of free radicals per unit volume, p is the 

growth rate (dV/dt) of a single polymer particle, S is the total amount of

emulsifier associated with a unit volume of aqueous phase, and a is the
s

interfacial area occupied by a unit mass of emulsifier.

2.3.2. Case of too few particles. The other idealised situation is that in 

which it is assumed that a given interfacial area always has the same 

effectiveness in collecting free radicals regardless of the size of the 

particle on which it is situated. This will give too few particles, because 

a given area on a very small particle will be more effective than the same 

area on a larger particle. The expression obtained for the number of 

particles in this case is;

N = 0.37 (P/p)^/^(a (2.7)

This equation is identical with the equation derived for the case of too 

many particles, except for the constant. Thus the correct solution for the 

real situation is presumed to be:

N = k (P lv .)^ '\a s (2. 8)

where 0.37 < k < 0.53.

2.3.3. Cases 1 and 3 of the Smith-Ewart theory.

2.3.3.I. Case 1. This case considers the consequences when the average 

number of radicals per particle (n) is very much less than unity. This 

situation will occur if the rate at which radicals are transferred out of 

loci by diffusion is great compared with the rate at which they are gained 

from the aqueous phase. Under such conditions, for termination of 

radicals taking place mainly in the aqueous phase, the rate of 

polymerisation is given by

Rp = kp[M]Vpay(p/2k^) (2.9)
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where ¡s the total volume of dispersed polymer per unit volume of

aqueous phase, and a , given by c /c , denotes the partition coefficientp w
for radicals between particles and aqueous phase, where c and c are the

p w
average concentrations of free radicals in the polymer particles and in the 

water, respectively.

Alternatively, if the termination takes place in the polymer particles, the 

rate of polymerisation is given by:

= k
P P

[M ]yCPV p/2k^a) ( 2. 10)

In equation (2.5), the rate of polymerisation for reaction systems 

conforming to case 2 is directly proportional to N. However, for case 1 

the situation is more complex. Equation (2.9) predicts first-order 

dependency of rate upon the total volume of the polymer particles, the 

rate being independent of the number of particles; equation (2.10) predicts 

that the rate of polymerisation is proportional to the square root of N.

2.3.3.2. Case 3, For this case, n, the average number of initiating radicals 

per reaction locus, is considerably greater than unity. This situation will 

occur if radicals enter the loci much more rapidly than they are destroyed 

by mutual termination. The overall rate of polymerisation per unit 

volume of aqueous phase for this case is given by:

R- = k [M] J ( P V  /2k̂ ) ( 2. 11)

Under these conditions, the rate depends only upon the total volume of 

the polymer particles, and not upon the number of particles into which 

that volume is subdivided. The system is then effectively a suspension 

polymerisation in which the free radicals are supplied from the external 

phase.

2.3.4. Validity of the Smith-Ewart model. The Smith-Fwart theory is

valid only for a limited number of cases^^\ The theoretical predictions of

Case 2 have been confirmed for the emulsion polymerisation of styrene by

some workers, while others have found significant variations. 
(47)Vanderhoff has concluded that the Smith-Fwart Case 2 is followed for 

particle diameters of 100-150 nm or smaller at lower rates of radical 

initiation (e.g., by the persulphate ion at 50°C or lower). A t larger
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particle sizes, or with greater rates of radical generation, the deviation 

becames significant. This model presumes a number of inherent 

conditions, and in order to get a more realistic model, corrections have to 

be made to compensate for the unreality of these assumptions.

The following are some conditions which are assumed as the basis of the 

Smith-Fwart model, and which are not necessarily met in practice:

(1) Polymerisation proceeds exclusively in the monomer-swollen 
micelles.

(2) The initiator is soluble only in the external phase, and its half- 

life is considerably greater than the duration of the reaction.

(3) Fntry of a second initiating radical into a particle containing a 

propagating polymer chain results in instantaneous bimolecular 
termination.

(4) All particles are of identical size and grow at constant absolute 

rate, i.e., dv/dt is constant.

(5) A well-defined transition exists between nucléation and growth 
stages.

(6) Surfactant emulsifies the monomer efficiently, and is well 
adsorbed by the particles.

(7) Polymerisation loci are nucleated until all micellar surfactant 

has disappeared, and fresh particles are neither formed nor lost by 

coalescence after nucléation is complete.

(8) The monomer is a good solvent for the polymer and the growing 

particle is homogeneous.

2.4. The Gardon theory. A revised theory based on an extension of the 

assumptions first proposed by Smith and Ewart, and also by Haward, has 

been proposed by Gardon^^®^ It differs from the earlier theories in that 

the relationships derived are strictly quantitative and contain no 

adjustable parameters. Also, the validity limits of the prediction are 
defined.

For very short reaction times, the variation of conversion with time in 

Interval I is predicted to be

P = 0.351 (k /N . ) i d J d J é R t  p A  m p m ( 2. 12)
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where ¡s the rate coefficient of propagation, is the Avogadro 

number, and dp are the densities of monomer and polymer

respectively, is the volume fraction of monomer in the particle, R is 

the number of radicals produced per unit volume of water per unit time, 

and t is the time of reaction. Thus, while the particles are nucleating, the 

conversion is proportional to the initiator concentration and to the square 

of the time. The result obtained for the number of particles per unit 

volume, N, formed during Interval I is

N = 0.208 (R/K)°*^ (2.13)

where K is the rate of change of particle volume = d (r’ )/dt, and Aj is the 

polymer-water interfacial area. During Interval II, for Smith-Fwart Case 

2 the rate of polymerisation is independent of conversion and is given by

Rp = 0.435 (1 - (KAj)°-^ R°*^ (2.14)

The rate of polymerisation is of the order of 0.6 with respect to the 

emulsifier concentration, and of the order 0.4 with respect to the 

emulsifier concentration. These orders were also predicted by the Smith- 

Fwart theory. The rate of termination is expressed in terms of n, the 

number of radicals per particle, as follows:

dn/dt = (R/N) -  (k^/VN^) n (n -  1) (2.15)

In this equation, (R/N) is the average rate of entry of radicals into a given 

particle, V is the volume of the monomer-swollen particle, and is the 

rate coefficient for the mutual termination of radicals. According to 

Gardon, since the particle volume increases with time, the termination 

rate decreases with time and so there is no steady-state as postulated by 

the Sm ith-Fwart theory. Furthermore, since, at constant rate of 

initiation, the termination rate decreases, n must increase with time and 

there should be no constant conversion rate in Interval II. The conversion

time relation is predicted to be:

R„ = At* + Bt 
P

(2.16)
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On the basis of this non-steady state solution, the average number of 

radicals per particle is found to be:

n = 0.5 [1 +(4A/B*) Rp]°*^ (2.17)

The Gardon theory predicts that the distribution of radicals amongst 

particles broadens with increasing n or with increasing conversion. Since 

particle growth is proportional to n, this distribution also defines the 

distribution of growth rates. In principle, the particle-size distribution 

could be calculated from the growth-rate distribution. With increasing 

conversion, more and more particles will be found which grow much 

slower or much faster than the average, and therefore the particle-size 

distribution will broaden with increasing conversion. The Gardon theory 

also predicts that, with increasing conversion, the molecular weight 

should increase in Interval II, should reach a maximum at the onset of or 

during Interval III, and should subsequently decrease.

2.5. The Medvedev theory. The theory developed by Medvedev^^^*^^^ 

attaches little importance to the number of particles initiated. Instead, it 

is the adsorbed emulsifier layer which is regarded as the principal locus 

for particle initiation. Thus, the most important parameter is the total 

surface area stabilised by adsorbed emulsifier. The polymerisation rate is 

not affected by the transition of emulsifier from the micelles to the 

surface of the monomer-polymer particles. If the amount of emulsifier is 

insufficient for stabilisation after the disappearance of micelles, then the 

polymer particles agglomerate to a limited extent, thus reducing the total 

surface area. Medvedev developed kinetic expressions for the cases in 

which the initiator is either water-soluble or oil-soluble.

For the case of water-soluble initiators, he distinguished between the 

cases in which the primary radicals are formed in the aqueous phase or in 

the adsorbed emulsifier layer. Medvedev derived the following equation 

for the rate of disappearance of monomer:

-d[M]/dt = k [M ] 
P [S] (2.18)

where kp denotes the rate of polymerisation, [M ] the monomer
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concentration in the monomer-polymer particles, and [S] the surfactant 

concentration, is the rate of production of radicals from the adsorbed 

initiator molecules; is the rate of transition of the initiator molecules 

from the external phase to the adsorbed phase; k  ̂ is the rate of 

termination of two growing polymer chains, and is the rate at which 

initiator molecules transfer from the adsorbed phase to the external 

phase. [I] is the total initiator concentration.

In the case of an oil-soluble initiator, the difference lies in the fact that 

the initiator does not pass into the adsorption layer from the aqueous 

phase but from the bulk of the polymer particles. The concentration of 

monomer and initiator in the adsorption layer will, to a first 

approximation, be equal to, or at least proportional to, the concentration 

within the polymer particles.

2.6. The core-shell model. A modified model for emulsion polymerisation 

reactions was proposed by Grancio and Williams^^^’^^^ The basic idea of 

this theory is that a monomer-swollen polymer particle is not 

homogeneous. They propose that a particle comprises a polymer-rich core 

with relatively little monomer, and a shell which is rich in monomer. This 

theory was proposed in order to explain certain results for the kinetics of 

the emulsion polymerisation of styrene. In particular, the monomer- 

polymer ratio in the particles was found to decrease with conversion in 

their experiments. In this "core-shell" model, the outer shell is the major 

locus of polymerisation, whilst virtually no polymerisation occurs in the 

core because of its monomer-starved condition. A Smith-Ewart "on-off" 

mechanism necessarily prevails within the monomer-rich shell. According 

to this theory, a changing overall monomer-polymer ratio in the particles 

is consistent with constant rate of polymerisation within the particle 

because reaction takes place in an essentially pure monomer environment.

(AQ)
Napper has pointed out that the requirements of the "core-shell" 

model, as given by Grancio and Williams, conflict with the "ordinary" laws 

of diffusion. He argues that, if polymerisation occurs primarily in the 

peripheral zones of the particles, any diffusion approach predicts that 

these outer regions would, if anything, be monomer-deficient in any 

dynamic situation, because of the consumption of monomer therein.

31



According to Napper, the inner region would function as a monomer 

reservoir, the chemical potential of the monomer decreasing in the 

outward direction. Gardon^^^^ has also reconsidered the question of the 

existence or otherwise of monomer concentration gradients in 

polymerising latex particles. He concludes that there are unlikely to exist 

within the growing particles any concentration gradients of sufficient 

magnitude to affect the kinetics of the reaction.

2.7. Developments of the Smith-Ewart theory. The steady-state 

distribution of free radicals amongst the emulsion particles, described in

the form of a recursion formula by Smith and Ewart, has been solved only
(25)for limiting cases. Stockmayer has put forward a general solution 

which may be useful in the treatment of emulsion particles of 

intermediate size. His result can be best expressed by the following 

equations:

Z = n I„(a)

a/4 Ij^(a) (2.19)

where Z is a factor expressing the degree of subdivision of the reaction 

mixture into small particles, a = 4(R./2k^)^N^v and is the Avogadro 

number, v is the volume of the particle, n is the average number of 

radicals per particle, and are the Bessel functions of the first kind of 

zero and first order respectively. The radical concentration, defined as 

moles of radicals per litre, is given by:

[R -] = n N/N, ( 2. 20)

and the overall rate of polymerisation is given by:

Rp = Z (R .kpV2kj.)^[M ] ( 2. 21)

Equations (2.20) and (2.21) were derived by Vanderhoff^^^\ They are 

general, and are therefore applicable to solution, bulk, suspension and 

emulsion polymerisation systems. Also, Stockmayer gives a formula for 

the distribution of locus populations. The breadth of the distribution 

shows that for large particles the distribution becomes very narrow.

In emulsion and suspension polymerisation, the reaction mixture is
(28)subdivided into a large number of small particles. O'Toole'“ '  has
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attempted to predict the stationary distribution of growing molecules in a 

latex particle resulting from a zero-order absorption from the aqueous 

phase, a first-order desorption or chain-stopping transfer, and a second- 

order termination reaction. He has also considered the case of initiation 

within particles.

Fxperimental studies show that exit of free radicals from the particles 

can play a significant role in determining the rate of polymerisation, and 

also in determining the properties of the latex produced. In addition, 

reentry and/or aqueous-phase termination of these exited radicals may 

also occur. Unfortunately, the Stockmayer-O'Toole solution is difficult to 

evaluate if the exit rate coefficient is zero. Their method is inapplicable 

if reentry and/or aqueous-phase termination of exited free radicals 

occurs.

(52)
Ugelstad and Hansen have proposed a continued-fraction method for 

calculating the Bessel function ratio that is required for determining the 

average number of radicals per particle. Unfortunately, their method 

does not yield the number distribution of particles containing n free 

radicals. Ballard et have recently derived a new solution of the

general Smith-Fwart equation by assuming that entry into a reaction locus 

containing n free radicals causes instantaneous bimolecular termination, 

leaving (n -  1) free radicals. Ballard ^  ^  have derived the following 

equation in the steady state:

N = [ P + (n+l)k + n(n+l)c]N , -  (n+2)kN «n n+l n+z
-  (n+3)(n+2)cN n+3 ( 2. 22)

where = the number of particles containing n radicals; 

p  = the rate coefficient for radical entry; 

n = the number of radicals per polymer particle; 

k = the rate coefficient for radical exit; 

c = the rate coefficient for bimolecular termination.

An approximate value of n is required in order to initiate the 

computation:

dn/dt = P -  kh -  2ch* (2.23)
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The above equation has also been used by Birtwistle and Blackley^^^^. 

This technique is extended to include reentry and aqueous-phase 

ternnination.

P= + Oi kh (2.24)

where p=  the rate coefficient for the entry of radicals,

= the rate coefficient for the entry of free radicals generated by 

the initiator,

Of is a parameter describing the fate of exited free radicals, and 

Ofkn = the rate coefficient for reentry of exited free radicals.

The above equation has been extended to cover the case where aqueous- 

phase termination may also take place.

The case where h «  1 has been extensively studied by Gilbert and 

Napper^^^\ These workers consider the behaviour of the system in the 

non-steady state. It seems that for vinyl chloride and vinyl acetate 

desorption of free-radicals from the particles may be especially 

significant. They derive analytical solutions for one set of differential 

equations that describe some types of emulsion polymerisation where the 

average number of radicals per particle is much smaller than unity 

without using the steady-state approximation. To predict the rate of 

polymerisation, they calculate n by a method that involves the solution of 

large numbers of simultaneous differential equations of the Smith-Fwart 

type, modified because of the non-steady state. One term allows for the 

entry of free radicals into the particles. They are able to solve the 

equation if they ignore the last term. This seems a reasonable assumption 

if •< >> k, either as a consequence of very rapid transfer of free-radical
w ̂

activity from the particle or because the polymerisation has an 

abnormally low termination constant. Gilbert and Napper found that the 

attainment of a steady state at longer times for n «  1 implies that the 

common assumption that a linear experimental plot of per cent conversion 

against time necessarily corresponds to n = 0.5 is incorrect. From the 

equations they solved using matrices, they plotted conversion against time 

and obtained a linear plot up to 50% conversion. At higher conversions, 

the polymerisation becomes diffusion-controlled and their theory no 

longer applies. From the slope of the conversion/time curves they were

34



able to find p  , the rate of entry of oligomeric free radicals into the 

particle. They found that only one radical in 2.6 x 10’ of those produced 

in the aqueous phase actually enters the particles for vinyl acetate. This 

may be associated with the high water solubility of that monomer. This 

would entail many monomer additions in the aqueous phase before 

oligomers with suitable surface-active properties were produced. 

Apparently the small values of n observed in this system result not only 

from rapid exit of free radical activity from the particle but also from a 

very small capture efficiency.

In a second paper, these workers^^^^ extended the range of n values

covered by their matrix method by including bimolecular termination. At

this stage, solutions of the set of differential equations that allow both

for free-radical exit from the particles and for bimolecular termination

have not been achieved. However, solutions are given for the case where

bimolecular termination in the particles is included but radical exit is

assumed to be negligible. The assumptions are very similar to those which

enable Smith and Fwart to solve their Case 2; however, Gilbert and

Mapper's solution describes the entire course of polymerisation, not just

the steady state that may ultimately be achieved. These assumptions are

thought to be applicable to the emulsion polymerisation of styrene.
(57)Weiss and Dishon point out that the analysis given by Gilbert and 

Mapper is complicated. An exact solution is not given, and so Weiss and 

Dishon maintain that the perturbative generalisation of Gilbert and 

Mapper's work shows considerable complications. Weiss and Dishon, using 

a generating function, provide a simpler derivation of an exact solution to 

Gilbert and Mapper's equation that allows so-called "perturbation 

corrections" to be easily derived.

(58)In a further paper^ \  the Mapper group of workers present essentially 

time-dependent solutions valid for systems in which the mechanisms of 

free-radical exit, entry and termination are permitted to operate 

simultaneously. The only restriction on the general non-steady-state 

solutions presented is that the rate of entry of free radicals into the 

particles must be less than the rates of exit and and/or bimolecular 

termination. The analytical solution provides a complete description of 

the entire course of polymerisation, not merely of the steady state that is
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eventually attained. As a result, it becomes possible to explore the way 

in which exit and termination reactions influence the time taken to reach 

the steady state. Using matrix calculus, they obtained the following 

results;

P/A = w (Xt + exp (-Xt) -  1] (2.25)

where P is the per cent conversion, A is a constant of proportionality, t is 

the time of reaction.

X = [k (k + 2c) + 4Pc] / (k + 2c) (2.26)

and
^  _ 2p[k^ + k(3c +P) + 2c* + 3Pc]___________

■ 2k' + k"(6c + 2P) + k(4c* + lO/Oc +p*) ;  8'p^’  + 4pc’

where p is the rate coefficient for entry of free radicals into the 

particles;

k is the rate coefficient for the exit of free radicals from the 

particles;

and c is the rate coefficient for bimolecular termination within the 

particles.

When p << k, the exit term dictates the value of h and we have a first- 

order dependence of R on p . As p  increases, i.e., as the rate of entrance 

increases, it eventually dominates the exit term, and a zero-order 

dependence on p  is obtained as termination tends to dictate the value of 

n. The solutions derived also permit the analysis of reactions which go to 

completion without ever reaching the steady state.

(59)
Birtwistle and Blackley give an explicit analytic solution for the 

number of reaction loci per unit volume containing n radicals as a 

function of time t, for reaction systems in which the following conditions 

are fulfilled;

(1) Radicals enter the reaction loci at constant rate;

(2) The loss of radical activity from the reaction loci is first-order 

with respect to the concentration of the radicals in the loci;

(3) No lost radicals re-enter the loci;
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(4) The volume of the reaction loci is constant;

(5) No new loci form or are destroyed.

The general expression obtained is:

^ ^  - ^ ( 1 - e ’ t̂) exp (2.28)

where N is the total number of reaction loci,

p is the average rate of entry of radicals into a single locus, 

and k is the rate coefficient for the loss of radical by a first-order 

process.

The above result is obtained by first deriving the following result for the 

locus-population generating function:

l/'(f,t) = N exp - P ( i - 1) (1 - (2.29)

where ^ is an auxiliary variable.

The above results have been generalised to include cases in which the 

parameters p  and k, which characterise the rates of entry and exit of 

radicals respectively, are time-dependent.^^^^

Gilbert and Napper^^^^ criticised the above solution because the

procedure does not include the treatment of a decay process in the

presence of a small thermally-induced contribution to the rate of

background thermal entry that is required for these studies. The 
(62)Australian group' ' provide equations for the growth of the particles in 

an emulsion polymerisation reaction in which the mechanism of free- 

radical entry, exit and termination operate, and where particle growth 

also occurs. This predicts the full volume distribution at any time, and 

provides scope for a more comprehensive comparison between theory and 

experiment.

An even more complete treatment has been given by Brooks^^^^ He 

considers the re-adsorption of desorbed radicals and the decay of the 

radical generators as well as the processes previously considered. Brooks 

shows that failure to include re-adsorption of desorbed radicals may lead
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to serious error in the estimation of radical population.

An analysis of the behaviour of emulsion polymerisation systems relaxing 

from a given state when the radical source is removed has been carried 

out by Birtwistle and Blackley^^^\ These workers have applied their 

general solution to obtain predictions for the decay of the reaction from 

three types of distribution of locus polymerisation:

(1) a distribution of the Stockmayer-O'Toole type;

(2) a Poisson distribution;

(3) a homogeneous distribution.

Their results have been summarised by Blackley^^^^. These papers include 

numerical predictions for the set of equations in the most general form. 

Birtwistle and Blackley have made an approximation to the Smith-Fwart 

equations and obtained a solution that gives a Poissonian distribution of 

locus population, i.e., the number of particles that contain a given number 

of radicals.

The Napper group^^^^ have put forward a mathematical formulation which 

describes the evolution of the number distribution of the molecular weight 

of linear polymer chains that grow in the course of emulsion 

polymerisation. The resulting set of coupled ordinary differential 

equations takes into account the microscopic events of free-radical entry, 

exit, chain annihilation, bimolecular termination (by combination and by 

disproportionation) and chain transfer in a mono- or polydisperse system.

Very similar values for the rate coefficients for the first-order loss and 

thermally-initiated entry processes were obtained by two independent 

procedures. The first^^^^ allowed the relaxation kinetics, whereas the 

second measured the approach to a chemically-initiated steady state^^^\ 

The result showed that, for a styrene emulsion polymerisation, the 

average number of free radicals per particle in the steady state may have 

values significantly less than 0.5 at lower initiation concentrations. This 

appears to be a consequence of a first-order free radical loss process. 

The rate coefficient for this process was found to be inversely 

proportional to the square of the swollen radius. The dependence of the 

entry rate coefficient upon the initiator concentration suggests that 

radical capture was relatively inefficient. These workers claim that the
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efficiency of radical capture increases with decreasing initiator 

concentration. They have also detected the existence of a background 

initiation process that causes polymerisation to proceed in the absence of 

added initiator. This appears to be the emulsion polymerisation analogue 

to the thermally-induced bulk polymerisation of styrene. Very closely 

related work has been presented by Brooks and Makanjuola^ . In the 

work of Hawkett et al^^^\ monomer droplets were present throughout the 

polymerisation. Consequently the particle volume would not be constant, 

but would increase with time. They claim that the radical-capture 

efficiency was very low. This is not surprising, since they used Garden's 

formula to calculate the rate of radical production. Unfortunately, the 

assumptions in this formula are (1) that radical desorption is absent, (2) 

that all radicals generated in the aqueous phase are absorbed by the 

particles, and (3) that n is equal to 0.5 in the constant-rate period. The 

result was unusually high rates of radical production, which would result 

in capture efficiencies which were artificially low.

(68)Brooks and Makanjuola^ '  have found that the values of the desorption 

coefficient k^ were not affected greatly by the monomer concentration in 

the particles, nor by the degree of surface saturation of the growing 

particles by the surfactant.

2.8. Kinetics of emulsion polymerisation in Interval ID. On reaching 

Interval III, the monomer concentration in the polymer particles 

diminishes, since in this period there are no more monomer droplets to 

feed the polymer particles'“ . First-order kinetics with respect to 

monomer concentration in the particles would be expected, but the rate 

coefficient for termination may fall to such an extent with the increasing 

viscosity of the particles that a gel effect may be observed^^^\ The rate 

of termination is dependent upon the viscosity of the medium. The result 

of decreased rate of termination is increased rate of polymerisation and 

increased molecular weight. This phenomenon is called the "gel effect" or 

"Trommsdorff effect". In emulsion polymerisation systems, where the 

polymer concentration at the site of reaction is generally high, the gel 

effect is particularly important^^^\ This effect can decrease the 

magnitude of k̂ , by an order of magnitude^^\ If the monomer-polymer 

mixture becomes a glass during polymerisation, the mobility of even the
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monomer can be severely restricted. In such cases, the rate of 

polymerisation may decrease to near zero before polymerisation is 

complete, and complete conversion may not be possible within reasonable 

time limits without increasing the temperature. Usually it is necessary to 

increase the temperature to above the glass transition temperature (T  ) 

of the polymer-monomer mixture.

Relatively little attention has been paid to the kinetics of Interval III, 

largely because of the difficulty associated with a quantitative prediction 

of the variation in k^. The rate of termination decreases, and hence so 

does the value of Oi , since Of = v p^/(Nk^), where is the rate of 

absorption of radical oligomeric chains in the polymer particle and v is 

the average volume of a particle.

Friis and Hamielec^^^^ have made use of the results of kinetic 

measurements on bulk polymerisation. From such results they find k̂ . for 

methyl methacrylate. They have also applied the same method to vinyl 

acetate^^^*^^\ They have further studied the gel effect in the emulsion 

polymerisation of other vinyl monomers^^^\

Friis and Hamielec^^^^ have also studied the polymerisation of styrene.

They assume m = 0, where m = k^a/k^, a is the average area of a particle,

and k^ is the specific rate constant for the escape of radicals from the

particle. As shown by Sm ith-Fwart-O'Toole, these conditions lead to the

value of 0.5 for n when a  is small compared with unity; i.e., when k  ̂ is

large. On the basis of kinetic experiments on the thermal polymerisation
(76)of styrene. Hie and Hamielec developed the following empirical 

equation:

kt = (k^)^ exp [-2  (Bx + Cx* + D x’ )] (2.30)

where B, C  and D are constants and (k^x . ^
t)g IS the termination

in pure styrene, and x is the degree of conversion.
rate constant

Harris et have put forward a kinetic model for the Interval III

emulsion polymerisation of styrene. The experimental evaluation was 

carried out using monodisperse latex particles of known particle size with 

a determination of instantaneous rates using an adiabatic calorimeter as
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reactor. In this way, they were able to determine the variation in and 

kp with conversion for latex particles having a diameter of 40 nm. The 

average number of radicals per particle was 0.5. This permitted a direct 

measure of the decrease of the propagation constant with conversion. A 

glass transition occurs at approximately the T^  of the polymer-monomer 

mixture; i.e., when the monomer-polymer ratio has fallen to the point 

where the T^ of the polymer-monomer mixture equals the polymerisation 

temperature, the glass transition occurs. At this stage the unreacted 

monomer acts as a plasticiser. Harris et ^  give equations from which the 

limiting conversion (x^) can be estimated. Their model takes account of 

diffusion-controlled termination and propagation reactions.

(52)
Ugelstad and Hansen have assumed that the amount of monomer in the 

aqueous phase may be neglected. They consider how n, and therefore the 

rate of polymerisation, changes in Interval III. They further assume that 

k  ̂ is constant up to very high conversions, and that the rate of chain 

transfer, k^, is also constant.

Hawkett et  ̂ have used seeded emulsion polymerisation systems to 

obtain values for the rate coefficients that covered the entry of free 

radicals into, and the exit of free radicals from, the latex particles in 

Interval III. In addition, the dependence of the bimolecular termination 

rate coefficient k^, upon the ratio of monomer to polymer in the particle 

could be determined.

2.9. Theory of homogeneous nucléation. In many theories of emulsion 

polymerisation, the main locus of particle initiation has been considered 

to be the monomer-swollen micelles. One of the assumptions of the above 

theories is that, from the beginning of Interval II, where all the surfactant 

is either (1) stabilising the growing polymer particles, (2) helping to 

stabilise the monomer droplets or (3) dissolved in the water, the number 

of latex particles should remain constant. Since zero-order kinetics are 

observed during this period (i.e., the rate is independent of the 

concentration), the monomer concentration in the polymer particles must 

remain constant. However, it has been shown by Robb^^®^ that the 

number of latex particles is not constant during Interval II of the emulsion 

polymerisation of styrene, but increases, although the rate of
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polymerisation is constant. He concludes that new particles must have 

been created during the period of constant rate.

Further doubts concerning the importance of surfactant micelles for 

particle nucléation arise from the observation that aqueous solutions of 

monomers such as methyl methacrylate, vinyl acetate, acrylonitrile and 

even styrene can be emulsion polymerised in the absence of surfactant. 

Thus the presence of micelles is not essential for the formation of 

polymer particles.

The idea that particles can be formed by the polymerisation of monomer 

molecules dissolved in the dispersion medium was first proposed by 

Priest . Later Roe' ' proposed a theory of particle initiation based on 

Priest's ideas: In Roe's theory, particle generation in a polymerising 

emulsion is pictured as resulting from interaction of a free radical and a 

monomer molecule both of which are dissolved in the aqueous phase. A 

monomer radical thus initiated is assumed to react with additional 

dissolved monomer molecules to become a growing polymer chain 

suspended in the aqueous phase. Continued development of this sort 

causes the growing chain to assume the aspect of a polymer radical 

stabilised against flocculation by adsorbed emulsifier and swollen with 

adsorbed monomer. Alternatively, at any stage in its history prior to 

adsorption of an adequate protective layer of emulsifier, the growing 

radical may be swept up by a pre-existing polymer particle, or by a 

swollen emulsifier micelle, provided micelles are present. A particle 

nucleus may be said to have identity as a polymer particle when further 

growth takes place only by chain propagation and combination within its 

own structure and when flocculation with other molecules or 

agglomerates of similar size is excluded. In Roe's theory, the generation 

of particle nuclei persists at a rate which depends on the concentration of 

monomer and free radicals but not on other constitutive variables. 

Achievement of permanent identity as polymer particles by nuclei 

depends on the availability of emulsifier. Particle formation by this 

mechanism is known as "homogeneous nucléation".

Basically, the hypothesis is that oligomeric chains are formed in solution 

in the dispersion medium by polymerisation of dissolved monomer. These 

oligomers grow by free-radical propagation until at some critical chain
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length the dissolved oligomers achieve a high degree of "supersaturation". 

They then form a new polymer phase by collapse of the chains upon 

themselves, thereby forming primary polymer particles. Monomer is 

absorbed into these primary particles, and under most conditions these 

primary particles become the chief loci for the subseguent emulsion
(79)

polymerisation . In the case of surfactant-free emulsion

polymerisation, the stability of the latex particles is believed to be

achieved by ionic end-groups derived from the initiator (in many cases -

SO^ derived from persulphate ions). Fitch and coworkers^^^^ have

developed a guantitative theory for calculating the number of particles

which are formed by this type of mechanism. It requires a knowledge of

the rate of effective radical generation and the average distance a

primary oligomeric radical diffuses in solution before it "self-nucleates".

The oligomeric radicals can either (1) grow to the critical size and then

precipitate (homogeneous nucléation), or (2) be captured by pre-existing

particles. As particle formation continues, the probability of capture by

pre-existing particles increases until ultimately all oligomers are

captured. Thereafter no new particles form, and particle nucléation
(42)ceases. In a second paper, Fitch et ^  have described the isolation and 

characterisation of soluble oligomers which are believed to correspond to 

the growing chain radicals which are present in the aqueous phase, both

prior to the formation of any particles as well as throughout the reaction
(42)

after particles are formed . In the absence of stabiliser and of charged 

end groups, the particles which form by homogeneous reaction are 

unstable and flocculate. In the absence of added stabiliser, but with 

stabilising end groups present, a large number of primary particles are 

formed many of which subsequently undergo extensive flocculation. Thus 

three competitive processes are involved, namely, radical generation, 

radical capture by existing particles, and particle flocculation. The rates 

of these processes are denoted by R., and R^, respectively. The rate 

of particle formation is then presumed to be given by;

dN/dt = R. -  R -  R , 1 c f (2.31)

During the earliest stages of particle nucléation, no particles are present, 

so that every radical generated produces a primary particle.
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Therefore under these conditions the rate of particle formation will be 

given by dN/dt = R., where N is the number of particles per unit volume 

and t is the time. Later, as particles become formed, they will capture 

some of the oligomeric radicals formed in solution. As capture of the 

oligomeric radicals becomes important, the rate of particle nucléation 

will be correspondingly reduced. The rate of particle formation will then 

be given by:

dN/dt = R. -  R 1 c (2.32)

When Fitch and Tsai first put forward a quantitative model for 

homogeneous nucléation, the effect of diffusion was not taken into 

consideration. It was Hansen and Ugelstad^®^\ as well as La Mer^®^\ who 

demonstrated the need for a diffusion-controlled mechanism.

As N increases, the rate of capture will approach the rate of radical 

generation, until finally a steady state is reached when dN/dt is zero. The 

final number of particles, N, is then given by

•*s
N R ^)d t (2.33)

where t is the time required to reach the steady state for which R. = R . s 1 c
The rate of capture, R^, is diffusion-controlled and is given by

R = 47TD C  N c op s rp (2.34)

where is the average diffusion coefficient, which is determined by 

the relative motions of oligomeric radicals and polymer particles, and C
s

is the steady-state concentration of oligomeric radicals. C  is given bys

C  = R./(47TD N + 2D /L*) s i/ op rp o (2.35)

In this equation, is the average diffusion coefficient for the growing 

oligomeric free radicals, and L is given by

L = (2D^DP^^^/k J M ])^  o max p (2.36)
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^Ppoax maximum degree of polymerisation which is attained by the

oligomeric radicals before they collapse, is the rate constant for 

propagation, and [M ] is the monomer concentration in the agueous phase. 

Qualitatively, as L increases, R approaches R., thereby reducing the rate 

of nucléation, dN/dt. Although the rate of capture is diffusion-controlled, 

it may or may not be reduced by electrostatic repulsion between the 

oligomeric radicals and the polymer particles. Whether or not this 

happens depends upon such factors as the size of the particles, their 

surface electrical potential, and the ionic strength of the dispersion 

medium.

If the primary particles formed are colloidally stable, they will be 

produced in great numbers in a short time, after which R^ rapidly 

approaches R. and dN/dt falls essentially to zero. A steady state is 

reached when no new particles are formed. The time-dependence of N 

will be as indicated in curve A of Fig. 2.1.

Fig. 2.1: Variation in number of particles in (A) absence of 
flocculation and (B) presence of flocculation.
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Usually, however, the primary particles are colloidally unstable and 

flocculate to a limited extent. For systems where electrostatic repulsions 

are involved, flocculation will occur until a critical surface potential, 

is developed which effectively prevents further flocculation. When 

flocculation occurs, the rate of flocculation is denoted by R^. It is 

supposed that, in the flocculation process, when two particles collide they 

adhere to each other and subsequently fuse or coalesce to form a single 

particle in which most, if not all, of the surface groups which were 

present on the original particles become situated at the surface of the 

new particle. The consequent reduction in surfacervolume ratio leads to 

an increase in the surface charge density and hence in the surface 

electrical potential, \J/̂ . This in turn produces a rapid reduction in the 

rate of flocculation as the process continues. Under these conditions, the 

variation in number of particles with time will be as shown by curve B of 

Fig. 2.1. When flocculation of primary particles occurs, the rate of 

particle formation is given by equation 2.34. The rate of flocculation is
K (82)given by

= -dN /dt = k'N" (2.37)

where k' = 4D^H/W. In this latter equation, D is the diffusion

coefficient of the particles, H is the collision distance, usually taken as 

twice the radius of the particles, and W is the Fuchs stability factor. W 

depends upon the total density of electric charge which is fixed at the 

particle surface due to end groups and adsorbed surfactant molecules, as 

well as upon the ionic strength of the medium.

(43) has attempted to make experimental estimates of R^. HeFitch

concludes that the collision theory gives a reasonable estimate for the 

capture rate, but that the mechanism of capture of radicals by particles is 

diffusion-controlled. Comparison of the calculated absolute values for R^ 

with experimental values based upon the diffusion theory indicates

(a) that there is an interaction between particles and oligomer 

radicals, and

(b) that diffusion of radicals out of particles may in some cases 

occur.
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(83)
Hansen and Ugelstad have given a more rigorous theoretical treatment 

of the theory of homogeneous nucléation. The physical factors which 

influence the capture rate of oligomers in particles are discussed, 

including the possibility of desorption of radicals once adsorbed. 

Quantitative expressions for electrostatic repulsion and for reversible 

diffusion of radicals are derived. The result shows that the particle 

number goes through a maximum, and that simultaneous nucléation and 

flocculation of primary particles can take place after Interval I is 

complete.
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C H A P T E R  TH R E E

T H E O R Y  OF S TA B IL ITY  OF LY O P H O B IC  C O LLO ID S

3.1. Definition of a lyophobic colloid. The formation of stable latices is a

primary objective of this project. Because polymer latices are examples 

of lyophobic colloids, it is important to understand the factors which 

affect the stability of lyophobic colloids, and the theories which have 

been proposed to explain the effects of these factors. Colloids are m ulti- 

component systems in which the dispersed phase is in a state of 

subdivision in the dispersion medium such that at least one dimension is in 

the range between approximately 10 nm and 1000 nm'' * , Colloids are

generally classified as lyophobic (i.e., possessing no affinity for their 

dispersion medium) or lyophilic (i.e., possessing affinity for the dispersion 

medium). Thus, the simplest lyophobic colloids are essentially two-phase 

systems, which consist of a disperse phase and a dispersion medium, the 

two phases being such that there is no thermodynamic tendency for them 

to mix. Polymer latices are examples of lyophobic colloids.

3.2. Stability of lyophobic colloids. Lyophobic colloids have associated

with them a large area-to-volume ratio of the disperse phase (i.e., the

area of interface between disperse phase and dispersion medium is large

in relation to the volume of disperse phase) and hence have high

interfacial energy. They are thermodynamically unstable. The term

"stability” as applied to lyophobic colloids is generally understood to mean

the ability of the colloidal dispersion to persist in an altered state of

colloidal dispersion. It is the interplay of the various attractive and

repulsive forces between the particles that determines the stability

behaviour of lyophobic colloids. There are six possible basic interparticle
(90 91)forces which operate in a colloidal system * ;

(a) Electrostatic repulsive forces: These arise from the presence of 

a surface potential and the consequent space-charge cloud in the 

dispersion medium.

(b) Van der Waals attractive forces: These arise from the presence 

of electrical dissymmetry in the atoms and molecules which make 

up the particles.

(c) Steric repulsive forces: The presence of adsorbed
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Tiacromolecules on the particle surfaces gives rise to this type of 

force.

(d) Solvation repulsive forces: These arise from the removal, 

displacement or rearrangement of solvent molecules in the 

interfacial regions.

(e) Born forces: These are very short-range repulsive forces.

(f) Depletion forces: These arise from the exclusion of polymer 

molecules from between colloid particles.

There are at least four possible mechanisms by which stability can be 

imparted. Fach of these deper ds upon the nature of the repulsive 

interparticle forces which are operative. The stabilising mechanisms are:

(a) electrostatic stabilisation;

(b) steric stabilisation;

(c) hydration stabilisation;

(d) depletion stabilisation.

3.3. Electrostatic stabilisation of lyophobic colloids; t i ^  D LV O  theory.

The D LV O  theory (the name is derived from the initials of the workers 

who developed the theory, namely, Deryagin, Landow, Verway and 

Overbeek)^®^^ considers electrostatic stabilisation to be the cause of the 

stability of lyophobic colloids. The D LVO  theory views the stability of 

colloids as arising from the presence of bound electrical charges at the 

particle surfaces, and from consequent electrical repulsions between the 

particles. Opposing these repulsions are attractive forces of the van der 

Waals type. If the repulsion forces can be reduced sufficiently so that the 

van der Waals attraction becomes dominant, then particles colliding with 

each other will stick together to form more-or-less permanent 

aggregates.

3.3.1. Electrostatic repulsion. The basic cause of the electrostatic 

stabilisation of any colloidal system is the acquisition of electrical 

charges at the surface of the particles. In the case of latex systems, the 

particle surface can acquire an electrostatic charge by either one or both 

of the following mechanisms:

(i) ionisation of chemical groups at the ends of polymer chains on 

the surface of the particle, and
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(¡0 adsorption of surfactant ions from the dispersion medium at the 

particle surface.

As a result of the balance between electrostatic and diffusional forces, 

the ions in the region between the charged particle surface and the bulk 

solution are distributed in what is known as a "diffuse electrical double 

layer". This diffuse double layer has no sharply-defined end-point but 

gradually approaches the composition of the dispersion medium as one 

moves away from the surface.

(92)In 1905 Helmholtz proposed that the double layer consists of two 

layers of opposite charge, analogous to a parallel-plate electrical 

condenser, a distance d apart. One of the layers is formed by a positive 

charge on the surface, the other consisting of an equivalent number of 

counterions located in a single plane adjacent to the charged surface. The 

remainder of the system is unaffected by the presence of the double 

layer. Because the double layer as a whole is electrically neutral, and the 

layer of counterions screens the charge completely, the surface potential 

drops linearly to zero. This approach neglects any tendency for the 

layer of counterions to disperse under the influence of thermal motion.

Gouy^^^^ and Chapman^^^^ modified Helmholtz’s model by taking into 

account the thermal motion of the ions in the solution, which prevents the 

counterions from becoming arranged in a compact manner. The thermal 

motion of ions is counteracted by the electrostatic forces. The overall 

effect of these opposing forces is to produce a diffuse space-charge cloud 

in the interfacial region. According to the Gouy-Chapman model, the 

structure of the double layer is determined by their valency. This 

predicts a high concentration of counterions near the charged surface for 

high electrolyte concentration and/or high electrical potential. This 

defect arises from neglect of the finite dimensions of the ions.

In 1920 Stern^^^^ modified the Gouy-Chapman theory by introducing two 

corrections.

(i) The first correction allowed for the finite dimensions of the ions 

in the layer immediately adjacent to the surface.

(ii) The second made allowance for the possibility of specific 

adsorption of the ions at the surface.
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The above two corrections facilitate the formation of a compact layer of 

thickness 6 on the charged surface by certain counterions. However, 

these corrections do not apply to the ions which are situated beyond the 

compact layer, so that these ions form a diffuse double layer. The 

compact layer is called the "Stern layer". The Stern region of the double 

layer is a region within which the counterions are permanently attached 

to the particle surface by strong electrostatic forces. \j/̂  is known as the 

Stern potential. Outside the Stern plane may be found a hydration layer 

of water molecules, and these too are firmly attached to the particle and 

move with it during its Brownian motion. This outside boundary of the 

particle is called the plane of shear. The electrical potential at the plane 

of shear is called the zeta potential (^ ). Fig. 3.0 gives a diagrammatic 

representation of the process.

Stern
plane

Fig. 3.0: Diagrammatic representation of the electrical 
double layer associated with a planar surface.
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Unlik© the surface and Stern potentials, zeta potentials can be measured 

experimentally. The exact relationship between the zeta potential and 

the surface potential or the Stern potential is not known.

The thickness of the double layer is given by 1/K, where, for a 

symmetrical electrolyte present in the dispersion medium, K is given by

K = (87rnz*eVDkT) è (3.1)

In this equation, n is the number of ionised groups in the bulk solution, z is 

the valency of the ions, € is the electronic charge, D is the dielectric 

constant of the medium, k is the Boltzmann constant, and T  is the 

absolute temperature. The double layer thickness is an inverse function 

of both the concentration and the valency of the counterions. The ionic 

concentrations and ionic valencies can be combined together to give a 

quantity known as the ionic strength of the medium. Ionic strength, p, is 
defined as

P = Æ c .z . ' (3.2)

where the summation covers all types of ions in a given solution.

When two particles, each carrying a diffuse double layer, approach each 

other, the diffuse counterion atmospheres begin to overlap each other. 

The result is that work must be performed to bring particles together. 

The repulsive energy, at a given inter-particle distance, is the work 

which must be performed to bring the particle to that point from infinite 

separation. Approximate expression for are given by Ottewill^

For surface potentials less than 50 mV;

,(96)

Vp  ̂ = i e a ^ *  ln [l + exp (-K H ^ )]

where a is the particle radius, and is the minimum distance of

separation between the particles. In general, for a given latex system, 

is a function of the quantity K H ^, and it decays exponentially with 

increasing distance of separation between particle surfaces.
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Van der Waals attraction. In the absence of any repulsive 

interparticle forces between the particles of a dispersion^ it is well known 

that the dispersion undergoes rapid coagulation^^^^ This behaviour is a 

consequence of long-range forces of attraction operative between the 

particles. These forces increase with decreasing interparticle distance. 

They are known as van der Waals attractive forces.

To be able to compete with the electrostatic repulsion forces, the

attractive force must be of comparable magnitude and range of action.

The van der Waals force between particles can be calculated as the

summation of the London dispersion forces between all pairs of atoms in

the two particles. The origin of these dispersion forces lies in the charge-

fluctuation in an atom associated with the motion of electrons. A phase

difference in the fluctuating dipoles leads to mutual attraction. The

approximate expression derived for the attractive energy, V . ,  between

two particles each of radius a, at a distance of separation H , for a »  H
o o

IS

V^  = -Aa/12H^ (3.4)

where A is the so-called Hamaker constant. The Hamaker constant 

characterises the attraction between the particles and the dispersion 

medium. This expression for is not valid at distances of separation 

between particles larger than about 10 nm. A t such distances, allowance 

must be made for the retardation effect. The retardation effect is caused 

by the finite time necessary for an electromagnetic wave to travel from 

one atom to the other atom in which it is inducing a dipole.

3.3.3. Total energy of interaction between two particles. According to 

the DLVO  theory, the total energy of interaction, V^, between two 

particles of an electrostatically stabilised lyophobic colloid is given by the 

sum of the attraction and repulsion energies; i.e..

' ' t  = ' ' a  * ' ' r (3.5)

Fig. 3.1, shows the general nature of the variation of V j  with the inter

particle distance, H^. At very short distances, a deep potential-energy
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minimum, usually known as the primary minimum, occurs as a consequnce

of strong attractions between the particles. A t large distances, the

energy associated with electrical repulsions falls off more rapidly with

increasing distance of separation than does that associated with the van
(99) 

s
der Waals attraction. The consequence is a secondary minimum, V

Distance between particles,

Fig. 3.1: Potential energy curves for two particles 
of a lyophobic colloid as a function of the interparticle separation, H^.

The stability of a lyophobic colloid is dependent upon the height of the 

potential energy barrier, V ^ . The potential energy barrier must be 

surmounted if the particles are to approach one another sufficiently 

closely to enter the deep primary minimum, thus causing irreversible 

coagulation. The value of necessary to prevent this is considered to 

be approximately 10-20 kT. This corresponds tc an electrical potential of 

about 50 mV. The colloid is then considered to be kinetically stable. 

Aggregation in the secondary minimum is not usually observed with small
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particles, because the energy reduction will be comparable to the mean

thermal energy. Aggregation is therefore easily reversed by Brownian 
(98)motion .

(97)In 1917 Smoluchowski analysed the kinetics of the coagulation process. 

The findings showed that the rate of disappearance of primary particles in 

the initial stages of coagulation could be written as;

-dN/dt = kN * o (3.6)

where is the number of particles per unit volume initially present and

k is the rate constant. For rapid coagulation k = k = 87TD R , where D is
o

the diffusion coefficient of a single particle and R is the collision radius. 

Fuchs^^^^^ showed that if diffusion in the presence of an energy barrier is 

considered, i.e., slow coagulation, then k can be put equal to k^/W, where 

W is the stability ratio. Thus,

-dN/dt = (k /W)N * o o (3.7)

The usefulness of Fquation 3.7 lies in the fact that the rate of coagulation 

in the early stages can be determined experimentally. Thus, values of k 

and W in the slow coagulation can be obtained.

It was pointed out by Fuchs 

through the equation

( 100 )
that the factor W is related to V.

W = 2a ./kT) dh/(h + 2a)* (3.8)

where a is the particle radius and h is the distance of separation between 

particles.

As a further development Reerink and Overbeek 

gradient of 

be given as

(101) showed that the

gradient of the curve obtained when log W is plotted against log C could
6

(d log W)/(d log C  ) = -  2.06 x 10^ (3 7 */v*) (3.9)
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Here is the electrolyte concentration, v is the valency of the 

counterion, and 7  is said to be [(exp (y e y p jlk l)  -  l)/(exp (v e ^  /2kT) + 1].

It is not clearly established whether \J/̂  should be taken as the Stern 

potential or as the zeta potential. Fquation 3.9 can be subjected to direct 
experimental tests.

The van der Waals attractive forces are not easily varied. The repulsion 

energy, on the other hand, can be modified by changing the surface 

potential on the particles, or the valency of the electrolyte in bulk 

solution, or the concentration of electrolyte. Consequently, the stability 

of latices in many technological applications is controlled by the 

magnitude of the electrostatic repulsion.

3.4. Steric stabilisation of lyophobic colloids. Stability may also be 

imparted to a lyophobic colloid by adsorbed non-ionic surfactants and 

macromolecules which provide a steric barrier. Such barriers prevent the 

particles from approaching one another closely enough for the van der 

Waals forces to be sufficient for aggregation to occur.

The stabilising effect of non-ionic macromolecules was first observed bv
(102)  ̂

van der Waarden during studies on the stabilisation of carbon black

dispersions in hydrocarbon media. These studies showed that alkylated

aromatic molecules stabilised these dispersions, and that the stabilising

effect increased with the length of the alkyl chain and with the number of

chains per molecule. It was suggested that the highly-polarisible aromatic

nuclei anchored the stabilising molecule, whilst the alkyl chains projected

into the dispersion medium and prevented close approach of the particles.

Heller and Pugh^^^^^ appear to have been the first to use the term "steric 

stabilisation" to denote the stabilisation of uncharged colloidal particles 

against coagulation by adsorption of non-ionic polymer molecules. 

However, Napper^^^^^ has pointed out that the term "steric" is used in 

this context with a broad thermodynamic connotation, rather than with 

the restricted meaning used in organic chemistry.

The term "steric stabilisation" is now used to describe all the different 

stabilising mechanisms which arise from the presence of uncharged
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adsorbed macromolecules. Sterlc stabilisation is effective in both 

aqueous and non-aqueous media. Several reviews of steric stabilisation 
have been published^^^^”^^^^.

3.4.1. Characteristic features of steric stabilisers. For steric stabilisation 

to occur, the surfactant or polymer should be adsorbed on or chemically 

combined with the surface of the lyophobic colloid. It is essential that 

these stabilisers extend an appreciable distance into the dispersion 

medium, and that at the same time they be firm ly anchored to the 

particle surface. The extended portions projecting from the surfaces 

provide a steric barrier which stabilises the dispersion. The anchor groups 

function efficiently if they are insoluble in the dispersion medium and 

prevent the stabilising units from moving away from the interaction zone 
on the approach of a second particle.

In the case of polymers, the conformation of the adsorbed molecule on the 

surface of the particle is an important factor which determines the 

efficiency of stabilisation. The theories of polymer adsorption assume 

that the structure of a polymer can be represented as a flexible chain of 

segments, some of which are in direct contact with the surface, whilst 

others extend into the dispersion medium. A diagrammatic representation 
is given in Fig. 3.2.

Loops

Trains
-Tail

777777777777777777777777777777777
Fig. 3.2: Schematic representation of an adsorbed polymer molecule on the surface of a particle.
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Those segments that are in direct contact with the surface are referred to 

as -trains" and those in between and extending into the dispersion medium 

as loops". The free ends of the adsorbed polymer which extend into the 

dispersion medium are known as "tails". The stabilising effect is due to 
the loops and the tails.

Polymer adsorption can be characterised by means of three important 
parameters:

(i) the amount of adsorption per unit area;

(ii) the fraction of segments in contact with the surface;

(iii) the segment density distribution in the vicinity of the surface, 

this being important for stabilisation.

These factors in turn depend upon a number of variables, such as the 

nature of the adsorbed polymer, the adsorbant, the solvent, the 

temperature, and also the concentration and the molecular weight of the 

adsorbed molecule^^^^^ The adsorbed polymer may not always confer 

stability. Colloid stability can be either increased or decreased by 
adsorbed polymer^^^^\

Principles of steric stabilisation. The steric repulsive forces and 

interaction energies that occur when the adsorbed nonionic polymer 

chains of adjacent particles interact originate from two possible causes:

(1) If the distance of separation of two particles is less than twice

the thickness of the adsorption layer, then mixing of the two

adsorption layers takes place. If this process is accompanied by a

net increase in the free energy, repulsion occurs between the

particles. Such a mechanism is very probable when the

concentration of the polymer in the adsorption layer is low. This

propo
(110)

"osmotic effect"^^^^^.

(2) When the polymer concentration in the adsorption layer is high, 

the particles undergo pseudo-elastic collisions on approach rather 

than mixing. The polymer molecules adsorbed on the particle lose 

configurational entropy. This mechanism was first proposed by

mechanism was first proposed by Fisher^^^^^; it is referred to as the

It has also been referred to as an"mixing" mechanism

Jackel(112)
It is referred Lc as the "denting" mechanism^^^^^ or
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"volume restriction effect"^^^^\

The effectiveness of steric stabilisation can be predicted by considering

the balance of the attractive van der Waals forces and the steric repulsive

forces of two particles on close approach. The total potential energy of

interaction for sterically-stabilised particles, V , is given by
s

~ ^SR (3.10)

where and are the steric repulsive and attractive potential
energies respectively.

Steric repulsion is best characterised by the change in Gibbs free energy, 

AGg, of the particles on close approach. The second law of 

thermodynamics implies that a positive value of AG ^ is necessary for 

repulsion if the temperature and pressure are kept constant. Steric 

repulsive forces are of shorter range than the electrostatic and van der 

Waals forces; the forces increase very rapidly with decrease in 

interparticle distance. Ottewill and Walker^^^^^ have shown theoretically 

that the free energy of interaction, A G ^, arising from the interactions 

between two spherical particles of radius a depends upon the following 
factors:

(i) the concentration of nonionic stabiliser in the adsorbed layer;

(ii) the thickness of the adsorbed layer:

(iii) the distance between the particle surfaces;

(iv) an enthalpic term which characterises the interaction of the

stabilising group with the solvent, and

(v) an entropy of mixing term for the stabilising layer.

On the close approach of two sterically-stabilised colloidal particles, 

there is a change in Gibbs free energy. This is given by

A g  ̂ = A h - tA s (3.11)

where A h andAS are the enthalpy and entropy changes respectively. AGg  

must be suitably positive for stability to be observed^^^ ”̂^̂ ^̂ . The 

following are the circumstances which will lead to a positiveAGp:

(a) Both A h and A s are negative, and - TAS is greater than -AH.
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The effect of the entropy term opposes flocculation and outweighs 

the effect of the enthalpy term. This is known as "entropy 

stabilisation". If, with decreasing temperature, the entropy 

contribution is reduced to a certain value such that the enthalpy and 

entropy terms become equal, then flocculation will proceed rapidly. 

Thus entropically stabilised dispersions are generally characterised 

by the occurrence of a flocculation process on cooling.

(b ) A G s  can be positive for positive values o f A H  and AS, provided 

that A h  exceeds TAS. In this case, the enthalpic effect promotes 

stabilisation and the entropie effect promotes flocculation. The 

term "enthalpic stabilisation" is used to describe this circumstance. 

On heating, tAS  should normally increase more rapidly th a n A H  and 

hence flocculation will occur.

(c ) A G g  will be always positive for a situation having a positiveAH 

and a negative A S . Both enthalpic and entropie effects promote 

stabilisation in this case. This mechanism is referred to as 

"enthalpic-entropic stabilisation". In this case, flocculation will not 

occur at any temperature.

The generic term "steric stabilisation" thus encompasses entropie, 

enthalpic and enthalpic-entropic stabilisations. The enthalpic effects are 

probably more important in the stabilisation of aqueous dispersions, 

whereas the entropie contributions are more important in the stabilisation 

of non-aqueous systems^^^^’ ^^^\

Fig. 3.3 shows a schematic plot of steric repulsive potential energy versus 

the interparticle distance H . V - rises rapidly with decrease of H .
O O g
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Fig. 3.3: Schematic representation of the variation 
in steric repulsive potential energy, V , with the 
distance of surface separation, H-, for^two spheres 
sterically stabilised by adsorbed layers of thickness Ò / 2

Fig. 3.4 shows a plot of potential energy versus interparticle separation

for sterically-stabilised particles. The potential energy curve does not

exhibit the deep primary minimum and the primary maximum, which are

the important features of the potential energy curve for electrostatically-

stabilised particles. This is because of the presence of the adsorbed layer.

As the steric repulsion vanishes at twice the thickness of the adsorbed

layer, attraction predominates at intermediate and large distances. This

gives rise to a minimum in the curve. The depth of the minimum. V
’ min*

in the potential energy curve determines the stability of the system. If 

^m in greater than 5kT, the particles are irreversibly flocculated. If 

'^min ® between k T  and 5kT, the particles
aggregate reversibly and can be redispersed.
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Fig. 3.4: Schematic representation of a potential 
energy curve for two particles of a sterically stabilised lyophobic colloid.

Although the above is a summary of the basic thermodynamic conditions 

which lead to steric stabilisation, detailed conclusions cannot be drawn by 

consideration of the above factors alone. The dispersion medium and the 

interaction of the polymer segments with the dispersion medium should 

also be considered. Also, the quality of the solvent for the stabilising
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chain is an i nportant factor which controls the stability of sterically- 
stabilised lyophobic colloids.

The potential energy curve for two particles in a lyophobic colloid which 

is both sterically and electrostatically stabilised^^^^^ is illustrated 

schematically in Fig. 3.5. This case is of particular interest, since many 

steric stabilisers for aqueous lyophobic colloids are ionised -  e.g., 

proteins, alginates, sodium carboxymethylcellulose, etc. It is clear that 

entry into the deep primary minimum is prevented by the steric barrier. 

The steric repulsion confers stability upon the system, even though the 

electrical double layer has been considerably compressed.

Fig. 3.5: Schematic representation of potential energy 
curve for two particles in a lyophobic colloid which 
is both sterically and electrostatically stabilised.
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In general, the addition of nonionic surfactants improves the stability of 

electrostatically-stabilised lyophobic colloids.

A discussion of the strengths and weaknesses of the theory of 

electrostatic stabilisation, as well as steric stabilisation, has been given 

by Overbeek . Some of the limitations of the theory of electrostatic 

stabilisation are as follows;

(1) The repulsion equation is based on the theory of the electrical 

double layer. In this theory, the ions can be treated as point 

charges. This treatment is not correct, since it predicts that the 

counterions can reach impossibly high concentrations near the 
surface.

(2) A further serious consequence of the Stern-Gouy model is the 

fact that, under coagulation conditions, the potential at the Stern 

plane is neither high nor independent of the concentration and the 

charge number of the ions.

(3) Although the surface charge can often be measured, the surface 

potential is not easily accessible because part of the surface charge 

may be neutralised within the Stern layer. The electrokinetic 

potential (zeta potential or f-potential) is good as a first 

approximation for the potential at the Stern plane, but is probably 

no better than a first approximation.

(4) The simple model wih the deep primary minimum would make 

coagulation quite irreversible and would not allow repeptisation. 

However, repeptisation is the rule rather than the exception, and 

irreversibility is found only after the particles have been coagulated 

for some time.

(5) Tim e effects due to various relaxation processes in the double 

layer have not been incorporated into the theory. These effects are 

important, since the time of an individual collision, and even the 

characteristic coagulation time, may be shorter than the relaxation 

time for charge adjustment at the surface.

Some of the weaknesses of the theory of steric stabilisation are as 

follows:

(1) In the present state of the theory, quantitative applicability is 

limited.
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( 2) Adsorption of the stabiliser is obviously a key factor in the 

protection mechanism, but absorbability is hard to predict,

3.5. Other methods of stabilising lyophobic colloids. In addition to the 

above mechanisms, "structural forces" due to modification of the water 

structure near interfaces may play a part in determining the stability of 

aqueous lyophobic colloids. It may be that these structural forces by 

themselves are not sufficiently strong, but they may supplement the other 
stabilising influences.

3.5.1. Hydration stabilisation or solvation stabilisation. Some studies of 

the stability of model colloid systems have shown marked deviations from 

the predictions of the DLVO  theory. The presence of a hydration layer 

around the^^particles has been postulated as the cause of this 

deviation . The hydration layer of the colloid particle is a layer of 

structured water molecules which are hydrogen-bonded to the ionic groups 

and dipoles of the adsorbed layer of stabiliser. There is evidence in the 

literature ’  ̂ to show the presence of a hydration layer near the

solid surfaces. The extent of hydration is unknown. However, it is 

believed generally that the structuring of the water molecules near a 
surface is of short range.

There are four possible effects that the hydration layer might have upon 

the stability of a lyophobic colloid.

(a) The hydration layer may decrease the Hamaker constant, and 

hence the van der Waals attraction potential energy between the 
particles.

(b) The hydration from the interaction zone before destabilisation 

will result in an increase of free energy, and hence will bring into 

existence a repulsive force between the particles.

(c) Because of the volume restriction effect, the hydration layer will 

act as a mechanical barrier to prevent the particles from 

approaching one another closely.

(d) The interfacial free energy between the outer surface of the 

solvated particle and the dispersion medium is virtually zero.

All these effects promote stabilisation.
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3.5.2. Depletion stabilisation. An additional mechanism has recently been 

proposed by Feigin and N apper'^^^l These workers claim that colloid 

stability can be imparted by the presence of free polymer in solution in 

the dispersion medium. This type of stabilisation has been described as 

"depletion stabilisation" because it arises from the depletion of the 

concentration of segments of free polymer near to and between the 
surfaces of colloid particles.

When two spherical particles approach one another very closely, there will 

be almost complete exclusion of polymer molecules from between the 

surfaces. Thus, there is almost pure solvent in the interparticle space 

rather than polymer solution. The exclusion of polymer molecules from 

between two colloid particles is accompanied by an increase of free

energy (mainly because the entropy is reduced), and this is the origin of 
the stability.

Depletion stabilisation differs from steric stabilisation in two important 
respects.

(a) The polymer that confers stability is free to move in solution 

instead of being attached or adsorbed onto the particle surfaces as 
is the case in steric stabilisation.

(b) Stabilisation imparted by free polymers appears to be of a 

kinetic kind, whereas that imparted by attached polymer may 

represent genuine thermodynamic stability of the colloid state.
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C H A P T E R  FO U R

REVIEW  O F PREVIOUS W ORK ON SUBSTAN CES W HICH F U N C T IO N  AS BO TH  IN ITIA TO R S  

A N D  STABILISERS FO R  EM ULSIO N  P O LY M E R IS A H O N  R EA C TIO N S

Recently several publications have appeared in which different workers 

claim to have synthesised substances which function as both initiators and 

stabilisers for emulsion polymerisation reactions. These authors apply the 

term "emulsifiers” to the substances synthesised; however, inasmuch as 

there is no evidence that all of the substances are emulsifiers, and since 

the substances prepared during the present project are apparently not 

emulsifiers, the term "stabilisers" will be used here to refer to such 
compounds.

Galibei et al^^^^^ have initiated emulsion polymerisation using the water- 

soluble diacyl peroxide I,

R C (0 )0 0 C (0 )C H 2 C H 2 C 0 (0 C H 2 C H 2 )^ 0 2 C C H 2 C H 2 C (0 )0 0 C (0 )R  (I)

where R is C^H ^^ or C^H ^^ and n has the values 1, 2 or 9. A ll these

compounds are said to be water-soluble with surfactant proper*^ies. They

have been used as effective catalysts for the emulsion polymerisation of

styrene in the presence of the surfactant Tween 20. The results of

Galibei et ^  show that the polymerisation rate depends upon the size of

the hydrophilic and hydrophobic groups in I, being highest for R = C^H^^

and n = 9. Furthermore, the polymerisation rate was observed to increase

to a certain level with increasing diacyl peroxide concentration. Above

this concentration of initiator, the polymerisation rate decreased. The

abstract of this paper offers no explanation for this observation. In a
(124)

second paper , these workers studied the efficiency of the peroxide 

initiators given below in the bulk and emulsion polymerisation of styrene.

[R 02C (C H 2)^C (0 )0]2 (ID

where R is Me or Ft and n is 2 or 3, and I, where R is C^H ^^ and n is 1, 9 

or 13. They claim that in structure I the ester groups exert a stabilising 

influence on the peroxide group. Increasing the distance between the

67



peroxide and ester groups led to an increase in the thermal decomposition 

rate constant k^. The decomposition of I is said to be faster than that of 

the monoperoxide since the peroxide groups of the former are chemically 

stabilised from only one side by an ester group. Increasing the number of 

oxyethylene groups in the central portion of I did not influence the 

initiating activity during bulk polymerisation but led to a rate increase 
during emulsion polymerisation.

Hydroperoxy derivatives of oxyethylated compounds have been 

synthesised by Ivanchev et ^^^^5,126)^ ^ solution of 30 g of the

monoester of

(III)

with 4-methyl-4-cyclohexene-l,2-dicarboxylic acid in 200 ml of ethanol 

was ozonised at 0° to give a hydroperoxide, a 0.01%  aqueous solution of 

which had a surface tension of 44 dyne/cm. Stirring 100 ml of a 2% 

solution of this hydroperoxide (neutralised to pH 7) with 45 g of styrene 

for two hours at 60° gave a polystyrene latex whose particle size was 

0.07 p. The molecular weight of the polymer contained in the latex is said 
to have been 1,230,000.

In addition, the compound

*

was used in the emulsion polymerisation of styrene. A solution of 0.01 g 

of IV in 100 ml of water had a surface tension of 44 dyne/cm. The critical 

micelle concentration of IV in water was found to be 0.0060 g/I. The 

polystyrene latices obtained using IV are said to have excellent resistance 

to electrolytes and to mechanical degradation^^^^\

Ivanchev ^  ^  claim that initiation in the emulsion polymerisation of 

styrene was localised in the growing polymer particles by using surface- 

active initiators and by bonding initiators to particle surfaces in seed 

polymerisation. Polymerisation in such systems was marked by low 

initiation efficiency, increased reaction order with respect to initiator.
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little or no dependence of polymerisation rate on emulsifier 

concentration, high polymer molecular weight and narrow particle-size 

distribution of the latex. These pecularities are explained by Ivanchev et 

^  as a consequence of the decreased rate of initiation and an anomalously 

low chain termination constant.

( 128)
Voronov et ^  have synthesised polymer surfactants containing peroxy 

groups which are said to be water-soluble. These surfactants were 

produced using unsaturated polymerisable peroxides and functional 

monomers. Their general formula is

~(CH2C R 2R j M C H 2C H )- (V)

C -C (C H 3 )2 -0 -0 -C (C H 3 )3

where R^ is C H 3 or H and R2 is C O O H  or^  '*’^®3e compounds

are said to be surface-active to a degree which depends upon the 

composition and intrinsic viscosity of the peroxy oligomer. Aqueous 

solutions of these surfactants are said to be capable of initiating radical 

reactions in aqueous solutions.

Polystyrene latices having a narrow particle-size distribution and

containing a polymer of high molecular weight were obtained bv(129) ^
Pavlyuchenko et al using surface-active hydroperoxidic initiators
such as

^16-18'^33-37^°^’̂ 2^*^2 )2qOCOCH(CH2COR^)CH-
[C H 2C R 2(0 0 H )(0 F t)X :0 "Na"' (VI)

where Rĵ  and R2 are H or Me and R^ îs different from R 2.

Coloured latices have been obtained by Voronov et by polymerising

vinyl monomers by heating in the presence of VII:
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C H 2C H R '-

CM e^OOCM e.2

-C H o C M e -
2 |

C  = O 

H rli- 

O:

(VII)

where m is 62.2 to 87.38 mol per cent, n is 11.0 to 37.0 mol per cent, k is 

0.2 to 2.3 mol per cent, R is C O 2H or 2-methylpyridin-4(or 5)-yl and R* is 

PhMe. Compounds of this type functioned simultaneously as stabilisers, 

initiators and anthraquinone dyes. There is no indication in the abstract 

of this paper that conventional surfactants were simultaneously used.

initiators have been synthesised by Ershov et 

^  . A  polymeric initiator-stabiliser with the structure

[C H 2 C R (C 0 2 M )]^[C H 2 C R (C N )]^[C H 2C H (C = C C M e 2 00 C M e^]p  (VIII)

where R is H or Me, M is K , Na or NH^, m is 50.7 to 80 mol per cent, n is 

0 to 43.5 mol per cent and p is 2 to 20 mol per cent, was prepared by 

copolymerisation of (meth)acrylic acid, or its mixture with 

(meth)acrylonitrile, with H 2C = C H C =C C M e 2- 0 - 0 -C M e 3 in an aqueous 

medium in the presence of a radical-type initiator and a molecular-weight 

regulator. The abstract does not give any indication of how these 

compounds performed.

Heitz et  ̂ have synthesised polymers containing azo groups as

polymerisation stabilisers and initiators. Polymers containing blocks of 

ethylenically-unsaturated monomers and blocks of structure

[-C M e ,C O ,Z O ,C C M e .,N = N -] (IX )

where Z is to alkylene, cycloalkylene, or arylene, or polyether, 

and n ranges from 1 to lo \  are useful as combined initiator-stabilisers for 

the polymerisation of ethylenically-unsaturated monomers. The blocks 

containing azo groups were prepared by treating azobisisobutyronitrile 

with diols. Thus, a typical initiator-stabiliser polymer was prepared by 

polymerising 5 g of polyinitiator with 30 g of acrylamide in tertiary-
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butanol. The initiator-stabiliser had a viscosity-average molecular vyeight 

between 60,000 and 70,000. A mixture of two parts of the above 

initiator-stabiliser, ten parts of vinyl acetate and 100 ml of water was 

polymerised for four hours at 70° and then for one hour at 90°, giving an 

emulsion which showed no settling after multiple freeze-thaw cycles.

Tsitrinbaum et ^  have produced peroxidic polymeric initiator- 

stabilisers by the emulsion copolymerisation of vinylpyridines with 

dimethylvinylethylmethyl-Nbutyl peroxide in an aqueous medium in the 

presence of initiators and stabilisers. According to the abstract of this 

paper, a variety of such initiator-stabilisers may be obtained by adding 

(meth)acrylic acid and different amounts of vinylpyridines to the reaction 

mixture at pH 0.2 to 6.0 and at a temperature of 20-40°C in order to 
obtain a copolymer.

Voronov et ^  claim to have synthesised linear random copolymers of 

quaternised 2 -methyi-5-vinylpyridine and 2 -(vinylethynyl)-2 -propyI tert- 

butyl peroxide; these copolymers are reported to have crosslinking and 

initiating properties in acidic, neutral and alkaline aqueous media.

Voronov et al^^^^^ have synthesised copolymers from acrylic acid (X ) and 

tert-butyl dimethyl(vinylethynyl)methyl peroxide (X I) in methanol. In 

addition to being a comonomer, XI acted as a polymerisation initiator and 

chain-transfer agent. Neutralisation of the X -X I copolymer converted it 

into a water-soluble species if the concentration of carboxylate units in 

the copolymer was not less than 54.6 mol per cent. Water-soluble 

compounds of the copolymer were reported as having surfactant 

properties. The value of its critical micelle concentration depended upon 

its composition and molecular weight, though the abstract provides no 
typical values.

Further polymeric stabilisers containing peroxide groups have been 

synthesised by Voronov et Water-soluble compounds containing

peroxide side groups were prepared by radical cooligomerisation of 

dimethylvinylethynylmethyl tert-butyl peroxide with acrylic or 

methacrylic acids, or 2-methyl-5-vinylpyridine at 60-70° in the presence 

of tert-dodecyl mercaptan as chain-transfer agent. It is stated that the
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stabilisers produced exhibit solubilising properties and catalyse radical 
reactions in aqueous solutions.

Polymeric initiators have been obtained by Dicke and Heitz^^^^^ by the 

acid-catalysed formation of azobisisobutyronitrile with tetraethylene 

glycol and 1,6-hexandiol. The kinetics of the decomposition of these 

polyazoesters were investigated by differential scanning calorimetry. An 

activation energy of = 124.5 kj/mol was reported. Polyazoesters can 

be obtained from azobisisobutyronitrile and diols. Polymers containing 

azo groups (prepolymers) are formed by partial decomposition of these 

polyinitiators in the presence jf a monomer. The reaction of 

polyazoesters with hydrophilic monomers such as acrylamide and 

N-vinylpyrrolidone results in the formation of polymers which contain azo 

groups. These polymers are said to show surface-active properties. They 

can be used in emulsion polymerisation to form stable latices without the 

use of conventional surfactants and initiators.

Polyacrylamides which contain azo groups were used in the emulsion 

polymerisation of vinyl acetate as initiator-stabilisers. The 

rate/conversion curves for these reactions show the three reaction 

intervals typical of conventional emulsion polymerisations. A strong 

increase in the rate was observed up to about 15% conversion. This was 

followed by a constant rate up to about 65% conversion. Thereafter the 

reaction rate decreased. A plot of the log rate during Interval II versus 

the log of the concentration of prepolymer yielded a straight line of slope

1.02. The authors report that the rate of polymerisation is proportional to 

the concentration of the azo-group-containing polyacrylamide. The 

prepolymer combines the functions of initiator and stabiliser. The order 

of reaction found is, according to the authors, the "product" [sic; sc. 'sum'] 

of the orders expected for an initiator and a stabiliser independently.

Latices of polyvinyl acetate obtained using polyacrylamides which contain 

azo groups are said to be colloidally very stable. Polymers containing a 

high proportion of azo groups are, according to the authors, better suited 

to forming stable latices than, for example, peroxide initiators. These 

workers also found that feeding the monomer during the emulsion 

polymerisation reaction also increases the stability of the latices

72



obtained. Stable latices were also obtained by Dicke and Heitz^^^^^ using

monomers such as styrene, methyl methacrylate, acrylates and 
acrylonitrile.

Polymethacrylic acids which contained azo groups were obtained by 

partial decomposition of the initiator to 37%  in the presence of 

methacrylic acid. The investigation of the surface tension of aqueous 

solutions of these prepolymers showed that azo-group-containing 

polymethacrylic acids have a surface activity comparable to that of other 

nonionic surfactants. The critical micelle concentration is reported as 

approximately 0.12 g/1. This methacrylic acid prepolymer can also be 

used as an initiator-stabiliser to form stable latices of polystyrene. In 

this case the latex particles are stabilised by a shell of solvated polymer 

and not by charge effects. Therefore it is not surprising that it is also 

possible to form stable latices of a polymer in an organic solvent using an 

azo-group-containing prepolymer which is soluble in that solvent.

Schmidt and Roos ’ have obtained stable latices with low foaming 

tendencies and low electrolyte content by using stabilising azo initiators 

of the following general structures:

R 'N=C(O R )CM e2N=NCMe2C(O R )=NR ' (XII)

R 'NH C(=NR )CM e2N=NCM e2C(=N R)NH R' (XIII)

R 'NH C(=NR ')CM e2N=NCM e2C(=N R')NHR' (XIV)

In these structures, R is alkyl, R' is C O N H Z N H C O N H Z 'C O M  or

(^0N H ZN H (30N H Z SOj M, Z is a diisocyanate residue, Z* is phenylene or 

^5 -12 ^  *3 Na, K or N H ^. In particular, these workers

claim to have accomplished the copolymerisation of butylacrylate and 

styrene in water in the presence of 10% of the compound XV:

N H C 0 N H (C H 2) ĵ qC 02K

Me- -N H C O N =C (O R t)C M e2N : (XV)
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The project described in this thesis had its origin in a research project 

carried out by the writer as part of the degree of It was

surprisingly discovered that certain straight-chain esters of 4,4*-azobis-4-  

cyanopentanoic acid acted not only as initiators for conventional free- 

radical emulsion polymerisation reactions, but also as stabilisers for 

latices produced by the emulsion polymerisation of styrene in the absence 

of conventional surfactant. In other words, these azo compounds 

appeared to behave as stabilisers as well as as initiators. One such 

compound was the decyl ester of 4,4*-azobis-4-cyanopentanoic acid, XVI:

O C N  C N  O

CH^(CH2)^O CCH2CH^CN=NCCH^CH^CO iCH^)^CH^
C H 3 ¿ H 3

(XVI)

The behaviour of this compound was most unexpected, because the 

compound lacked an obvious hydrophilic component, which is normally 

considered to be essential, together with a hydrophobic component, for 

the stabilisation of latices and the support of emulsion polymerisation.

The effect of varying the alkyl group of the ester was investigated in the 

course of the M.Sc. project. The alkyl groups used were methyl, ethyl, 

n-hexyl, n-octyl, n-decyl, n-dodecyl, and n-tetradecyl. A ll the esters 

from octyl to tetradecyl were found to produce stable monodisperse 

polystyrene latices in the absence of added conventional surfactant. 

These latices contained polymers of various molecular weights. The 

molecular weights appeared to pass through a maximum with the decyl 

ester, after which the molecular weight decreased with increasing size of 

the alkyl group in the initiator. The molecular weights of the 

polystyrenes produced ranged from 10,000 for the methyl ester to 200,000 

for the decyl ester. These emulsion polymerisation reactions were carried

out at 70° for two hours. The formulation used was 80 ml of water, 50 ml
_2 *

of styrene and 1.10 x 10 mol of the appropriate ester. The numbers of

particles per unit volume were also found to be within the normal 

emulsion-polymerisation range, except perhaps in the case of the reaction 

initiated by the methyl ester. The values found ranged from 1.5 x 10^^ 

cm" for the methyl ester to 1.5 x 10^^ cm '^  for the dodecyl ester. 

These results showed a general increase in the number of particles per
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C H A P T E R  FIVE

P R EP A R A TIO N  O F D ER IV ATIV ES O F 4 ,4 '-A Z O B IS -4 -C Y A N O P E N TA N O IC  A C ID  

A N D  TH E IR  P R ELIM IN A R Y  E V A L U A TIO N  AS IN ITIATO R /STABILISER S

5,1, Introduction, This chapter includes the attempts made at preparing 

compounds that would act as initiator-stabilisers for the emulsion 

polymerisation of styrene. These compounds were all derivatives of 4,4'- 

azobis-4-cyanopentanoic acid and different hydroxy and amino
compounds.

This chapter also includes the evaluation of the prepared compounds as 

initiators for the polymerisation of styrene in

(1 ) bulk polymerisation

(2) conventional emulsion polymerisation; i.e., when a surfactant is 
present

(3) emulsion polymerisation in the absence of conventional 
surfactant.

It is also necessary to note here a serious difficulty which was 

encountered at a later stage in the investigation. This occurred when the 

time came to choose suitable compounds for a detailed study of the 

properties of the more promising of these derivatives. It was then 

observed that esters prepared similarly to those which previously gave 

stable monodisperse latices in the absence of added conventional 

surfactant now failed to do so. The final part of this chapter describes 

investigations which were carried out in order to try to understand this 

phenomenon and to repeat the preparation of the original esters. The 

following abbreviations have been used throughout the text:

4 ,4 '-A B -4 -C P A  = 4,4'-azobis-4-cyanopentanoic acid 

4 ,4 '-A B -4 -C P C  = 4,4'-azobis-4-cyanopentanoyl chloride 

FA(EO)^H = fatty alcohol ethylene oxide condensate 

FA(EO)^Es = ester of 4,4'-azobis-4-cyanopentanoic acid and 
FA(EO)n

AZBN = azobisisobutyronitrile
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5,2, Origin of chemicals.

C H F M IC A L ORIGIN P U R ITY
4,4 '-A B -4 -C P A Aldrich 97%

Sigma unspecified
phosphorus pentachloride BDH Analar

Aldrich technical
alcohols Aldrich 97-99%
styrene Aldrich 99%
nitrogen BOC white spot grade BOC 99%
toluene BDH technical
ethyl acetate Fisons 99%
triethylamine Fisons 98%
dimethyl formamide Aldrich 99%
benzene BDH Analar

Fisons Analar
laevulinic acid Aldrich 95%
1 1 -bromoundecanoic acid Aldrich 99%
aldehydes Aldrich 99%
amines Aldrich 99%
aromatic hydroxy acids Aldrich 99%
fatty alcohol ethoxylates ABM

Chemicals

technical

5.3. Preparation of starting compounds required for the preparation of 

derivatives of 4,4'-azobis-4-cyanopentanoic acid: hydroxy acids.

5.3.1. Preparation of 6-hydroxyhexanoic acid.^^^^“^^^^ 6-hydroxy- 

hexanoic acid was prepared by opening of the ring of 6-hexanolactone by 

alkaline hydrolysis according to the following reactions:

* N aO H --------------- ►H0 (C H 2)5C 0 2 -^ ,3 + _H2SO^ia32,

H 0 (C H 2)5C 0 2 H + Na2SO^

The lactone (34 g/0.3 mol) was refluxed with sodium hydroxide (24 g/0.6 

mol) in water for three hours. The water was evaporated off in order to 

establish whether any lactone remained. The residue contained no oil, and
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since the lactone is an oily liquid, it was concluded that all the lactone 

had reacted. The sodium salt of 6-hydroxyhexanoic acid was obtained as a 

white solid. This solid was dissolved in water, and sulphuric acid added 

until the solution was acidic to litmus paper to form the corresponding 

hydroxy acid. The hydroxy acid was also a white solid; it was isolated by 

filtration. That 6-hydroxyhexanoic acid had been obtained was confirmed 

from its infrared spectrum. The acid was a waxy white substance.

5.3.2. Preparation of 2-hydroxyheptanoic An attempt was made

to prepare 2-hydroxyheptanoic acid from hexanal by the following 
reactions:

C H 3(C H 2)^C =0 + H CN

OH

C H 3(C H 2)^^C-C0 2H

H

OH

C H ,(C H ,) .C -C N  3 2 4 ^
H 2SÔ (̂aq)

Sodium cyanide was used as the source of hydrogen cyanide, the hydrogen 

cyanide being released by the addition of sodium metabisulphite.

Sodium metabisulphite (38 g/0.2 mol) was added at 30-40°C over 15 

minutes to a vigorously-stirred mixture of hexanal (30 g/0.3 mol), sodium 

cyanide (15 g/0.3 mol), ice (ca. 50 g) and distilled water (100 ml). After 

being stirred for a further 15 minutes, the mixture was cooled to 0°C and 

the cyanohydrin produced was decanted off. Concentrated sulphuric acid 

was slowly added until the solution was acidic, in order to convert the 

cyanohydrin to the corresponding carboxylic acid. First a yellow oil and a 

water phase formed. The yellow oil turned brown overnight and then 

white crystals appeared. The crystals were filtered off; they were soluble 

in water but insoluble in dicholoromethane. The infrared spectrum of 

these white crystals revealed the presence of carbonyl and hydroxyl 

groups. This method gave a very poor yield.

5.3.3. Preparation of 2-hydroxyundecanoic acid.^^^^^ An attempt was 

made to prepare 2-hydroxyundecanoic acid from decanal by reactions 

analogous to those used for the attempted preparation of
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2-hydroxyheptanoic acid from hexanal. Decanal (40 g/0.3 mol) and 

sodium cyanide (15 g/0.3 mol) were stirred in water (5 ml) and ice (ca. 50 

g). Sodium metabisulphite (38 g/0.2 mol) in water (50 ml) was addeTTver 

a period of 20 minutes at room temperature. The reaction was allowed to 

proceed for two hours. The oil phase was decanted off and washed with 

diethyl ether. The diethyl ether was evaporated off, and concentrated 

hydrochloric acid added until the solution became acidic to litmus paper. 

White crystals of the cyanohydrin precipitated. These were filtered and 

washed with ether. The cyanohydrin was boiled in 20% alcoholic 

potassium hydroxide to convert it to the potassium salt of 2-  

hydroxyundecanoic acid, since Le Sueur'^^'*’ found that treating the 

cyanohydrin with hydrochloric acid did not convert it to the acid but to 

the amide instead. The solvent was evaporated off and a small amount of 

water was added. The potassium salt was converted to the acid by adding

dilute sulphuric acid, until no more white solid precipitated. The yield 
was poor.

5.3.4. Preparation of ll-hydroxyundecanoic 11-hydroxy-

undecanoic acid was prepared from 1 1 -bromoundecanoic acid by the 
following reactions:

Br(CH2)^gC02H + 2 KO H 

H 0 (C H 2 )^g C 0 2 ‘ K '' + HCl
-  H 0 (C H 2)^qC 0 2 ’ k "’ + KBr

H 0 (C H 2 )^ qC 02H  + KCl

11-bromoundecanoic acid (133 g/0.5 mol) was placed in a round-bottomed 

flask and 60 g/0.7 mol of potassium hydroxide dissolved in 500 ml of water 

was added. The mixture was refluxed for six hours. On cooling, a 

precipitate formed. The potassium salt of the 11-hydroxyundecanoic acid 

is only slightly soluble in cold water. The solid was filtered, and aqueous 

hydrochloric acid was added to the solution. The 11-hydroxyundecanoic 

acid precipitated. The structure of the product was confirmed by its 

infrared spectrum. Aqueous hydrochloric acid was also added to the first 

precipitate, in order to convert it to the acid, which was then 
recrystallised from hot water.

5.4. Instruments used in analysis. The following instruments were used to 

characterise the compounds prepared and latices obtained from them:
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infrared spectrometer; Pye Unicam SP2000

N M R  spectrometer: Burker WP 80 Multinuclear Pulse Transfer 
operated by John Crowder

elemental analysis: Perkin Flmer 240 Flemental Analyser operated 
by A. Rampersad

mass spectrometer; AFIMS9 Double-Focusing Model 502, operated 
by David Diggins

electron microscope; R C A  type FM U 36, operated by J. S. Kotiyan 
Coulter Nanosizer

gel permeation chromatograph and low-angle laser light scattering 

directed by Dr. S. Holding of RAPRA 

du Nouy tensiometer; Cambridge Instruments

5.5. Preparation of 4,4'-azobis-4-cyanopentanoic acid and derivatives.

5.5.1. Preparation of 4,4'-azobis-4-cyanopentanoic acid. The procedure 

followed was that of Haynes and W aters'^^^l To sodium cyanide (49 g 

/I mol) and hydrazine sulphate (65 g/0.5 mol) in water (500 ml) at 50°C, 

laevulinic acid (116 g/1 mol) neutralised with sodium hydroxide (40 g 

/I mol) in 200 ml of water was added over a period of 30 minutes. The 

solution was stirred vigorously. Bromine was added dropwise until the 

solution was deep yellow. The excess bromine was destroyed by adding 

sodium hydrogen sulphite. The colour returned to white/pale yellow. The 

white solid which had precipitated (108 g) was collected and washed once 

in ice water. The yield of 4 ,4 '-A B -4 -C P A  obtained was 42%. The melting 

point range was 118-128 °C. The literature range is 115-127

The reactions which occurred during the preparation of 4 ,4 '-AB-4 -CPA 
are as follows;

2 Na'*’ 02C C H 2C H 2C 0 C H ^ + N H 2NH2H 2SO^ + 2 NaCN

C N  C N

Na'"’ 02CCH2CH2CN(H)-(H)NCCH2CH2C02‘ Na‘'  + Na2SO^ + 2 H2O
C H ^ C H 3

8 0



C N  C N

N a ^ 'O ^C C H jC H ^C N irt-C H jN C C H ^C H ^C O ^ 'N a *
C H j C H j

H 02C C H 2C H 2C N (H )-(H )N C C H 2C H .C 0  H + 2 NaCI
C H ,

9 '^  9 N
H02CCH2CH2CN(H)-(H)NgCHoCH,CO.H

¿ H . :h . 2"" '2^ ^ 2' 2 HBr

C N  C N
H 02C C H 2C H 2C -N = N -C C H 2C H 2C 02H

:h 3 C H 3

5.5.2. Preparation and characterisation of 4,4'-azobis-4-cyanopentanoyl 
chloride.

5.5.2.I. Preparation. 4 ,4 '-A B -4 -C P C  was prepared by reacting 4 ,4 '-A B -4 - 

CPA (30 g/0.1 mol) with phosphorus pentachloride (60 g/0.3 mol) in 

benzene (300 ml) following the procedure of Smith^^^®^. The same 

procedure was used for the preparation of the 4 ,4 '-A B -4 -C P C  which was 

used during the earlier MSc research project^^°\ to which reference has 

been made previously in this thesis.

:n
H 0 2 C C H 2 C H 2 C - N = N - C C H 2 C H 2 C 0 2 H  + 2 P C I 3

CH-, CH-,

:n

C lC O C H o C H
:n :n

2C H 2C -N = N -C C H 2C H 2C 0 C 1 + 2 PO CÌ3 + 2 HCl 
CH-i C H ,

The mixture was kept in an ice bath for 30 minutes, followed by two hours 

at room temperature. The solution was filtered and dried using a rotary 

evaporator at room temperature. The product was a pale yellow solid. 

This solid was washed twice with a mixture of diethyl ether and hexane 

(1:3). The solid was dissolved in a minimal volume of dichloromethane and 

the acid chloride was precipitated by adding hexane. A white substance
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(22.15 g) of pungent odour was obtained. The yield of 4 ,4 '-A B -4 -C P C  was 

65%. The acid chloride thus prepared was used in the preparation of 

various derivatives of 4 ,4 '-A B -4 -C P C , such as esters and amides.

5.5.Z.2. Characterisation. Some characterisation of 4 ,4 '-A B -4 -C P C  

prepared^in this way was carried out during the earlier MSc research 

project . The following techniques were used:

(1) elemental analysis

(2) infrared spectroscopy

(3) C  NMR spectroscopy

(4) mass spectrometry.

The following results were obtained:

Flemental analysis 

theoretical %

C 45.42

H 4.42

N 17.66

Infrared analysis 

peaks (cm~^) 

1730 

1850 

2260

2940-3020

assignments

-C O C I

Figure 5.1(a) gives the spectrum obtained.

13
C  NMR spectroscopy 

peaks (ppm)

172

118 doublet 

71 doublet 

42-36 

23-22

assignments

-C O C I

Figure 5.1(b) gives the spectrum obtained.

- C H ,

-C H ^
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Fig. 5.1: Characterisation of 4,4'-azobis-4-cyanopentanoyl chloride by infrared, and mass spectroscopy.
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Mass spectral analysis 

peaks (m/e)

249 (s)

fragments assigned 

C N  C N

C1C0CH2CH2C-N=N-CCH2CH2
\

C H ,
\

CH:

280 (s)
C N  C N  O

C iC O C H .C H ,C -N = N -C C H .C H ^ C - 
^ ^ I I 2 2

C H , C H ,

108 (s)

197 (s)

C N
I

C H 2 C H 2 C -N = N -

C H ,

C N  C N

C IC O C H ^ C H ^ C --------C -
'  " ¿ H ,  ¿ H ,

Figure 5.1(c) gives the spectrum obtained.

At the time of the MSc project, there was no indication that the 

substance prepared was anything but 4 ,4 '-A B -4 -C P C , and thus chlorine 
analysis was not carried out.

5»5.3. Synthesis of alkyl esters of 4,4'-azobis-4-cyanopentanoic acid by 

reaction of the acid chloride with various straight-chain alcohols.

3.3.3.1. Introduction. The compound C H ^ ~  — ^  is slightly water-

C N
(149)

soluble , since the nitrile has some hydrophilic properties. Such a 

group close to an ester linkage* might be expected to exhibit somewhat 

greater hydrophilic character than otherwise, as in, for example, the 

following compound:

C N  C N

R0CH2CH2C-N=N-CH2CH2C02R 
C H , C H ,
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Th6 6sters iTiight bo expected to be slightly water-soluble and therefore to 

initiate emulsion polymerisation in the absence of conventional 

surfactant. However, the expected water-solubility is very low, 

especially for the higher esters. It should be noted, however, that 

although the compound (C H ^)2C H C N  is slightly water-soluble, the 

solubility in water of the corresponding diazo compound

C H , C H -
I \

H ,C -N = N C -C H .
I I

C N  C N

is said to be practically nil.

5.5.3.2 Mechanism of ester formation. The reaction between acid halides 

and alcohols is the best general method for the preparation of esters:

C IC O R  + R'OH R C O O R ' + HCl

The reaction is of wide scope, and many functional groups do not 

interfere. The reaction mechanism is presumably nucleophilic 
substitution^^^^^:

R -C -C l  + H -O -R '-
-  c PR-ci:r ---------

- h P
R -C -O R ' + hP

l-P  + c P z HCl

5.5.3.3. Procedure. One mol of 4 ,4 '-A B -4 -C P C  was reacted with 2 mol of 

alcohol. Triethylamine (2 mol) was used to remove the hydrogen chloride 

which forms in the reaction. The hydrogen chloride reacts, with the 

triethylamine to form triethylammonium chloride, which is insoluble in 

the reaction medium. However, it was observed that a precipitate was 

also formed even if no alcohol was added to the acid chloride. It seems
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Fig. 5.2: Characterisation of the decyl ester derived from 
4,4'-azobis-4-cyanopentanoic acid by infrared, andmass spectroscopy.
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that tertiary amines can themselves react with acyl halides, the elements 

of hydrogen halide being lost with the formation of a ketene^^^^^

R R 'C H -C O X  + R"^N R R 'C=C=0 + R "^N -H X

In order to avoid this reaction, the triethylamine was mixed with the 

alcohol and added dropwise to the well-stirred solution of acid chloride.

The esters were prepared by reaction in toluene ( c ^  300 ml) at room 

temperature for one hour, although the precipitation of triethylammonium 

chloride was instantaneous. The triethylammonium chloride was removed 

by filtration. The esters were isolated by evaporating the solvent using a 

rotary evaporator at approximately 35°C. The esters were pale yellow 

waxes which had a typical ester-like odour. The yields of the esters 

obtained were approximately 90% of theoretical. Further purification of

the esters was not attempted because they appeared to be thermally 
unstable.

5.5.3.4. Characterisation. The results of attempts at spectral 

characterisation of the decyl ester carried out during the MSc research 

project are given in Figure 5.2. All the evidence suggested that the 

preparation of the decyl ester of 4 ,4 '-A B -4 -C P A  had been successful.

During the present project all the compounds prepared were subjected to 

infrared analysis to confirm their structures as far as possible. Further 

characterisation was left for a later stage, when the most promising 
compounds were to be studied in depth.

5.5.4. Preparation of esters of 4,4'-azobis-4-cyanopentanoic acid by 

reaction of the acid chloride with various other aliphatic hydroxy 
compounds.

5.5.4.I. Ester of ethan>l,2-diol (ethylene glycol). The preparation of this 

ester was identical to the preparation of esters of straight-chain alcohols; 

i.e., one mol of the acid chloride was reacted with 2 mol of the diol. The 

product was a brown waxy substance which was only sparingly soluble in 

toluene. A possible result of the reaction between 4 ,4 '-A B -4 -C P C  and
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ethan-l,2-diol is as follows:

C1CCH2CH2C-N=N-CCH2CH2CC1 + 2 HOCH2 CH 2 OH
CH:

O C N  CN  O

H 0 C H 2 C H 2 0 C C H 2 C H 2 C -N = N -C C H 2 C H 2 C 0 C H 2 C H 2 0 H  + 2 HCl
C H , C H ,

The brown product was dissolved in ethyl acetate. The triethylammonium 

chloride was filtered off and the remaining solution evaporated using a 

rotary evaporator at approximately 35°C. It is believed that the ester is 

a mixture of the monomer, the dimer and some oligomeric species, since 

the infrared spectrum shows the presence of a carbonyl peak, a very weak 
OH band and a very strong C H  band.

5.5.4.2. Ester of 2-ethyl-2-hydroxymethylpropan-l,3-diol (trimethylol 

propane). The procedure followed was that used for the preparation of 

esters from straight-chain alcohols. One mol of acid chloride was reacted 

with 2 mol of trimethylol propane. The product was a pink oil that turned 

slightly brown on standing. The oil was soluble in hot water but insoluble 

to any appreciable extent in either cold or hot styrene. The product was 

probably a mixture of the monoester, the diester and other substances.

5.5.4.3. Ester of 2,2-bis(hydroxymethyl)propan-l,3-diol (pentaerythritol).

An identical preparative procedure was used for the preparation of this 

ester, or mixture of esters, to that which has been described above; i.e., 

one mol of acid chloride was reacted with 2 mol of pentaerythritol.

5.5.4.4. Esters of (i) 11-hydroxyundecanoic acid, (ii) z-12-hydroxyoctadec- 

9-enoic acid (ricinoleic acid) and (iii) fatty-alcohol ethoxylates. A ll these 

compounds are monohydroxy compounds. Esters were prepared from them 

by the procedure used for the preparation of esters from straight-chain 

alcohols; i.e., one mol of the acid chloride in toluene was reacted with 2 

mol of the monohydroxy compound in the presence of 2 mol of 

triethylamine to yield the corresponding ester. All the compounds are
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white waxes.

5.5.5. Preparation of esters of 4,4'>azobis-4-cyanopentanoic acid by 

reaction of the acid chloride with various cyclic compounds. The

preparations of all the esters included in this section were carried out 

following the procedure employed for the preparation of the esters of the 

azo acid and the straight-chain alcohols; i.e., one mol of the acid chloride 

was dissolved in toluene ( c ^  300 ml), and a mixture of 2 mol of the cyclic 

hydroxy compound and 2 mol of triethylamine was added dropwise to the 

solution. The triethylammonium chloride was filtered off, and the 

solution evaporated to dryness to obtain the ester.

5.5.5.1. Esters of (i) cyclohexanol, (ii) phenol, (iii) o-hydroxybenzoic acid 

and (iv) Q-hydroxybenzoic acid. The ester of cyclohexanol was a yellow 

liquid, soluble in styrene but insoluble in water. The ester of phenol was a 

pink wax, soluble in styrene as well as in hot water, but insoluble in cold 

water. The yield of phenol ester obtained was 51%. The ester of o- 

hydroxybenzoic acid was a greenish resin that turned hard on standing. Its 

solubility in water and in styrene, both hot and cold, is practically nil.

The ester of £-benzoic acid was a white solid which was also insoluble in 
styrene and in water, hot or cold.

5.5.5.2. Esters of (i) 1,3-dihydroxybenzeiie (resorcinol) and (ii) 1,3,5- 

trihydroxybenzene (phloroglucinol). The ester of resorcinol was an orange 

resin, soluble in hot water and insoluble in either hot or cold styrene. The 

yield of resorcinol ester obtained was 59%. The ester of phloroglucinol is 

a brown waxy solid, soluble in hot water but insoluble in styrene. The 

yield of phloroglucinol ester obtained was 66%.

5.5.6. Preparatim of the potassium salts of the esters of 4,4'-azobis-4- 

cyanopentanoic acid and various hydroxy acids. The preparation of the 

potassium salts of several hydroxy acids was attempted in situ in the 

aqueous phase for the attemped emulsion polymerisation of styrene; the 

hydroxy acids used were (i) ricinoleic acid, (ii) 11-hydroxyundecanoic acid,

(iii) o-hydroxybenzoic acid and (iv) ^-hydroxybenzoic acid. The azo acid 

(1.1 x 10 * mol) and potassium hydroxide (2.2 x 10"* mol plus 10% excess) 

were added to the well-stirred water at 70°C and allowed to react for
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approxicnat6ly two minutas. After this time, the styrene was added to the 

mixture in order to investigate the emulsion polymerisation behaviour.

However, the potassium salts of the esters of o-hydroxybenzoic acid and 

£-hydroxybenzoic acid failed to yield a latex when used as described 

above and their preparation was attempted in IMS. One mol of the ester 

was dissolved in IMS and 2 mol of potassium hydroxide added, since it too 

is soluble in IMS. The reaction was allowed to proceed for two hours. 

Both salts were white solids, insoluble in either water or styrene.

5,5.7. Preparation of amides.

5,5,7,1, Preparation of the decyl, dodecyl and tetradecyl amides of 4,A*- 

azobis-4-cyanopentanoic acid. Because the early work indicated that the 

esters of straight-chain alcohols could function as initiator-stabilisers for 

the emulsion polymerisation of styrene in the absence of conventional 

surfactants, the preparation of a range of similar straight-chain amides 

was also attempted. Two mol of the acid chloride were dissolved in ethyl 

acetate (ca. 300 ml). The amine (4 mol) was added to this solution at 

room temperature and allowed to react for one hour. The excess amine (2 

mol) was used to react with the hydrogen chloride evolved.

Some of the decylammonium chloride was observed to dissolve in the 

reaction medium. Most of the decylammonium chloride was separated by 

filtration. The filtrate was then dried down in a rotary evaporator. 

Hexane was added to remove any unreacted amine. The amide was then 

purified by the addition of water in order to extract the remaining 

decylammonium chloride.

The dodecyl amide is insoluble in methanol, whereas the 

dodecylammonium chloride is soluble. Methanol was therefore added to 

the white solid and the mixture filtered. This procedure was repeated 

twice. The resultant white solid was then washed with water until no 

more dodecylammonium chloride remained, as evidenced by the absence 

of any precipitate when silver nitrate solution was added to the wash 

water. The yield of amide obtained was 82%.
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The same method was used for the preparation of the tetradecyl amide.

5,5.7.2. Attempted synthesis of the amide of 6-aminocaproic acid. The

synthesis of amido acids is reported to have been accomplished bv 
(153) . y

btevens using the reaction of a fatty-acid chloride with N -

methylglycine in alkaline solution:

R C O C l + C H 3N H C H 2COONa + NaOH -  

R C O N (C H 3)C H 2CO ON a + NaCl + H 2O

Also, derivatives of e-aminocaproic acid were said to be synthesised by 

acylation of the amine function with the appropriate acid chloride, an 

example being 3,4,5-trimethoxybenzoyl chloride^^^^l

The synthesis of the amide of 4 ,4 '-A B -4 -C P A  and 6-aminocaproic acid was 

also attempted. The first preparation involved the use of the azo acid 

chloride and the aminocaproic acid. 4 ,4 '-A B -4 -C P C  (9.5 g/0.03 mol) was 

dissolved in ethyl acetate ( c ^  300 ml). The amino acid (16 g/0.12 mol) 

was added in excess in order to remove the hydrogen chloride formed in 

the reaction.

g  C N  C N  O
>1 I I  II

ClCCH^CH^C-N=N-CCH^CHJOCl + 2 H2N(CH2)5C02H
C H 3 C H 3

O C N  C N  O

H02C(CH2)5NHCCH2CH2C-N=N-CCH2CH2CNH(CH2)5C02H
C H 3 C H 3

A white solid was obtained which dissolved in aqueous methanol. 

According to the infrared spectrum of the product, the desired compound 

had not been formed. The infrared spectrum was the exact replica of that 

of the 4 ,4 '-A B -4 -C P A .

The reaction was repeated in alkaline aqueous solution.
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H2 N(CH2 ) 5 C 0 2 H + NaOH ----------►H2N(CH2)5C02’ Na'’ + H2 O

2 H2N(CH2)5C02*Na'^ + R(C0C1)2 ---------------- --

R[C0N(CH2)5C02‘ Na-^] 2 HCI

R [C O N (C H 2 ).^C O ,'N a ‘̂ ]2 + 2 H2SG2 ■ - ■ 2— 4-

R [C O N (C H 2) cC O ,H L  + 2 NaHSO,

C N  CN

where R is - C H 2C H .C -N = N .C C H ^ C H ,~
1  I 2 2

C H 3

However, no amide was obtained. The reaction was repeated again using 

glaciai acetic acid as solvent, since the reaction was entirely soluble in it. 
But again the desired product was not obtained.

5.5.8. Synthesis of the decylammonium salt of 4,4'-azobis-4- 

cyanopentanoic acid. This salt was prepared by reacting 1-aminodecane 

with 4 ,4 '-A B -4 -C P A  according to the following reactions;

□  CN C N  o

C H 3 C H 3

O ^

C i q H 2 i NH3^ ’ 0 C C H 2 C H 2 C -N = N .C C H 2 C H 2 C 0 "
I

C H 3 C H 3
3^10'^21

4 ,4 '-A B -4 -C P A  (3 g/0.01 mol) was reacted with 1-aminodecane (3 g/0.02 

mol). The reaction was carried out in acetone, in which both reactants 

are soluble. The solution turned brown. The solution was evaporated to

dryness, and a brown-white solid remained. This solid was washed with 
ethyl acetate.
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5.6. Separation of the meso and isomers of 4,4*-azobis-4-
cyanopentanoic acid.

5.6.1. Introduction. 4 ,4 '-A B -4 -C P A  has two asymmetric carbon ato.ns in 
its structure:

y  C N  C N  O

H O C C H 2 C H 2 9 ~ n =N— C C H ,C H .,C O H   ̂  ̂ I I 2 2I
CHa

I
C H:

Because of the symmetric nature of this molecule, individual molecules of 

the acid can exist in three stereoisomeric forms. These are as follows:

(0 The ++ form. This isotner rotates the plane of polarised light to 
the right.

(ii) The —  form. This isomer rotates the plane of polarised light to 
the left.

(iii) The meso form. In this form, one asymmetric carbon atom has 

the + conformation, and the other asymmetric carbon atom has the -  

conformation. Consequently, the molecule does not rotate the plane 
of polarised light.

Haines and Waters^ found by titration analysis that the acid as 

normally prepared consists of 52% meso isomer and 48% racemic mixture 

of the ++ and —  forms; this racemic mixture is often referred to as the ( ) 

form. The acid as normally prepared is thus optically inactive.

The reason for wishing to separate the meso isomer from the racemic 

mixture was the failure of the amides to give a latex when used in the 

emulsion polymerisation of styrene. Since the amides were washed with 

water, there was a possibility of partial separation of the isomers from 

each other because of their different solubilities in water. Therefore 

separation of the meso form from the racemic mixture was attempted in 

order to examine their properties separately.

5.6.2. Procedure.^^^^^ 4 ,4 '-A B -4 -C P A  (30 g/0.1 mol) was stirred in 10% 

methanol in water (180 ml methanol, 1620 ml distilled water) for 24 hours. 

The mixture was filtered and the solid that remained was dried. The solid 

is, according to Haines and Waters^^^^\ the meso isomer. This was
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0^(155) .
Tor the meso form. This substance was

recrystalhsed by dissolving the solid in hot water (75-80°C) and cooling 

the solution at room temperature. White crystals were obtained. The

melting point was 132-133°C. This compared favourably with the 
literature value of 134-135°C

therefore identified as the meso form of the acid.

The filtrate was left for 24 hours at -3°C. White crystals were obtained 

which were filtered and recrystallised from 334 ml of water at 60-65°C 

and cooled at -3°C. A white crystalline substance was obtained which 

melted over the range 117-118^C. This compared favourably with the 

literature value of 118°C for the racemic mixture. This substance 

was therefore identified as the racemic mixture form of the acid.

The acid chloride and decyl ester of each isomer were prepared and 

investigated as initiator/stabilisers for the emulsion polymerisation of 

styrene in the absence of conventional surfactant. Both isomers gave

very monodisperse latices. There were no detectable differences between 
the two decyl esters.

In view of the above result, it was concluded that it is unlikely that the 

removal of one isomer would make any significant difference to the 

abilities of the amides to function as initiator/stabilisers in emulsion 

polymerisation reactions in the absence of conventional surfactant.

5.7. Evaluation of derivatives of 4,4*-azobis-4-cyanopentanoic acid as 
initiators.

3.7.1. Introduction. As can be seen from the accompanying tables of 

results (Tables 5.1 to 5.14), of the various types of compounds prepared 

there were three which functioned effectively as initiator/stabilisers 

when used for the emulsion polymerisation of styrene in the absence of 

conventional surfactant, namely

(i) straight-chain esters of 4 ,4 '-A B -4 -C P A ,

(ii) the fatty-alcohol ethoxylate esters, and

(iii) the salts of the esters of hydroxy acids.

Types (i) and (ii) are non-ionic, whilst type (iii) is ionic. Types (ii) and (iii), 

at least, contain a hydrophobic moiety in their molecule. It is not
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surprising that the salts of the esters of long-chain hydroxy acids and the 

esters of the fatty-alcohol ethoxylates are able to function as stabilisers 

for polystyrene latices, since they contain a hydrophilic moiety, namely, 

the salt in the ionic compound and the long polyoxyethylene chain in the 

non-ionic fatty-alcohol ethoxylate esters. However, the esters of type (i) 

contain no such obvious hydrophilic moiety, and it is perhaps questionable 

whether they have a hydrophobic one. Nevertheless, it was observed that 

some straight-chain alkyl esters of 4 ,4 '-A B -4 -C P A  appeared to be able to 

initiate the emulsion polymerisation of styrene and helped to stabilise a 

very rnonodisperse latex in the absence of conventional surfactant.

5.7.2. Purification of styrene for use as monomer in emulsion 

polymerisation experiments. The styrene as supplied by Aldrich 

Chemicals Ltd. was inhibited with 10-15 ppm p-te rt-butvlcatechol. In 

order to remove the inhibitor, the styrene was washed twice with 10% 

aqueous NaOH solution and then washed twice with doubly-distilled water. 

The first washing with NaOH gave a red colouration to the water phase, 

whilst the styrene phase turned yellow. Subsequent washings had no effect 

upon the colouration; the water layer remained colourless and the styrene 

yellow. The styrene was dried over calcium chloride for 24 hours, and then 

distilled under reduced pressure at approximately 60°C. The colourless, 

distilled styrene was stored in a refrigerator at -20°C.

5.7.3. Purification of distilled water for use in emulsion polymerisation 

experiments. Distilled water from the laboratory supply was used after it 

had been distilled once again. The doubly-distilled water was deaerated 

by bubbling nitrogen through it overnight, at the same time removing any 

carbon dioxide that might have been dissolved in the water.

5.7.4. Recipes used in the various types of polymerisation experiments. 
Kinetic studies.

(i) Bulk polymerisation experiments

The formulation employed for the bulk polymerisation of styrene when the 

esters derived from 4 ,4 '-A B -4 -C P A  were used as initiators was as follows: 

styrene 50 ml

ester 1.48 x 10"’ mol
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The styrene and the ester were placed in a test tube which was then 

stoppered. The test tube was placed in a water bath at 70“c for a period 

of two hours. The polynner was precipitated by pouring the reaction 

solution into a large excess of methanol. The polymer was filtered, dried 
and weighed to estimate the yield.

The kinetics of bulk polymerisation of styrene were followed for two

cases. In both cases, I . l  x lO '»  mol of initiator was used. In the first

case, the initiator used was AZBN , and in the second case, the initiator

used was the decyl ester of 4 ,4 '-A B -4 -C P A . 50 ml of styrene and the

corresponding amount of initiator were divided among ten test tubes,

which were then stoppered and placed in a water bath at 52°C. A t given

intervals, the test tubes were emptied into 100 ml of methanol to which

approximately five drops of tert-butylcatechol solution had been added.

The polymer was filtered off, dried and weighed to estimate the yield.

Fig. 5.3 gives the results obtained for conversion v. time for the two 
reactions.

Conventional emulsion polymerisation experiments, i.e.,_______
presence of a conventional surfactant.

The formulation used when an ester derived from 4 ,4 '-A B -4 -C P A  was used

as an initiator and sodium lauryl sulphate was used as a stabiliser was as 
follows:

50 ml 

80 ml

1.48 X 10 ’ mol 

1.10 X 10 * mol

The sodium lauryl sulphate and the ester were dissolved in the water and 

then added to the reaction flask, which was fitted with a stirrer, a 

condenser and a nitrogen inlet. Finally the styrene was added. The 

reactions were carried out in a water bath at 70°C, under nitrogen, with 

constant stirring for a period of two hours. The polymers in the latex 

were precipitated by pouring a small volume of the latex (10 ml) into 

excess methanol (200 ml). The polymer was dried and weighed in order to 

estimate the yield. The pH of the latices obtained was neutral.

styrene

water

ester

sodium lauryl sulphate
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polymerisation experiments using recipes which did not 
contain conventional surfactant.

When the emulsion polymerisation of styrene was carried out using the

esters derived from 4 ,4 '-A B -4 -C P A  as initiators as well as stabilisers, i.e.,

in the absence of added conventional surfactant, the formulation used was 
as follows:

styrene 50 ml

water 80 ml

ester l . l  x 10'* mol

The procedure was as described in (ii) above. The polymer could be 

obtained in the case of the latex produced by the esters of straight-chain 

alcohols and 4 ,4 '-A B -4 -C P A  by destabilisation of the latex with methanol,

acid, base or even sodium chloride solution. The pH of the latex produced 
was neutral.

The conversion-time curve for the emulsion polymerisation of styrene 

when using the decyl ester of 4,4’-A B -4 -C P A  as initiator/stabiliser in the 

absence of conventional surfactant is given in Fig. 5.4. Initially, it was 

intended to obtain conversion-time curves by withdrawing samples from 

the reaction flask in which the polymerisation was taking place, and 

evaporating the samples to dryness to obtain polymer yields. Such yields 

proved to be erratic, mainly because the system was not completely 

macroscopically homogeneous. Consequently, the procedure was modified 

to the following: The ester was dissolved in the water and the styrene 

was added to it. The mixture was divided among ten bottles and placed in 

a water bath at 52°C. The bottles were rotated end over end to ensure 

proper mixing. At given intervals, one bottle was taken out and the 

polymer was precipitated in methanol to which approximately five drops 

of p -te rt-butylcatechol had been added. The polymer was filtered, 

washed with methanol, dried and weighed to estimate the yield.

When the fatty-alcohol ethoxylate esters were used as initiator/stabilisers 

in the absence of conventional surfactant, the precipitation of the 

polymer produced was achieved by addition of acidified methanol. 

Neutral methanol did not destabilise the latex. The pH of these latices 
was also neutral.
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When the potassium salts of the esters of the hydroxy acids and 4 ,4 '-A B -4 - 

C P A  were used as initiator/stabilisers, the pH of the resulting latex was 

approximately 8, since excess K O H  was used. The destabilisation of the 
latex could be achieved by methanol, acid or base.

5.7.5. Properties of the latices formed using various azo
initiator/stabilisers.

5.7.5.I. Introduction. The polymerisation of styrene was carried out in 

water in the presence of each of the azo compounds prepared as described 

m the preceding section, in order to ascertain whether or not they would 

act simultaneously as initiators and stabilisers. In some cases, the

polymerisation was successful and the end product appeared to be a latex.

When a latex was obtained, the following properties of the latex were 
determined:

(a) average particle size;

(b) particle-size distribution;

(c) number of particles per unit volume;

(d) surface tension (in some cases).

5.7.5.Z. Determination of latex particle size. An indication of particle- 

size distribution for each latex was obtained as follows: An electron 

micrograph of each latex was taken using an electron microscope at 

knowun magnification. Fach negative was then examined under a ten- 

power magnifying lens, and in each case the diameters of 75 arbitrarily- 

chosen particles were measured to the nearest millimeter and recorded as 

"millimeters read". For each photograph examined in this way,the 

volume-average particle diameter, d^, was calculated as

./ 2 n .d.^
V y  Z n .

where n. is the number of particles having diameters within a range whose 

central value is d.. The value of d^ obtained was then converted into 

diameter in nanometers using the knowun magnification.
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5.7.5.3 Determination of particle-size distribution. Histograms were 

constructed by plotting the frequency of appearance of each value of 

particle diameter d. against the particle diameter value d.. Figure 5.6 
gives some of the histograms plotted.

5.7.5.4. Determination of number of particles per unit volume. The

number of particles per unit volume, N, was calculated for each latex as 
follows^-^^^^:

N = 6w
d’TTp

where is the density of polystyrene (1.05 g and w is the mass
of polymer per unit volume of latex.

5.7.5.5. Determination of surface tension. The surface tension of the air- 

water interface of some of the latices was measured using a du Nouy 

Tensiometer, applying the method specified in BS4561:1970. The 

temperature of the experiment was 25°C±1°C. Three determinations 

were made for each latex, and the average value was taken.

5.8. Discussion of preliminary results.

5.8.1. Introduction. The syntheses of 4 ,4 '-A B -4 -C P A  and its acid chloride 

were successfully carried out, as indicated by infrared analysis and 

melting point for the acid and by infrared analysis for the acid chloride. 

The infrared spectrum and the melting point of the acid prepared were 

virtually identical to those of the acid purchased from commercial 

sources^^which was also used in these experiments. During the MSc 

project , the acid chloride was subjected to elemental analysis, and to 

characterisation by NMR and mass spectroscopic techniques. A ll the 

evidence confirmed the identity of the acid chloride. The same 

techniques were used for the analysis of the esters which were synthesised 

during the MSc project, and which were to be used in this project also, but 

only infrared analysis was carried out for every compound in this project, 

since at the time it was thought unnecessary to characterise every 

compound fully. Full characterisation was left for a later date when it
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was intended to characterise extensively those compounds which were to 
be used in more detailed kinetic studies.

The nonyl, decyl, undecyl and hexadecyl esters behaved as stabilisers in 

the absence of conventional surfactant, giving very monodisperse and 

stable latices. It is interesting to note that, unexpectedly, all of them 

appeared to be at least partially soluble in warm water, whilst the esters 

of ethanol and octadecanol were not soluble in hot water to any 

appreciable extent, although they did melt. These latter compounds did 

not give a latex, but they did polymerise styrene in bulk. The presence of 

free hydroxyl groups in the azo ester, rather surprisingly, did not seem to 

enhance their water solubility, and esters containing acyclic, cyclic or 

aromatic hydroxyls did not give a latex. Fven the potassium salts of

esters of aromatic hydroxy acids were water-insoluble and did not yield a 
latex.

Although the decyl, dodecyl and hexadecyl esters did form latices, the 

decyl, dodecyl and tetradecyl amides were water-insoluble and did not 

form latices. The amides are able to effect polymerisation in bulk but not 

in surfactant-free emulsion polymerisation. One would expect the esters 

to behave very similarly to the amides and to be water-insoluble, but in 

fact the former appear to be partly water-soluble and to give latices when 

used as initiators in the polymerisation of styrene in the absence of 
conventional surfactant.

The potassium salts of long-chain aliphatic azo hydroxy acids are water-

soluble and serve as initiator/stabilisers for the emulsion polymerisation 
of styrene.

It seems that solubility in water is an essential requirement if a compound 

is to function as an initiator/stabiliser in the emulsion polymerisation of 
styrene.

The decyl and hexadecyl esters produced stable latices with no 

coagulation. Although the nonyl and undecyl esters gave higher 

conversions, there was some considerable coagulation around the stirrer.
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Of the esters prepared from the fatty-alcohol ethoxylates, those prepared 

from F A (F 0 )2 ^H  and FA (FO )^gH  gave the most promising latices under 

the conditions used. The other fatty-alcohol ethoxylate esters formed 

two layers of different proportions, depending on the fatty-alcohol 

ethoxylate used, when the stirring was stopped. Some of the F A (F O ) Fs 

latex destabilised and formed a solid but the rest remained as a stable 

latex. FA(FO )^gFs was observed to form a very foamy latex. 

F A (F O ) ĵ qF s, F A (F O )^^F s and F A (F O )2^Fs showed inverse solubility; i.e., 

they were more soluble in water at room temperature than at the 
temperature of polymerisation.

A third group of successful initiator/stabilisers comprised the potassium 

salts of esters of ricinoleic acid and 11-hydroxyundecanoic acid and 4,4'- 

A B -4 -C P A . Both ester salts gave very stable latices.

In the case of esters of straight-chain alcohols and 4 ,4 '-A B -4 -C P A , it is 

possible that stabilisation might be a consequence of the presence of 

carboxylated end-groups resulting from the hydrolysis of the esters. 

However, although the undecyl ester and potassium undecanoate ester 

form latices, the undecyl ester acid in the absence of emulsifier forms no 

latex. This last compound resembles the undecyl ester, except that it 
contains carboxylic acid groups.

5.8.2. Effect of azo compounds as initiators for the bulk polymerisation of 

styrene. Almost all of the azo compounds investigated are effective as 

initiators for the bulk polymerisation of styrene. The results obtained 

resemble those for the bulk polymerisation of styrene when AZBN is used 

as initiator under identical conditions. The behaviour of these azo 

derivatives as initiators for bulk polymerisation is generally as expected. 

When a constant weight of ester is used, as in the case of the fatty- 

alcohol ethoxylate esters, the yield decreases as the number of 

polyoxyethylene units increases. This is, of course, to be expected, since 

the molar concentration of initiator also decreases. However, there are a 

few compounds which are not very effective as initiators for bulk 

polymerisation. All the azo compounds that give poor yields when used as 

initiators for the bulk polymerisation of styrene are of low solubility in 

styrene. Hohenstein and Mark^^^^\ drawing upon data published by other

101



workers, have made the reasonable suggestion that initiation will take 

place where the monomer and initiator can meet. Thus, it seems 

reasonable to conclude that it is not the effectiveness of radical 

generation that retards the polymerisation, but the ability of the radicals 

to reach the styrene molecules. Possibly these compounds, and certainly 

the others, generate radicals effectively.

5.8.3. Effect of azo compounds as initiators for conventional emulsion 

polymerisation of styrene. All the azo compounds prepared in this project 

act as effective initiators for the emulsion polymerisation of styrene 

when sodium lauryl sulphate is used as a colloid stabiliser. Also, the 

emulsion polymerisation of styrene occurred satisfactorily when AZBN  

was used as initiator and sodium lauryl sulphate as stabiliser. 

Furthermore, all the results, including that obtained when AZBN  was the 

initiator, are remarkably similar. This confirms the statement made 

earlier that ail the compounds generate radicals effectively.

Hohenstein and Mark^ claim that, if the monomer is hydrophobic, such 

as styrene, and the initiator is oil-soluble, such as AZBN , the extreme 

case of suspension polymerisation occurs. The results obtained by A i- 

Shahib and Dunn , as well as those obtained during this project, show

that even in such cases emulsion polymerisation can, and indeed does, 
occur.

Ai-Shahib and Dunn^^^^^ have shown that oil-soluble initiators in the 

presence of a conventional surfactant can produce rates of emulsion 

polymerisation similar to those obtained with water-soluble initiators. 

Although radicals are generated in pairs in the oil phase, these workers 

suggest that the escape of a radical to the aqueous phase leaves an 

isolated radical in the oil phase. The presence of a radical close by will 

result in bimolecular termination, giving polymers of low molecular 

weight. Dunn et have further suggested that transfer of a radical

from an initiator to an emulsifier molecule which is subsequently desorbed 

into the aqueous phase could increase the escape efficiency, and thus 

increase the rate of initiation. In their view, the probability of an 

emulsifier radical being desorbed before undergoing further reaction may 

be the critical factor.
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5.8.4. Fffect of azo compounds as initiators for the emulsion 

polymerisation of styrene in the absence of conventional surfactant. All

of the compounds prepared during this project behaved as effective 

initiators for the emulsion polymerisation of styrene in the presence of 

conventional surfactant, but a few of those compounds also behaved as 

effective colloidal stabilisers for the polystyrene produced from the 

reaction in the absence of conventional surfactant.

Of the esters prepared from the straight-chain alcohols and 4 ,4 '-A B -4 - 

CPA, the nonyl, decyl, undecyl and hexadecyl esters gave stable 
monodisperse polystyrene latices.

During the earlier MSc p r o j e c t t h e  methyl, ethyl, hexyl, octyl, decyl, 

dodecyl and tetradecyl esters of 4,4’-A B -4 -C P A  were prepared. The 

results showed that the octyl, decyl, dodecyl and tetradecyl esters gave 

stable, monodisperse polystyrene latices. When the alkyl chain length of 

the ester was below eight carbon atoms, the effectiveness of the ester as 
a colloid stabiliser was greatly reduced.

The yields, particle sizes and particle numbers for the successful latices 

obtained using the esters of straight-chain alcohols and 4 ,4 '-A B -4 -C P A  in 

this project and those results obtained during the MSc research project 
are compared in Table 5.15.
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octyl ester of 
4,4*-AB-4-CPA

nonyl ester of 
4 ,4 '-A B -4 -C P A

decyl ester of 
4,4’-A B -4 -C P A

undecyl ester of 
4,4’-A B -4 -C P A

dodecyl ester of 
4 ,4 '-A B -4 -C P A

tetradecyl ester o 
4 ,4 '-A B -4 -C P A

4 ,4 '-A B -4 -C P A

^resent Project MSc Project

Part. Particle 
/ield Size Number

Part. Particle 
Yield Size Number

_ (% ) (nm) (dm~^)______ (% ) (nm) (dm~")
not prepared 48 140 4.61 X 10^^

48 127 1.95 X 10^^ not prepared

35 126 1.33 X 10^^ 37 160 2.11 X 10^^

42 112 2.85 X 10^^ not prepared

not prepared 60 130 1.52 X 10^^

not prepared 64 180 1.51 X 10^^

15 126 5.09 X 10^^ not prepared

Table 5.15: Comparison of results for polystyrene latices prepared during 

present project and MSc project using n-alkyl esters of 4 ,4 '-A B -4 -C P A  as 

initiator/stabilisers

During the MSc project, it was also found that there was a trend in the 

molecular weights obtained. The highest molecular weight was observed 

to be that of the polystyrene obtained using the decyl ester as 

initiator/stabiliser (ca. 300 000 using membrane osmometry). The 

molecular weight of the polymer decreased as the chain length of the 

ester either increased or decreased from ten carbon atoms.

The molecular weights of the polymers prepared during the present 

project using the n-alkyl esters of 4 ,4 '-A B -4-C P A  as initiator/stabilisers 

have not been determined because of lack of time.

The results of both projects show that the octyl, nonyl, decyl, undecyl, 

dodecyl, tetradecyl and hexadecyl esters of 4 ,4 '-A B -4 -C P A  can behave
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not only as initiators but also as stabilisers for the emulsion 

polymerisation of styrene in the absence of conventional surfactant. The 

yields are comparable. The particle sizes are small, being well within the 

range of sizes which are typical of conventional emulsion polymerisation 

reactions, and the particle number is typical of that found in the product 

of conventional emulsion polymerisation reactions. Table 5.15 shows that 

the reproducibility of the results for the latex obtained with the decyl 

ester (the only ester used in both projects) is satisfactory.

Thus, it can be concluded that these initiator/stabilisers, in spite of being 

soluble in styrene and in spite of lacking an obvious hydrophilic moiety, do

not initiate suspension polymerisation but rather true emulsion 
polymerisation.

How colloidal stability is conferred and how one radical leaves the 

polymerisation locus in order to avoid almost instantaneous termination, 

and thus presumably the formation of oligomers instead of polymers, is 
not clear at present.

The second group of successful initiator/stabilisers prepared during this 

project comprises the 4 ,4 '-A B -4 -C P A  esters of the fat^y-alcohol 

ethoxylates which are commercially available as the "Texofor A" series. 

To a greater or lesser extent, all the esters gave some polystyrene latex. 

The most successful initiator/stabilisers of this type for the emulsion 

polymerisation of styrene were FA(EO>2^Es and FA(EO)ggEs. The 

temperature of the polymerisation was 70°C, as before. F A (E O )2Es, 

FA(EO)gEs and F A (E O )^ qEs are insoluble in water at room temperature as 

well as at 70 C . FA(EO)j^^Es, F A (E O )2^̂ Es and FA(EO)^gEs show inverse 

solubility behaviour. FA(EO )^^Es and FA(EO)ggEs do not show inverse 

solubility behaviour over the temperature range studied. It is believed 

that some of the results obtained when these esters were used as 

initiator/stabilisers may have been the consequence of a mixture of 

emulsion, suspension and perhaps some bulk polymerisation; and because 

of the difficulties in separating them, the yields given in the results 

section are of the total polymer produced, irrespective of the 

polymerisation mechanism followed.
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It IS not surprising that some of these initiator/stabilisers help to stabilise 

the latex produced in the surfactant-free emulsion polymerisation of 

styrene, since they possess a strongly hydrophobic moiety and a 

hydrophilic moiety made up of oxyethylene units.

Finally, the last group of successful initiator/stabilisers prepared 

comprises the potassium salt of the ricinoleic acid ester of 4 ,4 '-A B -4 -C P A  

and the potassium salt of the 11-hydroxyundecanoic acid ester of 4,4»-AB- 

4 -C P A . These compounds functioned as initiator/stabilisers for the 

emulsion polymerisation of styrene in the absence of conventional 

surfactant. The yield of polystyrene obtained was above 75%. The 

stability of the latex is presumably conferred by the dual nature of the 

molecule; i.e., its hydrophilic/hydrophobic character.

5.8.5. Comparison of the kinetics of emulsion polymerisation of styrene 

when (i) a water-soluble initiator is used, (ii) an oil-soluble initiator is 

used, and (iii) the decyl ester of 4,4*-azobis-4-cyanopentanoic acid is used 

as initiator in the presence of sodium lauryl sulphate. Fig. 5.5 gives the 

conversion-time curves obtained for the emulsion polymerisation of 

styrene (55 mi) and water (100 mi) when sodium iauryl sulphate (1 g) is 

used as colloid stabiliser and (i) potassium persulphate (1.1 x 10"’ mol), (ii)

AZBN (1.1 X 10 mol), and (iii) the decyi ester of 4 ,4 '-AB-4 -CPA  
(1.1 X 10 ’ mol).

Ail three curves have shapes typical of conversion-time curves for 

conventional emulsion polymerisation reactions. A t the initiator 

concentrations used, the rate of polymerisation of styrene when the decyi 

ester of 4 ,4 '-A B -4 -C P A  is used as initiator is intermediate between the 

rates of polymerisation obtained with oil-soluble initiators and water- 

soluble initiators. This is not very surprising, since the decyi ester of 

4 ,4 '-A B -4 -C P A  is partially water-soluble.

5.9. Conclusions drawn from preliminary evaluation. (i) All the

derivatives of 4 ,4 '-A B -4 -C P A  prepared during this project behave as 

effective initiators for the emulsion polymerisation of styrene in the 

presence of conventional surfactant. It is therefore inferred that these 

azo compounds generate free radicals effectively.
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Fig. 5.5: Comparison of the kinetics of emulsion polymerisation 
of styrene when (i) a water-soluble initiator is used, (ii) 
an oil-soluble initiator is used, and (iii) the decyl ester 
of 4,4'-AB-4-CPA is used in the presence of sodium lauryl
sulphate.
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Fig. *>.73: Fiectron micrograph of latex obtained using the undecyl ester 
of 4,4*-azobis-4-cyanopentanoic acid as initiator/stabiliser.

Fig. 5.7b; Fiectron micrograph of latex obtained using the undecyl ester 
of 4 ,4 '-azobis-4 -cyanopentanoic acid as initiator and sodium lauryl 
sulphate as stabiliser.
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Fig. 5.7c: aectron micrd^-aph of latex obtained using the hexadecyl ester 
of 4,4'-azobis-4-cyanopentanoic acid as initiator/stabiiiser.
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Fig. 5.7d: Oectron micrograph of latex obtained using AZBN as initiator 
and sodium lauryi sulphate as stabiliser.
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Fig. 5.7c; Qectron micrograph of latex obtained using the hexadecyi ester 
of 4,4'-azobis-4-cyanopentanoic acid as initiator/stabiliser.
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Fig. 5.7d: Electron micrograph of latex obtained using AZBN  as initiator 
and sodium lauryl sulphate as stabiliser.
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( ¡0 Almost all of the derivatives behave as effective initiators for the 

bulk polymerisation of styrene. It is believed that the failure of a few 

compounds to initiate the polymerisation of styrene in bulk satisfactorily 

is due to their low solubility in styrene, and not to any inability to 

generate free radicals effectively.

(iii) Some of the compounds prepared behave as initiators for emulsion 

polymerisation in the absence of conventional surfactant. Thus, these 

compounds appear to be capable of performing the dual functions of 

polymerisation initiator and colloidal stabiliser.

3.10. A  problem: An apparent change in the behaviour of the straight- 

chain alkyl esters of 4,4'-azobis-4-cyanopentanoic acid.

3.10.1. Introduction. For a period of approximately thirteen months 

during this project, some of the esters of straight-chain alcohols and 4,4'- 

A B -4 -C P A  acted as both initiators and stabilisers for the emulsion 

polymerisation of styrene in the absence of conventional surfactant, 

yielding very stable and monodisperse latices. However, suddenly esters 

prepared similarly to those that had previously showed such unexpected 

behaviour failed to yield polystyrene latices when used as 

initiator/stabilisers for the emulsion polymerisation of styrene in the 

absence of conventional surfactant. The infrared spectra of these esters 

seemed to be identical to those of the products obtained during the 

previous work, but the newly-prepared esters were now colourless and did 

not have the typical odour of an ester. Furthermore, their solubility in 

water, cold or warm, was practically nil. This, of course, is what one 

would expect from a compound such as the decyl ester of 4 ,4 '-A B -4 -C P A , 

and not the partial solubility in water which had been observed in the case 

of the compounds previously believed to have been these esters. The 

infrared spectrum of the acid chloride from which this different ester was 

prepared was observed to be very different to the infrared spectrum of 

the acid chloride obtained previously. The most marked differences (see 

Fig. 3.8) were the absence of a second carbonyl peak and the absence of a 

large OH-like band present in the original acid chloride. Thus it seems 

possible that 4 ,4 '-A B -4 -C P C  can exist in two forms. The original acid 

chloride has been designated as I and the subsequent acid chloride as II.
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4,4’-A 3 -^ -C P C  with an infrared spectrum resembling that of I has also 

been prepared by two other workers, Roca^^^^^ and J inanwa^^^^\

Table 5.14 shows the most marked differences between the two acid 

chlorides and the esters prepared from them. Fig. 5.8 shows the infrared 

spectra of acid chlorides I and II.

acid chloride

I II

infrared spectrum of 
acid chloride

two carbonyl peaks at 
1800 cm~^, 1750 cm~^ 
OH-like band 
at 300^ cm~l

one carbonyl peak at 
1800 cm"^; no OH-like 
band present

melting point of 
acid chloride

92-94°C 74-76°C

product of reaction 
of acid chloride with 
two mol of alcohol

ester (according to 
infrared spectrum)

ester (according to 
infrared spectrum)

infrared spectrum 
of ester

one carbonyl peak at 
1800 cm no OH 
band present

one carbonyl peak at 
1800 cm’ ^; no OH 
band present

appearance 
of ester

yellow wax white wax

smell of ester typical ester odour odourless

result of attempted 
emulsion polymeri
sation of styrene 
using ester as 
initiator/stabiliser 
in absence of 
conventional 
surfactant

stable latex no reaction

Table 5.14. Characteristics of the two acid chlorides obtained from 4,4*- 
A B -4 -C P A  and of the esters prepared from them.
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acid chloride I

Fig. S.8: Infrared spectra of acid chloride I and 
acid chloride II.
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Since the esters derived from acid chloride I gave stable, monodisperse 

latices when used as initiator/stabilisers in the emulsion polymerisation of 

styrene in the absence of conventional surfactant, and since the esters 

derived from acid chloride II fail to do so, a considerable effort was made 

to try to prepare acid chloride I again and to understand why apparently 

identical preparative procedures gave two types of acid chloride and two 

series of esters derived from the acid chlorides.

3.10.2. Attempts at preparing 4,4'-azobis-4-cyanopentanoyl chloride 1.

The first step taken in an attempt to solve the problem was to use a new 

batch of 4 ,4 '-A B -4 -C P A  from Aldrich. When this acid did not give the 

original acid chloride, a new batch of phosphorus pentachloride was used. 

Repeating the preparation and using pure "Analar" reagents still produced 

acid chloride II. Further attempts at preparation using 4 ,4 '-A B -4 -C P A  

from Sigma and acid prepared by the writer met with the same result, 

namely, the production of acid chloride II.

The reagents supplied by Aldrich were characterised as far as possible to 

confirm their identity. The acids, both that from Aldrich and that 

prepared by the writer, were extensively characterised, using melting 

points, infrared spectra, NMR spectra, elemental analysis, ultraviolet 

spectra and acid-group analysis. All the evidence pointed to all the 

samples being 4 ,4 '-A B -4 -C P A .

3.10.3. Supplementary experiments.

3.10.3.1. Chlorine determination by the oxygen-flask method. A capsule 

containing an accurately-known weight of acid chloride II was placed in 

the cage of the oxygen flask together with a fuse of ashless filter paper. 

A few pellets of K O H  were placed in a clean flask and distilled water was 

added. The flask was flushed with oxygen for about four minutes and then 

stoppered. The fuse was lit and immersed in the flask quickly. The flask 

was allowed to stand until all the "fog" inside had settled. The solution 

was transferred to a beaker, and washed thoroughly with distilled water. 

The washing was repeated three times. A few drops of methyl red were 

added to the solution, which was carefully acidified with concentrated 

nitric acid. Distilled water was added. The contents of the beaker were
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then stirred vigorously and titrated against 0.098 M aqueous silver nitrate 

solution. The chlorine content found in acid chloride II by this method 

corresponded to approximately 1.7 atoms per molecule.

3.10.3.2. Chlorine determination by the Volhard method. Acid chloride II 

(1 g) was dissolved in a solution of alcoholic KOH. It was then acidified 

with concentrated nitric acid and titrated with 0.098 M aqueous silver 

nitrate solution. The volume of silver nitrate solution used was 72.9 ml, 

and the excess was back titrated with 0.05 M aqueous ammonium 

thiocyanate solution. The indicator used was ferric alum. The chlorine 

content found in acid chloride II by this method corresponded to 

approximately 1.95 atoins per molecule.

5.10.3.3. Chlorine determination using a gravimetric method. Acid 

chloride I (1 g) was treated with methanolic NaOH until the solution was 

alkaline to pH paper. The solution was then made acidic to pH paper with 

nitric acid. A white solid precipitated, which was presumed to be 4,4'- 

A B -4 -C P A . The solution was decanted and the solid was washed with 

methanol. Aqueous silver nitrate solution was added to the solution. A 

white precipitate formed, presumably silver chloride. The chlorine 

content found in acid chloride I by this method corresponded to 

approximately 1.7 atoms per molecule.

5.10.3.4. Synthesis of 2,4-dinitrophenylhydrazone of laevulinic acid. The

laevulinic acid used by the writer for the preparation of 4 ,4 '-A B -4 -C P A  

was characterised to confirm its identity. A derivative of this acid, the 

2,4-dinitrophenylhydrazone, was synthesised . The 2,4-

dinitrophenylhydrazine reagent was prepared by dissolving powdered 

dinitrophenylhydrazine (0.5 g/0.0025 mol) in a mixture of concentrated 

hydrochloric acid (80 ml) and water (100 ml). The mixture was gently 

heated on a water bath. The solution was cooled, water was added and

the solution was filtered.

A small amount of laevulinic acid (0.5 g/0.004 mol) was dissolved in 

distilled water (10 ml) and the 2,4-dinitrophenylhydrazine reagent (50 ml) 

prepared earlier was added. A yellow-orange compound separated, which 

was presumed to be the 2,4-dinitrophenylhydrazone of laevulinic acid.
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After separation, this derivative was partly dissolved in boiling 

chloroform and filtered hot. The solution was left overnight at 1°C. The 

red-orange crystals obtained were filtered off. The melting point of these 

crystals was found to be 206-207°C (literature value 206°C^^^^^ for the 

2,4-dinitrophenylhydrazone of laevulinic acid). Thus, it can be concluded 

that the 2,4-dinitrophenylhydrazone of laevulinic acid was successfully 

prepared and that the identity of the compound labelled "laevulinic acid" 

was established.

The melting point of the laevulinic acid was found to be 31-34°C. 

According to the label on the bottle, the melting range should have been 

33-35°C. Recrystallisation from a mixture of methanol, acetone and 

ethyl acetate gave white crystals whose melting point was 36-37°C. This 

compares well with the literature value of 37.2 \  This purified

laevulinic acid was used in the preparation of 4 ,4 '-A B -4 -C P A  described in 

section 5.5.1. When the acid chloride of this 4 ,4 '-A B -4 -C P A  was 

prepared, the infrared spectrum and melting point showed it to be 

identical to acid chloride II. A t this point, it was concluded that the 

laevulinic acid supplied by Aldrich was not responsible for the failure in 

preparing acid chloride I.

5.10.3.5. Preparation of ammonium molybdate reagent for phosphorus 

test. Since the characterisations of laevulinic acid and 4 ,4 '-A B -4 -C P A  

had confirmed their identities, the possibility was next considered that 

the reaction between 4,4’-A B -4 -C P A  and phosphorus pentachloride had 

taken an unexpected course, perhaps resulting in the formation of some 

phosphorus-containing complex. In order to test this possibility, it was 

decided to analyse the product of this reaction for the presence of 

phosphorus. To carry out this analysis, an ammonium molybdate reagent 

was prepared. The reagent was obtained by dissolving commercial 

ammonium molybdate (4.5 g) in a mixture of concentrated ammonia 

solution (4 ml) and distilled water (6 ml). Ammonium nitrate (12 g) was 

added, and the solution was made up to 100 ml using distilled water.

5.10.3.6. P hosphorus test. A phosphorus test was first carried out on a 

sample known to contain phosphorus, i.e., triphenyl orthophosphate. The 

result was a bright yellow precipitate. Once this result was obtained, the
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test for the presence of phosphorus in acid chloride II was performed. A 

few mg of acid chloride II (the same mole nuinber as for triphenyl 

orthophosphate) were placed in a fusion tube and small lumps of sodium 

metal were added. The tube was heated gently at first and then 

vigorously until red hot. The red-hot tube was then dropped into distilled 

water (20 ml). The mixture was filtered. To 5 ml of the filtrate, 

concentrated nitric acid (15 ml) was added, and the mixture was boiled for 

a few minutes. It was allowed to cool and then a few ml of ammonium 

molybdate reagent were added. In the case of acid chloride II, only small 

traces of a yellow precipitate appeared. Thus it was concluded that the 

failure of acid chloride I to be prepared was not due to the formation of a 

phosphorus complex.

5.10.3.7. Attempts to prepare the acid chloride of itaconic acid. The

chlorination of another available diacid was attempted in the hope that it 

would throw some light on the behaviour of 4 ,4 '-A B -4 -C P C . The diacid 

used was itaconic acid (methylenesuccinic acid), C H 2= C (C 0 2H )C H 2C 02H. 

Itaconic acid (2 g) and PC1^(4 g) in benzene were left to react at room 

temperature for four hours but no reaction took place. Heating and 

allowing the reaction to proceed for 24 hours still produced no change.

5.10.4. Further attempts at solving the problem. 4 ,4 '-A B -4 -C P A  was 

dissolved in boiling ethanol in order to eliminate possible small amounts of 

impurities^^^^^ that might cause the reaction to follow a different path. 

The acid chloride derived from this acid had the infrared spectrum of acid 

chloride II. Another source of possible impurities could have been the 

solvent. Thus, redistilled benzene was used, but the distillation made no 

difference to the end product. Benzene was replaced by dichloromethane 

in the hope that the change in solvent would encourage the formation of 

acid chloride I, but acid chloride II was obtained. However, on repetition, 

acid chloride I was occasionally produced when dichloromethane was used 

as solvent and the 4,4’-A B -4 -C P A  used was that prepared in our 

laboratories. Also, acid chloride I was occasionally produced when the 

reaction was carried out in dichloromethane and a slight pressure was 

exerted. This could be achieved by carrying out the reaction in a closed 

reaction flask, since the evolution of hydrogen chloride gas increased the 

pressure within the flask. In general, but not always, acid chloride II
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resulted if benzene was used as solvent in place of dichloronnethane. On 

one occasion, the azo acid was washed with boiling diethyl ether, filtered 

and dried. It was reacted with PCl^, the solvent being dichloromethane. 

The purification procedure was as described earlier. The product was acid 

chloride I. Yet the following day the result could not be repeated. The 

reaction was also carried out in a different laboratory from the one 

usually used. This new laboratory was in a different part of the 

Polytechnic. The result was acid chloride II.

No conclusions could be drawn from the above observations, since the 

results could not be reproduced.

As was stated earlier, different batches of phosphorus pentachloride 

produced acid chloride II. It was therefore decided to look for some other 

method for the preparation of the acid chloride of 4 ,4 '-A B -4 -C P A  from 

the acid. The first chlorinating agent used was thionyl chloride. When 

thionyl chloride was used at room temperature on its own, i.e., in the 

absence of any other solvent, no reaction took place within two hours. 

The use of thionyl chloride in ether or benzene in the presence or absence 

of dimethylformamide still gave no reaction.

Several attempts were made to try to re-synthesise acid chloride I using 

dimethylformamide. Phosphorus pentachloride and dimethylformamide in 

benzene, but not in dichloromethane, gave acid chloride I. These 

experiments were carried out by Dr. A. C . Haynes. The mechanism of the
. u r M (167,168).

reaction is said to be as follows

H-C-N(Me)2 + PCI5-

Me2N=CHCl + RCO2H

© ©,
-  [Me2N=CHCllPOCl^]

R C O C l + Me2N C H O  +

4

l -P  ♦ POCl® P O C l, + HCl

Dimethylformamide (1.5 ml) and phosphorus pentachloride (excess) were 

left in benzene for about ten minutes for the complex to form. Then 

a ,4 '-A B -4 .C P A  (1 g) was added and the mixture was left for one hour.
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The purification technique was identical to that employed for acid 

chlorides I and II obtained earlier. This procedure gave acid chloride I. 

The yield of acid chloride obtained with this method was 35%. The 

melting point of this batch of acid chloride I ranged from 85°C to 95°C. 

Unfortunately, it is hard to define the melting point, since the compound 

melts and decomposes at the same time.

It was the acid chloride I from this particular batch that was used for the 

determination of chlorine content by the gravimetric method described in 

Section 5.10.3.3. As was stated earlier, the chlorine content corresponded 

to approximately two atoms per molecule, which is the expected result. 

Also, the decyl ester prepared from this particular batch of acid chloride 

gave a stable latex when used in the emulsion polymerisation of styrene in 

the absence of conventional surfactant.

I

The synthesis of acid chloride I following the dimethylformamide method 

was repeated a few times, but, as found with the methods used previously, 

this method also suddenly began yielding acid chloride II. It was found to 

be impossible to purify acid chloride I obtained by the PCI3-  

dimethylformamide method.

In order to obtain adequately pure acid chloride I, therefore, it was 

proposed to use the Vilsmeier reagent to prepare the acid chloride from 

the acid. Hepburn and Hudson'^®’ ’ ^’ ® report on the isolation of the 

Vilsmeier reagent, [M e^N ^C H X :^«®  where X is a halogen. These workers 

found that phosphorus pentachloride interacts with dimethylformamide to 

give the Vilsmeier reagent, and that the Vilsmeier reagent so prepared 

was a useful chlorinating agent.

The Vilsmeier reagent was prepared by the writer by the addition of 

phosphorus pentachloride (10 g) to an excess of dimethylformamide (28 g), 

allowing the temperature to rise to 100° c, followed by cooling in an ice 

bath at 0°C. The reaction mixture was filtered using a closed separating 

flask with nitrogen bubbling through, since the complex is a very 

hygroscopic substance. The white crystals were washed with 

dimethylformamide and ether, and then dried in a vacuum oven.
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When the Vilsmeier reagent was reacted with 4 ,4 '-A B -4 -C P A  in benzene, 

a layer of greenish substance was obtained, which was discarded, since the 

acid chloride in both forms is soluble in benzene. The benzene was 

evaporated and a yellow oil recovered. Unfortunately, this oil was 

insoluble in ether, whereas both acid chlorides are soluble in ether. Thus, 

the attempt at synthesising 4,4*-AB-4-CPC using the Vilsmeier reagent 

failed.

Procedures for the synthesis of esters from the parent acid and the 

appropriate alcohol at room temperature can be found in the 

literature^^^^~^^^\ The method employed by Reed^^^^^ and by Bourne et 

al^^^^^ was investigated in an attempt to obtain the decyl ester of 4,4'- 

A B -4 -C P A  without using the acid chloride. The method involves the use 

of trifluoroacetic anhydride. 4 ,4 '-A B -4 -C P A  (5.4 g/0.02 mol) was dissolved 

in excess trifluoroacetic anhydride (8.4 g/0.04 mol) used as solvent as well 

as reagent. To this mixture, decanol (6.3 g/0.04 mol) was added and left 

to react for three hours. The mechanism for the formation of esters by 

this reaction is believed to be as follows:

RCOOH + (CF^C0)2Q T ' -------- Î’ R C (0 )-0 -C (0 )C F^ + CF^COOH

R C (0 )-0 -C (0 )C F 3 ^ ^  RCgP  + CFjCO CP

R C G ^ + R'OH ►RCOOR' +

+ C F jC O C p - CFjCO O H

The infrared spectrum of the substance obtained showed the presence of a 

carbonyl peak, but it failed to reveal the presence of any nitrile groups. 

The results of elemental analysis that nitrogen was not present in this 

product. It was therefore concluded that this preparative route had failed 

to produce the desired compound, and this synthetic procedure was

consequently abandoned.

5.11. A  possible explanation of the problem. The conclusion has been 

drawn that 4 ,4 '-A B -4 -C P A  reacts with PCl^ to give two different forms 

of 4 ,4 '-A B -4 -C P C . Both forms of the acid chloride react with two mol of
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alcohol to give esters. Thus, it appears that 4 ,4 '-A B -4 -C P C  may exist in 

two structurally different isomeric forms.

One form in which 4 ,4 '-A B -4 -C P C  may exist is the straight-chain 

structure, i.e..

O

C lC C H „C H ^ C -N = N -C C H „C H o C C l I  L\ I 2 L (a)

C H . C H ,

The other form is envisaged as being a cyclic structure. One possibility is

Cl 
Cl

C H , C H ,
(b)

C H , CN  NC C H ,

H ,C  C H ,

An eleven-atom-member ring is not a particularly stable configuration, 

and it is expected that the open chain would be favoured. Unfortunately, 

neither of the two structures given above is consistent with the infrared 

spectrum of acid chloride I.

The infrared spectrum of acid chloride I (Fig. 5.1) has two carbonyl peaks 

and a wide OH-like band around 3500 cm"^. The obvious conclusion to 

draw from such evidence is that incompletely reacted acid is present in 

the acid chloride. This would be consistent with the presence of a second 

carbonyl peak and of the OH-like band in the infrared spectrum, and 

indeed, when acid chloride II is allowed to hydrolyse partially, the infrared 

spectrum of the resulting product can be identical to that of acid chloride 

I if sufficient hydrolysis occurs. However, this hydrolysed mixture is 

partially insoluble in benzene and in dichloromethane. The portion that 

dissolves in either benzene or dichloromethane can be recrystallised to 

yield acid chloride II. The portion that is insoluble in either solvent is, 

according to infrared analysis, 4 ,4 '-A B-4-C P A. Now, since both acid
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chloride I and acid chloride II are completely soluble in benzene and in 

dichloromethane, whereas a sample of partially hydrolysed acid chloride II 

is partly insoluble in both solvents, with the free acid being insoluble, it 

follows that, in spite of the identity of their infrared spectra, acid 

chloride I cannot be identified as partially hydrolysed acid chloride II.

NMR would pick up a strong signal due to free acid. A spectrum was 

run specifically to look for acid groups in acid chloride I; none was 

observed. Whatever groups are responsible for the second carbonyl and 

OH-like band in the infrared spectrum of acid chloride I, the evidence 

does not support the idea that these bands are due to the presence of acid 

in the acid chloride.

Both acid chlorides react with two mol of alcohol to give - -  presumably —  

the corresponding esters. Fig. 5.2 shows the infrared spectrum of the 

decyl ester obtained using acid chloride I. As can be seen from the 

spectrum, there is no presence of OH and neither is there a second 

carbonyl peak. The infrared spectra of the decyl esters obtained using 

acid chlorides I and II are identical, as are the C  NMR spectra.

According to the literature, it seems that the spectra of mono- or 

disubstututed alpha-halogeno acid halides can show two carbonyl 

absorptions. Doubling of the bands occurs in the vapour phase, as well as 

in the liquid phase or in solution. Avram and Mateescu claim that 

the increased number of bands is due to the conformational isomers (c)

and (d) below:

(c) (d)
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Their proposal seems to predict that in the solid state the more stable 

isomer should have the more polar conformation (c), with chlorine and 

oxygen atoms c[s to each other. This conformation, according to the 

authors, should give rise to a band at higher frequency than conformation

(d).

Under these conditions, spectra of chloroacetyl and dichloroacetyl 

chloride show the two bands corresponding to conformations (c) and (d). 

Trichloroacetyl chloride has a single band, as does acetyl chloride. The 

abnormal behaviour of alpha-halogenated carbonyl compounds has been 

attributed to the field effect of the chlorine atom which in conformation

(c) is cis to the oxygen atom and in conformation (d) is rotated by 120°. 

The increase in the carbonyl frequency is due primarily to the -I effect of 

the chlorine atom attached to the C = 0  group.

Another cyclic structure which acid chloride I could have is (e):

CHa CH,

.C l
(e)

CH,
CN

N N C H ,

Since the ring is large enough to permit some rotation of the C -C  bonds, 

it would apparently be possible for the alpha-chlorine atom to stand in 

either of two distinct positions with respect to the carbonyl oxygen: 

either cis or staggered. By analogy with the proposals of Avram and 

Mateescu, therefore, structure (e) might also exhibit two carbonyl peaks 

in the infrared. The OH-like band, however, is difficult to account for 

with structure (e). The isomers of alpha-substituted acid chlorides also

have different solubilities.
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3.12. Structural isomers of diacid chlorides.

3.12.1. Introduction. Certain diacid chlorides can exist in two different 

modifications. These two tautomers, i.e, isomers which differ only in the 

relative position of an atom, have different physical properties as well as 

different infrared spectra. One form of the diacid chloride has one 

carbonyl peak in the infrared, whilst the other structure shows two 

carbonyl peaks. The reader will be aware that these are some of the main 

characteristics shown by acid chloride I and acid chloride II, respectively. 

Below is a review of the published literature on some structural isomers 

of diacid chlorides.

3.12.2. Review of some possibly relevant work reported in the literature.

According to Wheland^^^^\ some acid chlorides of dibasic acids show 

ring-chain tautomerism. Ring-chain tautomerism can be regarded as a 

special kind of prototropy or aniotropy, since the tautomeric structures 

always differ in the position either of a proton or of an anionic atom or 

group. Phthaloyl chloride, for example, reacts as if it has both of the 

structures below;

and

That the two tautomers actually exist has been proven by the isolation of 

each.

Succinyl chloride is similarly tautomeric, since its reactions are 

consistent with its being a mixture of the following structures:
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H ,C — COCI

H ,C — CO CI

H ,C -------C

and

H ,C
/

Cason and maintain that rearrangement occurs on forming an

acid chloride from a half-ester with impure thionyl chloride, but they 

were unable to obtain rearrangement by the use of technical thionyl 

chloride, or by the addition of 10 mol %  sulphonyl chloride to the thionyl 

chloride. They concluded that it is most probable that the thionyl 

chloride giving the rearrangement contained a metallic salt, for a 

preparation to which 4 mol %  of ferric chloride was added gave extensive 

rearrangement. It is postulated that the rearrangement proceeds as

follows:

H jC

H»C

’b .
H ,(

Cl X—
Jo.

c ^
^ C l

H.C
Cl

+ Cl
©

HsC

HaC

HaC

HaC

/

Cl©
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The above is the mechanisin of catalysis by FeCI^ proposed by Cason and 

5mith^^^^\ These workers suggest that their data indicate that diacid 

chlorides such as succinyl dichloride have the normal open-chain structure 

as indicated by infrared analysis, and that the cyclic reaction products are 

formed from the open-chain structure by way of cyclic intermediates. 

Numerous physical measurements have indicated that succinyl dichloride 

exists predominantly in the open-chain form, and that the cyclic form is a 

minor component. These measurements are said to have included 

refractivity, dipole moment, and molecular volume, among others.

Cason and Reist^^^^^ found that the open-chain compound gives an 

infrared spectrum showing two carbonyl peaks. In their investigations, 

they found that the infrared spectra of laevulinyl chloride and of -keto 

acid chlorides show that these compounds exist at room temperature, 

entirely or predominantly, as cyclic structures. In each case, there is only 

one absorption band corresponding to the carbonyl group. Thus, although 

a diacid chloride and an ester acid chloride are stable in an open-chain 

form, these authors claim that "the presence of an alkyl substituent on 

the second carbonyl group causes ready conversion to the cyclic 

structures".

The ester of 7 -e th yl-7 -formylcaprylic acid appears to be mainly open- 

chain, whereas the amide appears to have mainly a cyclic structure :

C . H . CaH,

,0H

H.C OH

H*C'

HaC, N

7 -e th yl-7 -formylcaprylyl chloride^^^®^ is especially interesting in that it 

exists partly in the open-chain form and partly in the cyclic form.

142



5.12.3. Relevance to the present work. 4 ,4 '-A B -4 -C P C  is a diacid 

chloride, sonne batches of which give an infrared spectrum with one 

carbonyl peak and other batches of which give an infrared spectrum with 

two carbonyl peaks. These two types of compound have been designated 

as "acid chloride I" and "acid chloride II". In view of this, the above 

structural considerations could not be rejected without investigation. 

Furthermore, the esters of acid chloride I behaved as stabilisers for 

emulsion polymerisation in the absence of conventional surfactant, whilst 

the amides did not. However, there is no evidence that 4 ,4 '-A B -4 -C P C  

forms structural isomers of this particular type. Ferric chloride was 

added in order to encourage rearrangement, to no avail, and the esters 

derived from acid chloride I were placed in concentrated hydrochloric 

acid, where they should have reverted to the open-chain form if they were 

cyclic structures; but no apparent change took place.

In the two cases for which ring-chain tautomerism seems to have been 

established, ring formation is possible because the ring is five-membered. 

The end groups are then sufficiently close for them to react with one 

another. In the case of the proposed cyclic structure for 4 ,4 '-A B -4 -C P C , 

the ring would have to comprise eleven atoms. The end groups are thus 

probably too far apart for easy interaction.

Also, the infrared spectra of both putative esters show that they are 

indeed esters, and it is difficult to envisage an esterification reaction of 

the cyclic acid chloride giving esters. One possible reaction is as follows.

\

OR

+ 2 ROM

But the product shown does not have the structure of a conventional 

ester. The open-chain structure would yield normal esters.
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Cl + 2 ROH

5.13. Conclusions. 4 ,4 '-A B -4 -C P A  reacts with phosphorus pentachlorlde 

to give two different types of acid chloride. The two types have been 

labelled 'acid chloride 1' and 'acid chloride 11'. Acid chloride I is more 

pungent than acid chloride II. Both acid chlorides react with two mol of 

an alcohol, e.g., decanol, to give two different putative esters; these 

esters have been called 'ester A' and 'ester B', where ester A is derived 

from acid chloride I and ester B is derived from acid chloride II. 

Whatever was the cause of the differences in the acid chlorides, these 

differences appear to be maintained in the corresponding esters; i.e., the 

conformational, structural or other isomerism that may be responsible for 

the differences in the acid chloride is transmitted to the esters. The 

decyl ester A, for instance, has the typical smell of an ester, is a 

yellowish wax and is, surprisingly, somewhat soluble in water. The decyl 

ester B, in contrast, is an odourless white wax and, furthermore, its 

solubility in water, hot or cold, is practically nil. It appears that, because 

of the partial solubility of the decyl ester A in water, this compound 

produces a polystyrene latex when used in the emulsion polymerisation of 

styrene in the absence of conventional surfactant. The decyl ester B does 

not behave in this way. The latices produced by the straight-chain esters 

derived from acid chloride I in the absence of conventional surfactant are 

all stable and monodisperse with solid contents which are unusually high 

for a surfactant-free emulsion polymerisation reaction. Given the above 

properties shown by type A esters, it was only natural that a considerable 

effort was put into preparing acid chloride I after the sudden failure to 

prepare it by the hitherto satisfactory route. Unfortunately, no 

conclusions can be drawn from the results obtained in this part of the 

investigation, since they are not reproducible. Why some particular 

procedure yielded acid chloride I sometimes and just as often gave acid 

chloride II remains a frustrating mystery.

F.ven if the possibilities of conformational or structural isomerism cannot 

be completely discarded, they remain only a suggestion, a speculative 

attempt at solving the problem of the existence of two different acid 

chlorides of 4 ,4 '-A B -4 -C P A .
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C H A P TE R  SIX

M ORE D E T A IL E D  IN V ESTIG A TIO N S  OF ESTERS OF F A T T Y -A L C O H O L  

E T H O X Y L A T E S  AS IN ITIATO R /STABILISER S

6.1. Introduction. At this point, the attempts at preparing 4,4*-azobis-4- 

cyanopentanoyl chloride I were abandoned. Thus the work carried out 

from this point was based upon the reaction products obtained from 

azobis-4-cyanopentanoyl chloride II.

It has already been reported in Chapter Five that the straight-chain esters 

derived from acid chloride II do not yield latices when used as 

initiator/stabilisers in the emulsion polymerisation of styrene in the 

absence of conventional surfactant. Therefore other esters were prepared 

from acid chloride II in an attempt to obtain other compounds that would 

act as both polymerisation initiators and stabilisers for polymer latices. 

The first such ester investigated was that obtained using 

11-hydroxyundecanoic acid. The potassium salt of this acid failed to give 

a latex when used as initiator/stabiliser for the emulsion polymerisation of 

styrene. During the earlier stages of the reaction (approximately 15 

minutes), a milky latex-like product was observed. As time went on, this 

changed into a greyish solution. pH measurements showed that a 

reduction from 11 to 8 had occurred. The high pH was the result of excess 

K O H  in the solution; it seemed that the ester might have been hydrolysed 

under the strongly alkaline conditions of the reaction medium. Yet the 

same reaction using the corresponding ester prepared from acid chloride I 

had yielded stable and monodisperse latices. The reaction was again 

repeated using the corresponding ester obtained from acid chloride II, but 

in this case the initial pH was approximately 8 instead of 11. At the end 

of two and a half hours at 70°C, a considerable amount of styrene

remained unreacted.

Of the various 4 ,4 '-A B -4 -C P C  derivatives described in Chapter Five, the 

only group of successful latex-yielding compounds to be prepared using 

acid chloride II was the esters of various fatty-alcohol ethoxylates 

supplied by ABM Chemicals as their "Texofor A" range. Acid chlorides are 

assumed to react with the terminal hydroxy group of these ethoxylates to

145



yield esters. Some of the cotopounds obtained from acid chloride II 

behave as initiator/stabilisers for the emulsion polymerisation of styrene. 

The synthetic procedure was identical to that given in Chapter Five for 

the synthesis of these esters from acid chloride I. A series of esters of 

various fatty-alcohol ethoxylates has been prepared. The esters varied in 

respect of the number, n, of ethylene oxide units per molecule of 

hydrophobe base in the ethoxylate. n varied from 2 to 60. The esters of 

FACF.O)^, FA (FO )g  and FA(F.O )j q̂ were found to be insoluble in water and 

did not produce latices when used as initiator/stabilisers for the emulsion 

polymerisation of styrene. The esters of FA(F.O)j^^H, FA(F.O)2^^H, 

F A (F O ), cH and FA (F O ).r,H  did yield stable latices when similarly used.

6.2. Preliminary kinetic studies. A preliminary kinetic study was carried 

out in order to establish the relative efficiencies of these compounds as 

initiator/stabilisers.

6.2.1. Procedure. A conventional multi-neck reaction vessel was used 

fitted with a stirrer, a condenser and a nitrogen inlet. Since the system 

appeared to be macroscopically homogeneous, the conversion of monomer 

to polymer was followed by withdrawing samples from the reaction flask 

at appropriate intervals. To each sample, two drops of a solution of 

butylcatechol solution (approximately 0.1% in toluene) were added and the 

sample was evaporated to dryness to obtain the solids content. 

Conversion was calculated from the solids content by the following 

equation:

C  = SF^ -  F 2

where F^ =
I M + W 

M

M r 100 I 
a ndFz =

and where S is the %  solids content, C  is the %  conversion, I is the 

weight of initiator, M is the weight of monomer and W is the weight 

of water, in an arbitrary mass of reaction system.
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6.2.2. Recipes used in the preliminary studies. The first recipe used was 

as follows;

styrene

water

ester

40 mi 

100 mi

1.1 X 10”’ mol

These results are given in Fig. 6.1.

The formulation above was such that the molecular concentration of the 

initiator was kept constant throughout the series. The final pH of the 

reaction system was approximately 7.

A second series of reactions was carried out using the following recipe in 

which the weight of the ester was kept constant:

styrene

water

ester

40 mi 

100 ml 

5.0 g

The results obtained are given in Fig. 6.2. In both series of reactions the 

temperature of the reaction mixture was kept at 50°C.

6.2.3. Discussion of preliminary results. Fxamination of the conversion

time curves shown in Figs. 6.1 and 6.2 reveals that in some cases the 

progress of the reaction is similar to that observed in conventional 

emulsion polymerisation reactions. In other cases, however, the 

polymerisation appears to follow a rather different course. Specifically, 

the conversion-time curves for the reactions initiated and stabilised by 

FA(F.O) Fs and FA(FO)gQF.s resemble those for conventional emulsion 

polymerisation, except that the linear portion, i.e., the constant-rate 

period, extends in some cases to 80% conversion before the rate begins to 

tail off, whereas those for reactions initiated and stabilised by 

FA(F0)24F.3 and F A (F O )3qF.s do not. The conversion-time curves for 

reactions initiated by the latter compounds can be best described as a 

series of straight lines of decreasing slope. The reason why the writer 

prefers to regard these conversion-time curves as consisting of series of 

straight lines of decreasing slope, rather than as smooth curves, will be
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made apparent in Chapter Seven.

The shapes of these curves suggest that the polymerisation reaction may 

proceed in the case of reactions initiated by F A (F O )2^F.s and FA(FO)^gFs 

by a different pathway than in the case of a conventional emulsion 

polymerisation. Specifically, two important points of difference can be 

observed;

(1) Apparently there is no nucleation period, and

(2) The rate of polymerisation decreases as the reaction proceeds

instead of increasing.

Hence, it appeared to be worthwhile to investigate these reactions in 

further detail, and to try to determine the conditions under which the 

unusual conversion-time curves are observed. To do this, a number of 

experiments were carried out in order to study the effects of certain 

variables. However, before proceeding any further, the reproducibility of 

styrene emulsion polymerisations using F A (F O )3qF s and FA(EO)^gFs as 

initiator/stabiliser was examined. The results of these experiments are 

shown in Figs. 6.3 and 6.4, respectively. The reproducibility was found to 

be satisfactory; it was therefore possible to proceed with confidence to 

the study of these variables.

6.3. Effect upon the rate of emulsion polymerisation of styrene of (1) the 

concentration of ester, (2) the temperature and (3) the total volume of 

water. The first variable to be studied was the effect upon the rate of 

emuision poiymerisation when the concentration of initiator/stabiiiser was 

varied. The temperature of the reaction was maintained at 50°C and the 

volume ratio of styrene to water was 40:100. The esters studied were 

those of FA (E 0 )2 4 H , F A (E O )3qH, FA lFO l^^H  and FAiFO lggH . The study 

of FA(F.O) Fs was abandoned because of the iow polymerisation rates 

obtained even at high initiator initiator/stabiiiser concentrations (see

Fig. 6.2).

in conventional emulsion polymerisation, an increase in the concentration 

of initiator results in an increase in the rate of polymerisation. One of 

the reasons for this experiment was to determine the order of react.on 

with respect to the amount of initiator and stabiliser. Moreover, since
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the conversion-time curves for emulsion polymerisation reactions 

initiated by FA(RO)^^^Fs and F A (F O )^ qF.s are broadly similar to those for 

conventional emulsion polymerisation reactions, the object of these 

experiments was to determine whether, on increasing the concentration of 

the initiator, the rate of polymerisation increased also. In the case of 

reactions initiated by f/\{F.O)^^F.s and F A (F O )3qF.s, the object of the 

experiment was to observe what happens when the concentration of the 

ester was increased; i.e., any changes in the shape of the curves, the 

dependence of the rate of polymerisation upon the concentration of

initiator, etc.

The results of the effect upon the rate of polymerisation of styrene of the 

ester concentration are given in Figs. 6.5 -  6.8.

The second variable to be studied was the effect of temperature upon the 

rate of emulsion polymerisation of styrene. The reasons for carrying out 

these experiments were as above, i.e., to compare these results with those 

of conventional emulsion polymerisation reactions. The concentration of 

the ester in these experiments was maintained at 1.1  x 10 ’ mol per 40 ml 

of styrene. The volume ratio of styrene to water was 40:100. The results 

of these experiments are given in Figs. 6.9 -  6.12.

A particularly interesting observation from these experiments was that 

the shapes of the conversion-time curves for the emulsion polymerisation 

of styrene using F A (F O )2^Fs and F A (F O ),qFs as initiator/stabilisers 

became similar to those for conventional emulsion polymerisation 

reactions if the polymerisation temperature was reduced. This is 

illustrated by the results obtained using F A (E O )2;,F8 at 35 C  and 

FA(F.O ),gFs at 45'‘c .

Since temperature seemed to affect the shape of the conversion-time 

curves when F A (F O )2/ .s  and FA(F.O),oF,s were used as

initiator/stabilisers, additional experiments were carried out in order to 

investigate the matter further. The effect upon the rate of 

polymerisation of styrene of the concentration of FA C FO ^^F s and 

F A (F O ),(jF s  was studied as before, but the temperature was reduced to

45°C. Figs. 6.13 and 6.14 give the results obtained.
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By this stage, the results seemed to indicate that the partition of the 

ester between water and styrene might be an important factor in 

determining the shape of the conversion-time curve. Direct 

measurements of the partitioning of the esters in styrene and water could 

not be accomplished, since it was not possible to separate the styrene and 

the water layers clearly, presumably because the ester functioned as an 

emulsifier for styrene and water.

However, it was thought it might be of interest to investigate the effects 

of increasing the total volume of water in the reaction system whilst 

maintaining the amount of styrene and initiator constant. In particular, it 

was thought that the shape of the conversion-time curve might be 

changed. Also, it was hoped to obtain information concerning the effect 

upon the rate of emulsion polymerisation of styrene of varying the total 

volume of water in the reaction system. The amount of ester used was 

1.1 X 10"’ mol per 40 ml of styrene, the temperature of the 

polymerisation was 45°C, and the volume ratios of styrene to water were 

as follows: (a) 40:72, (b) 40:100, (c) 40:145 and (d) 40:181. The results 

obtained are shown in Figs. 6.15 -  6.18.

6.4. Effect upon the rate of emulsion polymerisation of styrene of varying 

the temperature when F A (E O )2 4 Es was used as initiator/stabiliser and 

when the total volume of water was increased. The next step was to 

study the effect of varying the temperature upon the emulsion 

polymerisation of styrene when F A(F.O)2^̂ E.s was used as

initiator/stabiliser and when the total volume of water was increased, in 

order to investigate the effect of temperature upon the shape of the 

conversion-time curve when the water content of the reaction system was 

increased. The amount of ester was 1.1 x 10 ’ mol per 40 ml of styrene. 

The volume ratio of styrene to water was 40:145. Fig, 6.19 shows the

results obtained.

6.5. Reproducibility studies. During the preliminary kinetic work, the 

reproducibility of the conversion-time curves was investigated. These 

investigations included reaction systems which gave conventional 

conversion-time curves like the curves obtained when FA(FO)^pF.s was 

used as initiator/stabiliser at various polymerisation temperatures, and
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also reaction systems which gave unusual conversion-time curves like the 

curves obtained when FA (F '0 )^qFs was used as initiator/stabiliser at 50°C. 

The results of these experiments are given in Figs. 6.3 and 6.4. However, 

investigation of the effect of temperature upon the rate of polymerisation 

and the shape of the conversion-time curves obtained when F A (F O )2^̂ F.s 

and F A (F O )^ qF.s were used as initiator/stabiiisers revealed further 

unexpected results when the polymerisation temperature was higher than 

30°C. It was therefore necessary to investigate the reproducibility of 

these observations. Fig. 6.20 gives the results obtained. The results show 

that the shapes of the curves can be reproduced satisfactorily. 

Unfortunately this is not the case for the reproducibility of the rates of 

polymerisation.

6.6, Surfactant properties of F A(EO )^gH and FA(EO )ggH  and of their 4,4'- 

azobis-4-cyanopentanoic acid esters.

6.6.1. Introduction, Because of the unexpected nature of some of the 

results obtained for the emulsion polymerisation of styrene using the 

fatty-aicohoi ethoxyiates as initiator/stabiiisers, it was thought desirable 

to investigate some of the surfactant properties, i.e., the critical micelle 

concentration, in order to obtain evidence of micelle formation by both 

FA(F.O )3qH  and FA(F.O)ggH and the esters derived form them; i.e., 

FA(F.O )3qF s and FA(EO)ggF.s were studied. The results obtained from 

these experiments are shown in Figs. 6.21 and 6.22.

6.6.2. Procedure. In these experiments deaerated doubly-distilled water 

was used. The temperature of the experiments was 25°C ±  0.5°C. 

F A (E O ) H and F A (E O )^ qH  are known to have well-defined critical 

micelle^°concentrations (c.m .c.). The procedure followed was that 

described in the literature'^” ’. An initial solution was made by 

dissolving 0.089 g of FAiflO ljQ H in 100 ml of distilled water. In the case 

of F A (F O ) H, 0.091 g was dissolved in 100 ml of distilled water. The 

surface tension of these original solutions was measured and also that of 

subseguent dilutions. The surface tension of distilled water was also 

measured. The surface tension of deaerated distilled water at 25 C  was 

found to be 71.5 dyne/cm. The surface tension at different dilutions was 

plotted against the log of the concentration of the fatty-alcohol
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ethoxylates. The procedure followed was that given in Chapter Five, 

section 5.7.5.5. The procedure followed in the case of the esters was 

identical to that used for the fatty alcohol ethoxylates.

6.7. Solubility of fatty-alcohol ethoxy late esters in water at different 

temperatures. Observations on the solubility of the fatty-alcohol 

ethoxylate esters in water at different temperatures are given in Table 

6.1. From these observations, the approximate cloud points have been 

estimated; these are also given in Table 6.1. The reason for undertaking 

these experiments was to find the temperature at which the esters 

became insoluble in water. All the polymerisations in this chapter have 

been carried out below this temperature. The half-lives of the esters at 

different temperatures are given in Table 6.2. Because the half-lives are 

long relative to the time of the experiment, the insoluble products are 

believed to be the esters, which precipitate at high temperatures, and not 

the products caused by rapid decomposition.

6.8 Investigation of the kinetics of decomposition of fatty-alcohol 

ethoxylate esters of 4 ,4 '-azobis-4 -cyanopentanoic acid in water. In order 

to determine the rate coefficient, k^, for the first-order decomposition of 

the fatty-alcohol ethoxylate esters of 4,4’-A B -4 -C P A  m water, an 

experiment was carried out in which the decomposition of the azo groups 

in the ethoxylate ester was followed using ultraviolet spectroscopy. The 

azo group in 4 ,4 '-A B -4 -C P A  and the derivatives prepared in this 

investigation has a maximum absorption band in the ultraviolet region at 

approximately 350 nm. The decomposition of the azo compound was 

followed by observing the decrease in the height of this peak.

The initial optical density, D^, was measured at the start of the 

experiment. The optical densities at different times, D^, were also 

measured. Finally, complete decomposition of the azo group in the ester 

was accomplished by heating a sample at approximately 70°C for two 

days in an oven. Ultraviolet spectroscopy revealed the absence of azo 

group in the sample after this treatment, since no further reduction in the 

optical density was observed after a further period at 70°C. The optical 

densities of samples treated in this way are denoted by Doo • Values of k^ 

were obtained from slopes of plots of log [(D^ -  D ^ )/ (D ^  -  Doo)l against
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time. The results of these experiments are given in Figs. 6.23 -  6.26. The 

values obtained are summarised In Table 6.2.

The activation energy, F, was obtained using the usual formula,

= A exp (-F./RT)

where is the rate constant, R is the gas constant (8.314 J mol  ̂ K ^),
d

and T  is the absolute temperature. Values of F. and A were obtained from 

a plot of log k j versus 1/T, since

log k^ = log A -  F./RT

The Intercept of of log k^ versus 1/T gives the value of log A. The slope 

of log k^ versus 1/T yields F. The method of least sguares was used in 

this work. These results are given in Figs. 6.27 -  6.30. The results show 

first-order decomposition rates.

6.9. Particle-size measurements.

Particle-size measurements on the final latices. Since emulsion 

polymerisation takes place in isolated loci, particle-size measurements 

were carried out in the hope that the results would throw some light on 

the mechanism of emulsion polymerisation of styrene when the fatty- 

alcohol ethoxylate esters were used as initiator/stabilisers. A ll the final 

latices obtained were subjected to particle-size measurements using the 

Coulter Nanosizer. The results of these experiments are given in Tables 

6.3 -  6.7. The number of particles per litre of latex was calculated using 

the formula given in Chapter Five, section 5.7.5.4. It was assumed that p , 

the density of the polymer-monomer mixture, varied linearly ^ with

conversion. The value of p  was taken as 0.905 g/cm’ for styrene
, (157)

1.05 g/cm’ for polystyrene

and

6.9.2. Particle-size measurements throughout the reaction. The

information yielded by the experiments described in section 6.9.1 was 

incomplete in that particle-size measurements were made on the final 

latices only. For this reason, in some cases the variation in particle size
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was followed as the reaction proceeded. The particle-size measurements 

were carried out using (i) a Coulter Nanosizer and (ii) an electron 

microscope.

All the reactions were carried out using 1.1 x 10  ̂ mol of ester per 40 mi 

of styrene. The volume ratio of styrene to water was 40:100. Five 

reaction systems were used in these experiments, the details being as 

follows:

Temperature (°C)Initiator/stabiliser

FA(FO)2^Fs
FA(F.O)3qFs
FA(FO)3qFs
F A (F O )^ qF s

FA(FO)^gF.s

Because the latices were in general very poiydisperse, approximately 500 

particles were measured when using electron microscopic techniques, in 

order to find the average diameter of a particle for a given latex at a 

given lime of the reaction. Polydispersity is defined as D ^/D ^, where 

is the weight-average diameter and is the volume-average diameter:

D
* Sn.d. ’ ^  1 i

DV ■y

The results are given in Tables 6.8 -  6.12.

6.10. Molecular weight determinations. The molecular weights of the 

polystyrenes obtained using these initiator/stabilisers were determined at 

R A P R A  by Dr. S. Holding. Previously, the writer had attempted to use 

vlscometry to determine the molecular weight of polystyrene obtained 

when 1.1 X W ’ mol of FA(E:0 ) 2i,F.s was used as initiator/stabiliser; the 

temperlture of the reaction was 50°C and the volume ratio of styrene to 

water was 40:100. The weight-average molecular weight found was above 

10*. It was felt that vlscometry was not suitable method for this range of
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molecuiar weight. Thus, the molecular weights (given as and 

where is the number-average molecular weight and the weight- 

average molecular weight), and also D = were obtained at

R A P R A  by gel-permeation chromatography. As can be seen from the 

enclosed examples, the high-molecular-weight shoulder present is thought 

to be material of larger molecuiar weight than the capacity of the 

columns used. The calculations were carried out using the trace from a 

differential refractive index detector. The results are shown in Table 

6.15 and Figs. 6.31 and 6.32.

A new set of experiments was carried out using high-molecular-weight 

calibration (Figs. 6.33 and 6.34. This calibration covers the range from 

400,000 to 5,000,000 (Fig. 6.35). According to Dr. Holding, outside this 

range, the molecular weights were determined by extrapolation of the 

polynomial (third-order calibration). Dr. Holding also attempted to verify 

some of the values for the weight-average molecular weights M ^ , using 

low-angle laser light scattering. These results are given in Table 6.14.

6.11. Bulk polymerisations of styrene using the fatty-alcohol ethoxylate 

esters. Finally, the efficiency of the fatty-alcohol ethoxylate esters as 

initiators for the bulk polymerisation of styrene was investigated. The 

formulation employed was 40 ml of styrene plus 1.1 x 10 ’ mol of ester. 

The styrene and the ester were placed in a test tube; nitrogen was bubbled 

through, and the test tube was then stoppered. The test tube was placed 

in a water bath for six hours at 50°C. The polymer was precipitated using 

150 mi of methanol to which tert-butylcatechol had been added. Table 

6.15 shows the results obtained. The same recipe and procedure were 

used in control experiments using AZBN as initiator. This result is also

given in Table 6.15.
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Fig. 6.21b: Surface tension measurements
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Fig. 6.22b: Surface tension tneasurements
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Figs. 6.25 and 6.26: Decomposition of the azo group in FA(E0)^^Es 
and in FA(E0j^^Es in water._______________  ' “

179



Figs. 6.27-6.30: Arrhenius plots obtained for FA(E0)2^Es , 
FA(EO).,^Es, FA(EO)^^Es and FA(E0)^^Es.30
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Temperature (°C) 4/2

4 0 7 . 9 9  X 1 0 ’ ^ 2 4 1

5 0 1 . 7 4  X 1 1 1

5 5 4 . 8 3  X 1 0 ' ^ 5 9 . 9

6 0 1 . 0 4  X 1 0 ’ ^ 1 8 . 5

6 5 1 . 3 2  X 1 0 ' ^ 1 4 . 6

66 3 . 4 1  X 1 0 ’ ^ 5 . 6 5

Table 6.2a; Rate coefficients for decomposition of the azo group in 
F A (F O )2 ^F s in water.

Temperature (s‘ 5 4/2

5 0 1 . 7 6  X 1 0 ' ^ 1 0 9

6 0 1 . 0 2  X 1 0 " ^ 1 8 . 9

6 5 1 . 8 2  X 1 0 * ^ 1 0 . 6

70 2 . 8 3  X 1 0 ' ^ 6 . 8 0

Tabl 6.2b: Rate coefficients for decomposition of the azo group in 
F A (F O )j q F s in water.

Temperature k^ (s -5 4/2

5 0 3 . 2 4  X 1 0 " ^ 5 9 . 4

6 0 1 . 0 2  X 1 0 ' ^ 1 8 . 9

6 5 1 . 8 0  X 1 0 " ^ 1 0 . 7

70 3 . 0 9  X 1 0 " ^ 6 . 2 3

Table 6.2c; Rate coefficients for decomposition of the azo group in 
FA (E O )^ jE s  in water.

Temperature kd (s '5 4 /2

5 0 2 . 2 0  X 1 0 " ^ 8 7 . 5

5 5 3 . 8 7  X 1 0 ' ^ 4 9 . 7

6 0 7 . 3 1  X 1 0 ’ ^ 2 6 . 4

6 5 1 . 9 3  X 1 0 ' ^ 9 . 9  7

70 3 . 5 5  X 1 0 " ^ 5 . 4 2

Table 6.2d; Rate coefficients fcM* decomposition of the azo group in
FA (E O )^ qEs in water.
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'j^ass of initiator (g) Mn

610 000 

513 000 

970 000 

442 000

w

2 700 000 

2 270 000 

2 810 000 

2 000 000

i* le  6.1JBS VarlaUon In the molBCular weight of polystyrenes prepared 
with variable concentration of F A (E O )2 ^E » at 50“C .

1 170 000 

572 000 

486 000

3 400 000 

2 243 000 

2 333 000

Table 6.13b: Variation In the molecular weight of polyatyrenea prepared 
with variable concentration of F A(EO)^qEs at 50®C.

2 573 000 4.1

Table 6.13c: Variation In the molecular weight of polyatyrenea prepared 
with variable concentration of F A (E O )^ jE a  at 50 C .

n

414 000 

715 000 

287 000 

382 000

w

1 934 000

2 426 000

1 300 000

2 000 000

'60‘

201





U r-*

i

2 0 3



L2Ú lO iír

Pig. 6,35: Molecular weight calibration.
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Initiator 

F ^ E 0 )2 ^ E .

FA(EO)jgE»

FA(EO)^jEs

FA(EO)ggE,

Molecular weight (G P C )
M M w

10 000 000

3 400 000

4 400 000 

4 000 000

MW (L A L L S ) 
Mw

7 000 000

p o i y ^ y ^  produced at 40*C 
caUbratlon. and by low «igla laser

ii

Initiator Molecular weight (G P C ) O

FA (E O )2 ^E s 996 000

Mw

3 000 000 3.1

FA (E O )3 qEs 2 300 000 13 700 000 5.9

F A (E O )^ j E8 1 700 000 12 000 000 7.0

F A (E O )^ qEs 1 800 000 16 300 000 9.1

d e íí^ t í J d ^  ^ g h U  of polystyrenes produced at 5 0 ^
oetermined by high-molacular-weight caiifarationt.

Initiator

FA (E O )2 ^E s

FA(EO)3qEs

FA(E0)^5E8

Molecular weight (G P C ) 
M „ Mw1 200 000

363

1 000 000

260 000

1 300 000

3 100 000

4 400 000 16.4?

of polyatyranae produced 
^»termined by high-molecuiar-welght calibratlone.

. , i  f '' I
205 - ..... ^
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C H A P TE R  SEVEN

DISCUSSION O F R ESULTS A N D  C O N C LU SIO N S

7.1. Discussion of results.

7.1.1. Introduction. Conventional emulsion polymerisation systems, in

which an ionic salt and a water-soluble initiator are used, have been

extensively studied^^^’^^^*^^*^®^^ Also, emulsion polymerisation

reactions using non-ionic surfactants and oil-soluble initiators have been

carried out^^®^’ ^®^\ A mixture of an ionic and a non-ionic emulsifier

with an ionic initiator has also been used  ̂ ’ * It appears that, in

general, when water-insoluble monomers are used, the course of the

reaction is divided into three well-defined stages. First there is a period,

typically lasting up to 10% conversion, during which the rate of

polymerisation increases from zero. Then there is a period of constant

rate, during which the number of growing polymer particles is constant.

Finally there is a period In which the rate decreases. These three stages

yield the well-known S-shaped curves for plots of conversion versus time.

However, quite a few results have been obtained which indicate that the

number of particles can change during the second stage of an emulsion
(78)polymerisation reaction, e.g., those of Robb'  ̂ , particularly when water- 

soluble monomers are used.

Smith and Ewart derived the following mathematical relationship for the 

rate of polymerisation during Interval II for emulsion polymerisation 

reactions which conform to certain limiting conditions:

Rp = i  kp N [M ] (2.5)

This equation predicts that the rate of polymerisation during Interval II 

for a given number of particles is independent of the initiator 

concentration. In deriving the above equation, it has been assumed 

(among other things) that the primary radicals enter the particles one by 

one. This assumption is fulfilled for water-soluble initiators, and probably 

for oil-soluble initiators activated by water-soluble compounds, e.g., some 

redox systems. Van der Hoff^^^^ claims that, if an activated oil-soluble
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initiator is employed which decomposes into radical pairs within the 

particles, the assumption that primary radicals enter the particle one by 

one does not hold.

Smith and Fwart maintain that the initiator concentration during Interval 

II has no measurable effect on the initial rate of polymerisation in 

polystyrene seed particles. The tendency towards increased rate with 

increased conversion in seeded polymerisations in the case of high 

concentrations of persulphate initiator is explained as probably due to the 

formation of new particles.

Increasing the rate of generation of free radicals in the aqueous phase 

without changing the number of particles will decrease the interval 

between successive entrances of free radicals into a particle. This will 

not affect the rate of polymerisation, but it will decrease the degree of 

polymerisation.

Another assumption of the theory is that, while there are monomer

droplets present, the monomer concentration in the monomer-polymer

particles is constant. However, this does not seem to be always the 
(79)case

According to the theory, the rate of polymerisation is directly 

proportional to the number of polymer particles formed in Interval I. As 

was shown in Chapter Two, Smith and Ewart derived the following 

relationship in which the number of polymer particles formed in Interval I 

is related to the surfactant concentration and to the rate of generation of 

free radicals in the aqueous phase;

N = k ( (2.8)

Thus the number of particles, N, is predicted to be proportional to the 

number of growing radicals to the 2/5 power and to the concentration of 

micellar emulsifier to the 3/5 power.

The theoretical predictions contained in the above equation have^been 

tested by a number of authors, most extensively by Bartholome et ^
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It has been found that the number of particles formed is accurately

proportional to the 2/5 power of the concentration of initiator. A number

of experimental studies confirm that the number of particles is
(188 25)proportional to the 3/5 power of the concentration of soap  ̂ ’ . S

refers to the concentration of micellar soap, thus, when using a fixed 

concentration of soaps of different erne's, it has been observed that the

number of particles, and therefore the rate of polymerisation, decreases
u , - . u  • • (189)sharply with increasing cmc

Van der Hoff^^^^ has attempted to verify the Smith-Ewart theory with 

respect to the absolute number of particles formed. His findings show 

fair agreement with the equation. However, particle formation also 

occurs when the soap concentration is lower than the cmc , and 

indeed when no surfactant is present at all^^^^. When micellar nucléation 

of latex particles is predominant, Dunn et al  ̂  ̂ report that there is 

evidence to show that the size of the initial micelle is an important factor 

in the emulsion polymerisation of styrene.

During Interval I, an increase in initiator concentration, surfactant 

concentration^^^^ or temperature will result in an increase in the number 

of particles and therefore in an increase in the rate of polymerisation 

during both Interval I and Interval II. However, once Interval II is 

reached, the theory predicts that the number of particles remains 

constant and the only way of increasing the rate of polymerisation is by 

increasing the temperature.

Constancy of N has indeed been demonstrated in many cases. For 

example, in the polymerisation of styrene initiated by the oil-sol^uble 

azobisisobutyronitrile, N remains constant throughout Interval II . 

Nevertheless, besides data consistent with the ideas of Smith and Ewart, 

quite a few results are known which indicate that a change in the number 

of particles can occur during the second stage of emulsion polymerisation 

reactions. Thus Robb^^®  ̂ has shown that the number of latex particles is 

not constant during Interval II of the emulsion polymerisation of styrene, 

but increases by about 50%. Since a constant rate is observed, this can 

only be explained by a falling monomer concentration within the 

particles, compensating for the effect of increasing particle numbers .

2 0 9



7.1.2« Initiation of omulsion polymerisation when oil-soluble initiators are 

used. Some oii-soiubie initiators, e.g,, benzoyl peroxide, although good 

initiators for solution polymerisation, are poor initiators for emulsion 

polymerisation reactions. Other thermally decomposable peroxides and 

azo compounds produce polymer in emulsion systems at rates comparable 

to those observed in polymerisations initiated by water-soluble initiators, 

where the radicals enter the particles one by one. It seems that, although 

oil-soluble initiators presumably decompose into radical pairs within the 

particles, polymer radicals are formed one by one. One possible way in 

which this can occur is the entry of single radicals from the aqueous 

phase. The rate of entry of sjch radicals should depend upon the 

concentration of the initiator in the water. This concentration is not so 

much determined by the solubility of the catalyst in water as by its 

partition coefficient between the organic and the aqueous phases. 

Another mechanism is rapid exit of one of the pair of radicals from a 

micelle or particle,

(192)Lim found that the decomposition of azo compounds is a unique type 

of reaction, in which the strongly endothermic formation of radicals by 

cleavage of the single bonds is facilitated by the exothermic release of 

nitrogen. If no concurrent reaction occurs, the decomposition of azo 

compounds is a strictly first-order reaction whose rate depends mainly on 

the substituent groups in the compound and relatively little on the 

medium in which the azo compound is dissolved.

A wide variety of substituents can be incorporated into the azo initiator. 

This variability can be used to good effect in tailoring the properties of 

the initiator to meet more closely the requirements of the polymerisation 

system^^^^\ Azo initiators offer great possibilities to the emulsion 

polymer manufacturer. Decomposition rates and molecular structure can 

be modified to meet specific requirements and the use of different 

substituent groups within the initiator may enable improved addition, 

coalescence, etc., to be conferred on the polymer via incorporation of 

these substituents as end-groups.

Dunn and coworkers^^^^^ have studied the efficiency of 

azobisisobutyronitrile in the emulsion polymerisation of styrene. Like Van
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der Hoff, these workers claim that the isolation of a polymer radical in 

the latex particle is dependent on the probablity of one radical escaping 

into the aqueous phase by partition or by transfer to an emulsifier 

molecule.

In emulsion polymerisation, when an oil-soluble initiator is used, the 

initiator radical must escape entirely from the micelle or latex particle in 

which it was produced. Thus a lower efficiency of initiation may be 

expected than from water-soluble initiators.

Dunn et maintain that the number of latex particles formed varies

approximately as the 2/5 power of the initiator concentration, but the 

dependence of the rate of polymerisation during Interval II on the initiator 

concentration is lower than this, indicating that the dependence of the 

rate during Interval II is such that the rate is less than directly 

proportional to the number of latex particles present, as required by the 

Smith-Ewart theory. This result is similar to that found when using more 

water-soluble monomers in which the transfer of radicals from the 

particles to the aqueous phase is not negligible. Studies on the diffusion 

of reactive radicals have been carried out by Smith

Dunn et al^^^^^  ̂ suggest that the dependence of the rate during Interval II 

is such that a rate less than directly proportional to the number of latex 

particles present might be expected, since the possibility of using an oil- 

soluble initiator for an emulsion polymerisation depends on the transfer of 

radicals to the aqueous phase. The number of latex particles formed using 

a high concentration of azobisisobutyronitrile was the same as that using 

a much lower concentration of potassium persulphate. It seems that only 

some 4% of the radicals available for the initiation of polymerisation in 

the oil phase actually nucleate latex particles. The remainder probably 

initiate polymerisation in the oil phase. However, because of the small 

volume of the latex particle, the radical concentration must be very high 

and thus mutual termination of radicals is rapid. Thus only a small 

amount of oligomer is formed, which is probably left behind in solution on 

precipitation and isolation of the polymer produced.

Tentatively put forward in the same paper is the suggestion that the
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probability of transfer to the emulsifier increases with the length of the 

alkyl chain of the emulsifier. Increasing probability of transfer implies 

increasing probability of radicals escaping into the aqueous phase. The 

authors conclude that when azobisisobutyronitrile is used as an initiator 

for the emulsion polymerisation of styrene, case I kinetics should apply.

7.2. Relevance to present work: summary of results. The work carried out 

during this investigation has involved the emulsion polymerisation of 

styrene in the presence of compounds that acted simultaneously as 

initiators for polymerisation as well as stabilisers for the final latex 

formed. These compounds were esters of 4,4'-azobis-4-cyanopentanoic 

acid and various fatty-alcohol ethoxylates synthesised during this 

investigation. These esters are soluble in the monomer as well as in the 

dispersion medium. Direct measurements of the solubility of these 

compounds proved impossible to carry out because these esters are very 

soluble in both oil and water phases. Measurements of the partition of 

these compounds between the oil and the water phases are complicated by 

the dual nature of the ester molecules; i.e,, these compounds contain a 

hydrophilic end as well as a hydrophobic portion, making separation of the 

oil and the water phases very difficult. Thus, any conclusions as to the 

relative solubility of these initiator/stabilisers will have to be drawn from 

the results obtained whilst studying the effects that different variables 

have on the emulsion polymerisation of styrene.

Also, the esters, as well as the fatty-alcohol ethoxylates themselves, show 

the inverse solubility phenomenon; i.e., each compound has a certain 

temperature at and above which it is less soluble than at room 

temperature. Table 6.1 in Chapter Six gives information on the 

solubilities of the esters in water at different temperatures. Thus, for 

example, F A (F O )2^̂ Es is soluble at room temperature but only partially 

soluble at 70°C. If the solution is cooled down, the ester redissolves in 

the water. At 75°C, F A (E O )2^̂ Fs becomes insoluble; i.e., more ester 

precipitates than at 70°C. FA (E O )^5Es and FACEO^gEs do not show 

direct signs of inverse solubility in the range of temperatures studied. 

From these observations, approximate cloud points were estimated. The 

half-lives for the thermal decomposition of the esters are given in 

Table 6.2. It has been concluded that the insolubility of the esters at high
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temperatures is caused by a physical effect such as an increase in the 

thermal motion of the molecules breaking the hydrogen bonds that confer 

the water-solubility, rather than the production of insoluble products by 

rapid thermal decomposition. All the polymerisations have been 

conducted at temperatures below the estimated cloud point of the ester in 

water.

The solubilities of the fatty-alcohol ethoxylates in water, as well as those 

of the esters derived from them, are presumably a consequence of the 

polyoxyethylene chain present in the hydrophilic portion of the fatty- 

alchol ethoxylates. This water-solubility is caused by the formation of a 

number of hydrogen bonds between the water and the polyoxyethylene 

chains. As the temperature increases, and as a result of increased kinetic 

energy, some of the hydrogen bonds break. When a temperature is 

reached at which the number of hydrogen bonds broken is sufficiently 

high, the compound becomes insoluble.

The hydrophilic/lipophilic balances for the fatty-alcohol ethoxylates have 

been reported by Blackley et Values range from 14.4 for

FA(EO)j^^H to 18.3 for FA(FO)gQH. The HLB value for the esters is 

expected to be lower, since the C H 2 content of the ester is greater. 

These workers also give calculated distributions of the chain length of the 

ethylene oxide units. Thus F A (F O )^ qH, for instance, is predicted to 

comprise mainly a mixture of molecules which contain from 40 to 70 

ethylene oxide units.

In the present investigation, the first result obtained was the conversion 

versus time curves for the emulsion polymerisation of styrene at 50 C . 

When the molar concentration of initiator was kept constant at 

1.1 X 10"’ mol per 40 ml of styrene. The initiators studied were 

FA(F.0)2^̂ F.s, FA(F.0)3qF.s, FA(E0)^^5Fs and FA(E0)ggEs. Also, the

conversion versus time curves of the emulsion polymerisation of styrene 

at 50°C were obtained when constant weights (5.0 g per 40 mi of styrene) 

of EA(E0)^^Es, FA(E0)2 ^̂ Es, FA(E0)3 qEs, FA(E0)^5Es and FA(E0)ggEs 

were used as initiator/stabilisers for the emulsion polymerisation of 

styrene. Because of the low rate of polymerisation given by FA(E0)^^Es, 

it was discarded from the in-depth study. These results are given in Figs.
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6.1 and 6.2. Some of these results are re-presented in Fig. 7.1, from 

which it appears that the curves obtained can be divided into three 

groups: (i) that given by FA(F0)j^^Fs; (ii) those given by FA(F.0)2^̂ F.s and 

FA (F0 )^ qF s; and (iii) those given by FA(F0)^^F.s and FA(FO )^gFs. The 

last group by and large resemble curves observed for conventional 

emulsion polymerisation reactions. They differ from the curves for 

conventional emulsion polymerisation reactions in that the straight-line 

portion continues up to 80-85% conversion in some cases, instead of 

tailing off at approximately 60% conversion. An attempt to explain this 

observation will be made at a later stage. The curves given by 

FA(F.0)2^Fs and F A (F 0 ) j q F.s at 50°C, however, do not resemble those 

observed for conventional emulsion polymerisation reactions. The curve 

given by FA(F.0)^^Fs bears even less resemblance to the curves given by 

conventional emulsion polymerisation reactions.

7.2.1. Kinetics of decomposition of the azo group of the initiator in water.

The rates of decomposition of the azo groups of the esters in water at 

different temperatures were studied using ultraviolet spectroscopy. The 

values obtained for the activation energies of the azo groups were as 

follows;

Ester Activation energy (kJ/moi) A value

FA(EO)2^^Es 1 6 4 . 2
20

6 . 0 4  X 10^"^

FA (EO )3 qF s 1 3 2 . 3 4 . 6 4  X 1 0 ^ ^

F A (E O )..E s 1 0 5 . 8 3 . 9 4  X 1 0 ^ ^

F A (E O )^ qE s 1 3 5 . 1 1 . 3 3  X 1 0 ^ ^

Table 7.1: Activation energies for the decomposition of the azo group of 
the initiator/stabiliser in water.

The literature values for the sodium salt of 4,4’-A B -4 -C P A  are 134.2 

kJ/mol^^^^^ and 142.3 kJ/moi^^^^\ For AZBN, the activation energies 

show a greater range^^^^\ e.g., 128.4 kJ/moi, 123.4 kJ/moi, 128.9 kJ/moi, 

127.6 kJ/moi, 121.2 kJ/mol, 142.3 kJ/mol, 131.0 kJ/moi.
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7.2.2 Effect of initiator/stabiliser concentration upon the shapes of the 

conversion>time curves and upon the rates of polymerisation. When 

studying the effect of concentration of F A (E O )2^F.s upon the emulsion 

polymerisation of styrene at 50°C, it was realised that the shape of the 

conversion-time curve depended upon the concentration of 

initiator/stabiliser. At very low concentrations (ca, 3.0 g per 40 ml of 

styrene), the curve resembles that for a typical bulk polymerisation. At 

high ester concentrations (ca. 7.0 g per 40 ml of styrene), the curve 

obtained was similar to that for a typical emulsion polymerisation. At 

intermediate concentrations, the curves resembled neither that typical of 

bulk polymerisations nor that typical of conventional emulsion 

polymerisations (Fig. 6.5). The curves obtained when FA(FO)^gFs was the 

initiator/stabiliser resembled those for reactions initiated by F A (F O )2^^Fs, 

although there is an apparent lack of nucléation period (Fig. 6.6). 

Although the shape of the emulsion polymerisation curves appears to 

depend upon the initiator concentration, it is observed that, as expected, 

the rate of polymerisation increases with increasing initiator/stabiliser 

concentration. This is presumably because the more initiator/stabiliser is 

present the greater is the flux of free radicals available for the initiation 

of polymerisations. The reactions initiated by F A(EO)^^Es and 

E A (EO ),nEs resemble conventional emulsion polymerisation reactions so 

far as the shapes of the conversion-time curves are concerned (Figs. 6.7, 

6.8). The rate also shows a general tendency to increase with an increase 

in initiator/stabiliser concentration.

7.2.3. Effect of temperature upon the shapes of the conversion-time 

curves and upon the rate of polymerisation. The next variable to be 

studied was temperature. The initiator/stabiliser concentration was 

maintained at 1.1 x 10"’ mol per 100 ml of water. The phase ratio of 

styrene to water was 40:100 by volume. Reactions initiated by 

F A (E O )2^̂ Es and F A (E O )3qE s as initiator/stabiliser showed a remarkable 

variation in the shapes of the conversion-time curves (Figs. 6.9, 6.10). 

These curves range from those typical of bulk polymerisation at 

intermediate temperatures to those typical of conventional emulsion 

polymerisation at low temperatures. At high temperatures a new 

phenomenon was observed, namely, that of acceleration at a certain 

conversion (Figs. 6.9, 6.10). Since the shape of the curve sometimes
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depends upon the concentration of the initiator/stabiliser, direct 

connparison of the rates is difficult. An attempt will be made later to 

explain the observed curves.

Emulsion polymerisations initiated by FA(EO)^^Es and FA(FO)^gEs have 

conversion-time curves typical of those for conventional emulsion 

polymrisation reactions (Figs. 6.11, 6.12), except that the linear section 

extends to high conversions in some cases before tailing off. As in 

conventional emulsion polymerisation reactions, the rate of 

polymerisation increases with increasing temperature, except at very high 

temperatures (ca. 65°C), when the rate tends to fall slightly.

7.2.4. Effect of initiatcw/stabiliser concentration upon the shapes of the 

conversion-time curves obtained when F A (E O )2 ^Es and FA (EO )jg Es were 

used as initiator/stabiUsers at 45»C. Because the shape of the 

conversion-time curves obtained when F A (E O )2^̂ Fs and FA(EO)^gEs were 

used as initiator/stabilisers changed to that for emulsion polymerisation 

reactions when the reaction was carried out at temperatures below 50°C, 

the effect of initiator/stabiliser concentration upon the shape of the 

curve and upon the rate of polymerisation was investigated at the lower 

temperature of 45°C. The ratio of styrene to water by volume was 

40:100. Figs. 6.13 and 6.14 show that curves typical of conventional 

emulsion polymerisation reactions were obtained even when only 4.0 g of 

F A (E O )2 .E.s was used. In the case of reactions initiated by F A (E O )3gEs, 

conversion-time curves having shapes typical of conventional emulsion 

polymerisation reactions were observed when the level of 

initiator/stabiliser was as low as 3.0 g. In both cases, the rates of 

polymerisation increased with increasing initiator/stabiliser

concentration.

7.2.5. Effect of increasing the total volume of water upon the shapes of 

conversion-time curves and upon the rates of polymerisaUon. The next 

variable whose effect was studied was the volume of water in the react.on 

system. Because some reactions at 50«C gave conversion-t.me curves 

which are not typical of those for conventional emulsion 

reactions, the effect of varying the phase ratio was studied at «  C . The 

concentration of initiator/stabilis^r was 1.1 x 1 0 -  mol per 100 ml of
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water.

In the case of FA(F.O)2^Fs as initiator/stabiliser at volume ratios of 

styrene to water of 40:72 and 40:100, the shapes of the curves chiefly 

resembled those typical of bulk polymerisation, although there seems to 

be an initial induction period present, as found in conventional emulsion 

polymerisation reactions (Fig. 6.15). At styrene-water volume ratios of 

40:145 and 40:181 the shape of the curves was largely that of conventional 

emulsion polymerisation reactions. The fact that increasing the water 

volume at 45°C gave reaction systems which did not yield conversion

time curves typical of conventional emulsion polymerisations when 

F A (F O )2¿Jfs was used as initiator/stabiliser may be due to the 

concentration of initiator in the water phase being too low to promote a 

conventional emulsion polymerisation reaction.

The curves for reactions initiated by FA(FO)^gFs had largely the shapes 

expected for an emulsion polymerisation reaction, and the curves given by 

F A (F O )^ 5F s and FA(FO)ggFs were independent of the monomer-water 

ratio in the range studied (Figs. 6.16-6.18).

The rates show a general tendency to increase when the volume of water 

is increased; however, the trend is not uniform. The general increase in 

rate is presumably due to an increase in the amount of initiator/stabiliser 

in the water phase. However, it was also observed that, when the 

monomer-water ratio was 40:72, the polymer conversion at a given time 

was greater than when the ratio of styrene to water was 40:100.

In general, the greater the volume of water, the greater the rate of 

polymerisation. However, in the case of FA(FO)ggFs there was no 

appreciable variation in the rate of polymerisation with increasing volume 

of water. This is perhaps an indication of the high water-solubility of 

F A (F O )xqF s: an increase in the volume of water has little effect upon the 

amount dissolved in the water phase, and therefore little effect upon the

rate of polymerisation.

7.2.6. O d e r  of reaction with respect to concentration of 

initiator/stabiiiser. In order to find the order of reaction with respect to
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initiator/stabiliser concentration, the logarithm of the rate obtained from 

the straight-line portion of the conversion-time curves was plotted 

against the logarithm of the weight of initiator/stabiliser (Figs. 7.2a, b, c 

and d). Some of these plots are surprisingly good straight lines, though 

others are clearly not. The slopes of these plots are given below in 

Table 7.2;

Initiator/stabiliser Order of reaction 
at 50°C

Order of reaction 
at 45°C

F A (F O )2 ^F s 2.05 1.5

FA(FO)3gFs 1.77 1.3 or 2.6*

F A (F O )^5 F s 1.16 —

FA(FO)ggFs 0.80 •••

♦If the lowest concentration is not ignored.

Table 7.2: Order of reaction with respect to concentration of 
initiator/stabiiiser at 50“C  and at 45®C-

According to the Smith-Fwart theory, the order of reaction is 0.6 with 

respect to surfactant concentration and 0.4 with respect to initiator 

concentration. Since in the present work it is believed that one and the 

same substance functions as both initiator and stabiliser, orders of 

reaction close to unity ought to be observed if the Smith-Fwart 

mechanism is operative in this case. If one allows a certain margin for 

experimental error, the orders of reaction obtained for F A (F O )^ 5Fs and 

FA(FO )^gFs could be regarded as being close to the theoretical 

prediction. However, the orders of reaction obtained for F A (F O )2^̂ Fs and 

F A (F O )jg F s  are too high, and it seems that the assumptions of the Smith- 

Fwart theory are not completely valid for these two initiator/stabilisers. 

One of the assumptions of the Smith-Fwart theory is that the initiator is 

water-soluble. These initiator/stabilisers are indeed water-soluble, but 

they are also oil-soluble to an extent which depends upon the degree of 

ethoxyiation. Not too surprisingly, the value of the order of reaction is 

lower when a conversion-time curve typical of conventional emulsion 

polymerisaton reactions is obtained, but it does not decrease enough to
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place FA(F.O)2^̂ F.s and FA(F.0)3 qF.s with FA(F.O )^3Fs and F A (F O )^ qF.s, and 

thus it must be concluded that other factors are operative. As the 

initiator/stabiliser becomes more hydrophilic, so the order of reaction 

diminishes toward the Smith-Fwart prediction of one.

7.2.7. Calculation of activation energies. From the results of variation of 

rate of polymerisation with temperature, attempts were made to obtain 

activation energies from the Arrhenius plots. The equation used was that 

given in Chapter Six, section 6.8; i.e., the logarithm of the rate was 

plotted against the reciprocal absolute temperature. At first glance, it 

seems that the only valid results are those obtained with FA(F.O)^5F.s and 

FA(FO)^gF.s, since only for these initiator/stabilisers was there no change 

in the shape of the conversion-time curves observed at any of the 

polymerisation temperatures. Also, plots of the logarithm of the rate 

versus reciprocal temperature gives a single straight line of negative 

slope (Fig. 7.4). A slight "anomaly" is shown in reactions initiated by 

these compounds when at very high temperatures the rate falls below the 

value predicted by the Arrhenius relationship. These values are not taken 

into consideration when calculating the energy of activation. An attempt 

will be made later to explain this phenomenon. The results, however, are 

more complicated for reactions initiated by F A (E O )2^̂ F.s and F A (F O )3qF s, 

since the Arrhenius plots are two straight lines, one of positive slope, the 

other of negative slope; this is presumably a consequence of the shapes of 

the conversion-time curves. It could easily be concluded that the fact that 

some points for the reactions initiated by F A (E O )24Es and F A (E O )3gEs lie 

on a straight line of negative slope is coincidental, since the points that 

make up the straight line come from slopes of conversion-time curves 

having very different shapes (Fig. 7.5).

The conversion-time curves of these reactions can be divided into three 

distinct portions (Fig. 7.5). At low temperatures, i.e., 40-45°C, the shape 

is that typical of a conventional emulsion polymerisation reaction, and 

only one rate is observed. At 50°C two straight portions are obtained, the 

first being of higher slope and the second straight portion of lower slope. 

Results given in Tables 6.8 and 6.9 and discussed later show that the 

number of particles decreases during the first linear portion but remains 

constant within experimental error for the second, slower, linear portion.

2 2 3



Figa. 7.4a,b,c,d: Arrhenius plots for emulsion polymerisation reactions 
initiated and stabilised by 1.1 x 10 mol of FA(FiO)2̂ Es, FA(E0).^^Es, 
FA(f o ), Fs and FACFOV.Fs .4 T n()

224





Fig. 7.5: Portions of the different curves whose slopes 
were used to make the Arrhenius plots for reactions 
initiated by FA(EO).^^Es and FA(EO)^qEs .
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Above 50°C, again two constant-rate regions are observed. The number 

of particles remains constant within experimental error during the first 

portion of the curve. Unfortunately, not enough data are available for 

particle numbers for the reaction during the second linear stage.

For temperatures below 50°C, only one linear region is observed in each 

reaction and the rates corresponding to these linear regions fall on 

Arrhenius plots of negative slope. These points are typical of 

conventional emulsion polymerisation behaviour. For the results at 50°C, 

the points that lie on the Arrhenius plot of negative slope derive from the 

linear portion corresponding to a constant number of particles (Fig. 7.5), 

i.e., the second linear portion. For temperatures above 50°C, the points 

lying on the Arrhenius plot of negative slope represent the rates after 

acceleration takes place.

The activation energies obtained from the Arrhenius plots are given in 

Table 7.3:

Initiator/stabiliser Activation energy (kJ mol 
(styrene:water 40:100)

FA (FO )2 ^F s 29.7

FA (EO )3 qE s 23.3

EA(EO )^5E s 49.6

E A (E O )^ qE s 1 58.3

Table 7.3: Activation energies obtained for the emulsion polymerisation of 

styrene using F A (E O )2 ^Es, F A (E O )j„E s , F A (E O )^ 5 Es end F A ( E O ) g ^  as 

initiator/stabilisers. Styrene:water = 40:100.

Though the trend is not monotonic, there is an overall increase in 

activation energy with increasing size of the initiator/stabiliser molecule. 

However, no conclusions can be drawn from this observation, since the 

activation energy depends upon the rate of initiation and upon the rate of 

propagation; the rates of initiation were shown in Section 7.2.1 to be 

largely similar for all the esters, while the rate of propagation depends 

upon the number of particles N generated, and this has been shown to vary 

in a complex fashion, not only as between one ester and another, but also
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Figs. 7.6a,b: Arrhenius plots for emulsion polymerisation reactions 
initiatefl and stabilised by 1,1 x 10 mol of FA(E0)^^Es with 
styrenerwater ratios of 4n;14S and 40:100.
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at different temperatures with a single ester.

It is interesting to note that at high temperatures the rate of reaction for 

the first portion of the curve decreases as the temperature increases for 

both FA(F.O )2^̂ F:s and for F A (F O )^ qF s. Fiectron micrographs show that N, 

the number of particles, decreases as the temperature increases for the 

first portion of the curve.

The effect of temperature was studied once again for the reaction 

initiated by FA(F.O )2^̂ F.s with an increased volume of water. The

styreneiwater ratio was 40:145 by volume and the amount of

initiator/stabiliser was 1.1 x 10 ’ mol per 40 ml of styrene. All the

results frotn these experiments gave conversion-time curves of similar 

shapes (Fig. 6.19). The curves consist of two linear portions. The first 

linear portion had the higher rate, denoted by The second,

subsequent, straight-line rate was slower and is denoted by R 2*

Activation energies were obtained for the two rates. The results are 

given in Table 7.4 and in Fig. 7.6.

Initiator/stabiliser Activation energy (kJ mol ^) 
(styrene:water 40:145)

FA(F.O)2^F.s 48.1 (R ^  

25.6 (R 2)

Table 7.4: Activation energies obtained for the emulsion polymerisation of 

styrene using F A (E O )2 4 Es as initiator/stabiliser. Styrenetwater = 40:145.

The value given for R̂  ̂ is not valid as a measure of activation energy, 

since, as stated above, the number of particles varies during the first 

portion of the conversion-time curve.

7.2.8. Dependence of the rate upon the volume of water. Plots of rate of 

polymerisation against styrene:water ratio obtained from the conversion

time curves gave straight lines whose slopes increased as the number of 

oxyethylene units in the initiator/stabiliser decreased (Fig. 7.7). The 

results obtained are given in Table 7.5:
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Initiator/stabiliser Slope (%  h"^)

F A (F O )2 ^F s 8.6

FA(FO)3gFs 4.1

F A (F O )^3 F s 1.3

FA(FO )^gFs i.n

Table 7.5: Dependence of rate upon the volume of water.

These results show that F A (F O )2^Fs, with the fewest oxyethyiene groups 

per rnolecuie, shows a strong dependence upon the amount of water 

present: the more water present, the greater the rate of conversion. As 

the number of oxyethyiene groups per molecule increases, this dependence 

upon volume of water decreases, until with FA(FO)^gFs one finds that the 

rate is independent of the amount of water. Such results are consistent 

with the indirect evidence given throughout this chapter suggesting that 

the solubility of the esters in water increases with an increasing number 

of oxyethyiene groups in the molecule: with F A (F O )2^F.s, for example, the 

solubility in water is sufficiently low that an increase in the volume of 

water present yields a significant increase in the amount of ester in the 

water phase, whereas the water solubility of FA(FO)ggFs, in contrast, is 

so high that increasing the volume of water makes little difference to the 

amount of ester present in the water phase.

7.2.9. Surfactant properties of F A (E O )jq H , F A(EO)ggH and their 

cwresponding esters. The surfactant properties of FA (EO )^gH  and 

F A (F O ).n H  and the esters derived from 4 ,4 '-A B -4 -C P A  and these fatty- 

alcohol ethoxyiates were studied (Figs. 6.21 and 6.22). The cmc value of

FA (FO )^gH  was found to be 1.24 x 10"^ mol/l (literature value

2.20 X 10“  ̂ m ol/l^^^^\ The cmc value of F A (F O ),g H  was
,-5 _._,/^(17ft)^

4.35 X 10"^ moi/l (literature value 1.20 x 10"^ mol/1^'^'^0. The 

discrepancies between observed values and literature values are probably 

to be attributed to the fact that the fatty-alcohol ethoxyiates used are 

not pure substances, but mixtures incorporating a range of numbers of 

oxyethyiene units. However, both FA(F.O)jgFs and FA(FO)ggEs failed to 

yield a curve from which a cmc value could be obtained.
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This failure of the esters to yield cmc values, in contrast with the 

behaviour of the corresponding fatty-alcohol ethoxylates, can be 

explained if one considers the structures of their molecules. The fatty- 

alcohol ethoxylates, which have the general formula Cj^^H^^(OC2H^)^OH, 

have a clearly-defined hydrophobic end and a clearly-defined hydrophilic 

end, and are thus in principle free to form micelles. The esters, however, 

have the general formula [C j^^Hj^(0 C 2H ^)^02C C 2H ^C (C N )(C H ^)N = ]2, 

that is, they exhibit alternating hydrophobic and hydrophilic moieties, 

with a hydrophobic moiety at each end. Such a structure is unlikely to be 

able to form micelles easily, and hence a cmc value will be difficult to 

determine.

7.2.10. Particle-size measurements. Particle-size measurements were 

carried out using two different techniques. One of the methods involved 

the use of a Coulter Nanosizer apparatus; the other used the electron 

microscope.

It has been observed that the Coulter Nanosizer is a good technique to use 

in the case of final latices when no new nucléation has taken place during 

the later stages of polymerisation. It is also suitable for following the 

course of particle growth, except at the onset of the reaction, when the 

Nanosizer does not register very small particles, i.e., smaller than 70 nm. 

This method has the advantage that thousands of particles are assayed in 

a few minutes. Also, comparison with electron microscopic techniques 

for those samples with which both techniques were used showed 

remarkable agreement, except when new particles were generated in the 

later stages of the polymerisation.

The electron microscope technique taking pictures from a copper grid on 

which a drop of latex diluted many times is placed. For hard polymers 

which suffer no distortion on drying, which are neither expanded nor 

contracted by irradiation with electrons and which are monodisperse, the 

electron microscope gives results of high accuracy . Unfortunately, 

the time required for manual sizing and counting has the effect of 

limiting the measurement to 1000 or fewer particles in some cases. These 

numbers are perfectly adequate for monodisperse latices but are likely to 

be inadequate where significant polydisporsity exists. Also, this technique
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has the drawback that big particies take a certain place in the grid 

(usually the centre), while the smaller particles tend to move towards the 

periphery of the grid. The calculated number of particles then may 

depend upon the part of the grid which has been selected for taking the 

picture.
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Fig. 7.8: Rctures of the latex produced using FA(EO )y^Es at 40®C as 

initiator/stabiiiser, showing variation in the proportion of particles of 

different sizes in different regions of the same grid.
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has the drawback that biq particles take a certain place in the grid 

(usually the centre), while the smaller particles tend to move towards the 

periphery of the grid. The calculated number of particles then may 

depend upon the part of the grid which has been selected for taking the 

picture.
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Fig. 7.8: Pictures of the latex produced using FA (E O )jp E s at 40®C as 

initiator/stabiliser, showing variation in the proportion of particles of 

different sizes in different regions of the same grid.

232



The electron microscope technique possesses the great advantage over the 

Coulter Nanosizer that it shov\/s a new crop of particles at the time it 

occurs. This, of course, does not mean that it is always possible to 

measure accurately early reaction particles. Table 7.6 shows the number 

of particles obtained using both methods.

Initiator/stabiliser Number of particles N G"^)

Nanosizer Electron microscope

FACFO jgEs (60°C) 8.64 X 10^^ 7.31 X 10^^ 1.45 X 10^^

FA(FO)^gF.s (60°C) 6.60 X 10^^ 4.33 X 10^^ 0.67 X 10^^

FA(FO)ggFs (40°C)
_

4.72 X 10-^' 5.26 X 10^^ 1.64 X 10^^

FA(EO )2^Fs (60“C) 6.21 X 10^^ 4.91 X 10^^ 0.66 X 10^^

FACEO jgFs (40°C) 1.83 X 10^^ 2.54 X 10^^ 0.25 X 10^^

Table 7.6: Concentration of latex particles found using (i) a Coulter 
Nanosizer and (ii) an electron microscope.

Considering the limitations of the Coulter Nanosizer and of the electron 

microscope, the agreement between the two methods is satisfactory.

The effect of the concentration of the initiator/stabiliser upon the 

number of particles in the latex, the effect of temperature and the effect 

of increasing the volume of water upon the number of particles were 

determined using the Coulter Nanosizer.

7.2.11. Effect of initiator/stabiliser concentration upon the number of 

particles. The first variable to be investigated was the effect upon the 

number of particles in the latex of the concentration of 

initiator/stabiliser. The measurements were taken at the end of the 

reaction. In all four cases, i.e., when either F A (E O )2^F.s, FA(EO)-jgEs, 

FA (E O ), cFs or FA(EO)^nf^s used as initiator/stabiliser, it was found 

that in general the number of particles increased slightly as the 

concentration of initiator/stabiliser increased. Fig. 7.8 shows plots of log 

N versus log weight of initiator/stabiliser. Table 7.7 gives the slopes of 

plots of log N versus log weight of initiator/stabiliser.
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Fig. 7.8: Effect of concentration of initiator/stabiliser on particle 
number at 5QQC. ---
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Table 7.7. Slopes obtained from plots of log N  versus log weight of 
initiator/stabiliser using Nanosizer.

Reproducibility studies on particle numbers gave the following results.

Initiator/stabiliser Mass (q) N  ( I 'b

FA(F.O)24F-s 5.0 1.43 X 10-^  ̂

2.21 X 10^^

FA(EO)^gEs 5.0 4.63 X 10^^ 

4.67 X 10^^

Table 7.8. Reproducibility of particle numbers when using 
F A (E O )2^Es and FA (E O )^qEs as initiator/stabilisers using Nanosizer.

The results given in Table 7.8 were obtained at different conversions. 

However, it will become clear later that comparisons between the values 

are valid, because after a certain point conversion has little effect upon

particle number.

7^2.12. Effect of temperature upon particle numbers. The effect of 

temperature upon the number of particles generated revealed a rather 

unexpected trend. As can be seen from Fig. 7.1, there is a division in the 

shapes of the conversion-time curves of the emulsion polymerisation of 

styrene when the different esters are used as initiator/stabilisers. Fig. 

7.9 shows that for reactions initiated by F A (E O )2^̂ F.s and F A (E O )jq Es the 

particle numbers steadily increase as the temperature decreases. The 

variation resembles an Arrhenius relationship, i.e., log N varies linearly 

with 1/T, except that the slope is positive instead of negative. However, 

for reactions initiated by FA (E O )^5Es and FA(EO)gQEs, the particle 

number initially increases with increasing temperature, followed by a 

decrease in the number of particles with further increase in the
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t6fTip6r 3tur6. It should be borne in mind that these particle size 

measurements were carried out using a Coulter Nanosizer. The effect of 

temperature on numbers of particles generated is more complex than 

shown here, and an attempt will be made later to explain the observed 

phenomena.

Fig. 7.10 shows the effect of increasing the volume of water upon the 

number of particles for reactions initiated and stabilised by F A (F O )2^̂ f̂ s.

7.2.13. Effect of increasing volume of water upon particle numbers. The

effect of increasing the volume of water in the polymerisation reaction 

system upon the number of particles generated is shown in Fig. 7.13. The 

total number of particles per litre remains constant for the reactions 

initiated by FA C E O ^qE s and F A C E O jq Es. The latices prepared using 

FACF.O^^Es and F A (E O )2^Es show an increase in the number of particles 

with increasing volume of water. These results are surprising, since one 

would expect the number of particles to be more sensitive to the volume 

of water with F A (E O )2^Es and F A C E O jq Es than with F A (E O )^ 5Es and 

F A (E O )^ qE s, because the latter are more hydrophilic, and yet one finds a 

quite different grouping of the esters. The reader should bear in mind 

that these particle-number measurements were carried out using the 

Nanosizer, which fails to register small particles.

7.2.14. Effect of number of ethylene oxide uniU in the initiator/stabiliser 

upon particle numbers. Fig. 7.14 shows that the number of particles 

increases as the number of ethylene oxide units in the initiator/stabiliser 

increases. The increase in the number of particles is particularly marked 

in aeries of experiments in which the molar level of initiator/stabiliser 

was held constant. This is to be expected, since not only does the relative 

solubility of the eaters in water increase as the polyoxyethylene chain 

length increases, but the amount of initiator/stabiliaer increases at the 

same time, since the molecular weight of the ester increases. Thus, more 

ester is available to dissolve in the water phase, and this presumably 

results in an increase in the number of particles nucleated.

7.3. Detailed discussion of resulte and conclusions. In order to elucidate a 

mechanism for the emulsion polymerisation of styrene when the fatty-
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alcohol ethoxylate esters of 4 ,4 '-A B -4 -C P A  were used as 

initiator/stabilisers which would account for the observed results, a few 

experiments were devised in which the growth of the polymer particles 

was followed as the reaction proceeded. Both the electron micrograph 

technique and the Coulter Nanosizer were used to measure particle 

diameters. The recipe used was that given in Chapter Six, Section 6.2.2. 

These experiments were as follows;

♦The sudden rapid increase in the polymerisation rate at high 
conversions is called 'acceleration'.

Table 7.9: Experiments carried out for in-depth study.

Table 6.9 gives the average particle diameters obtained using the electron 

microscope and the Coulter Nanosizer. The sample given in Table 6.9 is 

the average particle diameters obtained for polystyrene latices ivhen 

F A (FO ),(,Fs  v/as used as initiator/stabiliser. The temperature of the 

reaction was 60“C . The electron micrographs show a steady increase in 

the average diameter for most of the reaction, but near the end of the 

reaction there is a drop in the average diameter. The Coulter Nanosizer 

does not register the small new particles generated near the end of the 

reaction. Thus, the tables of particle numbers given in Chapter Six have 

to be considered with this in mind. The electron micrographs show that 

secondary nucléation of particles occurs at approximately 60% 

conversion. When FA iF .O jgFs is used at 40«C, both methods show a 

steady increase in the average diameter! no secondary crop of particles is 

observed. The polymerisation initiated by FA(FO)ggEs shows no new 

generation of particles within experimental error at either temperature. 

The polymerisation initiated by F A lF O ^^E s  at 60»C shows again that new 

particles are generated at approximately 65% conversion. Particle-size
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distribution for reactions initiated by FA(FO )^gEs at 60°C, FA(EO)^/,F.s at'24
60°C, F A (F O )^ qF s at 40°C, F A (F O )3qEs at 40°C and FA(FO)^riF^s at 60“C 

are given in Figs. 7.15-7.19.
30'

Thus, the emulsion polymerisation of styrene using F A (F O )2^̂ Fs and 

FA(FO )^gFs as initiator/stabilisers above 50°C produces a second 

generation of particles at a conversion of approximately 60%. The 

particle-size distribution becomes bimodal. The second crop of particles 

is smaller than the first crop. This second generation did not occur in 

reactions below 50°C or at any of the temperatures studied in the case of 

reactions initiated by FA (F O )^^F  . or FA(FO)ggFs. Also, all the results 

show that the final product in all cases is a stable latex produced by 

emulsion polymerisation, since the particle sizes of the polymer latices 

are well within the range typical of emulsion polymerisation. Studies of 

bulk polymerisation carried out using FA(EO)j^^Fs, F A (E O )2^Es, 

FA(EO)^gEs, FA(EO )^^Es and FA(EO)ggEs as initiators showed that hardly 

any polymerisation had taken place in the six hours that the reaction was 

allowed to proceed at 50°C. The solids content, on average, was 

approximately 3,2 g per 40 ml of styrene. The result was practically 

identically when AZBN was used as the initiator. This poor result may be 

due to a low initiator concentration or to the slow decomposition of the 

azo compound at 50“C . However, when emulsion polymerisation of 

styrene was carried out using the same amount of initiator and the same 

proportion of styrene, the solids content for the slowest of all the 

reactions, i.e., that initiated and stabilised by F A (F O )2^Es, was 

approximately 22 g per 40 ml of styrene. It seems justified to conclude 

that the amount of bulk polymerisation which occurred in the emulsion 

polymerisation systems studied was negligible. All the latices produced 

are stable at least over a period of months and some for over a year. Yet 

some of the conversion-time curves obtained for emulsion polymerisation 

reactions initiated and stabilised by F A (F O )2^̂ E.s and F A (E O )jg Fs  can 

hardly be described as being typical of emulsion polymerisation reactions. 

Similar results were obtained by Piirma and Changé  ̂ when they studied 

the polymerisation of styrene in the presence of a non-ionic surfactant 

and a persulphate initiator. The surfactant used was

tridecyloxypoly(ethyleneoxy)ethanol, I 5OH, referred to

by them by the commercial designation 'Emulphogen BC-840'. These
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workers* results show two regions of constant rate of polymerisation: a 

lower rate of polymerisation from 5% to 30% conversion, and a much 

higher rate of polymerisation after 40% conversion. Piirma and 

Chang^^^^^ concluded that the two regions of constant rate observed in 

their system can only be caused by a two-stage nucieation mechanism; 

that the important features in this system are the solubility of the 

surfactant in a monomer (ca. 40%) and the very intimate association 

between the surfactant, the monomer and the oligomeric species 

generated from the aqueous phase. As the polymerisation proceeds, the 

monomer droplet phase disappears, thereby causing the release of 

considerable numbers of surfactant molecules into the aqueous phase. 

The excess surfactant concentration soon reaches a critical concentration 

and cannot be accommodated by the existing particles. These surfactant 

molecules nucleate a new generation of particles.

The degree of conformity to the Smith-Fwart prediction for the emulsion 

polymerisation of styrene in the presence of Fmulphogen BC-840 was also 

investigated by these workers. The initiator concentration was kept 

constant, but variable emulsifier concentrations were used for the 

purpose. Their results show that N was proportional to the 2.66 power of 

the concentration of BC-840, where N is the number of particles per unit 

volume. This deviation from Smith-Ewart behaviour is explained as being 

primarily due to the solubility of Fmulphogen BC-840 in styrene. Because 

of the solubility of the surfactant in styrene, these workers propose that 

the number of particles in emulsion polymerisation using monomer-solubl 

emulsifier should follow the equation

N a  Cert.ul8ifier]g„g^j¡^g

where **[emulsifier] ff0ctive*' the total emulsifier minus the

emulsifier in the monomer droplets minus the emulsifier in non-miceliar 

form.

Piirma and Chang^^^^^ also found that the molecular weight after the 

reaction had entered the second stage, like the particle size, showed a 

bimodal distribution, and that those particles generated at the second 

stage contained polymer of higher average molecular weight than that
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contained in the particles generated early in the reaction.

The results obtained from the present investigation closely resemble those 

found by Piirma and Chang, but are not identical. This is not surprising, 

since important differences are to be found in the recipe used. While the 

initiator and stabiliser are combined in one molecule in the present work, 

Piirma and Chang used separate initiator and stabiliser in their work. 

Moreover, their initiator is water-soluble, whereas the ones used in the 

present investigation are soluble in styrene as well as in water. The 

stabiliser used by Piirma and Chang is also a conventional surfactant, 

while the stabilisers used in the present investigation appear to show no 

tendency to form micelles, although they do reduce the surface tension of 

water.

Fmulsion polymerisation reactions initiated and stabilised by F A (E O )2^̂ Es 

and FA(EO)ggEs resemble most closely those stabilised by Fmulphogen 

BC-840, though there are striking differences. At the initial stages of 

the polymerisation, Piirma and Chang's reaction showed an initial period 

of constant low rate from 5% to 30% conversion, with no clear induction 

period, followed by a sharp rise in rate, while reactions initiated and 

stabilised by F A (E O )2^̂ Es at 50“C  showed a high initial rate, either 

constant or slightly decreasing, followed by a period of lower but constant 

rate. Electron micrographs show that the number of particles varies in 

the first portion of the curve, but remains constant in the second, linear, 

portion.

Reactions initiated and stabilised by FA(EO)2 ^̂ Fs and FA(EO)jgEs above 

50°C showed a high initial rate but the rate then decreased until the 

conversion reached approximately 20%. It was observed from the 

electron micrographs that initially a large number of particles formed and 

some coagulation took place. It is believed that some coagulation occurs 

because the large number of particles has a large surface area and there 

is not enough stabiliser in the water phase to stabilise all the particles.

At about 20% conversion the rate of polymerisation becomes constant. 

From this point on, reactions initiated by F A (E O )2^̂ Es and FA(EQ )jgEs 

behaved similarly to the reactions stabilised by Emulphogen BC-840 as
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reported by Piirma and Chang^^^^\ These workers only carried out the 

reaction at 50°C. As was stated earlier, neither reactions initiatiated by 

F A (F O )2 ĵFs nor reactions initiated by F A (F O )^ qFs behave in his fashion 

at 50°C. Furthermore, below 50°C reactions initiated and stabilised by 

these compounds resemble conventional emulsion polymerisation 

reactions. Thus, it must be concluded that the change in shape of the 

conversion-time curves for these reactions is closely linked with 

temperature.

Also, Fmulphogen BC-840 generates new particles at approximately 40% 

conversion. In this present investigation, the conversion at which the 

generation of new particles commences seems to depend upon the 

reaction temperature, as shown in Table 7.10, although it has to be borne 

in mind that batch-to-batch reproducibility is difficult to attain (Fig. 

6. 20); the shapes of the conversion-time curves are reproducible, but not 

the rates. The reason for the lack of reproducibility of the rates is 

unknown.

Temperature (°C) %  conversion at which new 
particles first appear

F A (E O )o ,̂Fs F A (E O )3qF.s

55 68 53

60 52 38

65 50 35

Table 7.10: %  conversion at which a secondary crop of particles first 
forms, and the dependence upon temperature.

It appears that the higher the temperature is, the lower is the conversion 

at which the secondary crop of particles appears. With new batches of 

ester, the higher rate began to be observed at even higher conversions. 

Since the new particles are generated in some cases at 68-70% conversion 

(Fig. 6.20), it is difficult to envisage the disappearance of the monomer 

droplets as a separate phase as being the cause of the appearance of the 

new particles, as suggested by Piirma and Chang. Moreover, the onset of 

the higher rate seems to be dependent upon the polyoxyethylene chain 

length of the initiator/stabiliser, since the acceleration occurs at lower 

conversion when F A (F O )jq F s is used as initiator/stabiliser than when
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F A (F O )2^̂ F.s is used.

The effect of temperature can be summarised for both reactions initiated 

by FA(F.O)2^Fs and by FA(F.O)^qF.s by saying that, as the temperature is 

raised, the acceleration in rate begins to occur at lower conversions.

One of the reasons why the Trommsdorff effect has been rejected as the 

cause of the acceleration, even if this acceleration occurs at around 70% 

conversion in some cases, is that electron micrographs show an order-of- 

magnitude increase in the number of particles present at this particular 

conversion from the constant-rate number of particles present during the 

earlier stages of the reaction. It is not surprising that the same effect is 

observed at approximately 50% conversion at 65°C for polymerisations 

initiated by F A (E O )2^F.s and at approximately 35% conversion for 

polymerisations initiated by F A (E O )jq F.s at the same temperature (Table 

7.10).

For polymerisations initiated by FA(EO)2 ^̂ Es and FA(EO)^gEs above 50°C, 

then, a great number of particles is generated at the onset of the 

reaction, but some coagulation takes place, due presumably to there being 

insufficient stabiliser at the particle interface to cover their great 

surface area. After about 20% conversion there is no more coagulation 

and a period of constant rate sets in. At a certain conversion, depending 

on temperature and polyoxyethylene chain length, new nucléation of 

particles occurs, giving rise to an increase in the rate of polymerisation.

It is believed that nucléation of particles, when F A (EO )2^̂ E.s and

F A (E O ),„E s  are used as initiator/stabiliser, follows the behaviour of
(41)

surfactant-free emulsion polymerisation discussed by Fitch ; i.e., 

particles are formed by homogeneous nucléation. This proposal is 

supported by the fact that surface-tension measurements provided no 

evidence of micelle formation by F A (E O )2^̂ Es or by FA (EO )jgEs in water, 

and by the fact that results for the number of particles generated show 

comparable trends to those for Fitch's surfactant-free systems for the 

first nucléation stage (Fig. 7.20). However, reactions initiated by 

FA (E O ), ^Es and FA (E O ).n E ’-S do not seem to follow the same pattern of 

nucléation as that followed by reactions initiated by F A (E O )2^̂ f̂ s and
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Fig. 7.20: Variation in number of particles with conversion.
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FA(F.O)^gEs. The former seem closer to a micellar nucleation mechanism 

(Fig. 7.21). Unfortunately the findings are not conclusive, and perhaps 

homogeneous nucleation as well as micellar nucleation takes place when 

FA(F.O)^^Fs and FA(FO)^gF.s are used as emulsion initiator/stabilisers.

In order to understand the behaviour of the emulsion polymerisation of 

styrene in the presence of FA(EO)2 ĵ̂ Es and FA(EO)^gEs, and to a lesser 

extent in the presence of FA(EO)^^Es and FA(EO)ggEs, as 

initiator/stabilisers, one important feature to be considered is the 

solubility of these compounds in styrene. The partition coefficient of 

these compounds between styrene and water could not be investigated 

directly, but the possibility of close association between the 

initiator/stabiliser, the monomer, the oligomeric species generated from 

the aqueous phase, and the aqueous phase itself cannot be ignored. The 

solubility in styrene would be expected to be greatest for F A (E O )2^̂ Es and 

lowest for F A (E O ).n fs , because the hydrophilic portion is shortest for the 

former and largest for the latter.

It has been observed that, as the concentration of the ester is increased, 

the shape of the conversion-time curve changes from that resembling bulk 

polymerisation at low concentrations to that typical of conventional 

emulsion polymerisation at high ester concentrations. A t low 

concentrations, the amount of ester dissolved in the water phase is 

inadequate to promote typical emulsion polymerisation reactions and the 

result is closer to that observed in bulk reactions. As the ester 

concentration is increased, more of the compound is available to dissolve 

in the water phase and typical emulsion polymerisation behaviour is 

observed, the amount of bulk polymerisation being negligible since 

emulsion reactions are so much faster.

The study of the effect of temperature upon the shapes of the conversion

time curves and upon the rate of polymerisation reactions reveals that at 

temperatures below 50»C, conventional emulsion polymerisation curves 

are obtained and the polymerisation rate decreases with decreasing 

temperature. Above 50«C, two regions of constant rate are observed. At 

50«>C, the curves are a mixture of the two types. In general, it is obseved 

that, as the temperature increares, the rate increases up to 50°C;
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however, as the temperature is raised further, the rate of polymerisation 

decreases. Moreover, a general decrease in the number of particles is 

observed as the temperature increases, which will account for the 

decrease in the rate. These particle numbers were calculated form data 

obtained from the Coulter Nanosizer and therefore do not show the 

secondary particle nucleation. Thus the number of particles is that 

appropiate to the lower rate (I) in all cases, and therefore valid to include 

here. From the results one can perhaps infer that the partition 

coefficient between the water and styrene phases of F A (F O )2^̂ Fs and 

FA(F.O)jgFs is, not surprisingly, temperature-dependent. At lower 

temperatures, the esters are more soluble in the water phase and typical 

emulsion polymerisation behaviour is observed. Above 50“C  the solubility 

of the ester in the water phase decreases with increasing temperature, 

and at 50°C the behaviour is intermediate between the two models given 

above. This interpretation is supported by the fact that both the fatty- 

alcohol ethoxylate and the esters derived from them show the inverse 

solubility phenomenon.

When studying the effect of increasing the volume of water on the rate of 

polyiTierisation, it is observed that the rates for the reactions initiated by 

F A (F O )2^̂ F.s and F A (E O )^ qF s are dependent on the phase ratio. The rate 

of polymerisation increases as the total volume of water increases. It 

seems reasonable to assume that the total amount of ester dissolved in 

the water phase increases with increasing volume of water and thus that 

the total number of particles formed increases also. This is indeed 

observed for reactions initiated by FA(F.O)2^Fs, but reactions initiated by 

F A (F O )j q F s show no appreciable change in the number of particles. It has 

to be borne in mind that the increase in rate with increasing volume of 

water is more pronounced for reactions initiated by F A (F O )2^̂ F.s than for 

reactions initiated for F A (F O )3oFs, and since the particle diameters were 

measured with the Coulter Nanosizer, the inability of this instrument to 

register small particles may be the reason for the discrepancy.

The polymerisation reactions of styrene initiated and stabilised by 

FACFO ^^Fs and F A C F O ^ qFs under the conditions studied behaved in 

general as conventional emulsion polymerisations. As the concentration 

of ester was increased, so the rate increased. Not surprisingly, the
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number of particles also increased. The rate of polymerisation increased 

with incresing temperature, but the reaction initiated by FA(F.O)^^F.s 

showed a decrease in rate at high temperatures. Reactions initiated both 

by FA(FO)^^^Fs and by F A (F O )^ qF s showed an increase in the number of 

particles formed as the temperature increased, but a decrease when high 

temperatures were reached (ca. 65°C) (Fig. 7.10). The reason for this 

behaviour is probably that, although FA (FO )^^Fs and FA(F.O )^qFs are so 

much more soluble in the water phase than are F A (F O )2^̂ f̂ s and 

FA(F.O)jq F s, at high temperatures they begin to show the properties 

exhibited by F A (F 092^Fs and F A (F O )3qF.s; i.e., they begin to be more 

soluble in the oil phase and thus a smaller number of particles is formed 

and consequently the rate of polymerisation drops.

The effect of increasing the volume of water showed that the rates of 

polymerisation reactions initiated by FA(F.O)^3Fs and FA(FO )^gFs at 

45°C are practically independent of the total volume of water in the 

range studied. The number of particles formed for the FA(F.O)^qF s 

showed again the independence of volume of water. However, the 

reaction initiated by F A (F O )^ 5Fs showed a great increase in the number 

of particles as the water volume increased. This result is questionable, 

since the increase in number of particles is greater than for reactions 

initiated and stabilised by F A (F O )2^F.s and FA(F.O )3qF.s under the same 

conditions.

It is more difficult to draw conclusions from the results for the 

dependence of rate per particle upon temperature. These difficulties 

arise from the fact that the polymerisations carried out in the presence of 

FA(F.O)2^F.s and FA(F.O)3qF.s gave conversion-time curves whose shape 

changed with changing temperature. When plotting the relevant graphs, 

the rates used have always been the rates obtained from the linear portion 

of the curve where the number of particles Is constant according to 

electron microscopic measurements. One would expect to find that the 

rate per particle increases as the temperature is raised, because 

increases and thus the rate of polymerisation also increases. 

Unfortunately, no inferences can be drawn for the polymerisations 

initiated by FA(F.O)2/ -s . Those reactions in which F A (F O )3qF s was used 

as initiator/stabiliser seem to show an increase in the rate of
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polymerisation with increasing temperature, where the rates are derived 

from curves of similar shapes. When FA(FO)^^F.s and FA(FO)^gF.s were 

used as initiator/stabilisers, the results seemed to agree with expectation; 

i.e., the rate per particle increases with increasing temperature.

An estimation of the average number of radicals per particle, n, was made 

using the following formula:

dM/dt = nkp[M}M

where [dM/dt]/N is the rate per particle. The effect of temperature upon 

rate per particle for emulsion polymerisation reactions initiated by 

F A (F O )2 ĵFs, FA(F.O)3qF s, FA{F.O)^^F.s and FA(FO)goFs are given 

Fig. 7.22.

in

The average number of radicals per particle was found using two different

values for k and for [M l  Calculation I involved the use of values of k 
P (198;

and [M ] at 50°C from the work carried out by Gilbert and Mapper

Calculation II used values from Van der Hoff^^^^ and the Polymer
Lj I (197)Handbook

Since k and [M ] vary with temperature, values of kp for the required 

temperatures were obtained from a plot of log kp versus 1/T given in the

Polymer Handbook, and values of [M ] at a given temperature were found
------ -̂----------------------- —  (51)
from a plot of [M ] versus T  given by Van der Hoff' \  The values used in

the calculations of average number of radicals per particle are given in 

Table 7.11.

T ( “C )

k
PI

(1 mol”  ̂ s ^2

k
P2

(1 mol  ̂ s 2̂

[M ] ĵ [M]2 

(mol 1 ^) (mol r ^ )

40 183 106 6.07 5.47

45 218 139 5.89 5.39

50 258 179 5.80 5.30

60 357 293 5.63 5.13

TaAiie 7.11: Values of k and [M ] used in calculating the average 
number of radicals per p& ticle.
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The results obtained are summarised in Table 7.12.

T ( ° C ) FA(F.O)o^Fs FACFO^gFs FA(FO)^j5Fs FA(FO)gpF:s

40 — 0.34̂ ^ — 0.26^

45 0.49® 0.49® — —

50 0.42® 0 4 ? 0.46^ 0.48^

60 0.48^ 0.39̂ ^ — 0.60^

Mean average number of radicals per particle: 0.44

a: calculated by averaging the rate per particle obtained at 

different initiator/stabiliser i oncentrations

b: calculated by dividing a single rate by the average particle 

number at different times

Table 7.12a: Average number of radicals per particle using
calculation I (k_ and[M ].,).— El------ 1-

Mean average number of radicals per particle: 0.69

a and b have the same significance as in Table 7.12a.

Table 7.12b: Average number of radicals per particle using 
calculation II (kp^ and [M ]2 )i

The mean average number of radicals per particle found for the systems 

studied is close to 0.5. This is, of course, the average number of radicals 

per particle that Smith and F.wart predicted for their Case 2 model of 

emulsion polymerisation reactions.

It is now necessary to consider whether the average number of radicals 

per particle is close to 0.5 because the reaction conforms to the Smith- 

F.wart Case 2 model. The azo esters used as initiator/stabilisers for the 

emulsion polymerisation of styrene are soluble in the oil phase and also in 

the water phase. Furthermore, these compounds act as stabilisers. From
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the above it can be concluded that in principle there are four centres of 

initiation;

(i) the water phase,

(ii) the monomer droplets,

(iii) the growing polymer particles,

(iv) the surface of the polymer particles.

The azo group can decompose in the water phase, where the free radicals 

formed would grow into oligomers which would collapse into a growing 

particle when the required length had been attained. Monomer would be 

trapped inside the particle in which some ester would be dissolved, and 

more monomer and ester would diffuse as the monomer in the particle 

was consumed. Thus other initiation centres could be located inside the 

growing polymer particle, as well as some in the monomer droplets, but 

bulk polymerisation can be considered negligible from the results obtained 

from bulk polymerisation experiments when the esters were used as 

initiators. Finally, adsorbed ester molecules presumably surround the 

growing particles, thereby aiding stabilisation; thus initiation at the 

surface of the growing particle, i.e., at the water-oil interface is another 

possibility. Medvedev and his collaborators have proposed a theory of 

emulsion polymerisation for many years which treats the reaction as a 

pseudo-homogeneous reaction in the surface layer. The equations deduced 

have been experimentally verified over a wide range of emulsifier and 

initiator concentrations for both water-soluble and oil-soluble initiators. 

Yet, the results obtained in the present investigation show that the 

average number of radicals per particle is close to 0.5. Also, very-high- 

molecular-weight polymers were obtained, which suggests that the 

average lifetime of an effective radical is long. The presence of more 

than one radical close by at any given time would result in rapid 

termination and the formation of polymers of low molecular weight; and 

even though low-molecular-weight compounds appear at similar elution 

volumes to toluene, it is believed that they are caused by impurities. The 

average molecular weights obtained are very high, being in some cases of 

the order of 10^. The accurate measurement of molecular weights for 

these polystyrenes was not possible because of lack of appropriate 

measurement equipment in our laboratories and at R APR A.
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With the possibility that radicals are generated simultaneously at four 

different possible centres, how can it be explained that the average 

number of radicals per particle found is only 0.5?

The decomposition of the azo ester in the monomer droplets would be of 

little consequence, since hardly any polymer is formed in bulk for the 

period of the reaction.

The molecules which are decomposing within a growing polymer particle, 

because of the close proximity of the radicals, can easily recombine, with 

the net result of only the production of nitrogen. Al-Shahib and Dunn^^^^^ 

have shown that, in the case of emulsion polymerisations initiated by 

AZBN, radicals are generated in pairs in the oil phase, but a radical 

escapes to the aqueous phase, leaving an isolated radical in the oil phase 

to initiate emulsion polymerisation. AZBN is a comparatively small 

molecule, and the escape of a radical derived from it into the aqueous 

phase may therefore seem not entirely implausible; the fatty-alcohol 

ethoxylate esters used in the present study are, in contrast, so large that 

rapid recombination of radicals seems more likely than the rapid escape 

of one radical from the polymer particle. Moreover, if the mechanism 

proposed by Al-Shahib and Dunn were operating in this case, one would 

expect a rather broad distribution of molecular weights, with a large 

proportion of low-molecular-weight polymer, since the probability of both 

radicals remaining in the polymer particle would be expected to be 

significantly greater than zero. But, as was reported in Chapter Six, the 

molecular weights of the polymers prepared in the present study are very 

high, with little sign of a broad distribution of molecular weights; 

consequently, the results of the present investigation do not appear to be 

readily consistent with a mechanism in which pairs of radicals are 

produced within the polymer particle. A more detailed comparison of the 

results of this study with the results of Al-Shahib and Dunn appears to be 

ruled out by the differences in concentration and particle number in the 

two investigations.

If we envisage the decomposition of the azo group in the water phase and 

the formation of growing particles by homogeneous nucleation, then the 

particle so far contains only one growing chain. The surface of the
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growing polymer particle is surrounded by the ester acting as a stabiliser. 

Of those molecules decomposing into two radicals at the surface, one 

radical of each pair may on average diffuse into the water phase whilst 

the other radical enters the particle from the surface to terminate the 

growing chain, although in individual cases, of course, both may diffuse 

into the water phase or both may enter the particle. After a while, 

another molecule decomposes on the surface and the procedure is 

repeated, but this time the radical entering the particle from the surface 

starts the growth of another chain; and thus an average number of 

radicals of 0.5 per particle seems to be a reasonable possibility.

An attempt was made to estimate the efficiency of initiation of these azo 

compounds. The efficiency of initiation was calculated using the 

following formula;

Ri
%  efficiency = ^

^d

where R. is the rate of initiation of polymer chains, calculated as ZRp/D^. 

R is the rate of polymerisation and Dp is the degree of polymerisation 

calculated as where is the number-average molecular weight

of the polymer and the molecular weight of the monomer. The

assumption involved in calculating Rj is that the termination is purely by 

combination of two radicals and transfer is absent.

R^ is the rate of formation of primary radicals, calculated as 2k^[I], 

where is the rate coefficient for decomposition of the initiator and [I] 

is the concentration of initiator. A summary of the results obtained is 

given in Table 7.13.
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Sample Mass (q)

R.1
(molecules

, - l  - l x1 s )

« d
(radicals

- I s__1 s )_ %  efficiency

FA(FO)24Í^s 3 . 0 6 . 2 5  X 1 0 ^ ^ 7 . 8 0  X 1 0 ^ ^ 8 0

F A (F O )2¿̂ F.s 5 . 5 9 . 6 6  X 1 0 ^ ^ 2 . 9 5  X 1 0 ^ ^ 3 2 7

F A (F O )3qF s 3 . 0 2 . 7 0  X 1 0 ^ ^ 1 . 4 2  X 1 0 ^ ^ 1 9 0

F A (F O )3qFs 3 . 6 9 . 5 7  X 1 0 ^ ^ 1 . 7 0  X 1 0 ^ ^ 5 6

F A (F O )^ 3F s 4 . 0 4 . 5 7  X 1 0 ^ ^ 3 . 3 8  X 1 0 ^ ^ 1 3 5

F A (F O )^ qF s 3 . 0 8 . 5 8  X 1 0 ^ ^ 2 . 0 6  X 1 0 - ^ ^ 4 1 6

FA(F.O)^gFs 6 . 4 3 . 8 6  X 1 0 ^ ^ 2 . 1 4  X 1 0 ^ ^ 1 8 0

Table 7.13a: Rates of initiation and of radical formation and 
efficiencies of initiation using different masses of ester at 50®C.

Sample Temp. (°C)

R.1
(molecules

, - l  - I s1 s ) _

« d
(radicals

, - l  - I s1 s ) %  efficiency

FA(F.O)24Fs 4 0 5 . 3 9  X 1 0 ^ ^ 7 . 7 9  X 1 0 ^ ^ 6 9

F A ( F . O ) 2 ^ F s 5 0 6 . 2 5  X 1 0 ^ ^ 7 . 8 0  X 1 0 ^ ^ 8 0

F A ( E O ) 3 q F s 5 0 9 . 5 7  X 1 0 ^ ^ 1 . 7 0  X 1 0 ^ ^ 5 6

F A ( F O ) ^ 3 F s 4 0 3 . 7 6  X 1 0 ^ ^ 8 . 6 8  X 1 0 ^ ^ 4 3 3

F A ( F O ) ^ 3 F s 6 0 7 . 6 1  X 1 0 ^ ^ 9 . 9 3  X 1 0 ^ ^ 7 7

FA(FO)^gFs 5 0 3 . 8 6  X 1 0 ^ ^ 2 . 1 4  X 1 0 ^ ^ 1 8 0

FA(FO )^gFs 6 0 4 . 4 9  X 1 0 - ^ ' 7 . 0 9  X 1 0 ^ ^ 6 3 3

Table 7.13b: Rates of initiation and of radical formation and 
efficiencies of initiation using a constant amount of ester at different 
temperatures.

Unfortunately, since some of the efficiences are well over 100%, it has to 

be concluded that either ( 1 ) there is a great deal of error involved in the 

calculation of the efficiencies, since the average molecular weight used in 

the calculations may perhaps be questioned, or (2) the assumptions 

involved in the calculations of efficiencies are not correct in this
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particular case. One such assumption is the absence of transfer of 

radicals from the polymerisation centres.

Unfortunately, the results show a great deal of variation and there is no 

obvious trend in the calculated efficiencies with respect to either the 

concentration of the initiator/stabiliser or the temperature of 

polymerisation.

One way of accounting for the very high efficiencies calculated would be 

to postulate the occurrence of a substantial degree of transfer of radicals 

from the polymerising centres to other centres, but such a high degree of 

transfer would reduce the molecular weight of the product and does not 

appear to be consistent with the high molecular weights obtained.

The percentage of undecomposed initiator at the end of certain reactions 

using FA(F;0 ) 2^F:s, FACEO),;,, F A (F 0) |̂5 and FA(FO)^pF.s as 

initiator/stabilisers at different temperatures has been calculated from 

the equation

where m^ is the mass of initiator remaining at time t, mg is the initial 

mass of initiator and t^  is the half-life of the initiators. The results are

Table 7.14; %  Undecomposed initiator at the end of the reaction when 
F A (F .O ),.,  F A (E O )„ E s , F A (E O )^ 5Es and FA(EO)gpEs were used as 
initiator^tabiiisers at different temperatures.
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Another interesting observation is that the period of constant rate 

extends up to 85-90% conversion in some cases, and rarely falls short of 

about 75% conversion. The monomer concentration is necessarily 

decreasing. Therefore an opposing factor must be invoked to explain the 

above results. One possibility is the Trommsdorff effect. Since the 

viscosity increases, the probability of two radicals meeting diminishes, 

and thus k  ̂ decreases. This would increase the polymerisation rate and 

the molecular weight. A second possibility is the formation of new

particles at high polymer conversions. There is no need for a large 

increase in the number of polymer particles to keep the rate constant.

Concerning the order of reaction with respect to the concentration of 

iniiator/stabiliser, this ranges from 2.05 for F A (E O )2^f^s to 0.80 for 

F A (FO ),n^s. The order of reaction comes closer to one as the hydrophilic 

character of the ester increases. The value that Piirma and Chang found 

for their F.mulphogen BC-840 at 50°C was 2.66 with respect to surfactant 

concentration only. If one bears in mind that F A (F O )2^̂ Es contains in its 

molecular structure an average of 24 oxyethylene units and that 

Fmulphogen BC-840 has only 15 oxyethylene units, the present results 

seem to show considerable agreement with Piirma and Chang's. From the 

results, one is tempted to predict that the FA(F.O)^^Fs would have an 

even higher order of reaction with respect to concentration of ester. It 

seems reasonable to conclude that the order of reaction with respect to 

concentration of ester is related to the number of oxyethylene units, i.e., 

to the hydrophilic portion. The dependence is greatest for the lowest 

polyoxyethylene content and lowest for the greatest content of 

polyoxyethylene.

Piirma and Chang maintain that, as polymerisation proceeds, the 

monomer droplets disappear from the agueous phase, thereby causing the 

release of a considerable number of surfactant molecules. The excess 

surfactant concentration soon reaches a critical value and cannot be 

accommodated by the existing particles, thus these surfactant molecules 

nucleate a new generation of particles.

The results from the experiments carried out in this research project do 

not seem to support Piirma and Chang's claim, since a new crop of

266



particles does not necessarily appear at c ^  40% conversion, when the 

tnonomer droplets are believed to disappear as a separate phase, but may 

appear at 55-70% conversion, depending upon the temperature of the 

reaction as well as upon the polyoxyethylene chain length of the 

initiator/stabiliser. The reactions initiated by F A (F O )^ qEs accelerate at 

lower conversions than do reactions initiated by F A (F O )2 ĵf̂ s. It is 

believed that the reason for a secondary crop of particles is the 

insolubility of the ester in the growing polystyrene particle because of the 

change in the polymer/monomer ratio in the particles, which reduces the 

solubility of the ester. As the polymer particle grows, the solubility of 

the ester decreases until a critical point is reached at which it becomes 

insoluble and is expelled from the growing particles and redissolves in the 

water phase. Since the ester is also soluble in the monomer, presumably 

some monomer will come out of the growing polymer particles with the 

ester and will form new nucléation centres.

The fact that reactions initiated by F A (F O )^ qF.s nucleate new particles at 

lower conversions than do reactions initiated by F A (F O )2^̂ P̂s can be 

explained by the fact that FA(F.O)2/-3 is less soluble in water and more 

soluble in the monomer, and thus a greater concentration of polystyrene 

in the particles is required before FA(F.O)24F.s becomes insoluble and has 

to leave the particle. This proposal cannot explain why reaction systems 

which contain Fmuiphogen BC-840 generate new particles at 40%

conversion.
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C H A P TE R  E IG H T

SUM M ARY OF C O N C LU S IO N S  A N D  SUGGESTIONS F O R  F U R T H E R  WORK

8.1. Summary of conclusions drawn from the use of esters prepared from 

acid chloride I as initiator/stabilisers for emulsion polymerisation 

reactions. It was reported in Chapter Five that 4 ,4 '-A B -4 -C P A  reacts with 

phosphorus pentachloride at room temperature to give two supposed 

diacid chlorides, each of which can react with two mol of straight-chain 

aliphatic alcohol to yield two supposed diesters. The esters are labelled 

'esters A ’ and 'esters B'. Esters A are derived from acid chloride I and a 

straight-chain alcohol, and have the characteristic smell of an ester. 

Surprisingly, they are partially soluble in water. Esters B are derived from 

acid chloride II and lack the characteristic smell of esters. However, the 

infrared spectrum of an ester B is identical to that of the corresponding 

ester A. Esters B are, as expected, insoluble in water. Due presumably to 

the partial solubility of esters A in water, amongst other things, these 

compounds not only act as initiators for emulsion polymerisation but also 

help to stabilise a very monodisperse polystyrene latex produced in the 

absence of added conventional surfactant. Stable latices were obtained 

when using the nonyl, decyl, undecyl and hexadecyl esters A derived from 

4,4*-AB-4-CPA and the appropriate straight-chain aliphatic alcohols. 

Unfortunately, esters B do not yield latices nor indeed do they appear to 

initiate any other kinds of polymerisation when used as initiator/stabilisers 

for the emulsion polymerisation of styrene in the absence of added 

conventional surfactant.

Not very surprisingly, the potassium salts of the esters A  derived from 

4 ,4 '-A B -4 -C P A  and 1 1 -hydroxyundecanoic acid or ricinoleic acid, when 

used as initiator/stabiliser in the absence of added conventional 

surfactant, produced stable monodisperse latices. Yet the potassium salt 

of the ester B derived from 4 ,4 '-A B -4 -C P A  and 1 1 -hydroxyundecanoic 

acid, when used as initiator/stabiliser in the absence of added 

conventional surfactant, failed to give a latex.

Nevertheless, all the esters derived from acid chloride I promoted bulk 

polymerisation except, of course, those esters which were insoluble in
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styrene. Also, all the esters acted as effective initiators for emulsion 

poiyinerisation when a conventional surfactant was used as a stabiliser.

The esters derived from both acid chloride I and also acid chloride II and 

the fatty-alcohol ethoxylate condensates yielded stable latices when used 

in the etnulsion polymerisation of styrene in the absence of added 

conventional surfactant. This is not surprising, since colloidal stability in 

this latter case is presumably conferred by the combination of 

hydrophobic and hydrophilic units present in the fatty-alcohol ethoxylates.

During the course of the investigation it was suddenly found to be 

impossible to prepare further batches of acid chloride I and the esters 

derived from it. Most subsequent attempts to prepare acid chloride I met 

with failure. Furthermore, little success was achieved in attempts made 

at elucidating possible structural differences between the two types of 

acid chloride that would account for the observed differences between 

them. Thus, all the detailed study of this type of initiator/stabiliser 

carried out in the latter part of this investigation used the esters derived 

from acid chloride II and the fatty-alcohol ethoxylates.

8.2. Conclusioos drawn from the use of esters prepared from acid chloride 

II and fatty-alcohol ethoxyiates as initiator/stabilisers.

8.2.1. Introduction. Acid chloride II, like acid chloride I, reacts with the 

free hydroxyl in the fatty-alcohol ethoxylates to form azo esters. Of the 

eight esters of this type derived from acid chloride II which were 

prepared, four -  namely, F A (F O )24Fs, FA(F.O)3qF.s, FA(F.O )^5F s and 

FA(F.O)ggF.s — have been used as initiator/stabilisers for a detailed study 

of the kinetics of the emulsion polymerisation of styrene in the absence of 

conventional surfactant. Under all the conditions studied, all four esters 

produced stable, polydisperse polystyrene latices.

8.2.2. Summary of the conclusions. Four different shapes of conversion

time curves have been obtained when the esters prepared from acid 

chloride II and fatty-alcohol ethoxylates were used in the emulsion 

polymerisation of styrene in the absence of added conventional

surfactant. These were as follows.
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(i) Typical emulsion polymerisation curves (S-shaped) were given by 

FA(F:0 )^ 3Fs and FA(F.O)ggF.s under all the conditions studied. 

F A (F O )2 ^F.s and F A (F O )3 qF s yield such curves when the temperature of 

polymerisation is below 50°G, and also at 50°C for high ester 

concentrations. Also, an increased volume of water (e.g., with a ratio of 

styrene to water of 40:145), conventional emulsion polymerisation curves 

were obtained. This is believed to be a consequence of the partial 

solubility of F A (F O )2 ^F s and F A (FO )3 qF s in styrene. Thus, below 50°C 

the partition coefficient of the ester favours the water phase, whereas 

above 50°C the balance is towards the styrene. Increasing the volume of 

water or the concentration of ester is similar to increasing the amount of 

ester dissolved in the water phase and hence conventional emulsion 

polymerisation behaviour is favoured.

(ii) Curves resembling that of bulk polymerisation were obtained for the 

latices obtained when F A (F O )2^̂ F.s and F A (F O )3qF s were used as 

initiator/stabilisers at very low ester concentration or the volume ratio of 

styrene to water was low (e.g., 40:72 styrene-water ratio). Also, in some 

cases, this type of curve was obtained at intermediate temperatures. This 

behaviour is believed to be caused by the partial solubility of the esters in 

the oil phase.

(iii) However, at intermediate temperatures, a different-shaped curve can 

also be obtained; i.e., a curve consisting of two linear portions of 

decreasing slope. It is not a smooth bulk-like curve and electron 

micrographs show that the number of particles during the first portion of 

the curve changes, decreasing as polymerisation proceeds, but that the 

number of particles remains constant during the second straight portion. 

This first linear portion lasts up to approximately 40% conversion. 

F.lectron micrographs show that there are a great number of particles 

initially formed at the onset of the reaction but that considerable 

coagulation takes place, presumably because there is insufficient 

stabiliser in the water phase to cover their great surface area. This kind 

of curve is given by FA(F.O )2/ .s  and F A (F O )3oFs at 5Q0C. The reason is 

believed to be that there is insufficient ester dissolved in the water phase 

to promote conventional emulsion polymerisation behaviour, and thus that 

the mechanism of polymerisation may resemble at the onset
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buik/suspension-like behaviour.

(iv) FA(F.O)2^rs  and F A (F O )^ qF.s also give a fourth type of curve, the 

beginning of which resembles bulk polymerisation; i.e., the rate decreases 

up to 20% conversion. After this, there is a linear portion whose slope 

varies according to the temperature of polymerisation and also according 

to the chain length of the ester. During this linear portion, the number of 

particles remains constant, the rate of reaction also remains constant, 

and thus the behaviour seems to resemble that of conventional emulsion 

polymerisation. However, because of the nature of the distribution of the 

ester between styrene and water at high temperatures, these esters prefer 

to dissolve in the oil and thus only a small fraction of the ester forms 

particles. After the limit of the linear portion is reached, there is an 

increase in the rate of polymerisation for about 10-15% further 

conversion. This acceleration is accompanied by a substantial increase in 

the number of particles. Finally, a faster constant-rate period is 

observed, before the rate begins to tail off at approximately 90 /o 

conversion. A possible explanation for the observed behaviour could be 

that at a given conversion of monomer to polymer, i.e., just before the 

acceleration occurs, the ester becomes insoluble in the 

polystyrene/styrene mixture and thus that it is ejected and redissolved in 

the water phase where new particles form. From this point onwards the 

behaviour of the polymerisation can be said to closely resemble 

conventional emulsion polymerisation. Fven the curve obtained after 

acceleration has the characteristic S-shape. Unfortunately, time did not 

permit the detailed study of particle numbers after acceleration took 

place. This is an unfortunate omission, since this knowledge might shed 

some light on the reason for the unusually high conversions obtained 

before the rate began finally to decrease.

The complex curve described in section (iv) is obtained at temperatures 

above 50°C when FACF.Oj^^^F.s and F A (F O )3oFs are used as

initiator/stabilisers in the emulsion polymerisation of styrene m the 

absence of added conventional surfactant. FA(FO)^^^Fs is believed to

behave similarly at 50°C.

The conversion-time curves obtained when F A (F O )^ 3Fs and FACF-Oj^^Fs
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were used as initiator/stabilisers resemble closely that for conventional 

emulsion polymerisation reactions in spite of the combination of the 

initiator and the stabiliser in one molecule. One of the divergences 

occurred at high temperatures when the polymerisation rate dropped. 

This could be due to the decrease in the ester solubility in water, and 

hence a tendency to dissolve in the oil phase. This is not surprising, since 

the ability of polyoxyethylene chains to form hydrogen bonds, and thus to 

favour the solubility of the molecule in water, decreases at high 

temperatures. The hydrogen bonds are destroyed because of the increase 

in the thermal motion of the system.

From what has been stated above, a drop in the number of particles would 

be expected as the temperature was increased above, e.g., 60°C for 

FA(FO )^^Fs. Further investigation of the number of particles is required 

to confirm this prediction. The above suggestion is appealing also because 

the drop in rate in the case of FA(FO )^gFs is observed at a higher 

temperature than in the case of FA(FO)^^F.s. This is, of course, to be 

expected, since the hydrophilic end is longer in the former and thus a 

higher temperature would be required to reduce the solubility in water.

All four esters under certain conditions were found to give conversion

time curves which have a linear portion extending to unusually high 

conversions (up to 90% in some cases) before the rate of polymerisation 

begins to decrease. Since the monomer concentration within the particle 

must be decreasing well below this conversion, a second factor must be 

operating that balances the decrease in monomer concentration. This 

factor is thought to be the formation of new particles. That F A (F O )2^̂ Fs 

and F A (F O )^ qF s do this is perhaps not too surprising. The same

mechanism is also proposed for emulsion polymerisations initiated by

F A (E O ),cF s  and FA (FO ),n F ‘s* At high polystyrene concentrations, the 
45 oU

ester that is dissolved inside the particle comes out and new particles 

form that, even if not in great numbers, help to counteract the effect of 

falling monomer concentration.

Reports in the literature that the fatty-alcohol ethoxylates have well- 

defined critical micelle concentrations (cmc) have been confirmed. 

However, no measurement of cmc has been possible for the esters derived
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from fatty-alcohol ethoxyiates and 4 ,4 '-A B -4 -C P A . Because of this, the 

mechanism of particle nucleation is thought to be homogeneous nucleation 

for reactions initiated by F A (F O )2¿̂ F.s and FA(F.O )^qF s, and probably 

micellar or micellar/homogeneous nucleation for reactions initiated by 

FA(FO)^^F.s and F A (F O )^ qF s. This is consistent with the observation that 

the esters investigated do not form micelles in quantities for critical 

micelle concentrations to be measurable.

It has also been found that the rates of decomposition of the azo group in 

the esters in water at different temperatures give activation energies 

comparable to the activation energies for the thermal decomposition of 

the sodium salt of 4 ,4 '-A B -4 -C P A  and of AZBN . Also, at a given 

temperature the esters decompose at rates comparable to those for other 

azo compounds.

The sum of the orders of reaction with respect to initiator and to 

stabiliser concentrations predicted by Smith and Fwart ought to be unity. 

If one allows a certain margin for experimental error, the observed orders 

for reactions initiated by FA(F.O)^^F.s and FA(FO)gQFs could be regarded 

as being close to the theoretical expectation. However, the order of 

reaction obtained for reactions initiated by F A(F.O)2¿̂ FS and FA(FO)-jgFs 

is significantly higher than expectation, and it seems reasonable to 

conclude that this is due to the invalidity of some of the assumptions of 

the Smith-Fwart theory for reactions initiated by these particular 

compounds. One such assumption that does not hold in this particular 

case is that generation of radicals occurs solely in the aqueous phase.

Smith and Fwart predict an average number of radicals per particle of 0.5 

during Interval II for case 2 kinetics. In this present research, it has been 

found that, in spite of the initiator/stabiliser being partially soluble in the 

oil phase as well as in the water phase and also acting as a stabiliser at 

the interface between the water and oil phases, the average number of 

radicals per particle is indeed close to 0.5. The high molecular weights of 

the polystyrenes produced support the finding of 0.5 radicals per particle, 

since a higher concentration of radicals in close proximity would result in 

rapid termination and hence in the formation of polystyrenes of lower 

molecular weight.
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Also, it has been concluded that transfer of radicals from the propagating 

centres may be an important means of chain termination.

Although some reactions initially resemble bulk polymerisation, the final 

product is in all cases a latex, since the particle numbers are those typical 

for conventional emulsion polymerisation reactions. Also, the conversions 

are very high to have been obtained by a non-emulsion mechanism in the 

time given; and thus it must be concluded that bulk polymerisation is an 

insignificant contributor —  if a contributor at all —  in emulsion 

polymerisation reactions carried out using F A (F O )2^^Fs, FA (FO )^gFs, 

FA(FO)^^5F s and F A (F O )^ qF s as initiator/ stabilisers in the absence of 

added conventional surfactant.

8,3. Suggestions for further work. Unfortunately, because of lack of time, 

many guestions have been left unanswered in this investigation, and many 

more guestions arise from the research project itself. An attempt will be 

made in this section to enumerate a few of the most important areas 

where it is thought further research is desirable.

(1). Accurate particle-number determinations are essential for the 

elucidation of the mechanism of these emulsion polymerisation reactions, 

particularly in the earlier stages of polymerisation, when even electron 

micrograph technigues are not fully satisfactory. Light-scattering 

technigues could be used to investigate the mechanism of particle 

nucléation. This is particularly important for reactions initiated by 

FA(FO)^^3F s and FAiFOjggFs, where it is not possible to draw definite 

conclusions from the present result,

(2). FACFOj^^^Fs and FA(FO)ggFs give abnormally high conversions for the 

constant-rate period for most of the reactions Investigated. It would be 

profitable to carry out a detailed study of the variation of particle 

number with conversion for reactions initiated by these compounds at 

higher temperatures, e.g., 65"C, and up to 90% conversion, in order to 

establish whether new nucléation of particles is responsibie for the 

observed phenomenon. Furthermore, the same procedure but at lower 

temperatures, e.g., 50"C, ought to be carried out, since such behaviour is

also observed at this temperature.
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(3) . It has been observed that reactions initiated by both FA(FO)^^Rs and 

FA(FO )^gFs at very high temperatures, ca. 65°C, show a decrease in rate 

and in the number of particles with increasing conversion. It would be 

interesting to carry out a reaction initiated by FA(FO )^^Fs at 80°C, since 

this ester is soluble in water at that temperature. A further decrease in 

the rate and in the number of particles would be expected, perhaps, but, 

the question arises as to whether the shape of the conversion-time plots 

would remain similar to that for conventional emulsion polymerisation 

reactions.

(4) . It would be interesting to re-investigate the effect of temperature 

upon reactions initiated by FA(FO) 2 ^̂ Fs and FA(FO)^gFs, but at a much 

higher volume ratio of water to styrene, e.g., a ratio of styrene;water of 

40:225, in order to establish whether the unusual effect of acceleration 

and decrease of rate with increase in temperature is reduced.

(5) . The emulsion polymerisation of styrene when an intermediate fatty- 

alcohol ethoxylate ester, e.g., FA (FO )^^Fs or FA(FO )^gFs, is used as 

initiator/stabiliser could help to make more complete the information 

which has been obtained in the course of these investigations.

(6) . It would be of interest also to repeat some of the investigations of 

this project but using fatty-alcohol ethoxylates of the "Texofor B" type. 

The ethoxylates in this range have a hydrophilic portion of fixed size, the 

variable being the hydrophobic part.

(7) . All the experiments performed in this investigation were carried out 

by dissolving the ester in the water and then adding the aqueous solution 

to the styrene. The alternative procedure of dissolving the esters in the 

styrene and then adding this solution to the water ought to be attempted, 

since interesting results might be obtained, particularly for the early 

stages of polymerisation, when equilibrium of the ester in both phases 

might not have been reached.

(8) . 5.0 g of FA(FO )^^Fs per 40 ml of styrene at 50°C gave a very low 

rate of polymerisation. Also, the conversion-time curve was similar to 

that given by F A (F O )2^Fs and F A (F O )3qF s at 55°C and above. An
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increase in the amount of water, and an increase in the amount of ester, 

together with a decrease in the temperature of polymerisation, may yield 

a conversion-time curve of different shape.

(9) . It has been concluded that the conversion at which new particles 

generate depends upon the polyoxyethylene chain length of the ester. 

Further investigation of the emulsion polymerisation of styrene using 

FA (FO )^^Fs as initiator/stabiliser at 50°C might confirm or disconfirm 

the validity of the above prediction.

(10) . Fractional creaming of the latices could be carried out in an attempt 

to separate the latex particles of different sizes, and an attempt could 

then be made to find out if the polymer contained in the new small 

particles is of different molecular weight to that contained in the older, 

larger particles.

(11) . The effect of these initiator/stabilisers in the emulsion 

polymerisation of a more water-soluble monomer, such as methyl 

methacrylate, could be studied.

(12) . Since it has been tentatively concluded that transfer of radicals from 

the polymerisation centres to other centres can be an important mode of 

chain termination, a labelled initiator could be used to try to establish 

whether transfer is indeed an important means of termination.

(13) . Because of the amount of undecomposed initiator stabilising the 

polystyrene particles is considerable, the subseguent addition of a 

different monomer may result in polymerisation of the new monomer to 

yield a latex having core-shell-type particles; e.g., if butadiene monomer 

were added to a polystyrene latex, the final product would be expected to 

possess a hard core and a soft shell that might be of some industrial 

interest.
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