

IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

This PDF was created from the British Library's microfilm copy of the original thesis. As such the images are greyscale and no colour was captured.

Due to the scanning process, an area greater than the page area is recorded and extraneous details can be captured.

This is the best available copy

Attention is drawn to the factors copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

A State State

STUDIES OF THE METAL-BINDING SITES IN MACROCYCLIC QUADRIDENTATE LIGANDS

A thesis submitted to the Council for National Academic Awards in partial fulfilment of the requirements for the degree of Doctor of Philosophy

by

Daljit Kaur Uppal

January 1986

The work described in this thesis was carried out in the School of Chemistry, The Polytechnic of North London in collaboration with I.C.I. Organics Division.

STUDIES OF THE METAL-BINDING SITES IN MACROCYCLIC QUADRIDENTATE

LIGANDS by DALJIT KAUR UPPAL

Abstract

The preparations of quadridentate macrocyclic ligands with N_{μ} -, $O_{2}N_{2}$ and S_N_-donor-sets are described. 10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzocyclotetradecane (I) and 10-methyl-1,5,8,12-tetraaza-6,7:13,14-dibenzocyclotetradecane (II) have been prepared via Schiff base condensation reactions of linear diamines with 2-methyl-3ethoxyacrolein followed by high pressure hydrogenation. The Co(II). Ni(II) and Cu(II) complexes of II and a copper(II) complex of I are reported. A novel synthetic route has been devised for the analogous S_N_-macrocycle, 8,12-diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane (III), involving the tosylation of 1,3-Bis(o-aminophenylthio)propane followed by cyclisation with propan-1,3-ditosylate in the Detosylation to yield III presence of anhydrous potassium carbonate. was carried out using sodium napthalenide. The problems incurred in the purification of III are discussed and the best separation from other impurities was achieved using gel filtration techniques with Sephadex LH-20, eluting with halogenated alkanes. This synthetic route was adapted to cyclise six ditosylated macrocycles of varying ring sizes (13 to 16), which have alkyl chain of different lengths between the heteroatoms. The related O_2N_2 -macrocycle 8,12-diaza-1,5-dioxo-6,7:13,14-dibenzocyclotetradecane (IV) and a pentadentate S_2N_2 -8, 11, 14-triaza-1, 5-dithio-6, 7: 13, 14-dibenzocyclohexamacrocycle. decane, (V) were obtained by this method after detosylation. The preparation of the copper(II) complex of III is reported. Two new macrocyclic S_N_-complexes have been isolated via metal template syntheses; [(5,12-diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane-9,11-dienato)nickel(II)] monotetrafluoroborate (VI) and [(8,12-diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradeca-9,11-dionato)nickel(II)] (VII). Protonation constants and metal complex stability constant data for I, II and their linear analogues are reported and compared with those of analogous 14-membered macrocycles. High resolution 'H nmr spectra of these two macrocycles indicate that the macrocycles are relatively rigid and that the methyl substituent adopts an equatorial location in a pseudo-chair conformation of the propane linkages between the anilino nitrogen atoms. The X-ray structures of II and its low- and high-spin nickel(II) complexes $[Ni(II)](BF_{\mu})_{\mu}$ and [Ni(II)(NCS)] respectively are described and the goodness-of-fit of the high-and low-spin Ni²⁴ ion for the ligand cavities are compared for other 14-membered tetra-azamacrocycles. Preliminary molecular mechanics calculations for these structures are also included and also that equatorial siting of the methyl substituent suggest is energetically more favourable than axial siting.

Preface

While registered as a canditate for the degree for which submission is made the author has not been a registered canditate for another award of the CNAA or of a University. The results and conclusions presented in this thesis represent original work by the author unless specific reference is made to the contrary.

In partial fulfilment of the requirements of the degree the author completed the following courses

(a) Kinetics of Metal Complexes

(b) Organometallic reagents in Organic Syntheses.

To my parents

.

-

Acknowledgements

I would like to thank the following people who have given advice and help over the past three years.

My supervisor, Dr Peter A Tasker, for his encouragement, advice, patience and continuous help.

My industrial supervisor, Dr Raymond Price (I.C.I. Organics Division) for his help and encouragement, and for providing the analytical services at I.C.I. Limited. I also wish to thank Sue Owens, Peter Quan, John Lawson, Dave Stewart and Don Slater, to mention a few in the Research Department at I.C.I. Organics Division who assisted me during my visit.

Dr L F Lindoy and his research team at James Cook University for obtaining the protonation constants and metal complex stability data for my ligands. Thanks are also due to Mr Larry Brigden for performing molecular mechanics calculations referred to in this work.

Drs Mary McPartlin and Kim Henrick for their assistance in the X-ray Crystallography Laboratory at PNL.

The analytical Services at The Polytechnic of North London, and my colleagues in the laboratory, particularly Sepideh Samizadeh and Paul Duckworth for many stimulating discussions on chemistry and many other topics.

My family for being so supportive and understanding throughout this period.

The Science Research Council, for providing the funds to support this

SERC/CASE award.

Abbreviations

â	Angstrom 10^{-10} metre
AcOH	Acetic Acid
b	Broad
cm	Centimetre
¹³ C nmr	Broad-Band Noise Proton Decoupled Carbon-13 nmr
d	Doublet
dm	decimetre
DMA	Dimethylacetamide
DMF	Dimethylformamide
Et	Ethyl
ET20	Diethylether
EtOH	Ethanol
Fc	Calculated Structure Factor
Fo	Observed Structure Factor
g	Grams
glc	Gas Liquid Chromatography
¹ H nmr	Proton Nuclear Magnetic Resonance
J	Coupling Constant (Hz)
L	Ligand
1	litre
M	Metal Ion
м*	Molecular Ion
MC	Multiplet Component

	Mr	Relative Molecular Mass
	m/z	Mass to Charge Ratio
	nmr	Nuclear Magnetic Resonance
	<u>o</u> -	ortho
•	OAc	Acetate
	<u>P</u> -	para
	P	Pente t
	Ph	Phenyl
	R	Alkyl
	R	Residual Index in Crystallography
	ROH	Alcohol
	Rw	Weighted Residual Index
	S	Singlet
	t	Triplet
	THF	Tetrahydrofuran
	tlc	Thin Layer Chromatography
	TMS	Tetramethylsilane
	Ts0	Tosylate (4-toluenesulfonate)
	TsOH	4-Toluenesulfonic Acid
	δ	Chemical Shifts in ppm
	ν	Stretching Frequency of Bond (cm ⁻¹)
	w	Weak

INDEX

CHAPTER1: Introduction

34

1.1	Pyrometallurgy and Hydrometallurgy	2
1.2	Criteria of a Good Solvent Extractant	5
1.3	Strength of the Extractant	6
1.4	Selectivity of Complexation	8
1.5	Ligand Systems Chosen for Study	9
1.6	Functionalisation of Ligands to Incorporate	
	Different Substituents	10
1.7	Macrocyclic Ligands	12
1.7.1	Macrocyclic Effect	13
1.8	Previous Work with Macrocycles of the Type Involved	
	in this Project	16
1.8.1	S2N2-Macrocycles	16
1.8.2	02N2-Macrocycles	20
1.8.3	N ₄ -Macrocycles	22
1.8.4	Macrocycles Containing Fused o-Benzene Rings	25
1.9	Layout of Material for Remainder of Report	28
	References	29

CHAPTER 2: Preparation of the Ligands

- 2.1 Synthesis of the Precursor $X_2N_2-\beta$ -Dialdimines
- 2.2 Attempted Template Syntheses of the Nickel(II)

Complexes of 8,12-diaza-1,5-dithio-6,7:13,14-

	dibenzocyclotetradeca-9,11-diene	4 1
2.3	Attempted Cyclisations Using Malonyl Dicloride	45
2.4	Attempted Cyclisations with Diethyl Malonate	48
2.5	Attempted S ₂ N ₂ -Cyclisations Via Co-ordinated	
	Anilido Groups	55
2.6	New S ₂ N ₂ -Macrocyclic Syntheses Via Tosylation	
	Reactions	56
2.7	Detosylations	64
2.8	Possible Mechanism of Detosylation	6 8
2.9	Purification of Products From Detosylations Using	
	Sodium Naphthalenide	69
2.10	Preparation of $S_2 N_2$ -Macrocycles with Variable Ring	
	Sizes	75
2.11	Attempted Preparations of $0_2 N_2$ and $S_2 N_3$	
	Macrocycles	80
2.12	Preparations of $trans-S_2N_2$ -Membered Macrocycles	84
2.13	Alternative Method for Preparation of the 14-	
	Membered S ₂ N ₂ -Macrocycle	89
2.14	Reduction of β -Dialdimines to Obtain the Saturated	
	Dibenzo-Macrocycles 2.3	92
	References	95

CHAPTER 3: Properties of X2N2-Macrocycles

3.1	Ligating Properties of the $X_2 N_2$ -Macrocycles	99
3.2	Solution Chemistry of the X2N2-Macrocycles	9 9
3.2.1	Basicities of the Ligands	99
3.2.2	Rigidities of the Ligands in Solution	107

3.2.3	Formation Constants of Metal Complexes	11 2
3.2.4	Preparation of Metal Complexes	118
3.3	Structures of the Macrocycles and Their Metal	
	Complexes	124
3.3.1	X-Ray Structures of the N_4 -Ligand and its Low- and	
	High-Spin Nickel(II) Complexes	124
3.3.2	Comparison of Co-ordination Geometries of the Low-	
	Spin 14-Membered N ₄ -Macrocycles	142
3.3.3.	Comparison of Co-ordination Geometries of the High-	
	Spin 14-Membered N ₄ -Macrocycles	143
3.3.4	Goodness-of-fit of the 14-Membered Macrocycles for	
	Low- and High-Spin Nickel(II)	146
3.3.5	Molecular Mechanics	14 9
3.3.5.1	Free Ligand 3.1b	15 1
3.3.5.2	High-Spin Complex [Ni(3.1b)(NCS) ₂]	155
3.3.5.3	Low-Spin Complex [Ni(3.1b)](BF ₄) ₂	15 9
3.3.5.4	Future Applications of Molecular Mechanics	
	Calculations	160
3.4	Conclusions	161
	References	163
	CHAPTER 4: X-Ray Structure Determinations	

4.1 Single Crystal X-Ray Diffraction 169

4.4	Solution of the Structure	1
4.5	Patterson Vector Map Solution	1

4.6	Structure	e Solutions and H	Refinements		172
4.7	X-Ray St	tructure Determi	nation of the Free	Ligand	
	^C 19 ^H 26 ^H 4				174
4.8	X-Ray	Structure	Determination	of	
	[N1 (C 19 ^H	26 ^N 4)](BF ₄)2			177
4.9	X-Ray	Structure	Determination	of	
	[Ni(C ₁₉ H	26 ^N 4 ^{)(NCS)} 2 []]			177
	Reference	es			184

CHAPTER 5: Experimental Section

	General Experimental	188
5.1	1,3-Bis(o-nitrophenylamino)propane	189
5.2	1,3-Bis(o-aminophenylamino)propane	190
5.3	10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzo-	
	cyclotetradeca-8,10-diene	191
5.4	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzo-	
	<pre>cyclotetradeca-8,10-dienato)nickel(II)]</pre>	
	monotetrafluoroborate	192
5.5	10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzo-	
	cyclotetradecane	193
5.6	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzo-	
	cyclotetradecane)cobalt(II)] ditetrafluoroborate	194
57	[(10-Methy] = 1.5.8.12-tetra=aza=6.7:13.14-dibenzo=	

- (10-Metny1-1, 5, 0, 12-tetra-aza-0, 1, 15, 14-dibenzo
 - cyclotetradecane)nickel(II)] ditetrafluoroborate 195
- 5.8 [(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzo
 - cyclotetradecane)nickel(II) dithiocyanate] 196

5.9	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzo-	
	cyclotetradecane)copper(II)] ditetrafluoroborate	197
5.10	1,3-Bis(o-nitrophenyloxy)propane	198
5.11	1,3-Bis(o-aminophenyloxy)propane	199
5.12	10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzo-	
	cyclotetradeca-8,10-diene	200
5.13	10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzo-	
	cyclotetradecane	201
5.14	[(10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzo-	
	cyclotetradecane)copper(II)] dinitrate	202
5.15	1,3-Bis(o-aminophenylthio)propane dibromide	203
5.16	1,3-Bis(o-aminophenylthio)propane	204
5.17	1,2-Bis(o-aminophenylthio)ethane	205
5.18	1,4-Bis(<u>o</u> -aminophenylthio)butane	205
5.19	1,3-Bis(2{p-toly1sulfony1amino}pheny1thio)propane	2 0 6
5.20	1,2-Bis(2{p-tolylsulfonylamino}phenylthio)ethane	207
5.21	1,4-Bis(2{p-tolylsulfonylamino}phenylthio)butane	207
5.22	1,3-Bis(2{p-tolylsulfonylamino}phenyloxy)propane	209
5.23	1,3-Bis(p-tolylsulfonyloxy)propane	21 0
5.24	1,2-Bis(p-tolylsulfonyloxy)ethane	211
5.25	1,4-Bis(<u>p</u> -tolylsulfonyloxy)butane	21 1
5.26	1,4,7-Tris(<u>p</u> -tolylsulfonyl)-4-aza-1,7-dioxoheptane	212
5.27	8,12-Bis(<u>p</u> -tolylsulfonyl)-8,12-diaza-1,5-dithio-	
	6.7:13.14-dibenzocyclotetradecane	213

5.30	8,13-Bis(<u>p</u> -tolylsulfonyl)-8,13-diaza-1,5-dithio-	
	6,7:14,15-dibenzocyclopentadecane	218
5.31	7,11-Bis(p-tolylsulfonyl)-7,11-diaza-1,4-dithio-	
	5,6:12,13-dibenzocyclotridecane	218
5.32	7,12-Bis(<u>p</u> -tolylsulfonyl)-7,12-diaza-1,4-dithio-	
	5,6:13,14-dibenzocyclotetradecane	219
5.33	9,12-Bis(<u>p</u> -tolylsulfonyl)-9,12-diaza-1,6-dithio-	
	7,8:13,14-dibenzocyclotetradecane	2 20
5.34	9,13-Bis(<u>p</u> -tolylsulfonyl)-9,13-diaza-1,6-dithio-	
	7,8:14,15-dibenzocyclopentadecane	2 21
5.35	9,14-Bis(p-tolylsulfonyl)-9,14-diaza-1,6-dithio-	
	7,8:15,16-dibenzocyclohexadecane	2 21
5.36	4-(p-Tolylsulfonyl)-4,1-aza-thio-5,6-benzocyclo-	
	hexane	223
5.37	8,5-Aza-thio-6,7-benzo-octan-1-ol	224
5.38	1,8-Di(<u>p</u> -tolylsulfonyl)-8,1,4-aza-oxo-thio-6,7-	
	benzo-octane	2 25
5.39	5-(p-Tolylsulfonyl)-5,1-aza-thio-6,7-benzocyclo-	
	heptane	2 27
5.40	8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclo-	
	tetradecane	2 28
5.41	[(8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclo-	
	tetradecane)copper(II)] ditetrafluoroborate	2 31
5.42	8 12-Diaza-1 5-dioxo-6 7.13 14 -dibenzoovolotetra-	

5112 0, 12-D1228-1, J-010X0-0, 1. 15, 14-010en20090100e01a-

decane

232

5.43 7,11,14-Triaza-1,5-dithio-6,7:15,16-dibenzocyclo-

hexadecane

233

5.44	[(10-Methyl-8,12-diaza-1,5-dithio-6,7:13,14-			
	dibenzocyclotetradeca-8,10-dienato)nickel(II)]			
	monotetrafluoroborate	234		
5.45	[(8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclo-			
	<pre>tetradeca-9,11-dionato)nickel(II)]</pre>	2 35		
5.46	N,N-Bis(<u>o</u> -carbomethoxyphenyl)-1,2-diaminoethane	236		
5.47	4,7-Diaza-2,3:8,9-dibenzodeca-1,10-diol	237		
5.48	4,7-Diaza-2,3:8,9-dibenzodeca-1,10-dione	239		
	Refer en ces	241		

Appendix

Appendix	1	X-Ray Crys	tallographic Data	A 1
Appendix	2	X-Ray Stru	cture Factors	A 33

CHAPTER1: Introduction

		Page			
1.1	Pyrometallurgy and Hydrometallurgy	2			
1.2`	Criteria of a Good Solvent Extractant				
1.3	Strength of the Extractant	6			
1.4	Selectivity of Complexation				
1.5	Ligand Systems Chosen for Study				
1.6	Functionalisation of Ligands to Incorporate				
	Different Substituents	10			
1.7	Macrocyclic Ligands	12			
1.7.1	Macrocyclic Effect	13			
1.8	Previous Work with Macrocycles of the Type Involved				
	in this Project	16			
1.8.1	S2N2-Macrocycles	16			
1.8.2	02 ^N 2 ^{-Macrocycles}	20			
1.8.3	N ₄ -Macrocycles	22			
1.8.4	Macrocycles Containing Fused <u>o</u> -Benzene Rings	25			
1.9	Layout of Material for Remainder of Report	28			
	References	29			

CHAPTER 1: Introduction

The project involved the investigation of routes to new classes of quadridentate macrocyclic ligands based on relatively inexpensive aromatic precursors. The macrocycles had variable donor sets and as a result, were thought to show a wide range of complexing abilities. The development of selective ligating agents for base metal ions is of current interest to the Mining Chemicals Group in the collaborating institution.

1.1 Pyrometallurgy and Hydrometallurgy

It is only within the last 30 years, that there has been significant use of <u>hydrometallurgical methods</u> for winning of base metals. <u>Pyrometallurgy</u> involves the extraction of metals by the application and action of heat. Previously only <u>pyrometallurgical methods</u> were used exclusively for metal separation from ores. <u>Pyrometallurgical</u> methods are becoming less viable due to rising energy costs, environmental problems and the depletion of the high grade ores which are needed for smelting processes.

In <u>hydrometallurgy</u> involving solvent extraction a ligand is often used to selectively extract one type of metal ion from an aqueous mixture. The ligand imparts a lipophilic solubility on the resulting complex

which can then be extracted into an organic phase¹. The first metal

to be extracted commercially in this way was uranium in the 1940's.

During the 1960's the method was applied to extraction of base metals

2

such as copper, cobalt, nickel and zinc.

I.C.I.'s 5-nonyl-2-hydroxybenzaldoxime (1.1) has become a successful extractant for copper in an aqueous medium (see scheme 1.1).

Copper is now obtained in large quantities by solvent extraction with oxime reagents (see below). For both base and rare metals, extraction is more difficult due to lack of suitable extractant ligands. Research at I.C.I Organics Division is being carried out to develop new solvent extraction agents. Some of the work undertaken in this project was related to this problem by considering the design and synthesis of ligands likely to show metal-ion discrimination.

Scheme 1.1

Extraction of Copper from an Aqueous Solution by an Organic Long Alkyl Chain Solvent Extractant

- (a) Leaching takes place here in an aqueous medium. H_2SO_4 is used to form the copper sulphate from the ore.
- (b) Extraction takes place in a mixer-settler where the organic (kerosene) and aqueous phases are beaten together to transfer the copper ions from the aqueous phase to the organic phase as the copper complex. The two phases are then separated and collected.
- (c) In the stripping process a stronger sulphuric acid solution is used to remove the copper from the organic phase back into an aqueous phase.
- (d) In the electrowin step pure copper is removed from the aqueous phase by an electrochemical process (usually electrolysis).
- (e) A bleed stream is maintained to remove metal sulphates other than copper to prevent large concentrations of metal sulphates accumulating in the extractor.

1.2 Criteria of a Good Solvent Extractant

A solvent extractant agent must fulfil many requirements based on economic and safety factors. The ligand must selectively ligate the desired metals. The complexation and stripping reactions should be

fast, and the complex formed must be stable in the extracting media.

The complex must be soluble in an organic phase in order to be

separated from the aqueous medium. The stability of the complex must

5

be such that heteroatom concentration or protonation of the ligand or some other method yields the metal in high concentrations. In the oxime case this was by means of a "pH swing", and the complexed form of the ligand was protonated.

$$CuL_2 + 2H^+ \longrightarrow 2LH + Cu^{24}$$

In the oxime extraction of copper the following equilibrium was created. A strong reagent helps to shift the equilibrium to the right.

$$[RH_2Cu]^{2+} \longrightarrow [R_2Cu] + 2H^+$$

1.3 Strength of the Extractant

The efficiency of the extractant is dependent upon the equilibria set up in the binary phase system. Equations for the extraction of copper from a sulphate solution by an oxime extractant are given below:

 $RCu^+(aq) + R^-(aq) \xrightarrow{R_2Cu}(aq)$ $R_2^{Cu}(aq) = R_2^{Cu}(org)$ 6

The overall equation for the reaction in the aqueous phase may be written as:

Salt of + Strong Acid Weak___Salt of + Strong Acid Weak Acid Acid

For ligand (1.1) the pK_a value was <u>ca</u> 9.2. For ligands 1.2 and 1.3 pK_a and pH_1 values are given below:

 $pH_{\frac{1}{2}}$ is the pH at which 50 % of the copper is present in the complex form. From the figures above the ligand with R=OCH₃, was a weaker extractant than the one with R=OH. This was because the complex of ligand (1.3) R=OCH₃ was not stabilised by intramolecular hydrogen bonding when the chelate rings were formed with copper.

1.4 Selectivity of Complexation

Selectivity in extraction depends on several equilibria being set up simultaneously (see section 1.3). One of these is complex formation in the aqueous phase.

A useful way of considering selectivity of complexation of two metal ions was to compare overall stability constants. For two different divalent metal ions M_1^{2+} and M_2^{2+} the following equilibria may be set up on reacting with a given ligand.

Selectivity was judged by the <u>difference</u> in $\log K_1$ values for the two metal ions, and $\Delta \log K_1$ was a measure of the discrimination shown by a particular ligand. Some naturally occurring systems have large $\log K_1$ values. These ligands tend to be cyclic and/or have rigid structures, e.g. the antibiotic valinomycin^{2,3} binds to potassium much more readily than to sodium ions ($\Delta \log K_1$ =3.0). Another example is the ferrioxamine group of ligands. These ligands complex in a highly

selective manner to iron(III)⁴. Ferrioxamines have three hydroxamic

acid groups per molecule so that a neutral complex is formed with iron(III). In ferrioxamines the three acid groups are part of a rigid

8

ligand framework.

CH2) (CH2)2

Valinomycin

Ferrioxamine

1.5 Ligand Systems Chosen for Study

In this project ligands were designed to carry out a systematic investigation of the factors which influence selectivity of complexation. Macrocycles of the general type 1.4 had been chosen because these ligands offered the possibility of examining dependence of metal-ion discrimination ($\Delta \log K_1$ see above and section 1.4) on the following:

- (i) Nature of the donor set. Synthetic routes could be envisaged for the compounds with X = NH, O and S (see below).
- (ii) The ring-size of the macrocycle.
- (iii) Variation of the nature and bulk of substituents on the inner-great-ring.

Initially the 14-membered rings 1.4 (with $R_1 = R_2 = -(CH_2)_3$) were studied and variation of the nature of X was investigated.

1.6 Functionalisation of Ligands to Incorporate Different Substituents

An obvious requirement for a good solvent extraction is solubility in an organic solvent (preferably kerosene) of both the reagent and its metal complex (see below). Normally this is imparted by introducing long-chain alkyl groups into the ligand (see section 1.2).

For the I.C.I. reagent (see section 1.1) the alkyl group was introduced very early in the synthetic scheme⁵.

Similarly for macrocyclic ligands of the "cyclam" type introduction of liphophilic groups has also been achieved, by incorporating alkyl groups early in the synthetic scheme, e.g. into the ligand precursors for the cyclisation reaction⁶.

In theory this approach could also be used to introduce long-chain substituents into the macrocycles 1.4 studied in this thesis. However, it may be necessary to develop different cyclisation conditions which are effective for precursors containing the large substituents.

An alternative strategy is to introduce a long-chain alkyl group into the preformed macrocycle. Recently alkyl groups have been introduced into certain types of N_{4} -macrocycles by reacting the appropriate diimines with Grignard reagents⁷ or alkyl lithium reagents (see below). These routes should offer a convenient method for introducing longchain alkyl substituents.

1.6

1.7 Macrocyclic Ligands

Synthesis of macrocyclic ligands has developed very rapidly over the last fifteen years. In general macrocyclic ligands contain rings with 12 or more atoms. The majority of synthetic ligands fall into two main chemical classes⁸, based upon the donor atoms which are present in the inner-great-ring.

(ii) Tetra-aza macrocycles. A large number of naturallyoccurring and synthetic macrocycles contain four nitrogen donor atoms. These ligate well to most transition metal ions, but are weaker ligands towards many other ions such as those of group 1A and IIA metals.

Current interest⁹ in metal complexes of tetra-aza macrocycles is partially due to these complexes being regarded as biological models for metalloporphyrins.

A much smaller number of synthetic macrocycles contain mixed donor atom sets for example O_2N_2 and S_2N_2 (see below). It may be possible to vary the metal-ion discrimination ($\Delta \log K_1$, see above) by varying the donor atom set.

1.7.1 Macrocyclic Effect

Usually both the kinetic ¹⁰ and thermodynamic stabilities ¹¹ are higher for the cyclic ligands than for their linear analogues. Cabbiness and Margerum ¹² first reported the "macrocyclic effect" ¹¹ in 1969. This effect has been studied most thoroughly with aliphatic tetraamines ^{9,13-18}. Cabbiness and Margerum ascribed the macrocyclic effect of tetra-amines in copper(II) complexes to a combination of restrained configuration (an entropic effect) and abated solvation effects (predominately an enthalpic effect) of the free macrocycles compared

Generally the thermodynamic effect 12 refers to the decrease of Gibbs free energy (ΔG°) for the metathetic reaction 20

The Gibbs free energy for the macrocyclic effect can be split into its enthalpic and entropic components. Macrocyclic enthalpies are thought to arise from the following sources.

During complexation of the non-cyclic ligand to the metal ion enthalpy is expended in arranging the donor atoms around the metal. In the formation of the chelate rings from the linear ligands steric repulsions are experienced between components of the ligand. The macrocycle already has its donor atoms arranged in almost the correct position for co-ordination. When the metal ion is a good fit for the hole-size²¹ of the macrocycle, strong bonding occurs and a large release of enthalpy results. The desolvation enthalpy of the macrocycle is more favourable than that for the linear ligand because extended configurations of the latter usually allow a greater degree of solvation (see also below).

The favourable entropy term results because there is only a small loss on complexation. The entropy loss for the linear ligand is much greater because the ligand has to be rearranged to the correct configuration prior to complexation. This results in considerable loss of flexibility in the chain linking the donor atoms. The relative

importance of the entropy term in the origin of the thermodynamic macrocyclic effect is still debatable²⁰ and may vary from ligand to ligand.

14

The enhanced stability of cyclic tetra-amines over that for related linear tetra-amines was assigned to a more favourable enthalpy term by Hinz and Margerum²². In the case of the macrocycle fewer amine hydrogen bonded water molecules are displaced on metal co-ordination. Hence the favourable enthalpy term is assumed to be due to lower solvation of the ligand.

Kodama and Kimura²³ have reported thermodynamic enthalpy and entropic values for the copper(II) complex of 1,4,7,10-tetra-azacyclododecane, [12]aneN₄. They inferred that the greater stability was due to a favourable entropy term. Conversely Paoletti and co-workers¹⁵ reported that for the same copper(II) complex of [12]aneN₄ a favourable enthalpic effect was observed on complexation. Recently, direct calorimetric determinations^{9,15,22-25} have shown that a good fit of the hole-size of the macrocycle to the ionic radius of the metal results in a favourable enthalpy term. The macrocyclic entropy term was always found to be favourable. In conclusion both enthalpic and entropic factors play an equally substantial role in the macrocyclic effect shown by aliphatic tetra-aza ligands.

<u>1.8</u> Previous Work with Macrocycles of the Type Involved in this Project

1.8.1 S2N2 Macrocycles

Macrocycles with mixed nitrogen-sulphur donor sets have attracted considerable interest recently because they can be used as potential models for the co-ordination sites of certain copper proteins. Quadridentate S_2N_2 -systems may potentially exist in the <u>cis</u>- and <u>trans</u>- forms²⁶ (1.9 and 1.8 respectively).

The preparation of the 14-membered ring system 1.11 in 1964 represented²⁷ one of the earliest examples of template synthesis, and made use of the nucleophilicity of co-ordinated thiolate $groups^{28,29}$.

Another synthetic route to S_2N_2 macrocycles which depended on the "template-approach" involved the use of a condensation reaction of the type which was first studied by Curtis and co-workers^{32,43-45}. The hydrobromide salt of 1,3-bis(o-thiophenylamino)propane gave³⁰ the high-spin dibromocomplex 1.14 when treated with nickel(II) acetate and acetone.

1.14

The conditions used were similar to those of Urbach and Busch 3^{1} , where

the ring closure complex 1.16 was effected when the Ni(II) complex

1.15 was treated with refluxing acetone. 1.16 gave 4-, 5- or 6- co-

ordinate complexes of nickel(II) with a variety of anions eg. $C10_4^{-1}$,

17

NCS⁻, Cl⁻' Br⁻, I⁻.

1.15

1.16

Alcock and Tasker³³ obtained a nickel(II) complex of a novel monoanionic macrocyclic ligand 1.17 by reaction of $1,3-bis(\underline{o}$ hydrazinophenylthio)propane, HCHO and Ni(ClO₄)₂ in tetrahyrofuran. A similar reaction with cyclohexanone gave complex 1.18.

1.18

Recently the preparation of the free ligands 1.19 which has <u>trans</u>arrangment of the S_2N_2 donors has been reported^{34,35}. Macrocycle 1.20, 14-membered macrocycle with <u>trans</u> donors containing dibenzofunctionalities, has been synthesised by Wainwright and co-workers⁵⁵.

The metal-free 14-, 15- and 16-membered S_2N_2 macrocycles 1.21-1.23 have been prepared by Lindoy <u>et al</u>³⁶, by reaction of diaminoalkanes with the appropriate dialdehyde in methanol followed by <u>in situ</u> reduction of the imine groups.

1.8.2 02N2 Macrocycles

Recently mixed donor macrocycles³⁷ with O_2N_2 donor sets have been considered as selective complexing agents. A considerable range of macrocycles of the general form 1.24 have been prepared by Lindoy and co-workers^{8,37-41} by a synthetic scheme analogous to that for 1.21, but using the dialdehydes 1.25 which contain two ether donors.

The ligands 1.24 have been used in systematic studies 39-41 of ringsize and substituent effects on kinetic and thermodynamic stabilities of transition metal complexes.

In particular, structural studies have been used to consider how kinetic and thermodynamic properties relate to the goodness-of-fit of the metal ion for the ligand donor set.

Some work has also been done on the metal complexes of the related

di-imines (see below) but the solution studies have been limited by

20

the hydrolytic instabilities of the imino groups.

Related ketimine complexes (e.g. 1.26) have been prepared from condensation reactions of the appropriate arylketones, under template conditions.

1.26

Analogous ligands to 1.24 and 1.26 with <u>trans</u>- O_2N_2 donor sets have only been prepared⁴² for the nickel(II) complexes of the 14-membered ring.

A recent report has appeared 55 of non-template synthesis of chelating macrocycle 1.27 with $\underline{trans}_{2} - 0_{2} N_{2}$ -donor atoms. There was no evidence of polymerisation taking place and the macrocycle was obtained in high yields under ambient conditions.

Aliphatic ligands⁵⁴ with mixed nitrogen-oxygen donor sets are known (i.e. Aza-crown ethers), but there are only a few examples of quadridentate $0_2 N_2$ -ligands with fused benzene rings which are closely related to the types studied in this project (see section 1.5).

1.8.3 N₄ Macrocycles

A very large amount of work has been done on tetra-aza ligands and their complexes. It is not practicable to review all the work in this area. Some of the significant developments of synthetic methods will be surveyed in a historical context and ligands will be described which are related to the systems in this work.

A convenient synthetic route to Ni(II) and Cu(II) complexes of aliphatic N_4 macrocycles was that by Curtis^{32,43-45}. House and

Curtis³² discovered by accident that acetone and 1,2-diaminoethane in the presence of a metal salt such as nickel(II) perchlorate gave the macrocyclic complex 1.28. Many permutations of diamine and ketones could be used in such reactions, but in the majority of cases it has not been possible to isolate the metal-free di-imine ligands. However, if Ni(II) was replaced by Fe(II) in the reaction to form 1.28, the corresponding free ligand was formed. Complexes of macrocycles with different ring-sizes eg. 1.29 and 1.30 could be prepared by similar routes. Reduction of the imine groups, usually with sodium borohydride, yielded the related tetra-amine ligands, but often as complex mixtures of isomers, because reduction introduces an asymmetric centre at the imine carbon atom.

1.30

The preparation of 1.31 by Busch and Melson⁴⁶ was an important

milestone in the development of the metal template approach to the

synthesis of macrocyclic ligands. The metal complex of the ligand 1.31 was prepared by the self-condensation of <u>o</u>-aminobenzaldehyde 1.32 in the presence of Ni(II) ions.

A wide range of simple aliphatic cyclic tetra-amines have been made available by the Atkins⁴⁷ procedure. This does not involve metal template conditions, and is illustrated below for the preparation of the 12-membered ligand "cyclen".

1.8.4 Macrocycles Containing Fused o-Benzene Rings

Several types of N_{ij} macrocycle have been prepared by the Schiff condensation reaction. The dialdehyde 1.33 reacted with diamines to yield 39,41,43,48,49 the macrocycle 1.34.

A similar reaction was observed by Jaeger⁵⁰, e.g. 1.35 reacted with 1,2-diaminobenzene to form the macrocyclic complex 1.36.

Harke and Brietmaier⁵¹ have prepared the fully conjugated macrocyclic system 1.37 and its nickel(II) complex.

1.37, R₁,R₂ are alkyls

Cutler and Dolphin have prepared 5^2 the conjugated systems 1.38 using a nickel(II) metal template where 1,1,3,3-tetramethoxypropane was reacted with the diamine.

Recently Breitmaier and Behr⁵³ synthesised the metal free macrocycles

1.39a and 1.39b, by reaction of a linear diamine with 2-alky1-3-

ethoxyacrolein or in some cases 2-alky1-1,1,3,3-tetramethoxypropane.

This method was adapted for the analogous N_{ij} -macrocycle 1.40 by Ansell³⁷. Hydrogenation of the bridge between the aniline nitrogen atoms in this class of macrocycles provided a route to the ligand 1.4 chosen for study in this project (see section 1.4).

1.9 Layout of Material for Remainder of Report

Chapter 2 discusses the preparation of all the ligands and reaction pathways and some interesting features for characterisation of these ligands and their precursors. Some emphasis is placed on the difficulty of isolating the S_2N_2 -macrocycle and new synthetic routes devised are reported.

Chapter 3 gives a description of detailed ligating properties of some of the ligands studied in this thesis. These are the protonation constants, rigidities of the ligands in solution, stability constants and X-ray crystallography of the N_{4} macrocycle and its low- and highspin nickel(II) complexes. A molecular mechanics study of this free ligand and its high-spin nickel(II) complex is reported.

Chapter 4 describes how the three structures in the thesis were solved (either by heavy atom solutions from the Patterson synthesis or direct methods).

Chapter 5 contains experimental details of all synthetic work relating to the preparation of the ligands mentioned above and their precursors. Metal complexes of these ligands are also included in this chapter. Metal template synthesis of two new nickel(II) complexes of the S_2N_2 -ligands are also described.

References

- Dennis, W.H., Extractive Metallurgy, Pitman (1964). 1.
- 2. Pressman, B.C., <u>Inorganic</u> <u>Biochemistry</u> (Eichhorn, G.I., ed.)., vol 1 p203, Elsevier, Amsterdam (1973).
- 3. Williams, D.R., An Introduction to Bio-inorganic Chemistry, Thomas, C. C. (1976).
- 4. Hughes, M.N., The Inorganic Chemistry of Biological Processes, 2nd. ed., Wiley, J., and Sons (1972).
- 5. Preston, J.S., Luklinska, Z.B., J. Inorg. Nucl. Chem., 42, 431 (1980).
- 6. Muller, F.R., Handel, H., <u>Tetr. Lett.</u>, <u>23</u>, 2769 (1982).
- 7. Drummond, L.A., BSc. Thesis (PNL-1981).
- 8. Armstrong, L.G., Lindoy, L.F., McPartlin, M., Mockler, G.M., Tasker, P.A., <u>Inorg.</u> <u>Chem.</u> <u>16</u>, 1665 (1977).
- 9. Anichini, A., Fabbrizzi, L., Paoletti, P., J. Chem. Soc. Dalton 577 (1978).
- 10. Lin, C.T., Rorabacher, D.B., Cailey, G.R., Margerum, D.W., Inorg. Chem., 14, 919 (1975).
- 11. Clay, R. M., Murray-Rust, J., Murray-Rust, P., J. Chem. Soc. Dalton 1135 (1979).
- 12. Cabbiness, S.K., Margerum, D.W., J. Amer. Chem. Soc., 91, 6540 (1969).
- 13. Sokol, L.S.W.L., Ochrymowyiz, L.A., Rorabacher, D.B., Inorg. <u>Chem.</u>, <u>20</u>, 3189 (1981).

14. Clay, R.M., Steele, W.V., <u>Inorg. Chem.</u>, <u>19</u>, 2414 (1980).

15. Anichini, A., Fabbrizzi, L., Paoletti, P., Clay, R.M., Inorg.

Chim. Acta., 22, L25 (1977).

- 16. Clay, R.M., Micheloni, M., Paoletti, P., Steele, W.V., <u>J.</u> <u>Amer. Chem. Soc., 101</u>, 4119 (1979).
- 17. Clay, R.M., McCormac, H., Micheloni, M., Paoletti, P., <u>Inorg.</u> Chem., <u>21</u>, 2494 (1982).
- 18. Anichini, A., Fabbrizzi, F., Paoletti, P., Clay, R.M., <u>Inorg.</u> <u>Chim. Acta.</u>, <u>24</u>, L21 (1977).
- 19. Fabbrizzi, F., Paoletti, P., Clay, R.M., <u>Inorg. Chem.</u>, <u>17</u>, 1042 (1978).
- 20. Micheloni, M., Paoletti, P., <u>J. Calorim. Anal. Therm.</u> (Prepr.), <u>9-B</u>, 41 (1978).
- 21. Fabbrizzi, L., Micheloni, M., Paoletti, P., <u>J. Chem. Soc.</u> Chem. Comm., 833 (1978).
- 22. Hinz, E.P., Margerum, D.W., <u>Inorg.</u> Chem., <u>13</u>, 2941 (1974).
- 23. Kodama, M., Kimura, E., <u>J. Chem. Soc. Dalton</u>, <u>116</u>, 2341 (1976).
- 24. Anichini, A., Fabbrizzi, L., Paoletti, P., Clay, R.M., J. Chem. Soc. Chem. Comm., 244 (1977).
- 25. Fabbrizzi, L., Paoletti, P., Clay, R.M., <u>Inorg. Chem.</u>, <u>17</u>, 1042 (1978)
- 26. Hay, R.W., Lawrence, G.A., Shone, U.R., <u>J. Chem. Soc. Dalton</u>, 942 (1976).
- 27. Bradshaw, J.S., Hui, J.Y.K., J. Het. Chem., 11, 649 (1974).
- 28. Thompson, M.C., Busch, D.H., <u>J. Amer. Chem. Soc.</u>, <u>84</u>, 1762 (1962).
- 29. Thompson, M.C., Busch, D.H., J. Amer. Chem. Soc., 86, 3651

(1964).

30. Hay, R.M., Galyer, A.L., Lawrence, G.A., J. Chem. Soc.

Dalton, 939 (1976).

- 31. Urbach, F.L., Busch, D.H., <u>Inorg.</u> <u>Chem.</u>, <u>12</u>, 408 (1973).
- 32. Curtis, N.F., House, D.A., Chem. Ind. (London), 1708 (1961).
- 33. Alcock, N.W., Tasker, P.A., <u>J. Chem. Soc. Chem. Comm.</u>, 1239 (1972).
- 34. McCridle, R., Ferguson, G., McAlees, A.J., Parvez, M., Stephenson, D.K., <u>J. Chem. Soc. Dalton</u>, 1291 (1982).
- 35. McCridle, R., McAlees, A.J., Stephenson, D.K., J. Chem. Soc. Perkin. Trans., <u>I</u> 320 (1981).
- 36. Lindoy, L.F., Smith, R.J., <u>Inorg. Chem., 20</u>, 1314 (1981).
- 37. Ansell, C.W.G., Chung, M.F.H.Y.J., McPartlin, M., Tasker, P.A., J. Chem. Soc. Dalton, 2113 (1982).
- 38. Goodwin, H.J., Henrick, K., Lindoy, L.F., McPartlin, M., Tasker, P.A., <u>Inorg. Chem.</u>, <u>21</u>, 3261 (1982).
- 39. Ekstrom, A., Lindoy, L.F., Lip, H.C., Smith, R.J., Goodwin, H.J., McPartlin, M., Tasker, P.A., <u>J. Chem. Soc. Dalton</u>, 1027 (1979).
- 40. Tasker, P.A., Trotter, J., Lindoy, L.F., <u>J. Chem. Res.</u>, 328 (1981).

41. Mangia, A., <u>Tran. Met. Chem.</u>, <u>5</u>, 250 (1980).
42. Kluiber, R.W., Sasso, G., <u>Inorg. Chim. Acta.</u>, 226 (1970).
43. Green, M., Smith, J., Tasker, P.A., <u>Inorg. Chim. Acta.</u>, 17

(1971).

44. Curtis, N.F., Hay, R.W., <u>J. Chem. Soc.</u>, 4409 (1960).

45. Curtis, N.F., Curtis, Y.M., Povell, H.K.J., <u>J. Chem. Soc., A</u> 1015 (1966).

- 47. Richman, J.E., Atkins, T.J., <u>J. Amer. Chem. Soc., 96</u>, 2268 (1974).
- 48. Melson, G.A., in <u>"Coordination Chemistry of Macrocyclic</u> <u>Compounds</u>", Ed. Melson, G.A., Plenum Press, (1979) ch. 2.
- 49. Ansell, C.W.G., McPartlin, M., Tasker, P.A., Thambythuri, A., <u>Polyhedron</u>, <u>2</u>, 83 (1983).

50. Jaeger, E.G., <u>Z.</u> <u>Chemie.</u>, <u>4</u>, 437 (1964).

51. Hanke, R., Breitmaier, E., Chem. Ber., 115, 1657 (1982).

52. Cutler, A.R., Dolphin, D., J. Coord. Chem., 6, 59 (1976).

53. Breitmaier, E., Behr, H., Chem. Ber., 111, 913 (1978).

- 54. Luboch, E., Cygan, A., Biernat, J.F., <u>Inorg. Chim. Acta 68</u>, 201 (1983).
- 55. Martin, J.W., Wainwright, K.P., Weerasuria, K.D.V., Wild, S.B., <u>Inorg. Chim. Acta., 99</u>, L5 (1985).

CHAPTER 2: Preparation of the Ligands

1

Page

2.1	Synthesis of the Precursor X2N2B-Dialdimines	34		
2.2	Attempted Template Syntheses of the Nickel(II)			
	Complexes of 8,12-diaza-1,5-dithio-6,7:13,14-			
	dibenzocyclotetradeca-9,11-diene	41		
2.3	Attempted Cyclisations Using Malonyl Dicloride	45		
2.4	Attempted Cyclisations with Diethyl Malonate	48		
2.5	Attempted S ₂ N ₂ -Cyclisations Via Co-ordinated			
	Anilido Groups	5 5		
2.6	New S ₂ N ₂ -Macrocyclic Syntheses Via Tosylation			
	Reactions	56		
2.7	Detosylations	64		
2.8	Possible Mechanism of Detosylation			
2.9	Purification of Products From Detosylations Using			
	Sodium Naphthalenide	69		
2.10	Preparation of S ₂ N ₂ -Macrocycles with Variable Ring			
	Sizes	75		
2.11	Attempted Preparations of O ₂ N ₂ - and S ₂ N ₂ -			
	Macrocycles 22 23	80		
2.12	Preparations of <u>trans-S_NMembered</u> Macrocycles	84		
2.13	Alternative Method for Preparation of the 14-			
	Membered S ₂ N ₂ -Macrocycle	89		
2 14				

CHAPTER 2 Preparation of the Ligands

At the outset of the research programme it was intended to prepare the O_2N_2 -, N_4 - and S_2N_2 -macrocyclic ligands of type 2.3 via hydrogenation of the related β -dialdimines 2.2.

2.1 Synthesis of the Precursor $X_2N_2 - \beta$ -Dialdimines

Recently Breitmaier and Behr¹ reported the syntheses of metal-free macrocyclic imines 2.2a and 2.2c containing O_2N_2 and S_2N_2 donor sets using the cyclocondensation of the appropriate diamine with 2-methyl-3-ethoxyacrolein in mesitylene (Scheme 2.1 step A).

Scheme 2.1

Step A

Step B

2.1 a, X =0	2.2a, X=0	2.3a, X= 0
2.1b, $X = NH$	2.25, X=NH	2.3b, X≖NH
2.1c, X=S	2.2c, X=S	2.3c, X=S

Ansell and co-workers² extended this synthetic procedure at the Polytechnic of North London to give, under slightly different conditions, the tetra-aza macrocycle 2.2b. In theory these

macrocycles can be reduced (step B; see section 2.14) to yield the X_2N_2 -systems 2.3 which contain only secondary-amine-type nitrogen donors.

A combination of Breitmaier-Ansell procedures was used to prepare the imines 2.2a and 2.2b in reasonable yields (37-42 %). Both the imines thus obtained are very crystalline and are bright red (2.2b) or yellow (2.2a).

There are two possible mechanisms for the cyclocondensation to yield the β -dialdimines; either by initial nucleophilic attack of the amine at the carbonyl group of the acrolein or at the carbon atom bearing the ethoxy substituent (see Scheme 2.2).

10

Muller and co-workers³ and Hiller <u>et</u> al⁴ have shown that with

analogous precursors it is the non-carbonyl carbon atom which is

preferentially attacked i.e. o-phenylenediamine reacts in a molar

ratio of 1:2 with propynal to give the dialdehyde 2.3.

Breitmaier et al⁵ has shown that ethylenediamine reacts with two moles of 2-methyl-3-ethoxyacrolein to give the intermediate 2.4, which reacts with a further mole of ethylenediamine to yield the tetraazamacrocycle (Scheme 2.3).

2.3

It is therefore expected that the reaction for preparation of the β -dialdimines 2.2a and 2.2b will proceed in a similar manner, via the intermediates 2.5.

With the formation of the cycles, the double primary amine symmetric and asymmetric N-H stretches at 3353, 3348 (for 2.2a) and 3400 and 3380 cm⁻¹ (for 2.2b) are lost in the infrared spectra. In the case of 2.2b there is a weak band at 3300 cm⁻¹ due to the anilino NH. In both macrocycles the characteristic <u>o</u>-disubstituted benzene ring peaks occur close to 750 cm⁻¹. Mass spectra were also used to confirm the presence of the macrocycles. A much stronger parent ion peak was obtained for 2.2a at m/z 306 with a percentage of 35. The 0_2N_2 macrocycle at m/z 308 had a parent ion of 5 \$ intensity. The next major fragment was due to loss of either an <u>o</u>-phenylenediamine (for 2.2b) or <u>o</u>-aminophenol group (for 2.2a).

The ¹H nmr spectra (220 MHz) of the two macrocycles 2.2a and 2.2b are very similar (Table 2.1). The methyl peaks in both compounds occur as singlets at 2.05 ppm. The methylene protons (2 and 4, see table 2.1) adjacent to the oxygen atoms in22a are further downfield when compared with those for the N_{4} macrocycle, in accordance with the relative electronegativities of the -O- and -NH- groups.

TABLE 2.1 H nr	nr (220 MHz, CDC	3 Spectra of Ma	acrocycles 2.2a and 2.2t
Site of			
Protons	2.2a	2.20	3
2,4	4.23(t)	3.41(t)	15 w X 15
3	2.33(p)	2.00(p) 1	
9,11	7.85(d)	7.93(d)	18 13 N H 7 18
15-18	6.70- 7.35(mc)	6.50- 7.40(mc)	19

2.05(s) **2.2a** X=0 19 2.05(s) 2.2b X=NH 6.50-6.70-NH(8) 7.40(mc) X₂N₂ imine numbering system 7.35(mc) NH(1,5) 4.72(s) 37

The methine signals are observed as doublets as a result of coupling with the anilino protons at position 8. In the presence of D_2O a slow exchange is observed and the doublet collapses to give a singlet. The signal for the anilino proton associated with the unsaturated C_3 bridge occurs within the complex multiplet for the aromatic hydrogen atoms in both 2.2a and 2.2b. However in 2.2b the anilino protons at positions 1 and 5 give a broad peak further upfield at 4.72 ppm which is lost rapidly on D_2O exchange. These ¹H nmr data indicate that the methine protons at 9 and 11 are equivalent. The equivalence can be accounted for using one of the three models; a β -diimine system (a), a symmetrically hydrogen-bonded system involving delocalisation of π -electrons in the C_3 bridge (b) or rapid tautomerisation of the unsymmetrical hydrogen-bonded system (c).

Formulation as (a) is incompatible with the observed singlet for the methyl groups. However, a distinction between models (b) and (c) cannot be made on the evidence available.

The 13 C nmr (20.12 MHz, CDCl₃) signals also show the presence of pseudo-mirror symmetry of the molecule. The chemical shifts of the

two structures 2.2a and 2.2b are compared in table 2.2. The most

significant differences in the spectra are for the methylene carbon

atoms. Those for 2.2a are further downfield, again due to the greater

deshielding of the carbon atom by the more electronegative oxygen atoms. Significantly weaker signals were obtained for the nonprotonated benzene carbon atoms (6, 7, 13, 14) and for carbon atom 10 bearing the methyl substituent, due to the longer relaxation times on the nmr time scale.

TABLE 2.2 Broadband Decoupled ¹³C nmr (20.12 MHz, CDC1₃) Signals for Macrocycles 2.2a and 2.2b

When the preparation of the S_2N_2 imine 2.2c was attempted using the procedure which was successful for 2.2a and 2.2b a complex mixture was obtained. Only about 5 % of the macrocycle was obtained as judged from the ¹H nmr spectrum, with the major component of the resulting oil (90-95 %) being the linear precursor. Attempts to isolate the ligand via column chromatography using silica gel were unsuccessful.

The cyclocondensation reaction was attempted in various solvent systems, monitoring by 1 H nmr spectroscopy so that the acrolein uptake

could be followed. When no further acrolein was being consumed the

reaction was stopped. The oils obtained were judged to contain four components by mass spectroscopy and thin layer chromatography. The probable structures are shown below.

The maximum yield of 2.2c was found to be about 5 %. Attempts to isolate 2.2c from these reaction conditions failed despite numerous attempts, via chromatography or crystallisation under conditions which had been reported by Breitmaier¹. Therefore, many variations of conditions had to be considered including metal template syntheses.

2.2 Attempted Template Syntheses of Nickel(II) Complexes of 8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradeca-9,11-diene

<u>Scheme 2.4</u> Attempted Template Syntheses of the Monocationic Macrocyclic Nickel(II) Complex

(i) Ni(ac)₂.4H₂O/EtOH (or DMA) -unsuccessful

(11) 0.5 Ni(ac)₂.4H₂O and 0.5 Ni(BF₄)₂/DMA -successful

Under the reaction condition (i), the precursors were recovered unchanged. It was then decided to attempt the reaction in the presence of a monoanionic counterion which would facilitate precipitation of the monocationic complex as in the reaction (ii). In this case the acetic acid and ethanol generated in the reaction were removed by fractional distillation. A green precipitate of the nickel(II) tetrafluoroborate salt 2.6 was obtained in 50-53 \$ yield. The structure was confirmed by microanalysis, and mass and infrared

spectra. A very broad band was observed in the infrared spectrum at 1170 cm^{-1} , characteristic of non-coordinated BF₄. The mass spectrum contained peaks with m/z values corresponding to monocationic

nickel(II) complex 2.6 at m/z 398 (4 \$), and fragments resulting from the loss of nickel(II), m/z 341 (5 \$), and of a C₃ chain, m/z 290(4 \$) to give the linear diamine 2.1c.

Breitmaier has reported¹ an alternative cyclocondensation procedure using 1,1,3,3-tetramethoxypropane and p-toluenesulfonic acid as catalyst. H_2^{OR} H_2^{OR}

Attempts to reproduce these reactions, and to prepare the nickel(II) complexes by in situ "template" reactions were unsuccessful in our hands.

Since the only successful cyclocondensation reaction to form a $S_2N_2^{-1}$ macrocycle involved its isolation as the monocationic nickel(II) complex 2.6, attempts were made to isolate the free ligand by displacement of the nickel ion. Demetallation was tried by following a procedure reported⁶ for displacement of nickel(II) from a related unsaturated N_µ-system.

1.
$$[Ni(C_{22}H_{22}N_{4})]$$
 + 4HC1
/EtOH
2.7
2. $[C_{22}H_{26}N_{4}][NiCl_{4}]$ + 2NH₄[PF₆]
 H_{2}^{O}
 $C_{22}H_{26}N_{4}][PF_{6}]_{2}$ + 2NH₄C1 + NiCl₂
3. $[C_{22}H_{26}N_{4}][PF_{6}]_{2}$ + 2N(Et)
 H_{2}^{O}
 $+ 2NH_{4}C1 + NiCl_{2}$
 $+ 2NH_{4}C1 + NiCl_{2}$
 $+ (2NH(Et)_{3})[PF_{6}]_{2}$ + 2N(Et)
 H_{2}^{O}
 $+ (2NH(Et)_{3})[PF_{6}]_{3}$

This involves 3-steps. In the first a salt of the protonated ligand is isolated as the tetrachloronickelate(II) from a reaction with a saturated hydrogen chloride in ethanol solution. This compound 2.7 is then converted to a different salt using ammonium hexafluorophosphate not containing nickel. This step has to be undertaken because simple neutralisation of the terachloronickelate(II) salt 2.7 results in the macrocycle. The Ni(II) being reinserted into the ion salt of the ligand is then treated with haxafluorophosphate triethylamine in ethanol to give the free neutral ligand.

In the case of the 14-membered S_2N_2 -nickel(II) tetrafluoroborate salt 2.6, demetallation, under the conditions involved in step 1 of Scheme 2.5 caused the ligand to decompose. The ligand is apparently unstable in saturated ethanolic hydrogen chloride.

When reductive demetallation was attempted with lithium aluminium

Scheme 2.5

hydride, a "thiol" smell was obtained suggesting that the ligand had

broken down. Displacement of the metal using dilute hydrochloric acid, or sodium cyanide^{7,8} or disodium ethylenediaminetetraacetate⁹

was attempted, but the free S_2N_2 -macrocycle 2.2c was not obtained. It is possible that the C-S bond may not be able to withstand reductive conditions, and that the ligand is susceptible to hydrolysis in the absence of the metal ion. The C-S bond is relatively weak when compared with C-N and C-O bonds and is cleaved ¹⁰ more readily.

In contrast to the 0_2N_2 and N_4 macrocycles (2.2a and 2.2b respectively) it seems that the S_2N_2 macrocycle (2.2c) is hydrolytically unstable. This may be due to increased ring strain in the 14-membered ring which is created by the longer carbon-sulphur bonds. In this connection it is possibly significant that very few S_2N_2 -14-membered macrocyclic ligands with imine nitrogens have been reported (see section 1.8.1 in chapter 1), whereas considerably more 15- and 16-membered ring systems have been successfully prepared via Schiff base condensations.

Bond

Length^a C-N C-O C-S in \Re sp³-N 1.47 sp³-O 1.40 sp³-S 1.81 sp²-N 1.36 sp²-O 1.34 sp²-S 1.75

Bond Enthalpy^a

kcal/mol 69-75 85-91 66

a- Ref 10

In view of the lower bond enthalpy of C-S bonds in the thioethers and

their susceptibility to reductive cleavage it is therefore very likely

that even if the free imine 2.2c had been isolated it would not have

withstood the reduction step required to isolate the fully saturated

"target" macrocycle 2.3c.

Alternative precursors to generate the three-carbon linkage between the anilino nitrogen atoms were considered.

2.3 Attempted Cyclisation Using Malonyl Dichloride

Stetter^{11,12} has reported routes to macrocyclic aliphatic amides;

high-dilution

This was then used to prepare anilides¹¹ with \underline{o} -phenylenediamine. Two moles of \underline{o} -phenylenediamine were used for one mole of the dichloride.

Attempts were made to prepare the cyclic diamide from malonyl dichloride and the S_2N_2 -diamine 2.1c as in scheme 2.6.

Scheme 2.6

2.1c

2.8

- (i) High dilution techniques in diethyl ether, with 2.1c and malonyl dichloride.
- (ii) As above but dichloromethane or benzene used instead of diethyl ether.
- (iii) 2.1c, malonyl dichloride, and sodium carbonate in dichloromethane or benzene.
- (iv) 2.1c, malonyl dichloride and proton sponge (1,8-bis(dimethylaminonaphthalene) in benzene.

Very little of the desired macrocyle 2.8 was obtained in all

preparations. When no base was used (i and ii) and high dilution

condition were used the major product (>90 \$) was the dihydrochloride

salt of the diamine 2.1c. Any traces of the macrocycle were

identified from the mass spectra which showed weak molecular ion peaks at m/z 358. The reason why so little macrocycle was obtained may be due to the fact that no base had been used to react with the liberated hydrogen chloride. A base is required which will react with the hydrogen chloride but which will not compete with the diamine 2.1c in reacting with malonyl dichloride. Using sodium carbonate or proton sponge did not improve the yields, but in these cases the major product was the unreacted diamine 2.1c.

Gold¹³ has prepared several malonylanilides (see below) without using a base.

(a) A, B, Q, D, E, G, L and M are selected groups consisting of H, NO_2 , CF_3 , Cl and Br, with the proviso that 3 to 5 are H and that A and E cannot be NO_2

(b) R₁ and R₂ are H or C₁-C₄ alkyl groups

(c) $R = C_1 - C_6$ alkyl group

No malonanilide was prepared with R=H i.e. in every successful preparation the malonyl dichloride was alkyl-substituted on the

central methylene group. The other requirement for this type of reaction is the presence of electron-withdrawing aromatic substituents.

Since neither of the conditions in the successful synthesis are ensured in the preparation of the S_2N_2 macrocycle via the malonyl dichloride route (scheme 2.6), it is probable that the reaction will not go to completion.

2.4 Attempted Cyclisation with Dialkyl Malonate

Aliphatic primary diamines have been shown¹⁴ to react with malonate diesters to give cyclic 14-membered diamide ligands.

Scheme 2.7

R=alkyl group or H

The possibility that aromatic diamines precursors such as 2.1c could be used in such reactions is supported by the report¹⁵ that diethyl malonate reacts with aniline to give a mixture of mono- and dianilides 2.10 and 2.11 (see scheme 2.8).

2.11

The ratio of products is dependent upon the quantities of precursors used.

Scheme 2.9

2.1c

2.8

Using solvent systems and conditions reported by Tabushi the

reaction shown in scheme 2.9 failed to give significant quantities of

the macrocyclic diamide 2.8. Even under the most forcing conditions, after work up, the resulting material was found to be mainly (>90 %) unchanged 2.1c. The presence of a small quantity of the desired macrocycle 2.8 was suggested by weak molecular ion peaks in the mass spectra at m/z 358 (0.2 %).

Since non-template syntheses involving dialkyl malonates were unsuccessful, template syntheses were tried using nickel(II) salts.

Scheme 2.10

2.12

Xylene was used as a solvent and ethanol and acetic acid liberated in the reaction were removed by fractional distillation. Water from the hydrated Nickel(II) acetate was removed using a Dean-Stark trap. The nickel(II) complex 2.12 of the macrocycle was obtained in very high

yields (87 \$). The infrared spectrum of the resulting brown solid was

consistent with the presence of the neutral nickel complex having a

strong band at 1675 cm⁻¹ associated with amide carbonyl groups.

The solid once obtained was very insoluble and could not be purified by recrystallisation, but microanalysis data and the mass spectrum were consistent with the structure 2.12 [highest m/z at 414(15 %) being the macrocyclic complex and loss of nickel giving the metalfree ligand at m/z 358(15 %)].

Attempts were made to prepare the analogous zinc(II) complex which could in theory be characterised by nuclear magnetic resonance spectroscopy, but unfortunately template syntheses using zinc(II) acetate were unsuccessful and the linear precursor was recovered unchanged.

Cyclic diamides have been reduced successfully in a number of different cases to yield macrocyclic ligands, some examples are given below (schemes 2.11-2.14). Lockhart¹⁶ et al have used lithium aluminium hydride to reduce diamides to give the related secondary amines, e.g. the $0_5 N_2$ -ligand in scheme 2.11.

Scheme 2.11

example to yield ^{14,17,18} the N₄-ligand 2.14, the N₄S-ligand 2.15 and the N₂S₃ and ON_2S_2 -ligands 2.16.

Scheme 2.13

2.15

Attempts to reduce the Ni(II) complex 2.12 with lithium aluminium hydride in THF were accompanied by a strong "thiol" smell and a complex mixture was obtained which showed very few high molecular peaks in the mass spectrum. It is probable that the S_2N_2 -ligand breaks down readily in the presence of strong reducing agents (see section 2.2).

One advantage of using the BH₃thf is that selective reduction of amide linkages in aliphatic sulphur-containing macrocycles is successful^{14,17,18} without cleavage of C-S bonds. Treating the complex 2.12 with borane in THF yields a black solid and a brown oil. The solid is a combination of unreacted starting material (<u>ca</u>. 90 \$) and some nickel(0). The mass spectrum of the oil showed peaks at m/z358(3 \$), 330(18 \$) and 290(62 \$) consistent with the structures below.

m/z 358

2.8

m/z 330

2.17

m/z 290

2.18

The 1 H nmr (60 MHz, CDCl₃) is consistent with the major component being 2.1c and indicates that the yield of the free ligand is approximately 5 \$.

Simultaneous reduction and demetallation of the nickel(II) complex 2.12 is not successful under "standard" conditions (see section 2.2). Additionally there is also some evidence for ligand decomposition.

Borax and sodium borohydride was used in an attempt to demetallate the complex 2.12. Very little of the diamide 2.8 was obtained as judged by proton nmr of the resulting mixture (see Table 2.3) but a strong molecular parent ion peak was observed in the mass spectrum at m/z 358 (81 \$).

<u>TABLE 2.3</u> Chemical Shifts in the ¹H nmr (60 MHz, $CDCl_3$) of the Diamide 2.8

15-18

2,4

3

8,12

Chemical Shift /ppm

Site of Proton

6.80 - 8.00 (mc)3.69(s) 2.70(t)1.35-2.00(mc) 9.18(s)

and benzene.

Numbering system for 2.8

A small quantity of the free diamide ligand was also obtained when cyanide using potassium and performed demetallation was dimethylsulphoxide or with a mixture of 10 aqueous sodium cyanide^{7,8}

2.5 Attempted S_2N_2 -Cyclisation Via Co-ordinated Anilido Groups

The lack of success of the standard reagents in achieving selective reduction of the anilide group in the presence of thioether moiety required us to consider alternative strategies for synthesis of the S_2N_2 -macrocycles of the type 2.3c. Direct alkylation of the anilino nitrogen atom is possible in theory, although the problem of achieving cyclisation rather than linear polymerisation must be considered. Promotion of the cyclisation reaction involving direct alkylation of amine groups using template methods is rare because the co-ordinated nitrogen atoms have no nucleophilic activity unless the amine can be deprotonated. A closely related P_2N_2 -macrocyclic system^{19,20} has been prepared using this strategy (scheme 2.15).

Scheme 2.15

This synthesis was attempted on the S_2N_2 -diamine 2.1c, with nickel(II) and copper(II) ions. In the presence of nickel(II) ions no solid

complex could be isolated. With copper(II) the complex 2.19 and its

deprotonated form 2.20 were obtained. However, cyclisation was not

successful, and the unreacted starting materials were reobtained.

An alternative synthetic procedure based on enhancing the nucleophilic activity of the aniline nitrogens in 2.1c is described in the next section.

<u>2.6</u> New S_2N_2 -Macrocyclic Syntheses Via Tosylation Reactions

Recently a lot of use has been made of cyclisations following the Richman-Atkins²¹ procedures.

The majority of work on these types of systems has been done on aliphatic polyamines 2^{1-31} . Since the reactions do not involve high dilution techniques large scale preparations are practicable. The deprotonation of the sulfonamide group increases the nucleophilicity of the amine component and the sulfonate esters are better leaving groups than halides which had been used to a large extent previously.

The syntheses of the S_2N_2 -macrocycles were attempted using the tosyl derivatives shown in scheme 2.18.

Scheme 2.18

This scheme was tested first for preparation of the 14-membered ring compound 2.17.

The tosylation of 2.1c was achieved in high yields from a reaction in pyridine. Reaction involving mixed solvent systems e.g. ether/sodium

hydroxide²⁶ or tetrahydrofuran/sodium hydroxide solution were much

less successful. The disodium salt 2.22 of the deprotonated

disulfonamide can be isolated readily as a solid, although this is

1

very hygroscopic.

In the cyclisation reactions to give 2.23 the deprotonation of 2.21 was carried out <u>in situ</u> by addition of potassium carbonate. The ditosylated macrocycle was obtained in high yields (>80 %) using such conditions.

Complete conversion of precursor 2.21 was indicated by absence of bands attributable to N-H stretching modes at 3260 cm^{-1} in the infrared spectrum of the product 2.23. Attempts to use 1,3-dibromopropane as an alternative to 1,3-propaneditosylate were not successful.

The 1 H nmr spectra of compounds 2.21 and 2.23 can be compared. A relatively simple spectrum is obtained for 2.21 but for 2.23 it is more complex. This is due to the greater rigidity of the molecule upon cyclisation.

TABLE 2.4 Comparative ¹H nmr (80 MHz, CDCl₃) Chemical Shifts of Molecules 2.21 and 2.23

	2.21	2.23	
Site of proton	δ/ppm	Site of proton	δ∕ppm
3	1.49(p)	3,10	1.63-2.13(mc)
		0 4 0 11	2.60-3.33(mc)-6H
2,4	2.47(t)	2,4,9,11	3.50-4.00(mc)-2H
Aromatic	6.60-7.90 (mc)	Aromatic	6.37-7.75(d)
23	2.27(s)	23	2.38(s)
- N H -	6.60-7.90 (mc)		

* Numbering systems used for 2.21 and 2.23 are:

On the whole the chemical shifts in the proton nmr of 2.23 are downfield compared to 2.21. The methyl protons of the macrocycle 2.23 are slightly downfield at 2.38 ppm. The central methylene protons between the sulfur atoms in 2.23 no longer appear as a simple

pentet but occur in a complex multiplet centred at 1.91 ppm due to the

overlap with the signals for protons at position 10. The simple

triplet at 2.47 ppm is replaced by very complex and broad signals

centred at 3.04 and 3.80 ppm. These are due to protons 2,4,9,11. Six

of these protons appear in the region 2.60-3.33 ppm and the other two are in the range 3.50-4.00. The two different environments for -NHCH₂ protons with two protons being further downfield is a consequence of non-equivalence of methylene protons.

The aromatic region for 2.23 now appear as two multiplets comprising a doublet at 6.50 ppm and a complex multiplet centred at 7.18 ppm. There is less free rotation in the macrocycle. The 1 H nmr does not help to distinguish between formation of cyclic monomer, oligomers (such as 2.24) or a mixture of components.

The ${}^{13}C$ nmr spectra provides evidence for the product of the cyclisation reaction being a single component. Assignments for the carbon resonances are based on similar arguments to those used for the precursors and related O_2N_2 - and N_4 -molecules (see section 2.1).

TABLE 2.5 13 C nmr (20.12 MHz, CDCl₃) Signals for Compounds 2.21 and 2.23

Carbon	2.21	2.23
Atom no		
23	21.5	21.6
3	28.5	25.9
10	-	28.8
2,4	34.6	33.7
9,11	-	50.4
18	119.6	127.0
21	127.3	127.9
16	124.8	128.6
15	130.0	129.1
20	129.8	129.6
17	135.6	131.5
22(W)	123.7	136.0
6,14(w)	136.4	140.0
7,13(w)	138.8	140.6
19(W)	144.2	143.6

a-same numbering system used as in table 2.4

The signals for carbon atoms 20 and 21 were assigned on the basis of their approximately double intensity relative to other C-H benzene carbon atoms (15-18). The lowest field signal was that of carbon 19, adjacent to the very electron-withdrawing $-SO_2$ -group. There is pseudomirror symmetry of both 2.21 and 2.23 as shown by ^{13}C nmr spectroscopy. From the spectrum, 2.23 seems to be a single component. The methyl carbon atoms, 23 are at similar chemical shifts for both structures. Carbon atoms 2, 3 and 4 are further upfield for 2.23. The carbon atoms between nitrogen atoms appear further downfield than those between the sulfur atoms. Considering the aromatic region, atoms 18 and 16 in molecule 2.23 are further downfield than those for

15 and 17. Similarly for the tosyl aromatic rings 21 is downfield,

Carbon atoms 6, 7, 13, 14 and 22 shift downfield upon cyclisation

61

whereas 19 shifts upfield.

The mass spectrum helps to confirm the presence of a monomer with a molecular parent ion peak at m/z 638 (22 %), with loss of tosyl groups at m/z 483 (93 %) and m/z 328 (5 %) respectively. Additionally the macrocycle is extremely soluble in most organic solvents. This also implies that 2.23 is most likely to be a monomer.

To obtain the target molecule 2.17 from macrocycle 2.23, detosylation is required.

2.7 Detosylations

Sulfonamides in general are very stable and cleavage of the N-S or C-S bonds requires forcing conditions 32.

Detosylation of 2.23 requires N-S cleavage for which two approaches have been described. The more common involves use of hydrolytic procedures and reagents which promote hydrolysis of arylsulfonamides are listed in table 2.6. An alternative procedure relies on reductive cleavage and a number of reagents have been reported to be successful in such reactions (see also table 2.6).

<u>TABLE</u> <u>2.6</u> Some Procedures for Detosylations by Hydrolysis and Reductions

Reagent

Arylsulfonamide

References

24-27

<u>Hydrolysis</u>

(a) HBr/AcOH

(b) HBr/AcOH/phenol

33,34

22

(c) 25 \$ HC1

(d) H₂SO₄

35

R'=H or Me

R=H or Me

s Is

5,21,22,28,32

Reductions

(a) Zn/HCl

(R = Et etc.)

(b) Na/Hg/NaHPO4

At the onset it was clear that care would have to be taken in chosing reductive reagents for detosylations because the sensitivity of the thioether linkage to reduction has already been demonstrated (see sections 2.3 and 2.4). As a consequence initially hydrolytic cleavage was studied. In each case the reactions were monitored by ¹H nmr spectroscopy, after washing aliquots with base to remove sulfonate derivatives such as <u>p</u>-toluenesulfonate. The depletion of the tosyl methyl peak at 2.38 ppm and the deviations of the ratio of aromatic to aliphatic protons from 16:18 were used to assess the extent of detosylation.

32,36

	Reagents	References	Result
(i)	25 \$ HC1	32,35	no detosylation
(ii)	48 \$ HBr/AcOH	26,32	partial detosylation
(iii)	AcOH/HC1/Zn	36	no detosylation
(iv)	Na/Hg/NaHPO ₄	30	no detosylation
(v)	Na/naphthalene/TH	F 37,38	detosylation

TABLE 2.7 Results of Attempted Detosylations

The macrocycle 2.23 seems to be quite stable to detosylation by hydrolysis. No detosylation was detected when the reagents were used under literature conditions for attempts (i), (iii) and (iv). When 48 HBr/acetic acid was used and refluxing maintained for 65 hours, some of the macrocycle 2.23 went into solution and after neutralisation an oil was obtained which apparently contained a little of the singly or doubly detosylated macrocycle, as judged by ¹H nmr spectroscopy and the presence of an N-H band at 3360 cm⁻¹ in the infrared spectrum.

TABLE 2.8 ¹H nmr (60 MHz, CDCl₃) Spectrum of Oil From HBr/AcOH Detosylation of 2.23

Chemical Shift /ppm	Relative nos. of Protons	Possible Assignment
6.30-8.00 (mc)	12	Aromatic
3.80(b)	1	-NH -
2.95-3.40(mc)	4	-NHCH2-

The appearance of a new tosyl methyl signal at 2.22 ppm and the observed aromatic: aliphatic proton ratio of 12:16 suggests that a major component of the mixture is the mono-tosylated macrocycle 2.25, rather than a mixture of 2.23 and 2.17.

2.25

Complete detosylation was successfully achieved using sodium/naphthalenide 37,38 in tetrahydrofuran. The mass spectrum of the resulting oil (70 %) had a parent ion peak at 330 (49 %) with the next fragment being at 290 (3.5 %) with the loss of a C₃ bridge. The infrared spectrum of the oil had a strong band at 3390 cm⁻¹ characteristic of a secondary amine. The ¹H nmr spectrum (table 2.9) suggested that the major product is 2.17 with only slight traces of tosylated compounds being present.

TABLE	2.9 Comparison	of 'H nm	r (80 MHz,	CDC1 ₃) Spectra of 2.2	3 and
2.17					

2.17

Site of protons ^a	δ/ppm	Site of protons	δ/ppm
3,10	1.63-	3,10	1.35-
	2.13(mc)		2.00(mc)
23	2.38(s)		-
2.4.9.11	2.60-	2.4	2.65(t)
2	3.33(mc)-6H		
	3.50-	9,11	3,15(t)
	4.00 (mc) - 2H		
5-18, 20,21	6.37-	15-20	6.30-
	7.75(mc)		7.50(mc)
		-NH-(8,12)	5.12(b)

2.23

Macrocycle

a- The numbering systems for 2.23 and 2.17 are:

The 13 C nmr (20.12 MHz) spectrum of the oil had a lot more peaks than the 10 signals which are expected for the symmetrical molecule. The signals for the free macrocycle 2.17 can be predicted with confidence from comparative assignments of precursors and from calculated values. The chemical shifts for benzene carbons can be calculated from tables³⁹ of values of substituted benzene carbon atoms and deviations

<u>TABLE 2.10 Comparison</u> of the 13 C nmr (20.12 MHz, CDCl₃) Chemical Shifts for 2.23 and Peaks Assigned to 2.17 in the Impure Materials from Detosylation Reactions

	2.23	2.17
Carbon Atom ^a		
23	21.6	-
3	25.8	29.1
10	28.8	29.1
2,4	33.7	33.4
9,11	50.4	41.5
18	127.0	110.2
21	127.9	-
16	128.6	116.9
15	129.1	130.2
20	129.6	-
17	131.5	136.4
22(w)	136.0	-
6,14(w)	140.0	117.5
7,13(W)	140.6	149.3
19(w)	143.6	-

a- Carbon atoms labelling system as in table 2.9

The 13 C nmr spectra of the oil suggests that the major component is the desired macrocycle 2.17 but there is approximately 15 % of impurities present. These could be naphthelene, residual tosylated derivatives or some decomposition product of the macrocycle.

2.8 Possible Mechanism of Detosylation

The mechanism of detosylation involves the naphthanelide 3^{38} radical species. In the detosylation of sulfonamide 2.23 the following steps may be involved to yield 2.17.

0 C C,HSO2 protonation 68 2.17

The cleavage of C-S bonds which appears to accompany this detosylation may arise from the following type of pathway.

Several strategies were used in attempts to isolate the pure ligand.

2.9 Purification of Products From Detosylations Using Sodium Naphthalenide

The composition of the oil was assessed by 13 C nmr spectroscopy and the following methods of obtaining the pure ligand were considered.

(i) Via preparation of metal complexes

(ii) Via protonation of the ligand

(iii) By repeating the detosylation under varying conditions

(iv) By using column chromatography

.

An attempt was made to isolate the macrocyclic ligand via its copper(II) nitrate complex 2.26 according to the scheme:

The copper complex(es) generated in this reaction sequence was extremely highly coloured. The sequence was very effective in separating the ligands from residual naphthalene but the regenerated ligand was still a mixture as judged by the number of 13 C signals in the methylene region. It is assumed that decomposition of 2.17, e.g. by reductive cleavage of C-S bonds also generates strong complexing agents which are recovered unchanged for the "purification" sequence.

Attempts to protonate and isolate insoluble salts of the ligand were unsuccessful with various acids, e.g. fluoroboric, perchloric, trifluoromethanesulphonic, nitric and sulfuric. In every case, and using a wide variety of solvent mixtures no solid material could be isolated. It appeared that prolonged contact of the ligand with acidic

solutions pomotes decomposition of the ligand which is accompanied by

a darkening of the solution. Treating the oil containing 2.17 with

fluoroboric acid in ether results in a white solid separating from a

red solution. The white solid showed only aromatic signals in the ¹H nmr spectra in D_2O and has broad infrared stretching bands at 3400 and 1050 cm⁻¹ which are due to $R-NH_3^+$ and BF_4^- respectively. Decomposition to give <u>o</u>-aminobenzenethiol is assumed to occur under these conditions.

2.27

Attempts were made to optimise the reductive detosylation method to minimise the decomposition of 2.17, and secondly various types of chromatography were investigated to separate the complex mixture of products.

Attempts to reduce side reactions were made by changing the detosylation solvent to dimethoxyethane, and reducing the contact time. The reaction were also undertaken at low temperatures, again to reduce formation of side products. The ditosylated ligand was added in some cases in the solid form and in others as a solution in the reaction solvent.

Attempts at purification by column chromatography using silica or

alumina gave no effective separation of the individual components in

the mixture, but residual naphthalene was removed in this way.

Analyses of the product indicated the presence of four components.

Preparative glc was attempted on the mixture using 10 % SE 30 [this is 10 g of methyl silicone (stationary liquid phase) and 90 g of Chromosorb W/HP (similar to fire brick as the inert support), the moving phase was nitrogen gas, with dichloromethane as elutant, the glass column had dimensions 12 ft by 0.25 inch diamater. Samples were manually injected 20-50 µl each time and the instrument used was a Pye Unicam 105 preparative gas chromatogram and the sample was collected on a turntable trap, at 200-220 °C]. Some separation was obtained but the process was very tedious and the major component was unpurified 2.17.

Gel filtration techniques proved to be the most effective method of purification, using a Sephadex LH-20 column and dichloromethane as elutant and swelling agent. In this technique the larger particles pass down quicker and the smaller particles are preferentially retained. Only about 20 \$ of the sample is obtained in the "pure" form in the first fraction of elutant. The remaining fractions contain the impurities noted previously. The ¹³C nmr spectrum of the "pure" sample (spectrum 2.2) has three aliphatic signals only. The central methylenes carbons (C_3 and C_{10}) have identical shifts. The aromatic region has major signals due to 2.17, with weak signals for any remaining impurity. Repeating gel filtration with THF gave similar results. The first fraction gave about 20 \$ "pure" macrocycle but with later fractions the impurities came down simultaneously with the macrocycle.

Purification using Sephadex LH-20 has a number of problems, the most

significant being that Sephadex LH-20 is very light and when

chloroform is used as the swelling and eluting agent the

Sephadex LH-20 floats. When low boiling elutants are used the column cracks easily. Also, Sephadex LH-20 is expensive, consequently column chromatography is only possible on a small scale and had to be repeated many times before appreciable quantities of the macrocycle 2.17 were obtained. This proved to be a very tedious process. The synthetic route to 2.17 outlined in scheme 2.18 is unfortunately severely restricted by the final (deprotection step). The earlier steps, including the cyclisation, proceed in greater than 87 % yield, but detosylation which under optimum conditions gives approximately 70 % of detosylated material is accompanied by ligand fragmentation reactions and the subsequent recovery of pure 2.17 is never greater than 20 %. The limitation in the detosylation step is particularly frustrating in the light of the generality of application of the cyclisation procedures which allow easy preparation of the ditosylated forms of a wide range of $S_2 N_2$ -macrocycles (see below).

Spectrum 2.1 ¹³C nmr Spectrum of the Impure Oil from the Detosylation Reaction

Spectrum 2.2 ¹³C nmr Spectrum of Pure 2.17 After Purification of the Impure Oil from the Detosylation Reactions

2.10 Preparations of S_2N_2 -Macrocycles with Variable Ring Sizes

In theory the synthetic procedure for preparation of macrocycles containing anilino nitrogen atoms seems to be versatile and may be adapted for preparation of S_2N_2 -macrocycles with variable ring-sizes.

Scheme 2.22

2.28, n=22.30, m=22.21, n=32.31, m=32.19, n=42.32, m=4

2.33, n=2, m=2 2.34, n=2, m=3 2.35, n=2, m=4 2.36, n=3, m=2 2.37, n=3, m=4 2.38, n=4, m=2 2.39, n=4, m=3 2.40, n=4, m=4

This synthetic route was attempted for macrocycles 2.33-2.40. The macrocycles were identified by conventional means, which rely heavily on mass spectral data (table 2.10). The possibility of oligomeric products being present cannot definitely be excluded (see section 2.6).

Macrocycle no	2.33	2.34	2.35	2.36	2.37	2.38	2.39	2.40
Ring Size	12	13	14	13	15	14	15	16
n	2	2	2	3	3	4	4	4
m	2	3	4	2	4	2	3	4
Macrocycle Obtained	No	Yes	Yes	No	Yes	Yes	Yes	Yes
% yield	-	70	69	-	71	91	82	86
Molecular peak, m/z %	305 100	624 8	638 1	598 5	652 5	638 3	652 1	666 20
Loss of Ts m/z %	150 100	469 40	483 40	-	497 2	483 5	497 3	612 15
Loss of 2Ts m/z S	-	314 10	328 6	-	342 1	328 2	343 6	511 56

TABLE 2.10: Yields and Mass Spectral Results for Macrocyles 2.33 to 2.40

With the exception of macrocycles 2.33 and 2.36 with ethane bridges between the aniline nitrogen atoms, all the macrocycles were obtained in very high yields (69-91 %). The attempted preparation of 2.33 yielded the six-membered SN-heterocycle 2.41 (parent ion peak at m/z305(100 %).

δ/ppm	Assignment	Site of Hydrogen Atom	2 3 12 13
2.40(mc)	-CH3	15 1 5	N-50 T () 15
2.88(t)	-SCH2-	2 6	
3.97(t)	-NCH2-	3 74	B 9 Numbering system
6,75-7,75(mc)	Aromatic	7-10, 12,	13 for 2.41

TABLE 2.11 ¹H nmr (80 MHz, CDC1₃) Spectrum of 2.41

Macrocycle 2.36 was not obtained, and the starting materials were recovered. Of all the permutations of the alkane linkages considered in scheme 2.22 it is only those leading to the smallest ringmacrocycles (the 12-membered ring and one of the 13-membered rings) which fail to give a high yield of ditosylated S_2N_2 -macrocycles. This suggests that some ring strain (or steric interaction involving the bulky tosyl groups) is present in these smaller rings.

TABLE 2.12 ¹H nmr (80 MHz, CDC1₃) Spectra of S₂N₂-Macrocycles

Macrocycle	2.34	2.35	2.37	2.38	2.39	2.40
n m	2 3	2 4	3 4	4 2	4 3	44 24
Assignment	9					
- <u>CH</u> 3	2.46(s)	2.40(s)	2.40(s)	2.40(s)	2.40(s)	2.40(s)
-SCH2CH2-	-	-	1.12- 1.68(mc)	1.30- 2.00 (mc)	1.25 1.85(mc)	1.25- 2.00(mc)
-S <u>CH</u> 2-	2.25- 2.50(mc)	2.25- 2.63(mc)	2.63- 3.25(mc)	2.25- 2.63(mc)	2.60- 3.00(mc)	2.63- 3.10(mc)
-NCH2CH2-	1.38- 1.88(mc)	1.25 1.83(mc)	1.68 2.19(mc)	-	1.25- 1.85(mc)	1.25- 2.00 (mc)

Generally the signals for the methylene protons between the sulfur atoms are further upfield compared with the corresponding methylenes between the nitrogen atoms. Most of the signals occur as complex multiplets.

TABLE	2.13	¹³ c	nmr	(20.12 MHz,	CDC1 ₃) Signals	a for	the	<u>cis</u> -S2N2-
Macroc	ycles							

Macrocycle	2.34	2.35	2.37	2.38	2.39	2.40
n	2	2	3	4	4	1
m	3	24	4	2	3	4
Carbon						
Atom						_
25	21.6	21.6	21.5	21.6	21.6	21.6
3.4		-	25.6	25.8	28.2	25.9
11.12	31.9	26.8	25.1	-	30.7	28.4
2.5	35.2	30.0	32.3	31.5	31.6	32.6
10.13	48.5	53.1	50.7	44.6	50.0	50.9
20	126.2	128.3	127.3	136.9	125.3	125.6
23	127.3	128.6	128.2	127.2	127.3	127.3
18	128.0	129.5	128.7	128.1	128.2	128.0
17	128.6	129.9	129.4	128.2	129.1	128.2
22	129.6	135.5	129.8	129.5	129.6	129.0
19	129.9	136.3	136.4	131.0	129.8	129.5
24 (W)	136.1	137.6	137.3	136.4	135.5	129.8
7,16(W)	138.4	139.5	140.5	138.7	137.4	129.9
8,15(W)	143.6	140.3	140.9	143.6	141.2	136.4
21(w)	143.7	143.6	143.6	144.2	143.8	143.5

a- The numbering system is based on the 16-membered macrocycle below:

The chemical shifts in the 13 C nmr spectra were assigned on the basis of relative intensities and by comparison with the precursors' spectra. Many of the spectra of the macrocycles are very similar. In each case the molecules show pseudomirror symmetry. Carbon atoms at positions 2 and 5 are more upfield than carbons 10 and 13 and all tosyl-methyl signals are found at 21.6 7 0.1 ppm. All the the macrocycles show bands characteristic of $-SO_2R$ - and <u>p</u>-disubstituted benzene groups in their infrared specta. The tosylated macrocycles are all very soluble in organic solvents. In the mass spectrum the intensities of the molecular parent ion peak are variable. Although the possibility of polymeric species may not be completely ruled out, the combined analytical data seems to suggest monomers being produced upon cyclisation. Detosylations on these macrocycles were not attempted in the light of the problems encountered with purification of the 14-membered S_2N_2 macrocycle (see section 2.9).

The general applicability of the synthetic procedure was also investigated for macrocycles with other donor sets.

2.44, X=0, R=-(CH₂) -2.45, X=S, R=-(CH₂)³NH(CH₂)₂-

Both the macrocycles 2.42 and 2.43 were obtained in reasonable yields; 46 and 57 \$ respectively (Previous preparations of 2.44 reported by Biernat⁴⁰ had yields of 3.5 \$, and were prepared via alkylation of ditosyl derivatives followed by reduction with sodium naphthalenide). Both were obtained as solids but 2.42 was significantly less soluble in organic solvents than the analogous S_2N_2 -macrocycle 2.23. Upon cyclisation the -HN- bands in the infrared spectra were lost. Detosylation was successful and macrocycles 2.44 and 2.45 were obtained in reasonable yields, and the N-H stretching band reappeared in the infrared spectra. The -NH- protons were readily exchanged in

the ¹H nmr on treatment with D_2O . The ¹H nmr of compounds 2.42 and

2.43 were quite complex when compared with the detosylated macrocycles

2.44 and 2.45 and multiplets were obtained for protons with similar

chemical shifts. For macrocycle 2.42 the $-NCH_2CH_2$ and $-NCH_2$ -signals overlap with those of the methylene groups between the oxygen atoms. Similarly for 2.43 the methylene signals $-SCH_2$ overlap with those of the $-NCH_2$ group. No attempt was made to purify the detosylated macrocycles 2.44 and 2.45 via gel filtration because of the difficulties encountered in the purification of the 14-membered detosylated macrocycle 2.17 (see sections 2.7 and 2.9).

<u>TABLE 2.14</u> Comparison of ¹H nmr Chemical Shifts of $S_2N_2 - O_2N_2$, and S2N3-Macrocycles 2.43 2.23 2.42 Macrocycle $-\underline{CH}_{3}$ 2.40(s) $-\underline{CH}_{3}$ 2.38(s) -CH₃ 2.41(s) 2.48(s) -SCH₂CH₂ 1.38-1.63-2.13(mc) -NCH₂CH₂ 1.15-1.95(mc) -NCH2CH2 2.00(mc) -SCH2CH2 -OCH2CH2 -N<u>CH</u>2 3.35-3.95(mc) 2.60- -HN<u>CH</u>2 4.00 (mc) -NCH2 2.55-4.00(mc) 2.60--SCH -000 3.33(mc)

Aromatic6.65-Aromatic6.37-Aromatic6.50-7.75(mc)7.75(mc)7.88(mc)

The protons for the central methylene of the propane bridges of S_2N_2 macrocycle 2.23 are the most downfield when compared with the other two macrocycles. Upon detosylation the ¹H nmr spectra are better resolved for compounds 2.17, 2.44 and 2.45 due to the relative

TABLE 2.15 Chemical Shifts for Detosylated Macrocycles

Macrocycle	2.44		2.17		2.45
-NCH2CH2 -OCH2CH2	1.80- 2.50(mc)	-NCH2CH2 -SCH2CH2	1.35- 2.00(mc)	-SCH2CH2	1.20- 1.85(mc)
-NCH2	3.00- 3.50 (mc)	-NCH2	3.15(t)	-NCH2	2.10- 4.00(mc)
-0 <u>CH</u> 2	3.90 4.40(mc)	-SCH2	2.65(t)	-S <u>CH</u> 2	
- NH -	4.75(b)	- NH -	5.12(b)	-NH-	5.35(b)
Aromatic	6.50- 7.10(mc)	Aromatic	6.30- 7.50(mc)	Aromatic	6.40- 7.70(mc)

In the detosylated macrocycles the central methylene protons are most upfield in macrocycle 2.45. In 2.44 the greater electronegativity of the oxygen atoms causes the signal for $-XCH_2$ methylenes to be further downfield than in the other macrocycles. $-XCH_2$ signals overlap only in macrocycle 2.45. The ¹H nmr spectra for 2.17 shows that this structure is the most flexible of the three since the $-XCH_2$ methylenes are obtained as triplets rather than complex multiplets which are obtained in 2.44 and 2.45. Thus the protons of the methylene groups are equivalent in the former macrocycle. The ¹³C nmr signal were assigned for the tosylated and detosylated macrocycles.

TABLE 2.17	¹³ C nmr	Chemical	Shifts ^a for	Detosylated	Macrocycle	3
Macrocycle		2.44		2.17		2.45
Atom §/ppm	3 2,4 9,11 10 18 16 15 17 6,14 (w) 7, 13 (w)	28.7 67.9 44.6 26.8 111.6 116.6 110.1 121.8 146.7 138.8	3 2,4 9,11 10 18 16 15 17 6,14(w) 7,13(w)	29.1 33.4 41.5 29.1 110.2 116.8 130.2 136.4 117.5 149.3	3 2,4 9,13 10,12 20 18 17 19 6,16(w) 7,15(w)	29.1 36.9 40.0 116.8 118.8 131.6 136.2 114.8 148.8

a- Same numbering system as in table 2.16

From the 13 C nmr spectra it can be seen that the position of XCH₂ is

dependent on the electronegativity of X, thus the signal for carbon

atoms 2 and 4 is most downfield for the 0_2N_2 -macrocycle, and is most upfield for the S_2N_2 -macrocycle. Overall, on detosylation the ^{13}C nmr signals for the ligands are generally further upield than those in the tosylated structures (2.23, 2.42 and 2.43).

2.12 Preparation of $\underline{\text{trans}} - S_2 N_2 - 14$ -Membered Macrocycles

The preparations of the tosylated forms of the S_2N_2 -macrocycles of variable ring-size proved to be very successful and it is possible in theory to adapt the cyclisation route to the preparation of macrocycles with <u>trans</u>- S_2N_2 donor-sets (type 2.49) as in scheme 2.24:

The preparation of macrocycles with such $\underline{\text{trans}}_{2N_2}^{2N_2}$ donor sets was first attempted on the 14-membered macrocycle. Alkylation of the thiol group of <u>o</u>-aminothiophenol yielded 2.46 in 78 \$ yield. Tosylation of 2.46 gave an oil consisting of two components (tlc

chromatography and 'H nmr spectra), which were separated easily using

a silica column. The two components are the mono and ditosylated

species (2.47 or 2.51 and 2.48). The monotosylated derivative was

removed by using neat toluene as the elutant and the remaining major component was eluted with 1:1 toluene/dichloromethane. When 2.48 was treated with base in dimethylformamide alkylation of the aniline nitrogen atoms was indicated by the loss of secondary amine stretches in the infrared spectrum of the product, but the 7-membered ring 2.50 (m/z, 319 (100 s)) was obtained instead of the desired macrocycle 2.49.

In this case the <u>intramolecular</u> reaction is presumably favoured because the tosylated alcohol is a good leaving group, and once the tosylated aniline has been deprotonated it is favourably aligned to attack the carbon bearing the tosylated alcohol group.

<u>TABLE</u> 2.18 ¹H nmr (60 MHz) Data for Compounds 2.46, 2.48, 2.50 and 2.51

	2.46	2.48	2.50	2.51
-SCH2CH2	1.70(p)	1.76(p)	1.75- 2.25(mc)	1 . 75(p)
-S <u>CH</u> 2	2.78(t)	2.55(t)	2.73(t)	2.60(t)
-OCH2 or -NCH2	3.60(t)	4.00(t)	3.75(t)	3.43(t)
-NH- and -OH-	3.83(s)	6.90- 7.90 (mc)	7.05- 7.80(mc)	6.80- 7.90(mc)
Aromatic	6.50- 7.50(mc)	6.90- 7.90(mc)	7.05- 7.80(mc)	6.80- 7.90(mc)
- <u>сн</u> з	-	2.36(s)	2.38(s)	2.23(s)
		2.25(s)		

n all opposition "I man spectra and well measured my

In all cases the H nmr spectra are well resolved. The -NH-

signal appears under the complex aromatic multiplet. Ditosylation of the alcohol/amine functionalities gives two chemical shifts in the ^{13}C

nmr spectrum for the tosyl methyl protons. The $-OCH_2$ signal is shifted further downfield as a consequence of the adjacent electron withdrawing tosyl group. Upon cyclisation to give 2.50 all the proton signals move further downfield except for the signal for $-OCH_2$ which is replaced by $-NCH_2$ and hence occurs further upfield. The two signals for the methyl protons are replaced by a single chemical signal in the ¹H nmr spectrum.

When tosylation was carried out for 2.46 a monotosylated species was also produced in about 20 % yield (see page 64). The proton nmr of this indicates that tosylation has taken place of the amine nitrogen atom as opposed to the alcohol group. This is based on the fact that the -OCH₂ signal is obtained as a triplet at 3.43 ppm. If tosylation had taken place on the alcohol functionality then the signal would be expedded closer to 4.0 ppm as in compound 2.48.

The proton nmr spectrum of 2.50 may be compared to the analogous 6membered heterocycle 2.41 (see section 2.10).

TABLE 2.19 Comparative ¹H nmr (80 MHz, CDCl₃) Chemical Shifts for Heterocycles 2.41 and 2.50

	2.41	2.50	
- <u>сн</u> 3	2.40(s)	2.38(s)	
SCH 2 CH 2	-	1.75-2.25(mc)	
-SCH	2.88(t)	2.73(t)	

Spectra for both heterocycles are well resolved and are similar except that 2.50 has an additional methylene present since this ring is seven membered. This extra methylene cause the signals for -SCH₂ to appear further upield in 2.50 when compared with 2.41. The ¹³C nmr signals for the molecules prepared in scheme 2.24 for the <u>trans-S₂N₂</u> macrocylic preparation are given below.

TABLE 2.20 ¹³C nmr Signals^a for 2.46, 2.48 and 2.50

	2.46	2.48	2.50
Carbon			21,90
Atom	δ∕ppm	δ/ppm	δ/mm
17	-	21.5	21 5
22	-	21.7	21.5
3	31.3	28.6	
4	32 3	20.0	30.9
2	52.5	32.0	31.4
2	01.2	68.3	49.8
9	115.2	119.7	128.2
16	-	123.5	136.4
11	118.8	124.8	128 5
20	-	127.3	120.5
15	-	128 0	107 7
19	_	120.0	127.7
14	-	129.0	-
10	-	130.1	129.4
12	129.7	133.0	130.6
21	-	135.4	-
10	135.8	135.6	133 7
6	118.0	136.6	128 2
7	148.2	128 8	130.3
13			143.1
18	-	144.5	143.3
	-	145.2	-

a- The numbering system for the molecules are:

From the carbon nmr spectrum it can be seen that on tosylation to give 2.48 carbon atoms 3 and 4 move upfield but 2 occurs 7.1 ppm further downfield due to the adjacent tosyl group. The general trend is that tosylation of both the alcohol and amine groups tends to shift the signals downfield, i.e. 6 changes from 118.0 ppm to 136.6 ppm, the exception is benzene carbon atom 7 which moves further upfield.

For the heterocycles 2.41 and 2.50 it can be seen that the aliphatic carbon signals in the 13 C nmr spectra are further downfield in 2.50 than those of the analogous carbon atoms in 2.41. This is also the situation for most of the aromatic signals.

TABLE 2.21 Comparative ¹³ C nmr Signals of Heterocycles 2.41 and 2.50

2.41	2.50 J
$5 - \frac{3}{14} + \frac{3}{11} + \frac{3}{11} + \frac{3}{10} + \frac{3}{5} + \frac{3}{5} + \frac{3}{5} + \frac{3}{10} + \frac{3}{5} + \frac{3}{10} + \frac{3}{5} + \frac{3}{10} + \frac{3}{5} + \frac{3}{10} + $	16 15 12 SO N5 SI 14 13 11 18
	10-9

Carbon Atom δ/ppm

15	21.5	16	21.5
2	25.7	2	31.4
		4	49.9
3	44.7	3	30.9
10	124.6	11	128.2
8	126.5	9	128.5
7	126.9	8	130.6
13	128.0	14	127.7
9	128.4	10	133.7
12	129.8	13	129.4
14(w)	119.9	15(w)	136.4
61	120 0	7(4)	128.3

Overall the tosylation route is not successful for preparation of $\underline{\text{trans}}-S_2N_2$ macrocycles because $\underline{\text{intramolecular}}$ cyclisation takes place in preference to $\underline{\text{intermolecular}}$ cyclisation to give the SN-heterocycles which are obtained in high yields.

2.13 Alternative Method for Preparation of the 14-Membered S_2N_2 -Macrocycle

Although cyclisation is very effective for N-tosyl derivatives (sections 2.6, 2.10 and 2.11), the major limitation is that detosylation produces a mixture of components which are difficult to separate in large quantities therefore, direct alkylation of the free anilino nitrogen may be considered, although

- (i) there is reduced nucleophilicity when compared with the deprotonated tosylates and
- (ii) additionally difficulties may be experienced in cyclisations.

Preparation of 2.17 was attempted using direct alkylation with 1,3dibromopropane as in scheme 2.25.

Scheme 2.25

Alkylation of the nitrogen atoms was suggested by changes in the regions $3200-3400 \text{ cm}^{-1}$ of the infrared spectrum. A tlc of the oil produced showed that it contains at least 3 components. The ¹ H nmr (spectrum number 2.3) of the sample is very similar to that for the material obtained from the detosylation reaction (spectrum number 2.1) in section 2.8. The slight excess of protons in the $-NCH_2$ region when compared with $-SCH_2$ could be accounted for if some of the impurity 2.52 is present.

2.52

A 13 C nmr spectrum of the oil (spectrum 2.3) is also similar to that of pure 2.17 as obtained from the detosylation reaction (see section 2.7and 2.9). The only difference is that there are fewer impurities present in the aliphatic region. The oil was purified by column chromatography, removing some impurities by using a silica column. Further purification was achieved by gel filtration using Sephadex LH-20 and chloroform as elutant. By these techniques the "pure" macrocycle 2.17 was obtained as judged by carbon nmr (spectrum 2.4) in 20-37 % yields.

Thus the direct alkylation with 1,3-dibromopropane proves to be a more

effective route to the 14-membered S_2N_2 -macrocycle 2.17. This route

may be applicable to other $S_2 N_2$ -macrocycles but the drawback to this

Spectrum 2.3 ¹³C nmr Spectrum of the Impure Oil from Direct Alkylation

Impure Oil from Direct Alkylation Reactions

route is that the reaction conditions will have to be adapted for each individual ring size, thus it is unlikely to be as versatile as cyclisations involving the tosyl derivatives.

2.14 Reduction of β -Dialdimines to Obtain the Saturated Dibenzo Macrocycles 2.3

The f-dialdimines have been obtained in good yields (section 2.1) and the target molecules 2.3 can be obtained by high pressure hydrogenation. These reductions were performed in the collaborating institution's laboratories (ICI Organics Division), giving the macrocycles 2.3a and 2.3b in high yields (> 57 \$).

Scheme 2.26

Strong parent ion peaks of intensity 96 % were obtained at m/z 312 (2.3a) and 310 (2.3b). Reduction of the cycles was indicated by loss of C=C and C=N stretches in the infrared spectrum. In addition the ¹H nmr spectra have doublets for the methyl protons in both macrocycles. 92 TABLE 2.22 ¹H nmr (220 MHz, CDCl₃) Spectra of Macrocycles 2.3a and 2.3b

	2.38		2.35
- <u>CH</u> 3	1.05(d)	- <u>CH</u> 3	1.05(d)
-OCH2CH2	1	-NHCH2CH2	1
and -CH3CH	2.00-2.50 (mc)	and -CH ₃ CH	J1.95-2.45(mc)
-NHCH2	3.03(t)	-N <u>CH</u> 2	$ \begin{array}{c} 2.94(t) \\ 3.10-3.26(mc) \\ 3.36-3.60(mc) \end{array} $
-0 <u>CH</u> 2	3.35-3.54(mc)		-
-NH-	5.05(s)	- N H -	4.35(s)
Aromatic	6.60-7.00(mc)	Aromatic	6.60-7.00(mc)

The 1 H nmr spectra of 2.3a and 2.3b are discussed in more detail in chapter 3, section 3.2.2. The 13 C nmr signals for the two molecules are given below.

TABLE 2.23 13 C (20.12 MHz, CDCl₃) nmr Spectra of 2.3a and 2.3b

Macrocycle	2.3a	2.3b 3
Carbon Atom ^a /ppm		2 4
3	31.4	31.6 16 13 14 ×1 5× 6
10	28.6	26.7 ()())
2,4	67.8	52.7 17
9,11	51.5	45.7 18 13 N N 7
18	109.7	111.1
16	116.4	119.3 11 9
15	111.1	111.2

The ¹³C nmr spectra of the two macrocycles are quite similar and any differences are a consequence of the greater electronegativity of the oxygen atoms in macrocycle 2.3a compared to nitrogen atoms in 2.3b. The macrocycles 2.3a, 2.3b, 2.17 were characterised by the "sporting methods" outlined above. Detailed discussion of comparative structural features of 2.3a, 2.3b and 2.17 is contained in chapter 3.

References

- 1. Behr, H, Breitmaier, E, Chem. Ber., 111, 913 (1978).
- 2. Ansell, C.W.G., Chung, M.F.H.Y.J., McPartlin, M., Tasker, P.A., J. Chem. Soc. Dalton 2113 (1982).
- 3. Muller, R., Wohrle, D., <u>Makromol.</u> <u>Chem.</u>, <u>176</u>, 2775 (1975).
- 4. Hiller, H., Dimroth, P., Pfitzner, H., <u>Ann. Chem.</u>, <u>717</u>, 137 (1968).
- 5. Lorch, V.E., Breitmaier, E., Chem. Z., 99, 87 (1975)
- 6. Goedken, V.L., Weiss, M.C., Inorg. Synth. 115 (1980).
- 7. Wainwright, K.P., J. Chem. Soc. Dalton, 2117 (1980).
- 8. Fabbrizzi, L., Paoletti, P., Clay, R.M., <u>Inorg. Chem.</u>, <u>17</u>, 1042 (1978).
- 9. Kluiber, R.W., Sasso, G., <u>Inorg. Chim. Acta., 4</u>, 226 (1970).

10. March, J., <u>Advanced Organic Chemistry: Reactions, Mechanisms,</u> <u>and Structure</u>, 2nd ed. McGraw-Hill, International Book Company (1984).

- 11. Stetter, H., Marx-Moll, L., Chem. Ber. 1, 677 (1958).
- 12. Stetter, H., Marx, J., <u>Ann. Chem. 606</u>, 59 (1957).

13. Gold, E.H., U. S. Patent, 3,965,175, June 22nd, (1976).

14. Tabushi, I., Taniguchi, Y., Kato, H., <u>Tetr. Lett., 12</u>, 1049 (1977).

15. Chattaway, F.R., Olmsted, J.M.D., <u>J. Chem. Soc., 97</u>, 938 (1910).

16. Lockhart, J.C. Thompson, M.E., J. Chem. Soc. Perkin I, 202

(1977).

17. Kimura, E., Machida, R., Kodama, M., J. Amer. Chem. Soc.,

<u>106</u>, 5497 (1984).

95

- 18. Pelissard, D., Louis, R., <u>Tetr. Lett.</u> 45, 4589 (1972).
- 19. Duckworth, P.A., PhD Thesis, University of Sydney, (1984).
- 20. Ansell, C.W.G., Cooper, M.K., Dancey, K.P., Duckworth, P.A., Henrick, K., McPartlin, M., Tasker, P.A., <u>J. Chem. Soc. Chem.</u> <u>Comm.</u>, 439 (1985).
- 21. Richman, J.E., Atkins, T.J., <u>J. Amer. Chem. Soc.</u>, <u>96</u>, 2268 (1974).
- 22. Searle, G.H., Geue, R.J., <u>Aust. J. Chem., 37</u>, 959, (1984).
- 23. Clay, R.M., McCormac, H., Micheloni, M, Paoletti, P., <u>Inorg.</u> <u>Chem.</u>, <u>21</u>, 2494 (1984).
- 24. Fabbrizzi, L., J. Chem. Soc. Dalton, 1857 (1979).
- 25. Fabbrizzi, L., Sabatini, L., <u>Inorg. Chem.</u>, <u>18</u>, 438 (1979).
- 26. Sugimoto, M., Nonoyana, M., Ito, T., Fujita, J., <u>Inorg.</u> <u>Chem., 22, 950 (1983).</u>
- 27. Muller, F.R., Handel, H., <u>Tetr. Lett.</u>, <u>23</u>, 2769 (1982).
- 28. Atkins, T.J., Richman, J.E., Oettle, W.F., Org. Synth., 58, 86 (1978).
- 29. Bencini, A., Fabbrizzi, L., Poggi, A., <u>Inorg. Chem.</u>, <u>20</u>, 2544, (1981).
- 30. Vriesema, B.K., Buter, J., Kellogg, R.M., <u>J. Org. Chem.</u>, <u>49</u>, 110 (1984).
- 31. Laakso, T.M., Reynolds, D.D., <u>J. Amer. Chem. Soc.</u>, <u>73</u>, 3518 (1951).

32. Searles, S., Nukina, S., <u>Chem. Rev., 59</u>, 1077 (1959).
33. Snyder, H.R., Heckert, R.E., <u>J. Amer. Chem. Soc., 74</u>, 2006

(1952).

34. Snyder, H.R., Geller, H.C., <u>J. Amer. Chem. Soc.</u>, <u>74</u>, 4864 (1952).

- 35. Schreiber, R.S., Shriner, R.L., <u>J. Amer. Chem. Soc. 56</u>, 1618 (1934).
- 36. Klamann, D., Hofbauer, G., Chem. Ber., 86, 1246 (1953).
- 37. Closson, W.D., Ji, S., Schulenberg, S., <u>J. Amer. Chem. Soc.</u> <u>92</u>, 650 (1970).
- 38. Ji, S., Gortler, L.B., Waring, A., Battisti, A., Bank, S., Closson, W.D., Wriede, P., <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 5311 (1967).
- 39. Levy, G.C., Lichter, R.L., Nelson, G.L., <u>Carbon-13</u> <u>Nuclear</u> <u>Magnetic Resonance Spectroscopy</u>, 2nd ed., John Wiley & Sons, pages 110-112 (1980).
- 40. Biernat, J.F., Luborch, E., <u>Tetr.</u>, <u>40</u>, 1927 (1984).

CHAPTER 3: PROPERTIES OF X2N2-MACROCYCLES

		Page
3.1	Ligating Properties of the X2N2-Macrocycles	99
3.2	Solution Chemistry of the X_2N_2 -Macrocycles	99
3.2.1	Basicities of the Ligands	99
3.2.2	Rigidities of the Ligands in Solution	107
3.2.3	Formation Constants of Metal Complexes	112
3.2.4	Preparation of Metal Complexes	118
3.3	Structures of the Macrocycles and Their Metal	
	Complexes	124
3.3.1	X-Ray Structures of the N_{ij} -Ligand and its Low- and	
	High-Spin Nickel(II) Complexes	124
3.3.2	Comparison of Co-ordination Geometries of the Low-	
	Spin 14-Membered N ₄ -Macrocycles	142
3.3.3.	Comparison of Co-ordination Geometries of the High-	
	Spin 14-Membered N ₄ -Macrocycles	143
3.3.4	Goodness-of-fit of the 14-Membered Macrocycles for	
	Low- and High-Spin Nickel(II)	146
3.3.5	Molecular Mechanics	149
3.3.5.1	Free Ligand 3.1b	151
3.3.5.2	High-Spin Complex [Ni(3.1b)(NCS) ₂]	155
3.3.5.3	Low-Spin Complex [Ni(3.1b)](BF ₄) ₂	159
3.3.5.4	Future Applications of Molecular Mechanics	
	 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3.1 3.3.1 3.3.2 3.3.3.1 3.3.5.1 3.3.5.1 3.3.5.1 3.3.5.1 3.3.5.1 3.3.5.2 3.3.5.3 3.3.5.4 	 3.1 Ligating Properties of the X₂N₂-Macrocycles 3.2 Solution Chemistry of the X₂N₂-Macrocycles 3.2.1 Basicities of the Ligands 3.2.2 Rigidities of the Ligands in Solution 3.2.3 Formation Constants of Metal Complexes 3.4 Preparation of Metal Complexes 3.3 Structures of the Macrocycles and Their Metal Complexes 3.3.1 X-Ray Structures of the N₄-Ligand and its Low- and High-Spin Nickel(II) Complexes 3.3.2 Comparison of Co-ordination Geometries of the Low-Spin 14-Membered N₄-Macrocycles 3.3.3 Comparison of Co-ordination Geometries of the High-Spin 14-Membered N₄-Macrocycles 3.3.4 Goodness-of-fit of the 14-Membered Macrocycles for Low- and High-Spin Nickel(II) 3.3.5 Molecular Mechanics 3.3.5.1 Free Ligand 3.1b 3.3.5.2 High-Spin Complex [Ni(3.1b)(NCS)₂] 3.3.5.4 Future Applications of Molecular Mechanics

3.1 Ligating Properties of the X_2N_2 -Macrocycles

The macrocycles of type 3.1 have been prepared successfully as reported earlier in chapter 2, sections 2.7, 2.13 and 2.14.

The ligating properties of these macrocycles will be considered under two main headings:

(i) solution chemistry of the ligands and

(ii) solid-state structures of the ligands and their metal complexes.

3.2 SOLUTION CHEMISTRY OF THE X2N2-MACROCYCLES

3.2.1 Basicities of the Ligands

In general, the co-ordination chemistry of the three X_2N_2 -macrocycles chosen for study is very different. The protonation constants for the O_2N_2 - and N_4 -ligands, 3.1a and 3.1b respectively, have been obtained

in 95 \$ methanol by Lindoy and co-workers at James Cook University.

Protonation constants ($\log K_i$, for the ith protonation) were obtained

for equilibria of the type given below where L is the ligand.

$$H_{(i-1)}L^{(i-1)+} + H^{+} - H_{i}L^{(i)+} K_{i} = \frac{[H_{i}L^{(i)+}]}{[H_{(i-1)}L^{(i-1)+}][H^{+}]}$$

The protonation constant listed below are quoted as values of $\log_{10} K_i$. The overall protonation constant \log_{β_i} is the sum of the stepwise constants $\log K_i$.

i.e. $\log_{\beta_{1}} = \log_{i}^{K} + \log_{i-1}^{K} + \log_{i-2}^{K}$ to \log_{i}^{K}

Because the ligands 3.1 contain four donor atoms, there is the possibility of tetra-protonation of the ligands and thus four equilibria are possible:

3.1 + H⁺
$$\xrightarrow{K_1}$$
 [3.1)H]⁺ ; $K_1 = \frac{[(3.1)H]^{+}}{[3.1][H^{+}]}$

 $[(3.1)H]^{+}$ + H^{+} $\frac{K_{2}}{2} [(3.1H_{2}]^{2+}$; $K_{2} = \frac{[(3.1)H_{2}]^{2+}}{[(3.1)H]^{+}[H^{+}]}$

$$[(3.1)H_2]^{2+} + H^+ \underbrace{\overset{\mathsf{K}_3}{\longrightarrow}} [(3.1)H_3]^{3+} ; \mathsf{K}_3 = \frac{[(3.1)H_3]^{3+}}{[(3.1)H_2]^{2+}[H^+]}$$

$$[(3.1)H_3]^{3+} + H^+ - L(3.1)H_4]^{4+} ; K_4 = \frac{[(3.1)H_4]^{4+}}{[(3.1)H_3]^{3+}[H^+]}$$

The protonation constants for 3.1a and 3.1b are given in table 3.1 and

<u>TABLE 3.1</u> LogK and LogB Values for Protonation of Macrocycles and Their Precursors in 95 \$ Methanol (I=0.1 M; $Et_{ij}NClO_{ij}$)

Ligand Number	Ligand Structure	$\log K_{1}$	LogK (logg2)	LogK (logg3)	LogK ₄ (logB ₄)
3•3 ⁸	HAN NHO H2 NH2	5.37 (5.37)	4.30 (9.67)	-	-
3.1b ^a		4.18 (4.18)	3.10 (7.28)	-	3
3.2 ^a		4.98 (4.98)	4.07 (9.05)	-	-
3.1a ^a		4.28 (4.28)	1.83 (6.11)	-	-
3.8 ^b		9.19 (9.19)	5.40 (14.59)	÷	-
3.7°		9.45 (9.45)	3.68 (13.13)	1.36 (14.49)	1.10 (15.59)

TABLE	3.1 continued				
3.6 [°]	H NH2 H NH2 H NH2	9.75 (9.75)	8.80 (18.55)	-	- 191
3.9 [°]		9.05 (9.05) 9.00 (9.00)	5.31 (14.36) 5.90 (14.50)	2.60 (16.96) 2.32 (17.22)	1.28 (18.24) 2.00 (19.22)
3.4 ^d		10.24 (10.24)	9.50 (19.74)	7.26 (27.00)	6.01 (33.01)
3.5 ^{e,f}		11.59 (11.59)	10.63 (22.22)	1.61 (23.83)	2.42 (26.26)

- a- This work
- b- Anderegg, A., Ekstrom, A., Lindoy, L.F., Smith, R.J., <u>J. Amer.</u> Chem. Soc., <u>102</u>, 2670 (1980)
- c- Private communications with L.F. Lindoy
- d- Calculated from ΔG values in water reported by Fabbrizzi, L., Barbucci, R., Paoletti, P., J. <u>Chem. Soc. Dalton</u>, 1527, (1972)
- e- Micheloni, M., Sabatini, A., Paoletti, P., J. Chem. Soc. Perkin II, 828, (1978)- measured in water
- f- Also logK, logK, logK, logK, reported 11.5, 10.2, 1.6, 0.9 respectively measured in Water by Kimura, E., Kodama, M., J. <u>Chem</u>. <u>Soc. Dalton</u>, 116 (1976) and references therein
- *- These values have been reported by Smith, R.M., Martell, A.E.,

<u>Critical Stability Constants, Vol 2 : Amines</u>, Plenum, New York, (1975).

The 0_2N_2 - and N_4 -macrocycles 3.1a and 3.1b, respectively, are both

relatively poor bases and therefore are not expected to form very

stable metal complexes. Unfortunately the protonation constants for the S_2N_2 -macrocycle 3.1c could not be determined due to the very low solubility of the ligand and its protonated form in 95 \$ methanol. This solvent mixture was used for the potentiometric titrations to determine the logK values of the other ligands. (However, recently a paper has been published¹ on protonation constants of the aliphatic S_2N_2 analogue of cyclam, and the first and second constants are 9.77 and 5.72 respectively). The proton basicities of macrocycles 3.1a and 3.1b and their linear analogues 3.2 and 3.3 may be compared with the values obtained for related dibenzo and aliphatic quadridentate ligands (table 3.1).

It can be seen that 3.1a, 3.1b and their linear precursors are the weakest bases. This is presumably because they only contain anilino nitrogen atoms; it has been well documented²⁻⁶ that anilines are weak bases because of delocalisation of nitrogen lone-pair electron density into the aromatic rings.

The $\log K_1$ values for 3.1a and 3.1b and their linear analogues (3.2 and 3.3, respectively) are of the same order of magnitude and fall in the range typical for <u>o</u>-disubstituted anilines²⁻⁶. It is noticeably easier to add a second proton to the linear ligands 3.2 and 3.3. This is presumably because electrostatic repulsions between protonated nitrogen atoms will be significantly reduced in the extended conformations (3.10) which are possible for the linear ligands but are

3.10 X=0 or NH

A similar explanation may be given for the greater ease with which the protonation of 3.1b occurs relative to 3.1a. A <u>trans</u> arrangement of the two $C-NH_2^+-C$ groups (3.11) is possible in the diprotonated N_4^- macrocycle and this is presumably more favourable than the alternate <u>cis</u> arrangements (3.12 or 3.13) which would experience a more serious <u>intramolecular</u> repulsion between the charged centres. Such a <u>cis</u>-arrangement of quaternary atoms (3.14) is inevitable for the diprotonated form of the $O_2N_2^-$ -macrocycle 3.1a.

The effect of changing from aniline to benzyl amine-type nitrogen atom can be considered by comparing 3.1a with 3.8. The value of $\log K_1$ is significantly higher for 3.8 because the first protonation can occur at an aliphatic nitrogen atom. In theory, the second protonation of the related N_{ij} -system 3.7 could occur either at the aliphatic or anilino nitrogen atom. The observed value of $\log K_2$ (3.68) suggests that the second protonation in fact occurs at the anilino nitrogen atom because its value is similar to the second protonation constant in the all-anilino system 3.1b.

The benzylamino-macrocycle 3.7 can be compared with the linear analogues 3.9 and 3.6. The first protonation constants, presumably involving a benzylamino nitrogen atom in each case, are similar. However, diprotonation of 3.6 is greatly favoured over that for 3.7 and 3.9. The least favourable second protonation occurs for the macrocycle 3.7, where the sites of protonation either involve the second benzylamino nitrogen (with the significant electrostatic repulsion, as in 3.15) or the "trans"-anilino nitrogen which will be associated with a smaller electrostatic repulsion, but involves protonation of a less basic nitrogen atom (3.16).

As 3.6 contains two terminal aliphatic nitrogens, diprotonation can be achieved using the more basic nitrogen atoms and having these well separated as in the extended form represented by 3.17. For 3.9 the second protonation will occur either at the anilino or at the more remote benzylamino nitrogen; however, in both cases the protonated nitrogen atom sites can never be as far apart as in the diprotonated form of 3.6.

Both the 14-membered N_{4} -macrocycles bearing fused <u>o</u>-benzene substituents, 3.1b and 3.7, are significantly less basic than their completely aliphatic analogue cyclam 3.5. This is to be expected in terms of the nature of the donor atoms in 3.5 which are all aliphatic secondary amines.

The first protonation of 3.5 is slightly more favourable than for its linear analogue 3.4. This is possibly because the nitrogen lone-pair electrons in 3.5 are directed towards the centre of the N_{4} -donor set (see 3.18) and <u>intramolecular</u> hydrogen bonding involving the added protons may be more favourable.

For the linear ligand 3.4, the third protonation constant is higher than for the macrocycle 3.5. Once again, this is presumably because 3.4 can adopt an extended conformation which allows the three positively charged centres to become relatively well-separated as described above for the anilino-containing systems.

In conclusion, it can be said that the most basic ligands are those

containing all aliphatic nitrogen atoms i.e. of cyclam type. These

are also expected to be the most flexible systems. The mixed

benzylamino/anilino ligands (i.e. 3.6, 3.7 and 3.9) have intermediate

As 3.6 contains two terminal aliphatic nitrogens, diprotonation can be achieved using the more basic nitrogen atoms and having these well separated as in the extended form represented by 3.17. For 3.9 the second protonation will occur either at the anilino or at the more remote benzylamino nitrogen; however, in both cases the protonated nitrogen atom sites can never be as far apart as in the diprotonated form of 3.6.

Both the 14-membered N_{4} -macrocycles bearing fused <u>o</u>-benzene substituents, 3.1b and 3.7, are significantly less basic than their completely aliphatic analogue cyclam 3.5. This is to be expected in terms of the nature of the donor atoms in 3.5 which are all aliphatic secondary amines.

The first protonation of 3.5 is slightly more favourable than for its linear analogue 3.4. This is possibly because the nitrogen lone-pair electrons in 3.5 are directed towards the centre of the N_{4} -donor set (see 3.18) and <u>intramolecular</u> hydrogen bonding involving the added protons may be more favourable.

For the linear ligand 3.4, the third protonation constant is higher than for the macrocycle 3.5. Once again, this is presumably because 3.4 can adopt an extended conformation which allows the three positively charged centres to become relatively well-separated as described above for the anilino-containing systems.

In conclusion, it can be said that the most basic ligands are those

containing all aliphatic nitrogen atoms i.e. of cyclam type. These

are also expected to be the most flexible systems. The mixed

benzylamino/anilino ligands (i.e. 3.6, 3.7 and 3.9) have intermediate

basicity. The most weakly basic ligands are those possessing only anilino donors (i.e. 3.1a and 3.1b) and these systems are also likely to have the most rigid structures. The combination of the poor basicity of the N_{ij} -macrocycle 3.1b and its rigidity is likely to make it a significantly worse ligand than its <u>o</u>-aminobenzylamino and aliphatic (cyclam) analogues for metal ions other than those for which it has ideal geometry (see also below). Similarly, the O_2N_2 -ligand 3.1a is likely to be a much less effective complexing agent than its benzylamino analogue 3.8 (see table 3.1).

3.2.2 Rigidities of the Ligands in Solution

Detailed high-resolution 1 H nmr (220 MHz) spectral studies on ligands 3.1a and 3.1b suggest that these have greater rigidities than the analogous 14-membered macrocycles 3.7 and 3.5. Simple multiplets are obtained for the methylene protons in these two compounds, indicating that the two hydrogen atoms are equivalent or that their environments interconvert rapidly on the nmr scale.

triplet H singlets

3.7 3.5

107

The rigidity in 3.1a and 3.1b leads to the non-equivalence of

methylene protons. Very complex spin multiplets for the central

methylenes of the propane bridges are observed.

The spectra in the regions associated with the methylene groups adjacent to the heteroatoms in 3.1a and 3.1b are given below.

For the macrocycles the methylene hydrogen atoms are identified using the lettering system below.

The two propane bridges may adopt a cyclohexane-like ring configuration (see X-ray determination of 3.1b), and thus the protons may be located in axial or equatorial sites. Newman projections may also be used to assist in interpreting the spectra a are presented

Axial/Equatorial Configurations for the Propane Bridges

Newman Projections Corresponding to the Above Configurations

Geminal coupling across two bonds is usually stonger than vicinal coupling through three bonds. Innumerable results from spectra of compounds containing 6-membered rings⁷ in the chair form, have been obtained and vicinal coupling constants have been reported; J(axial,axial) in the range 8-13 Hz, and J(axial,equatorial) in the range 2-6 Hz, and J(equatorial,equatorial) significantly smaller, about 1 Hz.

The ¹H nmr spectrum of the O_2N_2 macrocycle can be interpreted if it is assumed that geminal coupling of proton E to F and vicinal coupling to G are equivalent. Similarly for proton A, geminal coupling to B is apparantly identical to cis (axial,axial) vicinal coupling to C,

F is strongly coupled to the geminal proton E and shows a weak (axial,equatorial) coupling to the vicinal proton G giving four lines (see figure 3.1).

Proton B gives rise to a more complex signal; a stong coupling (12 Hz) to proton A, a weaker vicinal coupling (5 Hz) to C, and a still weaker coupling (2 Hz) to vicinal proton D.

A further complication is that signals for A and B overlap and give rise to a total of ten lines as shown in figure 3.1.

FIGURE 3.1 Multiplet Systems for Protons A, B, E and F in 3.1a

overlap to give multiplet below

Coupling Between Protons in the Methylene Groups in the ¹H nmr Spectrum of the 0_2N_2 -Macrocycle 3.1a A+B F E

The spectrum of the N_{ij} -macrocycle can be interpreted in an analogous manner, see figure 3.2. In this compound the spectrum is easier to interpret because the methylene hydrogens do not overlap.

 $J_{EF} = J_{EG}$ $J_{EF} >> J_{FG}$ $J_{AB} = J_{AC} >> J_{AD}$ $J_{AB} > J_{BC} > J_{BD}$

Coupling Between Protons in the Methylene Groups in the 1 H nmr Spectrum of the N₄-Macrocycle 3.1b

The interpretation of the ¹H nmr spectra assumes that the methyl substituent is in the equatorial position because axial-axial vicinal coupling of E with G is obtained $(J_{EG} = 12 \text{ Hz})$, if G had been

supported by molecular mechanics calculations (see section 3.3.5).

Macrocycles 3.1a and 3.1b are marginally more rigid than their linear analogues 3.7 and 3.5, as seen from the ¹H nmr spectra. Thus the methylene proton signals are obtained as complex multiplets due to the non-equivalence of methylene protons in the nmr time scale.

3.2.3 Formation Constants of Metal Complexes

Potentiometric titrations measurements have been used to assess the thermodynamic stabilities of the metal complexes in solution.

The stability constants correspond to logK values for formation of the respective 1:1 complexes. The equilibrium constants (really concentration constants) are defined by:

$$M^{2+}$$
 + $L = \frac{K_1}{[ML]^{2+}}$
where $K_1 = \frac{[ML]^{2+}}{[M^{2+}][L]}$

The stability constants for the systems chosen for study were determined by Lindoy and co-workers at James Cook University. The pH titration method was used to obtain values (see section 3.2.1 above) for dicationic metal complexes of the ligands 3.1a, 3.1b and their

linear analogues in 95 % methanol (I = 0.1 M [(CH_3)₄N]ClO₄, with

[(CH₃)₄N]OH (0.096 M) used as titrant). Values are included in table

3.2. Unfortunately stability constants could not be obtained for

complexes of 3.1c under comparable conditions due to the insolubility of the ligand in 95 % methanol. However, values for stability constants of the copper(II) and nickel(II) complexes of the S_2N_2 cyclam analogue have been reported¹ to be 15.96 and 8.91 respectively. The values for particular complexes of 3.1b, 3.2, and 3.7 could not be accurately determined because the strong complexation involved resulted in the complexes being virtually totally formed over the pH region used for the measurements. In particular, this applied to the copper(II) complexes of 3.1b and 3.7 and the nickel(II) complexes of 3.7. Alternatively, for the cobalt(II) complex of 3.1b, precipitation occurred early in the titration. An additional problem arose for the nickel(II) complex of 3.1b since very highly coloured materials, assumed to be the result of ligand oxidation, separated out during titration.

<u>TABLE 3.2</u> Stability Constants (logK₁) for Metal Complexes of Macrocycles and Their Linear Analogues

Ligand number	Structure	Log	K ₁ for M	letal Com	olexes	
		Co(II)	Ni(II)	Cu(II) 2	Zn(II)	Cd(II)
3.3 ^d (HAN NH H2 NH2	~3.5	6.29	>13	3.13	<3
3. 16 ^d		a	Þ	C	3.81	2
3.2 ^d		<2.5	<2.5	a	<2.5	<2.5
3.1a ^d		<3	<3	3.5+.1	I <3	<3
3.8		-	3.7 ^e	8.2 ^f	~3.0 ⁶	5
3.7		-	c	c	8.57 ¹	ⁿ 7.75 ^h

*- Measurements were obtained in aqueous medium

- a- Precipitation early in titration, therefore value unobtainable
- b- Very highly coloured materials separate during titration, assumed to be result of ligand oxidation.
- c- Measurement too high to be determined accurately under analogous conditions to those used for other entries in the table
- |- Reported in Smith, R.M., Martell, R.E., Critical Stability Constants Vol 2 : Amines, Plenum, New York, (1975)
- d- This work
- e- Refs 8-11

Table 3.2 cont

i- Refs 14-16,23
j- Refs 17-23
k- Refs 17,22
l- Refs 14-16, 24-27
m- Refs 21,28,32
n- Refs 29-31
o- Ref 18
p- Ref 33
q- Ref 29

The systems chosen for study (3.1a, 3.1b, 3.2, 3.3) gave relatively weak complexes with the Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} and Cd^{2+} . The highest values observed were for the nickel(II) and copper(II) complexes of the N₄-linear ligand 3.3. The stability constants for this ligand follow the Irving Williams Rule with Ni(II) < Cu(II) > Zn(II). Very low stability constants were observed for the 0_2N_2 ligand 3.2 because the incorporation of phenoxy ether groups lowers the π -donor capabilities of the quadridentate ligand. Ligand 3.1a is also a poor ligand and the only stability constant which can be recorded with any precision is that for the copper(II) complex.

The metal ion which allows most favourable comparison of the stability constants for the various 14-membered macrocycles and related linear analogues is Zn(II). Comparing 3.1a and 3.1b with their linear analogues suggests that a slight macrocyclic effect operates ($\Delta \log K_1$

value of <u>ca.</u> 0.5 and 0.68, respectively). The N_{μ} -macrocycle 3.1b gives a slightly more stable complex with Zn(II) than the O_2N_2 -macrocycle 3.1a.

When the $0_2 N_2$ -macrocycles 3.1a and 3.8 are compared, it can be seen as expected (see section 3.2.1) that the benzylamino ligand 3.8 gives stronger complexes with Ni(II) and Cu(II) than does the anilino system Analogously the N_{4} system 3.7 gives a more stable Zn(II) 3.1a. complex than 3.1b presumably for similar reasons.

No major macrocyclic effect is observed when 3.7 is compared with its linear analogues 3.6 and 3.9. More stable Zn(II) and Cd(II) complexes are observed for 3.6. Additionaly, for these ligand systems, the cadmium(II) complexes are less stable than the zinc(II) complexes, possibly because the cadmium ion is larger in size (i.e. the cavity of the macrocycle 3.7 is too small to accommadate the Cd(II) ion).

The stability constants for the aliphatic ligands 3.4 and 3.5 cannot be strictly compared with the others in table 3.2 because the measurements were carried out in aqueous media. However, it is clear that the stabilities of these metal complexes are much higher than those of both ligand types 3.1b and 3.7. Also, there appears to be a much larger macrocyclic effect operating for the aliphatic N_{μ} -system (i.e. the nickel(II) complex of 3.5 is approximately 10³ times more stable than for 3.4).

In conclusion, it can be said that the most favourable and thermodynamically stable complexes obtained are for the most flexible systems containing all aliphatic amines nitrogens (3.4 and 3.5). The most weak complexes were obtained for the all anilino nitrogen donor

systems (3.1a, 3.1b, 3.2 and 3.3). The mixed anilino/benzylamino

ligands with fused benzene rings have intermediate stability

constants. Thus the poor donor ability of ligands 3.1a and 3.1b together with their inherent rigidity (which makes these systems less able to accommodate to the steric requirements of different metals) might both be expected to make these poorer ligands than other systems contained in table 3.2. This conclusion is borne out by attempts to prepare the metal complexes (see below).

3.2.4 Preparations of Metal Complexes

Two strategies were considered for the preparation of the divalent metal ion complexes of the macrocyclic ligands. The first is the precipitation of a salt of the dicationic complex $[Ni(macrocycle)]^{2+}$ from solution using large counter-ions (e.g. ClO_{4}^{-} , BF_{4}^{-} , PF_{6}^{-} , NO_{3}^{-} etc.). Bosolo concludes³⁴ that "solid salts separate from aqueous solution easiest for combinations of either small cation-small anion or large cation-large anion preferably with systems having the same but opposite charges on the counterions". If this "rule of thumb" is applied to preparations of $[M(macrocycle)]X_2$ complexes, particularly large anions X⁻ will be needed. The alternative approach is to use strongly co-ordinating anions, (such as NCS⁻, Cl⁻, Br⁻, CN⁻ etc.) to isolate the neutral metal complexes of the type $[Ni(macrocycle)X_2]$.

Preliminary attempts were made to prepare the metal complexes of the three macrocycles 3.1 using large counter-anions, via the following reaction scheme:

3.1a, X=0, $R=CH_3$ 3.1b, X=NH, $R=CH_3$ 3.1c, X=S, R=H M=Ni(II), Cu(II), Co(II) Z=BF₄, NO₃

Using the O_2N_2 -macrocycle 3.1a only the copper(II) dinitrate complex $[Cu(3.1a)](NO_3)_2$ could be isolated. Attempts to prepare complexes of cobalt(II) and nickel(II) using the three counterions and a variety of solvents failed to give solid complexes and no evidence for complex formation was detected by colour change in solution.

Analogously, for the S_2N_2 -macrocycle 3.1c, the only solid isolated was the copper complex $[Cu(3.1c)](BF_4)_2$, and the related cobalt(II) and nickel(II) complexes were not obtained.

The N_{ij} -macrocycle was comparatively better at complexing with cobalt(II), nickel(II) and copper(II) giving the ditetrafluoroborate complexes, which were isolated with relative ease.

The low-spin nickel(II) complex $[Ni(3.1b)](BF_4)_2$ was obtained from the reaction mixture, and on addition of ammonium thiocyanate the high-spin nickel(II) complex $[Ni(3.1b)(NCS)_2]$ was obtained (X-ray work

has been done on both these complexes see section 3.3.1). In every

case all the anilino protons were retained on complexation.

All the isolated complexes were analysed by standard techniques. Colour, yields and characteristic infrared bands are given in table 3.3.

One major problem encountered in the preparation of the complexes of the N_{μ} -macrocycle 3.1b was the sensitivity of the ligand and/or metal complexes to oxidation, resulting in intense colouration of the solutions (see also section 3.2.3). Such side reactions were significantly reduced when the complexation reactions were undertaken under a nitrogen atmosphere. The development of intense colouration presence of metal ions (particularly copper(II) and in the nickel(II)) may be associated with "electron-transfer-series-complex" formation which arise from ligand dehydrogenation and deprotonation. Similar behaviour for analogous linear N_{ij} -quadridentate ligands in the presence of nickel(II) and palladium(II) have been reported by Fleischer et al³⁵. When 3.3 is treated with these metals in air, an extremely highly coloured neutral product 3.19 is obtained, in which the ligand has lost two protons and two hydrogen atoms upon complexation.

Polagraphic measurements demonstrate³⁵ that up to two electrons can be readily removed or added to the neutral complex 3.19. Species 3.20 and 3.21 are examples of the two extreme forms from a series of five electron-transfer-series-complexes which includes 3.19 as its central member.

3.20

3.21

A similar situation appears to be possible for the nickel(II) complexes of ligand 3.1b in solution where highly coloured (intense red) species of the type 3.22 with extensively delocalised electronic ground states, best represented by 3.23 would be analogous to the

The side reactions described above are the most probable origin of the highly coloured byproducts. However, other side reactions may be possible for nickel complexes in the light of recent discoveries of extremely facile redox catalysis promoted by macrocyclic nickel complexes. Some examples of this are given below.

- (i) Deprotonation and dehydrogenation reactions in macrocycles³⁶.
- (ii) Macrocyclic dioxopentamines as nickel(II) dioxygen adducts³⁷.
- (iii) Monovalent nickel complexes with tetra-aza macrocyclic ligands³⁸,
- (iv) Studies on nickel(III)/nickel(II) redox couple potentials with 13 and 14-membered macrocycles³⁹.
- (v) Kinetic aspects of redox reactions of nickel(III) complexes⁴⁰.
- (vi) Trivalent and tetravalent nickel complexes in coordination chemistry⁴¹.
- (vii) Nickel(I) complexes in enzymic systems 42,43.
- (viii) Nickel(II) cyclam as a selective electrocatalyst 44 for reduction of carbon dioxide in water.

The observations in the case of preparation of metal complexes noted above are compatible with log K data obtained in section 3.2.3. These ligands give weak metal complexes and thus may be used in solvent extraction systems since metal complexes are required of intermediate

Complex	Solvent	Colour	Yield	Infrared	Bands
[Cu(3.1a)](NO ₃) ₂	Acetone	Green	57 \$	3440	– NH
				1390 [•]] 840 }	-N0_
[Cu(3.1b)](BF ₄) ₂	MeOH/	Brown	51 \$	3240	– NH
	^{CH} 2 ^{C1} 2			1120-] 955]	-BF ₄
[Co(3.1b)](BF ₄) ₂	MeOH/	Blue/	40 🐒	3400	– NH
	CH2C12	Purple		1150-1 1040 }	-BF ₄ -
[Ni(3.1b)](BF ₄) ₂	MeOH	Orange	57 \$	3400	– NH
				1150-1 1040 J	-BF ₄
[N1(3.1b)(NCS)2]	MeOH	Pink	51 \$	3240	– NH
				2085	-C=N
[Cu(3.1c)](BF ₄) ₂	MeOH/	Green	42 \$	3400	– NH
	MeCN/ CH2 ^{C1} 2			1150 -} 1030	-BF ₄

TABLE 3.3 Metal Complexes of Quadridentate Macrocycle 3.1

3.3 STRUCTURES OF THE MACROCYCLES AND THEIR METAL COMPLEXES

The N_{ij} -macrocyle 3.1b and its low- and high-spin nickel(II) complexes (see section 3.2.3) are a suitable series for investigating the changes of macrocyclic geometry accompanying complex formation.

<u>3.3.1</u> X-Ray Structures of the N_{ij} -Ligand and its Low and High Spin Nickel(II) Complexes

Crystalline samples of low- and high-spin complexes of nickel(II)

containing the N_{ij} -ligand (3.1b) were obtained.

The X-ray crystal data for the three compounds 3.1b, $[Ni(3.1b)](BF_4)_2$ and $[Ni(3.1b)(NCS)_2]$ are summarised in table 3.4.

<u>TABLE 3.4</u> Crystal Data and Selected Details^a of the Structure Determinations of 3.1b, $[Ni(3.1b)](BF_4)_2$ and $[Ni(3.1b)(NCS)_2]$

	$[Ni(3.1b)](BF_{4})_{2}$	3. 1b	[N1(3.1b)(NCS) ₂]
Mol. formula	C19H26N4B2F8N1	^C 19 ^H 26 ^N 4	C21H26N6N1S2
M _r	542.76	310.44	485.32
a/ A	9.200(2)	12.843(2)	13.210(2)
b/ A	8.549(2)	5.449(1)	15.926(3)
c/ A	7.994(2)	23.839(4)	11.184(2)
α∕ deg.	109.10(2)	(90)	(90)
β / deg.	112.91(2)	101.52(2)	103.05(3)
$\gamma_{deg.}$	74.17(2)	(90)	(90)
v/ 8 ³	538.22	1634.51	2292.15
Z	1	4	4
$d_{calc} / g cm^{-3}$	1.674	1.261	1.406
Space group	PĨ	P21/c	P2 ₁ /n
Unique data ^b	1108	2870	1250
R	0.0732	0.1093	0.0849
R _w	0.0723	0.1051	0.0812
colour	orange	pale yellow	pink
crystal size/mm	0.18 x0.19 x	0.32 x 0.39 x	0.06 x 0.78 x

0.21 0.29

0.07

a- Further details are given in appendix 1

b- Unique data with $|F_0| > 30(|F_0|)$

The low-spin complex $[Ni(3.1b)](BF_{4})_{2}$ has a square planar **co**ordination geometry the nickel with atom residing at a crystallographic of symmetry. centre The metal complex in [Ni(3.1b)](BF4) is a dication, confirming that there is no deprotonation of the anilino groups accompanying complex formation. The tetrafluoroborate anions are not within co-ordinating distances of the nickel atom (Ni...B = 3.643 Å and shortest Ni...F distances fall in the range 2.848-3.749 Å). In contrast, the high-spin nickel(II) complex [Ni(3.1b)(NCS)₂] has a <u>trans-pseudo-octahedral</u> geometry. The complex is neutral with the two thiocyanate groups co-ordinated to the nickel atom through their nitrogen atoms. The N_{μ} -donor set provided by the macrocycle is very nearly planar (with nitrogen atoms deviating by \mp 0.008 Å from the N₁₁ least-square-plane) as is that for the free ligand 3.1b, see also table 3.5 below.

The bond lengths and angles in the co-ordination spheres of 3.1b, $[Ni(3.1b)](BF_{4})_{2}$ and $[Ni(3.1b)(NCS)_{2}]$ are given in table 3.5. The atom labelling used for $[Ni(3.1b)(NCS)_{2}]$ is

Compound $[Ni(3.1b)](BF_{4})_{2}$ is centrosymmetric and therefore the atoms in part B are symmetry related to the equivalently numbered atoms in part A. To allow comparisons within the N₄-donor cavities, data for the free ligand are included in the tables (based on the centroid of the N₄-donor set rather than the position of the nickel(II) atom). Otherwise the atom labelling in 3.1b is identical to that of $[Ni(3.1b)(NCS)_{2}]$.

<u>TABLE</u> 3.5 Molecular Dimensions in the N_{4} -Donor Cavities in [Ni(3.1b)](BF₄)₂, 3.1b and [Ni(3.1b)(NCS)₂]

(a) Bond Lengths/ A

	[Ni(3.1b)](BF ₄) ^a	3.	1b ^b	[Ni(3.1b)(NCS) ₂]
	M=Ni	м	=CE	M =1	Ni
	Part A	Part A	Part B	Part A	Part B
M-N1 M-N2 M-N3	1.931(7) 1.920(6)	1.928(15) 1.961(15)	1.891(15) 1.999(15)	2.104(18) 2.122(16) 2.041(14)	2.082(15) 2.114(13) 2.114(14)

(b) Bond Angles/ deg.

	$[N1(3.1b)](BF_4)_2^a$	3.16 ^b	[N1(3.1b)(NCS)2]
	M=N1	M=CE	M=N1
N1A-M-N2A	92.0(3)	94.6(8)	98.1(7)
N1B-M-N2B	-	94.4(8)	100.4(6)
N2A-M-N1B	88.0(3)	85.8(8)	80.6(6)
N1A-M-N2B	-	85.3(8)	80.8(6)
N1A-M-N1B	(180.0)	178.0(6)	177.8(6)
N2A-M-N2B	(180.0)	177.9(6)	178.6(7)
N3A-M-N1B	-	-	91.3(6)
N3A-M-N2B	-		91.1(6)
NIA-M-N3B	-	-	87.8(6)
N2A-M-N3B	-	-	89.7(6)
N3A-M-N3B	-	-	178.1(7)
N1A-M-N3B	_	-	87.8(6)
N2B-M-N3B	-	-	89.4(6)

TABLE 3.5 continued

	(c) Bond Angles	Involving the Dono	r Atoms/ Deg
	[N1(3.1b)](BF ₄)2	a 3.1b ^b	[N1(3.1b)(NCS)2]
	M=Ni	M=CE	M=Ni
I-N1A-C1A	112.3(9)	127.2(7)	117(1)
I-N2A-C4A	113.6(5)	127.0(7)	116(1)
I-NIA-CIOB	108.9(7)	106.4(6)	106(1)
I-N2A-C5A	109.9(5)	105.8(6)	103(1)
I-N2B-C5B	-	105.1(5)	104(1)
-N1B-C10A	-	106.3(8)	106(1)
I-N2B-C4B	-	126.3(1)	114(1)
-N1B-C1B	-	127.8(1)	114(1)
-N3A-C11A	-	-	156(2)
I-N3B-C11B	-	-	163(1)
<u>(d)</u>	Geometry of the	Thiocyanate Groups	<u>in [Ni(3.1b(NCS)</u> 2]
		Part A	Part B
	C-N	1.137(21) 1.	153(23)
	C-S	1.606(18) 1.	621(18)
	C11-N3-Ni	156(2) 16	3(1)

a- Since the molecule $[Ni(3.1b)](BF_4)_2$ lies on a crystallographic inversion centre atoms in part B are symmetry-related to the equivalently numbered atoms in part A

176(2)

S1-C11-N3

180(2)

b- For the free ligand the centroid of the N_{ij} -donor set (CE) is used instead of the nickel atom.

The N₄-donor set is planar in $[Ni(3.1b)](BF_4)_2$ as a consequence of the crystallographic inversion centre, and very close to planar in the other two structures, 3.1b and $[Ni(3.1b)(NCS)_2]$, which have slight

"tetrahedral" displacements of the donors from the respective least

squares planes (see table 3.6). The nickel atom deviation from the

 N_{μ} -plane is -0.025 Å for [Ni(3.1b)(NCS)₂]. This deviation is

associated with a slight distortion from the pseudo-octahedral geometry towards a square pyramid, giving significantly different nickel to thiocyanate bond lengths (see table 3.5).

TABLE 3.6 Deviations of Atoms from the Least Sqares Plane Through the N₄-Donor Set [Ni(3.1b)](BF₄)₂ Atom 3.1b [N1(3.1b)(NCS)] N1A 0 -0.035 +0.008 N2A 0 +0.035 -0.008 N1B^a 0 -0.035 +0.008 N2B^a 0 +0.035 -0.008

a- For $[Ni(3.1b)](BF_4)_2$, these atoms are generated using the crystallographic inversion centre from N1A and N2A, respectively.

-0.025

0

Ni

All three molecules have a pseudo-mirror plane perpendicular to the mean plane of the molecule and passing through the central atoms of the propane bridges and the nickel ion or centroid of the N_{μ} -donor set.

There are only small differences between bond lengths and angles in the two chemically equivalent halves (A and B) of the co-ordination sphere (see Table 3.5). Similarly, chemically related bond lengths and angles in the ligands have values which agree within the limits of error of the structure determination in almost every case (see appendix 1).

The conformation of the six-membered chelate rings involving the propane bridges, nickel (or centroid) and two nitrogen donors may be examined by considering the displacements of the C_3 bridges from the N_2 M plane.

TABLE 3.7 Puckering of the C3 Bridges from N2M Plane

	[N1(3.1b)](BF ₁₁)		3.1b		[N1(3.1b)(NCS)]	
	Part A	Part B	Part A	Part B	Part A	Part B
	M=N	i	M=c	entroid	M =N	II
C1	-1.14	1.14	-0.03	-0.13	-0.50	-0.54
C2	-0.97	0.97	0.53	0.53	0.24	0.14
C4	-1.11	1.11	-0.09	-0.10	-0.47	-0.55

For all three structures the six-membered rings have chair

conformations, consistent with the pseudo-mirror molecular symmetry.

For $[Ni(3.1b)](BF_{4})_{2}$ there is one chair above and the other below the

 N_{μ} plane giving a "step" arrangement (see figure 3.3). This is

analogous to the arrangement for the free ligand 3.1b and $[Ni(3.1b)(NCS)_2]$. For 3.1b and $[Ni(3.1b)(NCS)_2]$ the two chairs for the chelate rings are on the same side of the N₄-plane thus giving both the molecules a "saddle-shaped" arrangment (figures 3.4 and 3.5 respectively). In such an arrangement the aniline hydrogen atoms are displaced to the same side of the N₄-plane (see table 3.7), whereas the "step" arrangement of $[Ni(3.1b)](BF_4)_2$ has two hydrogens "up" and two hydrogens "down" relative to the N₄ plane.

Figure 33

The data in table 3.7 reveal that the propane bridges in $[Ni(3.1b)](BF_{4})_{2}$ are bent away from the co-ordination N_{4} -plane to a greater extent than those in the free ligand or the complex $[Ni(3.1b)(NCS)_{2}]$. Presumably this conformational difference arises from the ligand adjusting its geometry to provide the smaller N_{4} -cavity size required for the smaller low-spin Ni²⁺ ion (see also 3.3.4).

Atom	[N1(3.1b)](BF ₄) ₂	3.1b	[N1(3.1b)(NCS)2]
H1AN	1.09	0.80	0.93
H2AN	0.95	0.96 ^a	1.00
H1BN	-1.09	0.80	0.90
H2BN	-0.95	0.73	1.02
a- The	re is some uncertainty	associated with	the location of

TABLE 3.8 Deviations of the Anilino Protons

this hydrogen atom (see below).

For the free ligand all the N-H are displaced to the same side of the N_{4} plane. There was some slight ambiguity in assigning the position of the amine proton (H2AN) from difference Fourier maps. Three positions of the electron density were detected around N2A.

Fractional Coordinates	x	У	Z
H atom (1)	0.6159	0.2669	0.1393
(11)	0.6917	0.0550	0.1310
(111)	0.2893	0.2422	0.2426

Position (i) has all the anilino hydrogen atoms displaced to the same side of the N_{ij} plane. The most favourable position to permit <u>intramolecular hydrogen bonding corresponds to the hydrogen atom being</u> located at position (ii), whereas the atom at position (iii) gave the highest electron density in the map. Position (ii) was found to be associated with the minimum strain energy in the molecule using the

molecular mechanics calculations described in section 3.3.5 and

involves a slight degree of hydrogen-bonding interaction between H2AN

and the lone pair electrons of N1A.

TABLE 3.9 Inclination of Benzene Rings

(a) Inclination Relative to the N4 Plane

[N1(3.1b)](BF ₄) ₂			3.1Ъ		[Ni(3.1b)(NCS) ₂]	
Part A	Part B	Part A	Part B	Part A	Part B	
0.70	0.70	32.35	31.51	34.67	34.18	

(b) Inclination Relative to the N2M Plane

[Ni(3.1b)](BF ₄) ₂ M=Ni		3.1b		[Ni(3.1b)(NCS) ₂]	
		M=0	M=CE		M=Ni
Part A	Part B	Part A	Part B	Part A	Part B
0.70	0.70	33.70	32.89	34.44	33.88

For the low-spin complex $[Ni(3.1b)](BF_{4})_{2}$ the N₄-plane and the benzene rings are almost coplanar. In contrast, for the high-spin complex $[Ni(3.1b)(NCS)_{2}]$ and the free ligand 3.1b, there is considerable deviation from planarity and the benzene rings are each inclined at $33 \neq 2^{\circ}$ to the same side of the respective N₄-planes, resulting in a "saddle-shaped" arrangements.

A comparison of corresponding torsion angles in the three structures

may be used to investigate strain about particular bonds due to

geometry variation in the three structures.

For a simple aniline, the lone pair electrons of the nitrogen atoms are withdrawn into the benzene ring and thus the nitrogen atom is in effect sp^2 hybridised; for unstrained alkylated anilines the torsion angle is expected to be 180°. In the case of the complexed anilines the lone pair electrons of the nitrogen atoms are directed towards the metal ion and thus the nitrogen atom is sp^3 hybridised. This results in the angles about the nitrogen atom being near tetrahedral and thus the torsion angles involving sp^3 nitrogen atoms are in fact 120°.

pi-pi overlap of orbitals of sp² anilines with the phenyl ring

torsion angle for alkylated aniline

Figure 3.6 Illustration of Torsion Angles for Uncomplexed Aniline

donation of electrons to the metal

Torsion angles

The torsion angles for all the three structures chosen for study are given in table 3.10.

	[Ni(3.1	b)](BF ₄) ₂	3.	1Ъ	[N1(3.1	b)(NCS)2]
Bond	a Part A	Part B	Part A	Part B	Part A	Part B
a	-66.4	67.6	68.8	-69.4	81.3	-80.5
b	-170.2	170.7	-173.6	178.4	-173.2	174.3
с	-125.2	124.0	168.4	-174.0	152.3	-151.2
d	-1.4	1.4	1.2	1.0	-1.6	-2.4
е	-124.0	125.2	-178.2	170.4	-154.5	156.5
f	-170.7	170.2	176.2	-172.7	176.0	-173.7
g	-67.6	66.4	-62.0	63.8	-79.6	81.1
h	166.2	-167.9	173.9	-171.5	157.6	-156.6
i	-	-	-	-	-163.3	167.7

TABLE 3.10: Torsion Angles^a for the Three Structures

a- The torsion angles quoted involve atoms in the inner-great-ring and

the methyl substituents, for the bonds a-h is

From the table of torsion angles (table 3.10) it can be seen that for all three structures there is pseudo-mirror symmetry in the molecule. For the free ligand 3.1b, only minor deviations from strain-free angles (0, 60 or 180 $^{\circ}$) are observed and thus it can be assumed that the molecule is relatively unstrained overall. In particular, it can

be seen that the torsion angles involving the sp² anilino nitrogens in

3.1b (about bonds c and e) approach 180°. The low-spin nickel(II)

complex $[Ni(3.1b)](BF_{4})_{2}$ shows relatively little strain about bonds c

and e since the strain-free torsion angles are expected to be about 120° where the <u>o</u>-phenylenediamine unit is forced to be planar. On the other hand the high-spin complex $[Ni(3.1b)(NCS)_2]$ shows angles of -151.2 and 156.5° for bonds c and e, which implies that the nitrogen atom hybridization is half way between sp^2 (as in the free ligand) and sp^3 (as in the low-spin nickel(II) complex). This possibly indicates that some ligand strain is induced allowing the nitrogens to approach the nickel at distances suitable for high-spin complexation formation (see section 3.3.4).

Another feature of interest concerning these three structures is the positioning of the methyl substituents on the propane bridges. These may occupy either axial or equatorial positions. Further there is the possibility that disorder of the methyl positions occurs in the solid complexes. This may be expected since it is only the methyl substituent which destroys perfect inversion symmetry in each of these molecules. Consequently, two sites may occur for each methyl group, such that the difference Fourier maps gives two electron density positions for the methyl carbons near both propane linkages, each having an electron density approximately half that expected for a carbon atom.

Figure 3.8 Representation of Axial (ax) and Equatorial (eq) Methyl Groups on C₃ Bridges 136

For the free ligand 3.1b, no disorder was observed in the structure and the methyl substituent was found near one propane bridge only. The methyl group is solely equatorial. The torsional angles (table 3.10) involving the methyl substituent (along bond h) are 173.9 and - 171.5° as expected for an equatorial configuration.

In the low-spin complex $[Ni(3.1b)](BF_{4})_{2}$ some disorder is expected as a result of having a crystallographic inversion centre coincident with the nickel atom. Electron density in the structure determination was found to correspond to "half" a "full" equatorial methyl near both the propane bridges. The geometry observed for the propane bridge is thus that for the average of C-substituted and unsubstituted bridges.

In the X-ray structure of the high-spin nickel(II) complex, $[Ni(3.1b)(NCS)_2]$, the methyl substituent was found on both sides of the molecule. The greatest electron density was found for the two equatorial sites and the final model for refinement included 0.5 carbon in equatorial positions. There was also some indication of much lower population (<1/8 carbon i.e. less electron density than for a hydrogen atom) at the axial sites. In the high-spin nickel(II) complex $[Ni(3.1b)(NCS)_2]$ high thermal parameters were also obtained for C2A and, to a lesser extent, C1A and C4A. This is due to disorder⁴⁵ in the structure. Molecular mechanics calculations for the high-spin complex $[Ni(3.1b)(NCS)_2]$ (section 3.3.5) in which the methyl group was (i) axial and (ii) equatorial yielded strain energies

of 150.7 and $M_{1}.1$ kJ mol⁻¹, respectively. The calculations thus

confirm that the equatorial position is prefered for the methyl

substituent. Further, the torsion angles about bonds h and i are in

the range 156.6-167.7 ^o implying that the methyl substituents are equatorially positioned as opposed to axial (this is also confirmed by detailed 1 H nmr (220 MHz) coupling constants for 3.1b, in section 3.2.2).

For [Ni(3.1b)(NCS), the angle generated by the trans donors at Ni (N3-Ni-N3) shows a slight deviation from linearity. The inclinations of the two thiocyanates to the co-ordination sphere are different (C-N3-Ni angles being $156(2)^{\circ}$ and $163(1)^{\circ}$ for the A and B parts of the molecule). This difference may be a consequence of intermolecular interactions in the solid state. Thus, the two thiocyanate sulphur atoms are involved in weak hydrogen bonds to neighbouring anilino groups (see table 3.11). The different inclinations of thiocyanates A and B appear to relate to the different intermolecular NCS...HN interactions. This hydrogen bonding scheme is represented schematically in figure 3.9. Thiocyanate B has a stronger hydrogen bond to an adjacent anilino group resulting in less deviation from linearity of the C11-N3-Ni angle (see table 3.5). То some extent intermolecular packing forces and hydrogen bonding can account for the irregular co-ordination geometry in this complex.

<u>TABLE</u> <u>3.11</u> Closest Intermolecular Contact Distances for [Ni(3.1b)(NCS)₂] Involving Hydrogen Bonding of the Anilino Protons to Sulphur Atoms

There is also some intramolecular hydrogen bonding present in the lowspin Ni(II) complex, $[Ni(3.1b)](BF_4)_2$, chosen for study. This occurs between anilino protons and the very electronegative fluorines on the tetrafluoroborate groups. The shortest distances available for <u>intramolecular</u> interactions are given below.

	Distance	Symmetry	Opera	tion	
H2ANF(1)	1.89	x	у	z	
H1ANF(1)	2.26	x	У	z	
H2ANF(3)	2.48	x	у	z	
H1ANF(3)	2.86	x	у	z	
H1ANF(2)	2.06	x	-у	z	

The most favourable intramolecular hydrogen bonding is for H2AN with F1. The other contact distances are slightly longer and there is only

weak hydrogen bonding interaction between H1AN and F3. There is also

a small degree of intermolecular hydrogen bonding between the anilino

proton on N1A and a fluorine atom (F2).

Figure 3.10 Intramolecular Hydrogen Bonding in [Ni(3.1b)](BF4)2

In the case of the free ligand 3.1b some <u>intramolecular</u> hydrogen bonding may be expected. This would alleviate lone pair-lone pair repulsion terms associated with the four nitrogen atoms which are necessarily in close proximity. The extent to which 3.1b will adopt such a hydrogen bonding scheme will depend upon the cavity size and ligand rigidity.

The X-ray structure determination of this ligand suggests that only weak intramolecular NH...N hydrogen bonds exist since the closest contacts are rather long. A possible exception involves the hydrogen The location of this atom in the difference Fourier maps H2AN. presented some problems (see table 3.8 and page.132). Of the three possible sites located, the one giving the lowest strain energy in molecular mechanics calculations (see page..155) places the hydrogen relatively close to the neighbouring atom N1A. In this position, presumably a favourable hydrogen bonding interaction would occur (see section 3.3.5).

TABLE 3.12 HYDROGEN BOND DISTANCES FOR 3.1b

Figure 3.11 Intramolecular Hyrogen bonding in the Free Ligand 3.1b

X-ray structural data have also been obtained recently 46,47 for nickel complexes of other 14-membered N₄-macrocycles of types 3.7 and 3.5. A comparison of the geometries of $[Ni(3.1b)](BF_4)_2$ and $[Ni(3.1b)(NCS)_2]$ with the low- and high-spin complexes of the above ligands will be presented in sections 3.3.2 and 3.3.3 below. In addition, the structure of the free ligand 3.21 has been determined and this allows a comparison with 3.1b and also provides the basis for assessing the goodness-of-fit of ligands of these types for low- and high-spin nickel(II). These aspects are considered in some detail in section

3.3.2 Comparison of Co-ordination Geometries of Low-spin 14-Membered N₄-Macrocycles

bonds in Ni-N crystallographically independent two The $[Ni(3.1b)](BF_{4})_{2}$ and $[Ni(3.5)]I_{2}$ have very similar lengths whereas in $[Ni(3.7)](BF_4)_2$ they differ considerably (see table 3.13). This is to be expected because there are two types of nitrogen donors, and the benzylamino nitrogen (N2A) is expected to be the better donor and to result in a stronger (shorter) bond to nickel.

Bond Lengths in Low-Spin Nickel(II) Complexes of 14-TABLE 3.13 Membered N₄-Macrocycles

of

- b- B. Shah, BSc. Project Dissertation; Polytechnic North London, 1985; the complex has mirror-plane symmetry relating N1A to N2B and N2A to N1B.
- Unpublished Results, Polytechnic of North c- D. Proserpio, London, 1984.

In complexes $[Ni(3.1b)](BF_{4})_{2}$ and $[Ni(3.5)]I_{2}$, similar orientations of nitrogen protons occur: two adjacent protons lie on the one side of the donor plane while the remaining two are on the opposite side giving the ligand an overall "step" configuration (see also section 3.2.1). In $[Ni(3.7)](BF_{4})_{2}$, the alternating orientations of the N-H groups leads to a "saddle-shaped" configuration.

Figure 3.12 Orientation of the Anilino Protons Relative to the N_4 Plane

<u>3.3.3</u> Comparison of Co-ordination Geometries of the High-spin 14-Membered N_{ij} -Macrocycles

In the case of the high-spin nickel(II) complexes, $[Ni(3.7)(NCS)_2]$ and $[Ni(3.5)(NCS)_2]$, there are only two crystallographically independent Ni-secondary amine bonds. Complex $[Ni(3.7)(NCS)_2]$ has one in-plane Ni-N bond slightly shorter $(2.046(2) \stackrel{0}{A})$ than the other $(2.091(2) \stackrel{0}{A})$. For the high-spin cyclam complex, $[Ni(3.5)(NCS)_2]$, the lengths of the equatorial Ni-N bonds are almost identical as is expected. There is no inversion centre in $[Ni(3.1b)(NCS)_2]$ and one equatorial Ni-N bond

is slightly shorter $(2.082(15) \stackrel{0}{A})$ than the others (range $(2.104(18) - 2.122(16) \stackrel{0}{A})$. This short bond is compensated by a slightly longer Ni-

N2A bond with the remaining two equatorial Ni-N bonds being quite

similar to each other. A CSSR search from the Cambridge Database on nickel(II) octahedral complexes containing thiocyanate groups was carried out and the average Ni-N thiocyante distance was found to be 2.06 Å (for nine complexes). In both $[Ni(3.5)(NCS)_2]$ and $[Ni(3.7)(NCS)_2]$, the Ni-N thiocyanate bond lengths are much longer than this (see table 3.14). However, in $[Ni(3.1b)(NCS)_2]$ one Ni-N thiocyanate bond length is longer and the other shorter than 2.06 Å. This difference in axial Ni-N bond lengths reflects some tendency for deviation from a regular octahedron towards a "distorted pyramidal" geometry in this complex.

TABLE 3.14 Bond Lengths in High-Spin Nickel(II) Complexes of 14-Membered Macrocycles

4	[N1(3.1b)(NCS)2] ^a	[Ni(3.7)(NCS) ₂] ^d	[N1(3.5)(NCS)2e
	NJA ZA NIB Part A Part B	24 V 2B N3B	N 3 A ZAN AB
Ni-N1	2.104(18) 2.082(15)	2.091(2)	2.074(2)
Ni-N2	2.122(16) 2.114(13)	2.046(2)	2.074(2)
N1-N3	2.041(14) 2.114(14)	2.108(2)	2.121(3)

a- This work

d- ref 46

The respective axial Ni-N bond lengths in $[Ni(3.7)(NCS)_2]$ and $[Ni(3.5)(NCS)_2]$ are longer than those for the in-plane (equatorial) Ni-N distances and thus the structures are pseudo-octahedral.

In $[Ni(3.1b)(NCS)_2]$, all the anilino protons are displaced to the same side of the N₄-plane whereas in $[Ni(3.7)(NCS)_2]$ the nitrogen protons are alternatively orientated "up" and "down" with respect to the N₄plane.

TABLE 3.15 Bond Angles for Thiocyanate Groups for the High-spin Complexes

[Ni(3.1b)(NCS)₂] [Ni(3.7)(NCS)₂] [Ni(3.5)(NCS)₂]^a Part A Part B

C-N-Ni	156(2)	163(1)	156(2)	156.2(2)-168.2(2)
S-C-N	176(2)	180(2)	178.4(3)	177.8(5)-179.2(2)

a-A range is given for this complex because the asymetric unit contains four independent half molecules.

Hydrogen bonding in [Ni(3.5)(NCS)₂] results in deviation of the

thiocyanate groups from linearity. The four independent half

molecules observed in the structure determination are all involved in

weak intermolecular hydrogen-bonding between the secondary amine

groups and thiocyanate sulfur atoms in adjacent molecules. The situation is similar to that which occurs in $[Ni(3.1b)(NCS)_2]$ (see section 3.2.1).

3.3.4 Goodness-of fit of the 14-Membered Macrocycles for Low- and High-Spin Nickel(II)

Hole size calculations may be used to estimate the goodness-of-fit of a metal ion for a particular ligand cavity. The radius of the macrocyclic hole (R_{H}) may be defined by the positions of the donor R_{H} is the mean distance of the donor atoms from their atoms. The hole-size radius R_{H} has to be corrected, (since the centroid. donor atoms have a finite radius) before the bonding cavity available (of radius R_A) to the metal ion may be determined. A set of covalent radii for various donor atoms (R_D) have been determined from the Cambridge data base using CSSR searches. In the case of nickel(II), the Pauling covalent radius for low-spin (1.39 Å) or high-spin (1.20 \AA) nickel is then subtracted from the mean of the corresponding Ni-donor distances obtained from the data base to give the covalent radius of the donor atoms. The apparent radius (R_A) , of the void available for the nickel(II) ion is then given by R_A :

 $R_A = R_H - R_D$

The ratio R_A : R_P may then be used to assess the goodness-of-fit of

The "hole-size" in the macrocycle 3.1b and its nickel complexes has been calculated in this manner using the X-ray structural data, (table 3.16-see also table 3.17).

TABLE 3.16 Hole-Sizes for the Three Structures

[N1	(3.1b)](BF ₄) ₂	3.11	b	[N1(3.1b)(NCS) ₂]
R _H ^a ∕A	1.93	1.9	95	2.11
RA ^b / 8	1.21	1.2	23	1.39
RA/RPC	1.01	1.03	0.88	1.00
R _P ∕ X	1.20	1.20	1.39	1.39
	fc	or low- hi nickel(II	.gh-spin	

a-Radius of the macrocyclic hole (uncorrected) is defined as the mean

distance of the donor atom positions from the centroid.

b- "Apparant" radius of the metal cavity (see text)

c- R_p the Pauling covalent radiusis 1.39 Å for high-spin nickel(II) and 1.20 Å for low-spin nickel(II).

The hole-size in the free ligand 3.1b was found to be 1.95 Å and is intermediate between the values observed for the low- and high-spin nickel(II) complexes but lies slightly closer to that for the $[Ni(3.1b)](BF_{4})_{2}$. This ligand thus appears to provide a relatively good fit for both low-spin and high-spin nickel(II) complexes with the R_A/R_p values being 1.01 and 1.00, respectively. In this regard, the dibenzo-ligand 3.1b appears to be more readily adaptable to the requirements of the high-spin nickel(II) than are the analogues 3.7 and 3.5 (See table 3.17). These ligands each contain a hole-size which is somewhat too small for this high-spin ion. For the low-spin complexes, the hole sizes obtained for all three ligand types on coordination appear satisfactory (or perhaps slightly too large) for low-spin nickel(II).

 TABLE 3.17 : Comparison of Hole-sizes of 14-Membered Macrocycles

 Ligand(L)
 R_H for $[Ni(L)]^{2+}$ R_H for Ligand R_H for $[NiL(NCS)_2]$
 H_H N_H 1.93° 1.95° 2.11°
 H_H N_H $(R_A/R_p = 1.01)$ $(R_A/R_p = 1.00)$ $(R_A/R_p = 1.00)$
 H_H H_H 1.93° 2.02° 2.07°
 H_H H_H 1.94° - 2.07°
 H_H H_H 1.94° - 2.07°
 H_H H_H H_H H_H H_H H_H
 H_H H_H H_H H_H H_H H_H H_H
 H_H H_H H_H </td

- ""
- *- Unpublished results Polytechnic of North London, 1985
- a- Reference 46
- b- Reference 47
- c- This work

The hole-size data suggest that ligand 3.1b should fit both low- and high-spin nickel(II) quite well whereas both the aliphatic 3.5 and dibenzo 3.7 ligands appear to match low-spin nickel(II) well but have a smaller hole-size than is ideal for the high-spin nickel(II) ions. The hole-size of the most rigid ligand 3.1b is 1.95 Å and much smaller than that for 3.7 (2.02 Å). However, even though 3.1b is rigid compared to the other two ligands, it is still able to expand or contract its hole-size to accept nickel(II) ions of both spin-states. Although 3.5 is a flexible ligand it still does not appear to present as ideal a cavity to high-spin nickel(II) ions as occurs with 3.1b.

Analysis of the strain energy required to change the ligand geometry to give a better fit for low-spin or high-spin nickel(II) is considered in some detail below.

3.3.5 Molecular Mechanics

"Molecular Mechanics" is an expression used⁴⁹ to describe a method to calculate structures and energies for molecules. The method has been applied successfully to organic molecules for many years, and is based on the fact that bonds have "natural" lengths and angles, and simple molecules try to adjust their geometries to attain these values. In addition to to the terms involving deformation of "natural" bond lengths and angles Van der Waals potential functions are included in the calculations to take acount of <u>intramolecular repulsions</u> between

atoms.

Molecular mechanic calculations currently involve an empirical

approach and the potential functions used are called force fields and

contain parameters that are adjusted to give the best fit between calculated and experimental properties of the molecule, such as geometries, conformational energies, heats of formation etc. In the calculations an assumption is made in that⁴⁹ simple molecular mechanic force fields interactions such as Van der Waals (VDW)' and that the sum of all these terms is the steric energy (V) of the molecule.

$$v = \sum v_{\text{stretch}} + \sum v_{\text{bend}} + \sum v_{\text{torsion}} + \sum v_{\text{VDW}}$$

The summations are extended over all bonds, bond angles, torsion angles and non-bonded interactions between all atoms not bonded to each other or to a common atom.

Molecular mechanics is thus a complementary technique to experimental methods for structure determinations.

It is only very recently 50-57 that force fields methods have been applied to calculate strain energies in metal complexes. Unlike the organic systems on which a lot of work has been done and for which parameters associated with most common bond types have been optimised, for metal complexes it is more difficult to estimate force field parameters associated with the co-ordination sphere. This is because transition metal ions show a wide range of different co-ordination sphere geometries and metal-ligand bonding is intricate and complex.

Force fields may be used for obtaining various conformations of the free ligand and complexed forms and for calculating hole-sizes for

macrocycles⁵⁷. A min $\frac{1}{2}$ um energy conformation for macrocyclic systems

can be calculated as a starting point for hole-size calculations. The

match of a particular metal ion for the hole-size of a macrocycle may

then be estimated. Results can be compared with the <u>observed</u> holesizes in cyclic complexes and goodness-of-fit⁴⁸ as estimated from covalent radii of donors (see also section 3.3.4).

Molecular mechanics is thus also a useful tool for the solution in X-ray crystallography problems where the structure is disordered. It is also used in improving the geometry of the molecule from the X-ray crystallography data input. The hole-size can now be predicted from these calculations too.

Molqular mechanic calculations for the free ligand 3.1b and its lowspin $[Ni(3.1b)](BF_{4})_{2}$ and high-spin complex $[Ni(3.1b)(NCS)_{2}]$ are currently being carried out at James Cook University by Mr Larry Brigden. Preliminary work has involved Allinger's MM1 program⁵⁸ but recent work using the MM2 program⁵⁹ on $[Ni(3.5)]I_{2}$ (see below) has shown that this gives better results and eventually all the above three structures will be treated using the MM2 system. Preliminary results for 3.1b and $[Ni(3.1b)(NCS)_{2}]$ are reported here. Results are still awaited for $[Ni(3.1b)](BF_{4})_{2}$.

3.3.5.1 Free Ligand 3.1b

The starting set of atomic positional co-ordinates for the molecular mechanics calculations were those obtained from the X-ray structure determination. The force field parameters were those from the MM1

The angles and bond lengths for the calculated structure are compared with those of the X-ray solution in table 3.18. The mumbering system used for the free ligand is:

TABLE 3.18 Table of Bond Lengths and Angles of the Calculated Structure from Molecular Mechanics Compared with those from the X-ray Structure Solution of 3.1b

(a) Bond Lengths

Bond	Calculated Structure	From X-Ray Solution
	from Molecular Mechanics	
N1A-C1A	1.46	1.47(2)
N1B-C1B	1.46	1.49(2)
N2A-C4A	1.46	1.46(2)
N2B-C4B	1.46	1.44(2)
N1A-C10B	1.44	1.40(2)
N1B-C10A	1.44	1.43(2)
N2 4 -C5A	1.44	1.39(2)
N2B-C5B	1.44	1.41(2)
C1A-C2A	1.54	1.49(2)
C1B-C2B	1.54	1.51(2)
C2A-C4A	1.54	1.50(2)
C2B-C4B	1.54	1.52(2)
C2A-C3A	1.54	1.53(2)
C5A-C6A	1.40	1.39(2)
C5B-C6B	1.40	1.36(2)
C6A-C7A	1.40	1.37(2)
С6В-С7В	1.40	1.39(2)
C7A-C8A	1.40	1.35(2)

С7в-С8в	1.40	1.36(2)
C8A-C9A	1.40	1.39(2)
C8B-C9B	1.40	1.36(2)
C9A-C10A	1.40	1.39(2)
C9B-C10B	1.40	1.38(2)
C5A-C10A	1.40	1.41(2)
C5B-C10B	1.40	1.41(2)

Table 3.18 cont

Angle	Calculated by Molecular Mechanics	From the X-ray Solution
C1A-N1A-C10B	120	120(1)
C4A-N2A-C5A	120	118(1)
C10A-N1B-C1B	120	117(1)
C4B-N2B-C5B	120	119(1)
N1A-C1A-C2A	111	112(1)
C1A-C2A-C3A	111	109(1)
C1A-C2A-C4A	112	119(1)
C3A-C2A-C4A	111	108(1)
N2A-C4A-C2A	111	111(1)
N2A-C5A-C10A	116	115(1)
N1B-C10A-C5A	116	115(1)
N1B-C1B-C2B	111	108(1)
C1B-C2B-C4B	113	116(1)
N2B-C4B-C2B	111	109(1)
N2B-C5B-C10B	116	116(1)
N1A-C10B-C5B	116	117(1)

(b) Bond Angles /2

From Table 3.18 it can be seen that in general the calculated geometry of the minimum energy form of the molecule agrees well with the X-ray structure. The maximum differences between calculated and observed bond lengths is 0.05 %. These differences could in theory be "real", reflecting differences which result from the molecular mechanics calculations being performed on an isolated molecule, while the observed structure is in the solid state and must therefore take into account intermolecular interactions, "packing forces". In practice it is more likely that the differences arise because the field parameters used in the calculations are not force the appropriate values for some or all of the components of the molecule.

Such an interpretation is supported by the observation (table 3.18)

that all the calculated C-C lengths in the benzene ring are 1.40 \AA

while the observed lengths in the benzene rings vary considerably

(admittedly with the relatively high esd's in the determined structure of 3.1b, but often <u>significantly</u> in the X-ray structure determinations of related compounds containing <u>o</u>-substituted benzene rings). Such variations are unlikely to result from packing forces. The lack of variation of C-C lengths in the benzene rings of the calculated structure implies that too large values of the force field stretching C-C parameters have been used for these atoms.

The MM1 parameters which were used initially in the MOLMIN systems developed at James Cook University were established mainly for aliphatic compounds. It is hoped that the agreement for the ligands involved in this thesis and in related projects at James Cook University and ICI Organics Division will be improved when MM2 parameters are used and optimised for \underline{o} -substituted aromatic systems.

For the initial calculations (using MM1 parameters) sp^2 hybridisation of the anilino nitrogen atoms was assumed. This has resulted in reasonable agreement for bond angles about the nitrogen atoms (see table 3.18). However, calculated lengths of phenylcarbon to nitrogen bonds are significantly greater than observed values and therefore shorter "ideal lengths" for these bonds will be considered in future calculations.

An interesting potential application of the molecular mechanics method is in resolving ambiguities which arise from X-ray structure determinations, for example in predicting relative populations of

disordered structures resulting from different conformations of

molecules by predicting the relative energies of these conformations,

or in predicting the positions of very light atoms which have very low

X-ray scattering power and therefore are difficult to "find" in electron density Fourier maps. The latter problem arises with the X-ray determination of 3.1b (see also page 126). Three sites for the hydrogen atom attached to nitrogen N2A were located within a bonding distance of N2A.

	Positional Pa	arameters f	or H2AN	Energy/kJ mol ⁻¹		
	x	у	Z			
(i)	0.6159	0.2669	0.1393	138.6		
(ii)	0.6917	0.0550	0.1310	122.2		
(111)	0.2893	0.2422	0.2426	139.5		

The MOLMIN energy minimisation procedure was applied to three different starting structures containing three different sites of the anilino proton by Mr Brigden at James Cook university. The structure corresponding to the position (ii) gave a significantly lower molecular energy (see table above) and therefore used in the last stages of the X-ray structure refinement (see chapter 4, section 4.7).

3.3.5.2 High-Spin Complex [Ni(3.1b)(NCS)₂]

A similar approach was used in the calculations performed on the highspin complex $[Ni(3.1b)(NCS)_2]$. In this case in addition to the difficulties associated with selection of appropriate parameters for

the aromatic components of the ligands (see above), force field

parameters have to be established for all the bonds in the co-

ordination sphere of the metal atom. The starting set for the

calculations on $[Ni(3.1b)(NCS)_2]$ was based on values used at James Cook University for calculations^{61,62} on nickel(II) complexes of macrocycles with mixed oxygen/nitrogen (phenoxyether:benzylamino) donor sets, e.g. compounds 3.24 and 3.25.

3.24 X=Cl or NCS

3.25 R=H or CH3

Given the uncertainity of the starting set of parameters, the initial agreement between calculated and observed geometry was encouraging. The results shown in table 3.19 have been obtained by Mr Brigden using MM1 parameters for most of the ligand with the exception of the anilino nitrogen atoms. After a series of runs the best agreement between calculated and observed molecular geometry has been obtained by assuming a hybridisation at these nitrogen atoms which is intermediate between sp^2 and sp^3 , and setting the Ni-N(anilino) force constant parameters to be significantly smaller than values for benzylamino or aliphatic amine donors. The current agreement between

figures 3.15 below) is very encouraging, particularly for the chelate

"bite" angles which follow a pattern which would be expected for

alternating 5 and 6 membered chelate rings within the structure.

	Structures of	[N1(3.1b)(NCS) ₂]				
	Bond	Calculated from Molecular Mechanics	From	the	X-ray	Solution
	NI-N1A	2.09		2	.11(2)	
÷	NI-N2A	2.09		2	.12(2)	
	NI-N3A	2.06		2	.04(1)	
	NI-N1B	2.10		2	.08(2)	
	Ni-N2B	2.10		2	.11(1)	
	Ni-N3B	2.09		2	2.11(1)	
	N1A-C1A	1.46		1	.48(3)	
	N2A-C4A	1.42		1	.42(3)	
	N1B-C1B	1.45		1	.48(3)	
	N2B-C4B	1.47		1	.43(3)	
	N2A-C5A	1.45		1	.46(3)	
	N1A-C10B	1.45		1	.44(2)	
	N2B-C5B	1.45		1	.49(2)	
	N1B-C10A	1.45		1	.49(2)	
	N3A-C11A	1.16		1	.14(2)	
	C11A-S1A	1.62		1	.61(2)	
	N3B-C11B	1.16		1	15(2)	
	C11B-S1B	1.62		1	.62(2)	

TABLE 3.19 Comparison of Bond Lengths of the Calculated and X-ray

The numbering system for the high-spin complex is:

Figure 3.15 Comparisons between MOLMIN calculated minimium energy bond lengths and angles and those observed in the X-ray structure determination of (the parentheses) latter values in are [N; (3.1b)(NCS)2]

BOND ANGLES INVOLVING NITROGEN DONORS

The bond angles and lengths are similar for the calculated and observed structures. The Ni-N distances for the N_4 donor set were calculated to be approximately 2.09 \mp 0.01 Å whereas those in the X-ray structure were 2.08 \mp 0.04 Å. The hole-size of the calculated structure is 2.09₅ Å and is a little smaller than from the X-ray data (2.10_5 Å) .

These differences are consistent with the current MOLMIN parameters not yet fully taking into account the weakness of the anilino nitrogen to nickel bond. The starting set parameters have all been based on structures containing more basic nitrogen donors with shorter "ideal" N-Ni lengths and longer force-field stretching parameters.

During the solution of the X-ray structure some ambiguity arose in locating the methyl substituents on the propane linkages. Low electron density in the Fourier maps resulted from disorder of the methyl as a consequence of pseudo symmetry with a mirror plane passing through the benzene rings. The alleviations of "axial" or "equatorial" sites

could not clearly be resolved, although relative electron densities

indicated a higher population of the equatorial site.

The MOLMIN energy minimisation procedure was applied to two starting

structures with methyl substituents in the equatorial and arial positions and the energies of the two forms were found to be 141.1 and 150.7 kJ mol⁻¹ respectively. Thus, as expected the equatorial isomer is favoured. Final refinement of the X-ray structure, allowing site occupation factors for the methyl carbon atoms to vary, was in agreement with these calculations, giving an almost negligable occupancy of the axial site.

<u>3.3.5.3</u> Low-Spin Complex $[Ni(3.1b)](BF_4)_2$

Calculations on the low-spin nickel(II) complex of the ligand 3.1b will be undertaken at James Cook University. For the low-spin nickel(II) complexes force field parameters for the co-ordination sphere had not been devised previously. Such parameters were optimised by Mr L Brigden for the cyclam complex $[Ni(cyclam)]I_2$, using structural data obtained at the Polytechnic by Mr Davide Proserpio. For this structure the MM2 organic parameters were used for the first time. Excellent agreement has been obtained between the calculated and observed geometries (see figure 3.16).

Figure 3.16 Comparison between MOLMIN calculated minimum energy bond lengths and angles and those observed in the X-ray structure determination of $[Ni((yclam))]_2$ (the latter values are in parentheses).

N1 86-712 N4 NĮ (85.468) 1.9510 1-9494 (1.9348) (1-944 2) 93-289 93.288 1 9510 1.9494 86.711 1-94421 (1.9348) (85.468) NЭ N 2 NB N2 BOND ANGLES BOND LENGTHS 159

Such agreement is eagier to achieve for highly symmetrical structures, but also indicates that the MM2 parameters for aliphatic amines can be used without modification in metal complexes. Work on $[Ni(3.1b)](BF_{4})_{2}$ will require use of some additional parameters for 1,2-diaminobenzene components and will presumably only lead to good agreement between calculated and observed structures if allowance is made for the much poorer donor characteristics for the nitrogen donor atoms in 3.1b when compared with cyclam (3.5).

3.3.5.4 Future Applications of Molecular Mechanics Calculations

The results obtained to date from the MOLMIN system are encouraging. Once parameters have been empirically devised for a particular donor set about a metal ion it should prove possible to predict which is the lowest energy of several isomers or configurations and thus to predict the goodness-of-fit of a particular metal ion.

MOLMIN calculations have been able 62 to model a structural dislocation

which has been observed for high-spin nickel(II) complexes of

quinquedentate 0_2N_3 -ligands 3.26. For the unsubstituted ligand 3.26a

(R=H) it has been shown that the mode of co-ordination with a facial

arrangement of the three nitrogen donors (3.27) has significantly lower energy than meridional geometry (3.28). In contrast, the dimethyl substituented ligand 3.26b (R=Me) gives a more stable complex with the mer-geometry (3.27), because severe steric repulsion is found in the <u>fac</u>-arrangement. Consequently the dislocation from one geometry to another which was proposed to account for the significant drop in $logK_1$ on dimethyl substitution of the ligand is predicted by the MOLMIN calculations.

3.26a R=H 3.26b R=Me

3.27 <u>fac</u>-arrangement of three N donors

3.28 mer-arrangement of three N donors

3.4 Conclusions

The systems chosen for study 3.1 were found to be weak bases and very

rigid in structure resulting in non-equivalence of methylene protons.

Stability constant data have shown that these ligands complex only

weakly with transition metal ions. Such weak complexes could be

advantageous in solvent extraction systems where the metal needs to be stripped easily after the solvent extractant has picked up the metal. The weak complexation was examplified when metal complexation was attempted in solution. Selectivity was obvious, the O_2N_2 macrocycle 3.1a gave only a copper(II) complex. This was also the case for the S_2N_2 system 3.1c. The N_4 system on the other hand was less selective, complexing with Co(II), Ni(II), Cu(II) and Zn(II). It was the most air-sensitive ligand in solution because of the presence of four anilino groups. However, the N_4 -macrocycle gave a very good fit for the nickel(II) ion in both low- and high-spin states. This was also confirmed to some extent by molecular mechanics calculations.

References

- Micheloni, M., Paoletti, P., Siegfried-Hertlin, L., Kaden,
 T.A., J. Chem. Soc. Dalton, 1169 (1985).
- <u>Stability Constants Supplement No 1, Special Publications No</u>
 <u>25</u>, The Chemical Society.
- 3. Armeanu, V., Luca, C., <u>Z. Phys. Chem. (Leipzig)</u>, <u>214</u>, 81 (1960).
- 4. Nazorova, N.L., Ablov, A.V., Dagaev, V.A., <u>Russ. J. Inorg.</u> <u>Chem., 9</u>, 1150 (1964).
- 5. Nazarova, N.L., Ablov, A.V., Dagaev, V.A., <u>Russ. J. Inorg.</u> <u>Chem., 9</u> 2129 (1964)
- 6. Smith in Patai, <u>The Chemistry of the Amino Group</u>, 161-204, Interscience Publishers, New York, (1968).
- 7. Huitric, A.C.; Carr, J.B., Trager, W.T., Nist, B.J., <u>Tetr.</u> <u>19</u>, 2145 (1963).
- 8. Anderegg, G., Ekstrom, A., Lindoy, L.F., Smith, R., <u>J. Amer.</u> Chem. Soc., <u>102</u>, 2670 (1980).
- 9. Izatt, R.M., Bradshaw, J.S., Nielsen, S.A., Lamb, J.D., Christensen, J.J., <u>Chem. Rev., 85</u>, 271 (1985).
- 10. Adam, E.K., Lindoy, L.F., Smith, R.J., Anderegg, G., Henrick, K., McPartlin, M., J. Chem. Soc. Chem. Comm., 812 (1979).
- 11. Adam, K.R., Anderegg, G., Lindoy, L.F., Lip, H.C., McPartlin, M., Rea, J.H., Smith, R.J., Tasker, P.A., <u>Inorg. Chem.</u>, <u>19</u>,

2956 (1980).

12. Lindoy, L.F., Lip, H.C., Rea, J.H., Smith, R.J., Henrick, K.,

McPartlin, M., Tasker, P.A., <u>Inorg.</u> <u>Chem.</u>, <u>19</u>, 3360 (1980).

- 13. Unpublished Results, L.F. Lindoy, James Cook University, 1985.
- 14. Fabbrizzi, L., Paoletti, P., Clay, R.M., <u>Inorg. Chem.</u>, <u>17</u>, 1042 (1978).
- 15. Hinz, F.P., Margerum, D.W., <u>Inorg. Chem., 13</u>, 2941 (1974).
- 16. Hinz, F.P., Margerum, D.W., <u>J. Amer. Chem. Soc.</u>, <u>96</u>, 4993 (1974).
- 17. Barbucci, R., Fabbrizzi, L., Paoletti, P., Vacca, A., J. Chem. Soc. Dalton, 1762, (1973) and references therin.
- 18. Paoletti, P., Fabbrizzi, L., Barbucci, R., <u>Inorg. Chim. Acta.</u> <u>Rev., 7</u>, 43 (1973).
- 19. Anichini, A., Fabbrizzi, L., Paoletti, P., Clay, R.M., <u>Inorg.</u> <u>Chim. Acta.</u> <u>22</u>, L25 (1977).
- 20. Barbucci, R., Fabbrizzi, L., Paoletti, P., <u>Coord. Chem. Rev.</u>, 8 (1972).
- 21. Clay, R.M., Corr, S., Micheloni, M., Paoletti, P., <u>Inorg.</u> <u>Chem.. 24</u>, 3330 (1985).
- 22. Kodama, M., Kimura, E., J. Chem. Soc. Dalton, 2296 (1977).
- 23. Weatherburn, D.C., Billo, E.J., Jones, J.P., Margernum, D.W., <u>Inorg.</u> <u>Chem.</u>, <u>9</u>, 1557 (1970).
- 24. Kodama, M. Kimura, E., J. Chem. Soc. Chem. Comm., 326 (1975).
- 25. Kodama, M., Kimura, E., <u>J. Chem. Soc. Chem. Comm.</u>, 891 (1975).

Kodama, M., Kimura, E., J. Chem. Soc. Dalton, 2235 (1976).
 Diaddario, L.L., Zimmer, L.L., Jones, T.E., Sokol, L.S.W.L.,

- 28. Kodama, M., Kimura, E., J. Chem. Soc. Dalton, 1473 (1977).
- 29. Thom, V.J., Hosken, G.D., Hancock, R.D., <u>Inorg. Chem., 24</u>, 3378 (1985).
- 30. Leugger, A.P., Hertlin, L., Kaden, T.A., <u>Helv. Chim. Acta.</u> 61, 2298 (1978).
- 31. Micheloni, M., Sabatini, A., Paoletti, P., J. Chem. Soc. Perkin II, 828 (1978).
- 32. Kodama, M., Kimura, E., <u>J. Chem. Soc. Dalton, 116</u>, 1720 (1976).
- 33. Micheloni, M., Paoletti, P., <u>Inorg.</u> <u>Chim. Acta.</u>, <u>43</u>, 109 (1980).
- 34. Basolo, F., Coord. Chem. Rev., 3, 213 (1968).
- 35. Fleischer, E.B., Gebala, A.E., Tasker, P.A., <u>Inorg. Chim.</u> <u>Acta., 6</u>, 72 (1972).
- 36. Peng, S., Goedken, V.L., <u>J. Amer. Chem. Soc., 98</u>, 8500 (1976).
- 37. Kimura, E., Machida, R., Kodama, M., <u>J. Amer. Chem. Soc.</u>, <u>106</u>, 5497 (1984).
- 38. Jubran, N., Cohen, H., Meyerstein, D., <u>Isreal J. Chem.</u>, <u>25</u>, 118 (1985).
- 39. Fabbrizzi, L., Licchellic, M., Perotti, A., Poggi, A., Soresi, S., <u>Isreal J. Chem.</u>, 25, 112 (1985).
- 40. McAuley, A., Norman, P.R., Isreal J. Chem., 25, 106 (1985).
- 41. Chakravorty, A., Isreal J. Chem., 25, 99 (1985).
- 42. Leumann, C., Eschenmoser, A., J. Chem. Soc. Chem. Comm., 20,

1365 (1984).

43. Leumann, C., Eschenmoser, A., <u>J. Chem. Soc. Chem. Comm., 20</u>, 1368 (1984).

- 44. Beley, M., Collin, J., Ruppert, R., Sauvage, J., <u>J. Chem.</u> <u>Soc. Chem. Comm.</u>, 1315 (1984).
- 45. Griggs, C., Hason, M., Henrick, K.F., Matthews, R.W., Tasker, P.A., <u>Inorg. Chim. Acta., 25</u>, L29 (1977).
- 46. Henrick, K.F., Lindoy, L.F., McPartlin, M., Tasker, P.A., Wood, M.P., <u>J. Amer. Chem. Soc., 106</u>, 1641 (1984).
- 47. Ito, T., Kato, M., Ito, H., <u>Bull. Chem. Soc. Jpn., 57</u>, 2641 (1984).
- 48. Henrick, K.F., Tasker, P.A., Lindoy, L.F., <u>Prog. Inorg.</u> <u>Chem.</u>, <u>33</u>, 1 (1985).
- 49. Burbert, U., Allinger, N.L., <u>Molecular Mechanics, A.C.S.</u> <u>Monograph</u> <u>177</u>, American Chemical Society, Washington D.C., (1982).
- 50. Endicott, J.F., Brubaker, G.R., Ramasami, T., Bumar, K., Dwarakanath, K., Cassel, J., Johnson, D., <u>Inorg. Chem.</u>, <u>22</u>, 3754 (1983).
- 51. Thom, V.J., Boeyens, J.C.A., McDougall, G.J., Hancock, R.D., J. Amer. Chem. Soc., 106, 3198 (984).
- 52. Thom, V.J., Fox, C.C., Boeyens, J.C.A., Hancock, R.D., <u>J.</u> <u>Amer. Chem. Soc., 106</u>, 5947 (1984).
- 53. Hung, Y., Martin, L.Y., Jackels, S.C., Taik, A.M., Busch, D.H., <u>J. Amer. Chem. Soc., 99</u>, 4029 (1977).
- 54. DeHayes, L.J., Busch, D.H., <u>Inorg. Chem., 12</u>, 1505 (1973).
- 55. Brubaker, G.R., Johnson, D.W., Coord. Chem. Rev., 53, 1

(1984).

56. Hambley, T.W., <u>J. Chem. Soc. Chem.</u> <u>Comm.</u>, 1228 (1984).

57. Drew, M.G.B., Hollis, S., Yates, P.C., J. Chem. Soc. Dalton,

1829 (1985).

- 58. Allinger, N.L., Yuh, Y.H, <u>MM1 Q.C.P.E.</u> no <u>318</u>, <u>Quantum</u> <u>Chemistry Program Exchange</u>, Indiana University Chemistry Department, Indiana, U.S.A., modified version.
- 59. Allinger, N.L., Yuh, Y.H., <u>MM2 Q.C.P.E.</u> no <u>395.</u> Quantum <u>Chemistry Program Exchange</u>, Indiana University Chemistry Department, Indiana, U.S.A., modified version.

60. Wertz, D.H., Allinger, N.L., <u>Tetr., 30</u>, 1579 (1974).

- 61. Adam, K.R., Bridgen, L.G., Lindoy, L.F., Unpublished results, 1985.
- 62. Adam, K.R., Brigden, L.G., Lindoy, L.F., McPartlin, M.R., Mimnagh, B., Tasker, P.A., <u>J. Chem. Soc. Chem. Comm.</u>, 710 (1985).

CHAPTER 4: X-RAY STRUCTURE DETERMINATION

	Section		Page
¢.	4.1	Single Crystal X-Ray Diffraction	1 6 9
	4.2	Data Collection	1 70
	4.3	Determination of the Space Group	1 71
	4.4	Solution of the Structure	171
	4.5	Patterson Vector Map Solution	171
	4.6	Structure Solutions and Refinements	172
	4.7	X-Ray Structure Determination of the Free Ligand	
		C ₁₉ ^H 26 ^H 4	174
	4.8	X-Ray Structure Determination of [Ni(C19 ^H 26 ^N 4)](BF4)2	177
	4.9	X-Ray Structure Determination of $[Ni(C_{19}H_{26}N_{4})(NCS)_{2}]$	177
		References	1 84

CHAPTER 4: X-Ray Structure Determination

4.1 Single Crystal X-ray Diffraction

Single crystals were selected using a binocular microscope and were mounted in a random orientation at the end of a quartz fibre and centred upon the goniometer head of a four circle computer controlled Philips PW 1100 X-ray diffractometer using translational arcs. X-Rays from a molybdenum target (λ = 0.71069 Å) were used with a graphite crystal monochromator. Initially the computer moved the four circles systematically in small increments until diffraction was detected and the setting angle of the reflection were measured. The angular ranges scanned in every case were $\theta = 4$ to 15°, X = -80 to 80° and $\not p = 0$ to 360 °. The procedure was continued until the setting angles of 25 reflections had been found. The angles from the reflections were used by the computer to calculate the primitive unit cell, and to get the orientation matrix relative to the diffractometer axes. The original unit cell found by the diffractometer was examined as well as the the M-matrix which is related to the unit cell dimensions. The crystal cell type (e.g. triclinc etc.) was determined from the unit cell shape and the intensity relationships, i.e. for triclinic $I_{hkl} = I_{\bar{h}kl}$ (where I is the intensity for an hkl reflection).

The original 25 reflections were replaced by 25 high angle reflections $\Theta = 10^{\circ}$ to get a more accurate unit cell.

4.2 Data Collection

All the unique reflections within a range of $3 \text{ to } 25^{\circ}$ were scanned at a constant speed of $0.05^{\circ} \text{ s}^{-1}$ and a scan width of 1.00° using a $\Theta/2\Theta$ scan mode. Data recorded at this stage were hkl values, total scan counts and background measurements which were recorded on magnetic tape.

Reflections with total number of counts in the first scan <500 were scanned again to increase their accuracy. All "unique" data were collected for the cell type e.g. for triclinc hkl, Tikl, Tikl, hkl. Background measurements were made at both ends of the scan. The computer was then used to calculate a preliminary value of the intensity (I_{hkl}) prel. by subtracting the two background counts from the total counts.

(Inkl)prel. = Total counts - Total background counts

Each (I_{hkl}) prel. value was then corrected by the computer for Lorentz and polarization factors (which are geometric factors). This was done using

I_{hkl} = (I_{hkl})prel. x 1/L_p

where L_p is the Lorentz polarization factor, which varies from instrument to instrument, by a program written for the Philips diffractometer.

Reflections with $I_{hkl} < 3\sigma$ were rejected (σ is the standard deviation). Equivalent reflections were averaged to give the total

number of reflections.

4.3 Determination of the Space Group

From the corrected data the amplitude of the structure factors $(|F_{hkl}|)$ were determined from

I_{hkl} a |F_{hkl}|²

and systematic absences in the intensity data were considered to help determine the space group.

4.4 Solution of the Structure

This was done by using "direct methods" for the free ligand (see section 4.7) and by the "heavy atom method" for the metal complexes using Patterson vector maps for the position of heavy atoms and also for the confirmation of the space group (see section 4.9).

4.5 Patterson Vector Map Solution

The Patterson map is a map which relates peak height (of the heavy atoms) with the vectors between respective atoms.

The Patterson vector map may be used to locate the position of the heavy atoms.

From the intensity data a Patterson vector map is then obtained using

where $P_{(u,v,w)}$ corresponds to a vector or Patterson density at point (u,v,w) and V is the volume of the unit cell. A Patterson map is a three dimensional map where there is a peak for every pair of atoms inside the unit cell.

One peak is obtained from the map for two atoms in the unit cell, situated at a distance and a direction from the origin equivalent to vector between the pair of atoms, so that for any atoms at (x_1, y_1, z_1) and (x_2, y_2, z_2) a peak occurs in the map at

$$u = x_1 - x_2$$
$$v = y_1 - y_2$$
$$w = z_1 - z_2$$

The height of every peak in the Patterson map is proportional to the products of the atomic numbers of the two atoms Z_1 and Z_2 respectively. This implies that the peaks due to the heavy atom are readily distinguishable as they have large peak heights.

4.6 Structure Solutions and Refinements

Calculated structure factor values are obtained using the co-ordinates x_n, y_n, z_n of the atoms

$$(\mathbf{F}_{hkl})_{c} = \sum_{n=1}^{n \leq N} f_{n} e^{2\pi i (hx_{n} + ky_{n} + lz_{n})}$$

where n corresponds to the heavy atom and f_n is the scattering factor

 $F_{c} = f_{HA} e^{2\pi i (hx_{HA} + ky_{HA} + lz_{HA})}$

gives an approximate value for F_c based on one heavy atom (HA).

The observed structure factors and the calculated signs from the calculated structure factors were used to calculate the electron density map given by

$$\rho_{xyz} = \frac{1}{2} \sum_{hkl} S_{c} |F_{o}| e^{-2\pi i (hx + ky + lz)}$$

where S_{c} is the calculated sign, F_{o} is the modulus of the observed structure factor.

It was then possible to assign peaks from the map and thus positions of further atoms were obtained and used to calculate better values of F_c , and thus more correct signs and hence a better map. This iterative process was continued until all the atoms had been located.

The atomic co-ordinates and thermal parameters together with the overall scale factor (K) were varied in a 3-dimensional least square refinement.

The matrix which relates all components in the least squares procedures was then inverted to give the standard errors on all the refined parameters. From all the values of the atomic positional parameters x, y and z and their standard deviations the complete geometry of the molecule was obtained (i.e. all the bond lengths and interbond angles together with their estimated standard deviations). In the final stages selected non-hydrogen atoms were assigned 173 anisotropic thermal parameters whereas the remaining atoms and all the hydrogen atoms had isotropic thermal parameters. A final R-factor was thus obtained from:

$$R = \frac{\sum (K |F_0| - |F_c|)}{\sum K |F_0|}$$

4.7 X-Ray Structure Determination of the Free Ligand C₁₉^H26^N4

Crystal data: $C_{19}H_{26}N_4$, $M_r = 310.4$, monoclinic space group $P2_1/c$, a = 12.843(2), b = 5.449(1), c = 23.839(4) Å beta = 101.52(2) °, V = 1634.51 Å³, Z = 4, d_(calc) = 1.261 g cm⁻³. Crystal size = 0.32 x 0.39 x 0.29 mm, Mo-K_{ex} radiation, $\lambda =$ 0.71069 Å, number of reflection data = 2870, [I > 30(I)].

Pale yellow crystals of $C_{19}^{H}_{26}^{N}_{4}$ separated from a toluene solution upon prolonged standing. A scan width of $\theta = 1.0^{\circ}$ was used with a background measuring time of 10 seconds, to collect data of type hkl etc. Three standard reflections were measured every 3 hours during data collection and showed no significant variations in intensity.

From the relationship of the parameters of the unit cell and intensity relationships $GI_{hkl} = I_{h\bar{k}\bar{l}} = I_{h\bar{k}\bar{l}} = I_{h\bar{k}\bar{l}}$) a monoclinic space group was assumed. Systematic absences in data for 0k0 (where k was odd) and hol

(where 1 was odd) were observed and indicated that the space group is Since no heavy metals were present in the molecule a "direct P21/c. methods" solution was used to determine the structure. This was solved using the SHELX program by TANGENT multisolution refinement with values of E > 1.2. The starting origin and multisolution phases were selected as in table 4.1.

TABLE 4.1 Origin and Multisolution Phases

Origin		<u>n E</u>	Mu	Multisolutions			
h	k	1		h	k	1	
6	3	8	3.340	-13	0	6	4.248
-11	0	6	4.240	-13	2	14	2.705
-1	1	5	1.539	-4	3	14	3.358
				-3	1	1	1.461

From the E map with the highest figure of merit of 0.144 the nonhydrogen atoms were found from the highest 23 peaks. All the N-H and C-H hydrogen atoms were located from a Fourier difference map except one hydrogen of the methyl substituent (H3A2) and an aromatic hydrogen atom (H7A). Hydrogen atoms H3A2 and H7A were thus placed in calculated positions "riding" on the atoms to which they were bonded at a fixed distance of 1.08 %. All the hydrogen atoms were unrefined. Anistropic thermal parameters were assigned to all non-hydrogen atoms and the hydrogen atoms were given a common thermal parameter of There was some uncertainity in the assignment of the 0.08 Å².

position of one anilino hydrogen atom (H2AN). Three sites of electron

density were detected near the nitrogen atom N2A.

	Fractic	Fractional Coordinates		
	x	У	Z	
(i)	0.6159	0.2269	0.1393	
(ii)	0.6917	0.0550	0.1310	
(111)	0.2893	0.2422	0.2426	

Position (ii) was selected for H2AN on the basis of strain energy calculated as described in section 3.3.5. A final R-factor of 0.1093 and R_w of 0.1051 were obtained.

Figure 4-1 Ortep diagram of (C19H264).

4.8 X-ray Structure Determination of [N1(C19H26N4)](BF4)2

Crystal Data: $C_{19}H_{26}N_4B_2F_8NiM_r = 542.8$, triclinic space group P1, a = 9.200(2), b = 8.549(2), c = 7.994(2) Å, alpha = 109.10(2), beta = 112.91(2), gamma = 74.17(2) °, V = 938.22 Å³, Z = 1, $d_{calc} = 1.674 \text{ g cm}^{-3}$. Crystal size = 0.18 x 0.19 x 0.21 mm, Mo-K_a radiation, $\lambda = 0.71069$ Å, number of reflection data = 1108 [I > 3G(I)].

An orange single crystal obtained from a methanolic reaction solution was used for data collection and structure determination. The orientation matrix and crystal system (triclinic) were determined by the same procedures as outlined above (section 4.7). The calculated density implied that there is one molecule in the unit cell, Z = 1. There are two space groups available for a triclinic unit cell, P1 or $P\overline{1}$, which have one and two equivalent positions respectively.

Initially the $P\bar{1}$ space group was assumed which required the nickel atom to be located at the centre of symmetry (e.g. at the origin of the unit cell 0,0,0) because Z = 1. A Fourier map phased with this assignment for the nickel atom revealed the sites of all the other non-hydrogen atoms. The electron density for the methyl group was half that of a

"full" methyl group thus C3A was assigned half occupancy. This disorder

is an inevitable consequence of the molecule being sited on a

crystallographic inversion centre, because only the methyl substituent

prevents the molecule from having a centre of symmetry. Refinement in the centrosymmetric space group yielded normal thermal parameters for all atoms and difference Fourier electron density maps revealed only maxima which could be ascribed to hydrogen atoms. Consequently no attempt was made to refine the structure in the P1 space group since sufficent data was not available for this solution. All the hydrogen atoms were found from the difference Fourier maps except for H1A2, H4A2, H9A and the methine protons (H2B1), which were included in calculated positions, "riding" at a fixed distance of 1.08 Å. H2A2 was also given half occupancy. The methyl hydrogens were not located or calculated. In the final cycles of refinement, anisotropic thermal parameters were assigned to all non-hydrogen atoms and all the 0.05 Å². hydrogen atoms were given a common thermal parameter of This resulted in R = 0.0732 and R of 0.0723.

4.9 X-Ray Structure Determination of [Ni(C19H26N4)(NCS)2]

Crystal Data: $C_{21}H_{26}N_6S_2Ni$, $M_r = 485.32$, monoclinic space group $P2_1/n$, a = 13.210(2), b= 15.926(3), c = 11.184(2) Å, beta = 103.05(2), V = 2292.15 Å³, Z = 4, d_(calc) = 1.406 g cm⁻³. Crystal size = 0.06 x 0.78 x 0.07 mm, Mo-K_{ef} radiation, $\lambda = 0.71069$ Å, number of reflection data = 1250 [I > 30(I)].

A pink needle-like crystal obtained from the methanolic reaction mixture was used for data collection. The orientation matrix and crystal system (monoclinic) were determined by the same procedure as outlined above (section 4.7). Systematic absences in hkl data (when h01, h+l=2n+1 and 0k0, when k=2n+1) indicated that the space group is $P2_1/n$, a non-standard solution of $P2_1/c$.

A Patterson map was used to solve the structure.

<u>TABLE 4.2</u> Equivalent positions for the space group $P2_1/n$

(i) x, y, z
(ii) -x, -y, -z
(iii) 0.5 - x, 0.5 + y, 0.5 - z
(iv) 0.5 + x, 0.5 - y, 0.5 + z

TABLE 4.3 Unique vectors between the four symmetry related nickel atoms

(a)	(1)-(11)	Ξ	2x, 2y, 2z
(b)	(iii)-(i)	=	0.5 - 2x, 0.5, 0.5 - 2z
(c)	(iv)-(i)	Ξ	0.5, 0.5 - 2y, 0.5

\$

<u>TABLE 4.4</u> Patterson Synthesis from the Diffraction Data of the Complex $[Ni(C_{19}H_{26}N_{4})(NCS)_{2}]$

	Height	<u>u</u>	<u>v</u>	¥
	(arditrary units)			
Q1	999.	0.000	-0.000	0.000
Q2	999.	0.000	-0.000	1.000
Q3	447.	0.500	0.278	0.500
Q4	318.	0.072	0.500	0.806
Q5	270.	0.298	0.500	0.208
Q6	269.	0.367	-0.000	0.009
Q7	269.	0.367	-0.000	1.009
Q8	177.	0.434	0.221	0.705
Q9	156.	0.160	0.000	0.036
Q10	155.	0.130	0.279	0.498
Q11	144.	0.197	0.225	0.291
Q12	140.	0.327	-0.000	0.483
Q13	138.	-0.003	0.094	0.867
Q14	138.	0.003	0.094	0.133
Q15	117.	0.241	0.500	0.847
Q16	107.	-0.003	0.037	0.713
Q17	107.	0.003	0.037	0.287
Q18	105.	0.314	0.500	0.902
Q19	104.	0.011	-0.000	0.429
Q20	100.	0.195	0.243	0.636

The position of the nickel atom was deduced using the two highest

TABLE 4.5 Vectors Between the Nickel Atoms

Vector			Patterson P		
(c) 0.5,	0.5 - 2y,	0.5	Q3 447 0.500	0.278	0.500
(b) $0.5 - 2x$,	0.5,	0.5 - 2z	Q4 318 0.072	0.500	0.806
(b)-(c) -2x,	2у	-2z	-0.428	0.222	0.306

Therefore -2x, 2y, -2z is equivalent to (-0.428), 0.222, (0.306)i.e. 2x, 2y, 2z would be at 0.428, 0.222, -0.306. A vector which corresponds to this in the Patterson map is

Q8 177 0.434 0.221 0.705

Thus the vector between the two nickel atoms is Q8 and so 2x, 2y, 2z is 0.434, 0.221, 0.705. The co-ordinates of the nickel atom at x, y, z would have half of these values. The co-ordinates of the nickel atom are therefore 0.217, 0.110, 0.352. The co-ordinates of the nickel atom were used to phase a Fourier map used to determine the complete structure. The hydrogen atoms were included in calculated positions, "riding" on the carbon atoms to which they were bonded at a fixed distance of 1.08 Å, and were assigned a common thermal parameter of 0.08 $\frac{Q^2}{A}$. The anilino hydrogen atoms were found from a difference Fourier map. The position of the methyl substituents on the propane bridge could not be readily determined from the Fourier maps. Low poorly resolved, peaks were found at bonding distances from the

central carbon at both propane bridges. This was interpreted as due

to disorder of the molecule since the observed structure (minus the

methyl group) was very close to having pseudo mirror symmetry. There

were two positions available for each methyl because of the possibility of axial and equatorial positioning.

Each methyl was given half occupancy but the thermal paramaters obtained in the refinement of the structure were too high and thus the occupancy of the methyl carbons was varied until reasonable thermal parameters were obtained. The axial position of the methyl was found to be less favourable than the equatorial position because the axial had higher thermal parameters when compared with the carbons The best solution was when both the equatorial methyl equatorial. carbons were given an occupancy of 0.4 and those in axial position an occupancy of 0.1 (an occupancy of 0.1 is even less than that of a In the final run equatorial methyl carbon atoms hydrogen atom). (C3AE and C3BE) with half occupancy were assigned to both sites at idealised positions since the equatorial positioning is predominant. The hydrogens on the carbon with the methyl substituents were calculated and also given half occupancy. Anisotropic thermal parameters were assigned to all the heteroatoms, nickel and carbon atoms C1A, C2A and C4A. Thermal parameters for carbon atoms of the propane bridge of part A were relatively high when compared to those of the other propane bridge (C1B, C2B and C4B). All the atoms were

Figure 4.3 Ortep diagram of $[(C_{19}H_{26}N_4)(NCS)_2]$.

•

4.10 References

General reference : Sheldrick, G.M., <u>SHELEX Program</u>. The University of Cambridge, (1976).

	CHAPTER 5-EXPERIMENTAL SECTION		
General	Experimental	Reference	Page 188
Compound			
5.1	1,3-Bis(o-nitrophenylamino)propane	1	189
5.2	1,3-Bis(o-aminophenylamino)propane	1	190
5.3	10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenz	:o -	
	cyclotetradeca-8,10-diene	2	191
5.4	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibe	enzo-	
	cyclotetradeca-8,10-dienato)nickel(II)]		
	monotetrafluoroborate		192
5.5	10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenz	0-	
	cyclotetradecane		193
5.6	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibe	nzo-	
	cyclotetradecane) cobalt(II)] ditetrafluorobor;	ate	194
5.7	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibe	nzo-	
	cyclotetradecane)nickel(II)] ditetrafluorobora	ate	195
5.8	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-dibe	nzo-	
	cyclotetradecane)nickel(II) dithiocyanate]		196
5.9	[(10-Methyl-1,5,8,12-tetra-aza-6,7:13,14-diber	120-	
•	cyclotetradecane)copper(II)] ditetrafluorobora	ite	197
5.10	1,3-Bis(<u>o</u> -nitrophenyloxy)propane	3	198
5.11	1,3-Bis(o-aminophenyloxy)propane	3	199
5.12	10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-diben	20-	
c	cyclotetradeca-8,10-diene	4	200

5.13 10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzo-

cyclotetradecane

201

202

1.4

5.14 [(10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzo-

cyclotetradecane)copper(II)] dinitrate

5.15	1,3-Bis(o-aminophenylthio)propane dibromide 4	203
5.16	1,3-Bis(<u>o</u> -aminophenylthio)propane	204
5.17	1,2-Bis(<u>o</u> -aminophenylthio)ethane	205
5.18	1,4-Bis(<u>o</u> -aminophenylthio)butane	205
5.19	1,3-Bis(2{ <u>p</u> -tolylsulfonylamino}phenylthio)propane	206
5.20	1,2-Bis(2{p-tolylsulfonylamino}phenylthio)ethane	207
5.21	1,4-Bis(2{p-tolylsulfonylamino}phenylthio)butane	207
5.22	1,3-Bis(2{p-tolylsulfonylamino}phenyloxy)propane	209
5.23	1,3-Bis(<u>p</u> -tolylsulfonyloxy)propane 5,6	210
5.24	1,2-Bis(p-tolylsulfonyloxy)ethane 5,6	211
5.25	1,4-Bis(<u>p</u> -tolylsulfonyloxy)butane 5,6	21 1
5.26	1,4,7-Tris(<u>p</u> -tolylsulfonyl)-4-aza-1,7-dioxoheptane	21 2
5.27	8,12-Bis(<u>p</u> -tolylsulfonyl)-8,12-diaza-1,5-dithio-	
	6,7:13,14-dibenzocyclotetradecane	21 3
5.28	8,11,14-Tris(<u>p</u> -tolylsulfonyl)-8,11,14-triaza-1,5-	
	dithio-6,7:15,16-dibenzocyclohexadecane	215
5.29	8,12-Bis(p-tolylsulfonyl)-8,12-diaza-1,5-dioxo-	
	6,7:13,14-dibenzocyclotetradecane	216
5.30	8,13-Bis(<u>p</u> -tolylsulfonyl)-8,13-diaza-1,5-dithio-	
	6,7:14,15-dibenzocyclopentadecane	21 8
5.31	7,11-Bis(p-tolylsulfonyl)-7,11-diaza-1,4-dithio-	
	5,6:12,13-dibenzocyclotridecane	218
5.32	7,12-Bis(p-tolylsulfonyl)-7,12-diaza-1,4-dithio-	
	5,6:13,14-dibenzocyclotetradecane	21 9
5.33	9,12-Bis(p-tolylsulfonyl)-9,12-diaza-1,6-dithio-	

٠.

5.35	9,14-Bis(p-tolylsulfonyl)-9,14-diaza-1,6-dithio	-	
	7,8:15,16-dibenzocyclohexadecane		221
5.36	4-(p-Tolylsulfonyl)-4,1-aza-thio-5,6-benzocyclo	-	
	hexane		223
5.37	8,5-Aza-thio-6,7-benzo-octan-1-ol		224
5.38	1,8-Di(p-tolylsulfonyl)-8,1,4-aza-oxo-thio-6,7-		
	benzo-octane		225
5.39	5-(p-Tolylsulfonyl)-5,1-aza-thio-6,7-benzocyclo	-	
	heptane		227
5.40	8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclo-		
	tetradecane		228
5.41	[(8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclo-		
	tetradecane)copper(II)] ditetrafluoroborate		231
5.42	8,12-Diaza-1,5-dioxo-6,7:13,14-dibenzocyclotetra	. —	
	decane		2 3 2
5.43	7,11,14-Triaza-1,5-dithio-6,7:15,16-dibenzocyclo	-	
	hexadecane		233
5.44	[(10-Methyl-8,12-diaza-1,5-dithio-6,7:13,14-		
	dibenzocyclotetradeca-8,10-dienato)nickel(II)]		
	monotetrafluoroborate		234
5.45	[(8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclo-		
	<pre>tetradeca-9,11-dionato)nickel(II)]</pre>		235
5.46	N,N-Bis(o-carbomethoxyphenyl)-1,2-diaminoethane	7	236
5.47	4,7-Diaza-2,3:8,9-dibenzodeca-1,10-diol	7	2 37
5.48	4.7-Diaza-2.3:8.9-dibenzodeca-1.10-dione	7	2 20

CHAPTER 5 Experimental Section

General Experimental

All infrared spectra were obtained either as nujol and hexachlorobut-1,3-diene mulls of the samples between KBr discs or as KBr discs of the solids. The spectra were run on Pye Unicam SP3 200, SP 2000 or Perkin-Elmer 781 spectrometers. Mass spectra and microanalyses were done at ICI Organics Division and the analytical department, Polytechnic of North London. ¹H nmr spectra (60 MHz) were obtained on a Perkin-Elmer R12B. ¹H nmr spectra (220 MHz) were obtained from P.C.M.U., and ¹³C nmr spectra and ¹H nmr (80 MHz) were run on a Bruker WP 80. X-ray crystallographic data were obtained on a Philips PW 1100 diffractometer with Mo-K_{Cl} radiation.

All chemical and solvents were used as obtained from the manufacturers except the following which were treated before use:

- (i) THF was dried by distilling over sodium/benzophenone
- (ii) Pyridine was dried over potassium hydroxide
- (iii) Tosyl chloride was recrystalliseed from dichloromethanecyclohexane.

1,3-Bis(o-nitrophenylamino)propane 5.1

5.1

Yellow crystals of 1-chloro-2-nitrobenzene (599.15 g, 3.80 mol) were heated with 1,3-diaminopropane (105.8 cm^3 , 1.26 mol). When all the 1,3-diaminopropane had reacted the orange solution practically solidified and HCl was no longer evolved. The solution was kept from solidifying by heating and stirring vigourously for 4 hours. This was then added to ethanol (1500 ml). The solid was collected and washed with diethyl ether (900 cm^3), toluene (900 cm^3) and sodium methoxide (2 mol dm^{-3}) solution (300 cm^{-3}) , and dried in vacuo. Orange crystals of 1,3-bis(o-nitrophenylamino)propane 5.1 (241.23 g, 0.76 mol, 61 \$) were recrystallised from 1,2-dichloroethane, m.p. 152-153 ^OC. Found C, 56.11; H, 5.30; N, 17.56; requires C, 56.96; H, 5.06; N, 17.72 \$, for $C_{15}H_{16}O_{4}N_{4}$, $m_{r} = 316$. V/cm^{-1} : 760, 788, 1060, 1180, 1350, 1400, 1480, 1560, 1588, 1600, 1637, 2860, 2880, 3040, 3400. ¹H nmr (60 MHz, δ /ppm: 2.35(p, <u>J</u> 6.6 Hz, 2H -NHCH₂CH₂); 3.55(t, <u>J</u> 6.6 Hz, CDC1₃), 4H -NHCH₂); 6.50-8.40(mc, 10H-aromatic and $-CH_2NH$). ¹³C nmr (20.12) MHz, CDCl₃), δ/ppm: 28.5, 40.5, 113.6, 115.7, 127.0, 127.4, 136.4,

1,3-Bis(o-aminophenylamino)propane 5.2

5.2

To the refluxing orange solution of 1,3-bis(o-nitrophenylamino)propane (10.0 g, 40.0 mmol) in 99 % ethanol (450 cm³) was added 5 % 5.1 palladium on activated carbon (0.5 g) as an ethanol slurry, and hydrazine hydrate (20 cm^3). These were added dropwise alternatively under a nitrogen atmosphere. When all the additions had been completed the solution was refluxed for 4 hours. On filtration a pale orange solution was obtained. After total evaporation under vacuum and on addition of 50 % aqueous ethanol, pale pink needles were obtained of 1,3-bis(o-aminophenylamino)propane 5.2 (8.85 g, 34.52 mmol, 87 %). Recrystallisation was from 50 % aqueous ethanol, m.p. 79.5-80.0 °C. Found C, 70.78; H, 7.60; N, 21.33; requires C, 70.28; H, 7.86; N, 21.86 **%**, for $C_{15}H_{20}N_4$, $m_r = 265 \cdot V/cm^{-1}$: 738, 1146, 1225, 1272, 1313, 1342, 1380, 1455, 1465, 1505, 1595, 1605, 1625, 2850, 2870, 3260, 3380, 3400. ¹H nmr (60 MHz, CDCl₃), δ /ppm: 1.94(p, <u>J</u> 6.6 Hz, 2H- $\text{NHCH}_2(\text{H}_2)$; 3.19(t, <u>J</u> 6.6 Hz, 10H-NHCH₂ and $-\text{CH}_2(\text{NH})$ and $-\text{CMH}_2$); 6.66(s, 8H-aromatic). ¹³C nmr (20.12 MHz, $CDCl_3$), δ /ppm: 29.0, 43.1, 118.8, 120.8, 134.4, 137.9.

3-Ethoxy-2-methylacrolein (1.1 cm³, 10 mmol) was added to a refluxing solution of 1,3-bis(o-aminophenylamino)propane 5.2 (2.6 g, 10.0 mmol) in toluene (90 cm^3). The solution was refluxed with stirring under nitrogen for 4 hours. After cooling and evaporating under vacuum, cold methanol was added and orange microcrystals were obtained of 10methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradeca-8,10-diene 5.3 (1.16 g, 379 mmol, 38 %). Recrystallisation was from methanol, m.p. 193.5-195 ^OC. Found C, 73.5; H, 7.40; N, 18.00; requires C, 74.47; H, 7.24; N, 18.29 \$; for $C_{19}H_{22}N_4$, $m_r = 306. \sqrt{cm^{-1}}$: 693, 751, 794, 1065, 1224, 1348, 1430, 1460, 1496, 1533, 2700, 2880, 3040, 3330. ¹H nmr (60 MHz, CDCl₃), δ /ppm: 2.00(p, <u>J</u> 5Hz, 2H-NHCH₂CH₂); 2.05(s, 5H-C<u>CH_3</u>); 3.41(t, <u>J</u> 5 Hz, 4H-NH<u>CH_2</u>); 4.72(s, 2H-CH₂NH); 6.50-7.40(mc, 9H-aromatic and -CHNH); 7.93(d, J 5 Hz, 2H-NHCH). ¹³C nmr (20.12 MHz, $CDCl_3$), δ / ppm : 18.3, 28.7, 45.4, 103.1, 112.8, 113.6, 119.2, 124.1, 134.9, 139.8, 146.5. Mass spectrum m/z: 306(M = 35 \$), 199(8), 185(23), 159(31), 145(44), 132(32), 119(100), 104(8), 92(31),

diene 5.3

dienato)nickel(II)] monotetrafluoroborate 5.4

To the macrocycle 10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradeca-8,10-diene 5.3 (0.51 g, 1.66 mmol) in methanol (50 cm³) was added the pale blue solution of excess nickel(II)tetrafluoroborate (1.92 g, 8.28 mmol) in methanol(100 cm³). This gave a deep orange solution which upon heating and cooling gave blue shiny crystals. These were filtered and washed with water to remove any unreacted Ni(BF₄)₂ and dried. Blue needles were obtained of [(10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradeca-8,10-dienato) nickel(II)] monotetrafluoroborate 5.4 (0.44 g, 0.97 mmol, 59 \$), m.p. 274-276 °C. Found C, 50.70; H, 4.70; N, 12.50; Ni, 11.20; requires C, 50.61; H, 4.69; N, 12.43; Ni, 13.02 \$, for ($C_{19}H_{21}N_4$)BF₄Ni, m_r = 450. V/cm⁻¹: 752, 1278, 1314, 1376, 1460, 1600, 2880, 2920, 3230. Mass spectrum m/z: 363(M^{*} =10 \$), 358(100), 334(15), 202(5), 178(25), 159(5), 119(5), 49(20), 20(10).

10-Methyl-1,5,8,11-tetra-aza-6,7:13,14-dibenzocyclotetradeca-8,10diene 5.3 (5.6 g, 18.29 mmol) was suspended in toluene (600 cm^3) with 5 \$ palladium on activated carbon (3.24 g) in an autoclave (1000 cm³). Reduction was carried out at 30 °C under 50 atmospheres of hydrogen gas for 18 hours with constant stirring. The filtered orange solution evaporated to dryness, was and ethyl acetate added. was Recrystallisation from ethyl acetate yielded pale yellow crystals of 10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradecane 5.5 (3.24g, 10.44 mmol, 57 \$), m.p. 180-182 °C. Found C, 74.10; H, 8.90; N, 16.00; requires C, 73.51; H, 8.44; N, 18.05 \$, for $C_{19}H_{26}N_4$, $m_r =$ $310.\sqrt{cm^{-1}}$: 738, 903, 1047, 1142, 1227, 1242, 1378, 1460, 1504, 1580, 1603, 2880, 2920, 3040, 3284. ¹H nmr (220 MHz, $CDCl_3$), δ /ppm: 1.05(d, <u>J</u> 6.7 Hz, $3H-CHCH_3$; 1.95-2.45(mc, $3H-NHCH_2CH_2$ and CH_3CH); 2.94(t, <u>J</u> 12 Hz, 2H-NH<u>CH₂</u>); 3.10-3.26(mc, 2H-NH<u>CH₂</u>); 3.36-3.60(mc, 4H-NH<u>CH₂</u>); 4.35(s, 4H-CH_NH); 6.60-7.00(mc, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), δ /ppm: 17.9, 26.7, 31.5, 45.7, 52.7, 111.1, 111.2, 119.3, 119.4, 137.7. Mass spectrum m/z: 310(M=96 \$), 281(3), 267(15),

161(19), 147(15), 133(60), 119(100), 108(10), 92(28), 77(21), 65(21), 51(6), 39(10), 28(10), 18(8). X-ray (from toluene): $P2_1/c$, a=12.843, b=5.449, c=23.898 Å, β =101.522 °, Z=4, 2870 data with F >3 () (F), R 0.1011.

cobalt(II)] ditetrafluoroborate 5.6

The pink solution of cobalt(II) tetrafluor borate (0.10 g, 0.28 mmol) in methanol (20 cm³) was added to 10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradecane 5.4 (0.08 g, 0.24 mmol) in methanol/dichloromethane (50 cm³) to give a royal blue solution. A blue/purple solid was obtained on evaporation to a low volume. This was washed with cold methanol to yield [(10-methyl-1,5,8,12-tetraaza-6,7:13,14-dibenzocyclotetradecane)cobalt(II)] ditetrafluoroborate 5.6 (90.05 g, 0.10 mmol, 40 \$), m.p. 247-250°C. Found C, 41.91; H, 4.85; N, 4.69; requires C, 42.03; H, 4.53; N, 5.16 \$, for $C_{19}H_{26}N_{4}B_{2}F_{8}Co, m_{r} = 543. V/cm^{-1}$: 725, 735, 1040-1085(b), 1145, 1150, 1230, 1245, 1263, 1341, 1465, 1475, 1505, 1518, 1535, 1595, 2848, 2928, 2960, 3285, 3400.

nickel(II)] ditetrafluoroborate 5.7

To a hot methanolic solution (20 cm^3) of 10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradecane 5.5 (0.0126 g, 0.0406 mmol) under a nitrogen atmosphere was added nickel(II)tetrafluoroborate (0.0195 g, 0.0528 mmol) in hot methanol (20 cm³). The resulting green solution was then evaporated gently under nitrogen to yield orange crystals of [(10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetra-

decane)nickel(II)] ditetrafluoroborate 5.7 (0.0125 g, 0.0230 mmol, 57 \$), m.p. 272-274°C. Found C, 41.93; H, 4.72; N, 11.07; requires C, 42.04; H, 4.83; N, 10.33 \$ for $C_{19}H_{26}N_{4}B_{2}F_{8}Ni$, $m_{r}=543$. Wcm⁻¹: 720, 760, 890, 1045, 1210, 1235, 1270, 1280, 1310, 1380, 1465, 1505, 1600, 1640, 2850, 2920, 2960, 3200, 3400. X-ray (from methanol): P1, a=9.200, b=8.549, c=7.974 A, Cl=109.105, β =112.902, γ =74.167°, Z=2, 1108 data with F >3Q(F), R 0.0722.

nickel(II) dithiocyanato] 5.8

Nickel(II) tetrafluoroborate (0.1686 g, 0.50 mmol) in hot methanol (20 cm³) was added to a methanolic (20 cm³) solution of 10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradecane 5.5 (0.1001 g, 0.32 mmol) under nitrogen. Ammonium thiocyanate (0.0504g, 0.66 mmol) in methanol (5 cm³) was added, to the resulting green solution, to yield a blue solution which was evaporated to a low volume under a nitrogen atmosphere. Pink needles were obtained of [(10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradecane)nickel(II) dithiocyanato] 5.8 (0.0796 g, 0.16 mmol, 51 \$), m.p. 284-285°C. Found C, 51.50; H, 5.40; N, 17.00; S, 12.50; Ni, 11.40; requires C, 51.97; H, 5.40; N, 17.32; S, 13.21; Ni, 12.10 \$, for $C_{21}H_{26}N_2S_4Ni$, m_r =485. W/cm^{-1} : 720, 790, 850, 870, 920, 965, 1000, 1045, 1068, 1120, 1140,

1190, 1205, 1235, 1270, 1370, 1410, 1460, 1492, 1600, 2085, 2880,

2940, 3180, 3240. Mass spectrum m/z: 358(100), 310(43), 267(12),

179(17), 160(15), 147(13), 133(53), 119(80), 108(10), 92(18), 77(23),

copper(II)] ditetrafluoroborate 5.9

To a solution of 10-methyl-1,5,8,12-tetra-aza-6,7:13,14-dibenzocyclotetradecane 5.5 (0.04 g, 0.13 mmol) in dichloromethane/methanol (50 cm³) was added the blue solution of copper(II) tetrafluoroborate (0.04 g, 0.13 mmol) in methanol (20 cm³). A pink solution was obtained and on evaporation to a low volume, a solid appeared, which was collected and washed with cold methanol. [(10-methyl-1,5,8,12tetra-aza-6,7:13,14-dibenzocyclotetradecane) copper(II) ditetrafluoroborate 5.9 was obtained as a brown solid (0.04 g, 0.08 mmol, 51 \$), m.p. 257-260°C. Found C, 41.60; H, 4.63; N, 4.59; requires C, 41.67; H, 4.79; N, 10.23 \$, for $C_{19}H_{26}N_4B_2F_8Cu$, m_r = 548. V/cm^{-1} : 723, 745, 770, 790, 813, 873, 893, 955, 995-1120(b), 1160, 1234, 1260, 1295, 1315, 1350, 1398, 1409, 1448, 1465, 1510, 1605, 2825, 2920, 2960, 3240.

1,3-Bis(o-nitrophenyloxy)propane 5.10

5.10

To o-nitrophenol (478 g, 3.44 mol) in hot N,N-dimethylformamide (500 cm^3) was added potassium carbonate (239 g, 1.73 mol) in 10 g portions. On gentle boiling 1,3-dibromopropane (182 cm³, 1.79mol) was added over 30 minutes. The solution was gently refluxed for 2 hours and the solvent (300 cm^3) was distilled from the mixture, which was then poured into deionised water (5 1). The yellow granular precipitate was filtered off, washed with dilute aqueous sodium $(0.25 \text{ mol dm}^{-3})$ and water then dried. hydroxide solution The crystals of 1,3-bis(o-nitrophenyloxy)propane 5.10 (495.8 g, 1.56 mol, 87 %) were recrystallised from glacial acetic acid, m.p. 129-132 °C. Found: C, 56.80; H, 3.90; N, 9.10; requires C, 56.60; H, 4.40; N, 8.81 **s**, for $C_{15}H_{14}O_6N_2$, $m_r = 318$. V/cm^{-1} : 690, 770, 795, 863, 893, 973, 990, 1007, 1073, 1114, 1170, 1280, 1300, 1377, 1490, 1540, 1607, 1627, 2800, 2880, 3040. ¹H nmr (60 MHz CDC1₃), δ /ppm: 2.30(p, <u>J</u> 5.3 Hz, 2H -OCH2CH2); 4.31(t, J 5.3 Hz, 4H -OCH2); 6.81-8.12(mc, 8H -aromatic).

1,3-Bis(o-aminophenyloxy)propane 5.11

5.11

1,3-Bis(<u>o</u>-nitrophenyloxy)propane 5.10 (10.0 g, 39.33 mmol) was reduced under reflux in a nitrogen atmosphere with 5 \$ palladium on activated carbon (0.5 g) and hydrazine hydrate (20 cm³). After filtration and evaporation to dryness 25 \$ aqueous ethanol was added. White crystals of 1,3-bis(<u>o</u>-aminophenyloxy)propane 5.11 were obtained (7.5 g, 29.03 mmol, 74 \$), which were recrystallised from 25 \$ aqueous ethanol m.p. 47-49 °C. Found C, 71.06; H, 7.40; N, 10.94; requires C, 69.74; H, 7.02; N, 10.85 \$, for $C_{15}H_{18}N_2O_2$, $m_r = 258$. V/cm^{-1} : 734, 1030, 1140, 1220, 1271, 1337, 1400, 1460, 1503, 1615, 2870, 2910, 3353, 3348. ¹H nmr (60 MHz, CDCl₃), δ/ppm : 2.22(p, <u>J</u> 6.6 Hz, 2H-OCH₂CH₂); 3.65(s, 4H-CH<u>NH₂</u>); 4.06(t, <u>J</u> 6.6 Hz, 4H-O<u>CH₂</u>); 6.57(s, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), δ/ppm : 29.6, 65.2, 111.9, 115.3, 118.5, 121.4, 136.5, 146.5.

10-Methyl-8, 12-diaza-1, 5-dioxo-6, 7:13, 14-dibenzocyclotetradeca-

8,10-diene 5.12

A solution of 3-ethoxy-2-methylacrolein (1.1 cm^3 , 10 mmol) and 1,3bis(<u>o</u>-aminophenyloxy)propane 5.11 (2.58 g, 10.0 mmol) in toluene (90 cm^3) was refluxed with stirring under nitrogen for 4 hours. After evaporating to dryness methanol was added and yellow needles were of 10-methyl-8, 12-diaza-1, 5-dioxo-6, 7:13, 14-dibenzocycloobtained tetradeca-8,10-diene 5.12 (1.26 g, 4.09 mmol, 41 \$). Recrystallisation was from methanol, m.p. 237-238 °C. Found C, 74.30; H, 6.30; N, 8.80; requires C, 74.00; H, 6.53; N, 9.09 %, for $C_{19}H_{20}N_2O_2$, $m_r = 308. \sqrt{cm^{-1}}$: 748, 905, 1063, 1168, 1264, 1287, 1330, 1397, 1463, 1540, 1597, 1645, 2895, 2920, 3350. ¹H nmr (220 MHz, CDCl₃), δ/ppm: 2.05(s, 3H-C<u>CH</u>₃); 2.33(p, <u>J</u> 5 Hz, 2H-OCH₂CH₂); 4.23(t, <u>J</u> 5 Hz, 4H-O<u>CH</u>₂); 6.70-7.35(mc, 9H-aromatic and $CH\underline{NH}$); 7.85(d, <u>J</u> 6.6 Hz, 2H-N<u>CH</u>). ¹³C nmr $(20.12 \text{ MHz}, \text{ CDCl}_3), \delta/\text{ppm}: 18.1, 29.8, 67.8, 103.0, 111.9, 114.1,$ 121.1, 123.3, 136.0, 146.8, 150.2. Mass spectrum m/z: 308(M = 5 \$), 200(3), 120(1), 105(5), 44(58), 36(5), 28(10), 18(100).

10-Methyl-8, 12-diaza-1, 5-dioxo-6, 7: 13, 14-dibenzocyclotetradecane 5.13

10-Methyl-8, 12-diaza-1, 5-dioxo-6, 7:13, 14-dibenzocyclotetradeca-8, 10diene 5.12 (9.34 g, 30.28 mmol) was placed with toluene (1000 cm^3) and 5 \$ palladium on activated carbon (5.00 g) in an autoclave (2000 cm^3). The macrocycle was then reduced under 50 atmospheres of hydrogen gas with stirring for 18 hours at 30 °C. After filtration the pale yellow solution was evaporated to dryness and ethyl acetate was added, yielding white crystals of 10-methyl-8,12-diaza-1,5-dioxo-6,7:13,14dibenzocyclotetradecane 5.13 (0.96 g, 25.49 mmol, 84 \$). Recrystallisation was from ethyl acetate, m.p. 153.5-155.0 °C. Found C, 73.90; H, 7.80; N, 9.30; requires C, 73.04; H, 7.74; N, 8.97 **%**, for $C_{19}H_{24}N_{2}O_{2}$, $m_{r} = 312$. V/cm^{-1} : 734, 1054, 1108, 1143, 1223, 1250, 1348, 1380, 1470, 1510, 1605, 2879, 2960, 3360. ¹H nmr (220 MHz, CDCl₃), δ /ppm: 1.05(d, <u>J</u> 6.7 Hz, <u>3H-CHCH₃</u>); 2.00-2.50(mc, $3H-OCH_2CH_2$ and $-CH_3CH$; $3.03(t, J 12 Hz-2H-NHCH_2)$; $3.35-3.54(mc, 2H-CH_2)$; $3.35(mc, 2H-CH_2)$; $3.35(mc, 2H-CH_2)$; $3.35(mc, 2H-CH_2)$ NCH₂); 4.16-4.60(me, 4H-OCH₂); 5.05(s, 2H-CH₂NH); 6.60-7.00(me, 8Haromatic). ¹³C nmr (20.1 MHz, $CDCl_3$), δ /ppm: 17.8, 28.6, 31.4, 51.5, 67.8, 109.7, 110.1, 116.4, 121.3, 138.1, 146.5. Mass spectrum

m/z: 312(M^{*}=96 \$), 297(4), 270(6), 254(6), 204(10), 161(100), 150(15), 134(49), 120(41), 109(13), 93(17), 77(25), 65(30), 52(17), 41(27), 28(14), 18(7).

[(10-Methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzocyclotetra-

decane)copper(II)] dinitrate 5.14

To an acetone solution of 10-methyl-8,12-diaza-1,5-dioxo-6,7:13,14dibenzocyclotetradecane 5.13 (1.00 g, 3.20 mmol) was added copper(II) nitrate (0.78 g, 3.29 mmol). Immediately a green precipitate was obtained of [(10-methyl-8,12-diaza-1,5-dioxo-6,7:13,14-dibenzocyclotetradecane) copper(II)] dinitrate 5.14 (0.91 g, 1.82 mmol, 57 \$), m.p. 154° C(decomposes). Found C, 45.78; H, 4.86; N, 11.83; requires C, 45.64; H, 4.84; N, 11.21 \$ for C₁₉H₂₄N₄O₈Cu, m_r = 500. V/cm^{-1} : 758, 768, 790, 805, 815, 840, 900, 973, 917, 1015, 1053, 1120, 1162, 1255, 1298, 1380, 1390, 1395, 1465, 1490, 1465, 1510, 1518, 1530, 1610, 2860, 2880, 2930, 2950, 2960, 3180, 3440.

1,3-Bis(o-aminophenylthio)propane dibromide 5.15

5.15

Sodium (18.6 g, 0.81 mol) was dissolved in methanol (570 cm³) and o_{-} aminobenzenethiol (100 g, 0.74 mol) was added. The mixture was stirred under nitrogen for 10 minutes and a yellow solution was obtained. 1,3-Dibromopropane (78.0 g, 0.38 mol) in methanol (150 cm^3) was then added dropwise to the solution. The mixture was stirred overnight under nitrogen then refluxed for 6 hours. On cooling hydrobromic acid (80 cm^3 , 48 \$) was added to precipitate the white dibromide salt. This was filtered and washed with cold methanol and dried in vacuo. The 1,3-di-(<u>o</u>-aminophenylthio)propane dibromide 5.15 (168.6 g, 0.37 mol, 96 %) was recrystallised from methanol, (a few drops of 48 \$ HBr were added to prevent hydrolysis) and then dried in vacuo, m.p. 224-226 °C. Found C, 37.81; H, 4.43; N,5.68; S, 13.1; Br, 36.0; requires C, 39.82; H, 4.42; N, 6.19; S, 14.18; Br, 35.34 **\$**, for C₁₅H₂₀N₂S₂Br₂, m_r = 452. V/cm^{-1} : 700, 740, 760, 980, 1150, 1380, 1490, 2880, 2900, 3040. ¹H nmr (60 MHz, d_6 -DMSO), δ /ppm: 2.00(p, <u>J</u> 6.7 Hz, 2H -SCH₂CH₂); 2.95(t, <u>J</u> 6.7 Hz, 10H $-S_{CH_2}$); 6.95-7.50(mc., 8H -aromatic). ¹³C nmr

Bis(o-aminophenylthio)alkanes 5.16-5.18

1,3-Bis(o-aminophenylthio)propane 5.16

1,3-Bis(<u>o</u>-aminophenylthio)propane dibromide 5.15 (20g, 44.22 mmol) was suspended in a saturated aqueous solution of sodium bicarbonate (100 cm³). Dichloromethane was added and the organic phase was separated and washed with distilled water. The combined organic extracts were dried over anhydrous sodium sulphate and evaporated to dryness under pressure. A yellow oil was obtained of 1,3-bis(<u>o</u>aminophenylthio)propane 5.16 (10.5g, 36.15 mmol, 82%). Found C, 61.90; H, 6.50; N, 9.60; S, 22.80; requires C, 62.06; H, 6.25; N, 9.65; S, 22.08 %, for $C_{18}H_{18}N_2S_2$, $m_r = 290$. V/cm^{-1} 748, 853, 940, 1023, 1080, 1140, 1158, 1247, 1308, 1450, 1478, 1580, 1605, 2915, 3010, 3060, 3353, 3462. ¹H nmr (60 MHz, CDCl₃), $\tilde{O}/ppm: 1.73(p, \underline{J}$ 2H-SCH₂CH₂); 2.78(t, \underline{J} 7.3 Hz. 2H-S<u>CH₂</u>); 4.22(s, 4H-C<u>NH₂</u>); 6.45-7.50(mc, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), $\tilde{O}/ppm: 22.8, 32.5, 123.3,$

127.9, 128.3, 128.6, 132.7, 133.5. Mass spectrum m/z: 290 ($M^{*}=45 \$), 198(15), 178(13), 166(100), 150(13), 138(60), 124(80), 118(5), 106(13), 94(50), 80(42), 73(5), 65(15), 53(5), 39(5), 18(37).

1,2-Bis(o-aminobenzenethio)ethane 5.17

The dihydrogenbromide salt was prepared in an analogous fashion to 1,3-bis(<u>o</u>-aminobenzenethio)propane dihydrogen bromide 5.15, this was not isolated but treated directly with saturated aqueous sodium bicarbonate and dichloromethane. The organic layer was extracted with dichloromethane, dried over anhydrous sodium sulphate and then evaporated to a low volume. A solid was obtained which was washed and recrystallised from methanol to yield purple crystals of 1,2-bis(<u>o</u>-amimophenylthio)ethane 5.17 (22 g, 79.59 mmol, 66 \$), m.p. 77-78°C. Found C, 61.40; H, 5.90; N, 10.30; S, 22.90; requires C, 60.82; H, 5.84; N, 10.14; S, 23.20 \$, for $C_{14}H_{16}N_2S_2$, $m_r = 276$. V/cm^{-1} 750, 852, 1165, 1448, 1480, 1583, 1618, 2880, 2930, 3060, 3180, 3358, 3390. ¹H nmr (60 MHz, CDCl₃), δ/ppm : 2.85(s, 4H-S<u>CH₂</u>); 4.10(s, 4H-C<u>MH₂</u>); 6.50-7.40(mc, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), δ/ppm : 34.5, 115.0, 116.8, 118.6, 130.0, 136.2, 148.6.

1,4-Bis(o-aminophenylthio)butane 5.18

This was prepared as above and gave a brown oil, $1, 4-bis(\underline{o}-aminophenylthio)$ butane 5.18 (32 g, 105.10 mmol, 88 %). Found C, 62.40; H, 6.80; N, 9.20; S, 21.60; requires C, 63.11; H, 6.62; N, 9.20; S, 21.06 %, for $C_{16}H_{20}S_2N_2$, $m_r = 304$. V/cm^{-1} : 750, 1025, 1160, 1250, 1310, 1450, 1480, 1610, 2880, 2930, 3250, 3350. ¹H nmr (60 MHz, CDCl₃), δ/ppm : 1.13-1.75(mc, 4H-SCH₂CH₂); 2.38-2.75(mc, 4H-S<u>CH₂</u>); 4.22(s, 4H-C<u>NH₂</u>); 6.00-7.25(mc, 8H-aromatic). ¹³C nmr (20.12)

 $MHz, CDCl_{3}, \delta/ppm: 28.5, 34.2, 114.9, 117.9, 118.5, 129.6, 135.8, 148.3. Mass spectrum m/z: 304(M*=85 $), 248(3), 180(30), 152(3), 138(10), 124(100), 109(3), 97(50), 88(75), 65(23), 39(15), 27(9).$

Bis(2{p-tolylsulfonylamino}phenylthio)alkanes 5.19-5.21

5.19, m=3 5.20, m=2 5.21, m=4

1,3-Bis(2{p-tolylsulfonylphenylamino}phenylthio)propane 5.19

A solution of <u>p</u>-toluenesulfonylchloride (58.0 g, 304.2 mmol) in pyridine (200 cm³) was added dropwise over three hours to a solution of 1,3-bis(<u>o</u>-aminophenylthio)propane 5.16 (35.5 g, 122.2 mmol) in pyridine (200 cm³) at 30°C. This was then heated at 50-60 °C for three hours. After cooling concentrated hydrochloric acid (100 cm³) was added. The organic layer was extracted with dichloromethane and the combined extracts were dried over anhydrous sodium sulphate. 1,3-Bis(2{<u>p</u>-tolylsulfonylamino}phenylthio)propane 5.19 (67.7 g, 113.4 mmol, 68 \$) was obtained as a brown oil after evaporation to dryness under vacuum. Found C, 57.70; H, 5.20; N, 4.80; S, 21.10; requires C, 58.16; H, 5.05; N, 4.68; S, 21.42 \$, for C₂₉H₃₀N₂O₄S₄, m_r = 598. V/cm⁻¹: 623, 660, 703, 748, 755, 813, 913, 1038, 1060, 1090, 1165,

1183, 1210, 1265, 1335, 1380, 1447, 1470, 1572, 1587, 1598, 2920, 3060, 3260. ¹H nmr (60 MHz, $CDCl_3$), δ/ppm : 1.49(p, <u>J</u> 7.3 Hz, 2H- SCH_2CH_2); 2.27(s, 6H-CCH_3); 2.47(t, <u>J</u> 7.3 Hz, 4H-SCH_2); 6.60-7.90(mc, 18H-aromatic and -NH-). ¹³C nmr (20.12 MHz, $CDCl_3$), δ/ppm : 21.5, 206 28.5, 34.6, 119.6, 123.7, 124.8, 127.3, 129.8, 130.0, 135.6, 136.4, 138.8, 144.2. Mass spectrum m/z: $598(M^{*}=18 \ \text{s})$, 444(18), 320(4), 290(2), 214(5), 199(10), 180(3), 164(100), 149(7), 136(63), 131(18), 124(25), 109(8), 91(38), 80(12), 65(13), 51(3), 39(7), 27(2).

1,2-Bis(2{p-tolylsulfonylamino}phenylthio)ethane 5.20

An analogous preparation was carried out as above but using 1,2-bis(<u>o</u>aminophenylthio)ethane instead. A white solid was obtained which was recrystallised from dichloromethane/cyclohexane to yield crystals of 1,2-bis(2{<u>p</u>-tolylsulfonylamino}phenylthio)ethane 5.20 (24.5 g, 41.89 mmol, 77)\$, m.p.181-182°C. Found C, 57.80; H, 4.90; N, 4.70; S, 21.80; requires C, 57.51; H, 4.83; N, 4.79; S, 21.93 \$, for $C_{28}H_{28}N_2S_4O_4$, $m_r = 584$. \vee/cm^{-1} 628, 670, 703, 763, 805, 912, 1038, 1062, 1095, 1168, 1188, 1211, 1275, 1343, 1396, 1450, 1475, 1575, 1600, 2860, 2930, 2960, 3040, 3070, 3270. ¹H nmr (60 MHz, CDCl₃), $\delta/ppm: 2.33(s, 6H-CCH_3); 2.42(s, 4H-SCH_2); 7.20-7.70(mc, 18H-aromatic$ $and -NH-). ¹³C nmr (20.12 MHz, CDCl₃), <math>\delta/ppm: 21.6$, 35.2, 119.9, 123.0, 124.9, 127.3, 129.9, 130.3, 135.4, 136.3, 139.0, 144.4.

1,4-Bis(2{p-tolylsulfonylamino}phenylthio)butane 5.21

The reaction was carried out as above and recrystallisation from

dichloromethane/cyclohexane yielded white crystals of 1,4-

bis(2{tolylsulfonylamino}phenylthio)butane 5.21 (40.25 g, 65.68 mmol,

80 \$), m.p. 124-126[°]C. Found C, 57.50; H, 5.30; N, 4.50; S, 21.20;

requires, C, 58.79; H, 5.27; N, 4.57; S, 20.93 **%**, for $C_{30}H_{32}N_2S_4O_4$, $m_r = 612$. V/ cm⁻¹ 630, 675, 705, 732, 760, 820, 910, 948, 1040, 1068, 1092, 1158, 1170, 1190, 1270, 1338, 1390, 1445, 1473, 1585, 1597, 2850, 2930, 2950, 3020, 3040, 3240. ¹H nmr (80 MHz, CDCl₃), δ /ppm: 1.43(p, <u>J</u> 7.3 Hz, 4H-SCH₂CH₂); 2.35(s, 6H-CCH₃); 2.46(t, <u>J</u> 7.3 Hz, 4H-SCH₂); 6.75-7.88(mc, 18H-aromatic and -NH-). ¹³C (20.12 MHz, CDCl₃), δ /ppm: 21.6, 28.3, 35.7, 119.6, 124.3, 124.8, 127.4, 129.8, 129.9, 135.5, 136.4, 138.8, 144.2.

1,3-Bis(2{p-tolylsulfonylamino}phenyloxy)propane 5.22

5.22

То solution of 1,3-bis(o-aminophenyloxy)propane 5.7 a (29.00 g, 112.27 mmol) in pyridine (200 cm³) was added a solution of <u>p</u>-toluenesulfonylchloride (66.00 g, 337.34 mmol) in pyridine (100 cm³) at 30°C over 0.5 hours. The reaction temperature was then raised to $50-60^{\circ}$ C for three hours. After cooling, dilute HCl (100 cm³, 2 mol dm^{-3}) was added and the organic layer was extracted with The combined dichloromethane extracts were dried dichloromethane. over anhydrous sodium sulphate and evaporated to a low volume. The solid obtained was recrystallised from dichloromethane/cyclohexane to pure 1,3-bis(2{p-tolylsulfonylamino}phenyloxy)propane 5.22 give (55.00 g, 97.06 mmol, 86 %), m.p. 247-248 ^oC. Found C, 61.30; H, 5.20; N, 5.00; requires C, 61.46; H, 5.34; N, 4.95 %, for C₂₉H₃₀N₂O₆S₂, m_r V/cm^{-1} 670, 705, 752, 765, 815, 918, 992, 1052, 1093, 1113, = 567. 1160, 1185, 1252, 1290, 1338, 1385, 1400, 1465, 1475, 1500, 1598, 2890, 2948, 3020, 3060, 3090, 3280. ¹H nmr(60 MHz, d₆-DMSO), δ /ppm: 2.10-2.65(mc, 2H-OCH₂CH₂); 3.30(s, 6H-CCH₃); 3.60-4.10(mc, 4H-OCH₂);

 δ -7.70(mc, 18H-aromatic and -NH-). ¹³C nmr (20.12 MHz, d₆-DMSO), δ /ppm: 20.3, 28.0, 64.9, 112.4, 120.1. 123.9, 125.8, 126.3, 126.9, 138.0, 143.0, 149.0, 151.6.

Bis(p-tolylsulfonyloxy)alkanes 5.23-5.25

5.23, m=3 5.24, m=2 5.25, m=4

1,3-Bis(p-tolylsulfonyloxy)propane 5.23

p-Toluenesulfonyl chloride (130 g, 681.88 mmol) was added in portions (10 g) to a solution of propan-1,3-diol (20 g, 262.81 mmol) in pyridine (170 cm^3 , 2110 mmol). The temperature was maintained below 10 °C. After all the additions the solution was left to stir for 3 hours at room temperature. The semi-solid mixture was then added to a 10M HCl (300 cm^3) and ice (1000 g) mixture. On vigorous stirring the oil solidified to give a white solid. Recrystallisation from 95 \$ white aqueous ethanol yielded needles of 1,3-bis(ptolylsulfonyloxy)propane 5.23 (45 g, 117.05 mmol, 45 \$), m.p. 92-93°C. Found C, 53.40; H, 5.30; S, 16.10; requires C, 53.11; H, 5.24; S, 16.68 \$, for $C_{17}H_{20}O_6S_2$, $m_r = 384$. V/cm^{-1} 658, 668, 708, 742, 792, 810, 855, 892, 942, 954, 1020, 1030, 1074, 1098, 1110, 1174, 1190, 1245, 1293, 1310, 1363, 1405, 1420, 1470, 1495, 1600, 2920, 2950, 2975. ¹H

nmr (60 MHz, $CDCl_3$), δ/ppm : 1.48(p, <u>J</u> 6.6 Hz, 2H-OCH₂CH₂); 2.45(s, 6H-C<u>CH₃</u>); 4.07(t, <u>J</u> 6.6 Hz, 4H-O<u>CH₂</u>); 7.20-7.80(mc, 8H-aromatic). Mass spectrum m/z: 384(M[±]=8 \$), 262(2), 229(2), 213(32), 181(2), 173(12),

155(45), 139(3), 107(12), 91(100), 77(5), 65(25), 57(8), 51(4), 41(11), 29(3), 18(3).

1,2-Bis(p-tolylsulfonyloxy)ethane 5.24

Prepared as above with ethan-1,2-diol instead of propan-1,3-diol. Recrystallisation from dichloromethane/IMS (95 \$) yielded white shiny crystals of 1,2-bis(p-tolylsulfonyloxy)ethane 5.24, (80 g, 215.97 mmol, 79 \$), m.p. 126-127°C. Found C, 51.60; H, 4.90; S, 20.80; requires C, 51.87; H, 4.90; S, 17.4 \$, for $C_{15}H_{18}O_{6}S_{2}$, m_{r} =370. V/cm⁻¹ ¹ 612, 670, 803, 820, 920, 980, 1018, 1040, 1097, 1125, 1180, 1300, 1312, 1360, 1405, 1455, 1497, 1600, 1660, 1690, 1817, 1934, 2885, 2928, 2960, 2993, 3090. ¹H nmr (60 MHz, CDCl₃), \tilde{O} /ppm: 2.42(s, 6H-C<u>CH₃</u>); 4.18(s, 4H-O<u>CH₂</u>), 7.20-7.80(mc, 8H-aromatic). Mass spectrum m/z: 370(M^{*} =10 \$), 119(10), 155(40), 139(10), 187(6), 91(100), 77(5), 65(35), 51(5), 39(10), 27(5).

1,2-Bis(p-tolylsulfonyloxy)butane 5.25

Prepared as above with butan-1,4-diol and recrystallisation from dichloromethane/IMS (95 \$) yielded white needles of 1,4-bis(p-tolylsulfonyoxy)butane 5.25 (39.0 g, 97.78 mmol, 37 \$), m.p. 77-78°C. Found C, 54.30; H, 6.00; S, 16.3; requires C, 54.25; H, 5.57; S, 16.09 \$, for $C_{18}H_{22}O_6S_2$, $m_r = 398$. V/cm^{-1} 667, 733, 812, 852, 940,

1034, 1099, 1178, 1360, 1447, 1478, 1495, 1600, 2860, 2930, 2940, 2980, 3030, 3070, 3090. ¹H nmr (60 MHz, CDCl₃), δ /ppm: 1.64(mc,4H-OCH₂CH₂); 2.4(s, 6H-CCH₃); 3.95(mc, 4H-OCH₂); 7.55(mc, 8H-aromatic). 211 Mass spectrum m/z: $398(M^{\ddagger} = 6 \%)$, 277(15), 226(5), 173(12), 172(8), 162(10), 155(45), 107(15), 91(100), 77(5), 65(25), 55(35).

1,4,7-Tris(p-tolylsulfonyl)-4-aza-1,7-dioxoheptane 5.26

To a mechanically stirred solution of 2,2'-iminobisethanol (33.5 g, 300 mmol) in pyridine (310 cm³) was added <u>p</u>-toluenesulphonyl chloride (183 g, 960 mmol) in portions at 0°C. The mixture was then stirred at 0°C for 0.5 hours then removed from the ice-bath and stirred at room temperature for a further 2 hours. To this was added HCl (600 cm³, 2 mol dm⁻³) maintaining the temperature of the reaction below 10° C. On standing the red oil crystallised to give a yellow product which was powdered in a mortar and washed with water. Recrystallisation from boiling methanol and decolourising charcoal, followed by washing with ethanol and ether yielded pale yellow crystals of 1,4,7-tris(<u>p</u>-tolylsulfonyl)-4-aza-1,7-dioxoheptane 5.26 (127.00 g, 223.72 mmol,

70 \$), m.p. 96-98°C. Found C, 52.50; H, 5.00; N, 2.20; requires C, 52.90; H, 5.20; N, 2.50 \$, for $C_{25}H_{29}NO_8S_3$, $m_r = 568$. V/cm^{-1} : 655, 665, 707, 740, 820, 862, 912, 970, 990, 1003, 1020, 1040, 1093, 1123,

1160, 1195, 1193, 1272, 1295, 1310, 1340, 1360, 1400, 1450, 1459, 1468, 1495, 1598, 2900, 2930, 2957, 3040, 3090. ¹H nmr (60 MHz, $CDCl_{3}$), δ/ppm : 2.47(d, 9H-C<u>CH_3</u>); 3.40(t, <u>J</u> 6 Hz, 4H-N<u>CH_2</u>); 4.16(t, <u>J</u> 6 Hz, 4H-O<u>CH_2</u>); 7.20-7.90(mc, 12H-aromatic).

8,12-Bis(p-tolylsulfonyl)-8,12-diaza-1,5-dithio-6,7:13,14dibenzocyclotetradecane 5.27

5.27

1,3-Bis(p-tolylsulfonyloxy)propane 5.23 (6.52 g, 17.00 mmol) in N,Ndimethylformamide (80 cm³) was added to $1,3-bis(2\{p-toly|sulfony|$ amino}thio)propane 5.19 (10.15 g, 16.95 mmol) and anhydrous potassium carbonate (10 g, 72.35 mmol) in N,N-dimethylformamide (200 cm³) at 100⁰C over four hours. Heating was maintained for a further 60 After cooling, dichloromethane (200 cm³) was added. The hours. N,N-dimethylformamide was extracted with distilled water (4 x 600 cm^3) from the dichloromethane layer. The organic layer was dried over anhydrous sodium sulphate and evaporated to dryness under vacuum. white solid was obtained which was recrystallised from

dichloromethane/cyclohexane to give 8,12-bis(p-tolylsulfonyl)-8,12-

diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane 5.27 (9.27 g, 14.51

mmol, 86 \$), m.p. 217-220 °C. Found C, 60.60; H, 5.50; N, 4.60; S,

19.30; requires C, 60.15; H, 5.36; N, 4.38; S, 20.08 **x**, for $C_{32}H_{34}N_2O_4S_4$, $m_r = 638. V/cm^{-1}$: 655, 670, 725, 750, 765, 820, 907, 951, 1030, 1050, 1085, 1160, 1210, 1305, 1350, 1385, 1460, 1565, 1595, 1725, 2850, 2930, 2980, 3064. ¹H nmr (80 MHz, CDCl₃), δ /ppm: 1.63-2.13(mc, 4H-SCH₂CH₂ and -CH₂CH₂); 2.38(s, 6H-CCH₃); 2.60-3.33(mc, 6H-(4H-SCH₂ and 2H-NCH₂); 3.50-4.00(mc, 2H-NCH₂); 6.37-7.75(mc, 16H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), δ /ppm: 21.6, 25.9, 28.8, 33.7, 50.4, 127.0, 127.9, 128.6, 129.1, 129.6, 131.5, 136.0, 140.0, 140.6, 143.6. Mass spectrum m/z: 638(M = 22 **x**), 483(93), 328(5), 320(3), 295(8), 204(22), 192(18), 178(55), 164(22), 150(42), 144(10), 136(100), 130(18), 117(18), 109(32), 91(57), 77(12), 69(3), 65(24), 51(3), 41(10), 27(2), 18(43).

8,11,14-Tris(p-tolylsulfonyl)-8,11,14-triaza-1,5-dithio-

Cyclisation was carried out as above using 1,3-bis-(2{p-tolylsulfonylamiono}phenylthio)propane 5.25 (16.90 g, 28.22 mmol), 1,4,7-tris(ptolylsulfonyl)-4-aza-1,7-dioxoheptane 5.26 (16.00 g, 28.19 mmol) and anhydrous potassium carbonate (15.60 g, 112.87 mmol). After work up recrystallisation from dichloromethane/cyclohexane a white and precipitate was obtained of 8,11,14-tris(p-tolylsulfonyl)-8,11,14triaza-1,5-dithio-6,7:15,16-dibenzocyclohexadecane 5.28 (13.10 g, 15.32 mmol, 57 \$), m.p. 245-246^oC. Found C, 58.30; H, 5.20; N, 5.00; S, 19.30; requires C, 58.44; H, 5.27; N, 5.11; S, 19.50 %, for $C_{40}H_{43}N_{3}S_{5}O_{6}$, $m_{r} = 822$. V/cm^{-1} : 620, 655, 705, 723, 750, 768, 795, 815, 905, 980, 1020, 1040, 4057, 1073, 1095, 1160, 1261, 1295, 1305, 1350, 1380, 1437, 1452, 1470, 1495, 1598, 2665, 2730, 2755, 2780, 2820, 2856, 2890. ¹H nmr (80 MHz, CDCl₃), δ /ppm: 1.38-2.00(mc, 2H-SCH₂CH₂); 2.41(s, 6H-C<u>CH</u>₃); 2.48(s, 3H-C<u>CH</u>₃); 2.55-4.00(mc, 8H-N<u>CH</u>₂ and $-S_{CH_2}$; 6.50-7.88(mc, 20H-aromatic). ¹³C nmr (20.12 MHz, $CDC1_3$, δ /ppm: 21.7, 33.2, 48.7, 49.8, 50.7, 127.1, 127.4, 128.0,

6,7:15,16-dibenzocyclohexadecane 5.28

129.7, 131.1, 136.1, 137.4, 139.0, 140.0, 143.8. Mass spectrum m/z: 822(M[#] =2), 666(5), 512(6), 378(6), 377(6), 221(15), 136(20), 91(100), 77(40), 65(56).

8,12-Bis(p-tolylsulfonyl)-8,12-diaza-1,5-dioxo-6,7:13,14-

dibenzocyclotetradecane 5.29

The reaction was carried out as above but 1,3-bis(p-tolylsulfonyloxy)propane 5.23 (20.0 g, 35.29 mmol), 1,3-bis(2{p-tolylsulfonylamino}phenyloxo)propane 5.22 (13.60 g, 35.37 mmol) and anhydrous potassium carbonate (22.00 g, 159.18 mmol) were used instead, and recrystallisation after workup was from THF/methanol to give a white precipitate 8,12-bis(p-tolylsulfony)-8,12-diaza-1,5-dioxoof 6,7:13,14-dibenzocyclotetradecane 5.29 (19.80 g, 16.15 mmol, 46 \$), m.p. 231-234[°]C. Found C, 63.20; H, 5.00; N, 4.60; requires C, 63.34; H, 5.15; N, 4.61 **%**, for $C_{32}H_{34}N_2S_2O_6$, $m_r = 606$. V/cm⁻¹: 655, 695, 712, 755, 818, 850, 915, 980, 1040, 1060, 1093, 1120, 1160, 1255, 1265, 1283, 1325, 1340, 1375, 1455, 1465, 1495, 1598, 2880, 2928, 2950, 3030, 3065. ¹H nmr (80 MHz, CDCl₃), δ/ppm: 1.15-1.95(mc, 4H-NCH₂CH₂ and -OCH₂CH₂); 2.40(s, 6H-CCH₃), 3.35-3.95(mc, 8H-NCH₂ and OCH₂); 6.65-7.75(mc, 16H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), δ/ppm: 21.5, 28.5, 28.8, 48.5, 66.7, 113.1, 120.8, 127.7, 128.0, 129.2, 129.5, 136.8, 137.7, 142.9, 156.4. Mass spectrum m/z: 606(M=2 \$),

345(47), 297(21), 296(35), 295(5), 246(9), 214(5), 188(17), 165(10), 162(14), 149(14), 134(15), 120(22), 92(22), 91(54), 83(100), 77(13), 65(18).

Bis(p-tolylsulfonyl)-diaza-dithio-dibenzocycloalkanes 5.30-5.35

5.30 m=3, n=4 5.31 m=2, n=3 5.32 m=2, n=4 5.33 m=4, n=2 5.34 m=4, n=3 5.35 m=4, n=4

General Synthetic Procedure for Ditosylated S2N2-Macrocycles of Various Ring-Sizes

The bis(p-tolylsulfonyloxy)alkane (1 mmol) in N,N'-dimethylformamide was added to the corresponding $bis(2\{p-tolylsulfonylamino)phenyl-$ thio)alkane (1 mmol) in the presence of excess anhydrous potassium carbonate (4 mmol) at 100°C over an hour then heated at 100°C for a further 3 hours. On cooling water and dichloromethane were added and the organic layer was extracted with dichloromethane. The combined extracts were dried over anhydrous sodium sulphate then evaporated to a low volume, and the solid obtained was recrystallised from dichloromethane/cyclohexane to give the pure ditosylated macrocycle.

8,13-Bis(p-tolylsulfonyl)-8,13-diaza-1,5-dithio-6,7:14,15dibenzocyclopentadecane 5.30

1,4-Bis(p-tolylsulfonyoxy)butane 5.25 (4.0 g, 10.04 mmol,) 1,3bis(2{p-tolylsulfonylamino}phenylthio)propane 5.19 (6.0 g, 10.01 mmol) and anhyrous potassium carbonate (6.3 g, 45.58 mmol) were used in this case and a white solid, 8,13-bis(p-tolylsulonyl)-8,13-diaza-1,5dithio-6,7:14,15-dibenzocyclopentadecane 5.30 (4.65 g, 7.12 mmol, 71 \$), m.p. 274-276[°]C was obtained. Found C, 58.90; H, 5.40; N, 4.50; S, 19.4; requires C, 60.70; H, 5.56; N, 4.29; S, 19.64 \$, for $C_{33}H_{36}N_2S_4O_4$, $m_r = 652$. V/cm^{-1} : 655, 677, 725, 763, 818, 915, 1020, 1040, 1053, 1090, 1165, 1263, 1310, 1343, 1441, 1470, 1478, 1497, 1585, 1605, 2860, 2930, 3060. ¹H (80 MHz, CDCl₃), δ/ppm: 1.12-1.68(mc, 4H-NCH₂CH₂); 1.68-2.19(mc, 4H-SCH₂CH₂); 2.40(s, 6H-C<u>CH₃</u>); 2.63-3.25(mc, 6H(4H-SCH₂ and 2H-NCH₂); 3.25-3.90(mc, 2H-NCH₂); 6.37-7.75(mc, 16H-aromatic). ¹³C nmr (20.12 MHz, $CDCl_3$), δ/ppm : 21.5, 25.1 25.6, 32.3, 50.7, 127.3, 128.2, 128.7, 129.4, 129.8, 136.4, 137.3, 140.5, 140.9, 143.6. Mass spectrum m/z: 652 (M =5 \$), 497(2), 342(1).

7,11-Bis(p-tolylsulfonyl)-7,11-diaza-1,4-dithio-5,6:12,13dibenzocyclotridecane 5.31

1,3-Bis(p-tolylsulfonyloxy)propane 5.23 (4.0 g, 10.40 mmol), was added

to 1,2-bis(2{p-tolylsulfonylamino}phenylthio)ethane 5.20 (6.0 g,

10.26 mmol) and anhydrous potassium carbonate (6.40 g, 46.31 mmol) in N,N-dimethylformamide (120 cm³). White crystals of 7,11-bis(\underline{p} -

tolylsulfonyl)-7,11-diaza-1,4-dithio-5,6:12,13-dibenzocyclotridecane 5.31 (4.5 g, 7.20 mmol, 70 \$), m.p. 145-146°C were yielded. Found C, 58.20; H, 5.30; N, 4.50; S, 20.70; requires C, 59.58; H, 5.16; N, 4.49; S, 20.52 \$, for $C_{31}H_{32}N_2S_4O_4$, m_r =624. V/cm^{-1} : 635, 710, 770, 815, 910, 1020, 1040, 1060, 1090, 1160, 1213, 1225, 1350, 1440, 1450, 1470, 1498, 1580, 1600, 2850, 2930, 3060. ¹H nmr (80 MHZ, CDCl₃), δ/ppm : 1.38-1.88(mc, 2H-NCH₂CH₂); 2.25-2.50(mc, 4H-SCH₂); 2.46(s, 6H-CCH₃); 3.00-4.00(mc, 4H-NCH₂); 6.50-7.75(mc, 16H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), δ/ppm : 21.6, 31.9, 35.2, 48.5, 126.2, 127.3, 128.0, 128.6, 129.6, 129.9, 136.1, 138.4, 143.6, 143.7. Mass spectrum m/z: 642(M^{*} =8 \$), 469(40), 314(10), 214(20), 164(50), 150(70), 136(80), 109(30), 91(100), 77(10), 65(40), 39(20).

7,12-Bis(p-tolylsulfonyl)-7,12-diaza-1,4-dithio-5,6:13,14dibenzocyclotetradecane 5.32

1,2-Bis(2{p-tolylsulfonylamino}phenylthio)ethane 5.20 (6.0 g, 10.26 mmol) in N,N-dimethylformamide (120 cm³) and anhydrous potassium carbonate (6.4 g, 46.31 mmol) were reacted with 1,4-bis-(p-tolyl-sulfonyloxy)butane 5.25 (4.1 g, 10.29 mmol) and a white solid 7,12-bis(p-tolylsulfonyl)-7,12-diaza-1,4-dithio-5,6:13,14-dibenzocyclo-tetradecane 5.32 (4.55 g, 7.12 mmol, 69 \$), m.p. 159-161°C was obtained. Found C, 59.10; H, 5.30; N, 4.50; S, 20.10; requires C, 58.50; H, 5.21; N, 4.26; S, 19.53 \$, for $C_{32}H_{34}N_2S_4O_4$, $m_r = 638$. V/cm⁻⁹

: 654, 678, 725, 730, 770, 814, 910, 1055, 1092, 1160, 1180, 1273, 1346, 1475, 1600, 2880, 2930, 2980, 3040. ¹H nmr(80 MHz, $CDCl_3$), δ/ppm : 1.25-1.83(mc, 4H-NCH₂CH₂); 2.25-2.63(mc, 4H-SCH₂); 2.40(s, 6H-

 $C\underline{CH}_{3}; 3.00-3.50(mc, 4H-N\underline{CH}_{2}); 6.00-7.75(mc, 16H-aromatic). {}^{13}C nmr \\ (20.12 MHz, CDCl_{3}), <math>\delta/ppm: 21.6, 26.8, 30.0, 53.1, 128.3, 128.6, \\ 129.5, 129.9, 135.5, 136.3, 137.6, 139.5, 140.3, 143.6. Mass spectrum \\ m/z: 638(M = 1 $), 483(30), 328(6), 246(3), 214(15), 204(10), 176(30), \\ 162(20), 150(60), 149(50), 136(70), 124(40), 109(30), 91(100), 77(15), \\ 69(15), 65(25), 51(20), 39(20). \end{cases}$

9,12-Bis(p-tolylsulfonyl)-9,12-diaza-1,6-dithio-7,8:13,14-dibenzocyclotetradecane 5.33

The precursors used for this macrocycle were 1,2-bis(p-tolylsulfonyloxy)ethane 5.24 (4.85 g, 13.09 mmol) and 1,4-bis(2{p-tolylsulfonylamino} phenylthio)butane 5.21 (8.0 g, 13.05 mmol) in the presence of anhydrous potassium carbonate (8.20 g, 59.33 mmol). A white precipitate was obtained of 9,12-bis(p-tolylsulfony)-9,12-diaza-1,6dithio-7,8:13,14-dibenzocyclotetradecane 5.33 (7.55 g, 11.82 mmol, 91 \$), m.p. 112-114⁰C. Found C, 59.10; H, 5.70; N, 4.60; S, 23.90; requires C, 60.15; H, 5.36; N, 4.38; S, 20.08 \$, for $C_{32}H_{34}N_{2}S_{4}O_{4}$, $m_{r} = 638$. V/cm^{-1} : 658, 678, 698, 713, 735, 768, 820, 843, 920, 1023, 1040, 1092, 1096, 1165, 1190, 1213, 1260, 1268, 1293, 1325, 1343, 1350, 1385, 1455, 1475, 1485, 1560, 1603, 1700, 1718, 1735, 2870, 2910, 2930, 2970, 3070. ¹H nmr (80 MHz, CDCl₃), Õ/ppm: 1.30-2.00 (mc, 4H-SCH₂CH₂); 2.25-2.63 (mc, 4H-S<u>CH₂</u>); 2.40 (s, 6H-C<u>CH₂</u>); $2.87-3.00 (mc, 4H-NCH_{2}); 6.75-8.00 (mc, 16H-aromatic)$ ¹³C nmr (20.12)

MHz, $CDC1_3$, \tilde{O}/ppm : 21.6, 25.8, 31.5, 44.6, 126.9, 127.2, 128.1, 128.2, 129.5, 131.0, 136.4, 138.7, 143.7, 144.2. Mass spectrum m/z: 638($M^{\#}$ =3 \$), 483(5), 457(10), 334(60), 328(2), 305(10), 192(30),

136(70), 91(100), 65(20), 39(25).

9,13-Bis(p-tolylsulfonyl)-9,13-diaza-1,6-dithio-7,8:14,15-dibenzocyclopentadecane 5.34

1,3-Bis (p-tolylsulfonyloxy)propane 5.23 (5.0 g, 13.00 mmol) was reacted 1,4-bis(2{p-tolylsulfonylamino}phenylthio)butane 5.21 (8.0 g, with 13.05 mmol) and anhydrous potassium carbonate (8.20 g, 59.33 mmol). After recrystallisation a white precipitate was obtained of 9,13-bis(ptolylsulfonyl)-9,13-diaza-1,6-dithio-7,8:14,15-dibenzocyclopentadecane 5.34 (7.0 g, 10.72 mmol, 82 \$), m.p. 244-246^oC. Found C, 60.00; H, 5.70; N, 4.10; S, 21.00; requires C, 60.70; H, 5.56; N, 4.29; S, 19.64 \$, for $C_{33}H_{36}N_{2}S_{\mu}O_{\mu}, m_{\mu} = 652. V/cm^{-1}: 665, 683, 723, 762, 808, 830, 840, 903,$ 1030, 1052, 1090, 1145, 1167, 1350, 1355, 1385, 1435, 1470, 1495, 1585, 1600, 2850, 2920, 3040. ¹H nmr (80 MHz, CDCl₃), δ/ppm: 1.25-1.85(mc, 6H-SCH₂CH₂ and -NCH₂CH₂); 2.40(s, 6H-C<u>CH₃</u>); 2.60-3.00(me, 4H-S<u>CH₂</u>); $3.00-4.00 (mc, 4H-NCH_2); 6.25-7.87 (mc, 16H-aromatic).$ ¹³C nmr (20.12) MHz, CDCl₃), δ /ppm: 21.6, 28.2, 30.7, 31.6, 50.0, 125.3, 127.3, 128.2, 129.1, 129.6, 129.8, 135.5, 137.4, 141.2, 143.8. Mass spectrum m/z: $652(M^{2} = 1 \text{ }), 497(3), 343(6), 180(20), 136(20), 125(16), 122(30),$ 92(57), 91(100), 78(11), 65(28).

9,14-Bis(p-tolylsulfonyl)-9,14-diaza-1,6-dithio-7,8:15,16-dibenzocyclohexadecane 5.35

The reaction was carried out with $1,4-bis(\underline{p}-tolylsulfonyloxy)$ but and 5.25 (5.2 g, 13.05 mmol, $1,4-bis(2\{\underline{p}-tolylsulfonylamino\}$ phenylthio)but and 5.21 (8.0 g, 13.05 mmol) and anhydrous potassium carbonate (8.8 g, 63.72 mmol). This synthesis yielded a white precipitate of

9,14-bis-(p-tolylsulfonyl)-9,14-diaza-1,6-thio-7,8:15,16-dibenzocyclo-

hexadecane 5.35 (7.5 g, 11.26 mmol, 86 \$), m.p.235-238°C. Found C, 60.00; H, 6.00; N, 4.60; S, 18.60; requires C, 61.32; H, 5.75; N, 4.21; S, 19.26 \$, for $C_{34}H_{38}N_2S_4O_4$, m_r =666. V/cm^{-1} : 650, 670, 725, 765, 820, 1055, 1090, 1160, 1347, 1435, 1470, 1495, 1580, 1600, 2850, 2920, 2950, 3050. ¹H nmr (80 MHz, CDCl₃), \tilde{O}/ppm : 1.25-2.00(mc, 8H-SCH₂CH₂ and -NCH₂CH₂); 2.63-3.10(mc, 4H-SCH₂); 2.40(s, 6H-CCH₂); 3.13-3.88(mc, 4H-NCH₂); 6.50-8.00(mc, 16H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), \tilde{O}/ppm : 21.6, 25.9, 28.4, 32.6, 50.9, 125.6, 127.3, 128.0, 128.2, 129.0, 129.5, 129.8, 129.9, 136.4, 143.5. Mass spectrum m/z: 666(M^{*} =20 \$), 612(15), 511(56), 458(15), 356(48), 334(56), 304(16), 200(60), 149(25), 136(85), 109(20), 91(100), 80(20), 65(33), 39(27), 18(17).

4-(p-Tolylsulfonyl)-4, 1-aza-thio-5, 6-benzocyclohexane 5.36

5.36

general procedure was used as for the cyclisation of the The same macrocycles above 5.30-5.35, 1,2-bis(p-tolylsulfonylamino)phenylthio)-5.20 (6.00 g, 10.26 mmol) was reacted with 1,2-bis(pethane (3.80 g, 10.26 mmol) in N,N'tolylsulfonyloxy)ethane 5.24 dimethylformamide in the presence of anhydrous potassium carbonate (6.40 g, 46.31 mmol) at 100°C. After work up, as above, white crystals of 4-(p-tolylsulfonyl)-4, 1-aza-thio-5, 6-benzocyclohexane 5.36 (4.90 g, 16.07 mmol, 78 \$), m.p. 158-160⁰C were obtained. Found C, 58.20; H, 5.30; N, 4.40; S, 20.70; requires C, 58.90; H, 4.95; N, 4.60; S, 20.99 %, for $C_{15}H_{15}NS_{2}O_{2}$, $m_{r} = 305$. V/cm^{-1} : 650, 668, 687, 708, 720, 732, 763, 803, 817, 840,915, 947, 1020, 1032, 1068, 1093, 1123, 1162, 1185, 1213, 1258, 1292, 1303, 1323, 1360, 1400, 1405, 1432, 1440, 1473, 1497, 1560, 1600, 2930, 2990, 3070. ¹H nmr (80 MHz, $CDC1_3$, δ/ppm : 2.40(s, $-CCH_3$); 2.88(t, <u>J</u> 4.8Hz, 2H-SCH₂); 3.97(t, <u>J</u> 4.8Hz, 2H-N<u>CH</u>₂), 6.75-7.75(mc, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl₃), Õ/ppm: 21.5, 25.8, 44.7, 119.9, 124.6, 126.5,

126.9, 128.0, 128.4, 129.8, 130.0, 135.4, 144.0 Mass spectrum m/z: 305(M^m = 100 \$), 240(5), 193(10), 150(100), 117(90), 91(80), 65(70), 45(60).

8,5-Aza-thio-6,7-benzo-octan-1-ol 5.37

5.37

Sodium pellets (5.00 g, 217.49 mmol) were dissolved in dry methanol (200 cm^3) , keeping the reaction cool in an ice-bath, and to this was added o-aminothiophenol (26.35 g, 214.48 mmol), with stirring under a nitrogen atmosphere. After ten minutes 3-bromopropan-1-ol (29.25 g, 210.43 mmol) in methanol (50 cm³) was added dropwise and an overnight stir preceeded a 6 hour reflux. On cooling and treating with saturated aqueous sodium bicarbonate the organic product was extracted dichloromethane and dried over anhydrous sodium sulphate. with Evaporation to dryness under vacuum yielded 8,5-aza-thio-6,7-benzooctan-1-ol 5.37 (32.30 g, 176.25 mmol, 84 \$), as a brown oil. Found C, 52.80; H, 8.20; N, 8.60; S, 20.00; requires C, 52.79; H, 8.23; N, 8.80; S, 20.14 **\$**, for $C_7H_{13}NSO$, $m_r = 159$. V/cm^{-1} : 680, 750, 905, 1050, 1140, 1158, 1253, 1310, 1448, 1480, 1605, 2870, 2930, 3030, 3060, 3340. ¹H nmr (60 MHz, CDCl₃) δ /ppm: 1.70(p, <u>J</u> 2Hz, 2H-SCH₂CH₂); 2.78(t, <u>J</u> 2Hz, 2H-S<u>CH</u>₂); 3.60(t, <u>J</u>, 2Hz, 2H-O<u>CH</u>₂); 3.83(s, 3H-OH- and $-NH_2-$; 6.50-7.50(mc, 4H-aromatic). ¹³C nmr (20.12 MHz,

CDC1₃) δ /ppm: 31.3, 32.3, 61.2, 115.2, 118.0, 118.8, 129.7, 135.8, 148.2. Mass spectrum m/z: 491(M =2 \$), 355(2), 336(11), 319(20), 213(5), 200(4), 181(2), 172(19), 164(91), 163(20), 155(18), 149(14), 136(49), 131(56), 130(50), 91(100), 65(40).

1,8-Di(p-tolylsulfonyl)-8,1,5-aza-oxo-thio-6,7-benzo-octane 5.38

To 8,5-aza-thio-6,7-benzo-octan-1-ol 5.37 (60.00 g, 32.74 mmol) in pyridine (50 cm³) was added <u>p</u>-toluenesulfonyl chloride (19.00 g, 99.66 mmol) in portions keeping the reaction temperature below 10° C. Stirring was maintained for 0.5 hours at this temperature then stirred at room temperature for a further 2.5 hours. This was then treated with mixture and the product was extracted a HCl/ice with dichloromethane washed and with sodium bicarbonate. The dichloromethane phase was dried over anhydrous sodium carbonate and evaporated to dryness to give an oil (12.05 g). A tlc of the oil (using dichloromethane as elutant) showed 2 spots on the plate. The oil was purified using a silica column and the impurities came down with toluene. The desired product was removed from the column using toluene/dichloromethane (1:1) and 1,8-(p-tolylsulfonyl)-8,1,5-aza-oxothio-6,7-benzo-octane 5.38 (11.00 g, 22.37 mmol, 68 \$) was obtained as an oil. Found C, 5.50; H, 5.00; N, 2.65; S, 19.33; requires C, 5.62; H, 5.13; N, 2.85; S, 19.57 %, for $C_{23}H_{25}NS_{3}O_{5}$, $m_{r} = 491$. V/cm^{-1} : 630, 668, 735, 763, 817, 925, 990, 1095, 1170, 1215, 1270 1340, 1360, 1390, 1480, 1600, 2930, 2970, 3065, 3250. ¹H nmr (80 MHz, $CDC1_3$, δ/ppm : 1.76(p, <u>J</u> 4.8 Hz, 2H-SCH₂CH₂); 2.25(s, 3H-CCH₃); 2.36(s, 3H-CCH₃); 2.55(t, <u>J</u> 4.8 Hz, 2H-SCH₂); 4.00(t, <u>J</u>, 4.8 Hz, 2H-

5-(p-Tolylsulfonyl)-5, 1-aza-thio-6, 7-benzocycloheptane 5.39

5.39

The ditosylated alcohol/amine 5.38 (3.00 g, 6.12 mmol) in N'Ndimethylformamide with anhydrous potassium carbonate (28.94 mmol) was heated at 100°C for 3 hours after which water was added. The desired product was extracted with dichloromethane, dried over anhydrous sodium sulphate and then evaporated to a low volume under vacuum giving recrystallised white solid. This from was dichloromethane/cyclohexane to yield white crystals of 5-(<u>p</u>tolylsulfonyl)-5,1-aza-thio-6,7-benzocycloheptane 5.39 (1.50 g, 4.70 mmol, 77 \$), m.p. 131-133^oC. Found C, 61.95; H, 5.57; N, 4.50; requires C, 60.16; H, 5.36; N, 4.38 %, for $C_{16}H_{17}NS_{2}O_{2}$, $m_{r} = 319$. V/cm^{-1} : 665, 680, 728, 742, 753, 810, 825, 863, 883, 898, 964, 1020, 1030, 1040, 1070, 1095, 1127, 1153, 1193, 1245, 1255, 1287, 1305, 1325, 1340, 1373, 1415, 1443, 1458, 1498, 1580, 1600, 1735, 2840, 2920, 2960, 3045. ¹H nmr(80 MHz, CDCl₃), δ/ppm: 1.75-2.25(mc, 2H-SCH₂CH₂); 2.38(s, 3H-CCH₃); 2.73(t, <u>J</u> Hz, 2H-SCH₂); 3.75(t, <u>J</u> 5 Hz, $2H-NCH_2$; 7.05-7.80(mc, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl₂), δ/ppm: 21.5, 30.9, 31.4, 49.8, 127.7, 128.2, 128.5, 129.4, 130.6,

133.7, 136.4, 138.3, 143.1, 143.3. Mass spectrum m/z: 319(M =
100 \$), 223(4), 164(2), 149(100), 136(2), 135(3), 95(5), 83(8),
71(10), 59(11), 56(21), 54(17).

8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane 5.40

5.40

Method A -Via Detosylation with Sodium/Naphthalene in THF

Sodium wire (1.5 g, 65.25 mmol) was dissolved in a solution of naphthalene (9.2 g, 71.78 mmol) in dried THF (70 cm³) under a nitrogen atmosphere for one hour. The resulting green solution was cooled in a cardice/acetone bath until the solution almost solidified (0.5 hours) then solid 8,12-bis(p-tolylsulfonyl)-8,12-diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane 3.27 (8.0 g, 12.52 mmol) was added. This mixture was maintained at cardice/acetone temperature for 20 minutes, then allowed to warm to room temperature with stirring for an hour. Acetic acid (20 cm³) was added slowly keeping the reaction cool in an ice-bath followed by 20 \$ ammonium chloride solution. Distilled water (50 cm³) was added to the brown solution and the organic layer was extracted with dichloromethane and dried over anhydrous sodium sulphate. After evaporation to dryness under vacuum the naphthalene

was removed by using a silica column with cyclohexane. The macrocycle

was removed from the column with dichloromethane. This was evaporated

to dryness and the residual naphthalene was removed by sublimation

under vacuum at 50-60 °C, and an oil was obtained (3.30 g). The oil required purification by gel filtration.

A Sephadex LH-20 column (length-25cm, diameter-1cm) was packed with dichloromethane after swelling the Sephadex LH-20 for 24 hours in dichloromethane. The sample (0.5 g) wa s loaded on with dichloromethane and eluted with the same solvent. Approximately 15 cm³ of dichloromethane was required for complete removal of the sample from the column. The first fraction (5 cm^3) contained the pure detosylated macrocycle (0.1 g, 16 %), the remaining fractions still contained impurities. (Note the column needed to be eluted several with dichloromethane before loading of next sample was times possible). 8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane 5.40 was obtained as a brown oil. Found C, 64.10; H, 6.90; N, 8.50; S, 18.60; requires C, 65.41; H, 6.71; N, 8.48; S, 19.40 \$, for $C_{18}H_{22}N_2S_2$, $m_r = 330$. V/cm^{-1} 755, 1176, 1213, 1280, 1300, 1330, 1435, 1464, 1493, 1515, 1583, 1600, 1620, 2880, 2950, 2980, 3040, 3080, 3390. ¹H nmr (60 MHz, CDCl₃) δ /ppm: 1.35-2.00(mc, 4H-SCH₂CH₂ and -NHCH2CH2); 2.65(t, J 7.3 Hz, 4H-SCH2); 3.15(t, J 5.3 Hz, 4H-NCH2); 5.12(s, 2H-CH₂NH); 6.30-7.50(mc, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl₂), Õ/ppm: 29.1, 33.4, 41.5, 110.2, 116.9, 117.5, 130.2, 136.4, 149.3. Mass spectrum m/z: 330(M[#]=49 \$), 290(4), 206(13), 181(14), 178(16), 178(16), 176(13), 169(12), 167(20), 166(29), 165(26), 164(36), 163(12), 162(13), 151(11), 150(25), 149(35), 144(10),

Method B -Via Direct Alkylation Methods With 1.3-Dibromopropane

1,3-Bis(\underline{o} -aminophenylthio)propane 5.16 (25.00 g, 86.08 mmol), anhydrous sodium carbonate (32.90 g, 369.84 mmol) and 1,3dibromopropane (17.40 g, 86.18 mmol) were refluxed neat for 90 hours at an oil-bath temperature of 160°C with mechanical stirring. After cooling the brown solid was extracted with dichloromethane. The combined extracts were dried over anhydrous sodium sulphate and evaporated to dryness under vacuum at 50°C. A brown oil (25.8 g) was obtained and this was purified by column chromatography.

A silica column (25 cm \times 1.1 cm) was packed with toluene and the sample (1.25 g) was loaded on with toluene. The impurities were removed first with neat toluene then with dichloromethane. The desired fraction was removed from the column with 10 \$ THF in dichloromethane. This was evaporated to dryness to an oil (0.72 g) and further purified via gel filtration. A Sephadex LH-20 column (30 cm 1.1 cm) was packed with chloroform (swelling and eluting agent), and the sample (0.5 g) was loaded on with chloroform. The first fraction was collected (5 cm³) and evaporated to yield the pure oil 5.40 (0.35 g, 25 \$).

[(8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane)copper(II)]

ditetrafluoroborate 5.41

Copper (II) tetrafluoroborate (0.21 g, 0.89 mmol) in methanol (20 cm³) was added to 8,12-diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane 5.40 (0.17 g, 0.51 mmol) in acetonitrile/dichloromethane (50 cm³), resulting in a green solution which was evaporated to a low volume under vacuum. [(8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradecane) copper (II)] difluoroborate 5.41 was thus obtained as a green solid (0.12 g, 0.22 mmol, 42 \$), m.p. $300-305^{\circ}$ C. Found C, 37.11; H, 3.72; N, 4.18; requires C, 38.07; H, 3.91; N, 4.93 \$, for $C_{18}H_{22}N_2S_2B_2F_8Cu$, $m_r = 568$. V/cm^{-1} : 760, 960, 1030-1150(b), 1300, 1343, 1420, 1440, 1478, 1500, 1560, 1580, 1590, 1620, 1630, 2850, 2920, 2960, 3140, 3400.

8,12-Diaza-1,5-dioxo-6,7:13,14-dibenzocyclotetradecane 5.42

5.42

8,12-bis(p-tolylsulfonyl)-8,12-diaza-1,5-dioxo-Detosylation of 6,7:13,14-dibenzocyclotetradecane 5.29 (8.00 g, 13.18 mmol) was carried out as reported above for 5.40, using naphthalene (9.5 g, 74.12 mmol) and sodium wire (1.60 g, 69.50 mmol). After work-up a pale pink solid was obtained of 8,12-diaza-1,5-dioxo-6,7:13,14dibenzocyclotetradecane 5.42 (91.6 g, 5.3623 mmol, 41 %), m.p. 203-(No attempt was made to purify this ligand and the yield 204[°]C. calculated was based on the pure product as judged from the 13 C and ¹H nmr spectra). Found C, 72.38; H, 7.20; N, 9.00; requires C, 72.45; H, 7.43; N, 9.39 **\$**, for $C_{18}H_{22}N_2O_2$, $m_r = 298$. V/cm^{-1} : 732, 963, 1013, 1048, 1060, 1100, 1125, 1140, 1210, 1235, 1250, 1305, 1345, 1450, 1510, 1600, 2860, 2920, 2950, 3040, 3400. ¹H nmr (80 MHz, CDCl₃), $1.80-2.50 (mc, 4H-OCH_2CH_2 and -NHCH_2CH_2); 3.00-3.50 (mc, 4H \delta$ /ppm: NHCH₂); 3.90-4.40(mc, 4H-OCH₂); 4.75(s, 2H-CH₂NH); 6.50-7.10(mc, 8Haromatic). ¹³C nmr (20.12 MHz, CDCl₃), δ /ppm: 26.8, 28.7, 44.6, 67.9, 110.1, 111.6, 116.6, 121.8, 138.8, 146.7. Mass spectrum m/z: 298 (M =100 \$), 254911), 190(36), 176(9), 162(67), 150(26), 149(33), 148(24),

8,11,14-Triaza-1,5-dithio-6,7:15,16-dibenzocyclohexadecane 5.43

5.43

8, 11, 14-Tris(p-tolylsulfonyl)-8, 11, 14-triaza-1, 5-dithio-6, 7: 15, 16dibenzocyclohexadecane 5.28 (8.00 g, 9.73 mmol) was treated (as in the preparation of 5.40 above) with naphthalene (10.10 g, 78.02 mmol) and sodium wire (1.70 g,73.95 mmol) in THF. An oil was produced consisting mainly of the detosylated macrocycle 8,11,14-triaza-1,5dithio-6,7:15,16-dibenzocyclohexadecane 5.43 (2.10 g, 5.84 mmol, 60 \$). No attempt was made to purify this oil by gel filtration because of similar purification problems expected for this oil as in the purification of 5.40. V/cm^{-1} : 610, 668, 685, 750, 785, 815, 955, 1012, 1035, 1082, 1105, 1125, 1163, 1255, 1285, 1315, 1380, 1450, 1480, 1500, 1590, 1610, 2860, 2930, 2960, 3030, 3060, 3350, 3460. ¹H nmr (60 MHz, CDCl₃), δ /ppm: 1.20-1.85(mc, 2H-SCH₂CH₂); 2.10-4.00(mc, 12H-SCH₂ and -NCH₂); 5.35(s, 3H-CH₂NH); 6.40-7.70(mc, 8Haromatic). ¹³C nmr (20.12 MHz, CDCl₃), 0/ppm: 29.1, 36.9, 40.0, 47.0, 114.8, 116.8, 118.8, 131.6, 136.2, 148.8. Mass spectrum m/z: 359(M = 5 \$), 319(24), 268(4), 260(40, 215(5), 211(12), 180(8), 167(12),

164(58), 163(25), 149(16), 141(12), 137(9), 131(39), 130(58), 129(34), 128(33), 125(33), 124(35), 109(25), 108(16), 93(25), 91(100), 80(15), 79(35), 78(10), 77(19), 65(38).

[(10-Methyl-8,12-diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradeca-8,10dienato)nickel(II)] monotetrafluoroborate 5.44

1,3-Bis(o-aminophenylthio)propane 5.16 (4.14 g, 14.25 mmol), nickel(II)acetate (1.90 g, 7.63 mmol) and nickel(II)tetrafluoroborate (2.60 g, 7.64 mmol) were heated under nitrogen in dimethylacetamide (100 cm³). When refluxing commenced 2-methyl-3-ethoxyacrolein (1.63 g, 14.28 mmol) was added. Refluxing was maintained for four hours. After cooling and evaporating to a low volume shiny green crystals were obtained of [(10-methyl-8,12-diaza-1,5-dithio-6,7;13,14-dibenzocyclotetradeca-8,10-dienato)nickel(II)] monotetrafluoroborate 5.44 (3.65 g, 7.53 mmol, 53 \$), m.p. 300-305^oC. Found C, 43.90; H, 4.60; N, 5.30; S, 13.0; requires C, 42.07; H, 3.95; N, 5.78; S, 13.22 \$ for $C_{19}H_{19}N_2S_2BF_4Ni, m_r=485. V/cm^{-1}:632, 753, 906, 953, 1050, 1170, 1210,$ 1255, 1310, 1360, 1465, 1500, 1575, 1615, 2920. Mass spectrum m/z: $398(M^{2} = 4 \text{ }), 397(3), 368(1), 341(5), 290(4), 235(4), 233(15),$ 204(15), 176(12), 165(20), 149(15), 136(70), 109(20), 87(48), 72(14), 44(100).

[(8,12-Diaza-1,5-dithio-6,7:13,14-dibenzocyclotetradeca-9,11-dionato)-

nickel(II)] 5.45

1,3-Bis(\underline{o} -aminophenylthio)propane 5.16 (7.85 g, 27.03 mmol) was refluxed for 113 hours under nitrogen in xylene (100 cm³) with nickel(II) acetate (6.8 g, 27.32 mmol) and dimethyl malonate (4.4 g, 33.30 mmol). After cooling a brown solid of [(8,12-diaza-1,5dithio-6,7:13,14-dibenzocyclotetradeca-9,11-dionato)nickel(II)] 5.45 (9.75 g, 23.49 mmol, 87 \$), m.p. 294-296°C was obtained. Found C, 52.60; H, 3.80; N, 5.90; S, 13.50; Ni, 11.10; requires C, 52.07; H, 3.88; N, 6.75; S, 15.44; Ni, 14.14 \$, for $C_{18}H_{16}N_2O_2S_2Ni$, m_r =415. V/cm^{-1} : 720, 745, 755, 766, 885, 910, 945, 995, 1030, 1160, 1225, 1270, 1290, 1320, 1370, 1405, 1440, 1470, 1500, 1560, 1575, 1590, 1605, 1645, 1675, 2910, 2930, 2970, 3000, 3040. Mass spectrum m/z: 414(M^{\bullet} = 15 \$), 358(15), 316(5), 290(20), 165(80), 151(70), 136(85), 132(30), 124(45), 108(25), 96(57), 93(100), 80(27), 77(23), 69(50), 65(40), 58(15), 51(20).

N, N-Bis (o-carbomethoxyphenyl)-1, 2-diaminoethane 5.46

5.46

In a reaction vessel under nitrogen gas was placed methylanthranilate (302 g, 2 mol) and with stirring was added 1,2-dibromoethane (187 g, 1 mol). Then fine grain anhydrous sodium carbonate (500 g) was added. A gentle reflux was maintained for 60 hours. The oil bath temperature was maintained in the range 140-150 °C. The mixture was constantly stirred and the solid dislodged from the sides of the reaction flask. On cooling the mixture solidified and was extracted 6 times with hot tetrahydrofuran (350 cm³ portions each time). The collective extracts were evaporated under vacuum almost to dryness and methanol (200 cm^3) After cooling to 0 °C the white solid was collected, was added. washed with cold methanol and dried, (165.52 g, 0.504 mol 48 \$). On recrystallisation from methanol, white needles were obtained of N,Nbis(<u>o</u>-carbomethoxyphenyl)-1,2-diaminoethane 5.46, m.p. 117-119 °C. Found C, 66.40; H, 6.20; N, 8.20; requires C, 65.84; H, 6.14; N, 8.53 \$, for $C_{18}H_{20}N_2O_4$, $m_r = 328$. V/cm^{-1} : 740, 1233, 1258, 1377, 1457, 1513, 1578, 1682, 2880, 2920, 3330. ¹H nmr (60 MHz, CDCl₃), δ/ppm: 3.50(t, J 2.7 Hz, 4H-NHCH₂); 3.80(s, 6H-OCH₃); 6.50-7.60(me, 8H-

aromatic); 7.8(d, \underline{J} 6.7 Hz, 2H-CH₂NH). ¹³C nmr (20.12 MHz, CDCl₃), \overline{O} /ppm: 42.1, 51.4, 110.4, 114.9, 131.8, 134.6, 150.8, 169.0. Mass spectrum m/z: 328(M=13 \$), 177(11), 164(45), 148(10), 132(100),

119(5), 105(17), 92(6), 77(33), 65(4), 45(13), 39(4), 18(5).

4,7-Diaza-2,3:8,9-dibenzodeca-1,10-dio1 5.47

5.47

In a reaction flask (2 1) was placed lithium aluminium hydride (25 g) and to this was added calcium hydride, dried tetrahydrofuran (500 cm^3). rapid stirring n,n-bis(o-carbomethoxyphenyl)1,2-With diaminoethane 5.46 (120 g in 600 cm³ THF; 0.37 mol) was added slowly to the reaction mixture via a quickfit dropping funnel. After addition the mixture was refluxed for 1 hour then allowed to cool to room temperature. Then slowly with fast stirring distilled water was added (25 cm³), followed by 15 % sodium hydroxide solution (25 cm³) and then again with distilled water (75 cm³). The mixure was heated and filtered while hot. The filtrate contained the dialcohol. Five further extractions were carried out using THF (350 cm^3 portions) and combined six extracts were evaporated almost to dryness. the Methanol was added (200 cm^3), and the solution was cooled to 0 $^{\circ}$ C yielding white needles of 4,7-diaza-2,3:8,9-dibenzodeca-1,10-diol 5.47 (78.97 g, 0.26 mol, 72 \$) which were washed with cold methanol. Recrystallisation was from methanol, m.p. 123-125 °C. Found C, 71.10;

H, 7.80; N, 10.30; requires C, 70.56; H, 7.40; N, 10.37 %, for $C_{16}H_{20}N_{2}O_{2}$, $m_{r} = 272$. V/cm^{-1} : 615, 742, 767, 824, 854, 868, 930, 943, 970, 1008, 1060, 1123, 1160, 1193, 1223, 1250. 1296, 1337, 1378, 1403, 1460, 1510, 1588, 1610, 2905, 3200, 3300. ¹H nmr (60 MHz, CDCl₃),

237

 $6/ppm: 3.47(s, 4H-NHCH_2); 4.60(s, 4H-HOCH_2); 4.80(s, 2H-CH_2NH and - CH_2OH); 6.50-7.35(mc, 8H-aromatic). ¹³C nmr (20.12 MHz, CDCl_3), <math>6/ppm: 42.1, 63.8, 110.4, 116.4, 125.6, 128.9, 129.9, 147.2$. Mass spectrum m/z: 272(M^{*}=15 \$), 150(4), 137(45), 118(100), 106(9), 91(27), 77(6), 65(5), 30(6), 18(10).

4,7-Diaza-2,3:8,9-dibenzodeca-1,10-dione 5.48

Type "B" Manganese Dioxide

Manganese(II)carbonate (2 Kg, 17.4 mol) was spread out on aluminium foil and placed in a furnace for 48 hours at 280-300 °C until the powder was completely black. After cooling, 15 % nitric acid (4 1) was added and with regular stirring the reaction took place (nitric acid was used to react with any unreacted MnCO3). The black solid was filtered and washed with deionised water until the solid was acid free. The activated MnO_2 was placed in the furnace again for a further 24 hours at the same temperature, then removed and stored (1212 g, 13.94 mol).

In a reaction flask (2 1) the above type "B" MnO₂ (300 g, 3.45 mol) was placed and with fast stirring under a nitrogen atmosphere was added 4,7-diaza-2,3:8,9-dibenzodeca-1,10-diol 5.47 (35.0 g, 0.117 mol) as a suspension in anhydrous sodium dried diethyl ether (1500 cm^3). After refluxing for 18 hours the MnO, was filtered and extracted 10

times with hot chloroform (400 cm³ portions each time). The combined extracts were evaporated approximately to 50 cm³ and methanol (300 cm^3) was added and the mixture was cooled to 0 °C. The yellow product

239

was filtered and washed with cold methanol and dried in a vacuum oven at 50 °C. The dried product 4,7-diaza-2,3:8,9-dibenzodeca-1,10-dione 5.48 (23.4 g, 0.87 mol, 75 \$) was collected. Recrystallisation was from methanol m.p. 176-178 °C. Found C, 71.60; H, 6.20; N, 10.10; requires C, 71.62; H, 6.01; N, 10.44 \$, for $C_{16}H_{16}N_2O_2$, $m_r = 268$. V/cm^{-1} : 793, 848, 1015, 1043, 1100, 1130, 1152, 1203, 1280, 1320, 1358, 1443, 1505, 1555, 1593, 1645, 2707, 2905, 3310. ¹H nmr (60 MHz, $CDCl_3$), \tilde{O}/ppm : 3.55(t, <u>J</u> 3Hz, 4H-NH<u>CH</u>₂); 6.55-7.65(mc, 8H-aromatic); 9.80(s, 2H-O<u>CH</u>₂). ¹³C nmr (20.12 MHz, CDCl₃), \tilde{O}/ppm : 41.5, 110.63, 115.40, 118.7, 135.9, 136.8, 150.4, 194.0. Mass spectrum m/z: 268(M^{*}=18 \$), 147(4), 134(100), 116(11), 106(27), 91(15), 77(32), 65(6), 44(8), 39(4), 28(4), 18(12).

References

- 1. Tasker, P.A., Fleischer, E.B., <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 7072 (1970).
- 2. Behr, H, Breitmaier, E., Chem. Ber., 111, 913 (1978).
- 3. Cannon, R.D., Chiswell, B., Venazi, L.M., <u>J. Chem. Soc., A</u>, 1277 (1967).
- 4. Hay, R.W., Lawrence, G.A., Shone, U.R., <u>J. Chem. Soc. Dalton</u>, 942 (1976).
- 5. Marvel, C.S., Sekera, V.C., <u>Org. Synth. Coll. Vol. 3</u>, 366 (1955).
- 6. Sugimoto, B.M., Nonoyama, M., Ito, T., Fujita, J.<u>Inorg.</u> <u>Chem.</u>, <u>22</u>, 950 (1983).
- 7. Green, M., Smith, J., Tasker, P.A., <u>Inorg. Chim. Acta.</u>, <u>17</u> (1971).

.

APPENDIX

Appendix 1 X-Ray Crystallography Data

Page

^C 19 ^H 26 ^N 4	A1
$[Ni(C_{19}H_{26}N_{4}](BF_{4})_{2}$	A10
$[Ni(C_{19}H_{26}N_{4})(NCS)_{2}]$	A 2 0

Appendix 2 X-Ray Structure Factors

^C 19 ^H 26 ^N 4	A 3 3
[N1(C ₁₉ H ₂₆ N ₄](BF ₄) ₂	A 3 9
[N1(C ₁₉ H ₂₆ N ₄)(NCS) ₂]	A 45

The

4.

T

Hydrogen atom labelling is H1A1 and H1A2 for atoms on C1A and H1B1 and H1B2 on C1B etc. Anilino protons are H1AN, H1BN, H2BN and H2BN

Atom	x	У	z
H(1A1)	0.8335	0.3308	0.0552
H(1A2)	0.7660	0.1081	0.0376
H(2A)	0.7072	0.4565	0.1057
H(3A1)	0.6557	0.4881	0.0075
H(3A2)	0.7196	0.7174	0.0260
H(3A3)	0.6150	0.6593	0.0380
H(4A1)	0.5416	0.3769	0.0955
H(4A2)	0.5821	0.1463	0.0658
H(6A)	0.4027	0.1005	0.0777
H(7A)	0.2613	-0.2306	0.0824
H(SA)	0.3322	-0.6057	0.1531
H(9A)	0.4783	-0.5874	0.2053
H(1B1)	0.6667	-0.6367	0.2245
H(1B2)	0.6600	-0.3851	0.2774
H(2B1)	0.8108	-0.5702	0.3119
H(2B2)	0.7985	-0.2324	0.2904
H(4B1)	0.9577	-0.4568	0.2681
H(4B2)	0.8677	-0.6267	0.2223
H(6B)	1.0018	-0.5772	0.1802
H(7B)	1.0757	-0.5845	0.1065
H(8B)	1.0275	-0.3757	0.0158
H(9B)	0.9276	0.0009	0.0365
H(1AN)	0.8255	0.1633	0.1375
H(DAN)	0 6917	0.0550	0,1310

TABLE 2 Fractional atomic coordinates for the hydrogen atoms for C₁₉H₂₆N₄

C19 ^H 26 ^N 4	
for	
~	
*	
parameters	
thermal	
Anisotropic	
m	

⁰ 22	⁰ 33	^U 23	⁰ 13	0 ₁₂
0.052(8)	0.037(7)	0.009(7)	0,003(6)	0.004(6)
0.062(8)	0.031(7)	0.011(7)	-0.003(6)	-0,005(6)
0.054(7)	0.043(7)	(1)600.0	-0.003(6)	0.008(7)
0.050(8)	0.031(7)	0.011(7)	-0.004(6)	(1) #00*0
0.060(10)	0.041(9)	0.021(9)	0.005(8)	(8)600*0
0.052(10)	0.030(8)	0.004(8)	0.004(8)	0.000(8)
0.053(10)	0.064(10)	0.010(10)	0,002(9)	0,002(9)
0.048(9)	0.054(10)	(6)600*0	0.006(8)	0.001(8)
0.054(10)	0.036(9)	(6)600*0	0,003(8)	0.007(9)
0.075(11)	0.045(10)	0*003(10)	-0.002(9)	0.007(9)
0.086(12)	(6)8£0°0	0.009(10)	-0.002(8)	-0.006(10)
0.055(11)	0.065(12)	0.001(10)	-0.003(10)	-0.008(9)
0.050(9)	0.059(10)	0.009(10)	0.006(9)	-0.002(9)

(a)

table 3 continued

•

0.016(8)	0.054(10)	0*039(9)	0.013(10)	-0.006(8)	0.010(9)
0.032(9)	0.065(11)	0.043(10)	0.008(9)	0.001(9)	0.010(9)
0.012(7)	0.067(10)	0.033(8)	0.012(9)	-0.008(8)	0.008(8)
0.022(8)	0.049(9)	0.041(8)	0.010(8)	-0.007(8)	0.015(7)
0.008(7)	0.050(10)	0,029(8)	0,003(8)	-0.011(7)	-0.001(7)
0.021(7)	0.059(11)	0.045(9)	-0.001(9)	0.001(8)	0.008(8)
0.015(8)	0.083(13)	0.065(11)	-0.003(11)	0.005(9)	0.001(9)
0.033(10)	0.084(14)	0.044(10)	0.002(10)	(6)000*0	0.012(10)
0.030(8)	0.058(11)	0.043(9)	0.008(9)	0.003(8)	0.011(9)
0.013(7)	0.046(9)	0.043(9)	0*002(9)	-0.004(8)	0.007(8)

•

TABLE 4 Bond lengths (A) for C19H26N4

N(1A) -C(1A)	1.469(17)	N(1A) -C(10B)	1.402(17)
N(2A) -C(4A)	1.463(18)	N(2A) -C(5A)	1.390(18)
N(1B) -C(10A)	1.427(15)	N(1B) -C(1B)	1.485(18)
N(2B) -C(4B)	1.436(17)	N(2B) -C(5B)	1.408(17)
C(1A) -C(2A)	1.494(19)	C(2A) -C(3A)	1.529(20)
C(2A) -C(4A)	1.501(18)	C(5A) -C(6A)	1.385(17)
C(5A) -C(10A)	1.411(20)	C(6A) -C(7A)	1.372(22)
C(7A) -C(8A)	1.353(23)	C(8A) -C(9A)	1.386(18)
C(9A) -C(10A)	1.386(20)	C(1B) -C(2B)	1.511(16)
C(2B) -C(4B)	1.524(19)	C(5B) -C(6B)	1.359(19)
C(5B) -C(10B)	1.412(19)	C(6B) -C(7B)	1.386(22)
C(7B) -C(8B)	1.363(23)	C(8B) -C(9B)	1.361(21)
C(9B) - C(10B)	1.380(20)		

TABLE 5 Bond Angles (°) for C19H26N4

C(10B) - N(1A) - C(1A)	120(1)	C(5A) -N(2A) -C(4A)	117.7(9)
C(1B) -N(1B) -C(10A)	117(1)	C(5B) -N(2B) -C(4B)	119(1)
C(2A) -C(1A) -N(1A)	112(1)	C(3A) -C(2A) -C(1A)	109(1)
C(4A) -C(2A) -C(1A)	119(1)	C(4A) -C(2A) -C(3A)	108(1)
C(2A) -C(4A) -N(2A)	110.5(9)	C(6A) -C(5A) -N(2A)	126(1)
C(10A)-C(5A) -N(2A)	115(1)	C(10A)-C(5A) -C(6A)	118(1)
C(7A) -C(6A) -C(5A)	121(1)	C(8A) -C(7A) -C(6A)	120(1)
C(9A) -C(8A) -C(7A)	121(1)	C(10A)-C(9A) -C(8A)	120(1)
C(5A) -C(10A)-N(1B)	115(1)	C(9A) -C(10A)-N(1B)	125(1)
C(9A) -C(10A)-C(5A)	120(1)	C(2B) -C(1B) -N(1B)	108(1)
C(4B) -C(2B) -C(1B)	116(1)	C(2B) -C(4B) -N(2B)	109(1)
C(6B) -C(5B) -N(2B)	125(1)	C(10B)-C(5B) -N(2B)	116(1)
C(10B)-C(5B) -C(6B)	119(1)	C(7B) -C(6B) -C(5B)	120(1)
C(8B) -C(7B) -C(6B)	122(1)	C(9B) -C(8B) -C(7B)	118(1)
C(10B)-C(9B) -C(8B)	122(1)	C(5B) -C(10B)-N(1A)	117(1)
C(9B) -C(10B)-N(1A)	124(1)	C(9B) -C(10B)-C(5B)	119(1)

Atom 1	Atom2	dist	S	a	ъ	С
H(3A2)	.N(1A)	2.85	1	0.0	1.0	0.0
H(1B1)	.N(2A)	2.74	1	0.0	-1.0	0.0
H(9A)	.N(1B)	2.99	2	1.0	-1.0	0.0
H(4B1)	.N(2B)	2.82	2	2.0	-1.0	0.0
H(2B1)	.C(7A)	3.08	2	1.0	-1.0	0.0
H(4A1)	.C(8A)	3.02	1	0.0	1.0	0.0
H(4A1)	.C(9A)	2.69	1	0.0	1.0	0.0
H(4A1)	.C(10A)	2.78	1	0.0	1.0	0.0
H(9A)	.C(10A)	3.01	2	1.0	-1.0	0.0
H(8A)	.C(1B)	3.01	2	1.0	-1.0	0.0
H(8A)	.C(2B)	3.05	2	1.0	-1.0	0.0
H(6B)	.C(4B)	3.04	2	2.0	-1.0	0.0
H(4B1).	.C(5B)	2.77	2	2.0	-1.0	0.0
H(1AN).	.C(6B)	3.06	1	0.0	1.0	0.0
H(2B2).	.C(6B)	3.03	2	2.0	0.0	0.0
H(7A)	.C(8B)	2.96	1	-1.0	0.0	0.0
H(8B) .	.C(8B)	2.58	-1	2.0	-1.0	0.0
H(9B) .	.C(8B)	3.03	-1	2.0	0.0	0.0
H(3A2).	.C(9B)	3.06	1	0.0	1.0	0.0
H(3A2).	C(10B)	2.87	1	0.0	1.0	0.0

TABLE 6 Intermolecular distances (Å) for $C_{19}^{H}_{26}^{N}_{4}$

Symmetry Transformations:

The second atom is related to the first atom, at (x,y,z), by the symmetry operation S with (a,b,c)added to the (x',y',z') of S.

TABLE 7 Intramolecular distances (1) for $C_{19}H_{26}N_{4}$

N(2A)N(1A)	2.86	N(2B)N(1A)	2.66
C(2A)N(1A)	2.46	C(4A)N(1A)	3.09
C(5B)N(1A)	2.40	C(9B)N(1A)	2.46
H(1A1)N(1A)	2.11	H(1A2)N(1A)	1.83
H(2A)N(1A)	2.61	H(9B)N(1A)	2.56
H(2AN)N(1A)	1.73	H(2BN)N(1A)	2.30
N(1B)N(2A)	2.62	C(1A)N(2A)	3.08
C(2A)N(2A)	2.44	C(6A)N(2A)	2.48
C(10A)N(2A)	2.37	H(2A)N(2A)	2.59
H(4A1)N(2A)	1.91	H(6A)N(2A)	2.60
H(1AN)N(2A)	2.88	H(1BN)N(2A)	2.45
N(2B)N(1B)	2.85	C(5A)N(1B)	2.40
C(9A)N(1B)	2.49	C(2B)N(1B)	2.43
C(4B)N(1B)	3.09	H(9A)N(1B)	2.83
H(1B1)N(1B)	2.12	H(1B2)N(1B)	1.75
H(2B2)N(1B)	2.44	H(2AN)N(1B)	2.66
C(1B)N(2B)	3.07	C(2B)N(2B)	2.42
C(6B)N(2B)	2.45	C(10B)N(2B)	2.39
H(2B2)N(2B)	2.50	H(4B1)N(2B)	2.08
H(4B2)N(2B)	2.02	H(6B)N(2B)	2.52
H(1AN)N(2B)	2.78	H(1BN)N(2B)	3.00
C(3A)C(1A)	2.46	C(4A)C(1A)	2.58
C(9B)C(1A)	2.93	C(10B)C(1A)	2.49

table 7 continued

	• • •		
H(2AN)C(10A)	2.94	H(1BN)C(10A)	1.86
C(4B)C(1B)	2.57	H(9A)C(1B)	2.69
H(2B1)C(1B)	2.08	H(2B2)C(1B)	2.03
H(4B2)C(1B)	2.79	H(1BN)C(1B)	2.03
H(1B1)C(2B)	2.22	H(1B2)C(2B)	1.74
H(4B1)C(2B)	2.16	H(4B2)C(2B)	2.11
H(1BN)C(2B)	2.64	H(2BN)C(2B)	2.82
C(5B)C(4B)	2.44	C(6B)C(4B)	2.88
H(1B1)C(4B)	2.80	H(2B1)C(4B)	2.11
H(2B2)C(4B)	2.10	H(6B)C(4B)	2.46
H(2BN)C(4B)	2.10	C(7B)C(5B)	2.37
C(8B)C(5B)	2.78	C(9B)C(5B)	2.40
H(4B1)C(5B)	2.78	H(4B2)C(5B)	2.64
H(6B)C(5B)	1.89	H(7B)C(5B)	2.94
H(1AN)C(5B)	2.76	H(2BN)C(5B)	1.67
C(8B)C(6B)	2.40	C(9B)C(6B)	2.74
C(10B)C(6B)	2.39	H(4B1)C(6B)	2.89
H(4B2)C(6B)	2.77	H(7B)C(6B)	1.76
H(2BN)C(6B)	2.85	C(9B)C(7B)	2.34
C(10B)C(7B)	2.74	H(6B)C(7B)	2.07
H(8B)C(7B)	2.21	C(10B)C(8B)	2.40
H(7B)C(8B)	1.89	H(9B)C(8B)	2.10
H(1A1)C(9B)	2.91	H(1A2)C(9B)	2.68
H(7B)C(9B)	3.01	H(8B)C(9B)	2.15
H(1AN)C(9B)	3.03	H(1A1)C(10B)	2.82
	0.50		

[NI(C19H26N4)] (BF4)2

Hydrogen atom labelling is H1A1 and H1A2 for atoms on C1A and H1B1 and H1B2 on C1B etc. Anilino protons are H1AN, H1BN, H2AN and H2BN

[Ni(C19H26N4)] (BF4)2

11

Hydrogen atom labelling is H1A1 and H1A2 for atoms on C1A and H1B1 and H1B2 on C1B etc. Anilino protons are H1AN, H1BN, H2AN and H2BN

Atom	x	У	Z
H(1A1)	-0.3265	0.1735	0.0194
H(1A2)	-0.3371	0.3881	0.0379
H(2A1)	-0.0676	0.4320	0.2862
H(2A2)	-0.2182	0.4231	0.3450
H(4A1)	0.0321	0.2422	0.4963
H(4A2)	-0.1107	0.1205	0.3411
H(6A)	0.2740	0.1737	0.6173
H(7A)	0.4967	-0.0328	0.7834
H(8A)	0.5602	-0.3226	0.5750
H(9A)	0.3779	-0.4126	0.2604
H(1AN)	-0.0507	0.3070	-0.0233
H(2AN)	0.1421	0.1988	0.2372

TABLE 2 Fractional atomic coordinates for the hydrogen atoms for $[Ni(C_{19}H_{26}N_{4})](BF_{4})_2$

.

4,2	
J(BF	
(N 9	
19 ^H 2	
[N1 (C	
for	
(N)	
parameters	
thermal	
Anisotropic	

11 ₀	⁰ 22	⁰ 33	U_23	U ₁₃	U ₁₂
(1) 020	0.036(1)	0.028(1)	0.013(1)	0.005(1)	-0.002(1)
.055(5)	0.037(4)	0.044(5)	0.022(4)	0.008(4)	0.007(4)
.043(5)	0.038(4)	0.024(4)	0.007(3)	0.003(4)	(1)600.0-
.052(6)	0.042(6)	0.041(6)	0.008(5)	0.007(5)	0.004 (5)
(1)110.	0.045(6)	0.054(7)	0.011(5)	0.017(6)	0.005(5)
(12)/10.	0.068(15)	0.046(13)	0.010(11)	0.039(12)	0.022(12)
.055(6)	0.047(6)	0.036(5)	0.007(5)	0.009(5)	-0.012(5)
.041(6)	0.048(6)	0.027(5)	0.012(4)	0.002(5)	-0.008(4)
.058(7)	0.056(7)	0.040(6)	0.009(5)	0.009(5)	-0.012(5)
.053(7)	0,066(9)	0.038(6)	0.028(6)	0.007(5)	-0.010(6)
.056(7)	0.065(7)	0.061(8)	0.032(6)	-0.005(6)	-0.007(6)
(7)#00.	0.054(6)	0.050(7)	0.021(5)	-0-004 (6)	-0.001(5)
.042(6)	0.052(6)	0.034(5)	0.022(5)	-0.010(5)	-0.017(5)

0.061(4) 0.000(3) 0.045(4)	0.074(5) 0.077(5) 0.010(4)	0.105(5) 0.014(4) 0.064(5)	0.099(5) 0.014(4) 0.046(4)	0.049(8) 0.012(6) 0.018(6)
0.000(3)	0.077(5)	0.014(4)	0.014(4)	0.012(6)
0.061(4)	0.074(5)	0.105(5)	0.099(5)	0.049(8)
0.066(4)	0.169(7)	0.045(4)	0.082(5)	0.047(7)
. 104 (5)	.079(5)	. 132(6)	.089(5)	0.050(8)

TABLE 4 Bond lengths (A) for [Ni(C₁₉H₂₆N₄)](BF₄)₂

Ni	-N(1A)	1.931(7)	Ni	-N(2A)	1.920(6)
N(1A)	-C(1A)	1.490(14)	N(2A)	-C(4A)	1.475(13)
N(2A)	-C(5A)	1.447(10)	C(1A)	-C(2A)	1.505(12)
C(2A)	-C(3A)	1.430(24)	C(2A)	-C(4A)	1.534(13)
C(5A)	-C(6A)	1.354(11)	C(5A)	-C(10A)	1.383(12)
C(6A)	-C(7A)	1.388(14)	C(7A)	-C(8A)	1.373(15)
C(8A)	-C(9A)	1.364(14)	C(9A)	-C(10A)	1.391(13)
N(1A)	-C(10B)	1.440(10)	F(1)	-B	1.381(15)
F(2)	-B	1.370(12)	F(3)	-B	1.371(14)
F(A)	_ B	1.370(12)			

TABLE 5 Bond angles (°) for $[Ni(C_{19}^{H}_{26}^{N}_{4})](BF_{4})_2$

N(1A)	-Ni	-N(1B)	180.0	N(1A) -N1	-N(2B)	88.0(3)
N(2A)	-Ni	-N(1A)	92.0(3)	C(1A) -N(1A)	-Ni	112.3(7)
Ni	-N(1A)	-C(10B)	108.9(7)	C(1A) -N(1A)	-(C10B)	111.4(7)
C(4A)	-N(2A)	-Ni	113.6(5)	C(5A) -N(2A)	-Ni	109.9(5)
C(5A)	-N(2A)	-C(4A)	111.5(8)	C(2A) -C(1A)	-N(1A)	110.0(8)
C(3A)	-C(2A)	-C(1A)	111(1)	C(4A) -C(2A)	-C(1A)	112.7(7)
C(4A)	-C(2A)	-C(3A)	112(1)	C(2A) -C(4A)	-N(2A)	110.0(9)
C(6A)	-C(5A)	-N(2A)	123.7(7)	C(10A)-C(5A)	-N(2A)	115.7(7)
C(10A)-C(5A)	-C(6A)	120.6(8)	C(7A) -C(6A)	-C(5A)	119.9(8)
C(8A)	-C(7A)	-C(6A)	119.6(8)	C(9A) -C(8A)	-C(7A)	121.0(1)
C(10A)-C(9A)	-C(8A)	119.3(9)	C(9A) -C(10A)-C(5A)	119.6(7)
N(1A)	-C(10B)-C(5B)	117.5(8)	N(1A) -C(10E	8)-C(9B)	122.9(10)
F(2)	-B	-F(1)	108.2(9)	F(3) -B	-F(1)	106(1)
F(3)	-B	-F(2)	106.4(8)	F(4) -B	-F(1)	113.2(8)
F(4)	-B	-F(2)	112(1)	F(4) -B	-F(3)	110.7(9)
F(4)	-B	-F(2)	112(1)	F(4) -B	-F(3)	110

atom1 atom2	dist	S	a	Ъ	c	
F(2)Ni	3.75	1	0.0	1.0	0.0	
F(2)N(1A)	3.09	1	0.0	1.0	0.0	
N(2A)N(1A)	2.68	-1	0.0	0.0	0.0	
C(5A)N(1A)	2.41	-1	0.0	0.0	0.0	
C(9A)N(1A)	2.49	-1	0.0	0.0	0.0	
C(10A)N(1B)	1.44	-1	0.0	0.0	0.0	
H(9A)N(1A)	2.75	- 1	0.0	0.0	0.0	
F(4)C(1A)	3.38	1	1.0	0.0	0.0	
C(5A)C(1A)	3.49	-1	0.0	0.0	0.0	
C(9A)C(1A)	2.97	-1	0.0	0.0	0.0	
C(10A)C(1A)	2.42	-1	0.0	0.0	0.0	
F(3)C(1A)	3.25	-1	0.0	0.0	0.0	
H(9A)C(1A)	2.86	-1	0.0	0.0	0.0	
H(8A)C(3A)	2.84	1	1.0	-1.0	0.0	
C(8A)C(3A)	3.36	-1	0.0	0.0	1.0	
H(4A2)C(6A)	3.04	-1	0.0	0.0	1.0	
F(3)C(7A)	3.38	1	0.0	0.0	-1.0	
H(4A2)C(7A)	3.05	-1	0.0	0.0	1.0	
H(1A2)C(9A)	2.80	-1	0.0	0.0	0.0	
H(1AN)C(9A)	2.96	-1	0.0	0.0	0.0	
H(1A1)C(10A)	2.59	-1	0.0	0.0	0.0	

TABLE 6 Intermolecular distances (A) for $[Ni(C_{19}H_{26}N_{4})](BF_{4})_2$

H(1A2)...C(10A)2.79-10.00.00.0H(1AN)...C(10A)2.25-10.00.00.0F(2)...F(1)2.2310.01.00.0H(9A)...F(1)2.6510.0-1.0C.0

A16

table 6 continued

H(8A)F(1)	2.41	-1	1.0	0.0	1.0
F(3)F(2)	2.19	1	0.0	-1.0	0.0
F(4)F(2)	2.22	1	0.0	-1.0	0.0
H(4A1)F(2)	2.55	1	0.0	-1.0	1.0
H(6A)F(2)	2.69	1	0.0	-1.0	1.0
H(1AN)F(2)	2.06	1	0.0	-1.0	0.0
H(2A1)F(2)	2.60	-1	0.0	2.0	0.0
H(7A)F(3)	2.97	1	0.0	0.0	1.0
H(1A1)F(3)	2.35	-1	0.0	0.0	0.0
H(4A2)F(3)	2.77	-1	0.0	0.0	0.0
H(7A)F(3)	2.42	-1	1.0	0.0	1.0
H(1A1)F(4)	2.76	1	-1.0	0.0	0.0
H(1A2)F(4)	2.85	1	-1.0	0.0	0.0
H(6A)F(4)	2.79	1	0.0	0.0	1.0
H(9A)F(4)	2.50	1	0.0	-1.0	0.0
H(1A2)F(4)	2.54	-1	0.0	1.0	0.0
H(6A)B	3.02	1	0.0	0.0	1.0
H(9A)B	3.02	1	0.0	-1.0	0.0

Symmetry Transformations:

The second atom is related to the first atom, at (x,y,z), by the symmetry operation S with (a,b,c)added to the (x',y',z') of S.

Where S

x, y, z

1

C(1A)Ni	2.85	C(2A)Ni	3.27
C(4A)Ni	2.85	C(5A)Ni	2.77
C(9A)Ni	4.11	C(10A)Ni	2.76
F(1)Ni	3.59	F(3)Ni	2.85
BNi	3.64	H(1A1)NI	3.00
H(2A1)Ni	3.68	H(4A1)Ni	3.75
H(4A2)Ni	3.04	H(1AN)Ni	2.59
N(2A)N(1A)	2.77	C(2A)N(1A)	2.45
C(4A)N(1A)	3.04	F(1)N(1A)	3.34
H(1A1)N(1A)	2.12	H(1A2)N(1A)	2.25
H(2A1)N(1A)	2.77	H(2AN)N(1A)	2.76
C(1A)N(2A)	3.03	C(2A)N(2A)	2.47
C(6A)N(2A)	2.47	C(10A)N(2A)	2.40
F(1)N(2A)	2.93	F(3)N(2A)	3.15
H(2A1)N(2A)	2.68	H(4A1)N(2A)	2.04
H(4A2)N(2A)	2.16	H(6A)N(2A)	2.66
H(1AN)N(2A)	2.90	C(3A)C(1A)	2.42
C(4A)C(1A)	2.53	H(2A1)C(1A)	2.23
H(2A2)C(1A)	2.15	H(4A2)C(1A)	2.68
H(1AN)C(1A)	2.25	H(1A1)C(2A)	2.36
H(1A2)C(2A)	2.03	H(4A1)C(2A)	2.19
H(4A2)C(2A)	2.09	H(1AN)C(2A)	2.63
H(2AN)C(2A)	2.64	C(4A)C(3A)	2.46

TABLE 7 Intramolecular distances (A) for $[Ni(C_{19}H_{26}N_{4})](BF_{4})_2$

H(4A2)C(3A)	2.71	C(5A)C(4A)	2.41
C(6A)C(4A)	2.97	C(10A)C(4A)	3.48
H(1A1)C(4A)	2.96	H(2A1)C(4A)	2.13
H(2A2)C(4A)	2.19	H(6A)C(4A)	2.79
H(2AN)C(4A)	2.13	C(7A)C(5A)	2.37
C(VA)C(5A)	2.74	C(9A)C(5A)	2.40
H(4A1)C(5A)	2.50	H(4A2)C(5A)	2.82
H(6A)C(5A)	2.07	H(2AN)C(5A)	2.06
C(8A)C(6A)	2.39	C(9A)C(6A)	2.76
C(10A)C(6A)	2.38	H(4A1)C(6A)	2.53
H(7A)C(6A)	2.21	H(2AN)C(6A)	2.85
C(9A)C(7A)	2.38	C(10A)C(7A)	2.75
H(6A)C(7A)	2.16	H(8A)C(7A)	2.20
C(10A)C(8A)	2.38	H(7A)C(8A)	2.18
H(9A)C(8A)	2.14	H(8A)C(9A)	2.12
H(9A)C(10A)	2.18	H(2AN)C(10A)	3.01
F(3)F(1)	2.20	F(4)F(1)	2.25
H(2A1)F(1)	2.82	H(1AN)F(1)	2.26
H(2AN)F(1)	1.89	F(4)F(3)	2.21
H(1AN)F(3)	2.86	H(2AN)F(3)	2.48
H(1AN)B	2.51	H(2AN)B	2.69

[Ni(C19H26N4)(NCS)2]

(Hydrogen atom Labelling is H1A1 and H1A2 for atoms on C1A and H1B1 and H1B2 on C1B etc. Anilino protons are H1AN, H2AN. H1BN and H2BN).

(Hydrogen atom Labelling is H1A1 and H1A2 for atoms on C1A and H1B1 and H1B2 on C1B etc. Anilino protons are H1AN, H2AN. H1BN and H2BN).

table 1	continued			
C(8B)	0.0581(15)	-0.1767(13)	0.1907(20)	0.076(7)
C(9B)	0.1084(14)	-0.1077(12)	0.1486(20)	0.073(5)
C(10B)	0.1645(13)	-0.0510(11)	0.2401(18)	0.052(5)
C(11B)	0.4624(13)	0.1100(11)	0.3732(15)	0.048(5)
C(3AE)	0.22530	0.15360	-0.07160	0.0600
C(3BE)	0.20960	0.06430	0.77260	0.0600

Atom	x	У	Z
H(1A1)	0.1950	0.0080	0.0163
H(1A2)	0.0901	0.0572	0.0618
H(2A1)	0.1918	0.0828	0.0682
H(2A2)	0.3086	0.1402	0.1096
H(4A1)	0.0913	0.1986	0.1010
H(4A2)	0.1802	0.2731	0.0687
H(6A)	0.0918	0.3590	0.1402
H(7A)	0.0083	0.4539	0.2580
H(SA)	0.0153	0.4415	0.4710
H(9A)	0.1220	0.3211	0.5939
H(1B1)	0.1958	0.2127	0.6656
H(1B2)	0.0983	0.1563	0.5633
H(2B1)	0.3184	0.0871	0.6537
H(2B2)	0.2047	0.0323	0.5823
H(4B1)	0.0962	0.0141	0.5338
H(4B2)	0.1973	-0.0533	0.6067
H(6B)	0.1202	-0.1484	0.4970
H(7B)	0.0186	-0.2419	0.3305
H(8B)	0.0157	-0.2204	0.1240
H(9B)	0.1042	-0.0983	0.0519
H(1AN)	0.2853	0.0140	0.2031
H(2AN)	0.2898	0.2424	0.2439
H(1BN)	0.2862	0.2339	0.4764

TABLE 2Fractional atomic coordinates for the
hydrogen atoms for [Ni(C19H26N4)(NCS)2]


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(NCS)
C TT
H26
5
[NT
for
(Å)
parameters
thermal
Anisotropic
m

ž

U12

U₁₃

⁰23

⁰33

U22

110

	0.045(1)	0.029(1)	0.078(2)	0,002(2)	0.007(1)	0.001(1)
	0.063(4)	0.146(6)	0.159(7)	0.079(6)	(1)000.0	0.017(4)
	0.050(3)	0.052(3)	0.118(5)	0.001(4)	0.018(3)	0.008(3)
	0.076(12)	0.049(10)	0.083(15)	0.002(11)	0.017(11)	-0.007(8)
	0.080(12)	0.039(10)	0.069(14)	0.020(10)	0.025(11)	-0.004(8)
	0*055(9)	0.039(8)	0.093(13)	0.021(10)	-0*006(9)	-0.002(8)
	0.053(10)	0,035(8)	0.075(12)	-0.015(9)	0.021(9)	(1)600.0-
	0.048(9)	0,030(8)	0.062(11)	0,009(8)	0.003(9)	0.012(7)
	0*020(6)	0.045(8)	0.110(14)	0.004(11)	0.019(9)	0,005(9)
	0.213(31)	0.078(18)	0.071(21)	-0.020(17)	0.036(22)	-0-003(19)
1.2	0.279(38)	0.078(19)	0.072(20)	0.014(16)	0.022(23)	-0.095(23)
	0, 152 (26)	0.050(15)	0.118(28)	0.046(18)	0.028(22)	-0.029(16)



TABLE 4 Bond lengths (A) for [Ni(C₁₉H₂₆N₄)(NCS)₂]

N1 -N(1A)	2.106(18)	NI -N(2A)	2.129(14)
NI -N(3A)	2.040(14)	Ni -N(1B)	2.079(15)
Ni -N(2B)	2.114(13)	Ni -N(3B)	2.119(13)
S(1A) -C(11A)	1.606(18)	S(1B) -C(11B)	1.619(18)
N(1A) -C(1A)	1.48(3)	N(1A) -C(10B)	1.445(25)
N(2A) -C(4A)	1.42(3)	N(2A) -C(5A)	1.46(3)
N(3A) -C(11A)	1.138(22)	N(1B) -C(10A)	1.486(21)
N(1B) -C(1B)	1.48(3)	N(2B) -C(4B)	1.43(3)
N(2B) -C(5B)	1.486(20)	N(3B) -C(11B)	1.150(23)
C(1A) -C(2A)	1.64(4)	C(2A) -C(4A)	1.59(4)
C(2A) -C(3AE)	1.446(25)	C(5A) -C(6A)	1.46(3)
C(5A) -C(10A)	1.31(3)	C(6A) -C(7A)	1.40(3)
C(7A) -C(8A)	1.29(3)	C(8A) -C(9A)	1.47(3)
C(9A) -C(10A)	1.43(3)	C(1B) -C(2B)	1.56(3)
C(2B) -C(4B)	1.63(3)	C(2B) -C(3BE)	1.578(23)
C(5B) -C(6B)	1.445(25)	C(5B) -C(10B)	1.33(3)
C(6B) -C(7B)	1.42(3)	C(7B) -C(8B)	1.31(3)
C(8B) -C(9B)	1.42(3)	C(9B) -C(10B)	1.44(3)



TABLE 5 Bond angles (*) for [Ni(C₁₉H₂₆N₄)(NCS)₂]

N(2A) -Ni	-N(1A)	98.0(7)	N(3A) -Ni	-N(1A)	90.7(6)
N(3A) -Ni	-N(2A)	89.8(6)	N(1B) -Ni	-N(1A)	177.6(6)
N(1B) -Ni	-N(2A)	80.7(6)	N(1B) -Ni	-N(3A)	91.3(6)
N(2B) -N1	-N(1A)	80.9(6)	N(2B) -Ni	-N(2A)	178.5(6)
N(2B) -N1	-N(3A)	91.1(6)	N(2B) -Ni	-N(1B)	100.4(6)
N(3B) -Ni	-N(1A)	87.8(6)	N(3B) -Ni	-N(2A)	89.6(6)
N(3B) -Ni	-N(3A)	178.3(7)	N(3B) -Ni	-N(1B)	90.1(6)
N(3B) -Ni	-N(2B)	89.5(5)	C(1A) -N(1A)	-Ni	117(1)
C(10B)-N(1A)	-Ni	105(1)	C(10B)-N(1A)	-C(1A)	115(2)
C(4A) -N(2A)	-Ni	116(1)	C(5A) -N(2A)	-Ni	102(1)
C(5A) -N(2A)	-C(4A)	117(2)	C(11A)-N(3A)	-Ni	156(2)
C(10A)-N(1B)	-Ni	106(1)	C(1B) -N(1B)	-Ni	114(1)
C(1B) -N(1B)	-C(10A)	115(1)	C(4B) -N(2B)	-Ni	114(1)
C(5B) -N(2B)	-Ni	104(1)	C(5B) -N(2B)	-C(4B)	116(1)
C(11B)-N(3B)	-Ni	163(1)	C(2A) -C(1A)	-N(1A)	110(2)
C(4A) -C(2A)	-C(1A)	108(2)	C(3AE)-C(2A)	-C(1A)	110(2)
C(3AE)-C(2A)	-C(4A)	113(2)	C(2A) -C(4A)	-N(2A)	112(2)
C(6A) -C(5A)	-N(2A)	118(2)	C(10A)-C(5A)	-N(2A)	121(2)
C(10A)-C(5A)	-C(6A)	121(2)	C(7A) -C(6A)	-C(5A)	113(2)
C(8A) -C(7A)	-C(6A)	127(2)	C(9A) -C(8A)	-C(7A)	119(2)
C(10A)-C(9A)	-C(8A)	114(2)	C(5A) -C(10A	)-N(1B)	116(2)
C(9A) -C(10A	)-N(1B)	118(2)	C(9A) -C(10A	)-C(5A)	125(2)
N(3A) -C(11A	)-S(1A)	177(2)	C(2B) -C(1B)	-N(1B)	112(2)
C(4B) -C(2B)	-C(1B)	109(1)	C(3BE)-C(2B)	-C(1B)	109(1)
				11/00	



C(6B) -C(5B) -N(2B)	118(2)	C(10B)-C(5B) -N(2B)	118(1)
C(10B)-C(5B) -C(6B)	124(2)	C(7B) -C(6B) -C(5B)	114(2)
C(8B) -C(7B) -C(6B)	123(2)	C(9B) -C(8B) -C(7B)	122(2)
C(10B)-C(9B) -C(8B)	117(2)	C(5B) -C(10B)-N(1A)	119(2)
C(9B) -C(10B)-N(1A)	121(2)	C(9B) -C(10B)-C(5B)	119(2)
N(3B) -C(11B)-S(1B)	179(2)		

table 5 continued

Ξ.


atom1	atom2	dist	S	a	b	С
H(1A1).	.S(1A)	3.35	-1	0.0	0.0	0.0
H(4B2).	S(1A)	3.00	-1	0.0	0.0	1.0
H(9B) .	S(1A)	2.94	-1	0.0	0.0	0.0
C(3BE).	S(1A)	3.58	-1	0.0	0.0	1.0
N(1B) .	S(1A)	3.50	-2	1.0	1.0	1.0
C(9A) .	S(1A)	3.44	-2	1.0	1.0	1.0
H(9A) .	S(1A)	3.07	-2	1.0	1.0	1.0
C(10A).	S(1A)	3.63	-2	1.0	1.0	1.0
C(1B) .	S(1A)	3.73	-2	1.0	1.0	1.0
H(1B1).	S(1A)	3.02	-2	1.0	1.0	1.0
H(1BN).	S(1A)	2.97	-2	1.0	1.0	1.0
N(2B) .	S(1B)	3.47	-1	1.0	0.0	1.0
H(2BN).	S(1B)	2.54	-1	1.0	0.0	1.0
C(4B) .	S(1B)	3.59	-1	1.0	0.0	1.0
H(4B2).	S(1B)	3.00	-1	1.0	0.0	1.0
H(7A) .	S(1B)	2.94	2	0.0	0.0	0.0
H(7B) .	S(1B)	3.24	2	0.0	-1.0	0.0
C(8B) .	S(1B)	3.84	2	0.0	-1.0	0.0
H(8B) .	S(1B)	3.01	2	0.0	-1.0	0.0
H(4A2).	S(1B)	3.04	-2	0.0	1.0	0.0
H(6A) .	S(1B)	3.16	-2	0.0	1.0	0.0
H(9A) .	S(1B)	3.31	-2	0.0	1.0	1.0
C(8B) .	N(2A)	3.37	2	0.0	-1.0	0.0

TABLE 6 Intermolecular distances (R) for  $[Ni(C_{19}H_{26}N_{4})(NCS)_2]$ 



table 6 continued

C(8B)H(2AN)	2.36	2	0.0	-1.0	0.0
C(9B)H(2AN)	2.87	2	0.0	-1.0	0.0
C(3BE)H(1A1)	2.92	1	0.0	0.0	1.0
C(3BE)C(2A)	3.37	1	0.0	0.0	1.0
C(6B)H(4A2)	3.02	2	0.0	-1.0	0.0
C(9B)C(5A)	3.48	2	0.0	-1.0	0.0
C(10B)C(6A)	3.46	2	0.0	-1.0	0.0
H(1AN)C(6A)	3.03	2	0.0	-1.0	0.0
H(1AN)C(7A)	2.80	2	0.0	-1.0	0.0
C(11B)H(7A)	2.96	2	0.0	-1.0	0.0
H(8A)C(8A)	3.05	-1	0.0	1.0	1.0
C(3AE)H(1B1)	3.03	1	0.0	0.0	-1.0
C(6B)H(1B2)	2.96	-1	0.0	0.0	1.0
C(7B)H(1B2)	2.86	-1	0.0	0.0	1.0
C(3AE)C(2B)	3.40	1	0.0	0.0	-1.0
C(11B)C(8B)	3.47	2	0.0	0.0	0.0
C(11B)H(8B)	2.72	2	0.0	0.0	0.0
C(3BE)C(3AE)	2.22	1	0.0	0.0	1.0

Symmetry Transformations:

The second atom is related to the first atom, at (x,y,z), by the symmetry operation S with (a,b,c)added to the (x',y',z') of S.

Where S

1

х, у, г



H(2AN)Ni	2.71	H(2BN)Ni	2.67
C(1A)Ni	3.08	H(1A2)Ni	3.36
C(2A)Ni	3.34	H(2A1)Ni	3.11
H(2A2)N1	3.23	C(4A)Ni	3.04
H(4A1)Ni	3.19	C(5A)Ni	2.83
C(6A)Ni	4.18	C(9A)Ni	4.19
C(10A)Ni	2.87	C(11A)Ni	3.12
C(1B)Ni	3.00	H(1B2)Ni	3.21
C(2B)Ni	3.28	H(2B1)Ni	3.41
H(2B2)Ni	2.93	C(4B)Ni	3.00
H(4B1)Ni	3.24	C(5B)Ni	2.86
C(6B)Ni	4.20	C(9B)Ni	4.19
C(10B)Ni	2.85	C(11B)Ni	3.24
H(1AN)Ni	2.57	H(1BN)Ni	2.50
N(3A)S(1A)	2.74	N(3B)S(1B)	2.77
N(2A)N(1A)	3.19	N(3A)N(1A)	2.95
N(2B)N(1A)	2.74	N(3B)N(1A)	2.93
H(1A1)N(1A)	2.10	H(1A2)N(1A)	2.10
C(2A)N(1A)	2.55	H(2A1)N(1A)	1.78
H(2A2)N(1A)	2.61	C(4A)N(1A)	3.22
C(5B)N(1A)	2.39	C(9B)N(1A)	2.51
H(9B)N(1A)	2.78	N(3A)N(2A)	2.94
N(1B)N(2A)	2.73	N(3B)N(2A)	2.99
C(1A)N(2A)	3.24	C(2A)N(2A)	2.50
	2 02	H(242) N(24)	2.54

TABLE 7 Intramolecular distances (R) for  $[Ni(C_{19}H_{26}N_{4})(NCS)_2]$ 



H(4A1)N(2A)	2.02	H(4A2)N(2A)	2.07
C(6A)N(2A)	2.50	H(6A)N(2A)	2.78
C(10A)N(2A)	2.41	H(1BN)N(2A)	2.58
N(3B)H(2AN)	2.73	C(2A)H(2AN)	2.61
C(4A)H(2AN)	1.92	C(5A)H(2AN)	2.11
C(6A)H(2AN)	3.03	C(10A)H(2AN)	2.96
N(1B)N(3A)	2.94	N(2B)N(3A)	2.97
C(1A)N(3A)	3.41	H(1A2)N(3A)	3.01
C(4A)N(3A)	3.37	H(4A1)N(3A)	2.84
C(5A)N(3A)	3.06	C(10A)N(3A)	3.11
C(1B)N(3A)	3.37	H(1B2)N(3A)	2.88
C(4B)N(3A)	3.35	H(4B1)N(3A)	2.90
C(5B)N(3A)	3.12	C(10B)N(3A)	3.13
N(2B)N(1B)	3.22	N(3B)N(1B)	2.97
C(5A)N(1B)	2.37	C(9A)N(1B)	2.51
H(9A)N(1B)	2.75	H(1B1)N(1B)	2.10
H(1B2)N(1B)	2.00	C(2B)N(1B)	2.52
H(2B1)N(1B)	2.70	H(2B2)N(1B)	2.88
C(4B)N(1B)	3.25	N(3B)N(2B)	2.98
C(1B)N(2B)	3.22	C(2B)N(2B)	2.53
H(2B1)N(2B)	2.76	H(2B2)N(2B)	1.63
H(4B1)N(2B)	2.05	H(4B2)N(2B)	2.01
C(6B)N(2B)	2.51	H(6B)N(2B)	2.77
C(10B)N(2B)	2.42	N(3B)H(2BN)	2.68
C(2B)H(2BN)	2.69	C(4B)H(2BN)	1.97

C(6B) ...H(2BN) 3.01 C(5B) ...H(2BN) 2.12 H(1AN)...N(3B) 2.61 C(10B)...H(2BN) 2.94 2.23

H(2A2)...C(1A)

A 30

2.65 H(1BN)...N(3B)

table 7 continued

C(4A)C(1A)	2.61	H(4A1)C(1A)	2.60
C(9B)C(1A)	2.86	H(9B)C(1A)	2.57
C(10B)C(1A)	2.46	C(3AE)C(1A)	2.53
H(1AN)C(1A)	1.88	C(2A)H(1A1)	2.20
C(9B)H(1A1)	2.77	C(10B)H(1A1)	2.79
C(3AE)H(1A1)	2.59	C(2A)H(1A2)	2.29
C(4A)H(1A2)	2.74	C(9B)H(1A2)	2.79
C(10B)H(1A2)	2.65	C(3AE)H(1A2)	3.00
H(4A1)C(2A)	2.18	H(4A2)C(2A)	2.20
H(1AN)C(2A)	2.61	C(4A)H(2A1)	2.19
C(10B)H(2A1)	2.95	C(3AE)H(2A1)	2.06
C(4A)H(2A2)	2.16	C(3AE)H(2A2)	2.09
C(5A)C(4A)	2.46	C(6A)C(4A)	2.83
H(6A)C(4A)	2.58	C(3AE)C(4A)	2.53
C(5A)H(4A1)	2.65	C(6A)H(4A1)	2.83
C(11A)H(4A1)	2.80	C(3AE)H(4A1)	2.99
C(5A)H(4A2)	2.76	C(6A)H(4A2)	2.66
C(3AE)H(4A2)	2.62	H(6A)C(5A)	2.26
C(7A)C(5A)	2.39	C(8A)C(5A)	2.79
C(9A)C(5A)	2.43	C(11A)C(5A)	3.42
H(1BN)C(5A)	2.34	H(7A)C(6A)	2.10
C(8A)C(6A)	2.42	C(9A)C(6A)	2.88
C(10A)C(6A)	2.40	C(7A)H(6A)	2.18
H(8A)C(7A)	2.08	C(9A)C(7A)	2.39
C(10A)C(7A)	2.69	C(8A)H(7A)	2.04

table 7 continued



K,

H(1BN)C(9A)	2.79	C(10A)H(9A)	2.21
C(1B)H(9A)	2.58	C(1B)C(10A)	2.51
H(1B1)C(10A)	2.80	H(1B2)C(10A)	2.68
H(1BN)C(10A)	1.73	H(2B1)C(1B)	2.19
H(2B2)C(1B)	2.17	C(4B)C(1B)	2.59
H(4B1)C(1B)	2.69	C(3BE)C(1B)	2.54
H(1BN)C(1B)	2.37	C(2B)H(1B1)	2.16
C(3BE)H(1B1)	2.64	C(2B)H(1B2)	2.17
C(4B)H(1B2)	2.63	C(3BE)H(1B2)	2.87
H(4B1)C(2B)	2.25	H(4B2)C(2B)	2.25
C(4B)H(2B1)	2.30	C(3BE)H(2B1)	2.20
C(5B)H(2B2)	2.89	C(3BE)H(2B2)	2.18
C(5B)C(4B)	2.47	C(6B)C(4B)	2.85
H(6B)C(4B)	2.62	C(3BE)C(4B)	2.52
C(5B)H(4B1)	2.66	C(6B)H(4B1)	2.84
C(3BE)H(4B1)	2.87	C(5B)H(4B2)	2.73
C(6B)H(4B2)	2.65	C(3BE)H(4B2)	2.62
H(6B)C(5B)	2.24	C(7B)C(5B)	2.40
C(8B)C(5B)	2.74	C(9B)C(5B)	2.39
H(1AN)C(5B)	2.88	H(7B)C(6B)	2.17
C(8B)C(6B)	2.40	C(9B)C(6B)	2.84
C(10B)C(6B)	2.45	C(7B)H(6B)	2.19
H(8B)C(7B)	2.06	C(9B)C(7B)	2.39
C(10B)C(7B)	2.78	C(8B)H(7B)	2.04
H(9B)C(8B)	2.18	C(10B)C(8B)	2.44

table 7 continued



Be	101	-3.	-	ř.	-11	ž	1	7	7		1	กัต	1		1	-	2	Ĩ	7	-	1		-	-			-	1	1	-	2	1	-	•	2-	~
Pa	10F0	332	145	327	102	104	149	189	160	8	164	305	1100				218	165	89	118	164	66	138	164	96	137	151	88	139	176	312	6	161	52	250	
	د	~	2	~	2	~	~	~	2	2	~ (	N		u c	2 1	<b>N</b> N	10	N 1	2	~	2	2	2	2	2	m	m	m	m	m	m	m	m	ŝ	m	ſ
	×	2	2	2	2	m	m	m	m	m	<b>m</b> 1	n (	<b>m</b> n	n r	n r	∩ #	1	· 4	7	4	S	S	5	ŝ	ŝ	-	•	-	-	-	-	-	-	-		•
	Ŧ	ſ	4	S	10	6-	7-	<b>۳</b>	-2	7	- (		<b>m</b>	<b>r</b> v	οα	ט ו	1	0	4	ŝ	1	0	N ·	m	s S	- 14	-13	-12	-10	<b>8</b> 1	-9	<b>`</b>	7-	<b>m</b> (	2	•
	10FC	-376	431	827	62	238	-578	-17	-278	-406	134	-407	55	5	0/2-	-271		681	-453	817	1037	682	430	-225	-481	168	-124	124	- 160	-163	134	-327	001	73	-149	010
	10F0	420	539	963	60	255	720	73	332	101	139	413	11	R	515	144	110	602	413	744	1186	600	394	193	601	140	130	121	124	164	151	331	384	66	139	
	-	~	2	2	~	2	2	2	2	~	2	2	~ ~	2		vo	10	5	2	~	~	~	~	2	2	2	2	2	~	~	2	~	2	N	~	
	×	0	0	0	0	0	0	0	0	0	-	-	- •	- •	- •	- +			-	-		-	-	<b>y</b> un	•	-	-	-	~	2	2	2	~	~	N	
	Ŧ	2	~	m	4	5	9	2	ω	6	=	-10	<b>6</b> 10	<b>P</b>	~ `		ר ה ו		7	0	-	~	m	7	5	9	7	σ	-10		ŝ	71	ŗ	7	0	
	10FC	144-	-255	-417	-100	-126	-178	177	-53	- 19-	96	116	-103	0-	-116	191	14	110	141	-85	-113	-112	- 8	86	-134	- 148	-188	267	-261	127	-124	103	-42	354	633	1
	10F0	135	239	372	92	114	118	128	88	93	92	67	82	ድ	107	6/			123	104	105	126	118	92	158	163	154	274	240	116	102	139	93	379	7.88	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-		- •	- •		-	•:	-	-	-	-	-	-	~	~	~	2	~	2	2	~	~	1
21	×	~	2	~	2		~	<b>m</b>	<b>n</b>	m	m	m	m.	4	<b>a</b> .	7 -	<b>t</b> =	t a	ŝ	5	5	S	ŝ	ŝ	9	9	0	0	0	0	0	0	0	0	0	ł
C19 ^H 26	H	m	4	5	-	. 0	1	-10	-	2	9	-	10	-10	9-	N C		n «		4		2	£	9	7	0	-13	-12		-10	٩	-1	- 6	5	71	1
S for	10FC	-51	66	-115	-87	16	132	5	-201	16	43	-184	66-	#62	-283		204-	6201-	-277	-276	-242	164	-107	63	-119	3	611	214	-114	-105	386	100	273	-78	- 394	
Factor	10F0	3	73			100	125	9	256	133	6	184	106	417	287	18		202	253	242	221	464	66	62	110	72	115	202	115	136	397	96	259	68	356	,
are	-	0	0	0	c	0		0	0	0	0	-	-	-	-		- •		-	-	-	-	-	-	-	<b>***</b>	-	-	-	-	-	-	-	-	-	•
uct	×	4	4	- म	. 10	<b>، ر</b>	<b>، ر</b>	n رر	9	9	9	-	-	-	-		- •		-	-	-	-	-	-	-	~	~	2	2	~	2	~	~	2	2	1
Str		4	5	10	-	r ur	<b>`</b>	00	0	-	4	-13	Ξ	-	6	5	٩ e	n e	•	~	) 4	5	9	2	10	F	6-		9	ŝ	7	ņ	2	1	0	)
alculated	10FC	576	005	206	981	10	dice.	184	262	-125	-88	-645	-341	-329	141	328	310	149	134	121	06	120	9	159	53	-101	223	-108	75	-142	229	- 150	111	-223	61-	
and	10F0	104	623	841	-	200	25.2		258	8	118	562	299	296	128	309	337	201	108	112	10	117	56	173	69	114	121	96	11	148	230	163	104	154	84	•
red	-	c	) c	<b>,</b> c	<b>,</b> c	<b>,</b> c	<b>,</b> c	<b>,</b> c	0	0	0	0	0	0	0	0	0	0 0	o c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	)
Jer	*	c		o c	) c	<b>,</b> c	> c	> c	0	0	0	-	-	-	-	-	-			· 0	1 0			2	2	2	2	2	m	ŝ	m	ŝ	m	m	"	۱
ð	×	0	1 0	<b>^</b> =	r u		<b>7</b> C	- α	0	12	Ē	2	m	4	5	9	Ð	σ	2 1	20	<b>N</b>	4	5	9	2	σ	9	7	٣	2	m	7	ß	10	13	1

14

.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Structur	letur	E.	8	Factor	S for	C10H2K	zī												Page	~
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H K L 10F	K L 10F	L 10F	10F	•	10FC	2] = 2]		L	10F0	10FC	H	×	-	10F0	10FC	H	×	-	OFO	10FC
161       -1       1       903       1189       6       3       4       252 $-278$ -11       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       2       3       1       1       1       2       2       2       3       1       1       1       2       2       2       3       1       1       1       1       2       2       2       3       1       1       1       1       2       2       2       3       4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	0 41 3 88	4 3 86	3	8	~	75	2-	-	4	438	-514	4	m	4	105	-117	-	-	5	161	-177
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 3 177	4 3 177	3 177	177		161	7	-	4	993	1189	9	m	4	252	-278	=	2	5	81	56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 1 3 79	4 3 79	3 79	79		-66	0	-	4	710	-717-	1	m	4	107	-100	6-	2	2	261	-243
98       2       1 $7$ 6       6       7       4       118       137       -5       2       5         -173       5       1       4       1       6       1       4       127       -134       -67       -1       4       117       -5       2       5       2       5       4       1       173       -156       2       2       5       5       4       101       117       0       2       5       5       4       101       117       0       2       5       5       5       4       101       117       0       0       2       5       5       5       5       5       5       5       5       1       1       1       2       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	7 4 3 112	4 3 112	3 112	112		123	-	-	4	155	-172	80	m	4	123	-168	9-	2	5	83	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5 3 103	5 3 103	3 103	103		86	2	-	4	760	657	2-	4	4	118	137	5	2	2	101	115
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	353 77	5 3 77	3 77	17		-67	m	-	4	332	336	5	4	4	127	-134	7	2	5	529	-511
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 0 4 91	0 4 91	4 91	16		-73	4	-	4	255	293	<b>m</b>	4	4	98	112	ñ	2	2	83	88
-196       6       1       4       15       -167       1       4       4       4       173       -156       2       2       5         -106       -1       2       4       1       1       -1       2       4       23       2       5       5       4       173       -156       2       2       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	11 0 4 236	0 4 236	4 236	236		-247	5	-	4	375	436	7	4	4	101	117	0	2	5	60	6
544       7       1       4       7       1       4       7       1       4       7       1       4       7       1       4       7       1       4       7       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	10 0 4 195	0 4 195	4 195	195		-196	9	-	4	154	-167	-	4	4	173	-156	2	2	2	318	281
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-9 0 4 583	0 4 583	4 583	583		544	2	-	4	72	-87	m	4	4	164	-125	m	2	2	228	227
-41 $-11$ $2$ $6$ $4$ $82$ $67$ $5$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $111$ $6$ $2$ $5$ $107$ $1113$ $107$ $111$ $107$ $111$ $107$ $111$ $107$ $111$ $107$ $111$ $107$ $111$ $107$ $1113$ $107$ $113$ $107$ $113$ $107$ $113$ <td>-8 0 4 205</td> <td>0 4 205</td> <td>4 205</td> <td>205</td> <td></td> <td>210</td> <td>80</td> <td>-</td> <td>4</td> <td>111</td> <td>-81</td> <td>4</td> <td>=</td> <td>4</td> <td>243</td> <td>-262</td> <td>4</td> <td>2</td> <td>5</td> <td>312</td> <td>303</td>	-8 0 4 205	0 4 205	4 205	205		210	80	-	4	111	-81	4	=	4	243	-262	4	2	5	312	303
-196       -8       2       120       103       -5       5       4       107       -111       6       2       5       4       107       -111       6       2       5       4       107       -111       6       2       5       4       106       -105       -3       3       5       5       4       116       -105       -3       3       5       5       4       116       -105       -3       3       5       5       4       116       -105       -3       3       5       4       116       -105       -3       3       5       5       4       116       -105       -3       3       5       5       4       116       -105       -3       3       5       -1       3       5       -1       3       5       -1       3       5       5       113       -1       13       -1       13       -1       13       -1       13       -1       13       -1       13       -1       13       -1       13       -1       13       -1       3       5       13       5       13       11       13       13       13       13       13	-7 0 4 97	0 4 97	10 11	16		14-	=	2	4	89	-82	9	4	4	82	67	5	2	5	66	109
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-5 0 4 621	0 4 621	4 621	621		961-	80 1	2	4	120	103	5	5	4	107	-111	9	2	5	139	-164
540       -6       2       5       4       116       -105       -3       3       5         -217       -4       2       149       -129       -1       5       4       168       173       -2       3       3       5         -1152       -3       2       4       131       -143       1       5       4       168       173       -2       3       5       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       -1       3       5       3       5       5       3       5       5       3       5       5       3       5       5       3       5       5       3       5       5       3       5       5       5       3       5       5       3       5       5       3       5       5       5       5<	-4 0 4 223	0 4 223	4 223	223		205	1-	2	4	306	-284	~	5	4	126	126	80	2	2	89	- 104
-619       -5       2 $149$ -129       -1       5 $166$ 173       -2       3       5         -217       -4       2       1       29       -12       1       5       -163       -1       3       5         652       -2       2       4       131       -143       1       5       4       165       -163       -1       3       3       5         652       -2       2       4       131       -143       1       5       4       168       173       -2       3       3       5       -1       3       5       -1       3       5       -1       3       3       5       -1       3       5       -1       3       5       5       -151       5       -166       3       3       5       -1       3       5       5       -1       3       5       5       -5       1       3       5       -1       3       5       5       1       3       5       3       5       5       5       5       5       5       5       5       5       5       5       5       5       5 <t< td=""><td>-3 0 4 596</td><td>0 4 596</td><td>4 596</td><td>596</td><td></td><td>540</td><td>9-</td><td>2</td><td>4</td><td>11</td><td>99</td><td>2-</td><td>5</td><td>4</td><td>116</td><td>-105</td><td>۳<b>-</b></td><td>m</td><td>2</td><td>144</td><td>125</td></t<>	-3 0 4 596	0 4 596	4 596	596		540	9-	2	4	11	99	2-	5	4	116	-105	۳ <b>-</b>	m	2	144	125
-217       -4       2       4       55       -163       -1       3       5         -1152       -3       2       4       131       -143       1       5       4       155       -163       -1       3       3       5         652       -2       2       4       131       -143       1       5       4       15       -166       3       3       5         -1069       -1       2       4       215       -220       -13       1       5       165       -151       5       3       5       3       5       3       5       5       -90       7       3       5       5       -90       7       3       5       3       5       5       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       5       4       5       5       6       3       5       5       5       5	-2 0 4 635	0 4 635	4 635	635		-619	ŝ	2	=	149	-129	7	5	4	168	173	2-	m	2	120	154
-1152       -3       2       4       13       -143       1       5       4       13       -143       1       5       4       3       3       5         -1069       -1       2       4       215       -220       -13       1       5       12       111       4       3       5         -1069       -1       2       4       215       -220       -13       1       5       127       111       4       3       5         -245       1       2       4       -12       1       5       127       111       4       3       5       3       5         -245       1       2       4       17       -16       -17       13       -15       147       16       4       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       3       5       5       4       5       5       5       4       5       5	-1 0 4 193	0 4 193	4 193	193		-217	7	2	4	269	-273	0	5	4	155	-163	7	m	5	258	265
652 $-2$ $2$ $2$ $2$ $-13$ $1$ $5$ $177$ $111$ $4$ $3$ -1069 $-1$ $2$ $4$ $-12$ $1$ $1$ $5$ $-151$ $5$ $3$ $5$ -105 $-1$ $2$ $4$ $-12$ $1$ $5$ $151$ $5$ $3$ $5$ -158 $2$ $1$ $2$ $4$ $-10$ $1$ $5$ $12$ $-13$ $-151$ $5$ $3$ $5$ $4$ $5$ $3$ $5$ $4$ $5$ $5$ $4$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$ $5$	0 0 4 1227	0 4 1227	4 1227	1227	•	-1152	ŗ	2	4	131	-143	-	5	4	183	-166	m	m	2	110	-118
-1069       -1       2 $268$ $-254$ -12       1       5 $35$ $-105$ 5 $-151$ 5 $35$ $-105$ $-151$ $53$ $35$ $-105$ $-151$ $53$ $35$ $-151$ $53$ $5$ $-90$ $73$ $55$ $-90$ $73$ $55$ $-90$ $73$ $55$ $-90$ $73$ $55$ $-90$ $73$ $55$ $-90$ $73$ $55$ $-90$ $73$ $55$ $-90$ $73$ $55$ $-111$ $55$ $249$ $-216$ $-75$ $-90$ $73$ $-516$ $-75$ $-90$ $-7$ $357$ $-397$ $-307$ $-316$ $-516$ $-516$ $-572$ $-1166$ $-168$ $-168$ $-168$ $-168$ $-168$ $-168$ $-168$ $-168$ $-168$ $-168$ $-168$ $-516$ $-572$ $-198$ $-312$ $-312$ $-512$ $-512$ $-1128$ $-3128$ $-5128$ $-518$ $-518$ $-518$ $-518$ $-518$ $-5128$ $-5128$ <th< td=""><td>1 0 4 696</td><td>0 4 696</td><td>4 696</td><td>969</td><td></td><td>652</td><td>2</td><td>2</td><td>4</td><td>215</td><td>-220</td><td>-13</td><td>-</td><td>2</td><td>127</td><td>111</td><td>4</td><td>m</td><td>5</td><td>98</td><td>-93</td></th<>	1 0 4 696	0 4 696	4 696	969		652	2	2	4	215	-220	-13	-	2	127	111	4	m	5	98	-93
-195       0       2       11       1       5       12       119       -102       -11       1       5       82       79       6       3       5         -158       2       2       2       2       10       1       5       75       -90       7       3       5         -158       2       2       4       329       278       -10       1       5       75       -90       7       3       5         176       4       2       2       4       230       273       -6       1       5       249       -259       -8       4       5       3       5       -1       4       5       249       -259       -8       4       5       5       4       5       -1       4       5       130       -136       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5       4       5       -5 <td< td=""><td>2 0 4 1199</td><td>0 4 1199</td><td>4 1199</td><td>1199</td><td></td><td>-1069</td><td>7</td><td>2</td><td>4</td><td>268</td><td>-254</td><td>-12</td><td>-</td><td>ŝ</td><td>165</td><td>-151</td><td>5</td><td>m</td><td>5</td><td>126</td><td>- 141</td></td<>	2 0 4 1199	0 4 1199	4 1199	1199		-1069	7	2	4	268	-254	-12	-	ŝ	165	-151	5	m	5	126	- 141
-245       1       2       4       329       278       -10       1       5       75       -90       7       3       5         -158       2       2 $12$ $12$ $120$ -183       -8       1       5 $249$ -259       -8 $45$ -90       7       3       5         176 $4$ $2$ $2$ $-10$ $5$ $14$ $5$ $249$ -259 $-8$ $15$ $-90$ 7 $35$ -217 $5$ $2$ $197$ $-5$ $15$ $1-168$ $-14$ $15$ $210$ $-136$ $-14$ $15$ $210$ $-136$ $-5$ $44$ $57$ $-10$ $3$ $4$ $177$ $-55$ $-11$ $15$ $1040$ $1193$ $44$ $57$ $-133$ $-4$ $3$ $227$ $-11$ $5644$ $-562$ $5445$ $-14$ $5644$ $-526$ $-564$ $-526$ $-564$ $-526$ $-564$ $-526$ $-526$ $-126$ $-126$ $-126$	3 0 4 573	0 4 573	4 573	573		-495	0	2	4	119	-102	=	-	5	82	61	9	m	5	135	- 157
-158 $2 \ 2 \ 4 \ 2 \ 2 \ 2 \ 4 \ 2 \ 2 \ 2 \ $	4 0 4 272	0 4 272	4 272	272		-245	-	2	4	329	278	-10	-	5	75	-90	2	m	2	100	-128
473 $3$ $2$ $269$ $273$ $-6$ $15$ $136$ $-5$ $4$ $-217$ $5$ $2$ $4$ $89$ $79$ $-5$ $15$ $471$ $-468$ $-4$ $4$ $5$ $-217$ $5$ $2$ $4$ $89$ $79$ $-5$ $15$ $471$ $-468$ $-4$ $4$ $5$ $-94$ $-10$ $3$ $4$ $77$ $-257$ $-2$ $15$ $4166$ $-2$ $4$ $5$ $-94$ $-10$ $3$ $4$ $77$ $-55$ $-1$ $15$ $561$ $-672$ $-1$ $466$ $-2$ $44$ $5$ $190$ $-9$ $-10$ $3$ $4$ $-5$ $410$ $1193$ $4$ $4$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$ $5$ $44$	5 0 4 148	0 4 148	4 148	148		- 158	2	2	4	220	- 183	89	-	5	249	-259	œ	4	2	89	120
176 $4$ $2$ $3$ $5$ $5$ $1$ $168$ $-4$ $4$ $5$ $-217$ $5$ $2$ $4$ $357$ $-397$ $-397$ $-4$ $15$ $-4$ $168$ $-4$ $4$ $5$ $-156$ $7$ $2$ $1$ $1$ $5$ $202$ $218$ $-3$ $4$ $5$ $-94$ $-10$ $3$ $4$ $77$ $-557$ $-2$ $1$ $5$ $202$ $218$ $-3$ $4$ $5$ $-94$ $-10$ $3$ $4$ $77$ $-557$ $-1$ $15$ $561$ $-672$ $-1$ $4$ $5$ $-133$ $-4$ $3$ $77$ $-257$ $-1$ $15$ $1040$ $1193$ $4$ $4$ $5$ $4$ $5$ $4$ $4$ $5$ $4$ $4$ $5$ $11$ $117$ $-1$ $4$ $5$ $4$ $5$ $11$ $117$ $-1$ $117$ $-1$ $117$ $117$ <td>6 0 4 474</td> <td>0 4 474</td> <td>4 474</td> <td>474</td> <td></td> <td>473</td> <td>m</td> <td>2</td> <td>4</td> <td>269</td> <td>273</td> <td>9-</td> <td>-</td> <td>2</td> <td>130</td> <td>-136</td> <td>ŝ</td> <td>4</td> <td>2</td> <td>242</td> <td>220</td>	6 0 4 474	0 4 474	4 474	474		473	m	2	4	269	273	9-	-	2	130	-136	ŝ	4	2	242	220
-217 $5$ $2$ $4$ $357$ $-397$ $-4$ $1$ $5$ $202$ $218$ $-3$ $4$ $5$ $-156$ $7$ $2$ $4$ $126$ $197$ $-3$ $1$ $5$ $416$ $466$ $-2$ $4$ $5$ $-94$ $-10$ $3$ $4$ $77$ $-55$ $-1$ $1$ $5$ $561$ $-672$ $-1$ $4$ $5$ $-94$ $-10$ $3$ $4$ $77$ $-55$ $-1$ $1$ $5$ $561$ $-672$ $-1$ $4$ $5$ $-133$ $-44$ $3$ $4$ $77$ $-557$ $-1$ $1$ $5$ $644$ $-652$ $5$ $4$ $6$ $-133$ $-44$ $3$ $4$ $77$ $-557$ $-1$ $1$ $5$ $644$ $-652$ $5$ $4$ $5$ $-133$ $-44$ $3$ $4$ $77$ $-557$ $-1$ $1$ $5$ $144$ $-652$ $5$ $4$ $5$ $-133$ $-44$ $3$ $-227$ $1$ $1$ $5$ $1444$ $-652$ $5$ $4$ $5$ $-296$ $0$ $3$ $1$ $5$ $1244$ $1177$ $-1$ $5$ $5$ $4$ $5$ $-296$ $0$ $3$ $4$ $7$ $2$ $2$ $2$ $2$ $2$ $2$ $5$ $4$ $5$ $5$ $4$ $5$ $5$ $4$ $5$ $5$ $4$ $5$ $5$ $4$ $5$ $5$ $5$ $5$ $5$ <	7 0 4 174	0 4 174	4 174	174		176	4	2	4	89	62	5	-	5	471	-468	7	4	5	118	-118
-156       7       2 $4$ 126       197       -3       1       5 $416$ $466$ -2 $4$ 5         -94       -10       3 $4$ 77       -55       -1       1       5       561       -672       -1 $4$ 5         -94       -10       3 $4$ 77       -55       -1       1       5       561       -672       -1 $4$ 5         -133       -9       3 $4$ 77       -55       -1       1       5       1040       1193 $4$ $4$ 5         -133       -4       3 $4$ 243       -227       1       1       5       144       -652       5 $4$ $5$ -133       -4       3 $4$ 243       -227       1       1       5 $4$ $4$ $5$ $4$ $4$ $5$ $4$ $4$ $5$ $4$ $4$ $5$ $4$ $4$ $5$ $4$ $4$ $5$ $4$ $5$ $4$ $5$ $4$ $4$ $5$	14 1 4 182	1 4 182	4 182	182		-217	5	2	4	357	-397	7	-	5	202	218	ñ	4	5	116	115
60824190 $-257$ $-2$ 15561 $-672$ $-1$ 45 $-94$ $-10$ 3477 $-55$ $-1$ 1510401193445 $190$ $-9$ 3490 $-86$ 015644 $-652$ 545 $-133$ $-44$ 34227115649 $-413$ $-2$ 545 $-133$ $-44$ 34243 $-227$ 115649 $-413$ $-2$ 545 $-133$ $-44$ 34243 $-227$ 115124117 $-1$ 55 $-296$ 0344155124117 $-1$ 55 $-296$ 03441521631555555 $-296$ 03415266315262555555555555555555555555555555555555555555555555555555 <t< td=""><td>13 1 4 144</td><td>1 4 144</td><td>4 144</td><td>144</td><td></td><td>-156</td><td>2</td><td>2</td><td>4</td><td>126</td><td>197</td><td>e.</td><td>-</td><td>5</td><td>416</td><td>466</td><td>2</td><td>4</td><td>5</td><td>83</td><td>57</td></t<>	13 1 4 144	1 4 144	4 144	144		-156	2	2	4	126	197	e.	-	5	416	466	2	4	5	83	57
-94       -10       3       4       77       -55       -1       1       5       1040       1193       4       4       5         190       -9       3       4       90       -86       0       1       5       644       -652       5       4       5         -133       -4       3       4       227       1       1       5       699       -413       -2       5       4       5         -133       -4       3       4       75       -77       2       1       5       69       -413       -2       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 <td>12 1 4 83</td> <td>1 4 83</td> <td>4 83</td> <td>83</td> <td></td> <td>60</td> <td>80</td> <td>2</td> <td>4</td> <td>190</td> <td>-257</td> <td>2</td> <td>-</td> <td>5</td> <td>561</td> <td>-672</td> <td>7</td> <td>4</td> <td>2</td> <td>87</td> <td>79</td>	12 1 4 83	1 4 83	4 83	83		60	80	2	4	190	-257	2	-	5	561	-672	7	4	2	87	79
190       -9       3       90       -86       0       1       5       644       -652       5       4       5         -133       -4       3       4       90       -86       0       1       5       644       -652       5       4       5         -133       -4       3       4       243       -227       1       1       5       4       9       -413       -2       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5<	.11 1 4 115	1 4 115	4 115	115		-94	-10	m	4	11	-55	7	-	5	1040	1193	4	4	5	202	199
-133       -4       3       227       1       1       5       499       -413       -2       5       5         62       -2       3       4       75       -77       2       1       5       1       5       5         242       -1       3       4       75       -77       2       1       5       1       5       5         242       -1       3       4       75       -77       2       1       5       1       5       5         -296       0       3       4       265       256       3       1       5       67       45       1       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       <	10 1 4 187	1 4 187	4 187	187		190	6-	m	4	8	-86	0	-	5	644	-652	5	4	5	168	213
62       -2       3       1       75       -77       2       1       5       5         242       -1       3       4       75       -77       2       1       5       1       5       5         -296       0       3       4       265       256       3       1       5       67       45       1       5       5         -296       0       3       4       309       311       4       1       5       228       238       2       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	-9 1 4 144	1 4 144	th 144	144		-133	7	m	4	243	-227	-	-	5	<b>66</b> †	-413	2	5	5	148	125
242       -1       3       4       265       256       3       1       5       67       45       1       5       5         -296       0       3       4       309       311       4       1       5       228       238       2       5       5       5         205       1       3       4       211       -205       5       1       5       238       2       46       -14       0       6         404       3       3       4       152       -135       6       1       5       76       77       -13       0       6	-7 1 4 71	1 4 71	4 71	12		62	2-	m	4	75	-77	2	-	5	124	117	7	5	2	86	-110
-296 0 3 4 309 311 4 1 5 228 238 2 5 5 205 1 3 4 211 -205 5 1 5 239 246 -14 0 6 404 3 3 4 152 -135 6 1 5 76 77 -13 0 6	-6 1 4 28(	1 4 28	4 28(	28	5	242	7	m	4	265	256	m	-	5	67	45	-	5	5	118	74
205     1     3     4     211     -205     5     1     5     239     246     -14     0       404     3     3     4     152     -135     6     1     5     76     77     -13     0     6	-5 1 4 32	1 4 32	# 32	32	80	-296	0	m	4	309	311	4	-	2	228	238	~	5	5	86	944
404 3 3 4 152 -135 6 1 5 76 77 -13 0 6	-4 1 4 177	1 4 177	121 4	17	~	205	-	m	4	211	-205	5	-	5	239	240			0.	0	+0.1
	-3 1 4 360	1 4 360	11 360	360	_	404	m	m	4	152	-135	9	-	5	26	11	-13	0	9	529	493

•

.

		H K L 10FO 10FC	H K L 10FO 10FC 4 2 8 161 -181	H K L 10FO 10FC 4 2 8 161 -181 -11 3 8 113 115	H K L 10FO 10FC 4 2 8 161 -181 -11 3 8 113 115 -9 3 8 231 250	H K L 10FO 10FC 4 2 8 161 -181 -11 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177	H K L 10FO 10FC 4 2 8 161 -181 -11 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177 -5 3 8 95 -103	H K L 10FO 10FC 4 2 8 161 -181 -11 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177 -5 3 8 95 -103 -4 3 8 106 77	H K L 10F0 10FC 4 2 8 161 -181 -11 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177 -5 3 8 95 -103 -4 3 8 106 77 -3 3 8 144 162	H K L 10F0 10FC 4 2 8 161 -181 -11 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177 -5 3 8 95 -103 -4 3 8 106 77 -2 3 8 184 162 -2 3 8 183 -181	H K L 10F0 10FC -11 2 8 161 -181 -11 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177 -5 3 8 95 -103 -4 3 8 106 77 -3 3 8 144 162 -2 3 8 195 189	H K L 10F0 10FC -11 2 8 161 -181 -9 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177 -5 3 8 95 -103 -4 3 8 106 77 -3 3 8 144 162 -2 3 8 183 -181 0 3 8 195 189 1 3 143 -111	H K L 10F0 10FC -11 3 8 161 -181 -9 3 8 113 115 -9 3 8 231 250 -8 3 8 146 -177 -4 3 8 146 -177 -4 3 8 146 -177 -1 3 8 144 162 -2 3 8 195 -103 1 3 8 144 162 -1 3 8 195 -103 -1 4 3 8 195 -103 -1 4 3 8 195 -103 -1 4 3 8 195 -103 -1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	H K L 10F0 10FC -11 3 8 161 -181 -9 3 8 231 250 -9 3 8 231 250 -4 3 8 146 -177 -5 3 8 95 -103 -4 3 8 144 162 -2 3 8 195 -103 1 3 8 144 162 -2 3 8 195 -103 1 3 8 144 162 -2 3 8 195 -103 -2 3 8 195 -103 -2 3 8 195 -103 -2 189 -2 189 -1 11 -2 189 -2 189 -1 11 -2 189 -1 11 -2 189 -1 11 -2 189 -1 11 -2 189 -1 11 -2 189 -1 250 -1 25	H K L 10F0 10FC -11 3 8 161 -181 -9 3 8 231 250 -9 3 8 231 250 -4 3 8 146 -177 -5 3 8 95 -103 -4 3 8 144 162 -2 3 8 183 -181 0 3 8 195 189 1 3 112 -105 4 3 8 112 -105	H K L 10F0 10FC -1 4 2 8 161 -181 -9 3 8 113 115 -9 3 8 113 115 -9 3 8 231 250 -4 3 8 146 -177 -2 3 8 184 162 -2 3 8 183 -181 -2 3 8 183 -181 -2 3 8 183 -181 -2 3 8 195 106 77 -2 3 8 183 -181 -2 3 8 106 -177 -2 3 8 183 -103 -177 -2 3 8 106 -177 -105 -103 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -177 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -105 -	H K L 10F0 10FC -1 4 2 8 161 -181 -9 3 8 113 115 -9 3 8 231 250 -4 3 8 146 -177 -3 3 8 146 -177 -3 3 8 144 162 -2 3 8 195 -103 -2 3 8 195 -103 -2 3 8 195 -103 -111 -105 -3 3 8 106 77 -111 -105 -46 -177 -105 -46	H K L 10F0 10FC -1 4 2 8 161 -181 -9 3 8 113 115 -9 3 8 131 250 -4 3 8 146 -177 -2 3 8 183 -177 -2 3 8 183 -181 -2 3 8 183 -181 -2 3 8 195 -103 -1 3 8 144 162 -1 3 8 195 -103 -1 3 8 195 -103 -1 3 8 195 -103 -1 3 8 195 -105 -1 4 8 79 -166 -1 3 8 107 -134 -1 134 -1 134	H K L 10F0 10FC H K L 10F0 10FC -9 3 8 161 -181 -9 3 8 161 -181 -5 3 8 146 -177 -2 3 8 183 -162 -2 3 8 183 -181 -2 3 8 183 -181 -5 4 8 195 -103 8 144 162 -177 -7 9 8 183 -177 -7 9 8 183 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -176 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177 -177	H K L 10F0 10FC -1 4 2 8 161 -181 -9 3 8 113 115 -9 3 8 131 250 -4 3 8 146 -177 -2 3 8 183 231 250 -2 3 8 183 -181 -2 3 8 195 -103 144 162 -1 3 8 143 -111 -1 3 8 195 -103 -1 3 8 195 -103 -4 8 195 -105 -4 8 107 134 -4 8 107 134 -4 8 107 134 -97 -97 -97	H K L 10F0 10FC -1 4 2 8 161 -181 -9 3 8 113 115 -9 3 8 161 -181 -9 3 8 231 250 -177 - 3 8 146 -177 -2 3 8 195 -103 146 -177 -2 3 8 195 -103 -181 250 -1 38 183 -181 -3 4 8 107 -106 -4 4 8 8 8 107 -106 -1 4 8 8 8 100 -106 -1 4 8 8 8 10 -106 8 8 8 10 -106 8 8 10 -106 8 8 -	H K L 10F0 10FC 	H K L 1070 1070 1070 1070 1070 1070 1070 10	H K L 1070 1070 1070 1070 1070 1070 1070 10	H K L 1070 H K K	H K L 1070 H K K K K K K K K K K K K K K K K K K K K	H K L 1070 H K K	H K L 1070 H K K	H       K       L       1070       1070         H       K       L       1070       1030       1150         H       K       L       1030       1131       1150         H       K       L       1030       1120       1030         H       K       L       1030       1120       1030         H       K       L       1030       1120       1030         H       K       L       1030       1030       1030         H       K       L       1030       1030       1030         H       K       L       L       1030       1030         L       L       L       L       L       1030         L       L       L       L       L       L       1030         L       L       L       L       L <t< th=""><th>H       K       L       1070       1070         H       K       L       1070       1070       1070         H       200       3       8       1030       1173         H       200       3       8       1035       1033         H       200       3       8       1035       1033         H       200       3       8       1035       1033         H       103       1122       1035       1134         H       103       1134       1035       1134         H       103       1134       1035       1134         H       103       1134       1035       1134         H       103       134       1035       134         H       103       134       1035       134         H       100       134       1035       134         H       100       1036       1036</th><th>H       K       L       1070       107         H       K       L       1070       107         H       K       L       107       103         H       K       L       108       103         H       K       L       108       103         H       K       L       108       106       177         H       K       L       108       106       177         H       K       L       L       106       177         H       K       L       L       108       106         H       K       L       L       108       107         H       L       L       L       107       134         L       L       L       L       107       134         L       L       L       L       107       134         L       L       L       L       L       107         L       L<th>H       K       L       1070       1070         H       K       L       1070       1070       1071         H       23       8       1060       1171       1151         H       23       8       1060       1171       1151         H       23       8       1060       1171       1171         H       23       8       1066       1171       1171         H       23       8       1066       1173       1171         H       23       8       1066       1185       1171         H       25       3       8       1067       1173         H       25       3       8       1077       1134         H       25       4       234       1077       134         H       25       4       236       1077       1034         H       26       26       27       27</th><th>H K L 10F0 10FC H K L 10F0 10FC H K L 10F0 10FC H K L 10F0 10FC H Z L 28 161 -181 H Z L 13 8 113 115 H Z 250 H Z</th><th>H K L 1070 1070 1070 1070 1070 1070 1070 10</th><th>H K L 1050 H K K K L 1050 H K K K K K K K K K K K K K K K K K K K</th></th></t<>	H       K       L       1070       1070         H       K       L       1070       1070       1070         H       200       3       8       1030       1173         H       200       3       8       1035       1033         H       200       3       8       1035       1033         H       200       3       8       1035       1033         H       103       1122       1035       1134         H       103       1134       1035       1134         H       103       1134       1035       1134         H       103       1134       1035       1134         H       103       134       1035       134         H       103       134       1035       134         H       100       134       1035       134         H       100       1036       1036	H       K       L       1070       107         H       K       L       1070       107         H       K       L       107       103         H       K       L       108       103         H       K       L       108       103         H       K       L       108       106       177         H       K       L       108       106       177         H       K       L       L       106       177         H       K       L       L       108       106         H       K       L       L       108       107         H       L       L       L       107       134         L       L       L       L       107       134         L       L       L       L       107       134         L       L       L       L       L       107         L       L <th>H       K       L       1070       1070         H       K       L       1070       1070       1071         H       23       8       1060       1171       1151         H       23       8       1060       1171       1151         H       23       8       1060       1171       1171         H       23       8       1066       1171       1171         H       23       8       1066       1173       1171         H       23       8       1066       1185       1171         H       25       3       8       1067       1173         H       25       3       8       1077       1134         H       25       4       234       1077       134         H       25       4       236       1077       1034         H       26       26       27       27</th> <th>H K L 10F0 10FC H K L 10F0 10FC H K L 10F0 10FC H K L 10F0 10FC H Z L 28 161 -181 H Z L 13 8 113 115 H Z 250 H Z</th> <th>H K L 1070 1070 1070 1070 1070 1070 1070 10</th> <th>H K L 1050 H K K K L 1050 H K K K K K K K K K K K K K K K K K K K</th>	H       K       L       1070       1070         H       K       L       1070       1070       1071         H       23       8       1060       1171       1151         H       23       8       1060       1171       1151         H       23       8       1060       1171       1171         H       23       8       1066       1171       1171         H       23       8       1066       1173       1171         H       23       8       1066       1185       1171         H       25       3       8       1067       1173         H       25       3       8       1077       1134         H       25       4       234       1077       134         H       25       4       236       1077       1034         H       26       26       27       27	H K L 10F0 10FC H K L 10F0 10FC H K L 10F0 10FC H K L 10F0 10FC H Z L 28 161 -181 H Z L 13 8 113 115 H Z 250 H Z	H K L 1070 1070 1070 1070 1070 1070 1070 10	H K L 1050 H K K K L 1050 H K K K K K K K K K K K K K K K K K K K
10FC		-47	-165	-235	16	-388	316	88	102	225	176	216	-168	-201	-61	-112	319	265	-317	195	-127	198	143	216	-131	93	-102	- 106	-60	74	-72	153	-158	172	324
	10F0	59	170	268	125	614	316	108	117	247	158	217	163	214	78	119	268	225	262	176	110	217	126	231	132	98	111	98	68	93	76	133	152	136	C.F.Y
	-	œ	80	æ	80	80	80	80	80	80	œ	80	80 (	œ	80	œ	80	80	œ	80	œ	80	œ	80	80	80	80	80	80	8	80	80	80	80	3
	×	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	~	~	~	~	~	~	~	~	
	H	7	-	2	m	4	5	-15	-14	-13	=	-10	6-	<b>8</b> 1		9-	ŝ	7		-2	7	0	m	7	ſ	- 1	=	-10	ų	-	4	ĩ			
	10FC	-191	-204	-185	-153	106	-149	-74	-181	-78	-243	397	-132	138	200	114	-47	- 198	-283	е С	84	103	190	-94	-122	-170	-123	329	138	280	16	-278	-121	-590	
	10F0	182	136	209	154	87	128	85	180	55	239	469	144	128	206	116	80	189	187	16	73	89	230	127	112	157	134	350	167	294	121	319	158	715	100
	Ъ	2	2	-	-	-	-	-	-	-	2	-	2	-	-	2	2	1	2	2	2	2	-	1	-	2	œ	œ	80	80	œ	80	80	æ	0
71	¥	-	-	~		1			2	2	2	2	2	2	2	2	m	e	m	4	4	4	4	4	4	4	0	0	0	0	0	0	0	0	•
-19-26	H	5	9	80	5	5	-	ĩ	2	7	0	-	2	4	5	9	=	ę.	9	7	7	0	-	2	e	4	-13	-12		-10	81		9-	-5	-
	10FC	194	-11-	226	-571	154	256	428	944	-118	-179	-153	-295	-133	190	+1-	259	184	-70	179	100	-174	-148	-96	-161	-139	-105	-177	130	279	-371	-303	282	-302	
L BC LOI	10F0	202	16	SAG	112	121	264	129	409	117	177	161	258	119	217	116	286	160	61	192	112	145	154	102	148	138	106	161	131	306	365	256	300	269	
lie	-	9	9	<b>v</b>	<b>v</b>	<b>v</b>	<b>v</b>	6	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	2	2	~	-	2	2	2	2	2	-	1
ncr	×	~	2	10	5	10	10	10	2	1 m	m	m	m	m	m	m	3	m	4	4	4	4	5	5	-	-	-	-	-	-	-	-	-	-	
aur aur	H	"	-	1		- 0	1 9		5	6	"	2	7	0	-	2	~	5	<b>.</b>	-	~	5	7	m	11	=-	-10	6		9-	5-	<b>m</b>	-2	7	
TCULATE	10FC	751	103	100	280		15.0	353	001-	-473	1024	-691	-764	164	768	-480	125	16	121-	-11-	-155	11	277	100	243	-299	264	453	168	-386	279	-103	-136	172	
8 9	5	86	24	1		35	2 0	12	2.6	22	02	88	82	60	62	17	07	16	167	20	58	88	06	68	643	96	28	103	621	147	319	601	941	136	

•

Fawa -aaaoor-oa Observed 2 × 26086664440420240066666666644626644620202644 x A 35

																														-	_	_	_	_	
							4																2 0							-	•		•		
0FC 1#	5	294	296	72	188	369	-46	223	153	-78	253	127	127	160	-91	113	113	104	31	11	50	-52	-71	121	-76	147	- <u>6</u>	136	208	154	212	121	-232	253 263	503
Page OFO 1	,	261	259	106	202 -	319	69	250	157 -	82	183 -	136	113 -	- 611	83	106	98	- 98	68	62	80	82	88	177 -	76	132	63	124 -	196	129	183 -	116	268 -	234 -	
Ē				~	•	~	~	~	~	•	~	~	•	•	~	0	~	~	~	<b>•</b> •	~	~	~	~	~	<b>m</b>	~	~	~	~	~	~	~	~	0
×		2	2	5	2	2	2	2	2	2	2	3	3	3	m T	3	3	3	3	1	7	7	1	-	-	-	-	-	-	-	-	-	-		-
x		6 i	80 1		4	ĥ	2-2	-	2	4	Ś	-10	1-	ŝ	4-	ñ	7	-	2	4 -	2	-	m	-12	Ξ		<b>0</b> 1	ŝ	4 	٣	-2	7	0	- 0	J
OFC		-84	104	136	101	74	82	153	151	269	170	133	262	129	180	334	405	69	123	296	108	350	-99	-88	147	11	116	132	164	142	460	284	290	173	
OFO 1		66	93	161	106	86	89	167 -	176	307 -	201 -	165 -	310	128 -	163	319	394	72	137 -	290	123	294 -	118	83	118	13	100	- 66	164 -	123 -	474 -	307	325 -	- 921	
-		-	-	***	_	-	_	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	~	2	2	2	2	2	2	2	2	2 10	v
*		31	n T	- म	4	г 4	1 1	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-			-	-	-	-	-	-		-
н		7	-	ő	-	5-	۳ <mark>-</mark>	- 14	-13	-12	F	۳	-1-	9	<b>5</b>	7-	ñ	7	0	~	4	ŝ	F	-10	61	-7	ŝ	7-	ñ	2-	7	0	2	<b>m</b> =	1
IOFC		87	-97	-123	167	156	-96	-95	115	-178	113	-80	<b>4</b> 5	78	-123	134	225	66	87	120	-271	-340	-242	341	173	185	-133	72	88	6	183	-166	196	-101	20-
DFO		14	16	123	192	611	85	66	117	174	120	57	76	100	131	130	230	94	93	132	225	329	549	410	173	233	121	88	٩4	82	109	148	205	88	50
Ę		_	_	-	~	_	_	~	0	_	_	~	~	~	_	_	_	_	_		_	_		-	_		_		-	_	_	_	-	Ň 7	_
-71 ×		3 10	3 10	ы Ц	ы Ц	3 10	1	4 10	4 10	1	1	¥ 7	5 1	5 1(	-	-	-	-	-	-	-	-	-	-	-	-	-	N.	5	2	2	2 1	2	~ ·	-
19 ^H 26 ^N H		-2	7	0	-	~	-10	5	ŝ	7	ŗ	-	-	m	-13	-12	6-	<b>6</b> 1	-1	-9	4	2	0		~	m.	<b>a</b> ;	11	-10	6-	8	9-	2	4	2
1 for		-216	-17.2	-294	-272	154	141	220	134	309	-181	-296	-321	155	-129	-114	11	-321	-368	210	3-	-150	-149	-129	- 153	78	482	-338	198	-101	-200	378	-126	-103	142
Factor 10FO		261	209	306	225	152	151	247	151	312	204	278	310	143	121	66	89	365	420	237	89	131	128	135	140	72	429	287	186	93	201	451	109	5	241
e l'	e.	10	9	10	10	10	10	10	10	10	10	10	5	9	2	10	9	9	10	10	9	10	9	10	9	10	2	5	10	2	10	10	10	29	2
K	3	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	~	2	~	2	2	~	m	ŝ	n
d Str H		N	e	4	5	11-	-13	2	01-	6	-	ŝ	7	e.	2-	7	0	-	2	m	4	6-	8		9-	ŝ	7	ŗ	2	7	0	-	10		2
alculate 10FC		-160	-238	-240	-120	-126	261	434	294	-363	-237	9#1	-93	511	-100	12-	- 155	-81	251	- 195	109	-166	-60	8	-383	6-	5-	-180	-130	139	53	312	-259	-529	-
oror o		168	261	265	111	120	234	395	274	373	223	132	86	87	85	117	154	100	249	179	102	173	83	6	432	130	101	189	146	128	68	324	266	192	201
L led	•	6	6	•	. 0	. 0	. 0	. 6	6	6	6	6	5	6	6	5	6	6	6	6	6	6	6	σ	10	9	9	2	9	9	10	2	10	29	2
X Ser	•	-	-	-	2	2			2	2	2	2	m	m	m	• m	m	4	4	4	4	4	5	2	0	0	0	0	0	0	0	0	0	00	>
8 ≖	•	-	2	4	Ŷ	5	٦	ĩ	2	0	m	4	9	4	ĩ	Ŷ		Ŷ	٦	ŋ	2	0	0	~	-13	-12	=	6	Ŷ		9	ŝ	7	Ϋ́,	1

•

5	10FC	-101	140	- 146	237	-127	-275	177	-145	-132	-113	-7-	16	123	78	146	-137	-78	- 125	-177	- 180	-110	94	-172	-68	162	88	185	-79	-129	123	-80	167	190	141	- 62	5
Pag	10F0	107	121	133	220	116	242	176	143	129	122	88	114	117	16	141	118	88	134	158	168	84	92	149	62	138	91	117	11	157	149	111	186	180	139	76	ŝ
	-	18	18	18	18	18	18	18	18	18	18	18	18	18	18	19	19	19	19	19	19	19	19	19	19	19	19	50	20	20	20	20	50	20	20	50	22
	×	2	2	2	2	2	2	2	m	m	m	m	4	4	4	-	-	-	-	-	-	2	2	2	2	2	4	0	0	0	0	0	0	0	0		-
	H	6-		9	5	7	e.	-		5	<b>.</b>	2	9-	7	m-	6-	<b>8</b> <b>1</b>	5	7	~	2		9	5	7	ñ	ŗ	<b>°</b>	Ŷ	7	ŗ	~	7	-	~	-	ľ
	10FC	-95	12	-92	-75	106	109	154	162	-173	178	261	80	122	132	65	20	-98	93	-201	-135	-98 -	86	239	-66	125	106	368	-88	-97	-147	152	93	-172	168	-134	200
	10F0	86	66	117	82	112	16	136	139	158	160	242	61	151	95	66	93	84	16	179	66	102	85	234	176	116	101	382	106	112	123	151	89	174	155	134	144
	-	16	16	16	16	17	17	17	17	17	17	17	17	17	17	17	17	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
	¥	m	4	4	4	-	-	-	-	-	-	2	2	m	m	m	4	0	0	0	0	0	0	0	0	•	0	0	-	-	-	-	-	-	-	-	-
	H	-		<b>.</b>	2-	-12	-10	7	0	~	m	7	-	9-	5	7	5-	-10	6-	<b>°</b>	1-	9	5-	7	÷.	-2	7	-	-12	-10	6-	7	-2	0	2	en i	4
	10FC	-81	219	128	66-	-61	89	121	-127	-115	-119	-78	-132	-65	-299	348	-219	150	145	-163	-51	198	271	-71	118	-88	-112	-377	-127	96	-250	-136	-50	-74	106	129	267
	10F0	14	204	129	158	8	62	104	134	120	125	108	145	87	335	365	212	146	148	164	76	192	264	17	107	80	133	373	104	81	255	83	81	80	83	93	268
	Ъ	15	15	15	15	15	15	15	15	15	15	15	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
2	×	~	2	2	2	2	m	m	m	4	4	4	0	0	0	0	0	0	0	0	-	-	-	-	2	~	N	2	N	2	2	2	m	m	m	m	"
C19H20	Ŧ	80	1-	7	-	m	-1	9-	7	<b>8</b> 1	Ŷ	4-	-10	ŝ	<b>۳</b>	-2	7	•	-	2	-12	<b>9</b>	-	e	-12	6-		ŝ	7	7	-	4	<b>°</b>	1-	9-	5	4
rs for	10FC	-96	122	-114	147	115	-117	149	180	108	-101	-291	-120	161	-90	130	157	223	1463	-473	95	-73	115	96-	84	125	28	-112	-129	-173	68-	57	270	106	159	-122	£5
Facto	10F0	78	116	119	167	107	110	107	161	80	112	324	143	173	62	134	165	202	144	177	. 84	87	119	75	8	132	80	119	111	128	6	72	261	101	151	105	88
ure	-	1	1	1	14	1	1	7	14	1	1	14	1	14	1	1	1	14	1	1	1	1	1	1	14	1	1	2	£ ;	12	15	15	15	15	15	15	ц,
.nct	×	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	m	m	m	m	m	m	m	m	m	m	4	4		-	-	-	-	-	-	-	~
ced Str	Ŧ	8	7	0	-13	=	6-	<b>8</b>	9-	5	7	0	-	2	m	4	8		-2	7	2	7	0	2	m	3 0	P .	99	- 10	6-	1	<b>•</b>	-2	7	0	-	-12
alculat	10FC	167	119	189	101	-86	-254	201	-214	84	62	-93	347	-96	-120	-127	-257	69	-125	78	-104	28	-79	-98	-75	125	202	- 172		051	- 107	199	242	-113	149	343	-112
bue	10F0	133	116	173	108	106	253	211	131	123	86	86	233	87	113	142	230	78	139	8	111	6	8	105	108	131	501	225	+0.	24	501	202	255	144	141	283	114
Ved	د	13	33	13	13	3	13	13	13	13	13	13	5	3	13	13	13	33	3	3	13	5	33	5	5	2:	1	2:	1:	= :	= :	= :	7	71	14	14	14
Ser	×	2	~	2	2	2	~	2	2	2	~	2	2	m	m	m	m	m	4	3	4	7	4	4	5	0 0		0 0	•	> 0	0 0	0	0	0	0	0	-
81	H	-10	<b>8</b>		Ŷ	7	~	7	-	2	"	4	A			9-	Ŷ	<b>.</b>	6-	<b>\$</b>	7	7	0	- (	~		•		P 4	î -	4 (	ŗ	7	-	e	7	- 14

ام	U.	38	5	57	07	80	75	86	73	98	62	54
ej	101	ĩ	-	-2.	Ĭ	ĩ	1	ĩ	•		-	ĩ
Pag	10F0	101	106	220	121	87	151	6	16	110	85	<del>3</del> 3
	د	24	54	24	24	24	24	25	26	26	27	27
	*	0	0	0	-	-	-	-	0	2	-	-
	Ξ	1	-2	-	7-	7	-	0	<b>-</b> 3	7-	<b>5</b>	ĥ
	10FC	-82	157	151	-78	105	120	100	-102	104	- 123	-88
	10F0	96	146	144	101	101	118	109	106	120	105	107
	د	22	22	23	23	23	23	23	23	24	24	24
	×	-	-	-	-	-	-	-	2	0	0	0
	Ħ	<b>.</b>	0	۳ ۱	-	9-	-2	0	4-	- 10	6 <b>-</b>	ŝ
	10FC	132	-79	-230	-170	-272	-312	370	6	137	73	-138
	10F0	141	84	264	164	265	324	297	126	123	85	148
	د	22	22	22	22	22	22	22	22	22	22	22
z	×	0	0	0	0	0	0	0	-	-	-	-
C19H26	Ħ	4-		- -	7	0	-	2	-10	-7	<b>1</b>	7
S for	10FC	86	15	-102	143	-111	-114	139	16-	- 126	105	-17
Factor	10F0	6	86	108	133	114	108	119	103	100	95	62
ure	د	00	20	2	21	5	51	21	21	21	22	52
uct	×	4	4	-	-	-	-	-	~		0	0
Str	H	"		9	ĩ	1	1	~	9		- 80 -	9-
loulated	10FC	151	54	121	157	-83	001	299	90	-101	06	E
3	0	0		) n	. 0	ν α	) C	0 00	) C	, <b>r</b>	5	σ

.

------

.....

202 1 88 2 88 2 2 2 2 2 3 3 3 2 2 3 3 3 4 5 4 7 4 5 7 5 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

-1	10FC	145	191	127	513	380	453	162	92	111	110	-75	95	520	1145	295	-162	11	525	235	17	112	83	87	146	357	-36	788	289	138	542	-85	176	177	160	551	011
Page	IOF0	125	172	114	517	390	459	160	101	110	96	15	68	467	1031	292	184	74	526	245	39	112	81	83	136	319	24	685	268	151	579	89	192	191	121	951	611
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			÷
	×	ŝ	'n	ņ	ņ	'n	'n	ņ	'n	ŝ	ŝ	ŝ	ŝ	ŝ	N	Ņ	Ņ	Ņ	ş	N	Ņ	ŝ	N	7	7	7	7	7	7	7	7	7	7	7	7	7 '	7
	Ŧ	5	÷.	-	•	-	~	m	5		9	ŝ	7	ň	2	-	•	-	~	m	4	5	9		5	7	ñ	2	7	0	-	2	m	4	5	0	-
	10FC	82	67	128	157	141	211	182	-66	165	189	16	84	84	36	303	261	138	181	82	84	74	120	133	159	126	-61	113	39	337	186	89	95	84	25	86	150
	10F0	72	92	126	150	136	214	180	117	163	173	55	84	85	39	311	263	136	176	11	75	11	88	117	149	119	11	116	38	338	182	81	89	94	59	100	129
	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	¥	5		9	9	9	9	9	9	9-	9	9	5	5	5	5	5	5	5	5	ŝ	5	7	7	7	4	7	7	7	7	7	7	7	7	7	ñ	ñ
	H	0	2	9	5	2	7	0	-	2	m	5	5	9	ŝ	2	7	2	m	4	5	9	<b>°</b>	5	ŝ	7	ĩ	2	0	-	2	m	4	5	9	5	9-
15	10FC	151	192	114	137	80	128	86	66	100	917-	85	105	108	80	117	16	59	20	96	16	51	86	75	26	50	69	113	87	62	114	11	123	127	111	16	120
)](BF	10F0	166	214	129	142	91	128	81	85	22	50	93	113	118	82	132	100	52	69	89	65	78	73	65	55	58	11	121	66	59	114	58	128	136	114	16	109
NUS	د	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-
9 <u>4</u> 2	×	9	9	9	9	9	9	9	2	2	2	2	2	~	2	5	2	80	80	æ	œ	œ	6	6	6-	œ	۳	۳	8	8	œ	8	5		5	5	5
S	Ŧ	0	-	2	m	4	5	9	4-	ñ	2	0	-	2	m	4	5	~	0	-	4	5	7	0	ę	9-	S	7	e	2-	7	4	ŝ	7	e.	2	7
INI																																					
for	OFC	119	323	442	131	198	138	167	76	145	180	153	261	307	85	.173	169	197	125	113	83	74	57	88	83	128	199	16	45	287	147	119	86	138	159	61	124
ors	-			_	•	_		~	-	~		~	_		0		10	-		=	2	~	6	9	m	0	=	6	2	-	4	6	0	6	2	4	•
Fact	10FO	116	342	480	155	169	11	14	2	150	17(	14	27	00	6	171	15	20	õ	6	-	-	4	~	80	12	19	80	5	3	16	12	9	12	14	2	12
Ire	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
loti	×	m	n m	m	m	m	. m	<b>m</b>	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	9
Str	Ħ	2	7	0	-	m	5	9	9-	5	7	~	2	7	0	-	2	~	4	5	9	-	8	9-	S	7	2	7	0	-	2	m	4	5	9	2	7
Pe																																					
alculat	10FC	-245	105	133	169	92	9	88	357	175	257	263	200	103	280	192	123	130	8	61	140	352	81	175	20	-259	187	163	301	64	11	121	86	61	156	85	56
10	2	99	2	12	65	05	63	20	44	82	14	15	76	10	7		53	50	5	89	39	640	80	99	8	69	00	142	535	84	73	156	46	81	155	89	96

•



$ \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d St	no	ture	Facto	LOL IOL		15			QI										I j	
2       1       16       5       7       5       19       14       25       6       17       19       14       25       6       16       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 </th <th>-</th> <th>×</th> <th>٦</th> <th>10F0</th> <th>10FC</th> <th>Ŧ</th> <th>×</th> <th>2</th> <th>10F0</th> <th>10FC</th> <th>×</th> <th>×</th> <th>-</th> <th>OFO</th> <th>10FC</th> <th>×</th> <th>×</th> <th>1</th> <th>10FO</th> <th>10FC</th> <th></th>	-	×	٦	10F0	10FC	Ŧ	×	2	10F0	10FC	×	×	-	OFO	10FC	×	×	1	10FO	10FC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	-	48	56	6	ŝ	-	92	84	6-	ŝ	2	94	ħβ	न	N	2	279	258	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		N	-	152	144	ŝ	9		72	78		ŝ	2	6	84	ĥ	Ņ	2	604	668	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	63	85	2-	9	-	100	120	9	ŝ	2	115	104	- 2	Ņ	2	87	86	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	127	144	0	9	-	98	66	ň	ŝ	2	169	168	-	Ņ	2	369	351	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		) W	-	177	186	-	9	-	113	112	N	ŝ	2	296	311	0	Ņ	2	107	- 102	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·	<b>ה</b> ו	-	111	III	2	9	-	157	135	7	ŝ	2	350	349	-	Ņ	~	309	303	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	) (*	۴	63	60	~	9	-	136	120	0	ŝ	2	96	79	2	Ņ	2	249	256	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>`</b>	י י	-	201	207	=	9	-	78	72	-	Ŝ	2	97	67	m	Ņ	2	017	-23	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	) (	-	237	227	"	2	-	16	118	2	ŝ	2	189	187	4	Ņ	2	52	42	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		n (r	-	133	124	0	~	-	94	104	m	ŝ	2	66	69	5	Ņ	~	100	80	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		יי ר מי	-		67	-	~	-	63	85	8	7	2	69	68	9	Ņ	2	124	128	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	<b>ה</b> ו	-	226	206	~	5	-	63	80	-	4	2	50	50	1	Ņ	~	98	89	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	. ~	. "		144	385	4	-	-	84	75	9	-	2	77	64	80	-	2	94	89	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-	268	278	0	8	-	100	112	5-	4	2	263	263	2-		~	111	108	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		n m	-	121	132	-	æ	-	11	74	4-	7	2	234	262	5	-	2	172	182	
k       1       65       53       -2       9       51       31       -2       9       50       655 $k$ 1       231       237       -4       8       16       18       -1       4       2       17       76       -2       1       201 $k$ 1       26       285       0       0       2       4       2       1       201       14       14       201       201       14       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201       201		) শ	-	56	-63	m	6	-	58	60	ň	4	~	82	101	1	-	2	336	361	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	-	65	53	Ņ	6-	2	51	31	2	4	~	195	214	e	-	2	598	625	
n = 1 $201$ $202$ $-3 - 8$ $97$ $90$ $0 - 4$ $2$ $1 - 1$ $2$ $299$ $-201$ $n = 1$ $56$ $-41$ $1 - 8$ $93$ $100$ $3 - 4$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$ $2 - 1$		4	-	231	237	4	89	2	136	118	7	7	2	77	76	2	-	~	114	-114	
n = 1       286       285 $0 - 8$ 110       115 $1 - 4$ $2$ 68 $446$ $0 - 1$ $2$ 159       159       159 $n = 1$ $147$ $145$ $5 - 7$ $2$ $95$ $73$ $u - 4$ $2$ $57$ $59$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $176$ $159$ $176$ $159$ $176$ $159$ $177$ $159$ $159$ $177$ $159$ $177$ $159$ $159$ $176$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$ $159$		4	-	204	202	ñ	φ	~	67	8	0	7	2	429	408	i	-	2	249	-201	
k = 1 $1 - 6 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$ $5 - 1 - 2$	_	4	-	286	285	0	β	2	110	115	-	4	2	468	446	0	-	2	159	159	
k $1k7$ $145$ $-5$ $72$ $95$ $73$ $k$ $4$ $2$ $25$ $-176$ $k$ $1132$ $k$ $-2$ $55$ $47$ $6$ $67$ $3$ $-12$ $205$ $177$ $k$ $1156$ $144$ $-2$ $72$ $55$ $47$ $-6$ $32$ $189$ $190$ $u$ $-12$ $206$ $177$ $k$ $178$ $171$ $1$ $-2$ $75$ $71$ $-6$ $328$ $160$ $326$ $77$ $3$ $3$ $3138$ $1122$ $3138$ $1122$ $240$ $326$ $177$ $5$ $107$ $-127$ $-66$ $233$ $61$ $3$ $-7$ $290$ $326$ $177$ $127$ $326$ $112$ $112$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$ $712$	<b>C</b>	4	-	56	F	-	8	2	93	100	m	4	2	57	59	-	-	2	253	208	
$\mu$ $3\mu$ $312$ $\mu$ $2\mu$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$	_	4	-	147	145	5	5	2	95	73	4	7	~	6	91	~	-	2	205	-176	
$\mu$ 156       144 $-2$ 7       5 $47$ $-6$ 3       189       190 $\mu$ 1       56       177 $\mu$ 168       147       0 $-7$ 2       75       71 $-4$ 3       2       150       166       5 $-1$ 2       173 $\mu$ 1       778       171       1 $-7$ 2       79       56       177 $\mu$ 1       77       2       79       56       273       138       56       5       17       26       173       36 $\mu$ 1       77       2       79       56       205       212       49       56       57       122       79       56 $5$ 1       178       184 $-3$ 2       206       212       49       56       55       57       148       56       56       57       148       56       56       57       148       56       57       148       56       57       148       56       55       57       148       56       56       57       57       <	<b>•••</b>	4	-	341	312	4		~	161	141	9	4	2	62	67	<b>m</b>	-	2	90	-63	
h       168       147       0       -7       2       75       71       -4       -3       2       150       166       5       1       2       133 $h$ 178       171       1       -7       2       76       181       -3       -3       2       301       328       6       -1       2       153       138 $h$ 1       72       70       2       -70       5       17       99       58       -2       -3       2       106       21       2       240       326         5       1       173       64       3       -7       2       77       99       0       -3       2       206       212       -1       2       79       -65         5       1       178       184       -3       -5       150       1       133       -1       2       2       2       2       16       177       177         5       1       170       171       2       2       2       2       2       2       2       2       2       171       170         5       1       107       1	$\sim$	4	-	156	144	2	5-	2	55	17	9-	m	2	189	190	4	7	2	206	177	
$\mu$ 178       171       1-7       2       176       181       -3       -3       2       301       328       6       -1       2       240       326 $\mu$ 1       72       70       2       -7       2       49       58       -2       -3       2       196       203       7       -1       2       79       -65         5       1       107       -127       -6       -2       12       196       203       7       -1       2       79       -65         5       1       107       -127       -6       2       126       120       1<-3		4	-	168	147	0		2	75	11	47 	'n	2	150	166	5	-	~	153	138	
u       72       70 $2-7$ $2$ $49$ 58 $-2-3$ $2$ $166$ $203$ $7-1$ $2$ $79$ $65$ $5$ $1$ $77$ $64$ $3-7$ $2$ $79$ $66$ $203$ $7-1$ $2$ $79$ $65$ $5$ $1$ $107$ $-127$ $-6-6$ $2$ $126$ $120$ $1-3$ $2$ $265$ $206$ $212$ $-8$ $0$ $2$ $171$ $27$ $27$ $240$ $27$ $263$ $-6$ $0$ $177$ $177$ $177$ $27$ $271$ $253$ $170$ $271$ $272$ $263$ $-6$ $0$ $271$ $177$ $177$ $177$ $177$ $177$ $177$ $273$ $277$ $240$ $271$ $272$ $149$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$ $177$	10	4	-	178	121	-	5	2	176	181	۳ י	m	~	301	328	9	7	2	240	328	
$\mu$ 73       64       3 -7       2       77       99       0 -3       2       206       212       -8       0       2       153       148         5       1       107       -127       -6       2       126       120       1       -3       2       126       123       2       143       -7       0       2       170       177         5       1       178       184       -3       -6       2       133       77       2       -3       2       254       263       -6       0       2       170       177         5       1       150       147       -2       -6       2       135       127       3       -3       2       227       240       -5       0       171       170         5       1       206       197       -1       -6       2       164       175       44       -3       251       153         5       1       206       197       176       2127       240       -5       0       2       171       170         5       1       206       194       175       44       -3	<b>v</b>	4	-	72	20	2	5	2	61	58	2	ň	~	196	203		-	2	62	• 65	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	•	73	64	m		2	11	66	0	<b>~</b>	~	206	212	<b>8</b> 1	0	2	153	148	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	ŝ	-	107	-127	<b>-</b> 0	9-	~	126	120	-	m-	~	457	433	-7	0	~	170	177	
5       1       50       147 $-2$ $-6$ 2       135       127 $3$ $-3$ $2$ $227$ $240$ $-5$ 0 $2$ 171       170         5       1       206       197 $-1$ $-6$ $2$ 164       175 $4$ $-3$ $2$ $149$ 150 $-4$ $0$ $2$ 151       153         5       1       181       175       1 $-6$ $2$ 56 $49$ $5$ $-3$ $0$ $2$ $419$ $430$ 5       1       75       68 $2$ $-6$ $2$ $-7$ $-2$ $0$ $2$ $419$ $430$ 5       1       75       68 $2$ $-6$ $2$ $143$ $130$ $139$ $139$ $-7$ $-2$ $0$ $2$ $419$ $430$ 5       1       92       67 $2$ $143$ $150$ $-6$ $2$ $0$ $2$ $140$ $121$ $0$ $2$ $143$ $376$	· • •	5	-	178	184	ĥ	9-	2	83	11	2	ĥ	~	254	263	9-	0	2	107	111	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	<u>_</u>	-	150	147	2-	9-	2	135	127	m	ĥ	2	227	240	ŝ	0	~	121	170	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	ŝ	-	206	197	1	9-	2	164	175	4	ĥ	~	149	150	<b>1</b> 1	0	2	151	153	
5       1       75       68       2       -6       2       139       139       -7       -2       2       61       54       -2       0       2       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       37       35       55       -59       59       59       59       59       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386       386	<b>CU</b>	ŝ	-	181	175	-	9-	2	56	61	5	<b>۳</b>	2	98	<del>3</del> 5	ñ	0	~	419	430	
1 5 1 92 67 3 -6 2 143 150 -6 -2 2 73 76 -1 0 2 55 -59 5 5 1 140 131 6 -6 2 57 49 -5 -2 0 210 -220 0 0 2 398 386		5	-	75	68	~	9-	2	139	139	-	2	2	61	54	-2	0	2	37	( (	
5 5 1 140 131 6 -6 2 57 49 -5 -2 0 210 -220 0 0 2 398 386			-	92	67	m	9-	2	143	150	9-	2-2	2	73	76	7	0	~	55	-59	
	-		-	140	131	9	9-	2	57	49	5-	2-2	0	210	-220	0	0	~	398	386	

ы.

ø

----

Observed and 10F -1 ----× 5 9 9 <u>9</u> 9 9 7 Ŧ

m	10FC	344	129	78	64	75	53	101	239	354	170	367	146	312	106	-57	6	232	248	149	95	64	89	433	130	-73	489	296	223	194	279	68	14	89	113	70
Page	IOFO	360	144	89	77	11	50	6	245	364	154	420	159	327	104	69	104	261	277	153	85	65	85	691	147	86	11611	277	216	229	310	11	65	11	115	a
	-	m	m	ŝ	m	m	m	m	m	m	m	m	m	m	m	e	m	~	3	~	~	3		~	~	3	5	5		3	3	3	5	~	m	•
	24	Ņ	Ņ	Ņ	Ņ	-	-		-	-	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	_	•
	H	~	- -=	5	- 2	- 6-	۳ ۳	- 2 -	<b>۔</b> ۲	- - -	۔ ۳	2	-	0	-	2	m	4	5	89	1-	9-	4	<del>۳</del>	2	7	•	-	m	4	5	9	80	-	9	•
	10FC	35	270	6	66	217	276	130	129	45	99	132	87	57	39	213	335	161	233	185	11	-87	185	176	148	66	80	60	92	118	119	242	219	59	66	
	10F0	112	271	88	86	216	311	126	121	99	11	138	11	65	65	220	315	153	209	181	01	104	188	165	159	121	11	12	94	125	120	240	214	48	102	
	1	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	e	m	m	m	m	m	ŝ	e	m	m	ŝ	m	,
	¥	4	Ŧ	퀵	4	7	7	7	7	7	7	4	4	r.	ę	ĥ	ĥ	ĥ	ĥ	ĥ	ĥ	ŗ	÷.	ĥ	ĥ	ĥ	ñ	2	2	2	2	2	2	-2	2	
	Ŧ	9	5	1	ñ	~	7	0	-	2	4	5	9	80	5	9	5	7	e.	~	7	-	N	e	4	5	9	-10	6-	5	9	5	7	e.	2	
out	10FC	128	63	60	111	-80	117	113	106	99	168	156	72	98	162	79	62	6	78	118	151	257	238	93	127	107	<b>6</b> 8	82	80	157	60	237	389	132	174	
(BF )	OFO	122	11	179	108	61	113	107	85	61	168	164	76	100	171	75	55	11	16	109	147	267	227	83	131	114	81	82	89	161	54	216	402	132	191	
	5	~	2	2	<b>"</b>	e	m	m	m	m	m	m	m	m	m	m	e	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	ŝ	m	)
H26	×	~	~	~	æ	æ	æ	æ	æ	æ	5	-	5	-	-	2	-	2	ò	ې	ڢ	ې	ې	ò	ò	ò	ò	Ń	ň	Ś	ŝ	ŝ	ŝ	ŝ	ŝ	•
INT (C	H	-	2	e	7	-2	7	0	-	2	5	7	5	7	•	-	m	4	9-	5-	ę	2	7	•	N	e	4	9	5	7	÷	~	7	0	-	
S for	10FC	175	20	219	185	345	186	<b>†</b> 6	53	87	66	116	178	159	151	233	110	53	65	63	65	209	170	84	120	135	62	61	141	179	103	129	104	-55	76	•
Factor	10F0	187	64	212	166	329	162	111	77	81	95	123	170	174	153	239	124	51	62	52	58	202	155	83	127	134	73	75	128	151	96	126	107	60	85	
are	L	~	2	2	2	2	~	~	~	~	~	2	2	2	~	2	2	2	2	2	2	2	2	2	~	~	~	~	2	2	~	2	2	2	2	1
uct	×	m	m	ŝ	m	m	m	m	m	4	4	শ	শ	4	4	7	4	4	S	S	ŝ	5	5	ŝ	S	ŝ	ŝ	5	9	9	9	9	9	9	9	)
Str	Ħ	ñ	1	0	2	m	4	5	9	4 	ĥ	-2	1	0	-	2	5	9	9-	ŝ	7	-2	7	0		2	S	9	ĥ	2-	-	2	m	1	9	
Calculated	IOFC	-87	85	256	256	107	112	69	84	151	<b>1</b> 6	261	180	844	284	301	508	82	85	88	156	112	279	193	-80	331	233	171	239	348	105	63	211	116	101 0	
pue	10FO	93	96	263	285	115	127	76	ħ6	441	101	262	178	481	372	288	480	77	87	89	176	66	267	187	96	366	233	153	227	320	107	67	138	117	80	
ved	د	2	2	~	2	~	~	~	2	2	2	2	~	2	2	~	~	~	~	2	2	2	2	2	~	~	2	2	2	2	2	~	~	2	2	1
Ser	×	0	0	•	0	0	0	•	-	-	-	-	*	-	-	-	-	-	-	-	-	~	2	2	N	2	2	N	2	2	2	~	2	2	e	1
õ	H	-	2	m	4	S	9	5	8	5	9	4	'n	7	0	-	2	m	ŝ	9	~	9	S	4	ñ	7	0	-	2	m	4	S	9	2	8	1

.

-----

-----

1000

•

<b>=</b> 1	ບ ເ	55	64	36	5			2 9		5	51		1.1	- 2		200		3 5	20			5 6		20	2 2	1 0		200			20	5	2	91	83	17	151
e j	101	-	Ĩ	7	~	ר י		- (										ŕ			v		Ξ.														
Pag	10F0	11	50	201	276		10			60	9.5	50	5	25		t ac	200	000	100	007	230		811	23	6.		200	651	X	262	5	96	E	108	11	15	143
		4	4	1		r =	r =		4 -		<b>a</b> 2						<b>a</b> =	<b>:</b> =	* *	<b>a</b> 2	4 -	<b>a</b> 2	<b>a</b> 4	4 4			• •	4 4	•	4	4	4	4	4	4	4	4
	¥	0	0	c	) c	<b>,</b>										- •	- •	- •	- •	- 1	- •	- •	- •	- (	N	N	N (		V	2	2	2	2	2	2	2	m
	Ξ	-1	5	1	5	<b>.</b> •	1.	7 9	••	- (		m =		~	0 1	1	9	î f	1.	7 '	• •	- 1	~	ma	•	1	1	ņ	Y	7	0	-	2	m	9	2	5
	OFC	287	106	282	202		ο Γ	2	237	207	19	0 10	5	222	201	191	2	Ę.	1.00	264	338	100	83	2	5	801	2	99	601	162	318	374	183	211	200	203	58
	10F0 1	283	90	27E		102		133	256	210	88	62	34	223	11	1	65	152	12	IE	347	214	101	63	20	011	20	5	501	161	364	428	188	202	214	233	11
	-	4	A	• =	<b>t</b> =	<b>t</b> :	<b>ब</b> -	4.	<b>a</b> -	<b>a</b> .	4	<b>a</b> :	<b>a</b> .	<b>a</b> t :	<b>a</b> .	ar i	<b>4</b>	<b>a</b> .	a -	4	<b>a</b> -	4	<b>A</b> .	म ·	4	<b>a</b> 2	<b>न</b> -	<b>a</b> :	Ŧ	4	7	4	4	4	4	4	٦
	×	~	5	י י	ņ	ņ	ŗ,	ņ	ņ	ņ	'n	2	2	N N	4	2	2	2	2	2	ې ا	2	2	2	7	7	7	1	7	7	7	7	7	7	7	7	Ť
	Ħ	9	H	, ,	2	7	0	-	~	m	ŝ	-10	-	Ŷ	5	4	Ŷ	1	0		~	m	4	9	Ŷ		9	ŝ	1	ŗ	2	7	0	-	m	7	4
-01	10FC	122			10	22	106	106	72	177	141	131	62	9	168	102	53	95	107	101	81	88	111	89	26	104	223	82	62	69	378	145	126	102	69	62	8
J(BF	10F0	154		2	2	15	116	110	75	193	139	125	56	63	142	111	20	66	111	111	8	83	102	93	83	81	220	19	64	75	389	145	128	107	11	82	22
	-				4	4	4	4	4	4	4	#	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-
9 ^H 2	×			-	5	5	9	9	9	9	9	9	9	9	Ŷ	ŝ	ŝ	5	s	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	7	7	7	7	٩	7	7	1	1	7	•
N1 (C1	×	•		<b>o</b> ·	-	m	9	Ŷ	7	ŗ	Ŷ	7	0	~	m	5	9	5	7	5	2	0	-	2	m	4		9-	5		2-	1	0	-	4	S	N a
for	OFC		2	202	185	132	72	88	11	19	81	222	169	86	11	133	91	99	81	18	22	20	14	92	11	87	42	5	11	113	12	62	124	103	118	130	
factors	10F0	ŧ	t	204	182	136	67	96	69	58	85	208	164	82	61	126	58	62	22	11	69	19	59	87	83	75	19	68	81	115	12	67	119	87	110	147	
e	-		n	m	m	e	m	m		• <b>~</b>	• ~	ŝ	m	m	<b>~</b>	n m	ŝ	ŝ	ŝ	m	n m	m	n m	• m	n	4	4	4	ন	4	4	4	4	4	व	7	1
ctu	*	4	<b>a</b> .	a	4	4	4	4	4	ſ	5	5	5	5	5	5	5	5	9	9	9	9	9	~	-	6-	6-	ę	8	9	~	80	-	9	5		- 8
Stru	×		2	7	0	-	m	ন	5	5	"	?	1	٦	ſ	<b>a</b>	5	9	'n	0	-	2	। <del>व</del>	0	-	2	0	-	<u>،</u>	1	~		C	• -	د	1	1
culated	10FC		-58	243	371	545	290	10	10	2	818	84	180	16	-117	273	307	176	103	19	131	125	3	99	100	151	184	200	106	156	TH T	148	eo e	5		201	
8	~		-	_	~	~	_								0	1 4	- 00	5	0		2			-	. 0	0	-	. 9	0		2	2		1	2	2	-

4

-----



501	10FC	82	72	53	115	92	118	65	107	107	138	78	55	64	81	67	109	227	96	74	82	72	65	83	114	132	213	20	120	52	69	170	87	75	145	158	259
Page	10F0	72	75	53	82	35	126	58	112	108	144	20	19	67	8	75	103	225	85	17	67	85	74	82	100	118	210	75	118	54	86	180	6	99	155	162	249
	-	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	•	9
	×	5	5	-	5	9	9	9	ę	9	9	9	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	7	7	7	7	7	7	7	7	'n	ñ	ñ	ñ	ñ	'n	m	ŗ
	H	9	5	ñ	0	9	5	7	ñ	2	7	0	-	9	ŝ	ņ	2	7	0	2	m		ŝ	÷.	~	7	0	-	2	6-	9-	5	7	ñ	2	7	0
	10FC	133	132	109	244	121	139	8	62	35	80	63	f1	180	125	117	73	87	100	133	100	-40	-121	172	153	62	61	87	56	84	73	75	11	39	106	17	74
	10F0	154	147	117	248	132	127	81	16	6	12	11	61	180	123	123	86	62	89	132	107	99	120	164	151	63	99	96	59	61	99	99	11	90	84	69	99
	-	5	2	5	5	5	5	5	5	5	5	5	5	5	5	5	ŝ	5	5	5	S	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	9
	X	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	~	2	m	m	m	m	m	m	m	m	m	4	4	5	5	5	5	9	9	9	5
	Ħ	7	ŗ	2-	7	0	#	5	1-	5	7	ĥ	7	0	-	2	m	4	5	7	ñ	-2	7	0	-	2	m	-2	7	2	7	-	2	2-	0	-	1-
2	10FC	176	300	220	99	147	93	78	135	43	122	50	120	259	42	100	67	84	102	282	286	157	189	117	78	172	237	343	141	198	130	61	67	26	20	115	127
)](BF4	10F0	66	319	224	75	153	88	11	143	56	121	52	133	267	52	115	99	86	111	303	320	166	197	119	83	175	254	377	169	177	121	69	75	52	58	112	140
Z	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	S	5	5	5	5	5	ŝ	5	5	5	5	5	5	5	5	5
9 <u>1</u> 2	¥	~	5	ñ	ñ	2	2	2	2	2-	2	2	2	2	2	2	2	7	7	7	7	7	7	7	0	0	0	0	0	0	0	0	0	-	-	-	-
[NI (C	Ħ	0	-	2	4	9-	5	7	e.	~	7	0	-	2	m	4	5	œ	1-	<b>~</b>	2-	0	-	2	8	5	7	ŗ	-2	0	-	4	5	8	1-	9-	ŝ
s for	10FC	82	78	157	160	64	63	17	119	87	107	84	117	112	169	67	162	11	65	87	120	100	173	62	41	16	213	195	218	329	61	87	113	57	252	126	107
Factor	10F0	84	75	153	168	61	14	61	109	69	108	75	117	102	169	58	160	99	56	16	96	65	174	72	45	86	218	189	211	342	67	93	119	54	251	126	113
ure	د	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
uct	×	9	9-	9	9	9-	9	9	9	9	ŝ	ŝ	s	5	5	S	ŝ	S	5	S	S	S	7	7	7	7	7	7	7	7	7	ę	ñ	~	ñ	"	n de
Str	Ħ	ĩ	9	5	7	~	2	7	2	m	6	8	9-	5	7	2	7	0	-	2	m	4	8	-	5	e.	2	7	0	-	2	9-	5	7	ę	-	17
alculated	10FC	173	89	111	62	110	154	82	62	£#	87	89	72	73	99	150	182	98	98	11	58	175	104	96	115	62	87	75	129	86	73	51	115	73	78	75	16
and	10F0	194	99	109	65	107	151	16	55	57	78	66	75	61	69	147	165	92	100	11	5	172	109	35	110	69	6	72	123	85	57	64	113	17	76	74	202
ved	-	4	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5
Ser	×	~	2 4	<b>n</b> m	• •	. m	. m	• •	n m	~ m	m	-==	4	4	4	4	4	4	4	4	4	5	5	5	5	9	9	2	°°	8	81						-
ଟା	H		1	17	0	-	2	~	1 4	5	9	5	7- 14	.3	2	-	2	~	4	5	9	-2	7	2	e	0	-	-	4-	÷.	0	-7	-2	7-	-2	1	

-----

- -

THE DESTRICTION OF

Calcu	lated	Str	uct	ure	Factor	s for	[NT (C	9 ^H 20		<u>](BF4)</u>	-01									Page	0
10F(	0	H	¥	L	10F0	10FC	H	×	-	10F0	10FC	H	¥	-	10F0	10FC	Ŧ	¥	-	10F0	10FC
13		9-	-	9	74	96	5-	7	2	67	74	ñ	0	2	84	86	<b>.</b>	7	80	123	123
, F		"	-	9	19	-64	7	7	2	112	113	~	0	2	61	68	0	7	8	58	61
=	. 10	2	-	9	140	142	~-	7	1	84	89	-	0	2	6	106	9-	ŗ	8	82	83
16		7	-	9	172	186	2	7	2	155	173	<b>~</b>	-	1	115	125	-2	ŗ	œ	69	65
1		0	-	9	58	55	-	7	2	72	100	2	-	2	19	72	7	ę	œ	102	112
16.		5	2	9	89	13	9-	~	-	172	173	7	-	2	100	107	0	ñ	æ	86	93
15		-		9	106	113	5	5	2	102	93	2	-	2	69	82	7	2	œ	59	65
		~	2	9	63	-60	~	5	-	54	16	<b>m</b> -	2	2	108	107	7	2	œ	72	83
		1	2	9	19	75	2	5	-	126	149	2-	2	2	81	84	-5	7	80	11	80
13	•	-	2	9	83	112	7	~	-	163	198	0	2	2	76	86	7	7	80	75	68
		5	~	9	15	17	0	~	2	55	84	7	m	1	16	83	ŗ	7	æ	61	17
9	. 0	7	5	9	09	68	-	5	-	19	74	0	m	1	82	95	5-	0	8	88	82
21	0	0	n m	9	16	108		2	1	75	61	-	3	2	59	56	-	0	80	55	68
17	~	5	5	-	29	99	9-	2	2	157	143	5	5	œ	20	72	-2	0	80	99	99
2	0	7	5	-	75	17	5	2	1	87	14	7	5	æ	88	96	7	0	æ	61	81
	. 0	"	5	-	15	09	"	2	-	107	102	9-	9	œ	78	76	0	0	80	80	116
15	0	5	9	-	75	73	2	2	1	119	116	5	9	80	73	80	71	-	8	102	107
12		~	9	-	62	73	7	2	-	16	96	7	9	80	94	110	-3	-	8	76	62
6	4	2	9	-	96	109	-	2	2	67	72	7	9	80	80	88	2	-	80	81	88
-	-	7	9-	1	19	88		7	2	69	68	0	9	æ	57	68	7	-	80	75	81
80	2		5	2	02	69	7	7	2	132	135	71	5	80	145	145	0	-	œ	99	78
11	8	7	5	2	61	178	<b>.</b>	7	2	119	123	<b>m</b>	5	æ	158	156	5	9	6	16	115
3 16	4	"	5	2	110	115	7	7	2	83	-89	7	5	æ	62	62	2-	ŝ	6	58	99
10	0	2	5	-	191	208	-	7	2	135	170		7	80	58	54	2	2	6	6	108
8	. 80	5	7	2	62	64	2	7	2	11	87	5	7	80	93	86	-2	7	6	84	95
5 15	6	9	7	2	.91	11	9-	0	2	11	16	71	7	80	103	16					

•

¢

.

pue	10F0	
Ped	-	<b>ೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲೲ</b> ೲೲ
Ser	×	00000077777777777000000
ð	æ	2110 - 10 - 10 - 10 - 10 - 10 - 10 - 10

•

																					۰.	_					•		• •	_		2	_		
-1	10FC	-161	495	-36	-393	-26	-218	456	132	1066	E	-650	177	11	214	-204	165	5		-000		122		521	-518	515	-262	255	412	-543	1	-39	264	150	
Page	OFO	169 .	531	100	335	127	173	455	175	- 060	535	688 1	177 777	387	240	272	303	165	1000	600			180	230	536	568	285	291	465	538	458	422	250	205	
	5	-	<b></b>	-	-	-	-	-	-	-			<b>-</b> ,	<b>-</b> .				- •			- •					-	-	-	-	-	•	-	• •		- ,
	×	2	2	2	~	2	2	~	2	2	2	2	2	2	m	m	m	m	n a	n r	n r	<b>n</b> n	n r	<b>n</b> n	<b>~</b>	<b>n</b> m	n m	m	m	m	m	4	<b>a</b> -	<b>=</b> =	
	×	-10	30 1	9-	5-	4	ñ	2	7	0	2	<b>a</b> t (	9	80	-13	<b>6</b>	ρ Ι		٩ ı	ן זי	+ ( 	n (	V 7		• ~	=	5	9	2	œ	F	F	<b>6</b> 10	• •	ī
	OFC	139	288	202	210	186	466	216	408	101	722	353	476	766	338	142	202	237	067		040	000	000	110	1 8	638	103	619	-337	132	689	141	329	241-	562
	•	80	-	- 6	8	~	80	5	9		m	•	2	0	-	2	-	່ ທີ່	-	-	ז יב		•	0 0		25	22	10	78 -	56	17	2	22	• •	-
	10F	18	2	16	20	=	42	26	64		13	ŝ	5	2	131	Ĩ	N.	23	2		21		òò	ō ç	-	1	Ň	1	'n	-	F	-	m.	- (	~
	-	0	0	0	0	0	0	-	-	-	-	-	-	<del>-</del>	-	•	-	- •	-	- 1	- •	- •	- •			-	-	Γ	-		-	-	-		
	×	15	15	16	17	17	18	0	0	0	0	0	0	0	0	0	0	- '	_			- •	- •	~ ~			· •	-	5	2	5	-	_	~	-
	Ŧ	-	8	ŝ		9	0	-13	=	6-	- 1	ŝ	ŗ	m	ŝ	2	<del>,</del>	<b>-</b>	5	Ϋ́	0 I 1	Υ -	ब ( 			4 44	। <del>व</del>	U.	U	-	Ű	2	-		-
<u>م</u> .	10FC	-156	-188	-271	135	-172	642	480	525	871	410	-215	344	413	-213	100	-239	162	-170	5443	343	130	0.4	061-	167	-401	494-	372	113	-151	123	-310	177	-405	-112
(NCS)	10F0	230	167	291	141	208	626	465	537	1025	418	202	335	434	223	101	229	202	180	#39	378	191	164	111	SHC BHC	110	526	381	148	204	181	284	172	410	148
Z	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	•	0	0	0	0 0	<b>&gt;</b> c	<b>o</b> c		0	0	0	0	0	0	0	0
9 ^H 2	×	80	80	•	. 0	• •	. 0	. 0	0	10	9	10	10	9	9	9	9	2	2	=	=	= :	= :	=:	::	= =	1 2	12	12	13	13	13	13	14	14
[NI (C	Ŧ	12	13		•				6	0	-	2	m	4	5	9	80	9	12	~	-	5		- 0	• •	N C	• -	· ~	5	2	m	5	7	0	7
s for	10FC	-255	230	686	120	152	202	-137	586	-279	382	-431	198	-342	-275	135	-352	155	-587	-269	260.	502	183	844	134	00	120	-240	1043	570	-215	-337	221	-295	107
actor	10FO	284	263	299	116		100	160	714	295	429	419	143	346	275	173	386	176	290	293	285	221	189	173	601	121	167	258	1116	577	212	395	239	296	100
2	-	c	) c	。 。	<b>,</b> ,	<b>,</b> ,		。 c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<b>&gt;</b> (	- c			0	0	0	0	0	0	c
ctu	*	4	1 4	1 4	r =	<b>t</b> =	1 4	r a	ŝ	5	5	5	5	ŝ	S	5	9	9	9	9	9	9	-	~ 1	- •		- r		- ∞	8	00	æ	8	æ	œ
Stru	H	~	าส	r va	<b>,</b>	- 0	20	1	-	~		5	9	æ	6	1	0	-	m	7	-	8	-	~ 1	ົ່	οa	° =		0		2	m	4	9	10
Calculated	10FC	1880	- 1005	971 -	077-		252	900	-1957	928	1505	-962	454-	758	325	-292	-761	-357	2807	116	1 -644	- 152	192	110	9440	212	-224 80	101- 0	1441	5 -1042	103	1 831	5 278	7 -2328	6 -450
Pue	10FO	1778		040	1004	430	50	Sec.	1707	876	1388	206	39	720	29	310	906	236	286	#3	619	15	20	15	14		0 5		101	86	12	29	29	277	50
2		c	<b>&gt;</b>	<b>,</b>	<b>&gt;</b> (	0 0	<b>&gt;</b> 0	<b>,</b>	<b>,</b> c	) C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	<b>&gt;</b>	<b>,</b> c	) C	0	0	0	0	0	0
Ser	×	¢				•		<b>-</b> -				-	-	-	-	-	~	2	2	2	N	2	~	~	N I	N r	•••	0 9	2 4	•		m	m	4	4
ã	Ŧ	c	<b>v</b> .	<b>T</b> 4	0 0	20	N 4	+ C	n v	ົ່	r ur	5	~	- 00	0		-	2	m	a	5	2	σ	0	= :	m •	- (	ง ส	r ur	9	5	ŝ	Ξ	0	-

·

-

A45

~1	10FC	-588	381	534	716	-545	619	-95	-122	-375	332	-270	-223	-459	335	-210	-344	640	-453	-233	636	-171	667	261	-678	-1387	-331	931	232	-599	274	218	-897	-222	200	006	2011
Page	10F0	577	343	529	681	577	662	158	140	381	340	213	200	#32	355	208	311	562	385	190	582	165	101	251	681	1362 -	245	915	230	574	246	162	863	202	204	566	1671
	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		v	v
	×	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	m	m	m	m	n	n
	Ŧ	9-	7	۳	4	7	0	-	2	m	4	5	0	80	=	13	=	6-		9	<b>°</b>	7	ŗ	~	7	-	m	5	9	-	6	-10	9-	۳.	2.		D
	10FC	260	-420	-551	246	514	- 194	-325	300	-305	-441	-139	369	260	235	-252	-285	329	-139	277	-272	320	-259	244	151	240	256	-217	363	605	-558	-1275	-1133	108	624	-249	-210
	10F0	276	439	534	210	503	237	316	263	289	436	159	343	246	293	248	265	372	160	32	271	245	232	281	197	176	233	186	319	534	438	1142	1051	349	416	252	219
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	~	2	2	~	2	2	~	2	2
	X	12	12	12	12	12	12	12	12	13	13	13	13	5	13	13	14	14	14	15	15	16	16	17	17	18	18	0	0	0	0	0	0	0	0	0	0
	Ħ	<b>.</b> -	7	0	-	2	m	4	9	9-	2	7	0	-	2	80	7	5	9	5	-	0	9	-2	7	7	m	- 14	-12	8-	9-	-2	0	2	9	80	12
-J.,	10FC	-456	619	-735	-403	165	- 185	609	-327	230	332	354	364	-276	-332	164	453	-847	-437	344	482	-317	-610	267	174	-730	556	380	-325	-355	333	232	-513	345	237	301	134
(NCS)	10F0	421	591	733	457	180	232	662	341	256	264	365	366	225	338	157	444	863	434	301	466	350	662	313	173	727	554	413	341	355	319	251	504	350	252	272	222
	د	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
120 120	×	6	6	6	6	6	6	6	6	6	10	10	10	9	10	10	10	10	10	10	10	10	10	10	9	11	=	=	=	=	=	=	=	:	=	12	12
[NT (C	H	7	2-	0	-	3	5	80	9	12	=	œ		5	7	-2	7	0	-	2	~	4	5	9	-	5	ŗ	~	7	0	-	2	5	1	=	<b>%</b>	7
is for	10FC	-567	402	206	-221	873	229	-495	-347	591	-310	-328	251	120	580	-173	-503	290	-294	346	335	-625	-381	523	489	-336	-191	665	281	-550	-471	294	197	183	-577	685	138
Facto	10F0	579	9446	224	243	908	261	452	370	622	356	319	283	131	594	147	564	299	318	333	337	586	427	549	486	322	160	707	272	588	476	328	204	199	574	609	175
P	د	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
uet	×	9	9	9	-	-	-	-	-	2	2	2	5	-	~	2	-	~	2	80	80	80	80	80	80	80	80	80	80	80	æ	80	80	80	6	6	6
Str	Ħ	~	=	-	5	5	-	"	2	7	0	-	2	m	5	9	~	80	=	=	-10	<b>°</b>	"	1	0	-	2	m	4	5	9	2	80	13	80	9-	5
Calculated	10FC	-212	-350	-274	-239	-211	-220	16	763	251	-298	-232	372	297	233	-185	-403	111	619	-171	398	-242	-515	298	-382	-128	0 -160	-359	3 -287	5 249	665 6	-233	3 210	2 478	1 -762	3 1241	272 P
pue	10F0	107	120	320	222	205	261	146	161	228	336	257	410	306	258	197	435	436	675	196	044	267	588	265	409	195	210	341	306	245	609	261	176	525	61	134	38
P	L	-	• •	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ser	×	ų	- 4	4	4	=	-		=	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	9	9	9	9	9	9	9	9	9	9	9	v
ð	Ħ	4	1	17			• •		n ur	6	-	13	~~ A4	5	7	"	2	1	0	-	~		1 =	5	80	-10	6-	8	1-	9-	5-	7			7	0	-

Contraction of the local division of the loc

3	alculated	Str	not	ure	Factor	for	N1 (C	H2	N N	(NCS)	<u>ل</u> ت الت									Pa	<b>5</b> 2
-	10FC	×	×	د	10F0	10FC	H	×	-	10F0	10FC	H	×	-	10F0	10FC	H	X	-	10F0	10FC
	-			ſ	787	202	8	¢	~	303	373	~	2	~	154	- 199	2	15	~	181	172
	121		n u	0 0	130	E SAL	-	<b>~</b>	1 0	510	237	) <b>a</b>	2	2	143	-181	2	16	2	212	- 158
	204	- α	-	4 0	001	22	9	<b>~</b>	10	284	- 327	5	2	2	382	363	m	16	2	200	241
~		• =	n u	9 0	301	282	2	0		392	19	0	2	2	599	583	7	17	2	299	-245
	1007-	-	2	10	100	258		0		319	281	80	0	2	262	-266	0	17	2	314	-334
	110	1	2	10	804	130	2	8		473	-445	9	=	2	233	-269	ñ	•	m	376	375
	010	1	2	10	133	524	1	8		538	197	5	Ξ	~	260	224	-	•	m	435	-419
	-263	5	2	1	869	-863	0	œ		160	- 159	7	Ξ	~	224	186	ĥ	•	e	159	786
	YUY	"	2	1	205	573	-	œ	2	196	-188	2-	Ξ	~	#38	-437	7	•	m	180	-211
	586	19	0		123	-137	2	æ	~	418	398	0	=	~	934	921		•	m	817	-854
1	-252	1	6		285	223	3	œ	2	428	391	m	=	~	247	-284	ŝ	•	m	908	950
	-301	•	9		508	478	4	œ	2	353	-324	5	Ξ	~	224	183	-	•	m	421	-406
5	012	2	9		720	727	5	œ	2	370	-351	8	12	N	253	-181	Ξ	•	m	276	-270
	512				613	206	9	œ	2	390	419	9-	12	2	191	163	1	[	m	234	-220
	748	-	2	10	306	388	8	80		356	-355	5	12	2	376	398	5	Ī	m	308	280
1-	203		0.00	10	611	111-	0	œ		272	-266	-	12	2	348	-331	Ŷ	Ī	m	252	305
. 0	Ecy-	2	0.00		557	964-	=	ω		176	110	7	2	2	189	-154	٩	[	m	394	-435
	001-	-	9		230	236	-13	0	~	236	254	0	2	~	226	195	7	5	m	241	263
	300	. 00	9		142	5	=	σ	2	287	-284	-	2	~	130	152	٣		m	319	-373
~	451	10	9	~	234	255	5	0	~	458	-466	~	12	2	272	-226	ï		m	309	-312
1 -	-519	9	-	2	511	482	~·	6	~	618	570	m	2	~	490	644-	7	[	m	248	264
0	341	5			176	157	7	9	~	385	-349	5	2	~	313	324		-	m	344	-317
2	183	7		2	188	- 184	0	5	2	250	-244	9	3	2	165	-189	•	Ξ	m	1064	1080
5	-258	"	-	2	194	-188	-	σ	2	415	387	~	3	2	328	-339	-	-	m	162	795
0	186	2	-	2	921	867	m	σ	2	668	-638	7	3	2	415	396		2	m	131	- 138
9	178	7	-	2	452	614-	2	σ	~	271	232	0	3	2	345	351		~	m	275	-256
3	185	0	"	2	1836 -	-1696	80	σ	2	151	-152	-	3	2	162	-206		~	m	276	256
-	-311	-	-	2	104	429	=	6	~	317	294	m	5	2	234	276		_	m	263	281
0	-922	N	-	2	268	-260	6-	10	2	197	202	-	13	2	250	-209			m	180	-175
9	922	m		2	155	-141	81	10	~	144	432	80 1	1	2	314	-352			- -	306	-296
5	-325	80		2	319	356	1-	10	~	270	-251	9-	1	~	226	244	ĩ	~	ст С	1122	-484
8	-775	6	-	2	178	146	9-	10	~	429	-368	0	1	2	160	198	1	6		513	550
0	257	10		2	237	-203	5	9	2	230	267	-	7	2	158	66				324	322
9	105	12		2	276	228	-2	10	~	258	-253	9	1	2	331	-354	1	-		12	- 100
4	197-	-10	_	2	219	-161	7	9	2	418	- 388	ñ	5	~	355	-327		~		162.	-192
2	639	1	-	8	328	112-	2	10	2	153	101	•	5	2	389	101-	ĩ	~		1120	-
1			Ĵ			5															

÷.

------

.

10FC Observed and 1 wwwwwwwwwaaaaaaaaaaaaaawwwwwwwwwwwww × 0-004000-00505040-0-004c I A47

Calculate	ulate	P	Stri	letu	S	actor	s for	[NT (C	J ^H 26		(NCS)	<b>_</b> ]									21	6	ור
H 10FC H	FC H	H	-	~	-	OFO	10FC	Ŧ	*	-	10F0	10FC	×	×	-	10F0	10FC	Ħ	×	<u>ц</u>	10FC	0	U
2 3 701 0	2 Y L	4	Ľ		0	287	203	8-	œ	~	203	373	~	10	2	154	- 199	~	15	~	181	11	N
			2		5	120	-463	-1	0		219	237	4	10	~	143	-181	-2	16	~	212	-15	-
2 8 5 6 6	- 80	- 00	1 10		10	100	173	9	œ	2	284	-327	5	10	2	382	363	m	9	~	200	2 1	-
11 5 11 5	88 11 5		1 10		10	102	-282	5	ø		392	-410	9	9	2	599	583	7	17	2	29.		ഹ
5 -52h -8 6	24 -8 6	8	1 40		1	100	-258	ĩ	80	2	319	281	80	10	2	262	-266	0	1	2	315	3	4
311 -7 6	11 -7 6				1	128	130	2	ø	~	473	-445	9	=	~	233	-269	6-	0	m	37	3	in
9 9 9 910	9 9 9				. ~	133	123	1	8	2	538	197	5	:	~	260	224		•	m	E tr		6
			9 40		5	869	-863	0	8		160	- 159	7	=	2	224	186	ŝ	•	m	15	128	9
	90		9 40	1.		592	573	-	œ	2	196	-188	2	=	~	<b>4</b> 38	-437	7	0	m	180	2	-
	86		<b>v</b>	2.		123	-137	2	8	~	418	398	0	=	~	934	921	•	•	m	81	8	ন
8 - SC - 1 6	50 11 60		0	6	1	282	223	~	Ø	2	428	391	m	=	~	247	-284	ŝ	0	m	õ	6 8	0
10 - 301 0 6	01 0	0	9.00	1		508	478	4	8	2	353	-324	5	=	~	22	183	-	•	m	42	1	9
012 2 6	12 2 6	9	9.00	1.1		720	-727	5	œ	2	370	-351	8	12	~	253	-181	=	•	8	27	5 -2	0
58 -512 3 6	10		9	215	2	613	296	9	æ	2	390	419	9-	12	~	161	163	-13	-	m	23	1 -2	0
35 748 4 6	118 11 6	9 =	9			396	388	80	8	2	356	-355	Ŷ	12	2	376	398	<b>1</b>		m	õ	3	0
11 323 5 6	23 5 6	9	9		2	611	111	6	æ	~	272	-266	e-	12	~	348	-331	<b>6</b>	-	m	22	m.	5
29 -623 6 6	23 6 6	9	e		~	557	96#-	=	ω	2	176	110	7	12	2	189	-154	- F	-	<b>m</b>	36	-	5
01 -499 7 6	9 2 661	7 6	e		~	230	236	-13	δ	2	236	254	0	2	2	226	195	- '		<b>m</b> (	24		m
96 300 8 6	300 8	8	~		2	142	54	=	<b>6</b>	N	287	-284	-	12	2	130	152			<b>m</b> (	E		m
43 451 10	151 10	10	_	9	2	234	255	5	6	2	458	-466	N	12	2	272	-226			<b>m</b>	D .	-	<u>N</u> :
94 -519 -6	615	9		~	2	511	482	÷.	σ	~	618	570	m	12	~	490	644-	7	-	m _	24	8	
10 341 -5	111 -5	5		-	~	176	151	7	6	2	385	-349	S	12	~	313	324	<b>T</b>	~	m _	34		-
75 183 -4	183 -4	4	1	~	~	188	- 184	0	6	2	250	-244	9	13	2	165	-189	<b>T</b>	_	<u>ຕ</u>	106	10	2
25 -258 -3	-3	<b>۳</b>		~	~	194	-188	-	6	2	415	387	-	13	2	328	-339	0		m :	62	1	2
08 186 -2	186 -2	2-		-	2	921	867	m	σ	~	668	-638	7	5	2	415	396	- (		m (	m		2
86 178 -1	178 -1	7		2	~	452	-419	-	σ	2	271	232	0	3	~	345	351			m (	17		0
93 185 0	185 0	0		~	2	1836 -	-1696	80	σ	2	151	-152	-	5	~	162	-206		~	m (	12		0
77 -311 1	311 1	-		~	2	101	429	=	σ	2	317	294	m	2	2	234	276		-	m	50	2	5 1
60 -922 2	922 2	2		~	2	268	-260	6-	10	2	197	202	-	3	~	250	-209			m _	18		2
86 922 3	922 3	~		~	2	155	-141	8	10	~	1 4 4	432	8	1	~	314	-352			m _	R.	9	9
59 -325 B	325 8.			~	~	319	356		10	2	270	-251	9	14	2	226	544	~	<b>m</b> 1	m	45	1 2	1
6 517- 86	775 9	9		~	~	178	146	9-	10	~	429	-368	0	14	~	160	198	ĭ	~	m N	2.5	2	0
20 257 10	257 10	10		~	~	237	-203	5-	9	2	230	267	-	14	~	158	66	1		m (	32	رب ا ع	20
146 405 12	405 12	12		~	~	276	228	-2	2	~	258	-253	9	14	~	331	-354	1	- (	νης 	vĉ		
344 -397 -10	397 -10	-10		80	~	219	-161	7	9	2	418	-388	ñ	15	~	355	-321		m (	יחי אול	1 V T	1 -	-
522 639 -9	6- 629	6		80	2	328	-271	2	10	2	153	101	0	15	~	389	101-	ĭ	N	n	21	v	-
		•		r.	ł																		

ξi.

the second s

•

-1	10FC	-254	270	341	511	187	540	205	520	102-	227	944	-351	-102	32	1/1	231	-344	183	274	-455	618	202	-756	-304	335	89	-299	191	177	227	212	-222	685	601	6#	187
Page	10F0	232	239	366	2			200		200		131	339	147	376	163	256	232	218	199	429	603	160	166	278	358	122	263	161	492	252	244	189	688	392	32	1
	-	4	4	4	-	-		<b>t</b> 2	4 4		<b>a</b> .	= .	4 .	4	4	4	4	a	4	4	4	4	4	4	4	=	4	4	4	4	4	4	4	4	4	4	-
	*	-	-	-	-	•	- •		- •	- •	-	-	-	-	-	-	2	2	2	2	~	2	2	2	2	2	2	2	2	2	2	m	m	m	m	m	~
	×	6-	œ	-7	- \c		<b>,</b>		7	0 1		m.	ব	5	9	6	-13	6-	-1	-0	5	ñ	2-	1	0	•	2	m	ŝ	7	1	-12	-10	<b>8</b> 1	9-	ŝ	"
	IOFC	215	-140	101	150		+ 104	355	-239	269	249	-108	- 193	212	197	-223	-505	-346	232	-164	-313	157	234	-237	173	-294	196	236	-229	272	173	-172	186	388	1045	-872	540
	OFO	163	150	118	121		101	348	242	210	255	121	208	199	186	162	484	247	172	175	277	186	200	208	166	287	212	202	254	225	162	196	177	337	747	824	1165
		~	. <b>~</b>	ה ה	<b>.</b>	<b>n</b> (	<b>m</b> (	m	ŝ	<b>~</b>	m	m	ŝ	m	m	m	m	m	m	ŝ	m	m	m	m	m	m	m	m	m	m	m	4	4	4	4	<u>न</u>	4
	×	-						-	2	2	2	2	2	2	m	m	ŝ	4	4	4	<u>न</u>	4	5	5	5	5	15	16	16	17	17	0	0	0	0	0	c
	H	-	1.2					m.	89	-9-	-2-	7	2	8	8	ñ	0	5	0	N	5	1	-2	0	-	m	5	8	2	0	-	-10	<b>8</b> 1	9-	-2	0	•
<u>ل</u> م	10FC	332	100	are		14	-1123	538	724	481	-121	185	365	415	-217	-358	557	-124	222	-275	264	348	-285	-334	-200	-309	229	225	574	251	-380	-239	252	283	-293	200	110
(NCS)	10F0	008	010	acc		200	1181	541	733	455	142	184	354	391	216	345	517	118	165	330	253	332	294	366	195	311	213	220	586	271	370	169	225	257	264	235	101
	-	~	י ר	n r	n	n	m	m	e	m	m	m	m	m	m	m	m	n m	<b>~</b>	n m	m	• m	<b>m</b>	n m	m	m	ŝ	m	m	m	ŝ	ŝ	ŝ	ŝ	m	ŝ	•
12 H	*	٢	- 6	- 6	- 1	-	-	-	2	2	-	2	ω	œ	æ	œ	æ	æ	ω	œ	œ	ω	ω	œ	æ	6	5	6	0	σ	σ	9	10	10	10	9	
NI (C1	×	Ę	-	1 '	<b>?</b> '	2	7	-	m	5	9	=	6-	80 1	1-	9-	5	-	0	-	5	9		80	=	8	7	7	0	4	9	8	9-	-5	"	2	-
's for	10FC	613		142	- 100	305	-257	432	-388	235	-367	582	644	-1001	-1662	975	-607	414	127	-222	044	-693	646-	613	422	-1147	-466	140	161	1460	- 339	-391	284	242	- 363	152	
Factor	10F0	Y	2	0	200	282	251	143	370	282	339	556	645	986	1693	934	585	424	182	258	387	662	307	298	100	1194	463	206	533	501	343	148	285	227	197	156	
e	-	•	n	m (	m	m	m	m	m	m	m	ŝ	• <b>m</b>	. m	<b>.</b>	• •	<b>, (</b>	<b>"</b>	n 🗸	<b>n</b> m	• •	<b>ה</b> ו	<b>ה</b> ה	<b>"</b>	<b>n</b> (*	<b>, ,</b>	<b>,</b> (	• m	~	n m	n m	"	1	1 m	"	<b>ה</b> ו	
uctu	×	4	* 1		4	4	S	ŝ	S	S	ŝ	5	5	5	5	5	5	<b>.</b>	<b>,                                    </b>	<b>، ر</b>		<b>v</b>	<b>v</b>	9	9	9	9	9	9	9	9	9	9	9	9	9	
Str	æ		- 0	0	6	=	11	<b>°</b>	5	5	7	"	2	1	0	~	4	9	0	10		5	5	1	"	1	17	0	~	. "	1 4	5	9	-	8	10	
alculated	10FC		662-	-751	225	-185	- 233	-268	353	-296	208	178	593	-324	- 382	1460	-635	-44-	M70	676	-368	969-	176	188	-473	722	1095	154	1074	201	238	-106	-368	647	100	192	
0	100	1.0		_	-		-		_		_	_				-				- 0	) a	h =		C	10	C		. #	CO.	<b>)</b> (C	<b>۵</b>	00	1	- 00	, 7	שמ	1



	10FC	515	-338	-214	321	-229	308	-479	653	290	-435	686	- 198	-255	-231	-625	623	-243	292	295	217	-375	170	235	-182	-386	387	-227	159	226	-337	190	471	-752	197	
	10F0	479	335	243	303	223	302	472	681	258	394	662	161	244	226	655	624	250	328	317	190	365	176	240	213	387	418	219	170	205	381	456	914	759	199	
	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	S	S	S	ŝ	5	5	5	S	ŝ	5	ŝ	S	ŝ	ŝ	S	ŝ	S	5	5	ŝ	
	¥	m	m	#	4	4	4	4	4	4	4	4	4	4	4	ŝ	ŝ	ŝ	5	S	ŝ	S	ഹ	ŝ	ഹ	ഗ	ŝ	9	9	9	9	9	9	9	9	,
	H	5	9	-13	=	8	5	e	7	0	-	e	5	-	=	80 1	9-	ŝ	<b>۳</b>	2	7	N	m	4	ŝ	9	œ	11	=	9-	ĥ	2	7	0	~	
	10FC	-534	121	338	390	+75-	419	- 189	-321	-495	-761	421	264	- 194	212	334	-190	220	-294	-169	268	-601	161	-218	211	297	-430	-324	172	637	487	-637	-226	- 198	-411	
	10F0	171	192	295	368	267	373	208	260	444	662	411	182	112	155	304	203	277	265	207	204	290	753	161	234	297	399	296	180	644	469	629	160	154	391	;
	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	S	ß	S	S	2	2	2	2	2	S	S	5	S	5	S	2	2	S	,
	×	0	0	0	-	-	-	-	-	-		-		-	-	-	-	2	2	2	2	2	2	2	2	m	m	m	e	m	m	m	m	m	ŝ	)
	Ŧ	m	5	2	80	9	5	4	-	2	7	0	~	4	5	9	80	- 14	80 1	9-	<b>5</b> -	2-	0	9	10	6-	<b>8</b> -	-7	9-	5	4-	ñ	7	-	2	ļ
	10FC	-596	92	-209	176	-153	270	397	-461	301	-137	252	147	-450	122	255	-359	278	-193	-150	388	-280	207	209	-254	-313	398	-338	336	234	-228	-284	278	-220	-260	, , ,
ļ	10F0	557	174	195	197	135	316	382	413	282	189	254	121	144	142	200	324	279	184	195	353	217	194	224	225	284	317	296	309	161	212	219	270	199	260	/
1	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	a	4	4	ন	ম	4	7	4	4	4	4	4	4	4	7	ŝ	)
	¥	80	80	80	6	•	6	6	6	0	0	0	0	0	0	=	11	=	12	12	12	12	12	13	13	<del>1</del> 3	13	14	14	15	15	16	16	18	0	
•	×	0	4	:	5	5	7	m	5	9	5	ŗ	2	•	=	80 1	0	~	9-	ĥ	-	7	0	۳	7	m	ŝ	9	0	0	2	ŗ	7	0	11-	į
	10FC	314	-176	-542	569	-736	-204	555	768	-295	-118	482	167	-366	-233	146	-273	-206	177	-529	192	121	101	529	- 108	-335	310	120	-561	332	-131	201	-113	385	205	•
	IOF0	286	224	529	621	740	232	556	746	304	132	485	133	385	204	162	333	226	224	561	189	155	147	516	156	327	308	178	509	296	149	161	186	104	222	ļ
	-	-	4	4		4	4	4	4	4	4	4	4	4	4	4	4	ম	4	4	4	4	4	4	4	म	4	4	4	4	4	4	4	4	4	
	*	9	9	9	9		9	9	9	9	9	9	9		9	9	9	2	2	-	2	2	-	2	2	2	-	-	2	2	2	œ	8	æ	æ	
	×	8	5	9	5	٣ •	~	7	0	-	~	m	9	-	80	9	=	-12	-10	8-	9-	ñ	7	0	-	2	4	5	9	ω	6	6-	œ	9-	5	
	10FC	-742	486	240	-589	-399	631	-209	-752	-318	161	738	-1045	-280	1245	-212	-181	-261	256	-238	-374	397	-223	-388	339	132	-722	149	258	-995	362	758	-406	- 174	200	
	10F0	101	204	256	646	191	641	206	161	269	531	675	1070	292	1226	209	239	298	289	266	400	362	223	168	4 h E	186	720	121	112	146	376	740	401	173	206	
	2	4	-	4	4	4	4	4	4	-	4	4	4	-	4	4	a	4	4	4	4	4	4	4	4	4	4	4	4	ন	4	7	1	7	4	
	*	3	~	. m	ŝ	3	m	m	4	4	4	4	4	4	4	4	4	4	4	ন	S	5	ŝ	S	S	S	5	ŝ	ŝ	S	ŝ	ŝ	ŝ	ŝ	9	
	æ	0	-	~	-	-	9	80		ŝ	4	~	N	7	•	m	æ	œ	2	2	Ξ	6	8	5	ŝ	4	-	0	-	m	4	ŝ	9	~	σ	•

+

-----

-

9	10FC	-103	216	-457	347	245	287	479	-631	202	-112	166	265	- 341	-043	2112	662	60-	182	437	-425	230	-155	204	152	201-	282	253		500	-292	166-	504	102		272	
Page	PO	167	524	137	591	189	219	152	865	397	Sol	522	1	602	100	172	192	130	159	814	438	220	206	436	+04	140	000	300		500	248	999	278	103	601	301	Ś
	¥																																				
	٦	1	-	-	2	-	-	-	- 1				- 1		- 1			-	-											~	~	~	~	~ ~	~ · ·	+ =	
	×	0	0	•	0	0	0	0	0	-	- '	-		- '		-		_	-						~.		•••			~		_		- (	N 6	 	
	H	-13	=	6-	-1	÷.	7	m	ŝ	9	ŝ	n i		7	0	-			Ξ	Ĩ	Ϋ.	7							ĩ	•	ĩ	•				17	i
	10FC	228	-313	-266	389	184	-467	-332	240	179	-296	227	-338	177	-251	-214	234	644-	227	249	-234	226	382	-230	361	-272	500	612-	101	287	- 193	166	355	-247	112	-201	
	10F0	186	363	221	363	234	458	323	247	186	313	187	372	235	228	217	236	2442	183	237	205	203	307	232	333	112	343	202	601	291	159	215	301	245	260	243	2
	Г	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	9	9	9	9	9	•	94	D
	×	9	9	9	9	2	2	2	2	2	8	8	80	8	80	æ	6	6	6	6	9	9	10	2	= :	= :	= :	= :	12	12	12	12	12	13	5	2:	1
	Ħ	~	m	4	5	8	9	2	0	9	<b>8</b> 1	ñ	7	0	2	m	ŝ	ñ	7	5	2	7	0	5	9.	7 9	2	0 0	ñ	7	-	2	m	ŝ	ĩ	0 =	4
					¢																																
	10FC	-222	179	479	-302	373	439	-393	-118	-222	187	155	-218	103	426	215	-76	322	326	-564	944	-131	148	-290	113	-408	629	-300	311	155	-224	161	178	-231	-177	-423	-230
(NCS)	10F0	182	190	195	308	381	391	415	132	271	250	182	258	174	453	211	121	302	313	597	426	148	185	319	151	004	637	285	267	167	268	178	203	245	210	386	243
	<u>د</u> ا	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	٥
HOG	×	~	• •	• •	n m	. m	• m	~ ~	n m	m	m	m	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	9	9	9	9
(N1 (C10	רי ד	80		9	5	"	2	0	-	9	80	=	-14	-12	<b>8</b> 1		9-		7	0	~	5	-13	6-		ŝ	ĥ	7	0	m	5	9	=	=	1-	7	0
s for	10FC	163	376	2110-	210	- 332	283	- 196	-254	377	228	-301	242	-347	291	-305	175	219	-271	341	-225	237	-166	150	-233	140	-154	315	-136	- 196	-214	121	312	-307	518	219	-456
Factor	10F0	146	320	106	236	285	579	210	232	300	195	260	255	396	304	320	194	195	256	337	261	193	177	206	214	186	215	370	166	198	194	232	297	262	534	213	452
Le	د	Ľ	ט ר	<b>. .</b>	<b>. .</b>				5	5	5	5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
actu	K	5	1 2	10	10	1 1	2 2	2	1=	11	14	16	0	0	0	0	0	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2
Stri	H	-		2				2	-	1	~	0	11	8	0	6	0	9	- 00	9	"	1	0	5	2	80	:	=	6-	7	"	2	7	2	m	4	5
lculated	10FC		- 133	- 212-	346	222	591-	296	-142	268	173	214	-500	-200	107	-184	140	020-	-240	127	-305-	289	-338	-205	-260	296	139	-159	279	-231	-505	379	301	-225	-266	343	- 169
ind Ca	10FO		- 61		200	261		2440	145	110	180	277	102	226	000	171	153	020	201	175	354	5	328	194	264	329	193	247	291	189	510	361	304	232	280	328	200
p	د ا		<b>^</b>	•	<b>n</b> 1												<b>1 L</b>		n ur	<b>, ,</b>	<b>.</b> .			5	5	5	5	5	5	5	5	5	5	5	5	5	2
PLV.	×		0						- 5	- 1				- 00	<b>a</b>	<b>a</b>	<b>x</b>	<b>a</b>	ο α	<b>a</b>	<b>x</b>		- 0	0	. 0	. 0	6	6	10	10	10	10	=	:	:	Ξ	12
Obse	Ħ		2	5	<b>P</b> 1		٩-	1 '		<b>v</b> c					4	-	1	2	-	- •	- ന	n «			2	~	9	80	"	-	17	0	5		1 0	5	e.
														- 20	•																						

----

and the second second

7	oulated	St	Luo	ture	Facto	ors for	[NI (C	HOI	N 92	1 (NC	5)2										Pae	-1
-	OFC	æ	M	L	10F0	10FC	H	×	-	10F	0	IOFC	H	×	1	10F0	10FC	H	×	-	10FO	10FC
	563	ŝ	80	-	241	- 192	1	-	8	04		-381	-2	9	80	206	172	F	m	6	146	117
	150	9	σ	-	218	223	0	-	ø	2	0	283	0	9	œ	150	-205	7	m	•	132	202
1	000	0	o	-	259	-252	-		œ	14	2	176	۳	2	æ	179	151	2	m	9	143	-117
	101	1	9		141	- 189	2	-	ø	20	25	171	<b>~</b>	2	8	318	352	-	4	6	206	159
	308	'n	2	-	204	-175	~	-	8	22	42	24	0	2	Ø	176	nn-	°°	Ś	6	257	209
	153	1	10	-	247	338	6-	2	80	m	5	258	4	2	Ø	208	-228	7	9	6	155	136
	242	2	9	-	187	228	- 1	2	80	18	36	-90	6-	œ	ω	152	105	7	-	6	197	-258
	313	ĩ	:	-	245	230	<b>5</b>	2	8	26	5	305	9-	ω	8	215	-213	-2	œ	δ	159	- 155
	209	2	=	2	176	101	<b>~</b>	2	Ø	36		314	<b>m</b>	œ	Ø	245	191	<b>6</b> <b>1</b>	σ	δ	290	-254
	277	•	=	2	283	-291		2	8	26	45	168	7	ω	ω	159	-235	4	σ	6	195	151
	185	-	=	-	180	205	5	m	80	2	17	-206	-	δ	Ø	154	212	ĥ	9	σ	190	-232
	437	~	11	-	224	-202	-2	ŝ	æ	2	5	-237	m	6	ω	239	-267	2-	9	σ	211	191
	249	٩	12	-	216	213	0	m	æ	2	12	198	ő	9	æ	21	243	-2	0	9	252	285
	340	N	12	-	180	208	ſ	i m	80	16	39	179	7	13	ω	150	158	0	0	2	268	-202
	209	2	13	-	221	-206	~	4	Ø	2	00	-135	<b>m</b>	0	6	337	E##3	m	2	9	232	-166
	302	0	13	2	221	209	-7	4	80	2	5	204	1	0	9	219	246	ŝ	ŝ	9	187	179
	286	Ŷ	0	80	300	342	9-	4	æ	2	6	160	-	0	6	186	-106	ŗ	9	9	204	-222
•	257	9	0	8	444	-400	-2	4	æ	1	92	137	ĥ		6	197	-144	7	9	9	184	177
	322	1	0	80	383	354	-	म	æ	1	57	217	~	-	6	267	-303	۳ ۹	2	2	226	- 180
	134	4	0	80	259	-245	0	শ	80	20	03	-199	4	-	9	153	226	9-	~	2	152	147
	142	(V)	0	80	237	218	~	1	80	1	52	-112	9-	2	9	179	121	4	2	9	146	142
	-57	4	0	80	205	-236	<b>~</b>	5	80	1	88	-172	7	2	6	194	-214	m	4	=	160	115
	259	α I	-	80	222	-283	2	S	80	31	89	249	2	2	6	255	136	m	-	Ξ	172	34
	223	ï	-	80	348	326	m	S	8	-	75	127	0	2	6	173	-268					

4

pue	10F0	295 296 296 296 296 296 296 296 296 296 296
Pe	2	
100	×	
qo	H	รหฺพฺรฺ๛๛๛ฺฐฺพฺ๛ฺ๛๛ฺ๚๛๛๛๛๛ A51

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.



