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TESTS FOR UNCHARACTERISTIC CHANGES IN TIME SERIES
DATA AND THE EFFECTS OF OUTLIERS ON FORECASTS -

ERNESTINI GIZIAKI

Abstract
The thesis deals with some of the anomalies,that affect 

the predictive performance of univariate time series.This 
project should help to improve the forecasts made and should 
also assist those engaged in time series forecasting in real 
life situations in industry,government and elsewhere.

The problem of testing a set of data for outliers is not 
new in statistics,methods having been proposed for the
general linear model. However , there are very few papers on 
testing time series data for outliers.

The greater part of the thesis is concerned with the 
effects of outliers on forecasts, statistical methods of 
detection of outliers and the comparison of these methods. 
Applications of these methods in real life situations are 
also considered.

A subsidiary part of the thesis is concerned with the 
shift in the level of the series type of anomaly. Very few 
papers are published. These papers are reviewed. Tests of 
detection of this type of anomaly are proposed.

The final section considers the contribution made,the 
findings of the work and areas for further research.



Contents

CHAPTER

CHAPTER

CHAPTER

INTRODUCTION
The;general problem:progress in the 
area:the set-up of the thesis

METHODOLOGY - BOX & JENKINS
Introduction:stochastic processes:
Bpx & Jenkins methodology:forecasting

PREVIOUS WORK ON TESTS FOR DETECTING 
TRANSITORY OUTLIERS

8

24

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

A REVIEW OF PREVIOUS WORK ON THE CHANGE 
IN THE LEVEL OF THE SERIES
Introduction:review of previous work.

THE EFFECT OF AN "ERROR IN OBSERVATION" 
ON FORECASTING
Introduction:updating and component 
series: non-^seasonal direct basic form: 
seasonal direct basic form:expressions 
for the effect of an outlier on 
forecasts for some commonly identified 
processes: an illustration.

A TRANSITORY OUTLIER - TESTS 
Introduction: description of tests.

COMPARISON OF THE TESTS
Introduction:calculation of the power 
function:presentation of the power 
functions: some comments on the tests.

29

47

65

76

CHAPTER 8 A CHANGE IN THE LEVEL OF THE SERIES- 
SOME TESTS
Introduction:a cusum test for independent 
observations:a cusum test for dependent

98



CHAPTER 9

observations:intervention analysis:the 
general linear model to be employed 
in the case of an extreme innovation.

APPLICATIONS
Introduction:new dwellings and improvements 
according to permits issued for new 
dwellings and extensions : index of external 
trade with the EEC countries: U.K. Iron 
and Steel production index: De Zoete Equity 
index .

113

CHAPTER 10 CONCLUSIONS 149

APPENDIX 1 The derivation of the likelihood ratio 
test 152

APPENDIX 2

APPENDIX 3

2.1 The calculation of the direct basic i5g 
form of the process (1,2,1)
2.11 Program for generation of nonseasonal 
ARIMA models.
2.Ill Program for generation of seasonal 
ARIMA models
2.IV Computer packages for time series.
Box-Jenkins methodology.

3.1 Calculation of the likelihood function 152 

for an ARIMA model.
3.11 Calculation of 6 and its variance for 
an AR.model of order*!.
3.III. Calculation * of 6 and its variance
for an AR model of order 2.
3.IV Calculation of 6 and its variance
for a model of order (1,0,0)(1,0,0) .s3.V Calculation of 6 and its variance
for a model of order (2,0,0)(2,0,0) .s3.VI Calculation of 6 and its variance 
for a MA model of order 1 and 2.
3.VII Calculation of 6 and its variance 
for ARMA models.

APPENDIX 4 4.1 The noncentral t distribution. 175



4,11 Calculation of the power functions 
for AR(2) models.
4.Ill Calculation of the power functions 
for MA(1) models.
^•IV Calculation of the power functions
for SAR(1,0,0)(1,0,0)^2 •

APPENDIX 5.1 The Calculation of for certain 201
ARIMA models.
5.II A comparison of Fox's Type II outlier 

the General Linear Model approach.

References 205



CHAPTER 1 
INTRODUCTION

1.1. THE GENERAL PROBLEM
„ r- ••••

In recent years much attention has been given to the 
detection of outliers in data arising in various areas of 
statistics.Typically these data comprise observations which 

supposed to be independent and identically distributed»An 
extensive survey of the various techniques for detecting 
outliers is given by Barnett & Lewis,1978 and D»M» Hawkins, 
1980.

These methods are not available for examining outliers 
which may arise in Time Series Analysis,because typical data 
sets encountered in practice will be strongly correlated and 
whilst in the linear model any outlier does not tend to 
influence adjacent observations per se,the same need not be 
true for time series data,in view of the correlational 
pattern of the process. However, it seems to be particularly 
important to be able to detect outliers in Time Series data, 
especially if these data are to be used for forecasting
purposes.

Many estimation procedures are not affected by untypical 
movements in the sampled data,provided that they are few in 
number and that the sample size is sufficiently large. 
Consequently,criteria which would not normally play a role 
in estimation theory may nevertheless turn out to be of 
value in ascertaining properties of forecasting procedures.
For example,even if certain real situations can be well 
described by an ARIMA process,it is possible that changes 
can occur during the history of the series,which would .



be reflected In the values of recent observations•Such 
changes could be a shift in the level of the series that
will persist for some time and so on.It could also be a

. A
transitory outlier,l.e a measurement error etc.,In which 
case a single observation Is affected and the predictor rights 
Itself by damping down the deviation caused by the outlier.

1.2 PROGRESS IN THE AREA
There Is little published work on outliers in time 

series. Huber,1972(52) claims that the more usual outlier 
Is the one revealed In "bumps'* and "quakes".These are 
Indicated by local changes in the mean and variance,whose 
effect extends to Influence subsequent observations.Huber 
suggests examining the coefficients of skewness or kurtosls 
or applying a smoothing process,but offers no detailed 
prescription.

One of the few contributions to date is that of Pox (1972) 
(37).He defines two types of outlier,which might occur in 
time series data, namely type I and type II.The type I Is 
a transitory outlier,such as an error In measurement and 
affects a single observation.The type II error occurs where 
a single innovation Is extreme and affects not only the 
particular observation,but also subsequent observations 
and it might be thought as a transient change in the level 
of the series.He considers only non-seasonal autoregressive 
time series models and employs two test criteria based on 
principles of likelihood ratio and direct evaluation of the 
suspected outlier.

The problem of outliers in time series from a Bayesian



»point of view,using autoregressive models is considered 
by B. Abraham & G. Box.CldlS) (1).Their approach allows for a 
small probability that any given observation is "bad" and

; A
hence theoretical posterior distributions are obtained for 
values of the parameters and outlier.

The detection of anomalous data,outliers, is also 
Investigated by G.H. Jenkins (1979)(54) .His approach is based 
on the one-step forecast errors.

Chernlck,Downing and Pike (1962)(27) have employed the 
Influence function of the autocorrelat^ns of a stationary 
process for the detection of possible outliers.The influence 
function refers to the influence of any pair of observations 
k units apart on the estimate of the autocorrelations p(k).
An outlier will often have a significant Influence on each 
estimate of correlation.

The detection of possible changes in the level in the 
series has been considered by Box & Tlao 0975)(25),Johnson & 
Bagshaw (1974) (56), Box & Tiao (19’5)(24) ,Box & Tiao (1965). (22), 
Glass (1972)09).

Box & Tiao (1976). suggest, an indicator of change which
Q/n. iriiejpvemti-oti

is based on forecasts made from some point at which^is known 
to have been taken place with what has actually occured.This 
test is an overall test of the continuous appropriateness of 
the model.Possible discrepancies would certainly include( 
<a)change in .thevJ.e^el- (b) change in the parameters.Johnson 
& Bagshaw,(1974) have employed another approach,which is based 
on the effects on the run length(R.L.) distribution caused 
by the presence of serial correlation .Box & Tiao (1965) and 
Glass (1972) employed an approach known as "intervention



analysis “ which makes use of the idea of the transformation 
of the ARIMA model into the form of a linear model and 
examines the possible shift in the level of the series 
associated with a kno%m event.

In the present thesis the work of Fox is pursued further 
and the detection of **errors in observations" for a range of 
time series models is considered.Expressions for the estimate 
of the "errors" for several ARINA models are derived and 
their sampling variances are also produced.The calculations 
of the derivation of the likelihood ratio test are presented 
in this thesis.Another test,based on the differenced series,
\i§iS developed during the course of this work.This test and 
the ones proposed by Fox and Jenkins are compared on an 
empirical basis using simulations of several time series 
models.The power curves are drawn to clarify the comparisons. 
The tests mentioned are also applied to real life data with 
comments on the results produced.

In order to investigate changes in the level of the series 
a cusum test is proposed using the one step ahead forecast 
errors.Another cusum test is also employed based on dependent 
observations.Further,the idea of the transformation of the 
ARINA model into the form of the linear model is extended to 
certain other ARINA models.This transformation idea is 
suggested as an alternative to the type II outlier,extreme 
innovation case, described by Fox.-

Nore work is needed in respect of the test based on the 
differenced series,in order to find the parameter ' 
values,for which this test is robust.This research will have 
to be amplified in order to develop simple and if possible 
robust test criteria.The comparison of the tests proposed for



the detection of changes in "the level of the series on an 
empirical basis using simulated and real life series may be 
another area for further research.

1 ■ ̂ THE SET-UP OF THE THESIS
The plan of the thesis is as follows:
I• Introduction
II, A brief description of the Box-Jenkins class of 

models using time series analysis is presented.A description 
of the Box-Jenkins methodology is included.When applying any 
type of stochastic model to a particular problem it is usually 
recommended that the three stages of model development»namely 
identification - estimation - diagnostic checking be adhered 
to.Forecasting »using the Box-Jenkins technique is outlined
very briefly.

Illi The published work on transitory outliers in time 
series is briefly presented.

IV. Th® publish®d work on ® shift in th. l.vol of th® 
tin® s®ri®s is pr®s®nt®d.Th®r® sr® at l®ast two ways in 
which an int®rv®ntion can affact a ti«® s®ri®s.Th® l®v®l of 
th® s®ri®s could chang® abruptly by son® quantity or th® 
diraction of drift of th® sarias «ay changa.Th® affact of 
a known intarvantion,which is th® avant that causas th® changa, 
in a particular tin® intarval on th® laval of tha sarias is 
tha concarn of this chaptar.Tha papars raviawad includa:
(a) a ganaral indicator of change (b) an examination of 
cunulativa sun tasts.whan serial correlation is present (c) 
an intarvantion analysis approach (d) tha transformation of 
certain time series models into the form of the linear model
(e) the case of an extreme innovation.

5



Some of the papers . answer questions. on* %chether* 'therte 
is evidence that change lii the series of the kind expected 
actually occurs.' given a known intervention and others give 
answers to the above question and estimate the magnitude of 
this change.

V. •'direct*.basic form" of predictor togeth^rtiwith 
component and- updating series for non-seasonal and seasonal 
models are lTitn>clu.C33ilExact mathematical expressions,which show 
how the ' errors are magnified in the forecasts are produced. 
Clearly,errors of this kind may produce sets of unreliable 
forecasts.

VI. Tests,that can detect "errors in observation",i.e. 
additive type of outlier are described in some detail.The 
calculations of the derivation of the likelihood ratio test,
 ̂ the derivation of the estimate of the error 6 and its 
variance for certain ARIMA models are presented,too.A computer 
program-is developed,which gives the likelihood of the 
likelihood ratio test for certain ARIMA models.

VII. The tests described previously are compared on an 
empirical basis using simulations of several time series 
models.The power functions are tabulated and the power curves 
plot$:ed * . 'Some comments on the effectiveness of the tests 
are also made.When the null hypothesis is rejected the 
likelihood ratio test statistic,described in chapter VI, 
follows a noncentral t distribution.Therefore,the noncentral 
t distribution and its approximation are presented.

are proposed to detect changes in the level 
of the series given that an intervention has occured at a 
known point in time.A cusum test is proposed based on the 
one step ahead forecast errors.A cusum test based on dependent

6



observations Is also employed.The linear model transformation 
of the series is extended to certain other ARIMA processes.
The transformation of the series Into the linear model Is 
also considered In the case of an extreme Innovation and an 
alternative to the likelihood ratio test Is proposed.

IX. Four real life series are examined, viz the U.K. Iron
and Steel production lnd^x,the number of permits issued for 
new dwellings In Greece,the Index of imports to. Greece from 
the EEC countries and the Index of exports to the EEC countries. 
The series are examined for model Identification and 
estimation and tested for the presence o'? outlying observations. 
Comments are made to explain the presence of the • 
uncharacteristic observations.The data are given In tables

I^nd various useful graphs of the series are Included too.  ̂
This chapter proves the usefulness of these tests In the 
economic environment.

X. The work done on this project and its contribution 
are considered.Suggestions for future work are also inade..



CHAPTER 2
METHODOLOGY - BOX & JENKINS

2.1 INTRODUCTION
The time series model building procedure constitutes an 

attempt to construct from a given set of data an underlying 
stochastic process that could have generated the given 
observations.

A class of linear processes is examined and the objective 
is to select from this class a single process to describe 
a particular given time series.The time'series under 
consideration can be well represented after appropriate 
transformation and differencing by a stationary stochastic 
process and the validity of this assumption will Influence 
to some extent the validity of any Inference made from the 
fitted model.The facility to remove certain hinds of non- 
statlonarlty by suitable differencing is of considerable 
importance in the study of time series.
I Since 1970,when Box-Jenkins' book on time series .|
analysis was published ,many authors have written books and 
articles on time series and in particular on Box & Jenkins 
methodology and applications.

The model building procedure consists o^ an iterative 
cycle of Identification,estimation and diagnostic checking. 
The stage that creates the most difficulties in practical 
attempts at time series model building is the identification, 
where one is asked to choose from a wide class of models a 
single process that might adequately describe a given time 
series.Some objective criteria are available ,but there 
does not exist a clearly dtifined procedure leading in any

8



Igiven aituatioff to a unique identification. At this ata^a, 
it is necessary to exercise a good deal of judgement. 
Experience with the procedures involved will Increase the 
chances"*of successful ; ¡dentification.

, —  »wm»-

Xrt order to have any reasonable hopes of success on 
model identification , a moderately long series of 
observations is necessary.

In selecting a particular model for subsequent estimation 
one is not committed to retaining it. The model chosen is 
subjected to checks on its validity and the iterative nature 
of the model building process allows the* possibility of 
making appropriate modifications.

^hese points will be explained in some detail in 
the sections that followJ Also the forecasting procedure 
using the Box-Jenkins methodology will be outlined very
briefly.

The Box-Jenkins methodology is a powerful approach
to the solution of many forecasting problems. It can

\

provide very accurate forecasts of time series and offers 
a formal structured approach to model building and 
analysis.Its main limitations are :
1. It requires a large amount of data , at least 50 
observations and there are many tÿpes of forecasting 
problems in which this historical data will be 
unavailable.
2. There is not a convenient way to update the estimates 

of the model parameters as each new observation becomes
civailable.
3. Th. inv*»t».nt in ti«« «nd oth.r r.nourc«» rnqulrwl to 

build a aatiafactory nodal. T h ^  la vary raatrictlva



when a lot of different tine series have to be con-
%

sldered as It Is the case In the production-inventory 
systems environment.

4. Box-Jenkins procedures require that the analyst have 
a ‘sound theoretical background In Mathematics and 

*".3r"have access to sophisticated computer facilities.
Despite these limitations the Box-Jenklns models are probably 
the most accurate class of forecasting models available to­
day.

2.2 STOCHASTIC PROCESSES

2.2.1 General comments
Probably no phencxsenon Is totally deterministic,

' because unknown factors can occur. In many cases, 
a time dependent phenomenon Is considered where there 
cure many unknown factors and therefore It Is not 
possible to write a model that allows exact calculation 
of the future behaviour of the phenomenon.

Nevertheless, It. may be possible to derive a 
model that can be used to calculate the probability 
of a future value lying between specified limits.
* Such a model Is called a stochastic model. The models 
for time stochastic models.

A time series analysis presumes that the series 
 ̂ I has been generated by a stochastic

process * ,:<.l.e ' each-'value-In the series Is '•
drawn randomly from a probability dlstrlbu^on and 
a time series of n successive observations is regarded 
as a sample realization from an Infinite population 
of such time series that could have been generated by

10



a stochastic process. If the probability distribution 
function for the series could be somehow specified 
theh'the probability of one of another future outcome 
''could actually'be determined. . ti .§=•* '’•

But the complete specification of the probabi­
lity distribution function for a time series Is al­
most always Is^sslble. However, It Is possible to 
construct a simplified model of the time series 
which explains Its randcooiess In a manner useful for 
forecasting purposes. The usefulness of such a model 
depends on how closely it oaptucj^s the true probabi­
lity distribution. In other words how closely. It 
captures the characteristics of the series randomness. 
Hence, a time series model provides a description 
of the. random nature of the process that generated 
the sample of observations under study.. The description 
Is given not in terms of a cause-and-effect rela­
tionship but In terms of how that randomness Is em­
bodied In the process.

The stochastic time series models could be of
two types:

(a) stationary models
(b) nonstatlonary models

Por the stationary models, the stochastic processes 
are assumed to be In egulllbrlum over tlsM about 
a constant mean level. The probability of a given 
fluctuation in the process from the mean level Is 
assusmd to be the same at any point In time, that 
Is to say the stochastic properties of the stationary 
process are assumed to be Invariant with respect to
time.

11



If the chig:ACteri8ti,cfl of the 8tocha8tlc 
proce88 change over*time the*proceas. is nonstatlon- 
ary and it will often be difficult to repreaent the 
^tlme aerlee over paat and future intervale of time 
by a aimple model.

Many of the time aeriee that one encouhtera in 
buaineaa and econonlca are not generated by atationary 
proceaaea. However, certain ciaaaea of non- 
stationary proceaaea can eaaily* be tranaformed intio 
atationary or approximately atationary proceaaea.
Many time aeriea that ariae in economic and buaineaa 
applicationa belong to one of theae ciaaaea of non­
atationary proceaaea.

2.2.2 Propertiea of atationary proceaaea
If the aeriea ia atationary then

and ■ Pi*t+n?

for any t,k and m. In other worda, if the aeriea 
ia atationary, the joint diatribution and conditional 
dlatrlbution are invariant with reapect to diaplacement 
in time.

If the aeriea ia atationary, the mean the vari­
ance and the «ov««iWoe of the aeriea muat alao be 
atationary.

The mean, the variance and covariance are de­
fined aai



o‘ - E( ( Z ^ - U, )‘ )
 ̂ )-E Wj)(*t+k "̂'***'̂ *“  *“*y
For any stationary series:

E(x^) - E(*t^„ )

E((*^ - W, )*) - E ((*t+„- U,)*) 

for any t and m and

^^*t'*t+k^ " ^^^*t+«p'*t<-mfk^

For a stationary tine series an estinate of the 
mean of the process is obtained from the sample 
mean of the series and an estimate of the variance 
is obtained from the sample variance.

2.3 BOX-JENKINS METHODOLOGY
B-J present a general methodology* for developing an

appi^opriate ARIMA tiine series model and using^ the model in 
forecasting.

Such a model can be defined by the equations

.q)(B) (l-B)^s^ - U + ^(B)a.^ (2.1)

where <p(ß) and 0(3) are operators'in B - the back shift 
operator - of degree p and q, respectively, whose seroes 
lie outside the unit circle. Also { denotes a sequence 
of uncorrelated random variables with sero mean and a conmon 
variance. Hodels defined by the above equation are capable 
of representing both stationary and non-statlonary time
series.

13
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The relating of a model aa (2,1) to data la best
achieved by a three stage Iterative procedure baaed ont
a. Identification. Here the data^re used to suggest 

a subclass of linear models worthy to be. examined 
further.

b; estimation# where efficient use of th(s data Is made 
to help us to make Inferences about the parameters 
of thé suggested models.

c. diagnostic checking# where the fitted model Is checked 
with Intent to reveal any model Inadequacies and so to 
Improve the entertained model.

These three-stages are discussed In some detail In the
following paragraphs.

2.3.1 Identification
Any homogeneous time series can.be modeled as 

an ARIMA process of order (prd,q). The practical 
problem Is to choose the most appropriate values of 
p,d and q to specify the ARIMA model.

This problem Is partly resolved In the Identi­
fication stage' by exasdnlng both the autocorrelation 
function (ACF)'and the partial autocorrelation function 
(PACF) for the time series of concern.

Given a series s^ that one would like to.model, 
the first problem Is to determine the degree of homo­
geneity d, l.e. the number of times that the series 
must be differenced to produce a stationary series.
In order to determine the appropriate value of d, we 
make use of the fact that the autocorrelation function 
(ACF) for a stationary series must approach sero as 
the displacement k (how far apart the observations 
are) becooms large. But one needs certain tools#

14



for judging whether the hCF end PACF are zero after 
some specific lag.

R.L. Anderson (9) has shoim that for a series 
>of a moderate length, the distribution of an estimated 
autocorrelation (AC) coefficient, whose theoreti­
cal value is zero, is approximately Normal. HenCe 
on the hypothesis that the theoretical AC is zero, 
the estimate of AC coefficient divided by its standard 
error, is approximately distrdlbuted as a standard
Normal. This is also true for the partial AC co­
efficients. ^

The procedure for specifying the value of d is 
straightforward. The ACF of the original series z^ 
is examined 2md it is determined whether it is 
stationary. If it is. not, the series is differenced 
and then the ACF of (l-B)z^ examined to determine 
whether stationär!ty has been achieved. This pro­
cess is repeated until a value for d is reached, 
such that (l-B)^z^is stationary, that is the ACF 
approaches zero as k becomes large. ‘ One should 
also examine the time series itself to check for 
stationarity. If the series appears to have an 
overall trend, it is probably not stationary.

After d is determined, one can work with the 
stationary series and examine its estimated ACF and 
PACF to determine the proper specification of p and 
q. Many of the time series encountered in practice 
can, if they are seasonably adjusted, be modelled 
as low order ARMA processes, i.e. as processes with 
p $2 and q S2. Nhen this is not the case, i.e. when 
p and q are of high order, the specification of p

15



and q becomes more difficult and one may at best 
only be able to make a tentative guess for p and q.

In particular, the ACF of an autoregressive 
^<AR) process of order p tails off and Its PACF has 
a cutpff after lag p.

The AGP of a moving average (MA) process of ‘ 
order q has a cutoff after lag q, while Its PACF 
tails off.

For a mixed Autoregressive - Moving average 
(ARMA) process both the ACF and the PACF tall off. 
Furthenwre, the ACF for an ARN\^ process containing 
a p ^  order AR component and a*q^ order MA Is a 
mixture of exponentials and sine waves after the 
first q-p lags, %dille the PACF Is a mixture of ex­
ponentials and sine waves after the first p-q lags.

To sunmarlze, AR (MA) behaviour as measured 
by the ACF, tends to mimic MA (AR) behaviour as 
measured by the PACF.

Identification of the appropriate. ARIMA model 
requires skill obtained by experience.

2.3.2 Estimation
Having identified one or more tentative models 

for a time series, one wouldf like to obtain the best 
or most efficient estimates of the parameters, before 
proceeding to actual forecasting.

EstlMtes which maximize the likelihood func­
tion are ttie best and most-efficient estimates. If the 
number of observations Is large. There Is a com­
putational procedure id&ich will lócate these estimates 
for any ARIMA model, one might specify, regard-

16



less of the data or the particular values of p,d 
and q.

For the estimation procedure to be carried outf 
^it has been assumed that a total of N«n-Hl original 
observations z form a time series and that this

• » ■series is generated by an ARIMh.model of order (p, 
d,q). From these observations a.series w can be 
generated with n«N-d data points*.

Thus the problem-of fitting the parameters <p 
emd d of the ARIMh model is equivalent to fitting to 
the w's the stationary (prq) modelr %diich is

» t  ■ ' ' t " ^ l ' ' t - l " ^ 2 '^ t - 2  “ • • • “^p '^ t-p  ’* ^ lH - l '* ’ ***'*^q H - q
(2. 2)

where

*t" *t

The values of s's are calculated provided that 
p values of the w's and q values of -f'* prior to the 
commencement of the series are given. It has already 
been assumed that the error terms e^are normally dis­
tributed. Therefore the likelihood function is given 
byt

L ■ p(*ai • • ^  , 2o; t-1 *

The log-likelihood associated with the parameter 
values <prdfO would be

(2.3)

The N.L.E. of is given by the minimisation 
of the sum of squared residuals S(o>r̂ ) •
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l(<p,0,o^) is conditional bn the past and unobservable
values of ^“1 ̂ • • • •» w^p | <| $ ^*1 ̂ * * *^“^+1 *
In fitting a model of order (prd,q) a reliable appro- 
^ximation is to use (2.2) to calculate the a's from 
a^^^ onwards by setting previous a's equal to zero. 
Using this method, the squares of only n-p values 
of a^ can be summed, but this slight loss of 
information is not important for long series.

Box and Jenkins propose a plotting of the 
likelihood functions because it is the whole course of 
this function, which contains the totality of infor­
mation ccifting from the data .

2.3.3 Diagnostic checking
The object of the diagnostic diecking stage * is not 

merely to detersiine whether there is evidence of 
lack of fit, but also to suggest ways in which the
model may be modified when this is nécessary. Two

• • •basic methods áre suggested:
1. Overfitting

The model may be deliberately overparameterized 
in a way it is feared may be needed and in a 
manner such that the entertained model is .
obtained by setting certain parameters in the 
more general model at fixed values, usually zero. 
One can then check the adequacy of the original 
model by fitting the more general model and 
consldetirig whether or not the additional para­
meters coiild reasonably take on the specified 
values appropriate to the simpler model.

2. Diagnostic checks applied to the residuals
The method of overfitting is most useful, where 
the nature of the alternative model is known. 
Unfortunately, this information may not always
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. A.

be available and leaa powerful but siore general 
techniques are needed to indicate the way In 
which a particular model may be wrong. It Is 
natural to consider the stochastic properties of 
the residuals calculated from the sample series 
using the model.

♦ (B) V** - 9(B)»^

with .stUMt.« ...... *q
substituted for the parameters. This Is 
because one way of viewing the process of 
modeling time series Is as an attempt to find 
a transfoirmuitlon that reduces the observed data 
to random noise. If this was successful, one 
would expect to find that the estimated residuals 
have the properties of random numbers.
The autocorrelation function of the residuals may
be studied. This Is 

n n
It-k+1 't-k / I s;t-i ^

for k«l,2,.....
Ah Informal graphical analysis of these quantlt-% 
les combined with overflttlng usually proves most 
effective In detecting possible deficiencies In 
the model. In addition, It Is often worthwhile 
to lodk at an overall criterion of adequacy of 
fit.
Such a criterion Is the portmanteau test statistic 
which refers to a general test of randonuiess.
Box and Pierce, 1970 (21) noted that If the model 
were appropriate and the parameters were known, 
the quantity

m
Q(r) ■ n J r^(k) 

k-1
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based bn the first m residual autocorrelations,
would for large samples be distributed as a 2X since r(k)'s are Independently distributed 
for large samples and the data come from a white 
noise process.
The justification for ^ e  test statistic Q(r) is
an asymptotic one. However, in small samples It2has been found that X ^ does not provide a parti­
cularly good approximation to the distribution 
of Q(r) under the null hypothesis.
A rather more satisfactory modification is)

m
Cf (r) -  n(m2) I  r^ik)

*The expression Q*(r) comes from the recognition
that n-k is a closer approximation to the 

nTn72) .
variance of r(k) than does ^ }

see Ljung and 6.E.P. Box-,(.1978) (61)
Also when the p,q parameters of an appropriate 
model are estimated then

Q(r) î (k)
M

would be distributed as X' (p+q) for large n.
This yields an approximate test for lack of fit.
A data-transforation cannot correct dependence 
of the residuals because the lack of independence 
indicates the present model is inadequate.
Rather, the identification and estimation stages 
nnist be repeated in order to detersdne a suitable 
Biodel.
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2.4 FORECASTING
Using the Box-Jenkins methodology^ an observation 

^ t + 1 ' 1S:  ̂f generated by the process i
. A

4 (B) - 0 (B)

can be expressed:
1• Directly In terms of the difference equation

V l  * ‘̂l̂ ta-l **■ \d-pd ’ \\d-r... " Vb*l-q **■ ̂n-1

,as an infinite weighted sum of current and previous 
shocks a^ l.e.

t+1 t+l-j *j ■ ¿0 J *t+l-J

where V^"l and the T weights may be obtained by equating 
coefficients In:

• (B) (1+ Tĵ B + »2® +......^

3. as an Infinite weighted sum of previous observations, 
plus a random shock:

®t+l ■ I *t+l-j + «t+1
j.l

where the n weights may be obtained from:

♦ (B) - (1-Wĵ B -  ^2^^ ..........^

Given knowledge of the series up to some point, t, 
the Minimum mean squared error (MMSE) forecast 

2̂ (1) for 1> 0
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of conditional expectation

-[ - B I 2̂ , .... ]

— Hence, if the model is correct, there is no other 
extrapolative forecast, which will produce errors whose . 
squares have smaller expected value. Assuming that the a's 
are Normal, it follows that given information up to timej
t the probability distribution

p ( I Zt'Vi....>

of a future value of the process will be Normal with
mean ¿^(1 ) and standard deviation

1-1 2 is

It is usually slsq>lest in practice to compute the fore­
casts directly from the difference equation. The expectations 
are evaluated by inserting actual z's when these are known, 
Z'*>s,forecasted for future values, a's • .when these, are known 
add zeroes, for - future a's".-* * •

2.5 SOHHARY
This chapter gives a brief description of the Box - 

Jenkins class of models employed in time series analysis.
A description of the Box-Jenklns methodology is also 
included.

When applying a Box-Jenkins model or in general any 
type of stochastic model, to;» particular prbblen it is hisuaUy 
recommended that the three stages of model developnwnt be 
adhered to. The first step is to identify the form of model
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of ±8 the conditional expectation

-[ V i l  - = [St+I Í V i .... ^
. A

— ,, Hence# If the model Is correct# there la no other 
extrapolative forecast# which will produce errors %diose . 
squares have smaller expected value. Assuming that the a's 
are Normal# It follows that given Information up^o time 
t the probability distribution

p ‘ V i  I ....>

of a future value of the process will be Normal with
mean ¿^(1 ) and standard deviation

V  2

< ' * jll ’ J > "•

It Is usually simplest In practice to compute the fore­
casts directly from the difference equation. The expectations 
are evaluated by Inserting actual z's when these are known# 
z'>8.forecasted for future values# a's • .when these are known 
aftd zeroes, for* future a's".-' ' •

2.5 SUMMARY
This chapter gives a brief description of the Box - 

Jenkins class of models employed In time series analysis.
A description of the Box-Jenklns methodology Is also 
Included.

Mhen applying a Box-Jenklns model or In general any 
type of stochastic model# to*a particular pcbblam it is usually 
recommended that the three stages of model development be 
adhered to. The first step Is to Identify the form of model
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that may fit the given data. At the estimation stage, the 
model parameters are calculated by employing the method of 
maximum likelihood. Then the model is checked for possible 
inadeqüacies. If the diagnostic checks reveal serious ano*- 
malíes, appropriate model modifications can be nmide by 
repeating the identification and estimation stage.

Forecasting, using the Box-Jenkins.technique, is also 
outlined very briefly.

* •
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CHAPTER 3
PREVIOUS WORK ON TESTS FOR DETECTING TRANSITORY OUTLIERS

typical data seta arising in various areas of statistics
•-»*

are- often considered.* aAcoihprlsing indepdndent and'identically 
distributed observations. A survey of the various techniques 
existing in the literature for detecting outliers is presented 
by Barnett t Lewis, (1978 ) (16) and D.M. Hawlcins, (1980) (50).

These techniques are not appropriate ffdr^ detecting 
outliers in time series analysis, where data sets will be 
strongly correlated and this means that not only the 
successive observations are autocorrelated, but also strong 
seasonal effects occur. However, it is important to detect 
outliers in time series data, especially in the case that 
these data are to be used for forecasting.

In time series, an outlier is not necessarily an extreme 
value, but it can be a change or a brea)c in the pattern of 
the series. In the general linear model an outlier does 
not tend to influence adjacent observations per se, the same 
need not be true for time series data in view of the 
correlational pattern of the basic process.

There is little published worlc on outliers in time, 
series in terms of time domain analysis. One of the few 
contributions to date is that by A. Fox,(1972)(37).

Fox considered two types of outliers, namely Type I and 
Type II. A type I outlier corresponds to the situation in 
which a gross error of observation or recording error affects 
a single observation. A type II outlier corresponds to the 
situation in which a single "innovation” is extreme. Type II 
outlier will affect not only the particular c^servation but 
also subsequent observations.
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The tests developed In chapter six are referred to 
type I outlier .Type II outlier tests are reviewed in 
chapter 4.

Fdx has considered only autoregressive non-seasonal 
tiiie. series models. Therefore, the model is

(3.1) ̂ ¿«X  ̂ ^
For t*p+l,
where <pg are autoregressive parameters and the a^s are
Independently normally distributed observations,with mean

2

x^s are such that

It is assumed that any trend in the series has been 
removed,the are therefore taken such that the process w^ 
is stationary.The order of the regression is assumed known.

It is possible either to test whether x^,for:.a 
particular value of r,ls an.outlier or test all values x^ 
to see if any are outliers.

Model (3.1) gives a stationary autoregressive process, 
with covariance

0 - o * m:

where M is an nxn Laurent matrix and depends only on the 
autoregressive parameters.

The elements of the inverse of H are given asymptotically

» 1  ,3.2)



where A* are the elements of estimated under the nullA
hypothesis,l.e-6 equals zero.N* are obtained by substituting 
the maximum likelihood estimates of the autoreqressive 
parameters under the null hypothesis.

•"••IThen if N is the inverse of M under i.e. when 6 

does not equal zero, the elements are obtained by sub­
stituting the mle of the autoregressive parameters under H. 
into (3.2). Maximization of the likelihood under the two. 
hypothèse leads to the likelihood ratio criterion

( x-5 ) (x )

x'8"^x
(3.3)

where
6 « ¿(0,0, ... •. ,1 ,0,•.. .0) is the estimate of the

displacement in the r—  observation.
The power curves of the likelihood ratio test and the

random sample procedure are drawn for the case of an AR
model of order 1 using simulated time series. The random
seunple procedure is the one based on the assumption that "¿S"ki
are identically and indej^ndently ' distributed as N(u,o )• 

Another simple criterion of the form

J L -

is also mentioned by Fox. A
The sampling variance of 6 r for an autoregressive non- 

seasonal model of order p, is given. Fox mentions that this 
variance can be estimated by spectral methods and refers to 
the book by Grenander and Rosenblatt,(1966) p.83 (48).

Another published work is that by B. ABRAHAM a G.E.P. 
Box (1978̂ (1) have dealt with the prc^lem of outliers from 
a Bayesian point of view, using autoregressive models. The
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type I outlier of Fox is named by them as "aberrant 
observation". Their approach allows for a small probability 
that any given observation Is "bad" and In this set-up 
Inference about 1:he parameters of an autoregressive model 
1ft considered. The type II outlier of Fox Is named as 
aberrant Innovation" and Inference about the parameters 

of an AR model Is also considered.
In 6 .N. Jenkins,(1979)(54, pp12) the detection of 

anomalous data Is based on the one step adiead forecast 
errors and quotes "... It Is important to monitor and ap­
praise the performance of the forecasting system. It 
Involves t

(I ) designing statistical tests to check that the 
one step ahead forecast errors are random with mean zero 
and a specified standard deviation as defined by the model;

(I I ) ’ taking action. If they are not random e.g. by 
adjusting "anomalous data", updating the model, bringing 
In new variables etc."

Occasional large errors In data can have drastic 
effects on estimates of correlation coefficients.
M. Chemlck, D.J. Downing and D.H. Pike, (1982) (27) have 
Investigated the effect of outliers on time series data 
1^ considering the Influence function for the autocorrelations 
of a stationary time series. An outlier will often have a 

very large positive or negative Influence on each estimate 
of correlation. The Identification part of the Box-Jenklns 
approach relies on the sample autocorrelation. Thus out­
liers can have dramatic effects and lBq>llcatlons on the 
Identification phase.

For a stationary Gaussian process with mean Ur variance 
o^ and covariance p(k), the Influence function has a
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distribution of a constant times a product of standard 
normal random variables. This distribution can be used 
to determine what values for the‘Influence function should 
be'undsually large for a realization from a stationary

,-rf •••♦Gaussian process.
The Influence function I Is written as

 ̂ * »i+k* !  ^

- (l-p?k)) 2

where  ̂ and 2 observations from Independent
standard normal distributions

f j ^ y
i,k.l ^

i+k
p(k))

y. -  yi-l-k
/(I -p(k))

/ 2

y. +  y

”i,k.2 ^
1-i-k

p(k))
'i " î-i-k 1

1 - p(k)) J
/ 2

thy^ Is the 1^  standarlzed observation.
Several applications of the Influence function matrix 

to detect outliers are given by these authors.
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CHAPTER 4
A REVIEW OF PREVIOUS WORK ON THE CHANGE IN THE LEVEL

OF THE SERIES
. A,

4.1 tlirifoDOCTION
Many tine series derived from behavioural or social 

sources appear not to possess a fixed l^el over any sub­
stantial time period. Unlike many biological, physiological 
and meteorplogical time series, which oscillate around a 
relatively constant mean, time series observed in much 
educational or social scientific resea|[ch, usually 
fluctuate about one level for a period of time, then 
drift slightly amd erratically to a different level for a 
subsequent period.

The various forms of change may be represented by a 
step change (fig a), by a response which is not immediate 
(fig b,c) or by an initial increase and then a decay of 
this increase (figures d,e) etc.

Possible examples of such shifts are the followingi
1. The observations might be of sòme economic nature and 

a change in the level may have occured in a particular 
time interval because of a change in government policy.

2. The observations might be measurements smde on the 
purity of water river and the event to occur in a 
particular time interval could be the opening of a 
nuclear power station.

3. Figures for sales of a product and the effect of 
promotions, advertising caiiq;>aigns and price changes is 
to be examined.
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Figure 1 : Various fonns of dunge

(a) ;> • ' e •

(b)

(c)

(d )

Available statistical j^rocedures such as a Student's 
t - test for estimating and testing for a change In the 
mean have played an Important role In statistics for a 
very long time. Unfortunatelyr the t-test would be valid 
If the observations before and after the event of Interest 
varied about means not only normally and with constant 
variance but also Independently. This Is not our case 
because the data are time series, where successive observations 
are usually dependent and often non^statlonary and
there may be strong seasonal effects.

Thus, the ordinary parametric and non-parametrlc stati­
stical procedures, ^Ich rely on Independence In thé 
distribution function are not appropriate.

There are some published papers, reviewed In the next
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sections r which try to cfvercome the difficulty of dependence 
and answer questions such ass "Qlven an Intervention» Is 
there evidence that change In the series of the kind 
expected actually occured» and if so, what can be said of 
the "nature and magnitude of the change?”

The papers reviewed In the next sections Includes
1. a general Indicator of change (Box.a Tlao, 1976)
2. an examination of the cumulative sum tests, when 

serial correlation Is present (Johnson a Bagshow, 1974)
3. an Intervention analysis approach (Box a Tlao, 1975)
4. the general linear model approach applied to certain 

processes (Box a Tlao, 1965 - 6.V. Glass, 1972)
5. the case of an extreme Innovation (A.J. Fox, 1972)

Some of the papers to be reviewed use the Idea of the
general linear model. Much work has been done by Quandt(1972) 
(71) to test for a change In regime with Independent 
observations•

In the case of an extreme Innovation, Fox has given the 
formulae for the test criteria without deriving them. A 
derivation is presented In appendix 1 .. •.

In chapter 8, tests which correspond to an extension 
of the general linear model to sosm other ARIMA processes 
and the employment of the general linear model to the case 
of the extreme Innovation, are proposed.

4.2 REVIEW OF PREVIOUS MORK

4.2.1 A useful Indicator of change
Suppose that n observations are available and It 

•uspected that changes slight have occured In the
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level after tine T, where T is lees than n.
A test %fhlch examines the overall appropriateness 

of the model during the period T-»-1, ••••» n Is 
proposed by Box and Tlao, 1976 (25). The test Is 
based on forecast errors.

The M.M.S.E. forecast of Is denoted by z(t). 
The forecast error * ^t * given by

e ■ '^a
Iwhere j's are random shocks and A ” 2 £

j ■ jl; The i|> and v weights may be obtained the
L equal It le»<4‘<):’. The covariance matrix for e Is

V - E(ee') - «nd

V - 1.» /o.

Under the hypothesis of no change» the test criterion
Is

e'V”^e ■ e'j'^ / o^ t«T->-l (4.1)

and Is distributed as with n-T d.f. Q Is the 
standardized sum of squares of the one step ahead 
forecast errors. Thereforer the nature of the changes 
may be studied by »comparing forecasts suide at time T 
with the actual observations themselves.

This test Is a useful general indicator of 
change used at least as a preliminary identification 
tool.

A suspected change in the level of the series may 
be Indicated by the existence of serial correlation 
in the residuals sample autocorrelation at lag 1 and 
it Implies that the forecasts will not be as accurate 
as possible. This is also mentioned by Box and Tiao 
~ )  f { B )  (1+4»-B+4»2B2+.... ) - 6(B)

g(B)* (l-z^B-^B' ) 6(B)



(1976).

4.2.2 Cumulative sum tests (cusum tests)
Although cumulative sum tests are widely accepted 

' In practice and two monographs by Woodward and (;old- 
smith, (1964 )(79) and van Dobben de Bruyn,(1968)(31 ) 
deal with many aspects of the subject In detail, 
there are no theoretical results concerning the 
properties of the tests, when the observations are 
dependent.

When the observations, say«y's, are Independent
2with mean 0 and variance o < «< a test statistic based 

on CUSUM Is proposed by Page(1955)(69)
That Is

lie Pr [__D- > k ] ■ Pr [T>k ]
n̂ ««* /n o

(4.2)

where

and

C ■ max Is - min s.)
" rfn ^ I6r . ^

r
®r - Ij-1 ^

Critical values fox the test based on T are
given In table 1 and are extracted from Page's 
published work (69).

Johnson and Bagshaw, (1974 )(56) have considered 
the effect of serial correlation on the performance 
of the cusum test. The sequential version of the 
test based on Ĉ ,̂ which stops when C^> m^was examined < 
where m Is of the form /nak.

The Average Run Length (ARL) has been used as 
a criterion for studying the sequential version of 
the test. The effect of serial correlation on ARL
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and R.L. (Run Length) distributions was studied.
These two authors compared their results with the 
true distribution on the basis of a Monte Carlo study 
fusing normal observations in the case of AR (1) and 
MA (1) models. It appears that the approximation is 
adequate for the larger run lengths and that positive 
(negative) lag 1 serial correlation decreases (in­
creases) the ARL from the case of independence.

TABLE 1 : Critical values for tiie test based on T

Type I 
error .01 .05 .10 -, -15 .20 .25
K 2.81 2.Î24 1.96 1.78 1.64 1.54

4.2.3 An intervention analysis
The possible effect of- interventiôns.in the

presence of a dependent noise-structure is considered.
The expected effect of the intervention would be to
produce a more or less imoiediate change in the level
of the series or no change at all.

An approach used is to build a stochastic siodel
which includes the possibility of change of the form
expected (Box and Tiao, 1975). The process proceeds
with the main stages of the Box-Jenkins methodology!
”1. A model for change is framed, which describes 

what is expected to occur given knowledge of 
the known intervention.

2. The appropriate data analysis based on that model 
is worked out.

3. If no inadequacy in the model is shown by the 
diagnostic checks, make appropriate inferences;
If serious déficiences are uncovered, the 
appropriate sK>del s»dification is made and the 
analysis is repeated.”
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Following the above strategy, the models 
employed are of the forms

.  f  U , D ^ , t  ) + (4.3)

where
Is some appropriate transformation of the 

original series z.
t) allows for the deterministic effects of 

exogenous variables, D^. These exogenous 
variables are tadcen as indicator, dummy 
variables with values 0 and 1 denoting the 
nonoccurence and occurence of interventions.

X is a set of unknown paraiseters
stochastic variation of noise

The noise may be modeled by a mixed auto-
regressive moving average process.

The effect of the exogenous variables can be
represented by the transfer function associated with
known interventions, which is

(B)
f ( *y»T,D̂ ,t) I

j - 1  T j(B ) t j (4.4)

Y (B), t (B) are polynomials in B; the roots of y(B) lie 
outside the unit circle, while the roots of t (B) lie 
outside or on the unit circle. are defined 
previously.

Many situations of potential interest can be 
represented by various forms of the transfer function

îffl.
The M.L.E. procedure is employed to estimate the 

unknown parameters of the model, provided that the 
series z. is appropriately transformed to a stationary

35



one, say w^. That is

t (b )
 ̂  ̂ j t (B)

%

The Bodel is written ass
. (.._t<B) 9(B»)---)

s(B) f(B®)

The likelihood function may be written asi

lil) * (2 s |Mr’*.exp {------y) (4.5)
S(B )
2 o

where
^ is a vector haying as its elements all the 
parameters of the model.

is the covariance matrix of the stationary• a .
process» w^ and

S(B) - w'M'^w (4.6)

Jf the roots of the model for w^ are not close 
to unity, for moderate and large series the likelihood 
is dominated by the. exponent.

The likelihood is maximized and those values of 
3 that maximize the likelihood are calculated.

The MLE of 3,1 is approximately distributed as 
a multivariate normal with mean 3 and covariance 
V(|). AThe sguare roots-of the diagonal elements of V(3) 
will be referred to as standard.errors.

V(B) 2̂

S(B)
®a “ N-k

t®i^
-1 (4.7)
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3 s(g .r
38^ 36j

11

where S(B) Is as defined in (4.6) and k is the 
number of the estimated parameters.

To test for a change in the level of the sexries, 
the coefficient (g) of the appropriate exogenous 
variable is conildered. The appropriate test is 

6j (4.8)
s.e.(B^)

Box and Tlao have applied the above explained 
intervention approach to economic and environmental 
time-series problems, to test for possible changes in 
the level of the series.

4.2.4 The general linear model approach
The problem of making inferences about a possible 

shift in level of the series associated with a known 
event, using the .idea of transforming the model into 
the faiftiliar form of the linear model ̂ is considered 
by Box and Tiao,(1965)(22), 6.V. Glass,(1972)(39).

Stochastic models very common in practice were 
employed. Box and Tiao have dealt with'an integrated • 
moving average sodel of order one.

Suppose that the series though originating in the 
distant past, is first observed at an arbitrary point 
in time, say t«<0. The true but unobservable level of 
the series at time t*0 is denoted by u# which is 
itself the result of a weighted sum of random shocks 
extending into the infinite past.

Hence,
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fl;

1

- U + (4.9)

where
A

U is the level of the process, a measure of the 
location of the series at any given time•

(4.9) can also be written In terms of previous 
observations 

Hence,

- (1-4) I ^ + a.150 t-l-i t
t-2 —

■ (1-4) I ^ Z A* ^M+ a (4.10) i«0 t-l-i t

values of 0 between O and 1 are frequently found In 
practice.

Let us assume that d is Icnown and that the para­
meter 4 measures the shift In the level of the series 
associated with a particular known event.

The first n̂  observations available before the 
event occured are:

*1 ■ “ + *1  
t-2

‘ ^  V r 1 t-1
 ̂ * Jo   ̂ "t-l-i ** * *1

for t*2 f .... r n̂
The next N-n^ observations are written as:

t-2

- (1-* ) I ,+* M
(4.12)

Since d Is assumed known, ao 1-d*does. Therefore, 
the following transformation luiy be made:
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- y +
t-2

(4.13)

for t>2,3,....,N
(4.11) and (4.12) are now written In the form of the 
linear model:

where

Y ■ XJ + e

y is previously defined (4.13) 
and takes the form:

(4.14)

3 refers to the vector of regression coefficients; 
that is:

X is the data matrix. In the case of an IMh 
(0,1 ,1 ) model this matrix is:

1 0
0
*2

n̂i-1
♦"1 1
e 4
N-1 N-(ni-l-l)4 4

e is the vector of random shocks. This is
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The Least Square estimator of 3 is
.-1i -[!!]■ (*'x)"̂ x'x6 (4.15)

The test criterion is

{
(y-y)'(y-y) c, (4.16)

N-k
and tests the hypothesis of no change i.e. 3^"0.

The sampling distribution of Q is t, )c is the 
no. of regression coefficients^ c^^ the i ^  diagonal 
element of (X'X)~^ and

Box and Tiao, (1965) (22) have also employed the 
idea of the general linear model in the case of an 
autoregressive siodel of order one.

This model is restrictive» since it implies that 
observations near the beginning and the end of the 
series should have as much weight in the estimation of 
6f as those close to the intervening event.

The model is as followsi
M+ aĵ for t«l

(4.17)
2^ ■  ̂ 1 ̂  *t t*2,3,....,n̂

For t«n̂  + 1 the model is

« (1-g ) v-1'6 +fZt-i *t (4.18)
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(1-B) {Z^- u) - + (to+ ?i-2) «t-i+d-Co» *t-2

where So - ^^ 2

El - i-(̂ i-
(4.22)

The node! is transformed in eV. which will be 
functions of u end current a's.
At tiee t • 1

yi - Zi -u+ â (4.23)

At time t*2

(1-B)^(Z2 - M) - a2 -♦lei

But from (4.23) Si ■ , hence by
substituting

y2« Z2* ■ -(l-«;i)ll + «2 «-^t^‘24)

For t-3 , Zj-ZZj+Zj -
and by substituting â  and a2 from (4^23) and (4.24) 

Yt-Zt - 2Z^_^ + 2t-2+*l*t-l**2»t-2 * V  't"
I

Thereforer the transformation takes the form

! ^  - W f^ + a^ !

»«»1

(4.25)

f2 - -d-di).

^3 " ^1^2 ^2^1

^t ■ ®1*t-1 ®2^t-2
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Por t ■ +1, »N :

^t“ + *t-n* + a.

where f. Is as before and ft-n<

(4.26)

Is formed as f^ and
finally in the form of the general linear model 

Y - X B + e

where

The model employed In the Intervention analysis

- f(X,D^,t) +

can be written as 

Q(B) - --- ](L5l D. + a
♦(B) t(B) ^ ^

(4.27)

■ «1 0

•

• #

• •

f^ 0

fn^+1 1

f..N. *Pterion Is as before (4.16)

where
Q(B) - JLiSl.

♦ (B)
The situation where .♦-LSI -llS^ ■BR(B)♦(B) T(B)
Is discussed by Box and TlaOr( 1975) (24)
(4.27) may be written In the form of the general 
linear model, one parameter linear model
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't - e*t *t

where
- Q(B)
- R(B)

The M.L.E. of 3 1«
N ̂ N N ,

® * I Y t i  (4.28)t-1  ̂ ^ t-1 ^
with

2 N
Var( B ) - o^( I (x^)^)

t-1
The test criterion Is as before

(4.29)

Q - B (4.30)
a.e.( B )

Two special cases of Interest are considered In Box 
and Tlao, 1975 (24).

These aret
X) ^ « B^ where B Is the backshift operator

t (B)

This case Is appropriater when the response to 
the Intervening event Is a short-lived one.

2) -jdSl
t (B)

__ B Is again the backshift
operator

In this case the response Is a step change In the 
level of the observations.

4.2.5 Extreme Innovation
The extreme innovation or "aberrant innovation" 

case Is closely related to the technique of "Inter-
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ventlon analysis” revlewsd in the previous sections, 
as it is noted by Hawkins (1980)(50).

This extreme innovation will affect not only the 
^particular observation, but subsequent observations 
as well. This situation is named by Pox,(1972)(37) 
a "type II outlier”.

A nonseasonal autoregressive model of order p is
employed, this is 

P
+ *t + *t (4.31)

where f if t|< r
(4.32)

6̂ if t *r 
The outlier 6 is part of the model and affects 

and through it subsequent observations Z^^^ ......
Suppose that the position r is known, then the 

hypothesis to be tested is

against
6 f( 0

Maximization of the likelihoods, under the two hypotheses
leads to the likelihood ratio criterion

«

N-p/2N
I J * t “ ili?il*t-i "*t^t»P4-l_____III____________

t-^l^*t“ iIi^io*t-i^

(4.33)

The likelihood ratio criterion has been derived 
and is given in appendix l.'\

are the estimates of under
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m

are the eetlioatee of under 
0̂  is the estimate of 6^ under 
Another criterion is also considered. This is

where
(4.34)

■ Var(6)
6 •

-2(A*) is asymptotically distributed as 

(N-p)-l { l.(N-p-l) ^

Hence

(N-p-l) X*2

(N-p- X*^) ''l.N-p-l

Under the alternative hypothesis, the distribution of 
the criterion is a. non central t ¡distribution.

4.3 SUMMARY
There are at least two ways, in n^ich an intervention 

can effect a time series. The level of the series could 
change abruptly between n^ and n^^l by some quantity 6 or the 
direction of drift of the series may change.

In this chapter, published papers that examine the effect 
of a known intervention at a particular time interval on the 
level of the series were reviewed.

Some of these papers answer..the question whether there 
is .evidence that.the . change in the series of the kind ex­
pected actually occunbd,given a known intervention,and others 
give answers to the above question and also .estleate: the 
magnitude of this change.

46



CHAPTER 5
THE EFFECT OF AN "ERROR IN OBSERVATION" ON

FORECASTING
; A

5.1 iNTRODUCTION
In this chapter the effect of an error of a very recent 

observation on the forecast will be examined by employing 
the Box-Jenkins approach. Suppose that the error , 
makes the most recent observation subject to a 
deviation d. Thus Instead of z^* Is recorded, which Is

Assuming that all other sources of error are absent, : T
:Ẑ'C1) ind t the one and* the m step ahead predictors are
calculated for most of the ARIMA, nonseasonal and seasonal, 
models and mathematical formulae were produced (see section 5, 
tables 2 and 3) , which show how the errors are magnified In 
the forecasts. These predictors will consist of the correct 
* predictor , 1.e. • one Corresponding to ̂  equal to zero, plus
a certain multiple of 4. This multiple of 6 will be a function 
of m's and «'s, the estimates of the parameters of the series.

In their book. Box and JenkinjB (-20MChaoter V) explain 
the derivation of the' forecast by employing three forms,, 
namely the difference equation form, the Integrated form and 
the forecasts as a weighted average of previous observations 
and forecast made at previous lead-times from the same origin. 
In this chapter an alternative form for the predictor derived 
by E.J. Godolphln (41) is used. This form Is referred as the 
direct basic form and it Is the solution of the difference 
equation form.

The essential elements of the direct basic form which are 
necessary for. forecasting are the- component and the updating
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series. The component series is more amenable to predictor 
formulation than the forecast residual a^. Section 2 of this 
chapter contains a brief definition of the updating and craipo- 
nent series.

’Sections 3 and 4 explain shortly how one can forecast by 
using the direct basic form.

In section 5 the rationale of the derivation of certain 
expressions of the effect of outliers on forecast Is given 
and these expressions are presented for most of the ARIMA 
models In tables 2 and 3.

In section 6 an Illustrative example of the consequences 
of "an error of observation" Is presented.

Finally, a summary of chapter 5 appears In section 7.

5.2 THE UPDATING AND COMPONENT SERIES
The two elements of the direct basic form are the 

component and the updating series. These series are linear 
combinations of the observations for j > 0.

The component series c^. Is defined by the difference 
equation.

«-I»

%4iere \  ■ 1-B
The component series Is expressed In terms of z's by 

solving (5.1). Thus

■  *  , I i  “ )  ■  V  V )
(5.2)

and the sequence {bj) Is given by the recurrence relation
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‘>j - *'i j-1* Vj-2 + (5.3)

• • • •

with bj * 0 for j<0
and ■ 1

In practice, the component series may also be calculsted 
by the expression

■ *t - "t-i (5.4)

where Is the updating series defined herebelow. 
The updating series Is defined J?y

(5.5)

or

U

where (b̂ | are defined In (5.3)
When a new observation becomes available and 

eire updated by using (5.4) and (5.5). This procedure requires 
that ^t-1 ' .... . ^t-q+1 «tored on the data file.

5.3 NON-SEASOHAL DIRECT BASIC FORM

5.3.1 The one step ahead predictor
The predictor form of a (p,d,q) process 1st

't - - *t - «t-j (5.7)

Box-Jen)clns (20).
If (5.7) equation Is considered as a recurrence
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relation in member of the (a^| sequence, the solution 
is

, c, - (5.8)

by using (5.7) and (5.1).
(5.8) is an alternative.formulation of thé fote- 

cast residual and the expression.for the one step ahead 
predictor follows from (5.8) and (5.4) ast

d~2 p
i (1) - 0 + Ï >7^0 + I* ' 1-0 ' JSl J ‘5-9>

As an example, the one step ahead predictor (5.9)
equ. for the (1,1,1) process is calculated. The
essential elements and are:

1-1
"t * i ♦ S-j^  ̂ j-0 ^ J

(5.10)

and ” '̂ t-l ■'■^^t- 1

d-2

5. (1). U + I C + I  0. ^ ^ i-0 ^ j - 1  ^ t+l-j

where
d-2 .
Y' V * 0 since d*l 

i-0

and

t+l-j <p c,

Therefore

z^(l) . + <P
• + (o - ̂ )
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relation In member of the |a^} sequence, the solution 
Is

„d-1 ^ ? _d-l - ̂ at - V Ct - ^t-j (5.8)

by using (5.7) and (5.1).
(5.8) Is an alternative.formulation of thè fore­

cast residual and the expression.for the one step ahead 
predictor follows from (5.8) and (5,4) ast

d-2 p
Ì (1) - 0 + I + V' ...

 ̂ *  i - 0  '  j S l  ^

As an example, the one step ahead predictor (5.9)
equ. for the (1,1,1) process Is calculated. The
essential elements Ut and Ct aret

1-1
0 - z - I ♦ C .

^ ^ j . o  ^ J
(5.10)

and Ct * Zt " ^t-1 ■'■^^t-1 (5.11)

d-2 ,d-l.Ì ( D -  V * I 7^ C + t , . 7 -  * c  
 ̂ ^ 1-0 ^ i- 1 J ^

where
d-2

V V ■ 0 since d-1 
1-0 ^

and

t + l - j
è  c.

Therefore

Zt(l) - Zt - >Ct + <P Ct 
- Zt + (e - ̂ ) Ct 
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Using (5.11)

24,(1 ) ■ ( 1 + )Z. - ( <p )(1 ) ‘t-j
(5.12)Hence, the one step ahead predictor Is confuted 

for the (1 ,1 ,1 ) case In a weighted average form.

5.3.2 The m step ahead predictor
By taking Into consideration (5.7) and (5.9) the 

m step ahead predictor Is formulated ast 
d"l in—1

Z l« ) '-  r  ( " * i ‘ ^ )7 ^Z, + I  f  ,  (5. 13)^ ^ j*0 J

where {f) Is given by:

^1 • i i "C1-0 ^ ^ j-0
d-1^

j+1 ^t-j

p-k q-k

(5.14)

for k<p

Vk-i 1-0  ̂ ^

q-k
- I >j-0 V j (5.16)

for lop

If k ^ q+1 a general expression Is given by the 
solution of the homogeneous recurrence relation:

«k - “ - % ^ - p (5.17)

The direct form expressions for certain ARIMh proc: 
are presented In the following table using (5.13).
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Table 1 s JPi5L51?P£®®*lS5LiS?- ̂ ®

-VI

Process
(P.d.q)

(0, 1 , 1)

(0,1,2)

(0,2,1)

(0,2,2)

(1, 1, 1)

( 1 . 2 , 1 )

and so o n .

P r e d i c t o r s

Z^(m) U, for m>l

Z^(l) - "t

Z^(m) ■ “ t 2 t̂ figpc m>2

Z^(l) - + c.t t t
z^(in) « U ct t m>2

U + C t ^ t

Z^(m) + C^+ (m-l)(l+^j^ -«2  ̂

+ mC^ - (in-l)( \  + ̂2 ^
for m >  2

Z^(l)

Z^(m)

u^+<PCt
u +<p ili—  c -e " iliL. c
 ̂ l-e  ̂ l-q) ^

u. + __ > - e  - ♦  ) )  c.
 ̂ i-e

for m > 2

Z^(m)

* + (1+e ) - e

. »(«1̂ « (i_,«)7r +
(iHP)̂

" V ' '  V i »
for ir>2
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5.4 SEiVSOWAL DIRECT BASIC FORM

5.4.1 General
^  The derivation procedure followed in the non- 
aeasonal case, is also valid for the seasonal ARlNh 
processes. It is assumed that 0*0, where Q is the' 
order of the seasonal moving average and the order of 
the nonseasonal moving average is written as q*. q* 
equals to q*K}s, where s is the seasonal periodicity.

The ARlMh process is a <p,d, q*K28) (P,D,0). one: 
0>(B)® (B®) V^V ® Z. - 4 *(B) a.8 t q* t

Also
pfPs p p p p

I -  T <P.Ê  + I  *1 -  I  r  »1 ♦ lEi-1  ̂ iil  ̂ j«l J i-1 j-1  ̂ J
i+js

1 - ♦(£)•( E*)
(5.18)

5.4,2 The one step ahead seasonal predictor
The procedure is the same with the one step ahead 

non-seasonal predictor described in section 5,3.1•
Therefore, the one step ahead seasonal predictor 

becomes:

d-2 D-1 pfPs

. ¡ 0

d-1 D 

(5.19)
C^, are defined by (5.5) and (5,4) and the are 
given by (5.18).

5.4.3 The m step ahead seasonal predictor
The m step ahead seasonal predictor is given by
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(5.13), which is the expression for the non-seasonal 
predictor.

The statistics are defined byt 

k+ns “ ilo  ̂ i  ̂ ^k+(n-i)s **“ jSo ^t+k-£

for 1 < k < S  1 n«0,1,.......
where

satisfy the recurrence relation 
P44Ps

g,̂ - I V̂ 9jc-i ■ ° if k> q+1
k-l prt>»-k ^ q*-4c

^  ’\+k ̂ 8 ̂  *t-i ■ ̂  »'J+k “t-J

pfFS
i* k-2,3,.... q*

D d-1 r P »<*-1^8 ̂  ^+1-j

if k«l

5.5 EXPRESSION FOR THE EFFECT OF AN OUTLIER ON FORECAST FOR 
SOME COMMONLY IDENTIFIED ARIMh PROCESSES

The direct f o m  for predictors of an ARIMA (prd,q) 
process was outlined in the previous sections.

The direct form of a drlrD predictor was presented in 
table 1 and it is as followst

Zfd) - -HP
- (i+<p-̂ )ẑ  - (i-^)( Zfj

2̂ (1«) . U. + -pJi- (1-4̂ - C for 11̂ 2
 ̂ 1-e I

and have already been defined.
Suppose that the most recent observation of the process
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(1,1,1) is subject to a deviation 6 ,due to measurement 
error or to some other cause.

Therefore, the value recorded for is

The value of is substituted into 
expressions written above and they become

Z^(l) and Z^(m)

«
t<l> - Z^(l)

«
. (m) « Z^(m)t t

Z^(m) are

1-0
(1-^-0 (o -♦ ) )

to 6«0.
*In the expression Z (m) the magnitude of the error is1—A ^a function of ¿Z2L and depends on the value of o compared 

to * . I-»
The rationale explained above , is used to produce 

exact mathematical formulae for Z*(l) and Z*(m) for 
some commonly identified ARINA processes.

These expressions are presented in Tables 2 and 3. 
Simulated series were used to verify the mathematical results 
presented in the above mentioned tables.

The computer programs that generate simulated time 
series can be found in appendices (2II),(2III). The 
identification,estimation stages were carried out by using 
standard computer packages ( see appendix (2IV)).
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Table 2t Exact expressions to x non-seasonal ARIHü proc<

r̂ojees 8 
(p;<a,q) P r e d i c t o r 8

(0,0,1)___ Z (1) t - Ẑ (l) - 60

(0,0,2) Z*(l) - Ẑ (l) - 60j

^(2) - Zt(2) - 60̂
^(m) - Ẑ (2) for m>2

(1,0,0) ^(1) - Ẑ (l) •(•ódp

^(n) - Ẑ (m) + <p»6 for m>l

(0,1,1) z*(l) - Ẑ (l) + 6(1-0 )

Z*(m)t • Z*(l) for m>l

(0,1,2) Z*(l) - Z.(l) +6 (1-0 ) ̂ •!
Z*(2) - Ẑ (2) + 6 (1- Oj-O, )

Zt(i<0 ■ Z*(2) £ar.iM>2

(0,2,1) VẐ (m) ■ -Ẑ (m) + 6 ((m+D-mO)
£br any m

(0,2,2) Ẑ (m) ■ 2̂ (») + 6(("+l)-»Ój - (ni- 1) Oj.)
fcr «y n

(1,2,0) Ẑ (l) • Ẑ (l) + 6 (2+v)

Z*(a) - Zjn) + « [ (ll)-W»(<î  -(12 ) 
» (!-<,)•

fx n02
(1,1,1) Z*(l) - Z (1) + (1*H|>̂  )6c

z («)t - z (■) + í ( ^"* - *■ t - 1) )^ 1-KP 1-<P

\/

fcr m >2
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Table 3: Exact expressions for some seasonal ARINA models

Process
(p,d,q)(P,D,Q)'8

P r e d i c t o r s

(0,1,1)(0,1,1)^ Z^(m) ■ Z. 6(1—0} if lfn<8

Z* (m-fns) mZ^ (m+ns) + 6|1- (n+l-ne^)]
if m<s and n»0,l,28....

Z*(m-i>ns)«Ẑ (m-i>ns) +«[ (n-«>2 )
- ( O+0g)]

if m«s and n*0»1,2,......

(1,1 ,0)(1 ,1 ,0)3 Z^(l)-Z^(l) + «(1+9 )
z;(i»)-Z (m) +6[i— 1 ]l-(f
Z.(m)*Z.(e) +«[j^ y +1 +^_] ^ « 1-9 ®

m<s

(1.1,1)(1,1,0)

for m«s

Z^(1).Z^(1) + «(1+9-0)
Z*(»)-Z. (■) +6 __ ]

* 1 - 0  If
for hks

!*(«)-Z„(i») +6[ 1+0 .+ - •" —  ]
* I-f If

for

(1,1,2)(1,1,0) Ẑ (1)*Ẑ (1) +« (1+9“^
Z*(m)-Ẑ (ra) + _§_ [ (1-9 Hl-Oi )+9 (1- 0|)

1^
“ ♦ , - ^ < 9  -90," #*)].

for KWKs
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5.6 AN ILLUSTRATION

To lllus'tra'te 'bhâ  consequancas of "an arror of obsarva't* 
ion" doas give soma causa for concarn, considar tha data glvan 
by Box and Jankins (20) p. 133 which is cited as sarias C.
Tha saries is an ARIMA (1,1,1) modal, whara tha astimatad 
valuas for q> and d ara raspactivaly.

From tabla 2

¡td) « Z^(l) + 1.86

* m
Z^ ( m )  * Z^ (m )  + (5-4(p )6

( 5 . 2 0 )

( 5 . 2 1 )

This pradictor tharafora axhibits savara arror. Tha 
magnituda of tha arror in tha foracast for tha (1 ,1 ,1 ) procass 
is a function of -j— ^ .

1 -<p
1 “0 is graatar that 1 , sinca d is smallar than q> and tha 

arror in Z^ is magnified in the forecast irrespective of the 
size of the sample available. The error becomes worse in 
(5.21) as m increases.

The 'series C, as it is named by Box and Jenkins forms a 
set of temperature readings, which appear to be steadily fall­
ing by a jump of 0.3 or 0.4 at. each seunpling interval and the
last two values recorded are Z, 23.7 and Z. 23.4. As itt --------- 1

turns out, the forecasts given by Box and Jenkins agree
remarkably well with future values of series C, at least as
far as lead time 7.

Consider however, what could have happened if Z^ has 
assumed a value other than 23.4. Suppose, for exaunple, that 

had been either recorded as 23.7 or as 23.0.
It is difficult to see how either of these values could 

have qualified as detactable outliers; even an examination 
of the 226 observations of the series shows various jumps.
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The forecasts obtained with each of the substitute values for 
are shovm in the figure 1 and table 4, that follow. These

sets of forecasts differ wildly from the forecasts given by 
Box and Jenkins.

The amount by which these forecasts disagree may be seen 
by comparing them with the 95% probability limits for the
forecasts given in table 5. The 95% probability limits are 
calculated by:

"il

1 -1

± 1.96 {l+ I 4,* ) 
j«l j

2 , 1/2 sa

s « »
A
o « *  0 .a a

i*o *  1

*  1 .8

«  2 .4 4

-  2 .9 5

- 3 . 3 6

-  3 .6 9

«  3 .9 5

% -  4 .1 6

-  4 .3 3

-  4 .4 6

’I'lO-  4 .5 7

-  4 .6 5
1̂1

4» « 4 . 7 2
12

« 4 . 7 8
U2
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Tftbl© 4j C&XculAbi.on of fo3TGC£isf.s for Z2q*23«4 Z *23 7
and Z20 23.0

Actual Forecasts for
o b s e r v a t i o n s Z 2 o= 2 3 .4 Z 2 0 - 2 3 .7 Z2 q = 2 3 . 0

*21*
2 3 .1 Z2 q ( 1 ) » 2 3 . 1 6 Z2 o ( 1 ) » 2 3 . 7 Z2 q ( 1 ) * 2 2 . 4 4

*22*
22 .9 Z2 o < 2 ) - 2 2 . 9 7 Z2 q ( 2 ) * 2 3 . 7 Z2 q ( 2 ) * 2 1 . 9 9

*23*
2 2 .8 Z2 q ( 3 ) * 2 2 . 8 1 Z 2 q ( 3 ) * 2 3 . 7 Z2 q ( 3 ) * 2 1 . 6 3

*24*
2 2 .7 Z 2 q ( 4 ) * 2 2 . 6 9 Z 2 q ( 4 ) * 2 3 . 7 Z2q ( 4 ) * 2 1 . 3 4

*25*
2 2 .6 Z2 q ( 5 ) . 2 2 . 5 9 S ^ ( 5 ) * 2 3 . 7  

20
S ^ ( 5 ) - 2 1 . 1 1  

20

^26*
2 2 .4 Z ( 6 ) * 2 2 . 5 1  

20
Z ( 6 ) * 2 3 . 7  

20
Z ( 6 ) * 2 0 . 9 2  

20

^27*
2 2 .2 L ^ ( 7 ) * 2 2 . 4 5

20
Z ^ ^ ( 7 ) * 2 3 . 7

20
Z2q ( 7 ) * 2 0 . 7 7

^28*
2 2 .0 Z ( 8 ) * 2 2 . 4 0  

20
Z ( 8 ) * 2 3 . 7  

20
Z ( 8 ) » 2 0 . 6 5  

20

*29* 21 .8 2 ( 9 ) « 2 2 . 3 6  
20

& ( 9 ) * 2 3 . 7  
20

& ( 9 ) * 2 0 . 5 5  
20

*30*
21 .4 Z ^ ^ (1 0 ) * 2 2 .3 2

20
Z ^ ^ (1 0 ) *2 3 .7  

20
¿2^(10) = 2 0 .4  7

^31* 2 0 .9 Z 2 ( , (1 1 ) - 2 2 .3 0 Z ^ ^ ( l l ) * 2 3 . 7
20

Z ^ „ a i ) * 2 0 . 4 1
20

*32*
2 0 .3 z  (12) * 2 2 . 2 8  

20
Z ^ (1 2 ) * 2 3 .7  

20
Z ^ (1 2 ) * 2 0 .3 6  

20

*33* 1 9 .7 ¿20  (B )  * 2 2 . 2 7 Z2q U 3 ) - 2 3 . 7 • ¿ 2 q (13) * 2 0 . 3 2

*34^ 1 9 ,4 Z2 o ( W ) - 2 2 . 2 5 Z2 o ( 1 4 ) * 2 3 .7 ¿20 (14) » 2 0 . 2 9
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Table 5: 95% probability limits, when
a) '20 23.4 b) 23.7 c) 23

a) 23.4 b) 23. 7 c) 23

22.9 - 23.42 - 23.44 — 23.96 22.18 _ 22.7
22.42- 23.52 23.15 - 24.25 21 .44 - 22.54
21.97- 23.65 2 2 . 8 6 - 24.54 20.79 - 22.47
21.54- 23.84 22.55 - 24.85 22.19 - 22.49
21.13- 24.05 22.24 - 25.16 19,65 - 22.57
20.76- 24.26 21 .95 - 25.45 19.17 - 22.67
20.41- 24.49 2 1 . 6 6 - 25.74 18.73 - 22.81
20.08- 24.72 21.38 - 26.02 18.33 - 22.97
19.77- 24.95 2 1 . 1 1 - 26.29 17.96 - 23.14
19.48- 25.16 2 0 . 8 6 - 26.54 17.63 - 23.31
19.21- 25.39 20.61 - 26.79 17.32 - 23.5
18.96- 25.6 20.38 - 27.02 17.04 - 23.68
18.69- 25.85 2 0 . 1 2 - 27.28 16.74 - 23.9
18.48- 26.02 19.93 — 27.47 16.52- 24.06

5.7 SUMMARY
The direct form of forecasting, the component and up­

dating series for non-seasonal and seasonal Box-Jenkins models 
are defined.

Using the above definitions, exact mathematical expressions 
were produced, which show how the 6 errors are magnified In 
the forecasts, when one observes or records 2^ + 6 , rather 
than Z^, due to measurement error or external factors.

The significance of the effects of "errors In observation" 
on forecasts Is Illustrated In figure 1.

■j
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CHAPTER 6

A TRANSITORY OUTLIER - TESTS

INTRODUCTION

In chapter 1, it was mentioned that one type of error 
is when the observations are "clean", but occasionally mis­
takes are made. This is the case where an error of observation 
or recording error affects a single observation. So instead 
of having w^, we have w^+ 6 (see ’.6.2 ) ' . .

This type of error may be named as "error in observation", 
"aberrant observation" etc. and it is a transitory outlier.

In this chapter tests which can detect this type of 
outlier are examined.

An examination of the "error in observation" for 
autoregressive time series was made by A.J. Fox (1972). Fox 
proposed two tests, which are named here test I and test II, 
for detecting errors in observation in autoregressive time 
series, based on principles of likelihood ratio and direct 
evaluation of the suspected outlier. However, he did not 
pursue this work further. This is done by the author and 
detection of "errors in observation", for several other time 
series models, which are likely to occur in practice is 
considered.

Also the calculations of the derivation of the likelihood 
ratio test have not been presented by Fox and therefore they 
are presented here in section 6 .2 .2 .

Formulae of the estimate of the error 6 for several 
ARIMA models are derived and the saunpllng variances are also 
produced.

Another two tests are also considered. Test III is 
based on the one step ahead forecast error and it is mentioned
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in the book "FORECASTING AND THE TIME SERIES ANALYSIS" by 
D.C. Montgomery and L.A. Johnson (1976).

Test IV relies on the differenced series. It Is very 
useful in many practical situations and it was developed 
during the course of this work.

A detailed description of the tests is given in this 
chapter. In the next chapter, simulated series, that generate 
several ARIMA models are used and the power curves are obtained 
in order to compare the var'lous test procedures.

6.2 DESCRIPTION OF TESTS

6.2.1 General Comments
It is assumed that a given series 

l ’*22^* ( 2-, » 2, ,
is generated by the model

<p(B) «(B®) ^(B) e(B®)a^s t t
or
(p(B) ♦(B®)w^ * ^(B) e(B®)a^ ( 6.1)

(6 .1 ) is a general form that covers seasonal and non- 
seasonal models too.

In (6.1) {â ) denotes a sequence of uncorrelated
random variables, normally distributed with mean 0 and 

2variance o .j(p,0 ,d, 6  are polynomials in real coefficients
of degree p,P,q,Q. The covariance matrix of the process 

2W is o. M_ where M is a nxn Laurent matrix expressed r a n n
in terms of the parameters of the model.

The observations are such that:
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Jti

w. for t4 r
V I  \ (6.2)

w^+r6 for t«r

It Is assumed that any trend and seasonality has 
been removed and therefore the process is stationary. 
The order of the process is also assiimed known.

We test whether x ^ , for a particular value of r 
is an outlier (spurious observation).

That Is, null hypothesis:
H

against the alternative: (6.3)
H. 6 ^ 0

■|V

6.2.2 Likelihood ratio test - TEST I
This Involves maximization of the likelihoods 

under the two hypotheses (B.3). >. Therefore,

(6.4) 1(1 i

Assuming Normality for a's and hence for w's or
better x's (see 6.2), the joint* probaiblllty density
function of the x's under the two hypotheses will be:

1 1 .A 1
A2,n/2|2 |l/2
a ' n '

)

and

 ̂ 1 ~ 1 *' 1----- - K ^— r—  e x p { ------- -(x.-6) (x^-6)}^  t n t '
(6.4.b)

Substituting L and L. Into Xo A
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( o,)  I « „ r

t -2 n/2  ̂ Jj
‘ ®a> I "nl

exp {- 2o
1 » - -1 , 
7 ”n *t)

“ P {- <*t- - 6))
(6.5)

I S ^  V n S ^ *  ®*P< - "3^1 . exp (a • 20 _
and

- n/2 )

i” 2 6)'M"^(x^-6 ))* exp (- n/2) j , ii'i

since (x̂ - 6 ^

Therefore,

2 n/2 - \
'“a* 1̂ ,1

( 6 .6 ) .jil̂

Since 6 affects ^ly one observatiw, the effect on the estimates
of the parameters will be negligible. So |m 1“ |m In ' ' n '
Hence (6 .6 ) becomes :

X « .

or 2/n

. ~2 . n/ 2  
< °a>
( -2.P/2( o,)

-?
(6.7)

. tt

Consequently,
2 In

(Xt-6)'M"^(x^-6 )
n

x' X__n tn

(x^-6 )

x;m-1x^
(6. 8 )

> I
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where
6 * 6 (0,0,0,...., 1,0,0..,0)' Is the estimate of the 
displacement In the r—  observation.

The estimate of 6 can be obtained from the 
maximization of the likelihood function formed under 
the assumption that 6 Is not zero.
Hence

Then calculate log 1 and get the p2urtlal derivative of 
log 1 with respect to 6 , which gives

dlogl
d5

1 ~ <1 —  (x . 0~2 t n -
and

• I

(x.- * 0t n — (6.9)

Since 6 Is the estimate of the displacement In 
the r—  observation, (x^ - 6) ' Is multiplied by the

#1̂ «»Ir—  column of M and then (6.9) Is solved for 6*n
Following (6.9) £ Is calculated for the case of 

an autoregressive model of order 1.

(x^-6)'* (x^ Xj.

where x* - x^-
The r— column of
and (6.9) becomes

■ 9 *r-l ^

*r-l *r *r+l

(00

; (x^-8)

-<p l+tp -<p 0... .0) '

^r+1* °

Solving for* 6 (6.9a) becomes
_a_
1^9* * *r" ‘*r-l * *r+l’

- t
; I
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In the appendixes 3II, 3III, 3IV, 3V, 3vi 
estimates of 6 are presented for various models.
These formulae come from the solution of (6.9) and 
are in terms of x's and the parameters of the model.

To use (6.8) and (6.9) a matrix inversion for the 
estimated is required, it is well )cnown that an 
approximate solution to the inverse of can be obtained 

without matrix inversion. This approximation is 
based on Shaman's result that the inverse of the covariance 
matrix of a moving average stationary process is 
approximately the ordinary covariance matrix of an 
autoregressive process of the same order and vice versa. 
Also, it has been shown by others that the inverse 
covariance matrix of a stationary ARMA process of order 
p,q is given approximately by the covariance matrix of 
an ARMA process of order q,p.
(Shaman 1975, 1976),(E.J. Godolphin /1980).

This approximate solution to the inverse of was 
used in the construction of a computer progr2unme that 
exists at the end of this boo)c and gives separately 
the numerator and the denominator of (6.8), when the 
approximate information is fed into .the computer.

Pox has used this approximate solution for auto­
regressive nonseasonal models. In this thesis the 
approximation mentioned above is used for other non­
seasonal and seasonal models, that are common in 
practice.

In (6.8) if were )cnown, a linear transformation 
to the elements x^ , which yields a set of un­
correlated random variables could be applied and 

 ̂ could be distributed as

ilii,

■r i il

>
-1
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1 +
n-k 1 ,n-k

where represents an F distributed variate
 ̂ and n—k degrees of freedom. K is the number

of the parameters to be estimated.
But since in practice must be estimated thisn

F distribution is not applicable; however. Fox
verified by the results of a simulation study, that
this F distribution provides a good approximation for
(X ) for long (100 observations) as well as for
fairly ehcrt. series (30 observations) in the case of
unknown M .n

6.2.3 6»"test or TEST II
Fox (37) has also considered the 5 test, which is 

simpler than the likelihood ratio test (TEST I) . The 
form of this test is:

(6.10)

The derivation of 6 has already been considered 
(see section 6.2.2).

Assuming 6 is a combination of normally distributed
variables, then test II follows a t"Student distribution
and since the size of the sample series should be
greater than 30, the normal approximation will be used.
(6.10) criterion is asymptotically equivalent to (6.8).

a has been derived for simple (non-seasonal) AR 
0

processes by using spectral methods(fef (48) p.83).
In this thesis another simple method was developed 

to derive the sampling variance of 5> for non-seasonal
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6.2.4

as well as for seasonal autoregressive models. The
calculations are in the appendix 3II, 3III, 3iv, 3V, 
3VI.

The sampling variance of € for other models has 
also been derived.

The one-step ahead forecast error test - TEST III 
Another possible test is the one that uses the 

one**step ahead forecast error.
The one^step ahead forecast error e^(1) is:

*t+i‘ * »t+i ( 6 . 11)

where

^t+1 value of the process recorded at
time t+1

2^(1 ) is the forecast made at time t for the 
period t+1

a^ are the residuals, which have been introduced 
as a set of Independent random variables (see 
section 6 .2 .1 ). '

If the model is correct and the true parameter 
values are used then { ) must be uncorrelated for
a Minimum Mean Square Error (MMSE) forecast as it is 
explained in chapter 5 of the Box and Jenkins Book 
(ref. 20).

When the model for a series must be identified and 
the parameters must be estimated, as it happens in 
practice, the e^(1)'s will in general be autocorrelated.

However, Box and Jenkins (1970)(chapter Vlii)* 
explain that : '

"if 'the model is adequate, it is possible to
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I.!'
show that 

where

+ 0 ( —±-) ( 6.12)1
* 7T

are the estimated residuals.

As the series length increases become close 
to the white noise a^ ,

Therefore, if the sample to which an adequate
model is fit,is moderately large and the forecasts
(one-step ahead forecasts) are built from the beginning
of the series,at time t+l,where t large, a will
approach the white noise a^, which is a random
series distributed normally with mean 0 and variance 
2

(7 • The variance of the one-step ahead forecast
is an underestimate of the true variance,

since it assumes that the coefficients of the
forecasting model are known,where as in fact they
must be estimated leading to a corresponding
decrease in accuracy in the resulting forecasts.
However,for moderately long series,this factor

•

will be of relative small importance(see Newbold 
and Granger,(47),ppl55,91-93,161).

This test criterion is :

i.'.i

(6.13)

The distribution of the test statistic(6.13) 
is assumed to be the t-distribution,since ê (l)-toireQ. 
and ^  ~ provided that e^ is distributed
independently of o..
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6.2.5 The difference test - TEST IV

A possible test to decide whether there is an 
"error of observation- or "aberrant observation" is
the so called difference test developed during the 
course of this work.

The test statistic applied to the differenced 
series and it is

■ i.r :'!ijilllji

t t*r (6.14)

where w^ is the differenced series.For the 
specific difference at time t equals r the test 
becomes w^ /a^ , where w^«Z^ “ ^r 1 ‘
Ow is the standard deviation of the differenced 
series.

Test (6.14) seems to be useful in certain 
practical situations,but it cannot be used in 
all cases; because certain series appear to have 
a large value for o^,greater from the standard 
deviation of the non-differenced series,and hence 
the test detects only very big errors for these 
series.

The test is useful when it is applied to 
smoothed series.The smoothness affects the variance 
®w* degree of smoothness depends on how quickly 

the series approaches to the white noise process, 
Newbold and Granger (47,pp 13),

Hence w^ will be distributed normally 
provided that the series is smooth and the test 
criterion (6.14) will follow the t-distribution

m

I/- il

" I
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0

Newbold and Granger (47) indicate that an AR(1 )
IS smooth,if the AR parameter is positive.The
smoothness increases with the magnitude of the
parameter.If the value of the AR parameter is negative
the condition of smoothness is not fullfilled and
the test fails to detect the outlying observation.
A moving average process of order 1,MA(1) is smooth»
if the MA parameter is negative; the smoothncTss 
being increased with the magnitude of the value of 
the parameter.Consequently,the difference test seems 
to be usefull in certain practical situations.

For this test more work is needed to be developed 
further.Simulations should be carried out to examine 
the degree of smoothness in certain other very 
common in practice models.

6.3 SUMMARY

This chapter describes tests that can detect 
"error in observation" type of errors.

The calculation of 6 and its variance for 
various ARIMA models appears at the end of this 
thesis in appendices (3.II to 3.VII).Also the 
computer program that gives the likelihood for 
test I appears in appendix (3.1).

• t

•t:,

- f
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CHAPTER 7
COMPARISON OF THE TESTS

7.1 INTRODUCTION
In 'this chapter the tests described in chapter 6 are 

compared on an empirical-basis \1sln9 simulations of several 
time series models that are commonly employed in practice.

Fox has Investigated the behaviour of the power curves 
by simulating first order autoregressive models with parameter 
values ranging from +.10 to +.9 and has compared the likeli­
hood ratio test with the random sample procedure.

The models used in this chapter are autoregressive of 
order two, moving average of order one and a seasonal auto- 
regressive model. Various parameter values are attempted.

The power functions are tabulated and plotted on section 
7.3. The work—sheets for the calculation of the power functions 
are in appendices (4.II), (4.Ill) and (4.IV). Some remarks 
on‘ the effectiveness of the tests are given in section 7.4.

^•2 CALCULATION OF THE POWER FUNCTION FOR TEST I
To calculate the power of the test, one has to know the 

^^stribution of the test statistic, when the null hypothesis 
is rejected.

In the previous chapter Test I-the likelihood ratio test­
is distributed as

~ 1+ ^n - k l,n-k 

under the null hypothesis.
When H^ is rejected, X statistic has a non-central 

t distribution. (see Fox,(1972) and Kendall and Stuart "The
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•̂1

advanced theory of statistics" ,(1968) ,Vol.2,chapter 24-, 
pp 254-255).

Hence to calculate the power of the test I, the non­
central t distribution will be used (appendix 4.1),

An approximation of the non-central t distribution is 
given by Scheffé (1959) and it is used here for the calculation 
of the power function. This approximation provides the 
cumulative probability that the variable t' Is less than or 
equal to some value z, given the non-central distribution 
with parameters g and c, where g is the degrees of freedom and 
c the non-centrality* parameter (appendix 4,i),

In our case, c equals 6- where 6 is the true expectation
of the error on the observation tested and o. is the estimate6’
of the standard error of 6', since the true variance is not 
known.

For the rest of the tests, the distribution*of the test 
®^*tistic when is rejected is approximately normal.

•̂3 PRESENTATION OF THE POWER FUNCTIONS
The simulated models used are AR(2) , MA(1) and SAR. 

Simulated series of 100 observations length were obtained for 
each pareuneter value. The evaluation of the power considered 
was for values of 6# the error in the r-th observation, 
ranging from 50 to 3o at the 5% level.

7.3.1 Model AR(2)
Twenty series of 100 observations each were 

employed for each one of the eleven sets of parameter 
values tried. These parameter values are positive, in 
order to use test criterion IV as explained in chapter 6
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The values are as follows*
1) .40, .40 2) .45, .25 3) .45, .35 4) .50, .30
5) .50, .40 6) .55, .15 7) .55, .20 .8) .55, .30
9) .60, .25 10) .65, .20 11) .70, .10
Eleven tables are presented here which give the power 
functions for the four tests and for each of the eleven 
parameter values mentioned above.

I ff

Table 2 ^1 * .45 9.2 « .25
1 2 3 4
12 .36 .66 .89
12 .37 .68 .89
11 .30 .57 .82
09 .24 .47 .71

i 3 * .45 - .35
0 1 2 3 4 5 6

I .025 .13 .40 .72 .92 .988 .999
II .025 .14 .41 .73 .93 .99 .999
III .025 .12 .33 :62 .85 .96 .99
IV .025 .10 .26 .50 .74 .90 .97

i 4 »1 = .50 92 - .30
0 1 2 3 4 5 6

I .025 .12 .37 .67 .89 .98 .998
II .025 .13 .37 .69 .90 .98 .998
III .025 .10 .29 .55 .80 .94 .99
IV .025 .09 .24 .46 .70 .87 .96

1 « .40 »2 - .40  ̂'1 ■ 
'i li '

0 1 2 3 4 5 6 ■ :
I 0.25 .13 .38 .70 .91 .98 .998 »•I**,111. .
II 0.25 .13 .39 .71 .92 .98 .998

. y'  ̂ 1lî- ;III 0.25 .11 .31 .59 .83 .95 .99 ■ > iil;!IV 0.25 .09 .33 .45 .68 .86 .95 : '1.
| X .  I

I !

, I
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tJi The values are as follows:
1) .40, .40 2) .45, ,25 3) .45, .35 4) .50, .30
5) .50, .40 6) .55, .15 7) .55, ,20 -8) .55, .30
9) .60, .25 10) .65, .20 11) .70, .10
Eleven tables are presented here which give the power 
functions for the four tests and for each of the eleven 
parameter values mentioned above.

r:A

1 1 * .40 »2 “ .40
0 1 2 3 4 5 6

I 0.25 .13 .38 .70 .91 .98 .998
II 0.25 .13 .39 .71 .92 .98 .998
III 0.25 .11 .31 .59 .83 .95 .99
IV 0.25 .09 .33 ,45 .68 .86 .95

Table 2 • "̂ 1 « .45 9.2 = .25
0 1 2 3 4 5 6

025 .12 .36 .66 .89 .98 .997
025 .12 .37 .68 .89 .98 .998
025 .11 .30 .57 .82 .95 .99
025 .09 .24 .47 .71 .88 .96

Table 3
f i * .45 - .35

6 0 1 2 3 4 5 6
Test I .025 .13 .40 .72 .92 .988 .999

II .025 .14 .41 .73 .93 .99 .999
III .025 .12 .33 :62 .85 .96 .99
IV .025 .10 .26 .50 .74 .90 .97

Table 4 ’•1 - .50 »2 - .30
6 0 1 2 3 4 5 6

Test I .025 .12 .37 .67 .89 .98 .998
II .025 .13 .37 .69 .90 .98 .998
III .025 .10 .29 .55 .80 .94 .99
IV .025 .09 .24 .46 .70 .87 .96

i 111

: !
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The values are as follows*
1) .40, .40 2) .45, .25 3) .45, .35 4) .50, .30
5) .50, .40 6) .55, .15 7) .55, .20 -8) .55, .30
9) .60, .25 10) .65, .20 11) .70, .10
Eleven tables are presented here which give the power 
functions for the four tests and for each of the eleven 
parameter values mentioned ed̂ ove.

J A I

Table 1 * .40 »2 ■ .40
6 0 1 2 3 4 5 6

Test I 0.25 .13 .38 .70 .91 .98 .998
II 0.25 .13 .39 .71 .92 .98 .998
III 0.25 .11 .31 .59 .83 .95 .99
IV 0.25 .09 .33 .45 .68 .86 .95

Table 2 - .45 »2 - .25
6 0 1 2 3 4 5 6

Test I .025 .12 .36 .66 .89 .98 .997
II .025 .12 .37 .68 .89 .98 .998
III .025 .11 .30 .57 .82 .95 .99
IV .025 .09 .24 .47 .71 .88 .96

Table 3 9 1 ■- .45 <ji«2 • .35
6 0 1 2 3 4 5 6

Test I .025 .13 .40 .72 .92 .988 .999
II .025 .14 .41 .73 .93 .99 .999
III .025 .12 .33 :62 .85 .96 .99
IV .025 .10 .26 .50 .74 .90 .97

Ta b le 4 * .50 ?2 ■ .30
6 0 1 2 3 4 5 6

Test I .025 .12 .37 .67 .89 .98 .998
II .025 .13 .37 .69 .90 .98 .998
III .025 .10 .29 .55 .80 .94 .99
IV .025 .09 .24 .46 .70 .87 .96
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T a b le

Table

Table

Table

Table

5 <Pi - .50
0 1 2 3

I .025 .13 .36 .67
II .025 .13 .37 .69
III .025 .10 .28 .54
IV .025 .09 .23 .45

6 ■ .55
0 1 2 3

I .025 .12 .35 .64
II .025 .12 .35 .66
III .025 .10 .28 .54
IV .025 .09 .24 .47

7 »1 = .55
0 1 2 3

I .025 .13 .39 .71
II .025 .14 .41 .73
III .025 .11 .32 .60
IV .025 .10 .27 .51

u l "i - .55 ”■2
0 1 2 3

I .025 .14 .41 .74
II .025 .14 .42 .75
III .025 .12 .33 .61
IV .025 .10 .28 .53

1 9 »1 - .60 92
0 1 2 3

I .025 .13 .39 .71
II .025 .13 .40 .73
III .025 .11 .30 .57
IV .025 .10 .27 .51

M!

90 .98 .'998
90 .98 .998
79 .93 .98
68 .86 .95

5
4 5 6
88 .97 .997
88 • .97 .997
79 .93 .98
70 .87 .96

!0
4 5 6
92 .988 .998
93 .989 .999
84 .96 .99
75 .91 .98

t o

4 5 6
93 .99 .999
94 .99 .999
85 .96 .99
77 .92 .98

!5
4 5 6
92 .99 .999
93 .99 .999
81 .94 .99
76 .91 .98
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Table 10 «Pi - .65 »2 - .2
6 0 1 2 3 4 5 6

Test I .025 .14 .43 •77 .95 .99 .999
II .025 .15 .45 .78 .95 .99 .999
III .025 .12 .33 .62 .86 .97 .99
IV .025 .11 .30 .56 .81 .94 .99

Table 11 - .70 (P B 2̂ .10
6 0 1 2 3 4 5 6

Test I .025 .16 .49 .83 .97 .998 .999
II .025 .17 .50 .84 .97 .998 .999
III .025 .12 .35 .66 .88 .97 .997
IV .025 .11 .33 .62 .85 .96 .99

i |

The power curves are drawn for the eleven cases at 
the end of this chapter. The work-sheets for the 
evaluation of the power functions appear in the appendix 
4II.

7.3.2 Model HA(1)
Twenty series of 100 observations each were used 

for the five pareuneter values tried. The parameter 
values are negative, in order to m2dce use of the IV 
test criterion, as explained in chapter 6.

The values are as follows:
1) -.55 . 2) -.65 3) -.70 4) -.80 5) -.85

The power functions of the four tests and for the 
above parameter values are tabulated here below:

ft

'»<i

1 12 8 « -.55
0 1 2 3 4 5 6

I .025 .07 .18 .35 .55 .74 .88
II .025 .08 .19 .36 .56 .75 .89
III .025 .07 .16 .30 .47 .65 .81
IV .025 .06 .14 .26 .41 .58 .74



Table 13 -.65
6 0 1 2 3 4 5 6

Test I .025 .08 .19 .36 .57 .76 .90
II .025 .08 .19 .38 .58 .77 .90
III .025 .07 .16 .30 .48 .66 .81
IV .025 .06 .12 .22 .35 .50 .65

Table 14 -.70
6 0 1 2 3 4 5 6

Test I .025 .09 .22 .42 .65 .84 .94
II .025 .09 .22 .44 .66 .85 • .95
III .025 .07 .18 .35 .54 .73 .87
IV .025 .07 .14 .27 .43 .60 .76

Table 15 ».= -■.80
6 0 1 2 3 4 5 6

Test I .025 .09 .22 .40 .66 .85 .95
II .025 .09 .23 .45 .68 .86 .95
III .025 .08 .19 .36 .57 .76 .89
IV .025 .07 .14 .26 .42 .59 .75

Table 16 85 •
6 0 1 2 3 4 5 6

Test I .025 .08 .20 .39 .61 .80 .92
II .025 .08 .21 .41 .62 .81 .93
III .025 .08 .17 .34 .53 .72 .87
IV .025 .06 .13 .23 .38 .53 .69

The plot of the power function tabulated here,
presented at the end of the chapter . The work shee
for the evaluation of the eJsove mentioned power functions 
are In appendix 4 III.

I I

^•3.3 Model seasonal autoregressive (1»0,0) (1>0f0) ^2 

Twenty series of 100 observations each were
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Table 13 -.65
6 0 1 2 3 4 5 6

Test I .025 .08 .19 .36 .57 .76 .90
II .025 .08 .19 .38 .58 .77 .90
III .025 .07 .16 .30 .48 .66 .81
IV .025 .06 .12 .22 .35 .50 .65

Table 14 » -  -.70
6 0 1 2 3 4 5 6

Test I .025 .09 .22 . 4 2 .65 .84 .94
II .025 .09 .22 .44 .66 .85 • .95
III .025 .07 .18 .35 .54 .73 .87
IV .025 .07 .14 .27 .43 .60 .76

Table 15 »1 = .80
6 0 1 2 3 4 5 6

Test I .025 .09 .22 .40 .66 .85 .95
II .025 .09 .23 .45 .68 .86 .95
III .025 .08 .19 .36 .57 .76 .89
IV .025 .07 .14 .26 .42 .59 .75

Table 16 », - 85 •

5 0 1 2 3 4 5 6
Test I .025 .08 .20 .39 .61 .80 .92

II .025 .08 .21 .41 .62 .81 .93
III .025 .08 .17 .34 .53 .72 .87
IV .025 .06 ,13 .23 .38 .53 .69

The plot of the power function tabulated here,
presented at the end of the chapter . The work shee
for the evaluation of the 2ibove mentioned power functions 
are In appendix 4 III.

i!
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^ 3• 3 Model seasonal autoregressive (1f0>0) (1/0>0).j2 

Twenty series of 100 observations each were

81
[ 'i



employed for the eight pairs of parameter values tried, 
These values are positive in order to use criterion IV 
(see chapter 6 - Test IV).

The values are;
1 ) .40, .95 2 ) .45, .95 3) .45, .90 4) .50, 90
5) .50, .95 6 ) .55, .85 7) .55, .95 8) .70. 90

The following tables give the power functions for 
the eight pairs of values mentioned above and for the 
tests described in the previous chapter.

li' 'i-!iil

Table 17 % 40 95
6 0 2 4 6 8 1 0 1 2

Test I .025 .13 .38 .69 .91 .98 .998
II .025 .13 .39 .71 ,92 .98 .998
III .025 .08 . 2 1 .40 .62 .82 .92
IV

•

.025 .07 .14 .26 .42 .59 .75

Table 18 .45
* 8

- .95
is 0 2 4 6 8 1 0 1 2

Test I .025 . 1 2 .35 .65 . 8 8 .97 .996
II .025 .13 .36 . 6 6 .89 .98 .997
III .025 .08 .18 .35 .55 .74 . 8 8

IV .025 .06 .13 .24 .38 .54 .69

Table 19 .45
* 8

- .90
j6 0 2 4 6 8 1 0 1 2

Test I .025 . 1 1 .32 .61 ,85 .96 .99
II .025 . 1 2 .33 .62 . 8 6 ,97 .99
III .025 .08 .18 .35 .54 .73 ,87
IV .025 .06 .13 . 2 2 .36 ,51 .67
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Table 20

Table 21

0 2 4 6 8 1 0 1 2

025 .14 .41 .74 .94 .99 .999
025 .14 -.43 .76 .94 .99 .999
025 .09 . 2 1 .42 .64 .83 .94
025 .07 .15 .28 .45 .63 .79

' P' 11
0 2 4 6 8 1 0 1 2

025 . 1 2 .37 . 6 8 .90 .98 .998
025 .13 .38 .69 .91 .98 .998
025 .08 .19 .37 .58 .77 .90
025 . ^ 6 .14 .25 .40 .57 .72

ii :i

• ! J

■m

Table 22
0 2 4 6 8 1 0 1 2 •

I .025 .13 .39 .71 .92 .99 .998
II .025 .14 .40 .72 .92 .99 .999
III .025 .08 . 2 1 .40 .62 • .81 .93
IV .025 .07 .15 .28 .45 .62 .76

Table 23
0 2 4 6 8 1 0 1 2

I .025 .13 .39 .70 .91 .98 .998
II .025 .14 .40 .72 .92 .99 .998
III .025 .08 . 2 0 .38 .59 .78 .90
IV .025 .07 .14 .27 .43 .60 .76

i!'' I

l i, i-

Table 24
0 2 4 6 8 1 0 1 2

I .025 .17 .52 . 8 6 .98 .998 .9999
II .025 .18 .53 .87 .98 .999 .9999
III .025 .09 .24 .47 .70 . 8 8 .96
IV .025 .08 .18 .34 .54 .73 .87

■■ i
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7.4 SOME COMMENTS ON THE TESTS

Tes^ I and II are asyreptot:lcally equivalent and
therefore their power functions coincide.

Test I and Its equivalent test II are more powerful than 
the other two tests In all the cases exeunlned.

Test I Is less powerful In the case of a MA(j) model than 
It Is the same test In the case of an AR(2) and a seasonal 
autoregressive model. This loss In power may be the result of 
the wAy that 6 Is estimated. The estimate of 6 Is a function 
of the Inverse covariance matrix of the process times the 
corresponding observations. The weight given to each observation 
depends on the position.of the outlier. Also the iorn»: of..... , 
the variance of the estimate of 6 is dependent on the position 
of the outlying observation (see chapter 6 appendix 3II). The 
same does not happen in the estimate of the variance of an 
autoregressive model.

In AR(2) model test III Is always more powerful than test 
IV. Test IV approaches test III as the positive parameter 
values Increase in magnitude, because of the reason explained 
in chapter 6 of this thesis in the description of the tests.

In MA(1) model test III again Is more powerful than test 
IV; there Is a great loss in power of test IV, which may 
Indicate that smoothness Is probably difficult to be achieved 
In this process. Test III approaches test 1«

In the case of a seasonal autoregressive model there Is 
a great loss in power of test III and IV compared to test I, 
which is very powerful.

From the above comments, a possible conclusion to be 
drawn from the models considered Is that test III is a powrful 
test in the case of a non seasonal process.

Test IV Is more powerful In the case of a non seasonal

m Jip

f II *1
5;-

I : ' ii.l

, I
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■ 4̂ 1

:0i model of order 1 and 2 and less powerful in the case of a 
non seasonal moving average of order 1 and a seasonal AR model.

. 'li

: i ï

o

V .'a

,-iw

’5'
\ t

7.5 SUMMARY

In this chapter simulated series used for various processes 
to compare the power of the four tests described in chapter 6 .

Some conclusions and comments are made in section 7.4 on 
the basis of the graphs drawn. The non-central t distribution 
and an approximation of this distribution is explained very 
briefly in appendix 41.

l: pl
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4 model of order 1 and 2 and less powerful in the case of a 
non seasonal moving average of order 1 and a seasonal AR model.

7.5 SUMMARY
In this chapter simulated series used for various processes 

to compare the power of the four tests described in chapter 6.
Some conclusions and comments are made in section 7.4 on 

the basis of the graphs drawn. The non-central t distribution 
and an approximation of this distribution is explained very 
briefly in appendix 41.
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CHAPTER 8
A CHANGE IN THE LEVEL OF THE SERIES - SOME TESTS

8.1 INTRODUCTION
In this chapter some tests are proposed to Investigate 

changes in the level of the series given that an intervention 
has occured at a known point in time.

Some of the tests proposed are based on the cusum tests 
reviewed in chapter 4. In section 2 , a cusum test is employed 
based on independent observations. This test is proposed to 
be used on the one^step ahead forecast errors. In section 3, 
a cusum test based on dependent observations is employed.

Johnson and Bagshaw, 1974 (56) have examined the effect 
,of correlation on the level of the series using the Run Length 
(RL) distribution. They have also mentioned a cusum test for 
correlated observations^which is the case in time series data. 
In section 3 , this cusum test is described in detail .Thé *auto- 

, covariances foran AR(1) and a MA(1) model .’are given 
énâ the derivations, are presented* .'in appendix C5.I).
for these and for other 'models.

An application used by Johnson and Bagshaw (56) to test 
for an Increase in the level of the series is also considered. 
These authors, used- the ARL distribution to carry . out
the test.In this chapter the cusum test is used. The 
conclusions are the same.

In section 4, the transformation of the series into the 
general linear model form is proposed for certain ARIMA models. 
This is based on the idea reviewed in chapter 4 and is extended 
to models not considered in that chapter. The models employed 
areAR(2), (1,0,1), (1,1,1) and (1,1,0).

Finally in section 5, the transformation into the general
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linear model form is proposed as an alternative test criterion 
in the "extreme innovation" case.

8.2 A CUSUM TEST FOR INDEPENDENT OBSERVATIONS
A cusum test is suggested, applied to the one^’Step ahead 

forecast errors.
Box and Jenkins,(1970)(20) have explained in their book 

the model is correct and the true parameter values are 
used, the one step ahead forecast errors must be uncorrelated 
for a minimum mean squared error forecast.

When the model for a series must be identified and the 
parameters must be estimated the a^(l), the estimated one-step 
ahead forecast errors i.e. the estimated residuals, will be 
autocorrelated in general.

However, if the model is adequate, it is sho%m that:

â  + 0 (/n ) (8.1)

When the series length increases a^ approaches a^. If 
the sample to which an adequate model is fit is moderately * 
large and the forecasts are.built from the beginning of the
series, a^s will approach a^s, which are distributed normally

2with mean 0 2uid variance and also Independently. (Box and 
Jenkins, 1966 (18) ).

Hence, the cusum test for independent observations, 
explained in chapter 4, may be applied to the one-step ahead 
forecast errors to exaunlne if there is an Increase in the level 

The test is of the form:

llB p[_5 l. > k]
/ S o

P [T > k] (8.2)

tli:

■ if
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where

C_ » m a x [ s ^ - m i n  S i  
^  rin  ̂ ^ i<r iJî r

measures the Increase in slope.

®r* i  »jj-1 ^
“the estimated residuals. Independent observations.

2o is the variance of the white noise a^s.
The tabular values for various levels of significance 

are given in • table* 4 . : v : .

8.3 A CUSUM TEST FOR DEPENDENT OBSERVATIONS
In a paper reviewed in the previous chapter 4, Johnson 

and Bagshaw,(1974)(56) have investigated the effect of serial 
correlation on cusum tests« They considered the situation of 
detecting a change (increase) in the mean, when it is desired 
that a cusum control scheme has a null average run length 
(ARL).

The critical values presented in table 4 of this chapter 
give a good approximation to when the process under 
consideration has a large average run length.

The cusum test proposed by Page,(1954X69) in the case of 
independent observations, may also be used in the case of 
dependent observations, provided that the variance is formed 
in such a way as to take into account the correlational 
structure of the observations.

The test statistic
n

/U
(8.3)

may be written as

M

' 1.'

• I ;

! ‘I
100



oriw
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-1̂'

n (8.4)
o (C^/n)

where
2

o iCjj/n) - ^ (1) (8.5)
Y(l) is the value of the autocovariance generating function 
Y(B) for B * B  «1. This result is given in Box-Jenkins book, 
(1970) (20) p. 194,for the variance of the sample mean of a 
stationary process•

Following Box and Jenkins book p. 48-49

Y (B) « 4>(b ) il; (B )̂ (8.6)

where
4̂ (B) ^(B)

<p (B) (8.7)
For an AR(1) process y (B) is given as:

2
Y(B)

(1— (pB)(l— <pB )̂
and

Y(l) u - » r

o for an AR(1) is calculated from (8.5) as
*) ^2

n (1-9 )2
And (8.4) is written as:

n

1-9

In the appendix 51 y U) is given for certain ARIMA models. 
The tabular values of T are given in table 4, and are 

extracted from Page's work(1954) (69), Johnson and Bagshaw 
have examined the data in a continuous sheet-like process 
where it is desired to control*the weight at 1.25 per unit
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Table 1: Deviations from taraet
-*5 ' Cir 1-10 .06 .09 .07 .02 -.01 -.06 -.08 -.02 .01 .03

11-20. .00 .01 .04 .03 .03 .00 .04 .04 -.02 -.01
•■’¿f i'- 21-30 .01 .02 .02 -.01 .03 .06 .00 -.02 -.13 -.10

31-40 -.40 .00 .00 -.02 .02 -.05 -.02 -.06 -.01 .00
41-50 -.02 -.02 -.04 .04 .01 .02 .03 .04 .03 .02

 ̂ 51-60 -.02 -.02 .03 -.01. -.01 -.02 .03 .02 .03 .00
61-70 .02 .02 .03 -.02 .07 .01 .03 .03 .01 .08
71-80 .06 .04 .04 .05 .03 .05 .02 .01 -.01 -.04
81-90 -.02 -.06 -.16 -.14 -.03 -.02 -.02 -.01 .02 .01
91-100 .01 -.02 -.05 -.04 -.04 .00 .00 -.01 -.01 -.01

area using the APL. The same data are considered here using 
a cusum test for dependent observations. The data representing 
deviations from target appear in teible 1.

The deviations' series was Identified as an autoregressive
model of order 1 with <p .65 and o^ .011.

IT (1) = ,— 3-^. 09-and (l-(p) a
l-q>

The calculation of Is presented In table 3« The values 
of .27 and .72 axe considered. The test (8.3) gives very 
small values compared to the taibular ones.

Hence, It Is concluded that there Is no indication of an 
Increase in the mean. This accords with the findings of 
Johnson and Bagshaw using the APL distribution.
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M

Calculation of S
06 .15 22 24 23 17 09 07 .08 1111-20 .11 .12 .16 .19 .22 .22 .26 .24 .21 .2021-30 .21 .'23 .25 .24 .27 .33 .33 .31 .18 .0831-40 .04 .04 .04 .02 .04 -.01 -.03 -.09 -.10 -.1041-50 -.12 -.14 -.16 -.16 -.15 -.13 -.10 -.06 -.04 -.0151-60 -.03 -.03 .00 -.01 -.02 -.04 -.01 .01 .04 .0461-70 .06 .08 .11 .09 .16 .17 .20 .23 .33 .4171-80 .47 .51 .55 .60 .63 .68 .70 .71 .70 .6681-90 .64 .58 .42 .28 .25 .23 .21 .20 .22 .2391-100 .24 .22 .17 .13 .09 .09 • .09 .08 .07 .06

Teible 3: Calculation - min Si: -f'or iir
1-10 .06 .09 .16 .18 .17 .11 .03 .01 .02 .05

11-20 .05 .06 .10 .13 .16 .16 .06 .18 .15 .14
21-30 .15 .17 .19 .18 .21 .27 .27 .25 .12 .02
31-40 .00 .00 .00 .00 .02 .00 -.02 .08 -.09 -.09
41-50 -.11 -.13 -.15 -.15 -.14 -.12 -.09 -.05 -.03 .00
51-60 -.02 -.02 .01 .00 -.01 -.03 .00 .02 .05 .05
61-70 .07 .09 .12 .10 .17 .18 .21 .24 .34 .42
71-80 .48 .52 .56 .61 .64 .69 .71 .72 .71 .67
81-90 .65 .59 .43 .29 .26 .24 .22 .21 .23 .24
91-100 .25 .23 .18 .14 .10 .10 .10 .09 .08 .07

level
of

Bignificance
.01 .05 .10 .15 .20 .25

k 2.807 2.241 1.96 1.78 1.645 1.543
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8.4 INTERVENTION ANALYSIS - TEST BASED ON THE LINEAR M O D E L

8.4.1 Introduction
The problem of making Inferences about a possible 

shift in the level of the series associated with a known 
event can also be solved by transforming the model into 
the familiar form of the linear model.

'Chapter 4 use • -of- the general linear 
model was made to cover the following ARIMA models; 
(0,1,1), (0,2,2) and (1,0,0). Here the idea of the 
linear model is extended to some other ARIMA models.

The ARIMA models are written as:
<p(B)V^Z^ = 8(B) a^

and are to be transformed into;
X§ -•-+ e

where
3 is a vector of the parameters u and .6 
U is the original level of the series, before 

the intervention 
■B is the shift in the level 

■ y is a function of z's and may be previous y 's and 
it is expressed in terms of Urfi and current a^

X is a function of g'c and 8'c 
The least squares estimates of 3 are;

i = [  ̂ ] =(x'x)"^ X'yo
The test criterion is;

A3.
N-k

i‘ 1

I
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8.4.1 Introduction

The problem of making Inferences about a possible 
shift In the level of the series associated with a known 
event can also be solved by transforming the model Into 
the familiar form of the linear model.

In .chapter 4 use • of- the general linear 
model was made to cover the following ARIMA models: 
(0»1#1)/ (0,2,2) and (1,0,0). Here the idea of the 
linear model is extended to some other ARIMA models.

The ARIMA models are written as:
9(B)V‘̂Z^ = »(B) a

and are to be transformed into:
Xg -•-+ e

where
3 is a vector of the parameters u and .6 
U is the original level of the series, before 

the intervention 
i is the shift in the level 

■ y is a function of z's and may be previous y 's and 
it Is expressed In terms of Ur5 and current a^

X is a function of ^'c and 8-'c 
The least squares estimates of 3 are:

8 = [ $ ] *(x'x)“  ̂X'y 

The test criterion is:

- V «

<1

1
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A #
s = (^-x B ) (ĵ- X̂ ) / N - k

^ii diagonal elements of (X'X)"^

IH'

8.4.2 ARIMA model (2,0,0)
The model is written as

( l-<PiB -cPjB^HZt-w) = a (8.8)

At time t*l

^  * *1

At time t«2 4

Z, = 9 Z + U (l-(p ) + a.1 1
or

Z2- y (1- 9̂ ) + â
At time t* 3,...... ,n̂

V l "  *^2^-2 " ^

At time t« n̂ + 1
Z - 9 Z -9 z 
"l+l  ̂ '*1 = y  a-9, - 9, ) + 8 + a* * n.+1

At time t = n̂ + 2

iy2
At time t«r^ + 3,...... ,N

\  • ’’’i V i *  f j \ - 2  '  •' * « a - 9 , - » , ) + a ^

Therefore model (.8.8 ) is transformed to

I.
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fir t « 3,...... ,N

Y - X B + e 
where

8.4.3 ARIMA (1,0,1)
This model may be written as:

( 1 - q>̂ B ) (Ẑ  - y ) « (1 -^B)
or

1 -<p. B
[--------] ( Zt -** ' • S

 ̂ -  *8

The transformation Is as follows:
* y+ â

yz * 2  ̂-9?i +^y^ * ( l+̂ -q>) y + aj 

for t * 2,... ,nĵ

(8.9)

■ ’’V i t-i ■ + *t

I

a function of <p and Is as follows

f ̂ * 1 + -̂<p
2 *
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(I-?) + »
t-3 t 2= (1-9) I t ̂  ̂ (1 -9)
1=0

n.

(8.10)

» N

"'t ' V »  V i  "

where
f^ Is as In (8.10)

and fn,+i
l + ' 8 — <p

* (1-9) and holds for t*n^+ 2,

Therefore the general linear form of (8.9) is:
,N

y = :xB + e
with

1
1-9+^
S
•

0
0

• ( 
•

•

___V
•
0

f , î +l•
•

1l-|+ 8

• 0

^  . -

k-

1 . 1 '

the hypothesis of no change in the level of the series 
are as before.

8.4.4 ARIMA (1,1>1)
The model is of the form:

‘ ■ I

■ I ,
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(1-<P) + Ò

t-3 t 2
=' (i-(p) I  t   ̂ * ( i -q>)

1=0

n.

for t«n- +1, ..... . N

(8.10)

"'t' "t-’ \-i * ̂ t̂-i

where

*1̂ +1

Is as In (8.10) 
= 1

1+'^^
* (1-9) + ̂  and holds for t * n̂  + 2,  

Therefore the general linear form of (8.9) is:
y = :XB e

with

1-|+
43

,N

L ^  K  -The L.S. estimate of u ana 6 and the test criterion for 
the hypothesis of no change In the level of the series 
are as before.

u_

8.4.4 ARIMA (1,1,1)
The model Is of the form:

.1 ,
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' m
■An

(1- B)(l- (p B)
---------- ( Z. - U )= 2L1-^B ^  ^ (8.11)

(8.11) is transformed as:

Y 2  =  +  <p) ^  ^  =  ( 8 -  (p ) y  +  3 2

for t * 3,...., 
where

fĵ * 1 , 8-9
=-<p + 8f^_  ̂ fcr t  = 2,...,nj^

when t « î +l  ....... ,N

'Zt-d-f) = + +

where Is as before

= to ..... N

Hence 1 0
% 0

h
•

•
•

A _ . . .
•
0

^+1
• V•
•

m

•
f'N

and (8.11) can now be transformed into 
^ « XJ + e

the estimation and testing procedure are as before.

t:;
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8.4.5 ARIMA (1,1,0)
For this model the transformation is

- ( 1+ 9 ) « -(p-y + a

Hence,

..... "i
t * n^ + 1

t * n^ •*' 2,... •

5̂ - ( l49 ) V i  ■ -

1 0
- <P 0
- 9 •

•
••

- 9
•
0

- 9 1
“ 9• *• -9•
•

- 9
•-9^

i transformation
n of the linear i

- 9U + 6 +

I.:.

models seasonal amd non*seasonal.

®*5 THE GENERAL LINEAR MODEL TO BE EMPLOYED IN THE CASE OF AN 
EXTREME INNOVATION

Fox (37) used the likelihood ratio criterion to test for 
an extreme Innovation, which affects the current observation 
(particular observation) and through it subsequent observations. 
This case is similar to that of a change in the level of 
the series.

The general linear model is proposed to test for an

I
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m

extreme Innovation.

The case of an autoregressive model of order one is 
investigated.

where

f the form:

-1 6t +

5 if t«r

0 if t;ir

( 8 . 12)

The hypothesis to be tested is:
: 6 - 0

against  ̂̂  0

Suppose that at time t - r an innovation is extreme then

'r * *P̂ r-l + « +
and

• t-r fi +
for t- r, r+1, ...... . N

The transformation that can be made is; 
Vi -
yj - Zj - <pẑ

•

y -  Z - (p z .*̂ r r ^ r-1

(8.13)

(8.14)

r+1’ Zr+1 - <PZr
Hence the model (8.12) is transformed in terms of 6 and current 
shocks.

The linear model is:
Y * X g, + e

X is as explained in (8.14)

1
N.

! ;
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and

t-r
9

-1
6 « (X'X) x'x

B = [ 6 ]

that is
Zxy
Zx̂

The test criterion to test the hypothesis of no 
change in the level is :

jiii

fi i;

where

'N-1

and

6

 ̂ - I'X'X I )/ N-1
th

s
<=ii is the i'̂ " diagonal element of (X'X)“ .̂

The employment of the G.L.M. approach is .found to be 
equivalent to Fox's test. This equivalence is demonstrated 
in the appendix 5 .II. I

8 . 6  SUMMARY
This chapter deals with tests that examine 

the possibility of a change in the level of the series.
A particular case of this is the situation of an 
extreme innovation; this case is also examined .Some 
of the tests are tests proposed by the author,some other 
tests have been mentioned by others but they have not 
been used before to test the hypothesis of a change
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• CHAPTER 9 
APPLICATIONS

9.1 INTRODUCTION

The test procedures described inr previous chapters have 
been compared on an empirical basis by using simulated data

“this chapter use of these tests is made by employing 
real life data series.The nature of the time series data tends 
to obscure the detection of points where changes seem to be 
occurring , but the test procedures already outlined in conjxinction 
with the Box-Jenkins methodology may be useful in the location 
of such changes.

Four series are presented and examined.Parsimonous models 
are fitted and their parameters estimated according to the 
Box>Jenkins methodology.The series are investigated for 
uncharacteristic observations.The hypothesis of no extraneous 
observations against the alternative .is tested.The effect of 
an outlying observation on forecasting is shown by using 
adjusted and nonadjusted data series.

The series employed are:
a) New dwellings and improvements according to permits issued 
in Greece for new buildings and extensions.Monthly data from 
August 1972 to February 1982.
b) Index of Greek external trade (exports) with the EEC

«
countries.Monthly data from January 1973 to December 1982.
c) U.K. Iron and Steel production Index.Quarterly data from 
1st quarter 1952 to 4th quarter 1979.
d) De Zoete Equity Index.Yearly data from 1919 to 1978.

In the first series the effect of the tested extraneous 
observation on forecasting is shown.In the other three
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series the usefulness of the tests described previously to 
indicate outlying observations is demonstrated.

9.2 SERIES I ; NEW DWELLINGS AND IMPROVEMENTS

9.2.1 Description of the data

The series is from the construction statistics 
worked out by the National Statistical Service in Greece. 
It has been selected because there are periods in time, 
when construction activity has greatly increased
or similarly . Therefore , .it seems to be a quite 
good case to test the possibility of anomalous^extraneous 
observations.

It comprises monthly data for the new dwellings and 
improvements according to the permits issued for new 
dwellings and extensions. The period of referece is from 
August 1972 to February 1982.The data series is presented 
in table 9.1. and the plot ot the 115 monthly observations 
is sho%m in figure 9.1 and its correlogram in figure 9.2.

The parsimonous model which is chosen to fit the 

data best is an ARIMA of order (0,1,0)(1,0^0)^2 * That
is

(1- *8^^) VZ,t ~t
The graph of the differenced series and its correlogram 
are presented in figures 9.3,9.4 respectively.

The parameters are estimated using the Maximum 
Likelihood Estimation procedure.Therefore the model is 
written as :

w^ * 0.512
•

The estimate of the standard error of a^ is 2680.The

’ r
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estimated residuals are also given in table 9.3.

9.2.2 Analysis of the data
The estimated residuals have shown values outside 

the two standard error limits at observations numbered 
46,60,72,91 , which correspond to June 1976,August 1977, 
August 1978,March 1980 respectively.These observations 
and observations numbered 84 and 96 were examined for 
the presence of outliers using the tests described in 
previous chapters.

Estimates of 6 and its sampling variance were 
obtained from the relationships : 

i i \ 7 - V _ ___♦
1 + 4 ‘2 ^*r+s ■*' ^r-s^

i: - . .1

(ii) Var( 6 ) 1 + 4

The test results were as under :

Observation no. Test I Test II Test III Test IV

46 (June 1976) 1.07 -2.9 -2.38 -1.72
60 (August'77) 1.05 2.44 -4.38 -3.60
72 (August'78) 1.05 -2.38 -3.20 -4.60
84 (August'79) 1 . 0 0 -0.51 -1 . 0 1 -3.20
91 (March '80) 1.08 3.12 2.70 2.15
96 (August'80) 1 . 0 0 -0.32 -0.84 -2.41

The critical values of the F and t statistics indicated 
outliers at the points 46,60,72,91. At points 84 and 96 
outliers were not indicated except from test IV.

There is an explanation for the outlying observatiwis 

60 and 72.Always in August there is a decrease in the 
permits issued since people are on holidays.On the other 
hand ,in 1977 and 1978 there was an increase in the state 
mortgages and therefore the number of permits issued was

115



increased,but this event has no influence on the 
number of permits issued in August,because of the summer 
holidays,but it has an influence on the following months<

In February 1980,there was a tremendous decrease 
in the number of permits issued.This was due to the fact 
that a new law concerning the percentage of a plot 
of land that could be covered by a dwelling came 
into force.

Although,this observation is not a recording error 
or something of this sort,it should be adjusted for the 
outlier in order to get better forecasts.

In the next section forecasts are calculated for 
the non-adjusted as well as for the adjusted for -theii.: 
outliers series.The appropriate adjustments are shown 
in figure 9.3 by a dotted line and are calculated as 
follows : n

For 2^ « 8659

2^(1) - 2^ + 0.512 (2̂ -_̂ ,- 2^_^2> 

2^(2) . 2 (1) + 0.512 (2̂ _ĵ p - Z f n ’ 

and so on.

¿^fl)« 8000

Z^(2) * 6304

For * 13951

Z^(l) « 13292 , Z^(2) * 11596 and so on.

Therefore ,the observation for February 1980,that 
is , should read 13951; this is the adjusted for
outliers value. . I

9-2.3 Forecasting
The series is examined up to observation 90,that
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is February 1980.The forecasts are calculated for 
12 lead times ahead using a) the non*adjusted for the 
outliers series, where equals to 8659 and b) the" 
adjusted for outliers with equals to 13951.

• Calculation of forecasts when x̂ *̂ 8659
Actual Forecast Forecast error Forecast

standard error
Febr'80 8659 —

Mar '80 15229 8000 7229 2818
Apr '80 13221 6304 6917 3985
May '80 13666 7173 6493 4881
Jun '80 12980 7582 5408 5636
Jul '80 15073 8548 6535 6302
Aiig '80 7718 3454 4264 6903
Sep '80 9070 4712 4358 7456
Oct '80 10879 5722 5157 7971
Nov '80 9102 4660 4442 8455
Dec '80 8326 4209 4117 8912
Jan '81 7300 4454 2846 9347
Febr'81 7992 2681 5311 9763

TABLE : Calculaticxi of forecasts when x̂  ̂* 13951

Actual Forecast Forecast error Forecast
standard error

F^r'80 13951 — - -

Mar '80 15229 13292 1937 2617
Apr '80 13221 11596 1635 3701
May '80 13666 12465 1201 4533
Jun '80 12980 12874 106 5235
Jul '80 15073 13840 1233 5852
Aug '80 7718 8746 - 1028 6411
Sep '80 9070 .1000̂ - 935 6925
Oct '80 10879 11014 - 135 7403
Nov '80 9102 9952 - 850 7852
Dec '80 8326 9501 - 1175 8277
Jan '81 7300 9746 - 1446 8681
Febr'81 7992 10683 - 2691 9066
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In the adjusted series the forecast error is very 
small compared with the non-adjusted series forecast

I

errors.The effect of the outlying observation February, 
1980 on forecasting is clearly demonstrated in figure 
9.5.If the observation x^q was not adjusted,the forecasts 
would be completely misleading and the future demand 
for new dwellings would be very different from that 
of the adjusted series.The effect of an extraneous 
observation on forecasting has already been discussed 
in chapter 5.

9.3 INDEX OF EXTERNAL TRADE (EXPORTS) WITH THE EEC COUNTRIES
(1970*100)

9.3.1 Description of the data series
The index of Greek external trade,exports only, 

with the EEC countries is presented in table 9.3 for 
the years 1973 to 1982.This index is published 
regularly from the National Statistical Service of 

Greece.

A plot of 120 monthly observations of this series 
appears in figure 9 .6 .The model which appeared to fit 
the data best was a seasonal moving average of order

(0,1 ,1 )3̂ 2 •
That is ,

(1-B^^) » (1- 0B^^) a^

or
* (1- 0B^^) a^

' r
'1̂

t?

t

The parameters were estimated at 0*0.515 and
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* 47.16. The plot of the differenced series is 
shown in figure 9.7.

This series is employed in order to demonstrate 
the use of the tests considered in previous chapters. 
Some suggestions are also made.

9.3.2 Analysis of the data
The estimated residuals are presented in table 9.5.

These showed values outside the two standard error
limits in January '81, June '81,September '81,that is 
-observations numbered 85,90 and 93 respectively.
Observations numbered 96,97 that is December 81,January
82 were also examined.

Estimates of 6 and its sampling variance were first
obtained from the relationships shown in aooendix 3VI :

i
* * *r  ̂ *r-12k ’'r+12k^

I,

where

~ 2 2v 2Var( 6 ) *  (1- 0 ^ + 0  ):a21

is max (—Erl— , n~r ) 12 12
vk min ( 12
x^s are as defined in previous chapters and 
n the number of observations employed in 
this estimation .

The hypothesis 4»0 was tested against the 
alternative hypothesis 6^ 0 .

The test results are listed herebelow. The 
corresponding critical values of the F and t statistics 
indicated outliers at observations numbered 93,96 except 
from' test III,which indicated no outliers at observation

119



THE TEST RESULTS FOR TOE SERIES "TtiPEX OF EXTEJ^AL TRADE 
WITO THE EEC OOUNTOTBS»»

Observaticxi no. Test I Test II
85 (Jan. 81) 1.01 -1.15 -2.4
90 (June 81) 1.00 0.62 2.1
93 (Sep. 81) 1.09 3.07 3.5
96 (Dec. 81) 1.05 -2.37 -1.4
97 (jan. 82) 1.02 2.16 1.4

III

96 . Test III indicated outliers at observations 85,90 but 
not Test I and Test II, that is Janua'ry and June 1981.

An explanation given by the National Statistical Office
for September 1981 was that there was no actual increase
in exports,but omissions made in previous months were 
corrected in September.

In January 1981 there is a decline in the exports but 
this is not so serious as to indicate an outlier.In 1981
and 1982 there are some ups and downs in the series serious
enough to indicate changes in the pattern of the series.
The graph'of £he differénced series shows .that the'variance 
of the series may have changed since Greece joined the E.E.C. 
This series needs further examination in order to take 
into consideration changes in the pattern.

U.K. IRON AND STEEL PRODUCTION. INDEX 
This series for the years 1952 to 1979 is presented in 

table 9.6.The plot of the 112 quarterly observations and their 
correlogram are shown in figures 9.8 and 9.9. respectively.

The model that fitted the data best was an ARINA (0,1,0) 
(0,1,1)^ .That is

(1-B)(1-B^)I^. (1- 0B^) a^
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or
- (1- 0B^)

The parameters were estimated at ©*.9266 and o « 5.20d
The plot of the differenced series and its correlogram are 
shown in figures 9.10 , 9.11 respectively.The estimated 
residuals are plotted in figure 9.12. The residuals showed 
values outside the two standard error limits at observations 
numbered 73,77,84,89 and 105. Observations numbered 81,88 were 
also examined.

Estimates of 6 and its sampling variance were first 
obtained from the relationships :

i
« • ’̂r + *r+4k^

fii1!̂

Var( 6) u - e ^  +0^'’ ) o l

5. ;

where
i « max ( r-1 n-r

V « m in '( )

the number of observations employed in this 
estimation.

The test results are as under % !
Observâtioi no. Test I Test II Test i:

73 (1971,11) 1.36 -6.0 -2.11
77 (1972,11) 1.37 8.0 2.63
81 (1973,11) 1.23 -2.21 -1.31
84 (1974,1 ) 1.92 -9.2 -1.92
88 (1975,1 ) 1.16 2.2 0.61
89 (1975,11) 1.68 -8.9 -4.28
105 (1979,11) 1.38 7.39 2.90
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The corresponding critical values of the F and t 
statistics indicated outliers at all the above points except 
for the weaker test III at the observations 81 and 88.

The prolonged coal strike in early 1972 and the miners* 
overtime ban in late 1973 followed by the "three-day week" 
and a further miners'strike in 1974 are factors underlying 
{he uncharacteristic observations 12, 11 and 84.The later 
outliers may suggest a change in the pattern of the series, 
after early 1975,when a general decline in the industry began 
to be apparent.

9.5. PE ZOETE EQUITY INDEX

9.5.1. Description of the data series
The selection of an appropriate model for the de 

Zoete Equity Index(with reinvestment of dividends) 
may assist life offices when calculating premiums and 
reserves and assessing performance guarantees in unit- 
linked business.

This Index is prepared annually and is presented 
in table 9.7 rfdr: thé’years* January 1st 3.919 to January 
1st 1978.In figure 9.14 the graph of the log values is 
given.This graph shows an overall upward trend,but with 
a number of departures from the given tendency,that 
call into question the simple hypothesis of steady 
upward, growth. Substantial falls of the Equity Index 
are reflected in recorded values for 1938-41,1970-71 
and for 1974-75.The more recent fall will be examined 
further.

The most suitable Box-Jenkins model to -describe

i.t I

r '■
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the log of th%. given data was shown to be the auto* 
regressive integrated moving average of order (0 ,1 ,2 ), 
that is an ARIMA (0,1,2).The differenced log series is 
plotted in figure 9.15. Maximum likelihood estimation 
gave values for the parameters and their standard errors 
as shown below. The parameters are all significantly 
different from zero.

w^ = .02 - .263 “ «432 a^_2 +
(2.38) (1.38) (1.77)

.008

9.5.2.Analysis of data
The most recent fall in the Equity Index is 

investigated.This is in 1974 and 1975,where there is 
a decrease of 29% and 53.3% respectively. In 1976 
there is an increase of 143.7%.

The test criteria developed in the previous chapters 
are employed to test the possibility of a transitory 
outlier.

First an estimate of 6 and its variance is obtained. 
This estimate is given by :

For 5. see appendix 3VI -.
equation (6 .VI.4)

and for Var ( 6 )
• •

see appendix 3VI equation (6.VI.5)

6 is estimated for values of r-55,56,57 that is for 
years 1974,1975 and 1976.
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The tests ,described in previous chapters,have
given the following results :

Observation no. Test I Test II Test III
55 (1974) . .90 -1.07 1.53
56 (1975) 1.01 -0.11 2.14
57 (1976) 1.39 2.33 2.91

The values of 6 and the estimated values of the first 
differences of the logs of the Equity Index at the 
particular points are as follows :

r 6

55 -0.06 -0.09
56 -0.012 -0.12
57 0.26 0.13

a *0.1117 6
The critical values for F and t indicate that there is 
an outlier at r*57 and test III shows a significant 
value at r*56 as well.

The appropriate adjustments are shown in figure 9.15 
by a dotted line.The adjustments correspond to the 
first differences logs of the series in 1974 and 1975. 
The log should read 3.030 and 2.900 for 1974 ,1975 
respectively instead of 2.971 and 2.640 and the absolute 
values of the series are 1071.5 and 794 respectively.

5-6. SUMMARY

In this chapter some real life data series are considered 
•nd the use of the tests described previously demonstrated. 
Forecasts are also calculated : adjusted for outliers as 
well as for non-adjusted data series for comparison.
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TABLE 9.5 U.K. IRON AND STEEL PRODUCTION INDEX

Years 1st quarter 2nd quarter 3rd quarter 4th quart!
1952 95.2 96.6 92.9 99.0
1953 101.8 100.3 90.2 103.7
1954 104.3 106.6 95.2 109.7
1955 113.4 114.6 102.3 118.0
1956 120.6 119.4 103.3 117.2
1957 120.2 121.5 108.1 118.8
1958 116.4 109.3 92.8 96.9
1959 101.8 107.7 99.9 121.9
1960 127.2 129.5 116.4 128.7
1961 125.1 126.4 106.7 113.1
1962 112.7 115.9 103.0 110.1
1963 110.3 116.6 110.2 126.4
1964 130.8 137.7 120.3 138.7
1965 144.7 145.2 126.4 138.0
1966 137.9 138.8 119.4 124.2
1967 126.6 127.1 108.9 122.6
1968 128.4 132.0 120.2 134.8
1969 138.3 140.7 118.1 137.6
1970 138.0 • 139.8 122.3 132.2
1971 132.1 122.2 109.6 114.2
1972 110.5 124.7 111.0 12̂ .9
1973 136.6 131.0 116.6 133.7
1974 126.2 117.6 105.4 115.7
1975 120.9 99.0 80.7 99.4
1976 106.7 107.4 95.8 109.0
1977 112.2 101.8 96.8 101.6
1978 109.8 107.2 90.4 101.6
1979 101.9 115.7 94.2 105.7
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TABLE 9.6 RESIDUALS FROM THE FITTED MODEL FOR THE 
U.K. IRON AND STEEL PRODUCTION INDEX

Years 1st quarter 2nd quarter 3rd quarter 4th quarter
1952
1953 - 1.22 3.47 1.80
1954 - 2.98 2.64 1.99 2.71
1955 0.27 1.40 0.98 3.77
1956 - 0.84 - 1.07 - 2.87 1.77
1957 - 0.39 1.49 - 0.02 - 1.52
1958 - 5.77 - 6.99 - 3.12 - 8.04
1959 1.82 6.37 5.74 10.28
1960 2.13 2.44 0.14 0.04
1961 - 6.88 1.31 - 6.46 - 5.86
1962 - 3.32 3.14 0.67 - 4.85
1963 - 2.55 6.08 7.14 4.50
1964 1.78 6.36 - 4.23 6.46
1965 3.29 - 0.37 - 5.41 — 0.67
1966 - 2.98 0.05 - 5.73 - 7.44
1967 - 0.32 - 0.35 - 4.23 1.85
1968 3.09 2.77 2.39 2.65
1969 0.33 1.42 - 8.53 7.41
1970 - 2.50 0.75 . - 2.99 - 2.57
1971 - 2.87 - 10.99 2.06 - 7.74
1972 - 6.32 13.68 0.86 6.96
1973 4.41 - 6.83 0.11 4.80
1974 - 10.02 - 9.47 2.31 - 2.25
1975 3.20 - 22.28 - 3.91 6.27
1976 5.13 1.48 2.99 0.44
1977 0.76 - 9.69 9.43 - 7.98
1978 5.72 - 1.39 - 2.85 - 1.16
1979 2.47 15.08 — 7.41 - 0.80

t-.
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TABLE 9.7 DE 20ETE EQUITY INDEX

Year Year
1919 100 1949 294.6
1920 135.5 1950 264.4
1921 93.7 1951 279.2
1922 84.7 1952 287.5
1923 U9.8 1953 270.6
1924 125.9 1954 318.9
1925 145.6 1955 454.0
1926 183.0 1956 480.4
1927 179.2 1957 413.4
1928 200.6 1958 384.6
1929 231.7 1959 542.6
1930 191.7 1960 811.0
1931 158.9 1961 789.7
1932 125.7 1962 766.4
1933 162.3 1963 732.5
1934 204.9 1964 927.8
1935 245.6 1965 846.2
1936 269.6 1966 863.3
1937 310.7 1967 759.5
1938 258.9 1968 978.7
1939 220.4 1969 1309.9*
1940 213.6 1970 1072.1
1941 191.8 1971 931.0
1942 224.0 1972 1281.6
1943 252.8 1973 1317.6
1944 270.8 1974 935.4
1945 . 293.4 1975 437.1
1946 299.2 1976 1065.4
1947 . 340.7 1977 1035.7
1948 319.3 1978 1408.4



table 9.8 THE DIFFERENCE SERIES OF THE LOG OF THE 
DE ZOETE EQUITY INDEX

Year _ L Year 1 Year
1919

1

1 1939 - .07 1 1959 .15
1920 .13 1 1940 - .01 1

1 1960 .18
19a - .16 1 1941 - .05 1

1 1961 - .01
1922 - .04 1 1942 .07 1

I 1962 - .02
1923 .15 1 1943 .05 1

1 1963 - .02
1924 .02 1 1944 .03 1

1 1964 .11
1925 .06 1 1945 .04 1

1 1965 - .04
1926 .10 1 1946 .01 1

1 1966 .01
1927 - .01 1

1 1947 .05 1
1 1967 - .06

1928 .05 1
1 1948 - .03 1

1 1968 .11
1929 .01 1

1 1949 - .03 1
1 1969 .13

1930 - .08 1
1 1950 .05 I

1 1970 - .09
1931 - .08 1

1 1951 .02 1
1 1971 - .06

1932 - .10 1
1 1952 .04 1

1 1972 .14
1933 .11 1

1 1953 - .03 1
1 1973 .01

1934 .10 1
1 1954 .07 1

1 1974 - .15
1935 .08 1

1 1955 .16 1
1 1975 - .13

1936 .04 1
1 1956 .02 1

1 1976 .39
1937 .06 1 1957 - .07 1

1 1977 - .02
1938 - .08 1

1 1958 - .03 1
1 1978 .14
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TABLE 9.9 THE RESIDUALS FROM THE FITTED MODEL OF THE 
DE ZOETE EQUITY INDEX.

Year 1 Year 1 Year
1919 1 1939 -0.075074 1 1959 0.102741
1920 0.103333 1 1940 -0.078056 1 1960 0.167257
1921 -0.141773 1 1941 -0.123224 1 1961 0.058099
1922 -0.052913 1 1942 -0.016390 1 1962 0.047262
1923 0.054576 1 1943 -0.027807 1 1963 -0.002741
1924 -0.008772 1 1944 -0.004660 1 1964 0.109428
1925 0.081001 1 1945 0.006496 1 1965 -0.032674
1926 0.091986 1 1946 -0.010572 1 1966 0.028410
1927 0.020274 1 1947 0.029759 1 1967 -0.086910
1928 0.074800 1 1948 -0.047008 1 1968 0.079150
1929 0.018161 1 1949 -0.049774 1 1969 0.093005
1930 -0.063180 1 1950 -0.10663 1 1970 -0.051618
1931 -0.109037 1 1951 -0.049029 1 1971 -0.053666
1932 -0.176233 1 1952 -0.037940 1 1972 0.083322
1933 -0.003713 1 1953 -0.081424 1 1973 -0.011537
1934 0.002629 1 1954 0.011931 1 1974 -0.137308
1935 0.058820 1 1955 0.107898 1 1975 -0.191360
1936 0.036337 1 1956 0.033209 1 1976 0.260096
1937 0.074887 1 1957 -0.035011 1 1977 -0.054530
1938 -0.064927 1 1958 -0.045129 1 1978 0.217747

ir
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TABLE 9.9 THE RESIDUALS FROM THE FITTED MODEL OF THE 
DE ZOETE EQUITY INDEX.

Year 1 Year 1 Year
1919 1 1939 -0.075074 1 1959 0.102741
1920 0.103333 1 1940 -0.078056 1 1960 0.167257
1921 -0.141773 1 1941 -0.123224 1 1961 0.058099
1922 -0.052913 1 1942 -0.016390 1 1962 0.047262
1923 0.0M576 1 1943 -0.027807 1 1963 -0.002741
1924 -0.008772 1 1944 -0.004660 1 1964 0.109428
1925 0.081001 1 1945 0.006496 1 1965 -0.032674
1926 0.091986 1 1946 -0.010572 1 1966 0.028410
1927 0.020274 1 1947 0.029759 1 1967 -0.086910
1928 0.074800 1 1948 -0.047008 1 1968 0.079150
1929 0.018161 1 1949 -0.049774 1 1969 0.093005
1930 -0.063180 1 1950 -0.10663 1 1970 -0.051618
1931 -0.109037 1 1951 -0.049029 1 1971 -0.053666
1932 -0.176233 1 1952 -0.037940 1 1972 0.083322
1933 -0.003713 1 1953 -0.081424 1 1973 -0.011537
1934 0.002629 1 1954 0.011931 1 1974 -0.137308
1935 0.058820 1 1955 0.107898 1 1975 -0.191360
1936 0.036337 1 1956 0.033209 1 1976 0.260096
1937 0.074887 1 1957 -0.035011 1 1977 -0.054530
1938 -0.064927 1 1958 -0.045129 1 1978 0.217747
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Auto. b l a f. .1,
LAi con • err •
1 ;̂ ..̂ 91
2 ‘»1
3 .1.6 22 .1, .)P,;
4 ,.iw.
5 v', <J 4 . .'9-'
♦» , 3 0 »>
7 »J.2H7 ■•,;*« 9
H .1,225 d H
9 ^.132 i*-, .»'id
1.1 «J. 1S7 / . h 1
11 »1,'123 .? . . ’ H 7
12 il...P7 ». ■'* 9 713 .i , H r>
14 -3.L1S2 ' , > ■’ X r>
l b  -ii.i: / .•..'9 b16 ■‘..‘Hb17 -î .lbA •* e 1*13 -!•). 1 A1 .•,. » -
19 -̂ -».r/2
2i. -»Mb'» ' .  ‘t i21 . •. ' .122 -i*. I V ,< . . .'̂ 223 -i’.H.i . . •• /24 -H.l -r. •'.•'Pi25 -O.iw’ • ' . 126 -ti,l'7 127 -M.Ul y >■■ i'23 -y,156 i'. ..-7929 -a.l'yb »■' • 7 93'"* -.1,2. = H ■A, V 7 931 -3.229 7 X32 -0.1»>»> 0..-7 433 -0.ic*3 . ..':7 734 -ii,2oil
35 -<3.22i-* i-i , i'» 7 636 -;i.l4f. . »V 7 n37 -a,lS2 r’.67b3y -.1,225 :'.-i7b39 -i1.214 i'..i74I'l -i4,22;i »',̂ 17441 -vl.225 .>.2 7342 -.1,263 •..744 3 . ..•72

-1 •  / !> -.i> *.2b .2S VS 1 r
•<■

5T*

Figure OORRELCX3RAM OF THE SERIES »* NEW DWELLINGS
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■>1

Auto. Stsnd'î
LAG corr» er r ♦
1 -0.333 0.092
2 -0.079 0.091
3 -0.024 0.091
A 0.177 0.090
5 -0.006 0.090
6 -0.134 0.090
7 0.025 0.089
8 0.053 0.089
9 -0.041 0.088
10 -0.083 0.088
11 -0.203 0.087
12 0.423 0.087
13 -0.225 0.087
14 -0.022 0.086
15 -0.055 0.086
16 0.162 0.085
17 -0.173 0.085
18 0.104 0.084
19 -0.077 O.084
20 0.077 0.083
21 -0.049 0.083
22 -0.059 0.082
23 -0.057 0.08224 0.269 0.082
25 -0.171 0.081
26 -0.051 0.08127 0.052 0.08028 0.095 0.080
29 -0.065 0.07930 0.012 0.07931 -0.102 0.07832 0.097 0.07833 0.000 0.07734 0.019 0.07735 -0.183 0.07636 0.251 0.07637 -0.038 0.07538 -0.092 0.07539 0.043 0.07440 -0.007 0.07441 0.061 0.07342 -0.123 0.07343 -0.006 0.07244 0.064 0.07245 -0.022 0.07146 -0.004 0.07147 -0.141 0.07048 0.187 0.07049 -0.073 0.069

-1 -.75 -. 5 -.25 0 .25 . 5 1♦ e
t . ♦e ♦

*
*

*

t

*

t
*

Figure 9.4 ; CX3RRELCX31AM OF TOE DIFFERENCED SERIES FOR " NEW DWELLINGS
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Auto. Stand, 
LAG • corr. err. "1 -.75 -.5 -.25

1 0 ,6 9 5 0 .0 9 2
2 t) .5 7 6 0 • 092
3 0 .5 2 7 0 .0 9 2
4 0 ,.6 6 3 0 .0 9 1
5 e ,,3 6 5 0 ,.0 9 1
6 0 ,,2 3 0 0 ,.0 9 3
7 0 ..203 0 .,0 9 0
8 0 ,, 39 ^ 0 ..0 8 9
9 9 ,.165 0 ..0 8 9

10 0 ..116 0 ..088
11 0 ,>143 0 ,,088
12 0 ,.383 0 ..088
13 0 .,210 0 ,,087
14 0 . 202 0 .,087
15 0 . 234 » , 0 8 n
16 0 . 444  ̂ •086
17 » . 243 0 . »85
18 0 . 174 0 . »85
19 0 . 138 » . »84
20 0 . 279 » . 084
21 0 . 045 0 . 083
22 «- 0 . C33 0 . 083
23 . 0 . 066 fA• ' •083
24 0 . 077 0 . 082
25 - 0 , 135 0 . 082

.25 .5 75

Figure 9.9 : C0RRELCX3RAM OF THE SERIES ”U.K. IRON & STEEL PRODUCTION INDEX”
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Auto. Stand,
lag corr. err.

1 -0.0(32 0.094
2 0.151 0.094
3 0.067 0.094
4 -0.422 0.093
5 0.018 0,093
6 -0.197 0.092
7 -0.142 0.092
8 -0.059 0.091
9 -0.06R 0.091

10 -0.068 0.090
11 -0,048 0.090
12 -0.022 0.089
13 -0.036 0.089
14 0.103 0,088
15 0.115 0.088
16 0.130 0.2)87
17 0.107 0,087
18 0.120 0.086
19 0.030 0.080
20 -W.045 0.085
21 0.119 0.085
22 -0.177 k'.0B4
23 0.014 0.084
24 -0.015 0.083
25 -0,191 0.083

-.75 -.5 -.25 .25 .5 .75

Figure 9.11 ■; CX)RRELOGRAM OF TOE DIFFERENCED SERIES "U.K. IRON & STEEL
PRODUCTION INMX '•

144









.5 *-

Figure 9.15 ; •• DE 20ETE EQUITY INDEX THE PLOT OF THE
DIFFERESCEg~TliOG SERI^ES
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CHAPTER 10 
CONCLUSIONS

It is now necessary in conclusion to consider the work 
that has been done and what remains to be done.

This project is seen as a contribution to the area of 
applied statistics and deals with some of the anomalies that 
affect the predictive performance of univariate time series.lt 
should assist those engaged in time series forecasting in 
real life situations. The first step has been the 
establishment of the problem of outlying observations in time 
series,where typical data sets will be strongly correlated. 
This is done by examining the effect of a very recent 
observation on forecasting*,one step and m steps ahead.The 
mathematical formulae produced show this effect very clearly.

The next step necessary was to propose and use test 
criteria ,that detect outlying observations.Calculations of 
the derivation of the estimate of the error and its sampling 
variance were presented for certain ARIMA models.A simple 
method was also developed to derive the sampling variance 
of the estimate of the error 6 for nonseasonal as well as 
seasonal autoregressive models.The tests were then compared 
on an empirical basis using simulations.The same tests were 
also applied to real life situations to detect outliers.

In the study of testing for uncharacteristic changes 
in the data of a time series,the case of a shift in the level 
of the series was considered,too.Some test criteria were 
extended to certain ARIMA processes and other tests were 

suggested.

Computer programs were produced that (a) simulate non-
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seasonal and seasonal time series (b) calculate the likeli­

hood , in the case of the likelihood ratio test used in 
chapter VI.Standard computer packages for time series using 
the Box-Jenkins technique were also used.

The findings of this work are :
1. When there is an "error in observation" or "aberrant 

observation",the estimated parameters may not be affected, 
but the errors are magnified in the forecasts.The expressions 
produced in chapter V indicate this effect.

2. Test I (the likelihood ratio test) is less powerful 
in the case of a MA(1) model tl̂ an in the case of an AR(2) 
and a seasonal autoregressive model.

3.In the AR(2) model Test IV (Difference test) approaches 
Test III(the one-step ahead forecast error test) as positive 
parameter values increase in magnitude.

4. In the MA(1) model there is a great loss in the power 
with Test IV ,which may indicate that smoothness is difficult 
to achieve with this process.

5. Test III is a powerful test in the case of a non- 
seasonal process.Test IV is more powerful in the case of a 
non-seasonal AR model of orders 1 and 2 and less powerful 
in the case of a nonseasonal MA of order 1 and a seasonal 
AR model.

6. The likelihood ratio test and the general linear model 
approach are equivalent in the case of an extreme innovation.

In the Applications chapter of this project the usefulness 
of the test criteria has been demontrated.The less powerful
tests have been pointed out in every particular situation.

Very little published work exists in the area of 

uncharacteristic changes in time series data.This project is

150



a contribution to the "aberrant observation" and "shifts 
in the level" types of anomalous data. There are other 
types of uncharacteristic changes which would be usefully 
examined such as changes in variance,in a parameter value, 
missing observations etc.,and the effects of these changes 
on forecasts.

There is also more work to be done on the shift of the 
level of the series tests. These tests should be compared on 
an empirical basis.The power curves of the tests should be 
evaluated.

In the case of an "error in observation." some comments 
have been made about the tests used.More work has to be done 
on test IV (the difference test),to investigate the range 
of parameter values that make this test robust.

* The test criteria should also be applied to real life

<̂ *ta from other sections of the economy,such as sales data, 
inventories,production etc.

The effects of the data anomalies on forecasting using 
certain other univariate forecasting techniques such as
Holt-Winters,exponential smoothing would be another possible 
area for further research.
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APPENDIX II

The derivation of the likelihood ratio test
This is for an autoregressive non-seasonal model of order p

The model is written as:
P

where

The hypothesis to be tested is:

against
H

For fixed z^, the joint probability density function of 

..... *N
N

1 « ---- -— ------- . exp { - _L _  I a? ) ̂\N-p/2 ^„2 t«pfl t(2ito 3 ) a

under H , o'

(2 ,Si)

N

under ,

4
(2 n5̂ )

exp {-
29 2 t-pfl X  h \ - i  - *t>)

and

4

_2 N-p/2
t °a)

N
“as? ’

~ ^ 2  I2a^ t*pfl  ̂^ a
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APPENDIX II

The derivation of the likelihood ratio test
This is for an autoregressive non-seasonal model of order p, 

The model is written as:

■t ■ +*t * s

where

The hypothesis to be tested is;

against
H

For fixed the joint probability density function of
• • • • m f •

N
2 1-—  ------ . exp j -  L-_ I af )

(2no gj )

under H , o'

(2 ,Sf) “-P/2

N

• l b  1

under ,

h
(2 nar?)

fl

exp {-
25 2 t*pfl h h - i  -  *t> 1

and
^2 N-p/2

(

N
^  t - l i ' V i i A V i ’ 1

T - 2̂. N-p/2 __f 1 ^ . P ~ >2i
b -2. 1 ‘V  i2a^ t*pfl a
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Noting that
N

(N-p)

and
N

- i h h h . i  -«t>^' <«-p> o l

Hence

and

2/N-p

2/N-p

(ô )
,32, N-p/2o

1 '^ -ill h \ . i  -«t>
T .2

(̂Zt -ill

may also be written as:

2/N-p
^2 9

°a  + < ®a -  “ a '

Let -2 ^2o ** o a a

1 +
or —  o  a "a

Then •r x2I( 2 t  -  f 9 i  -  I < V  f  5 i V i - « t »
X - — ^  _5-----------------------------------

5, N-p
By ignoring the differences between and

* ■ < 2 1  \  ^  -  2 H  ' f  - 1  1

(N-p) a
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APPENDIX 2II
Program_for_.02D§S2S25^^

ARINA models

•0100 OIN A(400),Z(400)
•0U0 Flue fl:"BLOGS*DAT”
^eilS^CAATCHL^
'•01 20_LET_ R_1 *0„_
|00i30iiiETz R2*0 00140 UET M1S0 
■•01$0^ET^M2«0 
00160 LET^3s0 
|Mil70 UEf:X3*0 
00175 UET X4«0 : _
=001 •g^g0':iTHE R * S ARE AUTO PARAMETERS 
00190 REM THE N»S ARE_MA PARAMETERS 
30^00iF!LlllTATyPerIH HOUEL IN THE ORDER
00210 INPUT A,B.C________________________^?221^g3*0_i,THEN^20:^rT^E^^^
_00230_IF_Bsl THEN 310 _  _
j0024«F^A«0:iTHEN ,270 v/lr y  ,. ' ^
.00250.lF_Aal _THEN GOSUb 460 
•0260^F-5A*2-THEN -GOSUb_ 430'- ~ “00270 LET X1S24R1 
«0280 LET X2«R2-2*R1-1 
•0290, LET X3«R1-2*R2 
00295 LET X4«R2 
s^00_GOTO 490 
00310 IF A*0 THEN 340_
00320 IF Asl THEN GOSUB 460
00330 1F:As 2 THEN GOSUb 430 - _ ________
.00340 LET_X1*1^R1
=00350iiET-X2«R2-RlY _1 1 _1 - 1.00355 LET X3S-R2
30360^OKt490_- _ __ _ _ I ^
.0037) 0 A -AA<L then 400 3 0 3 8 0 ^ ^ s1^THEN'GOSUB 460 
-®0J9OF_A=2 _THEN GOSUB 430 ^040_0giEi:2[lsRl“̂̂ : ^
J004ip_LET X2»R2 
^.0420:^010 490
A?«0 PR1NT"TYPE IN AUTOREGRESSIVE PARAMETERS' 
^0440 iNPOT Jtl,R2 904W RETURN
^0460-PRlHT«TYPE IN JiUTOREGRESSIVE PARAMETER' J0470 INPUT R1

-- Y, Y V  ̂ ^
_00490 IF C»0 THEN 560
^05A0^A.^sl JHEil-340 - - "îTv 1 ^  r -r
-^>l<LfMKT"TYPE IN MOVING AVERAGE PARAMETERS' ^0520^NPOT-J!1,M2 
A0^0__6OTO '560
^0540^RI*ri>j3fPE IN MOViHG .AVERAGE PARAMETER' 
^®5M_AWPUT Ml
=00.560 P A R N O W
.00570 PRINT^VARIANCE OF ERROR TERM" ^05B0-lNPijt7l):^^ - ” -
.00590 LET DsSQR(D)
.^O600'PR1nt«ho m .MANY SIMULATIONS",00610 INPUT N 
AO620 LET Nsf|>fl04 .00630 FOR Jsl TO H 
.00640 RANDUMIZE 
00650 LET H=0
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00660 FOR 1&1 TO 4B 
00670 LET XsRND
^0680 4iEI j<aR^X -------
00690 NEXT 1
f00700 LET_^*CR-24)/2 I V  "
00710 LET A(J)sD»R "
■'00720 .N E X T ^  - --
00730 LET Z(l)sA(l)
00740 LET_Z(2)sA(2)
00750 LET Z(3)sA(3)
_00755 LET Z(4)s A ( 4 ) U  _ “  ^
_00760 FOR JsS TO N *  ̂ -
Ï!ffl4£Lfc:r^l»XlîZl0-l)4X24ZCJ-2)Vx34Z(J-3)4X4*Z(J-4)
_00mJkEJ_Bl_«A(J)-Ml*A(J-l).M2*A(J-2)L0^90L!ïÆTIZïCJ)8Al4BÎ3 . x _ -----
00800 NEXT.J_________ ’ ~ ' - -
3W0^FORr^«lj95^i^ ~ ■ - -
00865 _  ̂ lNT|i_,2(J~) - — —
00880 END ■ ■ ■ “

I — .
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APPENDIX 2III
seasonal

ARINA models

•MlffDlH X(5,5),A(1000),Z(1000)
lnalS FILE il:"BLOGS.DAT" _ - ... _ _ . _ ---
^1^5CRATCH_il :̂ r _ -- : _ : -^320iPRINT*TYPE IN REGULAR MODEL IN FORM P,D,0".__________ ____
imis^ramdqmize.
'»•030INPUT Al#bl#Cl . . ----J||«40PRIHT?TYPE IN SEASONAL MODEL IN FORM P#D,Q" - :
V0050iMPUT_A2,B2*C2 ........ ....
^ 340PRiNT]^TYPE IN SEASONALITY PARAMETER S* ... _ ---—
W070IMPUT 51 . _ _ ___________  - ----------- ----WgBPRlNTiTYPE IN ALL EIGHT PARAMETER VALUES IN THE FOLLOWING,ORDER
l009i'PRINT"REG AUTO THEN MAjSEASONAL AUTO THEN MA" ____  — ^
af^^JIPJiT R1 , R2 , Ml , M2 , R3 , R4^ M3 , M4_ 11
MllUilET BS-B2. . _  ........ . . . . _______ ^ :r^ rn:--—ani0l^i^«B2?(jB2-l)/2 .
Ml30LEl_Da-Bl______________- ---
Ml50LET_F_»-Bl*B2*(B2rl)/2______. .... - ....-  ------
•0lS0LET^sBl*(BlM3/2?^j:;^-p?^^^-f^ ^
00170LET H*-B2*Bl»(bl-l)/2 - _
30180LET IlsC*G* ^
0019OLET Sa-Rl 
002O0LtT I*-R2
•0210LET_ U«-R3 _ . _
'M220LET lV»-H4 - ...
J0230LEr W=R1*R3^240LET:^^14R4_-  ̂ -_____  ̂ _1-
00250LET Y»R2»R3_____ _ ----  -
09270LET X(0,0_) =0 _ ____ -------------------- -̂-
i«2B0L E t ^ gni«5»T)~ -
iWl®iEOt***2)=T+S4D«fG __________ -------- ^
a00300LEt^l9i33sT»DtS*G  ̂ J ~  A
i03l0LET X(b,4)sT*G _ _ __ ------------
30320LET Zli;0)aUi’B * ' -
10330LET X(l,l)aS»B-fW4E+U»D_ .. _____ ____ _____ _—  — ^30340LET ZCl#2)»Y+T»B+W*Di>S*E*fU»G4H. ^  ::r
i0j50LEI_X(l,3)sY*D+T»E4W^G-»S*H . _ _ . _ _________-
^360LEiauV;4isY*C*fTaB -- -
■jg370LET X(2.0)aV»U»B^C _ _ _ _______ - _____ -...303B0LET3l2til=X^W»B+S»C4V»b+U4E-^^ Z1T. "1- - ‘ ..- " T _ _j03f0LET X(2,2)sZtY*B-i-T4C+X*PtW»E4S*F*V£GjtU»H-fn________ _
^'MbEY~XI2T3332»b4Y*EVT4F4X»G4W*H4S*’ir _,^--
^0410LET~x'i 2,47 «Y4H4T» 114 2»G _______________ ________________
^042BLET:t̂ {2V0)=V4B4U4C ' " -
.00430LET X(3.1)sX»B4W»C4V»E4U»F _____  , . -^440LiT^2723_=2»B4yaC4X4E4W4F4V4H4U411 - r- , ; ■
10.4S0U:~T XC3,3)sZ»E4Y»F4X»H4W»11 _ __ _____  t
l0»460L£iiX(3V43a2»H4y»ll ■■ -
00470LET_X(4,0) iV*C ^  -........^4J00LEi^(jiaOsX»C4V»F  ̂̂ ^00490LET xj4»2)aZ*C4X4F4y*Il _ ______ .
^500LET X(4^37*2*F4X*11 “ ^   ̂ "
J0>10LET X(4»4)^Z*ll _i :#0520PR1N^VAR1ANCE OF ERROR _TERM?" > . .i; i -
^00S301NPUT Ui _ ________ - ____  - - -! :|054OPR1nx4nUMBER_OF SlHULAtiONŜ r:̂ ^̂ '̂ ; - -

I ~*0550iNPUI H ~
.0BS60LET N1=N _ 1 _ -
00570LET NSN4250
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APPENDIX 2III
o f seasonal

ARIMA models

IMlflDlH X(5,5),A(1000).Z(1000)
10015 FILE tl:**BLJDGS.DAT* _ _ _ _ . _ ____^1^5CRATCH_il ~  _ ... : _ -
00320PRINT”TYP£ IN REGULAR MODEL IN FORM P»D.O" ___________ ____
Md2S=RANDOMlZE. ....
W030INPUT A1#B1»C1 . . _____  . . ___
J*|.40PRIHT?_TYPE IN SEASONAL MODEL IN FORM P,D.Q* . '
V0050if<PyT_A2,B2#C2 ........  .... ... .
_^050PRINT^TYPE IN SEASONALITY PARAMETER S" _ i." .Ir _ ____ _
W070jHPUT SI _ _ . _____ ____  _ _______________ _________WeBPRlNTi^TTPE IN ALL EIGHT PARAMETER VALUES IN THE FOLLOWING .ORDERS
T009i'PRINT"REG AUTO THEN MA;SEASONAl. AUTO. THEN MA" ^ _____R1 #R2 • Ml,M2• R3,R4., M3,M4_ ■— ..-.irr;..
'Mll0i»ET BS-B2 _ ________________ j________________________
W ^ l ® r ^ * B 2*(B2-l)/2 ., v:_"
m30LET_D=-Bl__ ___________ .. ___  _____ ur—^ag»lLET^E»Bl»B2 ̂ : -- - --i:: :" - J . i l ^
0il50LET__F_»-Bl*B2*(B2-l)/2.... .................... ......_  ______
Ml40LEI^aBl*(Bl-a3/2^^-^^^i^^^.^ ^
00170LET Ha-B2*Bl»(bl-l)/2 _ _ _
m80LET IlsC*G' . .
00190LET Sa-Rl 
002O0Ltl :T«-R2
0021HET U»-R3 _ _ ..........
00220LET ly»-R4 : .
i0230LEI WsRl*R3 _ _ -....
^240LET^JCsRl»R4_^  .. _ r 11^
W50LETJf*M*R3_____ _ _ _ _ _ _ - _ - _
l«260I^^aR2»R4r i r ^
j0270LET X(0,0JS0_ _ _ _____ —  i-_- _________________ _____iW280L E l ^ gni«Stqb- : ^ ~
i0210LETjCt_*»• 2) =T+S4D-fG _____ ____ _ ________300300LET^3WOi33sT»D+S»G - —  A: _
i03l0^ET _X(0#4)sT»G _ _ __ _. _. ___ ^___ -:z— .r______
30320LET“Xli;0)sUi'B ' '
10330LET X(l«l)sS*B<fW<fEtU*D ______  . .. __ ______ ___  -
.30340LEI lCCl*2)sY'i>T*B>fUiD<fS4E*fU4G'fH " 1
i«50LEI_X(1.3)sy*D4T*E4W»G4S*H _ _ _ ____  __________
■00360I^ia^iV4isT*C4T*B - r ...r  ̂  ̂ - v .
J0370LET _X(2.0)sV4U»B4C _ ____________ __ ___  ..._____ — ----
30_3B0LtT^l2niaX^W»B4S*C4V4D4U4E4^Z- . Z:. 1  " ..^ ' Tje390LET X(2>2)gZ4Y»B4T»C4X»D4W»E4S»F4V»G4U»H4n_____ ___. ----
iW4.WLET^X2733a2»b4Y4E4T»F4X*G4W»H4SMi: ' - ----
J0410LET Xi2,43gY»IHTSll42»G _______________ __ ______________
%420LET^(3V0)aV«B4U*C ' . ' - --
,00430LET XC3.nsX»D4W»C4V»E4U»F _____  . - --- -.
^i4BLtl£XI3723s2»B4Y*C4X»E4W»F4V»H4U»ll - - r . . -■^^l^LET XC3/3)'sZ»E4Y»F4X»H4W»I1 __ -
l00460LEi^(3V43a24H4Y*li ' *' .
00470LW_X(4,0)aV*C _ _____  _ r__........i^4jB0LEI^xU,I3iX4C4V»F - .90.490LET X(j4_,2)aZ*C4X*F4V»Il _ ______ _ _ _ _
r«e500LET X(4.33aZSF4Xail ~~  ̂ ^  ZBOblBLET X(4,4)aZ»ll _____ ____
:^520PRl«ij»yARIANCE OF ERROR _TERM?":- - Z!'! : : -
^^5301HPut bi “ _ __________ ____  -
^SIOPRIht^^NUMBER OF SIHULAtlONS^ Z? V- - --^00S50INPUT N “ ’
.00̂ 0LET NlaN -
0O570LCT N3N4250
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005B0F9R Jsl TO N 
00590LCT A3s0
00600FOR'T*1 to 48^00610LCT Tl_aRND _ _
ji620lÆT3l3^3^YlJ 
'00630HeXT I ___
i«0640L€T^(J)sDi«(A3-24)/2 _ -  _
00650MEXT_jJ
'J0660LETL!ís44Í51^5 _
'006_70FOR_,|ai_TO M
.•06~B0LErz~(J)sA(J)
WÍ690NEXT J _
«0700FOR jsÑ TO N 
•añBLET A4«0 „
yi0íM^R^i*0¿To 4 ^  : _ r
.B0.T30FOR K«0 TO 4 _
ÜG40IíET^0*X4^X(I,K)*ZIJ-S1»I-K) __ - -W7S0HEXT K _  __ _ _____
007é0»ÊxT^ : ^  ̂  4 : ^
)0770LET B3sA(J)-Ml»A(J-l)rH2*A(J-2)*M3*A(J-sn-H4M(J-2Vsï) 
B0780LET B4sNl*M3*A(J-Slrl)4̂ Ml*M4.*AtJ-2«Sl*l)
M790LET. B5sM2*N3*A(J-Sl-2)<fH2*M4*A(J*2*Sl*2) 0 0 B 0 0 U E T - Z X 3 ) * B 3 4 - B 4 4 B 5 - A 4 - ~ ~ ' “ . *MB10HEXT_J_
:00820LET:msN-NÏ^I ■
00830FOR J=M TO N 
0BB40PRINT41,Z(J)W850NEXT_JL00B60EaÔ :i:r--
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■ '«8 APPENDIX 2IV.
Computer packages for time series - Box - Jenkins 
methodology

Four c^puter packages were used. The first two are 
from the London School of Econcxoics. These are IDENT which 
assists in the identification of ARMA and ARIMA models and 
FMLAMS is a program which computes explicit» maximum likelihood 
estimates of the parameters of a mixed multiplicative seasonal 
ARMA process.

The third package is the S.P.S.S. Box-Jenkins procedure, 
%diich may be used to fit and forecast time series data by 
means of a general class of statistical models. The routine 
can analyse univariate time series and tr2insform the data.
The identification, estimation and forecasting are specified 
by using the keywards IDENTIFY, ESTIMATE, FORECAST.

The PRINT for requesting printed values and PLOT sub­
commands are also specified in the BOX-JENKINS procedure of 
SPSS and produce very nice graphs for the series, the differenced 
* series, the autocorrelation function and so on.✓

The foiirth package used is the MINITAB. The subroutine 
for time series is used. More about MINITAB can be found in 
the MINITAB manual.

All four packages exist in the City of London Polytechnic 
Computer Centre.
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APPENDIX 31
Calculation of the likelihood function of the

likelihood ratio test

JY OUTII.BAS ^ .
WlOO REM PROGRAM CAjJ^ULATFS THF XIKgLIHODD FIIJjlCXJ5MLJFOR_AN ARliiA_^£RltS 
OOnO REM REQUIRES DIMENSION STATEMENT TO BE SET EACH RUN 
00120 DIM A(100r l00>rB(100)rC(100>rE<100)rX(100)fY<100)
00130 DIM D(l>
00140 PRINT"UHAT FILE  IS  DATA ON*
00150 INPUT F$
00160 FILE « I f F t
00170 PRINT*HOU MANY OBSERUATIONS*
00180 INPUT N 
00190 FOR 1« 1 TO N 
00200 INPUT « l f X ( I >
00210 NEXT I
00220 PRINT*UHAT MODEL**
00230 INPUT Z 
00240
C033OPRINT * INPUT PARAMETERS *
00340 IF Z-1 GOTO 850 

GOTO 910 
GOTO 730 

790 
GOTO 990 

1070 
GOTO 1230 

00391 IF Z«8 GOTO 2130 
00430 FOR I«1  TO N 
00440 J « I
00450 IF J>N GOTO 500 
00460 A ( I f J ) « Y ( J > I )
00470 A ( J f I ) « A ( I f J )
00480 J«J+1 
00490 GOTO 450 
00500 NEXT I 
00540 NAT B«A»X 
00550 MAT C-TRN(X)
00560 NAT D«C«B
00590 PRINT*LIKELIHOOD FUNCTION IS*
559s NAT PRINT D 
00600 PRINT
5*10 PRINT*DO YOU UISH TO ALTER DATA*
5620 INPUT A$
5630 IF A$-*NO* GOTO 710 
5640 MAT E-X
5*50 PRINT*INPUT NEW DATA IN FORM! NrX*
5*«0 INPUT I f  E d )
5*70 NAT C«TRN(E>
5*80 MAT B-A«E 
5*70 MAT D«C*B 
5700 GOTO 590 
5710 STOP 

REM
520 REN SUBROUTINE FOR MODEL ( I f l f O )
5750 INPUT Ml 
*®760 Y(0)«1FM1»M1

00350 IF Z-2 
00360 IF Z>3 
00370 IF Z-4 GOTO 
00380 IF Z-5
00389 IF Z«6 GOTO
00390 IF Z«7
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00770
00780 GOTO 430
00790 REN SUBROUTINE ( 2 f l r 0 )
00800 INPUT NlfN2
00810 Y(0)«(liM l»M l-fM 2*M 2)
00820 Y<1)»-M 1»<1-M 2)
00830 Y <2)«-H 2  
00840 GOTO 430
00850 REN SUBROUTINE (OrOrl> OR ( 0 » l f l )
00840 INPUT A1
00870 Y(0)«1/<1-A1*A1)
00880 FOR K - 1 TO ( N - l )
00890 Y ( K ) » ( ( A 1 ) « » K ) » Y ( 0 >
00900 NEXT K 
00905 GOTO 430
00910 REN SUBROUTINE (OfOf2) OR ( O f I f 2)
00920 INPUT AlfA2
00930 Y ( 0 ) « ( 1 - A 2 ) / ( ( 1 + A 2 ) * ( ( 1 - A 2 ) » * 2 - A 1 * A 1 ) )
00940 Y ( 1 ) « Y ( 0 ) » A 1 / ( 1 - A 2 )
00950 FOR K«2 TO (N -1 )
00960 Y ( K > * A l » Y ( K - l ) + A 2 » Y ( K - 2 )
00970 NEXT K 
00980 GOTO 430
00990 REN SUBROUTINE 5 NOBEL ( I f O f l )  OR ( I f l f l )
01000 INPUT A lf Nl
01010 Y(0)«<1+H1*M1“ 2*N1*A1>/U.-AI*A1>
01020 Y ( 1 ) « ( 1 -A 1 »N 1 )* (A 1 -N 1 )/ (1 -A 1 * A 1 )
01030 FOR K«2 TO (N -1 )
01040 Y (K ) « A 1 » Y ( K - 1 )
01050 NEXT K 
01060 GOTO 430
01070 REN SUBROUTINE 6 NOBEL ( 1 f 1f0 ) f ( 1 f 1f0>S
01080 INPUT NlfN3fS
01090 Y(0)«(1+N1*N1)*(1+N3*N3)
01100 Y(1)*-N1*(1+N3»N3)
OHIO Y (S -1 ) -N 1«N 3 
01120 Y(S)« -N3»(1+N1»N1)
01130 Y ( S + 1 ) « Y ( S - 1 )
01230 REN SUBROUTINE 7 NOBEL ( 1 f 1f0 ) M 1f 1f 1)S 
01330 INPUT Nlf'A3»N3frs
01430 Y ( 0 )  ■ (1 + N 1 * N 1 )» (1 + ( (N 3 -A 3 )» (N 3 -A 3 )/ (1 -A 3 »A 3 )> )
01530 Y ( l )  « - N l » ( l  + ( (N3-A3)JMN3-A3)/(1-A3*A3)) )
01630 Y ( S - l )  ■N1*(N3-A3- (A3*(N3-A3)*(N3-A3>)/(1-A3»A3>)
01730 Y (S )  ■ - (1 + N 1 »N 1 )» (N 3 -A 3- (A3* (N 3-A3 )» (N 3-A3) )/ (1 -A 3*A3)>  
01830 Y(S+1) « Y ( 8 - l >
01930 PCR K«S+2 TO N-1 
02030 Y(K)  «A3*Y(K-S>
02040 ■ 4EXT K 
02050 GOTO 430
02130 REN SUBROUTINE 8 NOBEL (2f 1 f0) M2f 1 f0)S 
02230 INPUT NlfN2fN3fN4fS
02330 Y (0  > -  (1 -t-Nl «N 1 +N2*N2 ) »  (1 +N3»N3+N4*N4 )
02430 Y(1> — N1» ( 1 -N 2 )* (1 +N3*N3+N4*N4)
02530 Y (2 )— N2»(1+N3»N3+N4»N4)
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00770 y<l>— HI 
00780 GOTO 430
00790 REH SUBROUTINE < 2 » l r 0 )
00800 INPUT HlrH2
00810 Y ( 0 ) « (1 ’I-M1»H1-I^H2«H2)
00820 Y d  )»-Hl*<l-M2)
00830 Y ( 2 ) « - H 2  
00840 GOTO 430
00850 REM SUBROUTINE <OrOfl)  OR ( 0 » l f l >
00860 INPUT A1
00870 Y < 0 > > l / d - A l « A l )
00880 FOR K- 1 TO (N-l)
00890 Y ( K ) « ( ( A 1 ) » » K ) » Y ( 0 )
00900 NEXT K 
00905 GOTO 430
00910 REH SUBROUTINE (0 f 0 f 2 )  OR ( 0 r l r 2 >
00920 INPUT AlfA2
00930 Y < 0 )«d -A 2 )/ < (1 + A 2 )* < ( l -A 2 )* * 2 -A 1 * A 1 ) )
00940 Y < 1 ) -Y (0 )* A 1 / (1 -A 2 )
00950 FOR K*2 TO <N-1)
00960 Y (K )* A l* Y (K -l )+ A 2 »Y < K -2 )
00970 NEXT K 
00980 GOTO 430
00990 REH SUBROUTINE 5 MODEL ( I f O r l )  OR d f l r l )
01000 INPUT AirMl
01010 Y (0 )B C l - l -H l « M l -2 « H l « A l ) / d > A l « A l )
01020 Y<1>*(1-A1»H1)*<A1-M1)/<1-A1*A1)
01030 FOR K«2 TO (N>1)
01040 Y<K)*Ai»Y <K- l )
01050 NEXT K 
01060 GOTO 430
01070 REH SUBROUTINE 6 MODEL ( 1 » 1 r 0 ) M 1r 1f0)S
01080 INPUT HlfH3fS
01090 Y(0)«<1+M1*M1)*<1+H3»H3)
01100 Y ( l ) — H1»(1+H3«H3>
OHIO Y(S-1)«H1«H3 01120 Y(S>— H3«(1-I-M1»H1>
01130 Y<S+1)«Y<S-1)
01230 REH SUBROUTINE 7 MODEL (1 r 1 ?0> M l f 111 >S 
01330 INPUT MirA3*M3^S
01430 Y<0) «< l+ ill*M l)*<l+<<M 3-A3)»(M 3-A3)/<l-A 3*A 3)) )
01530 Y d )  — M l » d  + < <M3-A3)*<M3-A3)/d-A3*A3)))
01630 Y<S-1)  ■Ml*<M3-A3-<A3*<M3-A3)»<M3-A3))/d-A3»A3))
01730 ' Y<S) « -d + M l* M l)* < M 3 -A 3 -(A 3 »< M 3 -A 3 )»< M 3 -A 3 ))/d -A 3 »A 3 ))
01830 Y<S+1) « Y < S - D
01930 rCR K«S+2 TO N-1 
02030 V(K) «A3*Y(K-S)
02040 • 4EXT K 
02050 GOTO 430
02130 REM SUBROUTINE 8 MODEL ( 2 r 1r O ) M 2 r 1rO)S 
02230 INPUT MlrM2rM3rM4rS
02330 Y ( 0 ) «  d  +M1*M1+M2»M2)♦<1+M3»M3+M4*M4)
02430 Yd>«-Ml»d-M2)*d+M3*M3+M4*M4>
02530 Y<2)«-M2»d+M3*M3+M4*M4)
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APPENDIX 3.II
The calculation of 6 and Its variance for an AR model of order 1

{*4-) is an autoregressive model of order 1 , M will be^ n
the covariance matrix of a moving average of order 1 , that Is

.-1

l+q>^ -CP 0 0 # e • • e 0

-<p 2
1+9 -CP 0

0 -CP 1+0^ -CP 0 . . • . . 0

0 0 -CP 1+9 ^ -Q) 0 0 0 . 0

1+9

0 D 0 0 0 0 0 ......
(6.9) becomes

(a^-6 ) (1+0  ̂ ) -
and

»S: - _ . 2 _
l*Hp5 ‘ *r+1 + V 1  ’ (6.II.1)

(6.II.1) may be written as:

i . . 1  ( ^  - 9 -9 y ^  ) )
1+CP

where

V  “ ^r
V i  - - ^ + 1

Therefore,

'6 l+q> ^®r+1^ ( 6.II.2)

The variance of 6* Is calculated from (6.II.2)

Var( i )

since 1+9*
( Var( B̂ ) +9 Var( )
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COV ( « r - V l ’“ °

Hence

Var( 6 ) - ----5 , ( + <p̂ o? )

That is ,

Var( J 1a ”“““x (6.11.3)• 2
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APPENDIX 3 .III
The calculation of g and its varl^mce for an AR model of order two

In formula (6.9) will be the covariance matrix of a MA ofn
order 2.

q)j (l-Qj) <D.

(6.III.1)
6 c«m be vnrltten as: 

1
« « ----- j----Y1+ + q>2 ( ( -<*'2‘ ’S:+2 - * l ^ + l " ® 2 ? t  ’

2 2 l-HpJ-HPj
and

Var( 6)
(1 + <p̂  + ipj)

2 2 2 2 2 
5 7 7  ( ° a  *2  "a  *  '*’x °a ’

Var(«> a -------5— 7l-HpJ-HPj
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APPENDIX 3. IV
The calculation of 6 and Its variance'for a (1>0f0) (3,0,0)s 
model

Substituting in (6.9) the for the above model, wheren. n
is the Laurent matrix of the (0,0,1) (0,0,1)s model, we get

<P (l+®g)

(l-Hp̂ ) (1+®:) ^  ^
8

<p *,

‘’V+8 * ^-8>

(1+<|)̂ ) (l+®g)

<^+8+1 + V 8 - 1 >

(6.IV.1)

This can be written as:

-»*.-1 - 8 ^ - 8  *«^8V(8^1)>
8

-<P (3V+1-«> \  -  * ,^ -8 + 1  +»*8 'S :-8 ’ 

•®8'"V+8 - <*'*r+8-1 -® 8 V  - ^ 8 V l ’ .i. .

• ^ 8 ‘’Sr+8+1 - «”V+8 - ® 8 V 1  «*8^:’’
1--- X---- 5- ( a - <pa . - -e .. + 0)®-»-, -. T )(l+q>̂ ) (1+®^) ^ s r-fs 8 r+s+i

Var(6) V — 577  ̂ ^"^a ®^a  ̂ ^(i+a>‘)‘ (i+®:)

----5-i----^  (l+<p̂ ) (1+®^)
(l+q)^)^(l+®;)^ *

Hence

Var(6) - \  —  - ̂  a l(l-Hp*̂ ) (1+®:)
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APPENDIX 3.V
The calculation of 6 and Its variance of a (2>0,0) (2,0,0)8 model

Substituting in (6.9) is the Laurent matrix of (0,0,2) 
(0,0,2)s model we get:

------- 5— 5-----  ^(l+q>̂ +<P2) r - T T T  C‘  -*1 >

*r+l’ - X ’Sr-2 + >^+2’

*̂2^18 ^‘*"®2s ^^\-(s-2) **■ ^+(8-2)̂

^^"®2s ^^^-(8- 1) *r+(8- 1)̂
- -HP̂  )(l-*j, )(*r_, + )

+ »-®2> ‘̂ -®2»’<^-(8+ 1) + =S:+8+l’
+ <P2*j^ (l-® 2^  ) ( :S :- (8 + 2 ) +  ’V

^2®2s ^*r-(2s-2) **■ ^ + ( 2s-2)̂

^l®2s ^^“^2  ̂̂ ^ -(2s-1) ^ + ( 28- 1)̂

- ®28 < V 28 + ^-+28>
+ <Pj®2g (1-<P2)( 3Sr-(28+1) ^+(28+1) ’

+ «>2®28 • ’ S r -(2 8 + 2) ■*■ ^ + 2 8 + 2  0

t+(8+2)

(6.V.1)

or

(i+<pj+<p̂ ) (i+®i, +«|,) ‘ *r - ®l*r+l -®2»r+2 -®18 »¿+s
-®28 *r+2s *®i®l8 “r+s+1

+<P2*j8 ®

*®2®28 *r+2s+2 ’

2*l8 °r+s+2 ■^1®28 *r+2s+l

(6.V.2)
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Using (6.V.2) the variance of 6 is : 

Var(d) - ---->— Ì-K----*--- ---- -
(l+ip̂ +Oj) (l+®ig+®2s ^ ^l°a ’*■ ^2®“ **■ 

2 _2 . 2 ^ 2

i s  ^

* *2. ° l  * «>ì®Is *
_2.2 2 . 2 .2  2 
'»2®l8°a *1*2« °a

* -2*2 2 , 
* *2*2« °a ’

1

Hence,
2O

Var(6) • cs.....
u+<PÌ+,p|) (6.V.3)
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The calculation of 6 and its sampling variance for a MA model
of order 2

Substituting in (6.9) where M"^ is the covariancen n
A#matrix for an autpregressive model of order 2 , 6 becomes

• %

+ - L A y y (x .+ X ) (6.VI.4)
1 i=2 i2

Where ^*2 ^i-2
and Y

k = max {(r-1),(n-r)}

Var( 6) = Var(x^) + — — r- 9  i+  ̂ +

I (Var x
i«2

\
+Var +

2 ^(^)(^) ^r-j^'r-j-l + C O V

C O V  X  . X  ^r+j r+j+2
(6.VI.5)

Where y . is the (r+ element in the matrix M“^D n
^jl is the (r-jil)^^ element in the matrix M"^ 

^ j2 is the (rij-2)^^ element in the ma'trix

172



_ APPENDIX 3.VII

The calcmlation of 6 and its • variance • for ARMA itodels

For an 7RMA model of order 1,1 is the covariance
natrlx of an ARMA 1,1.

.-1Substltutln o M.

(1 -D<p) (^<p)

Into (6.9), 6 is calculated from :

(6.VII.1)
l+<p -2<pd

where k max( (r-1),(n-r) )
.-1Slrllarly for an ARMA of order p,q will be the

covariance matrix that refers to an ARMA (q,p) model and

Sr ' ’Sr+l ’Sr-1> (6.VII.2)

where k is as before and is the particular ’element
i .in the coveiriance of the process ARMA (q,p) at lag i
and Y la the variance of the process (q,p). o

The variance of ® for (6.VII.1) and (6.VII.2) is given
in cenerai form.

Let „ . (1-80) (B-O) »l-l 
 ̂ l+<p^-2q>©c

1 ^  ^ (1-80) (8-0) 5fj- 1  
^ lt<P̂ “2«pd

Bene. Var(i ) for the ARMAd.D nodel is >
k k

Var(? ) - v ar(x >+ I  a? varx__.+ I a^var
F ii1 ^ ^ ^ j- 1  ’ ^

k k
+ I  a ^ c o v  X r ’Sr+JSr’Sr-î .Il “j'

(6.VII.3)
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APPENDIX 41
The noncentral t distribution

The actual determination of the power for a t test against » •
any given true alternative Is complicated. The reason Is that 
when the null hypothesis Is false, each t ratio computed Involves 
the exact value given by the null (false) hypothesis. If the true 
value of the expectation could be calculated Into each ratio, then 
the distribution would follow the t function, which Is already 
tabulated.

However, when the null hypothesis Is false, each t value. 
Involves a false expectation; this results In a somewhat different 
distribution called the non-central t distribution.

The probabilities of the various t's cannot be known unless 
one more par2UReter, c. Is specified beside the degrees of freedom 
(g).

The parameter c Is the so called noncentrality parameter and 
It Is defined by

6 - 6
( )

6-6
2c expresses the squared differences between the true ^pectatlon
¿and that given by H , 6 In terms of o. ̂ o 0

Another difficulty, apart from the additional parameter to 
be specified, is that the form of a noncentral t distribution 
differs from that of a central t distribution. Therefore, rather 
detailed tables become necessary for each pair of parameter value 
g and c if exact determinations of power are to be made. Such 
tables are provided In some advanced texts of statistics.

When great accuracy Is not required, an approximation based 
upon the normal distribution can be used. This approximation 
given by Scheff^, 1959 (*1)» provides the cumulative probability
( 1) See the icittHi ty W. L. Hays, "Statistics fer the Saclal SaeiOES",p' 411
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that the variable t' is less than or equal to some value x, given 
the noncentral distribution with parameters g and c.

This is found by use of the expression:

Pr (t; S X )(g,c) Pr { 2 i (x-c) ( 1 +
2g ) 1

where z is a standard normal variable.
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APPENDIX 4II - CALCULATION OF THE POWER FUNCTIONS 
Model AR(2) - Parameter values .40 .40

TEST I
6 0 1 2 3 4 5
c 0 .84 1.68 2.53 3.31 4.21
Z ' 1.97 1.14 .30 -.53 -1.36 -2.2
3 .975 .87 .62 .30 .09 .02
1-3 .025 .13 .38 .70 .91 .98

TEST II 
5

8425(2.3263-5)
3
1-3

1 2 3 4 5
96 1 . 1 1 .27 -.57 -1.41 -2.25
975 .87 .61 .28 .08 .01
025 .13 .39 .72 .92 .99

TEST III

.7267(2.6969-6'
3
1-3

TEST IV 
6

.611(3.2077-6)
3
1-3

1.23 .51 - .22 -.95 -.67 -2.
.89 .69 .41 .17 .05 •

. 1 1 .31 .59 .83
•

.95 •

1 2 3 4 5
1.35 .74 .13 -.48 1.09
.91 .77 .55 .32 .14
.09 .23 .45 .68 .86

K.B.
3 is the probability of making a type II error, 
an 1-3 Is the power of the test denoted by P(<6).
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Model AR(2) - pareuneter values .45, .25

TEST I
6 0 1 2 3 •

4 5 6
c 0 .81 1.62 2.43 3.24 4.05 4.86
z 1.97 1.17 .37 -.43 -1.24 -2.04 -2.84
3 .975 .88 .64 .34 .11 .02 .003
1-3 .025 .025 .12 .36 .66 .89 .997

TEST II 
6

.8109(2.42-6)
3
1-3

TEST III

TEST IV

N.B.

1 2 3 4 5 6
1.24 .52 -.19 -.91 -1.63 -2.35
.89 .70 .43 .18 .05 .01
.11 .30 .57 .82 .95 .99

1 2 3 4 5 6
1.33 .70- .08 -.55 -1,18 -1.8
.91 .76 .53 .29 .12 .04
.09 .24 .47 .71 .88 .96

3 Is the probability of making a type II error.
1-3 is the power of the respective test denoted by P (6) •
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Model AR(2) - Parameter values .45, .35

TEST I
« 0 1 2 3 4 5 6
c 0 .86 1.72 2.58 3.44 4.3 5.16
2 1.97 1 .12 .27 -.58 -1.43 -2.28 -3.14
0 .975 .87 .60 .28 .08 .012 .001
1-0 .025 .13 .40 .72 .92 .988 .999

^ST II
& 0 1 2 3 ’ 4 5 6
86(2.277-«.) 1.96 1.10 .24 -.62 -1 .48 -2.34 -3.2

0 .975 .86 .59 .27 .07 .01 .001
1-0 .025 .14 .41 .73 .93 .99 .999

TEST III
« 0 1 2 3 4 5 6
7544(2.6-«) 1.96 1 .2 .45 -.3 -1.06 -1.8 -2.56

0 .975 .88 .67 .38 .15 .04 .01
1-0 .025 .12 .33 .62 .85 .96 .99

TEST IV
0 1 2 3 4 5 6

65(3.013-6) 1.96 1.31 .66 .01 -.64 -1.29 -1.94
0 .975 .90 .74 .50 .26 .10 .03

1-0 .025 .10 .26 .50 .74 .90 .97

N.B.
3 Is the probability of making a type II error 

1-3 Is the power of the test denoted by P(5 )
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Model AR (2) - Parameter values .50, .30

TEST I
€ 0 1 2 3 4 5
c 0 .81 1.63 2.45 3.26 4.08
z 1.97 1.17 .35 -.45 -1.25 -2.07
3 .975 .88 .63 .33 .11 .02
1-3 .025 .12 .37 .67 .89 .98

TEST II 
6' 0 1 2 3 4 5

.816K2.40-&) 1.96 1.14 .33 -.49 -1.3
3 .975 .87 .63 .31 .10
1-3 .025 .13 .37 .69 .90

TEST III
6 0 1 2 3 4

.6987(2.80-4) 1.96 1.26 .56 -.14 -.83
3 .975 .90 .71 .45 .20
1-3 .025 .10 .29 .55 .80

TEST IV
6 0 1 2 3 4 5

.6191(3.1658-6 ) 1.96 1.34 .72 .10 .52
3 .975 .91 .76 .54 .30
1-3 .025 .09 .24 .46 .70

N.B.
3 is the prob2iblllty of making a type II error 

1~3 is the power of the test denoted by P(5*)

180



Model AH (2) - Parameter values ,50, ,30

TEST I
6 0 1 2 3 4 5 6
c 0 .81 1.63 2.45 3.26 4.08 4.89
z 1.97 1.17 .35 -.45 -1.25 -2.07 -2.87
3 .975 .88 .63 .33 .11 .02 .002
1-3 .025 .12 .37 .67 .89 .98 .998

TEST II 
6'

,8161(2.40-^0
0

1-3

1 2 3 4 5
1.14 .33 -.49 -1.3 -2.12
.87 .63 .31 .10 .02
.13 .37 .69 .90 .98

TEST III 
6

.6987(2.80-6) 
3
1-3

1 2 3 4 5 6
1.26 .56 -.14 -.83 -1.53 -2.23
.90 .71 .45 .20 .06 .01
.10 .29 .55 .80 .94 .99

TEST IV 
6

.6191(3.1658-6 ) 
3
1-3

1 2 3 4 5 6
1.34 .72 .10 -.52 -1.13 -1.75
.91 .76 .54 .30 .13 .04
.09 .24 .46 .70 .87 .96

IL.B.
3 Is the probability of ma)cing a type II error 

1-3 is the power of the test denoted by P (6 )
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Hodel AR (2) - Parameter values .50, .40

TEST I
« 0 " 1 2 3 4 5

•

6

c t) .82 1.64 2.45 3.27 4.09 4.91
z 1.97 1.16 .35 -.45 -1.27 -2 .07 -2.89.
3 .975 .87 .64 .33 .10 .02 .002

1-3 .025 .13 .36 .67 .90 .98 .998

TEST II 
6 0 1 2 3 4 5 6

.818(2.39-6) 1.96 1.14 • .32 .49 -1.31 -2.13 -2
3 .975 .87 .625 .31 .09 .02

1-3 .025 .13 .375 .69 .91 .98

TEST III
6 0 1 2 3 4 5 6

.6909(2.8367-«5) 1.96 1.27 .58 - . 1 1  - . 8 -1.49 -2.
3 .975. .90 .72 .46 .46 .07
1-3 .025 .10 .28 .54 .79

%
.93

TEST IV 
6 0 1 2 3 4 5 6

.6099(3.213-6) 1.96 1.35 .74 .13 -.48 -1.09 -1.
3 .975 .91 .77 .55 .32 .14
1-3 .025 .09 .23 .45 .68 .86

H.B.
3 Is the probability of making a type II error 

1-3 is the power of the test denoted by P(4)
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Model AR(2) - Parameter values .55, .15

TEST I
6 0 ^ 1 2 3 4 5 6

c -:7 o: .79 1.58 2.37 3.17 3.96 4.75
z 1.97 1.19 .40 -.37 -1.17 -1.95 -2.73
3 .975 .88 .65 .36 .12 .03 .003
1-3 .025 .12 .35 .64 .88 .97 .997

TEST II •

6 0 1 2 3 4 5 6

.7916(2.476-6) 1.96 1.17 .37 -.41 -1 .2 -1.99 -2.
3 .975 .88 .65 .34 -  .11 .02

1-3 .025 .12 .35 .66 e 89 .98

TEST III
6 0 1 2 3 4 5 6

.69(2.84-6) 1.96 1.27 58 - .1 1 80 -1.49 -2.18
3 .975 .90 72 .46 21 .07 .02
1-3 .025 .10 28 .54 79 .93 .98

TEST IV
6 0 1 2 3 4 5 6

.6219(3.152-6) 1.96 1.34 .72 .09 -.53 -1.15 -1.7
3 .975 .91 .76 .53 .30 .13 .0
1-3 .025 .09 .24 .47 .70 .87 .9

3 Is the probability of making a type II error 
1-3 is the power of the test, denoted by P(&)



Model AR(2) - Parameter values .55, .20

TEST I
6 0 ^ 1 2 3 4 5 6

c .85 1.7 2.57 3.42 4.28 5.13
z 1.97 1.13 .29 -.57 -1.41 -2.27 -3.1.1
3 .975 .87 .61 .29 .08 .012 .002

1-3 .025 .13 .39 .71 .92 .988 .998

TEST II 
6

.8562(2.29-6/
3
1-3

TEST III

TEST IV 
6 '

.664(2.95-6*)
3
1-3

1 2 3 4 5
1.10 .25 -.61 -1.46 -2.32

.86 .59 .27 .07 .01

.14 .41 .73 .93 .99

2 3 4 5
.22 .48 -.25 -.99 -1.73
.89 .68 .40 .16 .04
.11 .32 .60 .84 .96

2 3 4 5
.29 .63 -.03 -.69 -1.36
.90 .73 .49 .25 .09
.10 .27 .51 .75 .91

3 Is the probability of making a type II error 
1-3 is the power of the test denoted by P(6.)
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Model AR(2) - Parameter values .55, 30

TEST I
6 0 > 1 2 3 4 5 6
c .88 1.77 2.65 3.54 4.42 5.30
z ' K97 1.09 .22 --.65 -1.53 -2.4 -3.28
8 .975 .86 .59 .26 .07 .01 .001

1-8 .025 .14 .41 .74 .93 .99 .999

TEST II 
6

.88(2.217-6)
8

1-8

TEST III

1 2 3 4 5 6
1.07 .19 -.69 -1.58 -2.46 -3.3

.86 .57 .24 ^.06 .007 .0

.14 .43 .76 .94 .993 .9

1 2 • 3 4 5 6

1.21 .46 -.29 -1.04 -1.78 -2.53
.88 .67 .39 .15 .04 .01

.12 .33 .61 .85 .96 .99

1 2 3

•

4 5 6

1.28 .60 -.07 -.75 -1.43 -2.11

.90 .72 .47 .23 .08 .02

.10 .28 .53 .77 .92 .98

N.B.
3 is the probability of making a type II error. 

1-3 is the power of the test denoted by P(6) •
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Model AR(2) - Parameter values .60, .25

TEST I
6 0 " 1 2 3 4 5 6

c - - O ' .85 1.7 2.57 3.43 4.28 5.14
z 1.97 1.13 .29 -.57 -1.42 -2.26 -3.12
3 .975 .87 .61 .29 .08 .01 .001

1-3 .025 .13 .39 .71 .92 .99 .999

TEST II
6 0 1 2 3 4 5 6

.86(2.29-6) 1.96 1.10 .25 -.61 -1.47 -2.32 -3.18
0 .975 .86 .60 .27 *]07 .01 .00

1-e .025 .14 .40 .73 .93 .99 .99

TEST III
6 0 1 2 3 4 5 6

.71(2.75- 6) 1.96 1.25 .53 -.18 -.89 -1.6 -2.3
0 .975 .89 .70 .43 .19 .06 .01

1-3 .025 .11 .30 .57 .81 .94 .99

TEST IV
6 0 1 2 3 4 5 6

.66(2.95-6) 1.96 1.3 .63 -.03 -.7 -1.35 -2.02

3 .975 .90 .73 .49 .24 .09 .02

1-3 .025 .10 .27 .51 .76 .91 .98

N.B.
3 is the probability of making a typo II error 

1-3 is the power of the test denoted by P(«'l



Model AR(2) - Par2uneter values .65, .20

TEST I
6 0 > 1 2 3 4 5 6

c __0, .91 1.82 2.74 3.65 4.57 5.48
z -1.97 1.07 .17 -.74 -1.64 -2.55 -3.45
8 .975 .86 .57 .23 .05 .01 .001

.025 .14 .43 .77 .95 .99 .999

TEST II
3 4

13 -.78 -1.69
55 .22 ".04
45 .78 .96

5 6
-2.6 -3.52

.005 .0002

.995 .9998

TEST III

TEST IV

1 2 3 4 5 6

1.2 .44 -.31 -1.Ó7 -1.83 -2.59
.88 .67 .38 .14 .03 .01

.12 .33 .62 .86 .97 .99

1 2 3 4 5 6

1.25 .54 -.16 -.87 -1.58 -2.29
.89 .70 .44 .19 .06 .01

.11 .30 .56 .81 .94 .99

N.B.
8 i8 the probability of making a type II error 

1 la the power of the test denoted by P (6 )



Model AR(2) - Parameter values .70, 10

TEST I

i
f

6 0 ^ 1 2 3 4 5 6
c .98 1.97 2.96 3.95 4.93 5.92
z ■ 1.97 .99 .02 -.96 -1.94 -2.91 -3.89

1 S .975 .84 .51 .17 .03 ,002 .001
1-3 .025 .16 .49 .83 .97 .998 .999

TEST II

TEST III

2 3 4
97 -.01 -.99 -K98
83 .50 .16 "^02
17 .50 .84 .98

1 2 3 4 5
1.17 .38 -.41 -1.2 -1.99
.88 .65 .34 .12 .03
.12 .35 .66 .88 .97

1 2 3 4
1.21 .45 -.3 -1.05
.89 .67 .38 .15
.11 .33 .62 .85

M.B.
3 Is the probability of making a type II error 

1-S is the power of the test denoted by P (6 )



APPENDIX (4III) - WORK SHEETS FOR THE CALCULATION
OF THE POWER FUNCTIONS OF THE 
FOUR TESTS - MODEL MA(1)

NA(1) “ Parameter value -.55

TEST I

TEST III

2 3 4 5 6

1.06 1.59 2.12 2.66 3.19
.92 .39 -.13 - .66 -1.19
.82 .65 .45 .26 .12

.18 .35 .55 .74 .88

1 2 3 4 5 6

1.43 .89 .36 -.16 -.69 -1 .2:
.92 .81 .64 .44 .25 .1

.08 .19 .36 .56 .75 .8!

1 2 3 4 5 6

1.49 1.01 .54 .07 -.40 - .88

.93 .84 .70 .53 .35 .19

.07 .16 .30 .47 .65 .81

1 2 3 4 5 6

N.B.
3 1» the probability of making a type II error 

1-3 is the po%ier of the test, denoted by P(6)



MA(1) - Parameter value -.65

TEST I
6 0 1 2 3 4 5 6

c __d .54 1.09 1.63 2.18 2.72 3.27
z • K97 1.43 .89 .35 -.19 -.72 -1.26
3 .975 .92 .81 .64 .43 .24 .10

1-e .025 .08 .19 .36 .57 .76 .90

TEST III

TEST IV

.41 .87 .32 - . 2 2 -.76 -1.31

.92 .81 .62 ^  .42 .23 .10

.08 .19 .38 .58 .77 .90

1 2 3 4 5 6

1.48 1.01 .54 .06 -.41 - .88

.93 .84 .70 .52 .34 .19

.07 .16 .30
•

.48 .66 .81

1 2 3 4 5 6

1.56 1.17 .78 .39 -.004 -.4
.94 .88 .78 .65 .5 .35
.06 .12 .22 .35 .5 .65

N.B.
3 !• the probability of making a type II error 

1-3 is the power of the test denoted by P (6 )



0 " 1 2 3 4 5 6

o: .6 1.2 1.8 2.39 2.99 3.59
1.97 1.37 .78 .20 -.39 -.99 -1.58
.975 .91 .78 .58 .35 .16 .06
.025 .09 .22 .42 .65 .84 .94

1 2 3 4 4 5
1.36 .76 .16 _-.43 -1.03 -1.63
.91 .78 .56 .34 .15 .05
.09 .22 .44 .66 .85 .95

TEST IV

.444(4.416-d) 
3
1-3

3 4 5 6

92 .4 - . 1 1 -.63 -1.15
82 .65 .46 .27 .13
18 .35 .54 .73 .87

1 3 4 5 6

.07 .63 .18 -.26 -.7

.86 .73 .57 .40 .24

.14 .27 .43 .60 .76

M.B.
3 i» the probability of making a type II error 

1-3 ie the po%#er of teat, denoted by P(6)



MA(1) ~ Parameter value -.80

f TEST :[ * •
8 0 ̂ 1 2 3 4 5 6

4 C ":: 0 .61 1.21 1.82 2.43 3.04 3.64
z 1.97 1.37 .77 .17 -.43 -1.04 -1.63

1 .3 .975 .91 .78 .60 .34 .15 .05
1)
i.

1-3 .025 .09 .22 .40 .66 .85 .95

« TEST :II
6 0 1 2 3 4 5 6

.61 (3.22-6) 1.96 1.35 .74 .14 .J7 -1.08 -1.68

3 .975 .91 .77 .55 .32 .14 .05

< 1-3 .025 .09 .23 .45 .68 .86 .95

.

•

TEST III
6 0 1 2 3 4 5 6

t .53(3 .68-6) 1.96 1.43 .89 .38 .17 -.7 -1.23
3 .975 .92 .81 .64 .43 .24 .11

• 1-3 .025 .08 .19 .36 .57 .76 .89

t e s t’IV
6 0 1 2 3 4 5 6

?
It .44(4 .46-6) 1.96 1.52 1.08 .64 .2 -.24 -.68
i

3 .975 .93 .86 .74 .58 .41 .25
1-3 .025 .07 .14 .26 .42 .59 .75

N.B.
0 Is the probability of making a type II error 

!■ the power of the test denoted by P(4)



MA(1) ~ Parameter value -.85

TEST I
0 1 2 3 4 5 6

c .57 1.14 1.71 2.28 2.85 3.43
z • ll97 1.40 .84 .28 -.28 -.85 -1.42
8 .975 .92 .80 .61 .39 .20 .08
1-B .025 .08 .20 .39 .61 .80 .92

TEST III

1 2 3 4 5 6
1.39 .82 .24 -.32 -.9 -1.47
.92 .79 .59 .38 .19 .07
.08 .21 .41 .62 .81 .93

1 2 3 4 5 6
1.45 .94 .43 -.08 -.6 -1.11
.92 .83 .66 .47 .28 .13
.08 .17 .34 .53 .72 .87

1 2 3 4 5 6
1.54 1.14 .73 .32 -.09 -.51
.94 .87 .77 .62 .47 .31
.06 .13 .23 .38 .53 .69

N.B.
3 Is the probcJ)lllty of making a type II error 
1-3 is the power of the test, denoted by P(6)
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MA(1) " Parameter value ~.85

0 > 1 2 3 4 5 6
a .57 1.14 1.71 2.28 2.85 3.43

1.40 .84 .28 -.28 -.85 -1.42
.975 .92 .80 .61 .39 .20 .08
.025 .08 .20 .39 .61 .80 .92

TEST III

.92 .79 .59 .38 .19 .07

.08 .21 .41 .62 .81 .93

1 2 3 4 5 6
1.45 .94 .43 -.08 -.6 -1.11
.92 .83 .66 .47 .28 .13
.08 .17 .34 .53 .72 .87

1 2 3 4 5 6
1.54 1.14 .73 .32 -.09 -.51
.94 .87 .77 .62 .47 .31
.06 .13 .23 .38 .53 .69

N.B.
3 is the probability of making a type II error 

1—3 is the power of the test« denoted by P(6)
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APPENDIX (4IV): WORK SHEETS FOR THE CALCULATION 
OF THE POWER FUNCTIONS OF THE 
FOUR TESTS “ MODEL SAR (1,0,0)

SAR -__Parameter values .40, .95

TEST I

TEST III

4 6 8 10
1.67 2.5 3.34 4.18
.32 -.51 -1.33 -2.16
.62 .31 .09 .02
.38 .69 .91 .98

2 4 6 8 10
1.12 .29 -.55 -1.38 -2.22
.87 .61 .29 .08 .02
.13 .39 .71 .92 .98

2 4 6 8 10 12
1.39 82 .25 \-.31 -.88 -1.
.92 79 .60 .38 .19
.08 21 .40 .62 .81

2 4 6 8 10 12
1.52 1.08 .64 .2 .24 -.68
.93 .86 .74 .58 .41 .25
.07 .14 .26 .42 .59 .75

N.B.
S Is the probability of making a type II error 

1-3 is the power of the test, denoted by P(6)
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SAR ~ Parameter values .45, .95

TEST I
6 0 2 4 6 8 10 12
c .79 1.59 2.38 3.17 3.96 4.76
z 1.97 1.19 .39 -.38 -1.17 -1.95 -2.74
3 .975 .88 .65 .35 .12 .03 .004
1-3 .025 .12 .35 .65 .88 .97 .996

TEST II

TEST III

TEST IV 
6

.206(9.51-6)
3
1-3

2 4 6 8 10 12
1.16 .37 -.42 -1.21 -2 -2.8
.87 .64 .34 Til .02 .00
.13 .36 .66 .89 .98 .99

N

2 4 6 8 10 12
1.44 .91 .39 -.13 -.65 -1.18
.92 .82 .65 .45 .26 .12
.08 .18 .35 .55 .74 .88

2 4 6 8 10 12
1.55 1.13 .72 .31 -.10 -.51
.94 .87 .76 .62 .46 .31
.06 .13 .24 .38 .54 .69

N.B.
3 Is the probability of making a type II error 

1 - 3 is the poiiier of the test, denoted by P (6)
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8AR - Parameter values .45, .90

TEST I
4 0 ^ 2 4 6 8 10 12

c ~ :ro : . 7 6 1 . 5 2 2 . 2 8 3 . 0 4 3 . 8 4 . 5 6

z '  1 . 9 7 1 . 2 2 . 4 6 - . 2 9 - 1 . 0 4 - 1 . 7 9 - 2 . 5 4

S . 9 7 5 . 8 9 . 6 8 . 3 9 . 1 5 . . 0 4 . 0 1

1 - 3 . 0 2 5 . 1 1 . 3 2 . 6 1 . 8 5 . 9 6 . 9 9

TEST II

TEST III

TEST IV

2 4 6 8 10 12

1 . 2 . 4 4 - . 3 2 - 1 . ^ 8 - 1 . 8 4 - 2

. 8 8 . 6 7 . 3 8 . 1 4 . 0 3

. 1 2 . 3 3 . 6 2 . 8 6 . 9 7

2 4 6 8 10 12

1 . 4 4 . 9 2 . 4 - . 1 1 - . 6 3 - 1 . 1 5

. 9 2 . 8 2 . 6 5 . 4 6 . 2 7 . 1 3

. 0 8 . 1 8 . 3 5 . 5 4 . 7 3 . 8 7

2 4 6 8 'io 12

1 . 5 6 1 . 1 6 . 7 6 . 3 6 - . 0 4 - . 4 3

. 9 4 . 8 7 . 7 8 . 6 4 . 4 9 . 3 3

. 0 6 . 1 3 . 2 2 . 3 6 . 5 1 . 6 7

N.B.
3 i» the probability of staking a type II error 

1-3 is the poifer of the test, denoted by P(6)
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SAR - Parameter values .50, .95

TEST I

TEST II

TEST III

4 6 8 10 12
1.65 2.47 3.3 4.13 4.95
.33 -.47 -1.29 -2.12 -2.93
.63 .32 .10 .02 .002
.37 .68 .90. .98 .998

2 4 6 8 10 12
1.13 .31 -.51 -1 .34 -2 .16 -2
.87 .62 .31 ** .09 .02
.13 .38 .69 .91 .98

2 4 6 8 10 12
1.42 .87 .33 -.21 -.75 -1.29
.92 .81 .63 .42 .23 .10
.08 .19 .37 .58 .77 .90

2 4 6 8 10 12
1.53 1.11 .68 .25 -.17 -.6
.94 .86 .75 .60 .43 .28 .
.06 .14 .25 .40 .57 .72

I

W.B.
3 Is the probability of making a type IX error 

1-3 is the power of the test, denoted by P(6)
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SAR - Parameter values .55, .85

TEST I

TEST II

TEST III

.285(6.88-6)
8
1-3

TEST IV

4 6 8 10 12
1.71 2.56 3.41 4.27 5.
.28 -.56 -1.40 -2.25 -3.
.61 .29 .08 .01
.39 .71 .92 .99 .!

2 4 ' 6 8 10 1
1.10 .25 -.6 -1.« -2.31
.86 .60 .28 .08 .01
.14 .40 .72 .92 .99

2 4 6 8 10 12
1.39 .82 .25 -.32 -.89 -1
.92 .79 .60 .38 .19
.08 .21 .40 .62 .81

2 4 6 8 10 12
1.51 1.05 .6 .14 -.31 .76
.93 .85 .72 .55 .38 .22
.07 .15 .28 .45 .62 .78

N.B.
3 Is the probability of mhKtng a type IX error 

1-8 is the pover of the test, denoted by P(6)
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SAR - Parameter values .55, 95

TEST I

TEST II

4 6 8 10 12
1.69 2.54 3.38 4.23 5.08
.29 -.54 -1 .37 -2 .22 -3.06
.61 .30 .09 .02 .002
.39 .70 .91

• .98 .998

2 4 6 8 10 12
1.11 .26 * -.58 -1 .43 -2.27 -3.12
.86 .60 .28 .08 • 01 .002
.14 .40 .72 .92 • 99 .998

TEST III
6 0 2 4 6 8 10 12

274(7.16-6) 1.96 1.41 .86 .32 -.23 -.78 -1.32
3 .975 .92 .80 .62 .41 .22 .10
1-3 .025 t .08 .20 .38 .59 .78 .90

!EST IV
6 0 2 4 6 8 10 12
222(8.83-6) 1.96 1.51 1.07 .63 .18 -.26 -.7
3 .975 .93 .86 .73 .57 .40 .24
1-3 .025 .07 .14 .27 .43 .60 .76

 ̂ I

j

N.B.
Is the probability of making a type II error 
is the power of the test, denoted by P(6)
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SAR - Parameter values .55, 95

TEST I
6 0 ^ 2 4 6 8 10
c .84 1.69 2.54 3.38 4.23
z 1.97 1.14 .29 -.54 -1.37 -2.22
3 .975 .87 .61 .30 .09 .02
1-3 .025 .13 .39 .70 .91 .98

TEST II

TEST III

1 4 6 8 10 12
.11 .26 -.58 -1.43 -2.27 -3.
.86 .60 .28 T o8 .01 •

.14 .40 .72 .92 .99 •

2 4 6 8 10 12
1.41 .86 .32 -.23 -.78 -1.32
.92 .80 .62 .41 .22 .10
.08 .20 .38 .59 .78 .90

2
#

4 6 8 10 12
1.51 1.07 .63 .18 -.26 -.7
.93 .86 .73 .57 .40 .24
.07 .14 .27 .43 .60 .76

N.B.
3 Is the probability of making a type II error 

1-3 is the power of the test, denoted by P(i)
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SAR <- Peureuneter values .55, 95

TEST I

TEST II

TEST III

4 6 8 10 12
1.69 2.54 3.38 4.23 5.08
.29 -.54 -1 .37 -2.22 3.06
.61 .30 .09 .02 .002
.39 .70 .91 • .98 .998

4 6 8 10 12
.11 .26 ‘ -.58 -1.43 -2.27 -3.
.86 .60 .28 T o8 • 01 •

.14 .40 .72 .92 • 99 •

2 4 6 8 10 12
1.41 .86 .32 -.23 -.78 -1.32
.92 .80 .62 .41 .22 .10
.08 .20 .38 .59 .78 .90

2
0

4 6 8 10 12
1.51 1.07 .63 .18 -.26 -.7
.93 .86 .73 .57 .40 .24
.07 .14 .27 .43 .60 .76

N.B.
9 is the probability of making a type II error 

1-9 is the power of the test, denoted by P(fi)
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SAR - Parameter values .70, .90

TEST I
6 0 2 4 6 8 10 12
c 1.03 2.05 3.08 4.11 5.14 6.16
z ' K97 .95 -.06 -1.08 -2.10 -3.12 -4.13
3 .975 .83 .48 .14 .02 .002 .0001
1-3 .025 .17 .52 .86 .98 .998 .9999

2 4 6 8 10
93 -.09 -1.12 -2.15 -3.18
82 .47 .13 .02 .001
18 .53 .87 .98 .999

'1

TEST III 
6

.3li24(6.275-6)
9

1-3

TEST IV 
8

.258(7.587-1)
3

1-3

2 4 6 8 10 12
1.33 .71 .08 -.54 -1.16 -1.79
.91 .76 .53 .30 .12 .04
.09 .24 .47 .70 .88 .96

4 6 8 10 12
.44 .93 .41 -.10 -.62 -1.14
.92 .82 .66 .46 .27 •13
.08 .18 .34 .54 .73 .87

N.B.
3 Is the probability of maJcing a type II error 

1 -3 is the power of the test denoted P(i)
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APPENDIX 5II

A comparison of Fox 8 Type II outlier with the General
Linear Model approach

Fox̂  8 type II outlier Is estimated by :

4.Zr-»Zr_i
see chapter 4.

The estimate of 6 according to the G.L.M. approach Is given 
by :

Z m

where X and y are defined In chapter 8.
Substituting X and y

2 41 +9 + 9 % + 92k

B
where k ■ N-r

i
4

A Is written as

A - 2f -» ̂ r -1
■ i

i ■*" ^ *r+k

A - -f { ̂ r+l**'̂ *̂r-i-2'*’... ^*r+k-l^

Zr" U-9̂ ) 1  ̂-g- 2r **■ T  *r+l

1-^p
7 *r+2 ........ *r+k-2 “r+k-l* ^r+k
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