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Some applications of 
Generalised Linear Models

Anthony Scallan

Abstract

This thesis is concerned with some extensions to  and applications of 
generalised linear models and their implementation in a  statistical package. 
The principal extension considered is the inclusion of extra parameters in 
the link function of the model in order to create a  family of parametric link 
functions. This technique is applied to standard link functions as well as 
to the family of composite link functions. The applications of such models 
are illustrated by reference to  several examples. The techniques presented 
enable complicated models to be fitted in a unified and consistent m .n i.., 
without the need for specialist software or algorithms.

A two-stage algorithm for fitting parametric link functions is presented 
and a diagnostic procedure applied to this class of extended modeb. The 
applications of such models include the analysis of grouped and multivariate 

** “  ***°*'“ ***** grouped data arising from a truncated or mixture 
distribution can be represented as a  parametric composite link function and 
the technique applied to extend the analysis of some previously published 
data sets. Following a transformation, it is shown that certain time series 
models may modelled using parametric composite link functions. An al
gorithm is presented for the fitting of such models in which the variance 
function of the observations may be a  quite general function of the mean. 
A generalisation of the multivariate logistic distribution is introduced with 
application to  the analysis of repeated measurements data.

Finally, the results of an investigation into the possible development of 
a statistical programming language, with particular reference to  the fitting 
of generalised linear models, are considered. An implementation of such a 
language is reported and some features of the language illustrated.



Acknowledgements
Special thaaki are due to  a  friend and mentor, Robert Gilcbriit, who ha< 
been a  source of inspiration and encouragement during the period tha t the 
work on this thesis was undertaken.

Thanks are also due to  my wife Heather for her patience, understanding 
and encouragmant during the writing of this thesis.

I also gratefuUy acknowledge the financial support at various times of 
the Polytechnic of North London, the Economic and Social Research Council 
and Lancashire Polytechnic.



Contents

1 Introduction ^

1.1 Opening com m enti........................................................................  j

1.2 Notntional C onvention* .....................................................  5

2 GENERALISED LINEAR MODELS j

2.1 The Exponential Family . J ...............................................  g

2.2 The Syitematic C om ponent......................................................... 12

2.3 Fitting Generalised Linear M o d e ls ............................................  14

2.3.1 Iteratively Reweighted Least Squares.............................. 15

2 J .2  Some Generalisations .....................................................  ig

2.4 Inference for Generalised Linear M o d e ls ...................................  20

2.5 Model Checking.....................................................................  25

3 EXTENSIONS TO THE BASIC MODEL s i

i



3.1 Parametric Link Functions..............................................................  32

3.1.1 Form ulation..........................................................................  32

3.1.2 Applications .......................................................................  34

3.2 Generalising the Mean-Variance relationship...............................  40

3.3 Diagnostic P rocedu res....................................................................  42

3.3.1 Composite Link F\inctions...............................................  45

3.3.2 Generalised IRLS m o d e ls ...............................................  53

3.3.3 Tests on Link Functions..................................................... 57

4 Anal3rsis of Grouped Data 04

4.1 Introduction.......................................................................................  g4

4.2 Truncated D istribu tions.................................................................  gg

4.2.1 Formulation . . 1 . . 1 ...........................................................  gy

4.3 Mixture D is trib u tio n s ....................................................................  75

4.3.1 The Composite Link Formulation.....................................  7g

4.3.2 Starting V alues....................................................................  79

4.3.3 E xam ples.............................................................................. 80

5 Analysis of Multivariate Data 95

5.1 Normal Distribution m odels..........................................................  95

5.1.1 Applications .......................................................................  98

U



5.2 Analysii of non-Normal m odel« ..................................................102

5.2.1 Introdnctioii ........................................................................

5.2.2 A nalyii*.............................................................................. ...

5.3 A Generalised Moltivmriate LogUtic D is tr ib n tio ii...................109

5.3.1 DUtribation F^mction and Properties................................ m

5.3.2 The L ikelihood........................................................................

5.3.3 Estimation of the Scale param eters..................................1x7

5.3.4 The Estimation Technique..................................................x i9

5.3.5 Computational A s p e c ts .....................................................x23

6 A  New Computing Environment T 728

A  Macros for Grouped Duty

A. 2 Mixture D is trib u tio n s ..........................................................  5̂3

B The Multivsiriate Logistic distribution 750

B. l GLIM M acros.................................................................... j jg

C  Macros for Logistic Curves Xĝ
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C hapter 1

Introduction

1.1 Opening comments

Thii thctU ii concerned with the implementation and practical application 

of «everal techniques for fitting parametric models to  data. Many of the 

techniques considered are not new, although it is hoped tha t they are im

plemented in such a way that it enables previously complicated analyses to 

be earned out in a simple and unified manner.

The driving force behind aU these implementations has been the unify

ing idea of generalised linear models and the statistical package specifically 

written for their practical ^>pUcation, G LIM . Generalised Unear models 

were first presented in a  unified manner by Nelder and Wedderbum, [49],



who showed that mmny existing date analytic methods could be handled 

in a  similar way by using a  woghted least squares technique; although, it 

should be noted tha t, many other authors had urorked along simiUr lines, 

see, for example, Dempster, [21J. In this context we take analysis to  mean 

the fitting of a  parametric model to  data and the estimation of the model 

parameters by the technique of maximum likelihood. The most common 

example of such a model is the familiar linear regression model defined by,

I'i =  A) +  A »ii +  • • • +  +  <», » =  1........n

Here, the ith observation, Vi, is awnmed to be lineariy related to  a  set of 

regressor or explanatory variables, while the << represent a set

of random error terms, usually assumed to independently distributed as 

In this case, the procedure for the estimation of the unknown 

parameter vector, is least squares and is equivalent to tha t of maximum 

likelihood.

Generalised linear models, as first introduced, extend this setup to in

clude such diverse applicatons as log-linear modelling for the analysu of 

contingency tables and the analysis of proportions via probit and logit mod

els.

The computer package, GLIM, Payne et. al., (51], first appeared in



1974 and wm designed specifically for the analysis of such generalised lin

ear modeU. This was achieved through a  powerful and common command 

structure which in many respecU mirrored the generality of the definition 

of generalised linear modds. Although the package contained some facili

ties for basic programming structures, such as looping and branching, it is 

unlikely that the authors could have anticipated the mcplosion in research 

and applications which followed the rdease of the package. It is our ii"g 

th a t the availability of GLIM has been a  strong motivating force for much 

of the research in this area of applied statistics. In this respect, we would 

regard GLIM as a  statistical language rather than merely as a  statistical 

package. Although similar programming facilities appear in other packages, 

for example, MINITAB has a limited macro facility, none seem to have fired 

the imagination of so many statisticians as GLIM.

The principal model fitting algorithm in GLIM is the procedure of itera

tively re-weighted least squares (IRLS). Thus, much research and ingenuity 

has been directed towards showing that various diverse statistical estimation 

problems can be expresed as one solveabie using IRLS. This approach can 

obviously be criticised on the grounds that the IRLS approach may not be 

the most effident or the most intuitively obvious. However, it can conversely 

be argued that least squares proedures are very familiar to statisticians, as
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they form inch a  fundamental part of applied (tatUtical technique*, and an 

unuanal model expreued in inch a form may be made more acce**ible to  a  

wider audience than would otherwUe be the caae. Coupled with the limple 

yet powerful command structure of GLIM, it is onr feding that, in many 

case», this approach, while losing little in aesthetic quality, gains much in 

accessibility.

The subject m atter of this thesis consists largely of considering esti* 

matkm problems which, in themsdves, are not necessarily novel, but have 

previously required specialist software or subroutine* to  enable their ap

plication. By utiluing the IRLS approach, we illustrate how they may be 

expressed in a form which enables the models to  be fitted using the GLIM 

package.  ̂ |

In Chapter 2 we review the basic formulation and properties of gener

alised linear models and illustrate the derivation of the IRLS algorithm. In 

C h ^ te r  3 we discuss two important extensions to the basic definition of 

a generalised linear model. In Chapter 4 we present a  method for fitting 

models to data that has been grouped or truncated and compare this ap

proach with other techniques. Chapter 5 considers the somewhat neglected 

topic of the analysis of multivariaU da ta  and illustrates how such modds 

expressed as generalised linear models. In particular we look at the 
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ilttiDg of time icriet m oddi end introduce » specific model for the nnslytis 

of repented mensnres date which may be fitted using standard techniques. 

The concluding chapter of this thesis discusses the requirements of a  new 

statistical computing language and outlines an investigation into the format 

of a possible candidate based on the ideas of functional programming.

Throughout the thesis, applications are illustrated by practical examples 

many of which have previously been analysed in the literature. The GLIM 

coding used in onr analysis of the examples is presented in the Appendices.

1.2 Notational Conventions

Some of the notation we shall use has already been introduced. Throughout 

this thesis an attempt has been made to conform to a notational style which 

teems to  have become conventional over the past few years for the majority 

of papers in this subject area.

We use the standard symbols for the mathematical operations of summa- 

tion ( 2 )  and integration ( / ) .  The derivative of a  function o(fi) with respect 

to  (w .r.t.) $ it denoted by da{9)/dt or by i ( t ) .  Repeated differentiation is 

denoted by ff‘a(0yd9* or a(t) etc.

Parameters to be estimated by the data  are denoted by greek tetters







model of the form, y, = ^  +  ¡ = i „ . .  where pa =  and t, ~

^ ( 0, <r*) for 1= 1, . . .  gj.

Such a formulation if cleariy not npproprinte in many fitnationi, for 

example when observation! take on only integer values or when data arise 

from a  process which is clearly non-Normal. Moreover, the relationship 

between the mean, ¿i, and the Unear predictor, j  =  X 0 , may not necessarily 

be Unear.

Nelder and Wedderbum, [49J, proposed a class of models which gener

alised the classical Unear model to cope with data from a variety of non- 

Normal error distributions and non-Unear mean/Unear predictor relation

ships. Such models are termed generalised Unear models and are conve

niently defined by the foUowing two components:

•  A famUy of error distributions Jy (v,9) representing the random or 

error component of the model.

•  A Unk function 17 = g{n), relating the systematic Unear predictor to 

the mean of the distribution.

In the following sections we discuss in more detaU the two components 

of a  generaUsed Unear model and illustrate how the maximum UkeUhood 

estimates of the parameters in such a model may be found using iteratively

8



re-weighted le u t squares (IRLS).

2.1 The Exponential Family

A random response variable, Y, with density /y (y ;« ,^ ) , is said to  be a  

member of a  univariate exponential family if iu  density function can be 

represented in the form:

fr (r , >, 0) =  exp I  +  c(», J , (2.1)

( 2.2)

where the range of Y does not depend on $. The parameter $ is called 

the natural parameter and the scale parameter. Such families include 

the Normal, Gamma, Poisson, Binomial and Inverse Gaussian distributions. 

The parameter 9 is related to the mean and variance of the response variable 

by

m  =  M = m

V»r(Y) =  E ((K -;i)» ] =  4i(9)

These well known properties follow from differentiating under the integral 

sign with respect to 0.

A list of some of the distributions mentioned above is given in Table 2.1. 

In each case we give the form of 9 and 6(9), and the normaluing constant. 

Note that, for the Normal and Gamma distributions, it is conventional to

9



Distribution 0 6(fl)

Normal, Y  ~  N(/i,<r*) /* - J ( i J - l - ln ( 2xo»))

Poisson, y  ~  Pois(p) In(^) exp(fl) - ln (p !)

Binomial, Y  ~  B(n,p) * " ( w ) ln(l-l-e*) ln(»C ,)

G&inm&, Y  G(/i,i/) - 1/ m - ln ( - f l ) i/ln(i/y) -  ln(y) -  ln(r(«/))

Table 2.1: Exponential Families

use a different parameterisation for the scale parameter than tha t given by 

Equation 2.1. In particular, for the Gamma dutribution, the parameterisv 

tion used in Table 2.1 has var(K) =

Wedderbnm , [73], introduced the concept of qnasi-Ukdihood as a fur

ther generalisation of the assumption th a t observations are a  member of an 

exponential family. Briefly, given independent observations y,- with means 

fti and variances V(/i,) we assume the quasi-likelihood , K (yi,m )  is defined 

as the solution to  the differential equation

Wedderbnm showed that, by regarding this equation as a  score function 

and solving the set of equations dK /d ft =  0, maximum qaan-Ukelihood 

(MQL) estimates o>nld be calculated which share many of the properties

10



of mudmam-likelihood estimate«. Indeed, for certain variance functions, 

V(iti), the quasi-likelihood corresponds to the kernel of a  the log-likelihood 

of a member of an exponential family, so that, in these cases, maYimnrn 

likdihood and maximum quasi-likdihood correspond. See also McCuUagh,

(43], for a  discussion of the theoretical properties of MQL estimation for 

the non-independence case. The efficiency of quasi-likelihood estimation for 

certain models has been considered by Hill, [37], and Firth, [23].

Another generalisation of this formulation is to  consider functions of the 

form o,(^), i= l , . . .  ,n, so that the scale parameter can vary for each observa

tion. In particular we can consider functions of the form where the io, are

known prior weights. However, recent authors, for example Aitkin, [3] and 

Smyth, [67], have considered modelling the scale parameter, 0 , as a  function 

of a set of covariates in the same way as the mean. This is accomplished via 

a  two-way algorithm, in which the parameters in the linear predictor for the 

mean are estimated for fixed values of the scale parameters, and then the 

parameters for the scale estimated for fixed values of the mean. Iteration 

in this algorithm proceeds until both seU of parameters have converged to 

their final values.

Such two-way or see-saw algorithms will occur throughout this thesis as 

many of the models to be considered have a natural separation, in terms of

11



lets of psruneters, of the type discussed »bove.

2.2 The Systematic Component

For » given set of covariates, the reUtionship between the mean m  and 

the linear predictor, 7i = af/3 , U defined by the link function as

>?.• =  y (« ) ,

where g is assumed to be monotonic and twice differentiable, ensuring that 

p - ‘ exisU. The classical linear model has p as the identity function.

An important special case is when the link function is defined in terms 

of the natural parameter, 9. This leads to  the link function, t] = 9 = 

*■*(/*) =  i(p ) , which is known as; the ’natural’ link function for that family 

of distributions indexed by 9. For the Binomial distribution, where we 

typicaUy observe y, successes out of tn trials , with probability of success, pj, 

the natural link function is the logit defined by.

and /», =  n,pi.

The use of such natural link functions is both intuitively and theoretically 

appealing. In many cases, the natural link leads to a simple interpretation

12



of the rdktioiuliip between the mean and linear predictor. For example, 

the logit link described above immediatdy leads to  the nse of odds and log- 

odds, while the natural link for the Poisson distribution, that is the natural 

logarithm, leads to  the analysis of cell expectations in contingency tables 

expressed as snms of row and column effecU. The estimates derived from 

the nse of natural link functions also have theoretically desirable properties 

which are discussed further in Section 2.4.

Link functions may be generalised in two major ways. Firstly, the func

tion may depend on extra unknown parameter(s) not contained in the linear 

predictor, thus creating a  "parametric” family of link functions. An example 

is the Box-Cox link with unknown exponent defined by.

V = (2.3)

Of interest is the estimation of the unknown parameter o  and, hence, 

the most appropriate form of link function suggested by the data.

The second major generalisation is to assume that the mean of an ob

servation may be rriated to more than one linear predictor. Such models 

were proposed originally by Thompson and Baker, [71] and are known as 

eotnponie link functions. In following chapters we show how such link fnnc-

13



tioni may be used to  specify several non-standard models in the generalised 

Unear model framework and, hence, be fitted using standard techniques for 

GLM’s.

2.3 Fitting Generalised Linear Models

In this section we first describe the basic technique of iteratively reweighted 

least squares, IRLS, which may be used to  fit a  generaUsed Unear model. We 

then describe how this techiniqne can be extended in different ways to fit 

various non-standard generaUsed Unear models. In order to  fit a  generaUsed 

Unear model, the foUowing components must first be specified,

s the frequency (error) distribution of the response variable, y.

f(y)  =  exp 1 + c (y ,» ) |

s the set of explanatory variables which form the Unear predictors for 

each observation, i.e. the matrix X such that j

•  the Unk function relating the mean of the distribution of y to the Unear 

predictor, i.e. q =  g(n).

By fitting such a  model we mean the estimation of the vector of un

known parameters, 0. Note that, it is assumed the matrix X  is of fuU rank,

14



otherwise there is an obvious non-uniqueness in the estimates for

The estimation techniqe employed is maximum likelihood, which, as well 

as being intnitivdy appealing, has many desirable and tractable theoretical 

properties. We will outline the iteratively reweighted least squares estima

tion procedure for a standard generalised linear modd, described above, and 

then discuss extensions to such procedures for more general models.

2 .S.1 Iteratively Reweighted Least Squares

The log likelihood function for a sample of independent observations p i, . . . ,  p , 

from an exponential family with systematic component described above is,

i )  =  L  -  *(•.)} / «  +  X ; e(pi,«) (2.4)
•«1 w l

and its derivative, the score ftnetUm, is

... (2.5)

Use of the chain rule and results derived in section 2.1 above gives,

M  _  dOj dm dru 
W  d/ti dtii 80 

1 1

and

di(i<) =  variKi) =  Vi 

15





Using the Fisher-scoring algorithm, the (r-t-l)th estimate of ^  is obtained 

from the previous estimate via the relation,

where all quantities on the right hand side are evaluated at Now, rewrit

ing Equation 2.6 as •(§) =  , where «, =  (p; -  i  =  1 , . . . ,  n, the

updated estimate of ̂  can be found using,

=  (X ‘̂ W r X ) - \X ‘̂ W rX ^-^X '^W r]i,)

=  {X '^W rX )-^X '^W ,{X l^+ ^)

=  (X ^W rX r 'X '^W r i,
: I

where.

Thus, at each iteration of the algorithm, the updated estimates of ^  

can be found from a weighted least squares fit on an iterative dependent 

variable, g, with weight matrix, W. A similar resulU holds for the Newton- 

R ^hson  algorithm with observed rather than expected information. The

17



only difference in the two eppioaches it in the eetimate of the etymptotic 

variance matrix of given by ( X ^ W X ) - ' .  In tmaU tamplet there may be 

a contiderable difference between the two, although, with the natural link 

function for a  particular exponential family, the two methods give identical 

retults.

Another important consequence of this formulation is the ready use of the 

observations as starting values. Since the algorithm only effectively employs 

2 and ¡t, rather than the individual dements of starting values for the 

linear predictors can be easily found by equating observed to  expected values

‘o «>v*. % =

2 .3.2 Some Generalisations

1 !
The basic weighted least squares algorithm outlined in Section 2.3.1 has 

been extended by various authors to indude models with error distributbns 

not in the exponential family, non-linear parameterisations, and dependent 

observations.

A straightforward extension is to allow the indusion of extra unknown 

parameters in the link function creating a parametric family of links, such 

as the Box-Cox link defined by Equation 2.3. The fitting of such models is 

discussed in Section 3.1.1.

18



Thompson and Baker, (71), introduced the idea of a compoeite link func

tion, in which the mean of each observation may be related to  more than 

one linear predictor. For the simplest case of a  linear composite link, we 

may w riu  = C^, where j  and, in general, C  U an n x m  ma

trix. Thompson and Baker showed that the weighted least squares routine 

could be adapted by deflning iterative explanatory variable C HX,  depen

dent van able C H i, where H = [dj/dtjl, and weight matrix W  = diagiV)“ '). 

Applications of such models are discussed in Chapters 4 and 5.

Similar adaptations of the algorithm can be made for non-linear com

posite links of the form /i, = c.ít }, where the c,, i = 1, . . . ,  n are non-linear 

vector functions. An obvious obstacle to  the implementation of such models 

is the need to  calculate the design m atrix at each iteration. In the absence 

of general matix operations in some packages, in particular, GLIM, this has 

limited the general use of such models to situations in which the matrix C 

has a relatively simple form.

Several authors, for example Green, [33], Jorgenson, [40], and Stirling,

[68], have considered quite general models with non-linear parameterisations 

and error distributions not of exponential family type, and shown that the 

weighted least squares algorithm can be used to  ñ t such models. A general

19



formuUtioii U to  coniider « log-UkeUhood. /(ij) in which the n x 1 vector j  

U in turn n function of the p-veetor of unknown regression pnrnmeters, i.e. 

2  =  V(0- Using n similnr notation ns in Section 2.3, it is ensiiy shown that 

the updated estimates of ̂  can be found using

¿ ^ t  = (U r»^rV r)-'D ^W r(D rl+M r)

=  (D jW rD ry^D jW rS,

(2.7)

where

D =
M

W  =
^ [1
at

¡1 =
«2 '

, and

When the distribution of jj is of exponential family form and the mean of y is 

related to the linear predictor . j ,  through a link function, y, these equations 

simplify to the weighted least squares algorithm described in section 2.3.1.

2.4 Inference for Generalised Linear Models

In this section we outline some basic distributional rcsnlu for maximum 

Ukeiihood estimates in general and for the estimates of in a  generalised

20



linear model in particular. The standard result for maximum likelihood 

estimates, and in particular generalised linear models, is that ̂  has a  limiting 

Normal distribution with,

E d ) =  ^

v a r( |)  =  (X ^W X )-^

Note tha t, for finite or smaU samples, ^  is typically biased and its vari

ance different from that given by equation 2.8. Shenton and Bowman, (66], 

discuss the small sample behaviour of maximum likelihood estimates.

The sampiing distribution of ̂  is used primarily for testing hypotheses 

concerning individuai parameters or linear combinations of parameters, for 

example

Ho : C0 = Q,

where C is a  q x m matrix of constants. A particular case is where C 

corresponds to C  =  (0, . . . ,  1 , . . . ,  0), so that we are testing.

Ho : 0j = O

Using the resulU in equation 2.8 above, it U easy to  show that the

21



limiting Normal diatribution of has momenta, 

E [C |] = Cg_

v ar(C |) =  C (X ^W X )-^C '^  

to that under the null hypotheaia, Tfo

^  C'^(C{X‘̂ W X)-^C '^)-^C ^ (2.8)

haa a limiting x j diatribution. 1  He particular form of C for tenting Tio : =

0, leada to  the uaual teat atatiatic

JL
(X'^W X)]} (2.9)

which haa a  limiting Xi diatribntion.

In certain cases, notably when the link function is the canonical link, 

exact results are possible. In particular the use of such links leads to a set of 

sufficient statistics for the parameter vector However, such link functions 

may not necessarily arise in practice or be applicable to a  particular data 

set so that, in general, we will have to rely on asymptotic and approximate 

results.

The limiting distribution of ̂  will be a good approximation if the kjg- 

likelihood function is reasonably quadratic. Although, asymptotically, all 

likelihoods have this shape, for small samples this property may not hold

22



clotdy. Thii hat impUcatioiif in terms of the fitting algorithm, as well as 

the asymptotic distribution distribution of the parameter estimates, since 

the rate of convergence of the Netwton-Raphson algorithm depends on the 

quadratic nature of the log-likelihood.

The situation may be improved on both counts via transformations of 

the form 7 =  i(0 ). For example Anscombe, [4], considers the problem of 

finding a  reparameterisation 7 =  7 (/^) which leads to an approximate 

Normal likelihood (bi 7 .

The likelihood ratio method of testing hypotheses and calculating con

fidence intervals is, in general, preferable to  the approach based on the 

limiting distribution of One reason for this is the invarionce property 

of the likelihood ratio in that inferences regarding £  correspond directly to 

inferences regarding r (£ ) , where r ( )  is an arbitrary 1-1 transformation.

In terms of generalised linear models, the most frequently expressed form 

of the likelihood ratio statistic is the (scaled) deviance, defined by

D =  2 ( / ( f e £ ) - l ( f f ^ l

= 2(53 ‘’(A; y.) -  ii(A; yi))

(2.10)

where fi denotes estimation in the extreme case by allowing a  parameter for 

each observation, so that A  = y,-. Thus the deviance measures the fit of the
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current model, with corresponding parameter estimates ik, relative to the 

best possible model. In particular, we have /îj = Standard results

show that the limiting distribution of D is x î - , ,  where p is the dimen.inn

o i l

For some distributions, notably the Normal and Gamma, the deviance 

involves an unknown scale parameter, denoted by ÿ  in Equation 2.1, which 

must be estimated before any tests can be carried out. The usual method 

is to  estimate ÿ  by the residual mean deviance from the maximal model, 

or the largest model under consideration, and scale the deviance by this 

value. This procedure typicaUy leads to hypothesis tests based on the F- 

distribntion rather than the x*.

The principal use of the deviance is in making model comparisons of the 

form

■Ho = ....... /3„0,...,0]

against a more general hypothesis

Wi :^ ^  =  [ /? ! ,. . . , /3,], where q < p < n.

The difference in déviances between the two modeb is

D = D o -D i  = 2 ( /(è ;2 )-/(â j:i[) l-2 (l(è ;ï)- l(^ i^ ;£ )]

24



which identic«Uy is the likelihood retio test of the two hypotheses. L uge 

values of D ( i.e. greater than the upper a% point of the x j_ , distribution 

) lend support to 7fi on the basis tha t it provides a significantly better 

description of the data.

The usual application of this procedure is the sequential addition (or 

deletion) of regressor variables, usually one at a  time, until the change in 

the deviance becomes non-significant. This procedure is obviously a gen

eralisation of the subset selection procedures applicable in multiple linear 

regression and available as options in various statistical packages , although
! i

not in GLIM.

Recent work, Aitkin [1] and Whittaker [74], has focussed on the selec

tion of factors in the analysis of contingency tables and, in particular, the 

representation of conditional independence models by graphical models.

2.5 Model Checking

An important aspect of data  analysis is the process of verification and eval

uation of the assumptions made when fitting the model. In most practical
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fitaMiont, the proceu of model fitting U an iterative one involving model 

choice, model fitting and model verification. Only in very simple cases Is it 

likdy th a t one pass through these stages will be sufficient to  highlight the 

important features of the data under study.

The most frequently used form of m odd checking involves the analysis 

of residuals. A residual may be define in a  general form as some function 

on the product space of the observed and fitted values. Thus, for the ith

observation, we define r, =  r(K.A<).« = 1........n. The history of residual

analysis in Normal theory linear models is long and widespread, and many 

of the concepts and techniques carry over in a  natural way to the study of 

generalised linear models.

The most common form of leriduals are generally referred to  as stan

dardised and studentised residual respectively, and may be defined as,

standardised residual = 

studentised residual =  ~ ^
/var(y, -  ^0

In most cases, the variance expressions will be replaced by an estimate 

from the fitted model. The standardised residuals, for a  given error dis

tribution, correspond to the signed square root of the Pearson chi-squared 

for the ith observation and are the residuals routinely output by
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GLIM following n model fit. Gilchriit, [27], showed how studentised resid- 

nals could be cnlcnUted etsily using the output from n model fit. A more 

generil definition is thnt of the transformed residual defined by,

transformed residual =

in which the transformation r( .)  is chosen in order to improve the Normality 

of the sampling distribution of the residuals, see for example Cox and Snell,

(18). Another generalised form of residual is the deviance residual defined

by,

deviance residual =  sgn(y,- -

sgn(x):

where

+1 X > 0  

- 1  * < 0

and Di is the ith component of the deviance function defined in Equa

tion 2.10. Pierce and Schafer, [55], consider the sampling distributions of 

deviance residuals in detail and conclude that, in general, they compare 

favourably with the beat transformed residuals for specific models.

We now consider briefiy the ways in which residual analysis may be 

utilised to highlight depeartures from the assumptions made when fitting a  

generalised linear modd. The principal asnmptions may be summarised as
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S) Observations arise from some distribution

ii) Observations are independent.

iii) One (or more observations) is an outlier.

Note tha t we have deliberately not included assumptions about the form of 

the link function t) =  g(n) as this issue is considered in detail in Chapter 3. 

To test these assumptions, residual plots may be utilised as follows,

i) Plots of the ordered residuals r̂ ,-] against the order statistics of some 

reference distribution, usually the Normal.

i) Plots of Ti against /t,-.

iii) Plots of Ti against i. | |

iv) PloU of partial residuab against i ,  where £  is a regresor variable for 

potential inclusion in the model.

In the first plot, the configuration expected is a straight line. In plots 

ii) and iii), any systematic tendencies or unusual points may be indicative 

of departures from the assumptions in the model. For example, residuals 

increasing in absolute value with the mean are suggestive of an incorrect 

mean/variance realationship in the fitted model. The final plot is less easy
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to  predict since its form may depend in many ways on the variables being 

considered and thoee already fitted in the model. It is probably most useful 

as a screening device when there are a  large number of candidate regressor 

variables for inclusion in the modd, see for example Landwehr et al, [42], 

for a discussion of these techniques in logistic regression.

Another important diagnostic procedure may be termed case deletion 

methods. By these we mean to quantify the effect of individual observa

tions, or subsets of observations, on the estimated parameters in the modd. 

Thus, in an obvious notation, we consider the effect of ddeting the ith point 

in terms of the change from ^  to  ^ . y  Pregibon, [57], derived a  one-step 

approximation to estimate the change in the values of the fitted parameters 

following the ddetion of a point from a fit. This idea has also been discussed 

by Williams, [77]. In particular we can consider the influence curve for an 

observation, that is a  plot of j?(u>Y  ̂ against w, where 0 < to < 1 is the 

wdght given to the ith point in the fit and jS(to) .̂̂  is the vector of parameter 

estimates when the ith point is given wdght w. Typically, the calculation of 

the influence function for all values of to is computationally expensive and 

it is more usual to consider the empirical influence function given by.
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which!» esentially a  trade off between the influence fnnction a t to =  1 and the 

function a t w = 0. A* mentioned above, these techniques are considered in 

Ch^>ter 3 in connection with the estimation of the form of the link fnnction.

This concludes our overview of generalised linear models. The notation 

and methods introduced in this Chapter will be developed further in subse

quent chapters as we consider the application of generalised linear modelling 

techniques to  various non-standard analyses. In the next Chapter, we con

sider how generalised linear modek may be extended in two important ways.
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C hapter 3

EXTENSIONS TO THE

BASIC MODEL

In this chapter we will discuu gcneraliiationi of the bauc forranlation of a  

generaliied linear model discuiaed in Chapter 2.

The first generalisation is the introduction of extra parameters into the 

link function to create a  "family” of parametric link functions. For a given 

d a u  set, it is possible to estimate which link function represents the rela

tionship between the mean and linear predictor. Secondly we will consider 

the determination of the appropriate error distribution for a  given data set. 

In particular, this means the characterisation of a  distribntioa by the mean-
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variance relationship.

3.1 Parametric Link Functions

5.1.1 Formulation

Given a set of observations Pi. •. •. Pn, having a distribution in the exponen

tial family, we will assume that the relationship between the mean of pi and 

the linear predictor, =  x f  /?, can be represented by.

(3.1)

where, in general, a ,  is a  set of unknown parameters not contained in the

linear predictor. This is known as a  parametric link function.
\

Pregibon [56], indicated how the weighted least squares algorithm might 

be modified to allow for the estimation of the extra parameters a  »  well 

as the 0j'». Briefly, the technique consists of fitting an extra explanatory 

variable to the model for each extra parameter to be estimated. The extra 

variables can be calculated at each cycle , so that the and a  parameters are 

estimated simultaneously , or, alternatively, after the /3j have been estimated 

for a  fixed value of a . However, either of these techniques can fail for some 

problems; the first seems prone to failnre when the link contains an unknown
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exponent; the letter teems prone to  failure when estimating links with an 

unknown asymptote.

An alternative approach it to  consider the estimation of the two sets of 

parameters a  and §_ separatdy in a  two stage process. This is the approach 

discussed in Scallan et al, [65], and only a brief outline of the technique is 

given here.

Suppose sre denote the joint log-likelihood by /(^,a)> then the maximum 

likelihood estimate of ̂  for a  fixed value of a  is given by the solution to  the 

equation

gf(g.fl)
d»

= 0 (3.2)

In many cases a fixed value of a  will represent a link function which can 

be easily specified in a computer package, for example using GUM’s OWN 

facility. The estimates ^  will, in general, be a function of a  end we will 

denote this relationship by ¿ (a ) . We can then replace ^  in the likelihood 

i>y i>y regarding the likelihood as a function of a  alone, find the

maximum likelihood estimate of a  *• the solution to the equation.

(3.3)

Note th a t, in general, the solution of equation 3.3 involves the calculation 

of d ^d si-  In [65] it was shown that the values of d 4 (a ) /^ a  could be found
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tuing weighted least squares on a  derived dependent variable. Given these 

values, Equation 3.3 may be solved using weighted least squares to  give an 

updated estimate for a- This new value is then used to  calculate updated 

values of ^ (o ) and so on until both sets of parameters converge. This is a  

technique that was applied by Richards, [58], in the context of non-linear 

regression analysis; the common theme being tha t, for fixed values of a  

in the applications described by Richards, the resulting model was one of 

straightforward multiple regression. Thus, the technique discussed in this 

section is the extension of the method to generalised linear models.

S.1.2 Applications

As well as proving useful in the estimation process, the quantities

have other applications, in particular the calculation of the joint asymptotic

covariance matrix of a  and 4. This matrix is shown in Equation 3.4

V = 0 (3.4)
A -' A - 'C ^

C A -‘ B - '+ C A -^ C ^  

where A is the information matrix for the a  parameters, B is the information 

matrix for the £  parameters given a  and C is a  matrix of the quantities

Exsim ple 3.1 Carrot tops
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3.57 6.25 9.54 16.91 24.51 33.78 50.00 62.05 69.34 67.09 69.34

-2.15 -1.50 -0.85 -0.08 0.52 1.10 2.28 3.23 4.00 4.65 5.00

Tkble 3.1: Weight of Carrot tops

To note the effect of this adjustment on the covariance m atrix of the ^  

parameters, consider the data  analysed in [65] and displayed in Table 3.1.

This shows the weight of carrot tops ys a t time t/,, k = l , . . .,11, relative to 

some base time. A (log) logistic model for E[ln(Ys)] of the form

/i* =  ln(o) -  ln(l -H exp {-(A) + Ai<*)}

fits the data well and gives parameter estimates d  = 73.26, jJb =  -1.130 

and =  0.8542. The estimated matrices , A and B, defined above are,

0.3484 0.1277 

0.1277 0.1700

wth d  — 0.000797 and =  [—0.0234, —0.00656] estimated using the tech

nique described earlier. Thus, using Equation 3.4, the adjusted covariance 

matrix of ̂  is given by,

1.601 0.4779 

0.4779 0.2680

which can be confirmed directly as it is te straightforward to  estimate all 

three parameters simultaneously for this model, see Scallan, [61] for details.
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Several authors have proposed specific modeb for the analysis of binary 

response data. For example, Stukel, [70), considers a  parametric logistic 

model of the form

where, for i; > 0,

af*(e“«w -  1) a i  > 0

V Oi =  0

-o f*  ln(l -  oi I fj I) oi < 0

and, for tj <0,

_  1) a ,  > 0 

V Qj =  0

a r ‘ ln ( l i -o j  | i ; | )  oij < 0 

The k() functions govern the behaviour of the logistic function in dther tail, 

depending on the value of (a i,a} ). This is an example of a model in which, 

for fixed values of the link function parameters ( a i ,a j ) ,  we have a standard 

generalised linear model which may be fitted using an own model. In [70], 

if was suggested that the estimates of (01, 03) could be found using a two- 

dimensional search method ov«  possible parameter values. However, this is 

clearly a  candidate model for the formulation given by Equation 3.1.
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E x am p le  S.3 FkuIU in fabric

To illnitrate theie idem, coniider the data in lU ile 3.2 which ihowt the 

number of faulU in a piece of fabric of given length. A detailed analysU 

of this daU  wat given by Hinde, (38), who showed that the data  exhibiu a 

signiflcant degree of overdispertion rdative to that which might be expected 

from fitting a  Poisson regression model with In(length) as explanatory vari

able. However, our interest centres on the determination of the appropriate 

form of link function for the data by introducing a  parametric family of 

links.

The family of link functions we consider is given by Equation 3.5, i.e. 

the Box-Cox link.

(3.5)
ln(/i) a  =  0

The joint maximum likelihood estimates of a  and ^  can be found easily 

using the two stage algorithm described above as a  =  - 1.337 and ^  = 

[0.2992,0.06315] with deviance 60.798. The estimated variance covariance 

matrices for a  and snd the vector [d^da]  are as follows.

0 =

var(a) =  [0.6012], v a r(^
0.005834

-0.0008707 0.00013
=[-0.4759,0.1423]
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length of roll fault* length of roll faulU

551 6 543 8

651 4 842 9

832 17 905 23

375 9 542 9

715 14 522 6

868 8 122 1

271 5 657 9

630 7 170 4

491 7 738 9

372 ' 7̂ 371 14

645 6 735 17

441 8 749 10

895 28 495 7

458 4 716 3

642 10 952 9

492 4 417 2

T»bl« 3.2: Flbric Fault Data
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Uting the rcfnltf derived above, the adjusted covariance m atrix for ^  is 

given by,

v a r(^
0.005834 0.1362

+
-0.0008707 0.00013 -0.0407 0.0122

0.1420

-0.0416 0.01233

Cleariy, if a  is treated as a  parameter to  be estimated, the variances of the 

estimates for ^  are overwhelmed by the adjustment necessary because of 

the estimation of the link function. It is our experience tha t link function 

parameters, especiaUy "power” parameters, are rarely estimated precisely. 

Moreover, as noted by several authors, the high correlations between the a  

and ^  parameters may make the usual asymptotic covariance m atrix some

what unreliable. An alternative method of constructing confidence intervals 

for the link function parameters is via the use of profile likelihoods. Several 

examples of this technique are given in [65], and readers are referred to that 

paper for further details.
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3*2 Generalising the Mean-Variance relationship

When fitting » genernliied Un«nr model it U aMnmcd tknt error diftribu- 

tion of the obeervntioni ie specified. In perticnlnr« ns n consequence of 

results dwived in section 2.1, this mesns mnking assumptions shout the 

mesn/vsrisnce relstionship of the d s ts . In keeping with the spirit of the 

techniques discussed in Section 3.1.1, it would dearly be desireable to for

mulate a model in which this rdationshlp could be estimated or tested.

In order to do so, we can introduce a  parametic form of the mean/variance 

relationship as follows. We assume th a t the probability density function 

of a  random variable Y is of the form given in equation 2.1 and that the 

mean/variance relationship is given by.

var(Y) = (3.6)

Using resnlU from Section 2.1, if this relationship holds , the following dif

ferential equations must be satisfied.

m  =  n

*(*) =  /i’  (3.7)

Gilchrist et al, [29], showed that the stdution to these equations, apart from
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arbitrary conitanU, ii given by,

$ =

m  =

1^  7 =  1

exp(i) 7  =  1

7 =  2

otherwiie

(3.8)

W ith the mean-variance rdationahip specified by equation 3.6, it is easy 

to show that the deviance function is given by

D(r,fi) =

2 (y ln (» /A i) - (p - / i ) )  7 = 1 .

2(y/it -  ln(v//i) -  1) 7 =  2,

otherwise

(3.9)

The deviance functions defined by Equation 3.9 may be used to test for the 

difference between competing models for a  fixed value of 7  since the max- 

imum quasi-likelihood estimates have an asymptotic Normal distribution. 

However, attention is often focussed on the determination of an appropriate 

value of 7 , and, hence, the mean/variance relationship, for a  particular data 

set.We note in passing that the estimation of 7 will often be dependent on 

the form of link fiinction chosen and the regressor variables Included in the 

modd.
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However, it it clearly not pouible to  ase the deviance function given 

above in order to  discriminate between models with different values of 7 , 

since, each value of 7 introduces a  different scale.

A method for estimating the form of the mean/variance relationship 

was suggested by Nelder and Pregibon, (48). They introduced an extended 

quasi-iikelihood function, which, for a  single observation has the form

g +  =  - i l n ( 2T «K ,(y ))-JZ )(» ;,i) (3.10)

where, in particular, in particular, D(y;ft) is given by Equation 3.9. It 

can be shown that, for certain values of 7 , this function is very similar 

(exact in the Normal case) to appropriate members of an exponential family 

with the same mean/variance Tclationship. Neider and Pregibon give several 

examples of using this extended iikelihood function to  estimate the value of 7 

for several data sets and report generally favourable results. The asymptotic 

properties of extended quasi*iikdihood estimates are considered in reiation 

to the method of psendo-likeiihood by Davidian and Carroll, (20).

3.3 Diagnostic Procedures

The role of diagnostic checks in assessing the 8t of a  model has already 

been discussed with particular reference to  residual analysis. In this section
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we discuw the epplicetSon of e certeia form of d ia^oetic procedure with 

reference to some of the model generaliaations ditcnsaed in thin chapter. The 

procedure we will utiliae primarily ii that of caae-deletion, tha t ia, aaaetaing 

the effect! individual poinU on the parameter estimates in the fitted modd. 

The procedure is easdy demonstrated for the riassical linear regression model 

where it is well known that,

(3.11)

H «« â(,) ”>**»» tk« vector of parameter estimates with the ith data point 

deleted, A,-,- is the ith diagonal element of the hat matrix, H  =  

and £ =  (k -  X ^ .  Thus the quantity =  |  -  |^ .j , gives an indication of 

the effect of the ith data point oA the estimated model parameters. Plots 

against the index number of the observations are useful in 

detecting influential points.

The extension of this procedure to generalised linear models is straight

forward since we know that at the maximum likelihood estimate,

l= ( .X '^ W X ) - 'X ^ W i

where W  = diag[d,?K] and £  =  Rewriting this equation as,
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it is easy to  show that a  one-step approximation to  is given by,

where r,- =  (y; — , hn is the ith diagonal element of the correspond

ing hat matrix for a  generalised linear model and V is the variance function 

of Y . This procedure seems to  have first been used by Pregibon, (57), in 

the analysis of iogistic regression models and the application to generalised 

linear modeU discussed by Williams, (77). In the following sections we show 

how this procedure may be applied to some of the extended models discussed 

in this Chapter.

Wiliams also discusses diagnostic procedures in terms of the changes of 

the deviance values following the deletion of an observation from a fit. In 

particular, by considering a Taylor series expansion of the deviance, D = 

^  df, it is easy to show that,

1. The decrease in dj is approximately ^*¡(1 -  h ,)“ *r?.

2. The increase in is approximatdy ^ , ( 2  -  h ,)( l -

3. The increase in Z) =  dj U approximately ^ ( 1  -  h, )-» rf.

As these results rely on the approximation to changes in the parameter 

estimates, they may also be applied to the more general models discussed



bdow . These results «re reported more fully elsewhere.

We also note that these techniques may be applied to situations in which 

more than one observation is excluded from the model at a  time. In par

ticular, we may consider the estimation of the quantity where , in 

an obvious notation, the subscript L refers to the change in parameter esti

mates when observations y „ ....... pj, are excluded from the model. Following

Pregibon, [57J, this quantity may be approximated by

(3.13)

As noted in [57], all the quantities required are available after a model lit 

except (1 -  A partial solution to this problem is offered by Scallan,

[64], who shows how the elements of H i, and hence ( /  -  H i), may be 

calculated following a model fit by an extra iteration involving auxiliary 

variables. For moderately sized values of I, the inversion of ( I  -  H i)  should 

not be too difficult even for a package such as GLIM which does not explicitly 

support matrix operations.

S.S.l Com posite Link FVinctions

The principle of a composite link function was introduced in Section 2.2. 

We can define one extended form of composite link function known as a
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(3.14)

bilinear function, although, in keeping with the terminology of thl» chapter, 

we prefer the term parametric compotite link function, a* foUowt,

!L=ru =  C l

where, i  = h (i^ ), and the C,-, j  =  1 , . . . ,  r , are known n x m ma-

tricee. The r  x 1 and px  1 parameter vecton a  and ^  may be eitim ated uiing 

iteratively re-weighted leait iqnare« with design matrix A* and dependent 

variable z* given by,

X ’ =  ( C , i , . . . ,C , i : C i r A l

where H  = d iag(di/di7] is an m x m matrix, and with weights W  = 

diag[l/Vj]. Now, since at the mie we have ( ¿ , | )  = (A**'A)->A*’‘Z*, we 

can use the general result given in Equation 3.12 to find approximations for 

the changes in the value of ( ¿ , ^  when the ith case is deleted. Thus we 

have,

where hn is the ith diagonal element of the hat matrix and fj *  (p,- -  

As noted by Gilchnst, [28], the diagonal elements of the hat 

matrix for a composite link model may be found easily following a  fit.
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Ai a  simple example consider the data  shown in Thble 3.3, which shows 

the number of coal miners, R out of N, diagnosed as suffering from a wheeze 

a t different ages. Ekholm and Palgrem, [22], analysed this data by consider

ing the possibility of misdiagnosis. Bums, [8], showed how this model could 

be fitted in GLIM using a  parametric link formulation. Briefly, we assume 

the probability of being diagnosed as having a wheeze, pi, is given by,

p* =  ( I  -  i ih *  +  <o(I -  7*).

where, cq =  i*(diagnosed wheeze | healthy) , <i = ^(diagnosed healthy | 

wheeze) and 7* = P{true wheeze) = exp(% )/(l + exp(%). In the notation 

above (to,«i) a  (a i,a z ).

The maximum likelihood estimates of the parameters in the model are 

shown in Table 3.4. As noted in [8], the estimate for <0 has a  negative value 

and large standard error, which suggests more appropriate model would be 

one in which co = 0. However, this example is used purely to illustrate the 

technique and we will not be concerned the suitability of the fitted model.

The standardised changes in the parameter estimates for this data  set 

are shown in Table 3.5. For each parameter, the first column shows the 

exact change and the second the one step approximation. As be seen 

from Table 3.5, there is good agreement between the exact and approximate
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Age R N

22.5 104 1952

27.5 128 1791

32.5 231 2113

37.5 378 2783

42.5 442 2274

47.5 593 2393

52.5 649 2090

57.5 631 1750

62.5 504 1136

Tkble 3>3t Number of miners die^nosed u^eery 

change* in most caaes. Th**e qaantitie* are illuttrated graphicaUy in Figure*

3.1 to 3.4. In general, the approximate change* are nndereetimate* 

of the actual change*, although the relative magnitude of the change* i* 

rea«)n*bly limilar in mo*t ca«e*. The only olxervation which appear* to 

have a rignificant effect on the eatimate* when deleted u  observation number 

9, in which deletion can*e* a  large *hift in the value* of all the parameter 

eatimate*. To an extent this may be expected aince a  change In the link 

function parameters may weU alter the whole nature of the form of the Unk
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Figure 3.1: Standardiaed Parameter changes - ß\
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Figure 3.2: Standardiied Parameter changa - ßi
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Figure 3.3: StundardUed Param eter changes • <o
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Figure 3.4: Standardieed Parameter changes - <t
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Parameter estimate s.e.

A •4.090 0.6132

A 0.07324 0.01932

<0 -0.004567 0.02942

<1 0.2940 0.2022

Table 3.4: Pftrftmeter estimates for miners

function and, conacqnently, the values of the regression parameters,

S.S.2 Generalised O ILS models

In principle there is no reason why the techniques illustrated in thU section

cannot be applied to the general IRLS formulation described in Equation
i

2.7. To illustrate the idea we consider a  special case of this formulation in 

which the model still contains a  Unear predictor, j ,  although observations 

need not necessarily be a  member of an exponential famUy. Thus, we assume 

that we have independent observations, y, with log UkeUhoods,

•o* K k  I W) =  f(lK, Vi) where 2  =

StirUng, (68), showed that such models could be fitted with iterative 

weight matrix W  = diag(tDi] and explanatory variable £  given by,
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4

Parameter

Case A A «0

1 •0.638 -0.605 0.551 0.492 0.878 0.701 0.536 0.372

2 -0.080 -0.073 0.111 0.099 0.039 0.027 0.125 0.108

3 0.489 0.466 -0.454 -0.445 -0.363 •0.403 •0.333 -0.385

4 -0.698 -0.743 0.613 0.614 0.786 0.669 0.591 0.448

5 0.109 0.112 -0.034 •0.036 •0.091 -0.097 0.037 0.033

6 -0.088 •0.082 0.|37 0.123 0.093 0.081 0.172 0.146

7 -0.202 -0.194 0.235 0.215 0.208 0.180 0.257 0.206

8 0.334 0.340 -0.241 •0.249 •0.244 •0.265 -0.074 -0.086

9 0.951 0.806 -1.163 •1.254 -0.713 -0.961 -0.952 -1.704

Tftble 3.5: Compariion of exact and approximate change* in parameter es

timates for single case deletion in miners’ data
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*■• =  «?i - ¡'(Vi.Vi)

where differentietion ii with leepect to  Note th*t, in K>me cnM., the 

ob^rved InformntioB mntrix, W. may be replaced by iu  expectation.

We note, in particular, th a t much attention hai been focuued on case 

deletion meainres of influence for Cox’s proportional hazards model, see for 

example Storer and Crowley, [69], and Pettitt and Bin Dand, (54).

As an example consider observations y, which follow an exponential dis

tribution with mean A."' =  exp-w and may be right censored. Thus, the 

exact faUnre time ^  is known exactly only if y. < otherwise it U recorded

as censored with ft > i,. StirUng showed that this model results in IRLS 

formulae I !

Wi =
9 i< ti

m > ti

and

ih -K fte ’̂ ) - * - l  f t< t , .

»?< -  1 ft > ti

which corrects a  smaU mistake in the original paper.

We have applied these formulae to  the daU  analysed by Gehan, [26], 

displayed in Table 3.6. The data  consists of 42 observations of remission
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Control 1(2) 2(2) 3 4(2) 5(2) 8(4)

11(2) 12(2) 15 17 22 23

Treatment 6(3) 6' 7 9 10 10'

11' 13 16 17' 19* 20'

22 23 25' 32'(2) 34' 35'

T&ble 3.6: Gehan data

Parameter Estimate t.e.

j9i -2.159 0.2182

h  -1.527 0.3984

Table 3.7: Parameter estimates for Gehan data

times in weeks of leukaemia patients. A randomized treatment group was 

treated with 6-mercaptopurine, the other group was a control. Note that 

figures in brackets refer to multiplicities of observations and '  denotes a 

censored observation. The parameter estimates for this model are displayed 

in Table 3.7. Again, using the result that, a t the maximum likelihood 

estimate, we have

I  = (X'̂ WXŷ X'̂ Wi

we can use the techniques of this Section to find the one-step approximations 

to the changes in ^  on the deletion of each observation. These changes
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are sammariaed in Table 3.8. It is interesting to  note from Table 3.8 the 

effect on the parameter estimates of a censored observation compared to  an 

nncensored observation. In moat cases, the sign of the change is reversed 

between censored and nncensored observations. However, it is clear that, 

for observations which have a  substantial effect on the parameter estimates, 

the censoring is irrelevant in terms of the magnitude of the change.

This model can also be fitted by using an auxiliary Poisson model, a 

technique that has been used to  fit various survival distribution models using 

GLIM (see Section 5.3.4 for a discussion of a  technique for fitting the logistic 

distribution to  censored data). Since these models also rely on a  weighted 

least squares approach, similar diagnostic techniques may be employed. We 

have compared the auxiliary Poisson model with the direct approach for 

the Gehan data set and found the results to be similar. The difference is 

probably explained by the use of the expected information in the auxiliary 

Poisson model. We are currenlty investigating the use of these techniques 

in other applications.

3.S.S Tents on Link E\inctionn

Another important topic discussed in this Chapter has been the idea of a 

parametric link function. It is clearly desireable to assess whether one or
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Obaervation

Group

Control 1 Treatment

h Obiervation

1(2) 0.1983 0.2027 -0.1086 -0.1110 6(3) 0.2533 0.2666

2(2) 0.1729 0.1763 -0.0947 -0.0965 6' -0.0423 -0.0472

3 0.1474 0.1498 -0.0807 -0.0821 7 0.2462 0.2587

4(2) 0.1217 0.1234 -0.0667 -0.0676 9* -0.0637 -0.0708

5(2) 0.0959 0.0969 -0.0525 -0.0531 10 0.2247 0.2351

8(4) 0.0176 0.0176 -0.0096 -0.0097 10* -0.0709 -0.0787

11(2) -0.0621 -0.0617 0.0340 0.0338 11' -0.0781 -0.0865

12(2) -0.0890 -0.0881 0.0487 0.0483 13 0.2031 0.2115

15 -0.1706 -0.1674 0.0934 0.0917 16 0.1812 0.1879

17 -0.2258 -0.2203 0.1237 0.1207 17' -0.1218 -0.1337

22 -0.3668 -0.3325 0.2009 0.1931 lO* -0.1365 -0.1494

23 -0.3955 -0.3789 0.2166 0.2076 20' -0.1439 -0.1573

22 0.1369 0.1407

23 0.1294 0.1328

25' -0.1812 -0.1966

32*(2) -0.2343 -0.2517

34' -0.2497 -0.2674
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35' -0.2575 -0.2753

Tkble 3.8: Cate deletioD diagnoatka for Gehan data



more obicrrations may have high or undue influence in the estimation of the 

parameters in the link function.

The two-stage estimation technique introduced in Section 3.1.1 involves 

the iterative solution of a  single weighted least squares equation to And 

updated estimates of the link function parameters, n- Again, drawing on 

the analogy with the general result of the effect of single case deletions 

on parameter estimates. Equation 3.12, it teems reasonable to apply this 

technique to the estimation of the link function parameters.

As an example, consider again the data on the number of faults in fab

ric displayed in table 3.2. For the Box-Cox parametric link function, the 

estimate of the link function parameter for the full data set is a  =  —1.337. 

Table 3.9 shows the fully iterated an one-step approximations to the changes 

in the values of the link function parameter following the deletion of each 

observation. For each observation, the first entry shows the exact r)i«ng.  ¡n 

the parameter estimate and the second, the one-step approximation.

Although the agreement between the exact and approximate values is 

not as close as those observed in the other applications considered in this 

Section, those observations with a  large effect do seem to be highlighted 

by the one-step approximations. For example, observations 19, 23 and 31 

produce the largest changes in the value of the link function parameter, and
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thil if in ngraement with the npproximnte changes given by the one-step 

approximations.

For comparison, we have also calculated these quantities using the auxil

iary variable technique described by Pregibon. The results of the two meth

ods are displayed graphically in Figures 3.S and 3.6. As can be seen, the 

one-step approximations using Pregibon’s auxiliary variable technique are 

not as accurate as thoee obtained from the two-stage algorithm. However, 

both techniques seem to pick out reasonably well the influential observations.

This data was analysed in [38] as an example of an overdispersed Poisson 

model. The deviance he obtained for a  Normal/Poisson compound fitted to 

the data was 50.98 on 30 df. The déviances for various models deleting 

the most influential observations in terms of the link function parameters 

are shown in Table 3.10. It it interesting to  note that the improvement in 

the deviance achieved by fitting the compound model it matched, and in 

some cases exceeded, by fitting a  more general link function and deleting 

influential observations.
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ObMrvallen

Figure 3.5: Link function parameter changes , two-stage method
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ObMrvatlon

Figure 3.6: Link function parameter changes, Pregibon’s method
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Obaervation 1 2 3 4 5 6 7 8

Exact -0.012 -0.133 0.093 -0.127 0.112 -0.066 •0.025 •0.037

One-step -0.022 •0.182 0.104 -0.165 0.165 •0.056 •0.034 •0.054

Observation 0 10 11 12 13 14 15 16

Exact -0.001 •0.055 -0.072 -0.032 •0.294 0.003 •0.077 •0.151

One-step -0.001 -0.071 •0.103 -0.037 -0.122 0.007 •0.096 •0.133

Observation 17 18 10 20 21 22 23 24

Exact 0.008 -0.002 0.368 -0.002 •0.024 -0.049 •0.314 0.195

One-step 0.019 •0.007 0.627 -0.004 -0.034 •0.070 -0.426 0.279

Observation 25 26 27 28 29 30 31 32

Exact -0.026 0.000 0.035 0.026 0.015 •0.216 1.813 0.107

One-step -0.037 -0.000 0.037 0.040 0.010 •0.309 0.796 0.124

T»ble 3.9: Exact and approximate ebanget in link function param eten for 

Fabric data

Link function

Observation deleted

None 19 23 31

Log

Box-Cox

64.6 64.0 54.8 61.9 

60.8 58.1 51.0 47.6

Table 3.10: Deviance value* for fabric data 
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Let Kj denote the frequency of the ith deaf, t = 1 , . . . ,  n. We nunm e the 

expected frequency it given by,

i f * M  i = 1

where qj =  (*,• — /i)/o ) and N  =  Here repreaenta the upper

bound of the ith data  and /i and a are the mean and atandard deviation, 

reapectively, of the underlying diatribution. By letting =  ♦(»»,), it ia clear 

that we can write, ¡t =  S C j j  where

C =

0 ... 0 -1  1 

Which ia exactly the form of a  linear compacité link function. The pa

rameter vector eatimated by thu  formulation it = (-/i/<r, l/<rj although 

eatimatea of /i and o  can obvioualy be obtained via a  aimple tranaformation. 

Vanderhoeft, [72], deacribea a  technique for obtaining approximate confi

dence intervala for auch parameter tranaformationa. In the next Section we 

ahow how thia technique can be adapted to  fit modela to grouped data  which 

arite from an underlying truncated diatribution.
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The perameteriMtion of luch modeli for groaped data ha* been 

by Burridge, (9) and (10]. Bnrridge ihowed that, if the density function of 

the observations was log-concave, then so was the log-Ukelihood function of 

the parameters in a  regression-type modei for both grouped and un-grouped 

data.

The extension of this resnit to  data which arises from an underlying 

truncated or mixture distribution is open to doubt. It is well known, for 

example, that Normal mixture distributions admit singnlarities in the like

lihood function at each observation, so that it is nnlikdy conditions will be 

found tha t result in a weU-behaved UkeUhood function, even for grouped 

data. In the case of truncate^ dutributions, it is easy to  find examples in 

which the Ukelihood function is not concave even for a  simple scale/location 

model.

4.2 IVuncated Distributions

In a recent article, McClaren, Brittenham and Hasselbad [46], gave an ex

ample of using the EM algorithm to fit a  truncated log-Normal distribution 

to grouped data. In this section we illustrate the formulation of such modeb 

in terms of composite links and illustrate the technique using an example
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given in [46].

4.2.1 Formulation

A m m ing tha t the turn of the &eqnencief u  AT, we can derive the model 

a» a  composite link function hy assuming that the frequency in each cell, 

V if - tV n t  has mean , m,  given by

___ w ( 7 i - 7 . - i )  . .
(4.1)

where 7, =  F(in), 7,■ = (iq -  and F{.) is some distribution function. 

In particular, this means that we assume that observations outside range 

(“0. “») are unrecorded or, lost. The parameter vector of interest is 0 ^  = 

[n, oj. In the implementation of the algorithm we have chosen to estimate 

and a directly rather than use the parameterisation discussed in Section 4.1, 

namely - ¡ i /e  and l/«r. In our experience, there is little benefit to be 

from the latter and the former gives asymptotic standard errors directly, 

rather than relying on parameter transformations. The u. represent the 

upper bounds of each category and u , and tq, represent the upper and lower 

truncation poinU respectively. In the terminology of (71), this is a  non

linear composite link function, and can be fitted with iterative explanatory
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vmriable,

X -  = CH X

—l /a  . . .  —1/(T

(m -  . . .  (/* -

mnd iterative dependent variable,

X ^  = (4.2)

2. '=  C H ^  + (y -  a) (4.3)

where C  =  H = ia^id jjdr^  and j*  =  Jf/J. Note tha t both C  and

¿T m ntt be updated a t each iteration unlike a linear compoeite link where 

C  it a  conftant matrix.

However, the n x (n 4-1) matrix C hat a relatively simple form as shown 

in Eiquation 4.4.  ̂ !

i i  -  a  a 0 . . .  0 - i j

i j  —a a '•. \ :

0 ••. ••. 0 (4.4)

: : ■•. - a  a

i« 0 . . .  0 - a  a - f n

where Q =  7« -  70 »nd i* =  7* -  7* . , .  Thus, for any arbitrary vector,

— [wo,u?i,. . . ,u7„], then the kth element ofOyi, k = l , . . . , n ,  is given

*>y.

is(«»o-«>»)/o* + (u»*-w *_ ,)/a , (4.5)
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Thui the algorithm is relatively straightforward and efficient to imple

ment because it essentially only involves differencing vectors rather than 

matrix multiplication. Macros for fitting this model are listed in Appendix 

A .l

In [71], it was commented that N  should be regarded as an extra un

known parameter to  be estimated. Furthermore, in the exsmiple considered 

in that article, it was found that the maximum likelihood estimate of N  

was given by the observed sample total. A more formal justification of this 

procedure is as follows.

In the notation introduced earlier, if 7,  ^  1 or 70 ^  0, then the under

lying distribution may be regarded as truncated and we can model the ex

pected number of observations in the ith interval as in Equation 4.1. Thomp

son and Bakers approach is to  assume that the expected frequency in the 

ith interval is given by.

W =  ^ ( 7 . - 7 i - i ) .  i= l , . . . ,n (4.6)

It is easy to show that the likelihood equation for N leads to  the estimator, 

N  =  N /a ,ia  particular, if a  =  7„ — 70 =  1, the estimate of N  is given by 

the observed sample total. This was the case in both examples considered 

by Thompson and Baker. The likelihood equations for the other parameters
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in the model, i.e. (p, <r), m»y be written at,

lam en ted  Model : (C H X )^ t  = 0 

T  nnd B Model : ( C r X X f i  =  0

where =  (gf — i  =  1, . . , ,n  and Cr  ia the n x (n +  1) matrix

-1  1 0 . . .  0

Ct  = I f
0 -1  1 . . .

0 ........  -1  1

Given the eatimator N  = N /a ,  it u  atraightforward to verify that any eati- 

mate which aatiahea the likelihood equationa for the Thompaon and Baker 

model alao satiafiea the eqnationa for the truncated model. Thia ahows that, 

treating fV aa an extra unknown parameter, ia implicitly fitting an underly

ing truncated diatribution to the data.

Although the link derivative matrix for the truncated model ia alightly 

more compUcated than tha t for the Thompaon and Baker approach, the 

latter involvea the fitting of an extra variable and, for thia reaaon, we prefer 

the former method in thia caae. However, we have uaed thia method of 

eatimating the overall aample aize to fit modela to data  involving truncated 

mixture diatributiona. In thia caae, the approadi treating IV aa an extra
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pw uneter is compntatioiially easier because of the more complicated form 

of the link derivative matrix. Details of the method are given in Section 

4.3.1.

Applications

In this section we illustrate the «tting of truncated distributions to an ex

ample data set and discuss, briefly, some other applications.

E xam ple  4.1 Blood Cell Analysis

In [46J a douhly truncated log-Normal distribution was fitted to grouped 

data  derived from an analysis of red blood ceU size. Sample number 28, in 

tha t paper, was grouped into 34 cells of width 1.3125 fl, and is shown in Table 

4.1. The ease with which such models can be fitted using the composite link 

approach are illustrated in the following example output from a GLIM  

session.

! Read la call fra^aaeias 

tuaita 34$data fraqtraad

33 45 44 72 »7 103 136 132 142 162 167 168
215 194 204 195 199 204 187 150 169 160 150 131
103 91 96 79 78 57 45 41 35 37
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C dl Volume Frequency Cell v(dume F lu e n c y

67.3125-«8.6250 32 89.6250-90.9375 204

68.6250-«9.9375 45 90.9375-92.2500 187

69.9375-71.2500 44 92.2500-93.5625 150

71.2500-72.5625 72 93.5625-94.8750 169

72.5625-73.8750 97 94.8750-96.1875 160

73.8750-75.1875 103 96.1875-97.5000 150

75.1875-76.5000 136 97.5000-98.8125 131

76.5000-77.8125 132 98.8125-100.1250 103

77.8125-79.1250 142 1 100.1250-101.4375 91

79.1250-80.4375 162 101.4375-102.7500 96

80.4375-81.7500 167 102.7500-104.0625 79

81.7500-83.0625 188 104.0625-105.3750 78

83.0625-84.3750 215 105.3750-106.6875 57

84.3750-85.6875 194 106.6875-108.0000 45

85.6875-87.0000 204 108.0000-109.3125 41

87.0000-88.3125 195 109.3125-110.6250 35

88.3125-89.6250 199 110.6250-111.9375 37

Tftble 4.1: Red Bkxid Cell Volumes
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The eetimatee for the model are u  given in (46], except that our formulation 

alfo give« aaymptotic standard errors of the estimates. Note tha t the degrees 

of freedom displayed in the fit should be reduced by one since the GLIM 

package does not take into account the constraint tha t the sum of observed 

freqnndes and fitted values are equal under this formulation.

E xam ple  4.3 Mixture Distributions

Hassdbad, [36] describes a  convenient method due to  Hald, [34], for the cal

culation of starting values for fitting mixture distributions to  grouped data 

based on fitting a  sequence of truncated distributions. Briefiy, we assume 

there exist a  number of cut-ofT pqints so that nearly all the sample of the 

( i  + l) th  component of the mixture distribution lies to  the right of one of 

these poinU and some of the yth component lies to the left. Since, for the 

smallest cut-off point, only the observations from the first component will 

lie to its left, we can estimate its mean and variance by fitting a truncated 

distribution a t this point. Given these estimates, the expected frequency 

lying beyond the first cut-off point can be subtracted from the observed fre

quency, and the process repeated for the remaining components in a  similar 

way.
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Thii piocednre hmi been exploited by Wilcox end Rniiell, (76), who 

it te d  n leriee of tnincnted dietribntion« in order to  eetimnte the proportion 

of excee* hirth* in the lower tnil of birthweight diitributionn.

4.3 Mixture Distributions

Mixture model« can ariie in a  variety of iitnation«. For example, in (45), a 

two component mixtnre modd was fitted to  gtonped, truncated data  using 

the EM algorithm when analysing the volume of red blood cells. Aitkin, (2), 

has considered the analysu of mixtnre distributions using the EM algorithm 

in GLIM.

An important applicaton ofthe methods described in this section is the 

analysis of birthweight, which various studies have analysed by assuming 

a  predominately Normal distribution for the majority of births, but with 

additional births in the lower taU - an obvious application of some form of 

mixtnre distribution; see, for example Pethybridge et al., (52).

We show how grouped data having an underlying finite mixture distribu

tion can be specified as a  composite link function. Moreover, the flexibility 

of the formulation means that it is straightforward to consider Jbr example, 

mixtures of difiTerent distributions or of truncated distributions. F\irther,
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the model «pedficetion fadlitiee of GLIM , ia p v tica la r, the uie of factors, 

enable modeb to be fitted which may be classified by variables such as social 

class or nationality.

4.S.1 T he Com posite Link Formulation

We wUl assume that observations, x, which appear in grouped form, arise 

from an underlying mixture distribution with, in general, r  components. 

Thus, the distribution function of an observation x is given by.

^ (* )  =  , (4.7)

where 0 <  p,- < 1, t =  l , . . . , r , J ^ , p j  =  1, and m  and o,-, i = l , . . . j ,  

represent location and scale' partuneters respectively.

Suppose that the N  original observations have been formed into n cat

egories, with the upper bound of each category given by Uj, j  s  l , . . . , n  

and the lower bound by uo. We can assume tha t the number of observa

tions in each category, j/j, has a  Poisson distribution with mean, §j, given 

by 0j =  -  / ’(u^_i)), j= l , . . . j» .  Note tha t, unless F(u«) =  1 and

F(uo) =  0 , we regard Af as an extra unknown parameter to be estimated. 

Hos/ever, if necessary, this can be easily accommodated in the formulation 

given below.
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= [a i/a p , . ..  ]

DN  =  [dt/dN]  Md.

“  diM {[«j,/«2 ] i  =  l ........, .

A i with the truncated diitribotioat comidered in the previont Section, it it 

lelntivdy ttrnightforwnrd to  consider estimnting ¡t M d 2  directly by using 

M  itemtive design mntrices of the form,

- l /< r ,

xT =
(p i -  « o )M

- i / f f ,

(Ml -  ««)/»?

-l/< r, . . .  - l /O r

(lir-Vo)/< rî . . .  (lIr-U n)l<ri 

This is the snme sppronch ns wns tnken in section 4.2.1 when estimnting the 

P*tnmeters for n tmncnted distribution. As before we calcuinte the vnlnes 

of d ^ d f i  Md dtjjdz  nt ench itemtion.

The prindpnl ndvMtnge of the composite link formnlntion is that modeb 

CM be simultMeously fitted to dntn classified by some factor, Md parameter 

estimates calculated for each level of the factor.In order to do this in GLDd , 

suppose A represents a factor with a levels , then, to estimate parameters for
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eadt level of the factor, we fit the design matrix A .X ' .  This is a  technique 

first considered by Roger, [59]. A consequence of this is th a t we can constrain 

the values of certain parameters and, hence, test whether they are the same 

for each level of the factor.

4.3.3 Starting Values

We have experienced difficulty in convergence of the algorithm for some data 

sets, in which the component distributions are not well separated, when the 

starting values are not close to  their final estimates. The high correlation 

between parameter estimates means tha t small changes in the values of the 

mixture parameters can lead to large changes in the values of the other 

parameters. )

In this case there seem to be two possibilities. Firstly, it is possible 

to  estimate the mixing parameters and the location and scale parameters 

in a two stage algorithm, i.e. fixing the value of £ , finding estimates of ¡i 

and £  and repeating this for a  grid of values of £. Once the approximate 

maximum likdihood estim ate of £  has been found, the full model can be 

fitted. Altemativdy, the mixing parameters £  can be constrained to  lie in the 

interval (0,1) by writing pi “  exp(<i)/(l +  exp(d{)) 4* 1 . . .  and estimating 

the Si. If necessary, once approximate convergence has been obtained, the
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algorithm can iwitch bade to Mtimating £  directly.

Starting valnw for the parameter eetimatea can be fonnd uiing a  variety 

of nMthoda. For example, Bhattachyaryn, [e], deacribea a  aimple g n 4>hical 

method for Normal mixtoret. For the logUtic diatribntion, initial valnee can 

be fonnd by aainming Normality and scaling the variance estimates. An 

obvious aitemative in the two component case are moment estimators with 

observations replaced by class midpoints.

4 .S .S  E x am p le*

E xam ple  4.3 Analysis of Bloodi Ceil Volume
I I

Mclachlan and Jones, [45], considered an analysis of the volume of cows’ 

red blood cells following innocnlation by a  parasite which causes a  form of 

anaemia. The observed counU of red blood cell volumes 21 and 23 days 

after innocnlation are listed in taUe 4.2. NoU th a t the grouping intervals 

are slightly different to those published (private communication), in tha t the 

lower and upper truncation values ate 28.8 il and 158.8 I  respectively, and 

the grouping is over 18 intervals of equal width 7.2 I .



Lower

Bound

Time after Innocnlation Lower Time after Innocnlation

21 Day* 23 days Bound 21 Days 23 days

28.8 10 9 93.6 54 67

36.0 21 32 100.8 53 44

43.2 51 64 108.0 54 36

50.4 77 69 115.2 44 30

57.6 70 5<̂  1 122.4 36 24

64.8 50 68 129.6 20 21

72.0 44 88 136.8 21 14

79.2 40 93 144.0 16 8

86.4 46 87 151.2 13 7

Ikble 4.2: Red Blood CcU VolanMt
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In [45] a  two component iog-Normnl mixtnra distribution w u  fitted to 

the obMTved freqnendee. The attnmption of n mixtnre distribution was 

justified inffonnaUy by probability plots, in particular, the ♦  -  p  vertns Q 

proposed by Fowlkes, [25]. These ploU indicate the possible presence of 

a Normal mixture, even for the second data  set, where there is no clear 

evidence of bimodality in the histogram.

Figure 4.1 shows the results of Bhattacharya’s graphical technique for 

finding parameter estimates for the 21 days group. Briefly, the configura- 

tion of the plot results in the grouping of poinU indicating the number of 

componenU in the mixtnre. A straight Une fitted through the ith group,

* ~  I> • • - i^t results in parameter estimates given by Equation 4.11 ,

. 0ia w
(4.10)

.2  to u;*
• ■ (411)

where 0a  and A , *re the intercept and slope of the lines fitted through the 

ith group respectively, and to is the interval width.

AppUcation of the formulae in Equation 4.11 for this d a u  gives the 

estimates = (4.109,4.628) and = (0.300,0.301). Note that, since the 

intervals have been transformed to the log scale, we have taken to to  be the 

width of the middle interval on the log scale. These estimates may be used as
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Time After Innocnlation

21 Days 23 Days

Parameter Estimate S . € . Estimate s.e.

P 0.4« (0.052) 0.17 (0.050)

f i t 4.08 (0.038) 3.86 (0.048)

0.24 (0.024) 0.17 (0.029)

W 4.72 (0.024) 4.47 (0.026)

<TJ 0.20 (0.022) 0.28 (0.022)

Table 4.3: Eetimatet - Blood Cell D ata (Fbll Model)

starting values for the maximum likelihood estimates. Parameter estimates 

for the complete data are easily found using the techniques described in 

section 4.3.1 by specifying a factor with two levels representing the two time 

periods. The estimates are given in Table 4.3 with asymptotic standard 

errors in brackets.

The deviance for this model is 15.87 on 24 degrees of freedom. Of obvious 

interest is a  test of whether the value of the mixing parameter is different 

over the two time periods. A comparison of the approximate confidence 

intervals calculated from the asymptotic standard errors suggests that this 

is highly likely. For example, approximate 95% confidence intervab for the
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Figure 4.1: Graphical method for estimation of mixture distributions
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Time After innocnlation

21 Days 23 Days

Parameter Estimate s.e. Estimate s.e.

P 0.44 (0.052)

Ml 4.07 (0.038) 4.11 (0.044)

0.24 (0.024) 0.30 (0.030)

Ms 4.71 (0.024) 4.56 (0.025)

<72 0.21 (0.022) 0.24 (0.020)

lU iIe 4.4: Estimate* • Bhxxl Cell D ata (conitrained Model)

mixing param aten are (0.36,0.56) and (0.07,0.26) for 21 and 23 days after 

innocnlation respectively. Howfver^ in line with the discussion in section 2.4,
I

a  preferable method is to  fit a  model constraining the mixing parameters 

to  be equal in the two time periods and examine the change in deviance. 

Using the formulation described above, this is easily achieved by setting 

a  dififerent option in the GLIM macros described in Appendix A.2. The 

parameter estimates for this model are shown in Table 4.4. with deviance 

25.12 on 25 degrees of freedom. Thus referring the difference in déviances 

between the two models, 25.12 -  15.87 =  0.25, to a yf distribution, we can 

clearly reject the hypothesis of equal mixing parameters (p < 0.01).
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Weight (kgs) UK Asian Weight (kgs) UK Asian

< 0.75 7 1 2.5-2.75 157 28

0.75-1.0 14 2 2.75-3.0 118 17

1.0-1.25 20 1 3.0-3.25 77 8

1.25-1.5 28 1 3.25-3.5 41 1

1.5-1.75 58 8 3.5-3.75 14 1

1.75-2.0 58 10 3.75-4.0 6 0

2.0-2.25 96 15 > 4.0 1 0

2.25-2.5 156 19

Table 4.5: UK and Aiian birthweiglit 

E xam ple  4.4 AnalysU of Birthweigbt

The data in table 4.5, collected a t the Department of Clinical Epidemiol

ogy, London Hoepital Medical College, thowi the frequency diitribntion of 

birthweight for multiple birtha to  both UK bom  and Asian bora mothers.

The déviances for fitted single component distributions are displayed in 

Table 4.8. In each of the models fitted to  these data, the birthweights were 

truncated a t Okp and 6kgs respectivdy. Examination of the deviance values 

shows tha t the births to  Asian mothers, in particular, are fitted reasonably 

well by a  single component distribution, although this is not the case for



Diitribution 

Normal Logiatic 

ÜK m o th m  55.17 48.52

Aaian m othen 1542 12.82

Table 4.6: Deviaacea for aingle component fiU-Birthweight data

birtha to EnglUh mothera. The aunmption of an nnderlying mixture diatri- 

bntion for b i r t h w ^ t  baa already been mentioned in Section 4.3. However, 

for thia date aet, examination of the hiatograma doea not reveal an obviona 

mixture diatribution. although Fowlkea ploU, aa ahown in Figuiea 4.2 and 

4.3, auggeat the poaaibility of a  two component Normal mixture diatribu

tion. For purpoaea of conyrar^n , two component Normal and Logiatic 

mixture modeU were fitted to  the data- the parameter eatimate. for both 

modela are ahown in table 4.7. The deviancea for theae two modela are 16.779 

and 15.805, for the Logiatic and Normal diatributiona reapectively, both on 

18 degreca of freedom. Although there aeema Uttle to chooae between the 

modda in terma of goodneaa of fit, examination of the parameter eatimatea 

ahowa the aaanmption of a  mixture diatribution for birtha to  Aaian mothera 

la leaa clear. In particular, an approximate 05% confidence for the .»i^i-g 

parameter in thia caae includea the value aero.
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Figure 4.2: Fowlkea plots for Birthweight Data-UK Mothers
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Figure 4.3: Fowlkes plots for Birthweight DetarAsian Mothers
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U.K. Asian

NORMAL DISTRIBUTION

Parameter Estimate s.e. Estimate S.e.

P 0.13 (0.0617) 0.43 (0.221)

1.42 (0.257) 2.06 (0.254)

0\ 0.44 (0.122) 0.62 (0.092)

/»j 2.58 (0.054) 2.61 (0.078)

<rj 0.48 (0.030) 0.32 (0.078)

LOGISTIC DISTRIBUTION

Parameter Estimate S.e. Estimate s.e.

P 0.17 (0.063) 0.42 (0.315)

Ml 1.59 (0.184) 2.01 (0.346)

0.30 (0.060) 0.32 (0.065)

« 2.5« (0.039) 2.65 (0.092)

<ra 0.27 (0.016) 0.18 (0.062)

Table 4.7: Parameter Estimates for Birthweigbt data
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E x am p le  4.5 Wind Sheer DaU

Knnji, [41], deecribe* the aanlyns of wind f hear data  and fit* a Laplace/Normal 

mixtnra diatribntion naing the method of minimum chi-tqnare. The data  set 

if quite extenaive and only the itrat eight caaea are analyaed aa an inuatra- 

tion. Theae are Uated in Appendix D. A graph iUuatrating the diatribntional 

form of the data, in fact caae numbera 1, 2, 3 and 4, ia given in Figure 4.4. 

Note tha t, in order to  avoid problema of aero fitted valuea, the original data 

waa re-grouped ao that the extreme intervala contained a  f l u e n c y  of at 

leaat 5 obaervationa. The underlying diatribution of the data  ia aaaumed to 

be of the form given in Equation 4.12,

/(x ;  p, po) =  (4
<rV2 <rV2w 12)

Thia model can be fitted uaing the compoaite link formulation deacribed in 

Section 4.3.1, although a  few amendmenta are required aince the parametera 

of the two component diatributiona are aaaumed to  be equal. Moreover, the 

data  itadf it claatified by two factora, the Band width and the gradient tepa- 

ration time interval, H«. In [41], it waa auggeated that the mixing parameter 

might be conaiatent acroaa band widtha for the different cate numbera. Ut- 

ing the compoaite link formulation, we can teat thia aaaumption for both the 

Band width and gradient aeparation time interval.
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Class Intervals

Figure 4.4: Obterved frequenciei for Wind Shear data. Cases 1,2,3 and 4
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Band Width Gradient

Parameter 

o p

1 1 0.0003 0.2111 0.8581 (0.0405)

2 1 0.0002 0.2330 0.0806 (0.0300)

3 1 0.0022 0.2020 0.5203 (0.0527)

4 1 -0.0003 0.2767 0.3005 (0.0515)

1 2 0.0008 0.1954 0.8383 (0.0403)

2 2 0.0005 0.2100 0.0870 (0.0440)

3 2 -0.0023 0.2405 0.4210 (0.0589)

4 2 0.0012 0.2406 0.2510 (0.0574)

TftbU 4.8: Parameter EftimatM for Wind Shear D ata - full model
’ 1 ' I

The parameter eetimate« after fitting the diitribation in Equation 4.12 

to the complete data *et are listed in Table 4.8. The deviance for this model 

is 101.07 on 78 degrees of freedom and is a  good fit to the data. We can use 

the composite link approach to  test whether other models may fit the data  

equally wdl. In this context we are only interested in the mixing parame

ters, although, it should be noted that we could equally well consider the 

other parameters in the model. The results of these fits are illustrated in 

Table 4.9. These results clearly hear out the assumption th a t the mixing
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Model Common H. Band H«x Band

Deviance 252.71 252.01 102.79 101.07

DF 85 84 82 78

lU >k 4.9: DevUocM for m oddt ftttod to  Wind Shear daU  

param eten are contiftent acroM band widtha for the different caie nnm- 

bert. The deviance difference for thi* teat ia 102.79 -  101.07 =  1.72 on 4 

degreea of freedom, clearly not aignificant. However, it ia clear that the gra

dient reparation time playa little part in explaining the variability between 

the diatribntional forma for the different caae nnmbera. The eatimatea of 

the mixing paramtetera aaaaming a  common value acroaa caaea are 0.8495 

(0.0305), 0.6834 (0.0293), 0.4671 (0.0393) and 0.2822 (0.0384) for Banda 1 , 

2, 3 and 4 reapectively.
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Msame , as usaal, that the mean of y, , ^  is related to the linear predictor, 

W =  by the link function g, i.e.for t =  1, . . . ,  n, ly s  g(tti).

Following the same arguments as in section 2.3, it can be shown that 

the maximum likelihood estimates of the parameter vector, ^  may be found 

iterativdy using,

(5.1)

where F  =  d iag lif '] , «< = ^  and +  (y, for i =  1 . . . ,  n  so that 

1  the usual iterative dependent variable. Note that, if E =  / „  this is the 

'vrighted least si^nares routine for independent data with iterative weight 

matrix given by F* =  diag((<r*i,?)-*].

Now, since E is a  covariance matrix, and hence positive deftnite, so must 

be E “ ‘ .This means we can find its Cholesky decomposition, i.e. a  triangular 

matrix Ü such th a t E~> =  U^U. Substituting for E~* in equation 5.1 gives

i r «  = im x fv m X ))-^ mX)VUF^K (5.2)

where V  =  diag[l/<r^.

Thus, ^  can be found using weighted least squares with working inde

pendent variable X* — UFX  and working dependent variable, Z* = U F t. 

This formulation is analagous to  a  composite link formulation except that, 

in this case, the link has essentially arisen from a transformation of the data.
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Coniider » linear tnuuformation of tb« form = UY., •»eh tha t var(l{^) = 

Then, a m "  to that a  model with dependent variable,

le, would be fitted with linear compoeite link , U, in the ntnal way. Note 

that, in general, the matrix U will contain unknown param eten to  tha t the 

model it a  parametric compoeite link function, with the param etert etti- 

mated by a two-ttage algorithm.

An important feature of th it formulation it that, in many uteful catet, 

the matrix U hat a  relatively timple form . However, although the method 

detcribed above will, in principle, work for any poeitive definite covariance 

matrix, itt applicability dependt on two ittuet. Firttly, the eate with which 

the tqnare root matrix, V can be calculated and, tecondly, the calculation 

of the working detign matrix, U f X .  Since, th it algorithm wat f in t im

plemented in GLIM by Scallan, [62], and thete ittuet highlighted, variout 

authort have ditcutted the practical difficultiet involved in it t implementa

tion. For example, when the detign matrix, X,  containt factort. Candy, [11], 

hat tuggetted a  method uting logical operator! rather than (0, 1) values to 

repretent factor levelt. O’Brien, [SO], hat tuggetted twithching between the 

ttatittical package, uted for data and model deflnition, and a  tubrontine li

brary, for the numerical calculation! and m atrix manipulation!, by utiliting 

a  ’pante’ facility.
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6.1.1 Applications

In this section we illnstrste the application of the model ditcnsted above 

in some special, but important, cases which may be easUy programmed in 

GLIM without resort to  the techniqnes discussed a t the end of Section 5.1.

E xam ple  5.1 Autoregressive Processes

Consider the first order autoregressive process defined by,

p ( Y i . i  -  / i ,_ i ) +  i j  (5 .3 )

where |p| < 1, E ti;] =  /»<, -  AT(0,(r»), for i =  1........n and, as a starting

condition, Ko ~  Af(/io.<rV(l -p * )). For thU model

It is easy to  show that the matrix U defined by

0 . . .  0

V =
- P 1 ... 0

0 . . . - p i

satisfies, U^U =  E“ *, and thus forms an appropriate transformation or link 

matrix for data from a  first-order autoregressive process. In particular, the
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Appliution of the matrix to any vector U effectivdy a  differencing operation 

which if computationally eaiy to perform.

Note that an approximate maximum likelihood estimate of p  suggeited 

by Box and Jenkine , [7], ii given by

i  _  ^<»»(>1 ~ AXPi-t ~~ — 1)
E r . , ' ( k . - A ) V ( n - 2 ) (5.4)

which u  the estimate given by minimising the quantity ( j  -  -  ¿ )

with respect to  p. In general, the variance matrix of ^  and A will have to 

be adjusted to  take into account the estimation of p using the procedure 

outlined in Section 3.1.1.

The joint estimates of p and ^  can be found using a  two.stage procedure. 

Thuf, for a fixed value of rho, we estimate and then update the value of 

p using the current fitted values according to  Equation 5.4.

As an example, consider the (log) logistic curve defined by

Ep"(Vi)l = Mt = ln(A) -  ln(l + exp(-Tj))

,where q,- =  /So +  &\ti for i = 1,.  . . ,n ,  fitted to data  following a first-order 

autoregressive process. The variance stabilising logarithmic transformation 

was used by Nelder [47] and may be further justified, in this case, by the 

method of data  collection which involved the estimation of leaf area from
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Day 1 2 3 4 5 5 7 8 9

Area 0.745 1.047 1.695 2.428 3.664 4.022 5.447 6.993 8.221

Day 10 11 12 13 14 15 16 17 18

Area 8.829 10.080 12.971 14.808 17J41 19.705 22.597 24.537 25.869

Day 19 20 21 22 23 24 25 26 27

Area 27.816 29.595 30.451 30.817 32.472 32.999 33.555 34.682 34.682

Day 28 29 30 31 32 33 34 35 36

Area 35.041 35.356 35.919 36.058 36.454 36.849 37.200 37.200 37.200

T«ble 5.1: Bum Plant Leaf Area

the product of meaiurcd leaf length and breadth. ThU model has also been 

considered by Glaseby, [31], although he employed a direct Newton-Raphson 

approach rather than the IRLS n o d d  described above. This transform both 

sides approach has been studied in the independence case by Carroll and 

Ruppert, [13], although the extension to the case of non-independence needs 

further investigation, particularly in terms of the effect on the transform of 

the dependence structure of the observations. The data  in Table 5.1 shows 

the area of bean plant leaf over a 36 day period.

In [62], a  logistic curve was fitted to  the data  which gave an a  value of 

p =  0.8177. However, Ross (private communication), has suggested th a t a
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Parameter Eatimate s.«.

P 0.5358 0.0198

00 •4.1321 0.5111

A 0.1424 0.0182

A 39.728 1.9312

7 6.256 4.0230

Table 5.2: P aram eta  eatimatea - Generaliaed Logiatic carve 

generaliaed logiatic curve of the form

M = =  7 ln[l +  «*p(-»?)/7]

where 7 > 0 would provide a  better fit to the data. The param eter eati

matea for thia model are ahown in Table 5.2. The atandard error» have been 

adjnated to take account of the eatimation of p naing the technique outlined 

in (62).

Exa m ple 6.2 Voting Behaviour

Fordna, [24], haa auggeated a model for voting behaviour which utiliaea the 

atructure of the covariance matrix in an efficient way. Briefly, we aaanme 

r ~ A ’(ii,«T»V), where

V = diag(/+ dZ>i,. . . , / dZ),]
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d U «a unknown parameter and A  >< nn n,- by n,- matrix of known conatanta. 

By writing Di =  P^HiPi, where J7.- ia a  diagonal matrix of the eigenvaluea 

of Di and P  =  d iag[i* i,...,P ,] , then P ^  ~  ^ (P £ ,o * d iag  (W^)) where 

»K-‘ = d ia g (/ +  d ff,....... /  +  dif,]

5.2 Analysis of non-Normal models

5.2.1 Introduction

Dependent obaervationa in which the error diatribntion ia non-Normal can 

ariae naturally in a  variety of aituationa. In Example 5.2.1 a  commonly 

uaed experimental aitnation in plant phyaiology ia deacribed in which the 

reaulting Binomial obaervationa have a particular covariance atructure. Fol

lowing Cox, [17], thia ia an example of a  proceaa driven model in which 

the conditional diatribntion of obaervation Yt ia apeciiled aa a  function of 

paat obaervationa, . . ,y i .  In the alternative parameter driven modela, 

dependence between auccesaive obaervationa ia introduced through a  latent 

pioceaa.

E xam ple  6.S Proceaa Driven Model

Aa an example, conaider the following experiment reaulting from a trial of 

aeed germination ratea. A given number, N , aeeda are sown and, on each
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d*y, the number germinnting, of thoee to  fur not genninnted, counted.

Let Yi =  number germinnting on dny i, for i z  1 , . . . ,  r  then

......

where pi it the probnbility th n t» teed germinntet on dny i. Of interett it the 

rdntionthip between nnd poitible explanatory variablet tuch a t growth 

inhibitora. The joint diatribution of Ki, . . . ,  V; it given by,

/ m ........K )  =  / ( n i K . .......... ... ................................... n ) . . . / m i i ' , ) . / ( i - , )

•■1

which it may be regarded at the product of Binomial obtervationt condi

tional on the preceeding total of germinated aeedt. Thit meant, in particular,

that we can find parameter estimatet by treating the Yj | Ky_,........y, j  =

a t independent Binomial variablet.

The underlying covariance atructure of the diatribution can beat be il- 

Inatrated by re-arranging the dittribntion to  give.

r t- l

which it effectively the dentity function of a  multinomial diatribution. Uting 

e moment generating function it eatily teen to be,

^ ( ( 0 1  =  ' f i d  -  f t ) + n ( i  -  p , ) ] ""
\* -l i - i  »1 /
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from which roomcnti are easily shown to be

E [n i =
i- I

v w (n )  =
i“ l jmt

coy(Yi,y,) =  - J ^ p » p i f l ( l - p i ) ‘f l ( l - p j )

An exnmple of the application of thi* model to  the analyti« of grouped 

«nrvival data ii given by Candy, (12).

E xam ple  S.4 Parameter Driven Model

Zeger, [78], proposed the foDowing model for time series of counU. The

approach used was to assume a  parameter driven model in which, conditional
1

on a latent process t | ,  Y, is an independent sequence of counts with mean 

and variance given by,

n»i = E[Yt I t,j =  exp(i7t)«i, wt = var(y, | (,) =  m,

It was assumed that is a  stationary process with £[t,] =  1 and cov(i,, *,+,.) = 

• Then the full unconditional moments of Yi are,

lh = E[Y,\ =  ex p (if£ ) , 

e, = var(y,) =  p, +  (T*p? ,

p ( t ,r )  = corr(y,,y',+,.) = P t(r)

[{1 +  (<tV .) - 'H 1  +
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The analytii of this model ii discnued further below.

S.2.2 Analysis

Several methods of analysis for such models have been suggested in the lit

erature. In this c h ^ te r  we will primarily be concerned with the extension 

of the quasi-likelihood model to the multivariate case discussed by McCul- 

lagh, (43). Briefly, we assume that the nx l vector of random variables Y. has 

mean and covariance matrix 0 V (^ . As usual, the mean is related to  the 

linear predictor by the link function j  =  p(g). Then the log quasi-likelihood, 

considered as a  function of ¡t, u  given by the system of partial differential 

equations,

= (5.5)

where V~  is some generalised inverse. However, the use of such models 

does not appear to  have been widespread. One reason for this is that the 

existence of the K  function for a  particular variance function is not guaran

teed. However, as several authors have noted, for example Nelder [48], such 

equations are Ukely to  be optimal estimating equations.

In GUchrist and Scallan, [30], a  special case of th u  formulation was
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propoMd. We Menine the coveriance matrix V(^i) can be written ai

V(^) =  v iE V i  , (5.6)

where v i  =  dia6{v(/t, ) i]  and E it a  correlation matrix, lo  that we are etaen- 

tially modelling the mean/variance relationship and the correlation stmctnre 

separately.

This formnlation lends itself naturally to an extension of the estimation 

procedure outlined in Section 5.1 with few amendments. Again writing 

=  E ~ ', the majdmum quasi-likelihood estimate of ^  is found using 

iterative design matrix

— V V ~^F X  land dependent variable, (5.7)

Z- =  U V -^ F i  (5.8)

where, as before, s,- =  q,- +  (n  — Note that this formnlation invloves 

the weighting and transformation of the dependent variable within cycles of 

the fitting algorithm, although, in GLIM, this does not present a  problem. 

Mcros for fitting these models are given in Appendix C.

This is exactly the approach followed by Zeger in the analysu of the la

tent process model for time series of counts. The true unconditional covari

ance matrix of the observations was approximated by a  covariance matrix
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of the form given by Eqnntion 5.8 and led to what wai caUed an iterative 

weighted and Altered leant nqnarea procedure.

In general, the correlation matrix, S , will contain unknown parameters 

to be estimated. For the Arst order autoregressive process, with

«H-j I

a  natural estimate, generalising the estimate in the Normal case, is given by

^  ~  y'H-i _j (5.9)

where r,- =  (y,- — /i, ) /  As an estimate of McCnllagh suggests using

^  = ( i  -  t ) / ( N  -  p) =  JrV(A^ -  p) (5.10)

where X* is a  generalised form of Pearson’s statistic. Alternatively, moment 

estimators may be used as in [78].

E xam ple  5.5 Bean PlanU

Consider again the daU  of Example 5.1 which showed the growth of bean 

plant leaves against time. We will assume that the mean of Vi can be 

represented by the Generalised logistic curve of the form,

A
EpTil =  Mi = ( l  +  e x p ( -n ) /7 ) t  
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Parameter Estimate i.e.

P 0.376

A> •4.258 0.3386

A 0.1470 0.0102

A 39.29 1.506

7 5.407 2.140

Ikble 5.3: Parameter eetimatee • Gompertz curve 

and that var(10 “  •» »pecifled in Equation 5.6 with u(/i.) =  /i? and Eij = 

-  P*)- The parameter estimates for this model are given in Table 

5.3, but note that standard errors have not been adjusted for the estimation 

of p. The estimates from this model Compare favourably with the estimates 

fiom the modd analysed in Section 5.1.1, although it is noticeable that 

the estimate of the autocorrelatiott coefficient u  somewhat smaller for the 

untransformed data. The power parameter in both cases is poorly estimated, 

although, the estimation procedure for the untransformed model was more 

stable.
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6.3 A Generalised Multivariate Log^tic Distri

bution

In this section we introduce n ipeciiic modei for the ualysis of obeervntions 

which nrise from experiments involving repented mensures on the snme ex

periment«! unit. A generalisntion of the multiv«ri«U logistic distribution u  

introduced and its properties discussed, and a  technique deveioped for fit

ting such distributions in a regression context by making use of an auxiliary 

multinomial model.

The practical reasons for introducing repeated measurements in experi

mental situations are many, but include the following,

! !
e between subject variation may be so great that meaningful compar

isons can only be made with difficulty between different treatmenU 

applied to different individuals.

« repeated measurements may be made in order to  make efficient use of 

scarce or expensive experimental material.

•  the change in a  response over time may be of direct interest, for ex

ample in growth studies.

The analysis of repeated measurement experiments differ in the way they
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detcnb« the covariance itructure between meaaurenienta in a  time leqnence, 

^  t  =  1<•••)*>. The limplett approach aMumee that.

cov(y„K.) = (5.11)
^  t =  a 

t ft »

Thi» is known a t the "uniform correlation” or "split-plot” model and it 

the approach we will concentrate on in this chapter. One justification for it 

is the usual random effects model which assumes a  stochastic "individual” 

effect as well as the usual random experimental error. If we assume that 

the individual effect hat mean 0 and variance o* and the experimental error 

term has mean 0 and variance r* then, in the notation of Equation 5.11, 

^  = <r* +  r* and p = <r*l(a* +  r*). I
In section 5.3.1 we introduce the multivariate logistic distribution which 

possettet the covariance structure described by equation 5.11. In section

5.3.4 we show how this distribution can be modelled in a  statistical package 

such as GLIM by making use of an auxiliary multinomial model. This 

is a  generalisation of the auxiliary binomial model used by Bennett and 

Whitehead, [5), used to  fit the univariate logistic distribution. GLIM macros 

for fitting the distribution are listed in Appendix B .l, and »vampW of their 

use may be found in [63].
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The model propoeed in thit lection U limiUr in iu  le tn iu  to  one propoted 

by Crowder, [19). The approach nsed there wai to  regard retpontei as bang 

conditionally independent given the value of a  random individual effect; the 

response having a  Weibull distribution and the individual effect a 

distribution. The full unconditional dUtribution has similar properties to 

the generalised multivariate logistic discussed in this chapter. In fact, a 

form of this distribution was independently suggseted by a  referee in (19). 

The advantage of our formulation is the use of the auxiliary multinomial 

model to  fit the distribution, which makes it much easier to  explore the fit 

of different models to data.

5.S.1 Distribution I\inction and Properties

The multivariate logistic distribution and its properties have been described 

in detaU by Johnson and Kots, [39]. The subject of this chapter is a  gener

alised version of that distribution arrived at by introducing an extra shape 

parameter to the distribution.

Suppose the random vector, H , has distribution function defined by,

where 7 > 0, ^00 < Jf < sa. 7* = ^kVk + ^k + ln(7 ) and > 0 for
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k—1, . . .  jT, then the vector Ü  will be cmd to follow n generalifed multivariate 

logiitic diatribution .The caie 7 =  1 is the multivariate logistic described in 

(39). In applications such a random vector will typically represent an r  x  1 

vector of responses measured on the same individual or experimental unit.

A similar model was proposed by Cook and Johnson, (16), who described 

a  family of dUtributions which included a  form of generalised multivarite 

logistic distribution, amongst others, as a  special case.

The formulation of the model given by Equation 5.12 assumes th a t the 

scale parameters, are homogeneous over individuals but not necessar

ily over responses. This might reflect different experimental conditions or 

treatment combinations and will be discussed further in section 5.3.4.

In order to find the covariance structure of H , we can find the moment 

generating function, M {t), of the standardised variable »* = + 0k,k =

1 , . . . ,  r  . This function is given by.

m t )  =  E [et’'*]

where the density of x  is given by

+  P ’

(5.13)

(5.14)

where Co = î ^ .

112



By fubftitating, =  e-**/7 ¡n the expectation defined in Equation 

5.13, it ii easUy seen that the required integral is given by,

Utilisation of a standard result for beta functions, namely

I  (51«)
gives a straightforward recursive procedure for the evaluation of the integral 

in Equation 5.15. For example, for i  = 1, we have m =  1 -  t , ,  n = 

r - l  +  7 +  ti * n d a  =  1 + n .» « .- .

Repeated appUcation of this result yields the moment generating func

tion as,

or, more usefully, the cumulant generating function defined by, 

m  =  lnA /(i)
r •

= ] C “ ( r ( i - ‘*)) (5.18)

+  In ^ r ( 7 - I - ^  t* ) j (5.19)

- ¿ « * l n ( 7 ) - l n ( r ( 7 ) )
ikml
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The joint cumnUnt of order E = (p i,...,P r) i* then obtained from dif- 

ferentation of A:(|) (pi times with reepect to t |  etc.) a t t  =  0 to  give

*(7 ) -  *(1) -  la(7) Pi =  1. f t  =  0 Vj ji i 

I * ' ‘- '( 7 )  +  ( - l ) « # « - ‘( l)  P i > l ,  f t  =  0 V j # i  (5.20) 

♦'■” ‘(7 ), otherwUe

where p. =  ^ , ^ p i  and *<"-»(*) = i» ln (r( r)) /< i»  it the poiygamma 

function.

Using the above, it is easily teen that

E[Xi] =  f ( 7 ) - * ( l ) - l n ( 7 )

var(Xj) =  * •(! )  + * ' ( 7 ) (5-21)

cov(Xi.Xj) f> (7 ) f o r i j= l , . . . , r  

Thus observations are equicorrelated with coefficient given by

p(x- X ) — **(7)
^  ♦ ‘( l)  + * '( 7 )

(5.22)

the coefficient falling from 1 to  0 as 7 - •  00. Such equicorrelated structures 

are typical in basic repeated meaturemenU models. Following. (19), these re

sults suggest moment estimators for the general model with y,- = (x,- — d ,)/0j 

as follows. Suppose vectors j , , . .  are iid following the generalised mul

tivariate logistic distribution. Let and u,- denote the sample mean and
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w im c e  of ̂  respectively, and F the average of the sample correlations be- 

of the pairs and Then moment estimators may be found

from

l - F

»1

i.- =  -  * (7 ) +  * ( 1) -  ln(7 )

S.S.2 The Likelihood

We will consider the case in which the observation vector may contain a 

mixture of both uncensored and right censored components. The auxiliary 

multinomial estimation technique te  be described in section 5.3.4 cannoti I

easily deal with the more commonly occuring situation in which observations 

are right censored , except in the univariate case.

Suppose that a subvector (o x 1) of £ is uncensored and the remaining

components , say, are left censored. Then the UkeUhood contribution for 

such an observation vector is given by,

where q» is as defined in Equation 5.12. Note that this formulation assumes 

a  different scale parameter for each response. The estimation of the scale
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parunetert is discussed in section 5.3.3 below.

Let

=  ̂= .̂....."

then it is easy to show that the likelihood given by equation 5.23 can be 

written as,

r(7  +  a ) | : ,  C, /

where

Ci =

Cr+I =

1 if J  € i4 

0 otherwise
j  =

Thus, the likelihood contribution from a multivariate logistic distribution
i

can be thought of as being proportional to an observation , £, from a random 

variable following a multinomial distribution with r  + 1  cells and parameter 

vector £.

For each cell corresponding to an uncensored onservation we observe 1 

"success”, and for each cell corresponding to  a left censored observation we 

observe 0 "successes” . In the ( r + l) th  ceU we observe 7 successes. Note that, 

although 7 is not usually an integer, this does not present any computational 

problems since, GLIM, in particular, allows non-integer valued observations 

for discrete error distributions.
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5.S.S Estimation of the Scale parameters

At mentioned in lection 5.3.1, we normally auum e that the scale parameters, 

are homogeneous over indlvidnab but not necessarily over responses.

For a  general analysis we will assume that the r  responses can be divided 

into G groups of size, p i , . . .  ,ga  respectively. Thus, if (7 =  1 with pi s  r ,  we 

assume a  common scale parameter for the entire response vector, whereas, 

if (7 =  r  with Pi = 1 for I =  1 , . . . ,  r , we assume a  different scale parameter 

for each response, la  between these extremes, the groupings might reflect 

natural or experimental conditions .

I>et jUik be the kth response in the jth  group for the ith  individual, and 

VAi, ,  0{> X 1 be the set of uncensored responses in the jth  group for the ith

individual, where t = l , . . . ,n , f c  =  l , . . . , p j  and y =  1........G. Then, the

log-likdihood for the scale parameters can be written as

iml

+  J 3 1 C  ^  'Hi* (5.26)
w l i a l  [  ktA,, J

- 2I('>' + “<) 1 + 2Z H «=n>(-7ii*) I
i - l  \  i - l  S a l  /

w h«e Si =  Oij.The maximum likdihood estimate of f w 1........G
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is found u  the root of the eqostion

?M  -  X '
d^t t̂«!

g -  E
W k^A..*€4u

,  f^ (7 + ̂ )Eg.im*«p(-'w*) „ 27V

=  E
t«i

®u ^
X  -  E  w*

*€>««

+  E ( i '+ » < )E > '' '* w *
Ml Sal

(5.28)

where pm  is as defined in section 5.3.2. A simple re-arrangement gives the 

estimate for as.

*  “ ES.1 [Ek̂ Au + «.) E£.i m m ]
Obviously, the right hand tide of ̂ hit equation involves unknown param

eter values through the pm,. Because of this, the estimation process will, 

in general, be a  two-stage one; that it the location parameters $iji, will be 

estimated for fixed values of the scale parameters, and updated estimates of 

the scale parameters then calculated irom these estimates. Experience has 

shown that this algorithm has good convergence properties, although, since 

the two sets of parameters are estiamted separately, some adjustment needs 

to  be made to calculate the asymptotic standard errors of the estimates from 

the information matrix.
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5.S.4 The Eatimation Technique 

The Univariate Caae

At tU i itage, in order to motivate the technique for the analyiia of the 

multivariate diitribution, it will be useful to  briefly outline the technique 

employed by Bennett and Whitehead, [5], to  estimate the parameters of 

the univariate logistic distribution. The distribution function of the logistic 

distribution can be written as

= (1 + e x p ( - ( ^  +  f l ) ) r ‘ (5.30)

and the density function satisfies

! I
/(»;«.♦ ) = «{1 -  ny;9,4>)]F(r,«,<)>)

Assuming tha t we have n observations, of which U are nncensored, R are 

right censored and L ieft censored, the likelihood for £ and 0  based on the 

data is.

L U R

writing Pi s  F (y i\h t4)^ the likelihood becomes.

£(i, n  n  1 “ i»*) II( 1 )
L V R
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The analogy with the Binomial diatribntion is clear. For each nnceniored 

obaervation there are two Bemoaili triab , parameter p,-, yidding one cucceu 

and one failure. For each left censored observation there is one trial yield

ing one success and for each right censored observation, one trial yielding 

one faBnre. Moreover, the relationship between the p,- and the explanatory 

variables can be expressed as

where #,• = 3̂ Thus, the model can be fitted using Binomial errors 

with logit Unk and treating as a fixed offset.The scale parameter, is 

generaUy unknown and a  two-stage algorithm is used to find the maximum 

Ukelihood estimates of both ^  and ^  ,although Roger and Peacock, (60] 

discuss a method of estimating both sets of parametrs simultaneously.

P ettitt, [53] discussesd a generalisation of the univariate logistic distri- 

bution,analagons to the generalisation of the multivariate distribution intro

duced in section 5.3.1, which contains the logistic as a special case.

The Multivariate Case

In section 5.3.2 it was shown that the likelihood for the generalised mi- 

ultivanate logistic distribution can be thought of as being proportional to
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the likelihood for e nmltinomial dittribution with eppropriate probability 

vector. Thia if obviooily a  mnltivaraite vertion the of logsitic/Binomial 

rdationthip ditcaiaed above.

Snppofe we have independent obiervationi i m 1 . . . ,  n  where ^  s  

( K i f ' i K r )  from the generaliied multivariate distribution. Then the like

lihood for the location parameters can be written as (omitting the constant 

term ),
n r  /   ̂ \

^ ( i ) = n i I j » S ’ ( l - E w )  (5.32)
k m l  j m l  \  k m t  /

where

=
1 if gij uncensored

J  = 1.......r
0 otherwise

1 1
c<.r+l =  t  i = l , . . . , n

and pij is as described in equation 5.24. Apart from the constant term,

this is exaclty the likelihood we would have obtained if we bad observed

£i< • ••fSn from a multinomial distribution with parameters ........Now,

it is well known that multinomial data  , and , in particular, contingency ta 

bles, can be modelled using the Poisson distribution by constraining certain 

marginai totals. In this case we can regard the data as forming an n x ( r -f  1) 

contingency table with entries consisting of O’s or I ’s according to  whether 

the observations are left censored or right censored respectively, and the last
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colnmn h&ving the v»lue 7 in each cell.

A t in the nnivariate case, we will assume that the location parameters are 

linearly rdated to  a  set of explanatory variables and refer to  this relationship 

as the MODEL. It is the parameters in the MODEL that we wish to estimate.

In order to estimate these parameters we need to  constrain certain marginal 

total>- The terms rdating  to  these constraints may be called OBS and REISP. 

OBS is an n-kvd factor, each level representing one observation, and RESP 

is and (r-f 1) level factor representing the dimensionality of the distribution.

The appropriate model formula which must be fitted to  the contingency 

table is OBS+RESP*MODEL. The estimates of interest ^ p e a r  as interac

tion terms in RESP.MODEL. For a fuller discussion of this technique, which 

corresponds to  a  multivariate logit model, see Goldstein, [32] or McCnllagh 

and Nelder, [44], pages 142-43.

In order to fit any particular explanatory variable, we need remember 

tha t the auxiliary contingency variable has one extra column, and that its 

value must be specified in this colnmn. There are two cases to  consider,

e If the explanatory variable is a  factor its value is replicated in the 

(r-f l) th  colnmn.

s If the explanatory variable is continuous it is assigned the value 0 in
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the ( r+ l) th  column.

5.3.6 Oomputational Aspects

A t in the nnivnrinte c» e , the tennt +  ln(7 ) nppenr ni offteU in the 

linenr predictor, the vnlnet of the bang  updated after each fit nntU con

vergence. Starting values for ^  may be found either using the moment 

estimators given by equation 5.23, or ,as implemented in the GLIM macros, 

by equating the logistic variance to the tampie variance of the data  assuming 

independence. In most cates these simple estimates teem to be sufficient at 

starting values.

An obvious disadvantage of the technique is that, if the number of ob

servations U large, the fitting of the OBS factor, which has n leveU, becomes 

computationally expensive. One way of overcoming this it to  note tha t the 

fitting of this factor simply ensures that the sum of the fitted values in each 

row of the table U equal to the sum of the observed values, in thU cate 

«t>, for i =  1 , . . . , n. Using this relationship, we can find explicit 

equations for the maximum likelihood estimates in terms of the other pa

rameters and offset and , thus, incorporate these values as part of the linear 

predictor during each cycle of the fit. This procedure may be thought of at 

a  form of iterative proportional fitting routine for a  subset of the parameters
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in the model. The effect will be to nndereitimnte the niymptotic standard 

errors of the estimates of interest, although these will need to  be adjusted 

anyway to  take account of the estimation of the scale parameters.

E x am p le  B.8 Blood Histamine Levels

As a  simple example of fitting this model, we will consider the results of 

an investigation into the blood histamine levels a t different times for dogs 

in various treatment groups. The daU  in table 5.4 is taken from Cole and 

Grizsle, [15].

For this data we can define two MODEL factors, namely morphine/trimethaphan 

and intact/depleted. As described in Section 5.3.4, th a r  values need to be 

replicated in the, in this case, 5th column of the auxiliary contingency ta-
i

ble. The estimated parameter values and - 2 x  log-likelihoods for various 

modeb fitted are summarised in table 5.5 . In each case the first row for 

each model entry represents the assumption of a common scale parameter 

and the second a  different scale parameter for each response.

It is clear from the differences in log-likdihoods, and the parameter esti- 

mates themselves, that the assumption of a  common scale parameter cannot 

be sustained. In particular, the estimated scale parameter for control, ^  

is much larger than the others reflecting the lower variability for that mea-
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Blood Histamine (/ig/ml)

Dog Control 1 min 3 min 5 min

groap I 1 0.04 0.20 0.10 0.08

(morphine intact) 2 0.02 0.06 0.02 0.02

3 0.07 1.40 0.48 0.24

4 0.17 0.57 0.35 0.24

group II 5 0.10 0.09 0.13 0.14

(morphine depleted) 6 0.12 0.11 0.10 0.11

7 0.07 0.07 0.07 0.07

8 0.05 0.07 0.06 0.07

group III 9 0.03 0.62 0.31 0.22

(trimethaphan intact) 10 0.03 1.05 0.73 0.60

11 0.07 0.83 1.07 0.80

12 0.09 3.13 2.06 1.23

group IV 13 0.10 0.09 0.09 0.08

(trimethaphan depleted) 14 0.08 0.09 0.09 0.10

15 0.13 0.10 0.12 0.12

16 0.06 0.05 0.05 0.05

Table 5.4: Blood Histamine levels
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Parameter

Model Gamma Correlation -21 Scale Parameter

Mean 1.0 0.50 81.90 5.16

0.95 0.93 26.22 (36.7,2.9,4.5,7.0)

■fintact/ 0.75 0.61 52.79 6.75

Depleted 0.65 0.75 -6.33 (52.2,4^,5.73.4)

-i-Morphine/ 0.8 0.58 43.97 7.17

TVimethaphan 0.55 0.77 -14.56 (54.8,4.5,6.23.0)

-flnteraction 0.8 0.58 24.41 8.62

0.45 0.78 -38.63 (66.7,5.13.4,12.4)

Table 5.5: Fitted parameters for Generalised Logistic distribution, His

tamine data
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sarment. It ii al«o dew  th a t there are tignificant treatment effect*. From 

IVble 5.5, we cane determine the deviance difference* for the factor* in- 

duded in the modd. For example, under the a**umption of different *cale 

parameter*, the log-likelihood difference for the intact/depleted *tatu* com

pared to  a model indnding only a mean i* 26.22 +  6.33 = 32.55 on 4 df. 

Similwly, induding drug type and the interaction term produce* *ucce**ive 

log-likdihood difference* of 8.23 and 24.07 reapectivdy, each on 4 degrees 

of freedom. All these model* can be fitted easily by simply changing the 

MODEL factor a* described in above.

This final example »erve* to  illustrate the theme of this thesis. A compli

cated model, i.e. the generalised multivwiate logistic distribution , can be 

fitted to  data using a statistical package and the fit of various models assessed 

interactivdy. Without expressing the distribution in term* of an auxiliwy 

Poisson modd, the fitting procedure would inevitably nvolve a fairly lengthy 

computer program and be difficult to implement in any interactive sense.
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Chapter 6

A New Computing

Environment ?

This thesis hss presented techniques for fitting complicated models to data 

by showing that they can be represented in terms of a  generalised linear 

model. This meant that such models can then be fitted a package with the 

facilites for fitting generalised linear models, together with some facilites 

for data  manipulation. Much use has been made of the GLIM package at 

a  vehicle for implementing and fitting such models, although we note that 

other commonly used packages such at SAS or GENSTAT could equally well 

be used.
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One facet of this approach whhich haa not been highlighted if the inade

quacy of the GLIM package for writing programi. Although, in comparifon 

to  many other ftatiitical packaget, it ia extremely powerful and flexible, in 

comparifon to other programming languages, it ia archaic often intractable. 

A glance a t aome of the macroa in the appendicea will illuatrate thia point. 

Af an example, conaider the GLIM coding needed to  accumulate the aum of 

the flrat ten integers, which would look aomething like,

taac iter

te a  Xi-Xi«l : Xa-Xi : Xe-Xe$ 

tend

te a  Xi*Xsa0:Xa>10tnhi Xa I fa r t

The principal difficulty ia that, in general, looping the involvea the re

peated invocation of macroa. Becanae of thia, and coupled with the lack 

of local variables, operations which involve nested subloops quickly become 

unintelligible and extremely meuy to program. It ia highly desirable that 

any future statistical programming language has much more user friendly 

and precise programming constructs.

In an attem pt to address some of these issues, a  prototype statistical 

modelling language, FUNIGIRLS, was developed based upon the functional
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progrunming language ML, [75]. The host language ML was chosen primar

ily because of familiarity with ita syntax and construct and is not intended 

that it should be used in any realistic implementation of the modelling lan

guage. However, the functional nature of ML does have a  relevance as we 

bdieve that the functional approach provides a  useful vehicle for the repre

sentation of the procdeures of fitting modek to  data. Indeed, we can think 

of the moddling process itself as a  function mapping the data onto a  set of 

results or statktics, of the form,

■odel fn  : d a ta  -> r e s u l t s

,where results consisU of whatever statktics or estimates are calculated from 

the model fitted to  the data. H ik  functional approach to  model fitting has 

recently been considered by Chambers et. al, (14), who have implemented a 

system similar to  FUNIGIRLS in an S type environment.

In GLIM terms, results can be thought of as consisting of the display 

of the deviance and degrees of freedom following a  fit, together with other 

values, such as parameter estimates, which may be extracted. However, the 

model fitting procedures in most packages are not strictly functional in thk  

sense because they invdve the declaration of certain states, such as the error 

dktribution or link function, pertaining to the current model.
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Thii implied state has both a d v a a ta ^  and disadvantages. An obvions 

advantage is tha t it is often desired to fit a  seqaence of similar models to 

the same set of observations, with only the design matrix changing between 

modds. An ability to fix the state betiveen the model fits certainly reduces 

the amount of work invdved. However, a  fixed state can also easily lead 

to mistakes bang  made since the user is often unaware of the current state 

in force when a  modd is fitted. Thus, in GLIM, a  common mistake is to 

speafy the link function before the error distribution which e«" lead to the 

default link being used by mistake.

The FUNIGIRLS implementation is entirdy functional in the sense that 

the modd fitting procedure consists entirdy  of a series of function calls, with 

computed results consisting almost entirdy of values of function calls. The 

only exceptions to this rule are those functions which result in the display 

of quantities, such as the deviance, on the screen. Strictly speaking, such an 

operation is not the result of a  function. Moreover, each function evaluation 

^  single data  structure as its value, and normaUy an expression will 

have no-other side effecU on the system. This means, for evMipU, that the 

resnlU from several modd fiu can co-exist side by side. F.vmnpl». of such 

procedures are given below.

FUNIGIRLS emulates the operation of GLIM in that it provides facilities
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for fitting generalised linear modds using a similar syntax. There are restric

tions on the syntax used since ML itself reserves some common operators 

and these cannot be overloaded for nse in the FUNIGIRLS implementation. 

For example, the operator X-t- is used in FUNIGIRLS for matrix addition 

and is defined as

fn  X* : r e a l  a a tr ix *  r e a l  m atrix  -> r e a l  m atrix

It is not possible to use the operator, -t- , because this is defined in ML as

fn  * : r e a l* re a l  -> r e a l

and because of ML’s strong typing, would cause a  syntax error if an a t

tempt were made to nse it for matrix addition. This convention has been 

circumvented to some extent by Harman and Danidc, [35],who have written 

a pre-processor which implements FUNIGIRLS function «-̂ 11« in a Pascal 

type language.

The operation of FUNIGIRLS is best iUustrated by an example. The 

ML syntax is, hopefully, fairly sdf-explanatory, but readers are referred to 

[75] for further details.

E x am p le  6.1 Linear Regression

This example illustrates how to read in some data perform a simple weighted
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least squares fit. The example is a  weighted linear regression of blood pres

sure on age for a set of 5 groups of women.The following code constructs 

the four vectors needed for the fit,

val Man ■ I a l t ( S , l ,C ”Ia te rc s p t" ]  ,1 .0 ) ;

v a l bp -  IU ad (S ,l.C -P raa su re» ] .[1 1 4 .0 .124 .0 .143 .0 .1 S 8 .0 .1 6 6 .0 ]) ; 

v a l age -  R ead(6.1 . ["AGE"].[3 5 .0 .4 5 .0 .SS.0 .6 5 .0 .7 6 .0 ] ) ;  

v a l g r  ■ R ead(5.1.["W T"].[1 6 .0 .1 6 .0 .1 2 .0 .9 .0 .6 .0 ] ) ;

It should be clear that Read is function defined as, 

fn  Read: in t* ln t* s t r in g  l i s t * l l s t  -> M t r ix

where the two integers are the dimensions and the list argument represents 

the actual elements of the matrix. In this respect, the type of the matrix is 

determined entirdy by the type of the list. In the example above, the use of 

Read results in a  matrix of reals. However, there is no reason why matrices 

of abstract data types cannot be defined. Thus we might consider matrices 

of "person event histories" in observational analyses.

In this example the response varidrle is blood presnre, bp, with gr being 

a  weight matrix and age an explanatory variable. In order to fit the model, 

the syntax is,

v a l r e a l  ■ H .lo ia a l g r  L_I bp naan;
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val r««2 ■ H.Boxatl gr L.I bp (Man'^ag*);

which ta to lu  in two datatype!, real and Tea2, containing statittics calculated 

from the fiti. Note again the oie of the function -I- in the model formnal 

becanae of the overloading of the 4- operator. The reanlta from the fita can 

be diaplayed uaing the following

Diaplayfreal."da");Diaplay(raa2,"da");

which would diaplay the deviancea and eatimatea of the two fita.

Thia example aimply illnatratea the way that FUNIGIRLS can fit a  given 

modd. In order to illuatrate the functionality of the implementation, con- 

aider the definition of the function W Jformal. Thia ia defined aa,

! i
fn H .Io zm I :  ■atriz*llnk*iMitriz*Mtrix -> raaulta

Here, link ia an abatract datatype conaiating of two functiona defining 

the relationahipa, /i = h(ri) and dij/dfi, while the three matrix argumenta 

repreaent the wdght, dependent variable and deaign matrix reapectivdy. 

The abatract datatype leaulta contain! atatiatica calculated from the modd. 

We can aimplify the function by noting that both fita involve the tam e wdght 

matrix and dependent variable. Thua, if we define

val ayfit ■ H.lozmal gr L.I bp;
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the function myfit needs only the design mntrix ns n single argument and is 

thus defined as

f a  a y f l t :  a a t r i z  -> r e s u l t s

This procedure emulates the setting of the link function and 

of the dependent variabfe in GLIM. In fact all the fitting functions avail

able are built up from a  low-level function m o d e l J i t  , which is supplied 

with arguments defining the variance and deviance functions to define new 

functions for fitting particular distributions. At the very lowest level, the 

user has access to the Gram-Schmidt orthogonalisation routine used in the 

decomposition of the design matrix.

In this respect, users could effectively customise the package to per

form whatever analyses they required. The existing basic functions can be 

combined in whatever way U required in order to  create a  new function to 

perform the required analyses. As an example, consider the construction of 

a  simple function to perform simple linear regression. This might take the 

form,

fun Lin.lleg(X ,T}-

l e t  e a l  B eta-Inv(T(Z) X* X) X* T(X) X* Y 

In
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•nd

AppUcation of this functioii to  a design matrix and vector of observations re- 

sn lu  in a 4-tuple containing the parameter estimates, fitted values, residuab 

and residual sum of squares respectively.

I
E xam ple  8.2 Using lists

We can illustrate the power of this functional approach further by utilising 

the built in map function of ML in order to  apply a function to all elements 

of a list, for example a list of model formulae. The function may be built 

up as follows,

vai List.Fit alist -

let fun Diaplay.de reault ■ Oiaplay(reeult.''de*')
In
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D lap lay .d aC a^  ( a y f i t )  a l l s t )

•ad ;

Thna, th* ^>plication of this function to 

Liat.Fit [*oaa,Boaa~«afo];

will reault in the diiplay of the two fitt on the screen. The easy implemen

tation of list processing in ML means that it is straightforward to define 

functions to  perform sdection procedures such as stepwise regression from 

a list of candidate regressor variables. It would also seem an ideal vehicle 

for the implementation of graphical modelling procedures for contingency 

tables, although we not yet investigated this facility.

Other facilities which have currpntly been implemented in FUNIGIRLS 

include,

e matrix calculations and operations 

e all current GLIM error/link combinations 

e linear composite link functions 

e quasi-likelihood models

These facilities were imidemented in an extremdy short period of time by 

a single programmer and the code required amounted to a little over 2000
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lines, a  fraction of that required by GLIM. The important point is that, 

since the code is embedded in ML as a set of functions, all the model fitting 

facilities are available, togethr with a high level programming language. 

Although the recursive nature of programming in ML is a  little unusual 

to  begin with, it is relatively straightforward to learn and, in keeping with 

the general philosophy of functional languages, encourages the writing of 

formally correct code.

In conclusion, the future of statistical computing and of packages and 

languages such as GLIM, is difficult to predict. Certainly, the rapid advances 

and reduction of costs of hardware will, in future, mean tha t statisticians will 

have a t their disposal a formidable array of computing power. However, in 

our view, there still remain important developments to be made in facilities 

for utilising this power in an efficient manner.

It seems likely that, in the near future, the basic tools of the applied 

statistician will consist of a  workstation with enhanced graphics capabilities. 

A windowing environment will be coupled with a  pointing device to interact 

graphically with models that have been fitted and displayed on the screen. 

However, in terms of the statistician being able to describe precisely and 

accnratdy the model to be fitted to the data, there remains much work to 

be done. The functional approach described in this Chapter is an interesting
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A ppendix A

Macros for Grouped D ata

A .l Truncated Distributions
N«croa to fit truacatod diatrlbution to groupod data. Aaauaa 
that nppar liait it gitan by laat olaaraat of UB.
Arguaaata : FREQ - fra^aaciat

UB - uppor bounda of oach iatarral 
SVAL - atartlag taluaa for an and a.d.
XI - lonor truncation point (Xl < aia(UB))

Nacroa alto uaa tariahlaa Xn, MVAR, MEAI, SO. All othar tariablat 
and alth an _ .

taac flta!
tdal tfrq naan tub ad ntar 1. lia.t!
lea XzlaXcu(aTalaaaTal):Xxi«(Xzl/B3)laai Xzl orrlll
lea Xzl>(Xo/al)ft(Xo/-2)laai Xsi orr2ll
Ipri * Eatar rango of calla to ba Includod and loaar bound
Idata 3 lia.ldia 111
lea Xnl*lia.(2)~lia_(i)'»l:Xl*lin.(3)ltar Xzi tfrq tubluai Xalll 
lea i.aXgl(Xzi.l)'»lÌM.(l)-i:tfrq>fraq(i_):tub«ub(i.)|ua itorll 
lea Xzl"-Xpa(l)/Xpa(2):Xz2«l/Xpa(2)l 
:arai(1)-Xzl:aval(2)-Xz2lI
lea Xnl"Xpa(i):Xz2al^(2):|axt Xvcica XTC-Xvc*Xdf/(Xdf~l)l 
lea Xn3>(XTc(i)*Xz2«*2-2*Xtc(2)*Xzl*Xz2«XTc(3)*Xxi**2)/(Xz2**4)! 
:Xz4«Xtc(3)/(Xx2*«4):Xx3-Xaqrt(Xz3):Xx4>Xaqrt(Xz4)!
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:Xzl*-Xp«(l)/Xp«(2):Xz2-l/Xp«(2}$!
$pri : • Naan •  > X*1 '  ( '  Xx3 * )M 
:• S.D. -  • X*2 • (• Xz4 • ) '  : I l  
tua* tldy$t«ad!
I m c  f T l

tca Xa"l*(Xpl/*0) taal Xa init Baztl 
tua agaatl calculata naa valuaa for gu 
tua «rartl calculata workiug rarlataa 
taadi

dh and BU

taac dr tca  Xdr«ltaiidl 

ta a  va tc a  XvaBXfTtand!

taac d i tc a lc  Xdi-2*(XyT*Xlog(XyT/XfT)-(XyT-XfT))tand! 

taac lu i t !
tc a  Xzl'Xnu^ltvar Xzl I p .  ga_ dh. ub_! 
tc a  Ind.-XgKXau.Dtaaa ub_«Xl.tubtl 
tc a  lp .B (ub_-aT al(l)}/aT al(2)t! 
taad!

taac aaxt!
ta x t Xpatca lp.>ub.*Xpa(2)«Xpa(l):Xn>Xpa(3)t! 
taadi

taac ngaal
tawi Xo nora lo g it!
: d i f . - p . ( i n d .« l ) - p u ( i a d . )  :Xz2>ga.(Xnu'»l)-ga.(l) !
:Xfv>Xa*dif_/Xz2:nvar-Xfr/Xnt! 
taad!

taac aoia!
tc a  ^ .-X i^ C lp .)  ;dh.-X azp(-lp .*lp./2)/X aqrt(2*X pl)t! 
taad!

taac logi!
tc a  ga_ -l/(l«X axp(-lp .)):dh .-X axp(-lp .)/(l«X axp(-lp .))**2 !
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tasdl
ts4c wTurl
tea lp.alp_*dh_targ suit Ip. Xlptus mltttea Xlp*Xlp'*'Xn*nTarl 
targ Bolt dh. Mantnaa aulttca dh_>dh.*ub.targ ault <Ui_ adl 
tuaa anlttl 
tandl

tea Xzl-Xl(l)-Xl(Xna«l)l
:X2(iBd.)- Xn*(dii.(ind.)*Xzl*Xz2*(Xl(iDd.*l)-Xl(ind.)))/(Xza*Xx2)l 
taadl
taae tidy tdal Ip. db. ob. ga. ind. dif. ttandl 
taae Itarl
town fr dr va dltyrar tfrqtea XnaXeu(tfrq)I 
: Xlp>aaaii>ad*BTar*Otfit Baan̂ ad̂ nvar-ltl 
tnaa tidyt tasdl
t>ac arri tprl '**• atarting valuaa mat ba auppliad in SVAL ***’takip Sttand!

Itue arr2 tpri ’*•* aat valúa af Xb: 1 - (oiaal , 2 - Logiatie ***’takip 2ttand

A.2 Mixture Distributions

! HACHOS T0 FIT IVO COMPOIEIT MIXTORZ DISTMBUTIOtS
I TO CROOPED DATA
I AHGUMEITS 
!
I FREQ - vaetor coataiaiag obaarrad fraquaaeiaa of (■) aata.
I DFAC - vactor apaeifyiag which oba balonga to vbieb aat,
I i.a. DFAC(J)>k if oba j ia ia k'th aat.
I STAL - atartiag valuaa for paraaatar aatiutaa.
I (P,HUl,ai,H02,a2) abara eapitala daaotaa aaetor.
I UB - uppar bonada for eatagoriaa 
) OPT - daaotaa abatbar paraaatara ara fixad or aary.
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i LLIN “ T»ctor holding lovor bound for «neh not.
I XO - 1 ■ loxanl, 2 ■ Logistic (**• Must hs sot ***)
I XO - 0 - Fissd Bizturs parsastsr(s). 2 - Estinsts aixturs paraBstsr(s) 
I (*** Dsfsult XO > 1 ••*}
I
! Varisbls nsnss usod in Meros which should bs sroidsd srs 
I Xa, NIZF. HVIF. SOIF, KU2F, SD2F. HUl, MU2. SOI. SD2. NIXP, IVAL 
! ill othsr Tsrisbls nsass snd with sn . .
!
tMC fita!
tes ons_>l$t t ons. t f disc i nst.t!
tenie Xa*Xcu(nst.»nst_)tfsc disc Xatl
twar Xa al. sl_ a2. s2_ 11. 12. dl. d2. gl. g2.
ten Xzl-Xcu(Xa*(opt«-l)«(opt-^)):Xz2*Xcu(swsl— STsl)!
:Xzl"(Xzl/>Xz2)tswi Xzl srrltl
ten Xal-Xlf((Xd/-l)i(Xd/-2).1.0)tswi Xzl srr2tl
twar S npa.tca npa.-Xif(opt-«l.Xa,l)I
tea alzf-Xif(opt(5)— l.dfac,l):aulf-Xif(opt(l)»il,dfac.l)!
:sdlf-Xif(opt(2}— I.dfac.l):au2f-Xlf (opt(3)»l,dfac.l)l
:sd2f«Xif(opt(4)>b 1,dfac.1}I
tea Xzl«j^)a.(S):Xz2-npa.(l):Xz8-npa.(2):Xz4-npa.{3):XzS»npa.(4)!
tfac aixf Xzl aulf Xz2 sdlf Xz3 au2f Xz4 sd2f XzStI
town fw dr wa ditywar frsqttab tho fra^ total for dfac into nt.t!
tea Xlp*Bul«Bu2«sdl-sd2-aizp>nwal-0tsca Itcycla 20 10 0.00001!
tea Xz9-Xo«ltswi Xz9 aodl aod2tusa rsstuss tidytI
tondi

tMC aodl
tfit nwal.dfac*aul .aulfosdl.sdlf'»au2.au2f'»sd2.sd2f-It! 
toad

tMC aod2
tf it awal. df ac«aul .aulf «sdì. sdlf-»au2 .au2f *sd2. sd2f ♦alzp .aizf-It ! 
tondi

tMC fw!
tcalc Xs-l«Xna(Xpl,0)tswi Xs init aoztt!
!
! Calculatos gasM and tho doriwatiwo!
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tua* lT«c$aal Xd nora lo g lt!
!
I Calcxilata working warlatoa for aaaaa and a.d.*a 
te n ie  BulB-dhl./adt.Cadlf);al.aat.*dt_l 
:adl-dhl.*(a«il.(Balf)-ub)/(adl.(adlf}**2):al.-nl.*dl.l 
:au2>-dh2./ad2.(ad2f) :a3.-a2.*d2.
: ad2«db2_*(Mi2.(Mi2f)-ub)/(ad2.(ad3f)**2):a2_aa2_*d2.l 
targ aolt p. ani nl.tuaa aulttarg atult * adì al.tuaa aultl 
targ ault m p . au2 a2.tttaa aulttarg ault • ad2 a2.tuao aulti 
!
I Caleulato working T arla ta  for p and alao Xfw.
!
tea p l . T ^ i . : p 2 . T g a 2 . t a r g  ault t 1 .  pi. gl.tuaa aulti 
targ ault * p2. g2.tuao aulttea aixpB(pl.-p2_)! 
:XfT>(p_(BÌxf)*pl.'»ap_(Blzf)*p2.) :nTalTXfT/nt_(dfae}tl
!
I Caleulato working llnoar prodietora 
!
tenie lpl.T-dhl.*ub/adl.(adlf):lp2.a-dh2_*ub/ad2_(ad2f}I 
twar Xa i_ 11. 12_tea l_-Xgl(Xa.t)l
:il.-Xif (opt(2)«Tl,Xgl(Xa,l) ,1) ; 12_«Xif (opt(4)— l.Xgl(Xa.l) ,1) I
:11.— dl.*llia/adl.(il.) :12.— c2*.*llia/ad2.(12.)tdal 1. il. i2.t!
targ ault p. Ipl. ll.tuaa aulttarg ault ap. Ip2. 12.tuaa ault I
te n ie  XlpTlpl.'»lp2.'»nt. (dfae) an ta l :Xlp>Xlf ( (Xo««0) ,Xlp .Xlp^p. (a ix f ) *aixp)
tondi

tane dr tenie Xdr*l tondi 

tane wa tenie XTa>XfT tondi

tane di tenie Xdi"2*(XyT*Xlog(X3rr/Xi»)"ÌXy»"XfT)) tondi 

tane initl
I laSUBOa atartlng waluo glwon for oaeh paraaator to bo aatiaatod.
tdol p. 1 9 . nul. adì. au2. ad2. tl
tea Xxl-npa.(6)tTar Xxl pt. p. wl.tea Xsl*npa.(l)tTar Xzl aul.l
tea Xxl>npa.(2)tTar Xxl adl.tea Xzlonpa.(3)tTar Xxl nu2.l
tea XxloBpa.(4)tTar Xxl ad2.tea Tl.Bl:p.opt.oOtaaa aTl.>nt.,aTaltl
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$c« ts8>Xx9>ltarg art« avl.tuaa azta$dal avl.tca Xs9a(Xo>al)I 
tea lpl.B(iib-Bal_(Bnlf))/adl.(adlf)l 
:lp2.*(ttb-Hi2_(Bii2f))/sd2_(ad21) :Xz9a(XoB>l)! 
taadi

$MC MZtl
taxt Xpa targ asta Xpatuaa axtatl
lea lpl.a(ub-BUl.(Milf))/sdl_(sdlf) 
land!

:lp2_B(ub-au2_(m3f))/ad2.(sd2f) I

Im c  arta I
Iprl ’Currant Estlnatas* Xl : I
iaztracta paranatar aatinataa froa atartlng raluaa or Xpa I 
Irar Xn l.Ica l.-Xgl(Xa.l) : nt.-XKl.) : Xz2-Xm Idal 1.1 
lea X>l*npau(l)ltar Xxl l.lea i_«Xgl(Xzt.l)I 
:Bul_aXl(Xn2«i_)ldal i.Ica Xz2>Xz2'»Xzl! 
lea Xzl*npa.(2)lTar Xzl i.lea l_«Xgl(X>l.l)I 
:adl.-Xl(Xs2«l.)ldal i.lea Xz2-Xz2^X2ll 
lea Xsl*npa_(3)lTar Xxl i.lea l.-Xgl(Xxl.l)l 
:xu2.-Xl(Xx2«i.)ldal i.lea Xx2-Xz2«Xxll 
lea Xxl-npa.(4)|Tar Xxl i.lea i.-Xgl(Xxl,l)! 
:ad2.-Xl(Xx2'»l.):Xx2-Xx2«Xxlldal i.larg axtl Xllawi Xx9 aztll! 
land!

taac axtll
lea Xxl*npa.(S)|yar Xxl i.lea l.-Xgl(Xxl.l)!
:p.*Xl(Xx2'»i.) :^.»l-p.: Xx8>Xif ((Xeu(pt.-p.)**2<«0.00001)7(Xo»"0) ,1,0)!
:pt."p.ldal 1.!
land!

lane Ivae
Ivar Xn i. il. 12.lea i.-Xgl(Xn,l)!
lea il.-Xif(opt(l)a>l,Xgl(Xn,l),l): Í2.-XÜ(opt(2)— l,Xgl(Xn,l),1)! 
lea ll.-(llia(l.)-nul.(ll.))/adl.(12.) :al.(i.)— l/adl.(i2.)
: al.(i.)-(nul.(ll.)-llin(i.))/adl.(i2.)**2
lea ll.«Xlf(opt(3)B«l,Xgl(Xn,l),l): i2.-Xif(opt(4)— l,Xgl(Xn,l),l)! 
lea 12.y(llln(i.)-nu2.(il.))/ad2.(i2.) :n2.(i.)— l/td2.(12.)
: a2.(i.)-(au2.(il.)-llia(i.))/ad2.(12.)**2ldal i. il. i2.|! 
land
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tue non!
te» pil.-Xnpdpl.) :pa.-Xi9(lp2.) :gl_>Xnp(ll.) :g2.-Xnpa2.) !
:dhl.aX»xp(-lpl.*lpl_/2)/X»4rt(2*Xpl)I
:dh2_-X»xp(-lp2_*lp2./2)/Xsqrt (2*Xpl)11
:d l.-X » sp (-ll.* ll./2 )/X aq rt(2 * X p i)l
:d2.-X»sp(-12.*12./2)/Xaqrt(2*Xpl)tl
taadi

taac logli
te» 0 il.«l/(l«X»xp(-lpl.));^.-l/(l‘»Xozp(-lp2.))! 
:gl.-l/a*X»xp(-ll.)):g2.-l/(l*X»xp(-12.))l 
:dhl_aX»xp(-lpl.)/(l«X»xp(-lpl_))**2l 
:dh2.-X»xp(-lp2.)/(l«X»sp(-lp2_))**2l
:d l.»X »xp(-ll.)/a^X »xp(-ll.))**2:d2.-X »xp(-12.)/(l*X »xp(-12.))**2l
t»nd!

taac au lt!
I BultipllM X2 by aatrlx containing raluas XI
tea Xzl-0:Xx2«XB:Xs4^targ aulì Xl X2 X3tahi Xx2 auliti
tea X2>nt.(dfac)*X2tl
tondi

i Itaac aulii
tea Xal"X*Ul:X*2-Xz2-l:X*3-n»t.(Xzl)-l:XzS-alxi(Xz4*l):Xz5«Xl(XzS)! 
tvar Xz3 l.tca l.«Xz4«Xz3*2-Xgl(Xz3,l)I
:X 2(l.)-X xS*(X 2(l.)-X 2(l.-D ) :X2(X*4+l)-X*S*(X2(X*4*l)-X3(Xa-X22)) I
:Xz4-Xz4«Xz3«ltdal l.tl
tondi

taac tld y  td o l lnd_ »1. I p l .  Ip2 . g a l .  ga2_ d h l. dh2_ p i .!
P2- IV*- «»•- a«t n t o l .  o2. a l .  a 2 . g l .  g2. d i .  d2. 11 . 12. p t .  t !  
tondi

taac roal
tsvl Xd roal ros2t
tv a r  Xa Ind tca l lnd-Xgl(Xa,l)l
tp r l  ’Factor Larol I > »latagor lnd.8!
tprl ’--------------- 1*
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A ppendix B

T h e  M u ltivariate Logistic 
d istribution

B .l GLIM Macros
tKAC HLOGI
tC Us* Mere HIT to set Initltl table and Tarlablaa! 
tARG HIT tAKCSIOmSWI XO TIOYtSHI XO HITICA XZ9«0f1 
tCA XZ3>X6:XZ2-l:AJ.-ALJ.-t$VAR X4 O.tCA C.-l»(iHI XZ3 GVALtI 
tCA XZ7-XCU(XL0Q(G.))$DEL G.tl
$C Uaa ■acres to calculata di aî d trigaasM functional
AVAR 2 G.tCA G.(l)-Xe$ARG DCAN G.IAUSE DGAMI
$CA XZ8-G.(2)«O.S772-XIOG(Xe):G.(l)-X8tARG TGAM G.IUSE TGAMtl
$CA XZ3-G.(2}/(1.6449«G.(2))$0EL O.tCA AJ.>ALJ.«X6tI
$C Fit Bodal until conTorgancai
tARG IPHI tARGStUSE EPHItCA XZl-X4tHHI XZi DTVARt!
tARG ITER tARGS tCA XZ2-ltHHI X22 ITER tOtJT 2t!
tC Print results of fit
tUSE HRES
tEID

tNAC NRES
tPRI : ’Power paraMtsr ’ XG!
: 'Corralation ’ Xs3i
: 'luaber of itsrations ’ Xz9l
: *6 ’Dariancs ' Xz4i
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. n u e  loPF
I CalcttlatM «orkiag offiat 

tEIDI

n u e  n>RI!
I ealcttlatu a m  ■cal* paraaatars aad datriaaca
«EXT XPBtei XZl-XPB(l) ! PK.-XZ1«XPE(II1.) : PE (l)-XZltl
n u  XZl-X4tAEG PROBS tAECSlHHI XZl PR0BS$!
IT T P. T P DES. I Sim.$l

= »^-P-/S™.(DES.),

^  ̂  T ̂  I TPT. : T TPT. T F X5 I TPL t! 
leA PH2.»AIL./(TIL.-TPL.)|!
•eA X25-Xeu(AIL.*XL0G(PHl.)) : XZ6-XeU(X2*XL0fi(P ))$! 
:XZ4-XeU(AJ..XL00(SWI.)) : XZ4- 2*(X27^XZ64XZ«-XZ4)tl 
tOEL SUE. TP. TP J. TPL. PT II 
tEEOI

nue ARCS Xl X2 X3 X4 X6 X6 $EIO!

tRAe PROBSI I i
I ealcttlataa fittad valuaa atc.

.FV.((X4-X21).X3*im).)-(P.((X4-XZl)*X34in).)*OFF.((X4-X21)*(X3*l)*IIO )!„ ♦XZ«)/PH1.(XS(IBD.))!
' XZl-XZl-lll

$EAe GVALI
iuactioa of («ma la llR.llhood 

n u  0-"XlP((AJ.>»0),0.*XZ3,0.) ; XZ3-XZ3«1I 
:AJ.-XIF((AJ.<»0),0,AJ.-1) : XZ2»XeO(AJ )$!
tEIDI

^ e  TIDT toa DES. m .  a u . m .  ail. resp desi off dt
*J- PHI. PH2. FV. AJS. tEIDI
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$C ll4cros to fit POISSOI ■odol *lth nogativ« log-link

tNAC rv tCA XFV-XEXP(-XLP) tEIDI
I
IlUC DR $CA XDR— 1/XFT tEROI
I
tUC VA tCA XVA-XFV tEID!
I
IlUC DI ICA XDI»2*(XTV*XL00(XYV/XFV)-(XYV-XPV)) lEIDi
INAC DGAN
I C«lcnl4toa digiBM function
ICA XZ2-1-U1ISWI X22 ERRl |CA XZ2-Xir((Xl(lX-0).1.0)|SIII X22 ERR2I!IDATA 6 CIS.IREAO
i.OE-5 8.6 8.3333E-2 S.3333E-3 3.9883E-3 -S.7722E-1 
ICA Xl(2)-0.0 : XZi-XKl) : X22»XIF((X21<-CIS_(1)) ,1.0)H 
lARC DGAi XllSn X22 DOAill
ICA X22-Xir((X2i>-C«S.(2)),0.1)|ARa DGA2 XllWHI X22 0CA2II 
ICA XZ3-1.0/X21 : Xl(2)-Xl(2)*XL0G(X21)-0.6*X23l!
:X23«X23*XZ3 : Xl(2)-Xl(2)-X23a{CIS.(3)-X23*(CIS.(4)-X23*CIS (6)))|*IDEL CIS.! I
tEXD

IRAC DOAl ICA Xl(2)-aiS.(6)-1.0/X21IDEL CIS.I lEXlT 2IEVD!
INAC DGA2
|^*^^2)«X1(2)-1.0/X21 : XZ1-X21+1 : X22-XIF((X21>-CIS.(2)) ,0.1)!

INAC TGAN!
ICA X22-1-U1ISMI X22 ERRIICA X22-XlF((Xl(lX-0) ,1.0)|SWI X22 ERR2II IDATA 4 CNS.IREAD
1.6887E-1 -3.3333E-2 2.3810E-2 -3.3333E-2 '
ICA Xl(2)-0 : X21-XK1) : X22-XIF((X2K-0.0001).1.0)!
lARG TGAl XIISNI X22 TOAIICA X22-XlF<(X21>-5) .O.DIARO TCA2 XllWHI X22 TGA2I! 
ICA XZ3«l/(X21*X21):Xl(2)-Xl(2)'K>.5*XZ3 ! 
♦(UXZ3*(CIS.(1)4XZ3*(CIS.(2)4X23*(CIS.(3)+X23*CIS (4)))))/X21*IDEL CVS.!
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A ppendix C

Macros for Logistic Curves

Nacroa to fit gaaarallaad log-logiatic curvo to data 
following AR(1) procata
irguBonta : T - vactor of (log)obaorvationa 

XA ~ initial valua for aayi^toto 
XO * valua of ponar paraaatar 
XO - aniteh variabla 0 - Xg firad,
Z - arplanatory variabai (tiaw)

Macro invokad by $uaa FITM

>0 - Xg aatiaatad

tNAC MULT
IC Mttltipliaa vactor argnaant XI by aatriz U!
tCA Xl(in2.)-Xl(in2.)-XR*Xl(in2.-l) : Xl(l)-XsqRT(l-XR*XR)*Xl(l}!tEID

tMAC FV
tea XZ1-(XPL/-0)'»1$SWI XZl HIT MEXTt 
$C Calculate naana!
tCA MU-XLOO(XA)-Xg*XLOO(l4XEXP(-LP)/Xg) 
tC Calculate extra explanatory variabla for aaynptota 

and working linaar predictor. 
tUSE DRttCA Mi-DER/XA!
:a2-dara(Xaxp(-lp)/(Xg*Xaxp(-lp))-Uog(l+Xaxp(-lp)/Xg))!
: XLP-(LP4XA*Mla(Xo>0)aXgaifl)/DERtARG MULT XLPtUS MULTI 
IC Calculate working axplanatory variablaa.
ICA Xl-l/DER : X2-X/DER : X3-M1/DER : x4-B2/dorl!

164



tAXG MULT ZltUS HULTtAM MULT X2tUS NULTIARQ MULT Z3$US MULT#I
targ aolt s4tua suitI
1C Calculât* aorklag fitted taluaa
tea XrV-IKJtAllC MULT XFVtOS MULTI
lEID

INAC DR ICA XDR-1 : DER-(Xg+XEXP(-LP))/(Xg*XEZP(-LP)) lEXD
tNAC VA tCA XVA-1 tEID

IHAC DI tCA XDI-(XTV-XPV)*(XTV-XrV) lEID

tNAC HIT tCA LP--XLOC(Xg*(XEZP((XLOG(XA)-MU)/Xg)-l))! 
lEIDi

INAC NEXT lEZT XPE ICA XA-XPE(3) : LP-XPE(1)«XPE(2)*XII 
Ilea Xzl>(Xo>0)l*al Xzl uaxll lEIDI

lue Mzl lea Xg-Xp*(4)l land

lue near lea X*2»Xeu((y(ial_}-nu(inl.))*(y(inl.-l)-u(lnl.-l))) !
: X*3-Xcu( (y-u) • (y-*u) ) - (y(lî -Bu( 1) ) ••2- (y(Xnu) -wi(Xnu) )**2 ! 
:Xr«Xz2*(Xau-2)/(Xz3*(Xnu-l)) land!

INAC SETU ICA Tt-TITVAR TUCA NU-TtOHN FV DR VA DI!
>ca Xzl-Xnu-llTar Xzl ini. In2.tca lnl.-Xgl(Xzl.l)«l : in2_»Xnu*2-inl I 
; XLP-Z1-Z2-Z3-Z4-0IEND!

INAC FITN lea Xzl-(Xg<-0)|aai Xzl arri !
Ina* aatuica Xz9>l;XzS-Xrlahl Xz9 itarland!

lue itar lea Xzl-l«(Xo>0)|CA Tl-YIARG NULT THUS MULTI!
laal Xzl udl ud2ll
Ipri : : ’ Valu* of rho ■ ' Xr Idi al!
lúa naar !
Ica Xz9-Xif(((XzS-Xr}**2<1.0a-6),0,1}:Xz8-XrlEID!
lue aodl Ifit Z1*Z2+Z3-1 land 
lue ud2 Ifit zl«z2«z3-»z4-l land
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taac arrl $prl ’•** to MUST BE HON-IIEGATIVE **• >: ««zlt Slandl

I Macro* to fit g«norall**d log-logl*tic curr* to data 
I following AK(i) proco** with arbitrary warianc* function 
I irgunant* : Y - woctor of (log)ob**rwation*
I XA - initial walu* for aayaptoto
! XB - varianc* function V(Y}bHU**XB
I XC - walu* of power paraaotar
I to - awitch wariabl* 0 - Xg fizad, >0 - Xg oatiaatad
I X - azplanatory wariabol (tiaa)
I Macro inwokad by $u*o FITM 
I
tMAC MULT
$C Multiplio* Tactor arguaant Xl by aatriz Ul
ICA Xl(in2.)-Xl(in2.)-XB*Xl(in2.-l) : Xl(l)-XsqRT(l-XR*XR)*Xl(l)!
SEID
$MAC rv
tea XZl-(XPL/-0)«ltSUI XZl »IT NEXT! 
tC Calculaba working fitted walua* 
tea alp-Xozp(-lp) : MU-XA/(l«olp/Xg)**Xg 
$C Calculate oztra azplanatory Tariabla for aayaptota 

and working linear predictor. 
tUSE DRtca nTa*BU**(Xb/3) 
tCA Ml-DER/(l«alp)*«Xg
:a3>dor«Ba*(alp/(Xg*(l*alp/Xg))-Xlog(l«olp/Xg))
: XLP-(LP*XA*Mi*(Xo>0)*Xg*a2)/(DER*MVA) 
tAIlG MULT XLPtlß MULTI
$C Calculate working azplanatory Tariabla*.
tCA X1-1/(0ER*MVA) : X2-X/(DER*MVA) : X3-M1/(DE11*MVA): z4-a2/(d*r*nTa)! 
tAKG MULT XltUS MULTIARG MULT X2IU5 MULTIARG MULT X3$US MULTI 
larg ault z4lu* aultl!
ICA XTT-T/MTAIAIIG MULT XTTIUS MULTI: XFV-MU/MVAIARG MULT XFTIUS MULTI 
lEBD

IMAC DR ICA XOR-1 : DER-l/(au*Xg*(l-(au/Xa)**(l/Xg)))l lElO 
IMAC VA tCA XVA-1 lEBD
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$NAC DI $CA tOI-(XYV-XFV)*(XrV-tFV) $EID 
INAC HIT
ICA LP-Xlos(Xg*((X«/»u)**(l/X«)-l))!
: Xsl*Xnu-l|T«r Xzl ini. in2_lcn inl.-XsKXnl.l)*l in2_-Xntt+2-inl.l lEIDI
INAC HEXT lEXT XPE ICA U-XPEO) : LP-XPE(1)«XPE(2)*XI! 
Ile* Xzl«(Xo>0)la«i Xzl Mzll lENOI

Imnc Mzl Icn Xr’XpaCA)! land

lue nanr Ica r_a(7-Bu}/nu**(Xb/2)
: Xz2«Xcu(r.(inl_)*r.(lBl_-l)) !
: Xz3«Xcu(r.*r_)-r_(l)-r.(Xnu)! 
:Xr«Xz2*(Xau-2)/(Xz3*(Xntt-l)} land!
INAC SETtJ ICA Tl-TITVAE TlICA NU-TIOHI FV DR VA DI! 
Ica Xzl-Xnu-llTar Xzl ini. in2_lca inl.-XsKXzl.l)'»l 
: XLP-Xl-Z2-Z3>Z4>OlEND!

in2.BXnu'»2-lnl_l

INAC FITN Ica Xzl-(Xs<-0)lanl Xzl arri ! 
luaa aatulca Xz9-l:Xz8-Xrlahl XzDjltarland!

lue iter Ica Xzl-l«(Xo>0)ICA Tl-YIARG NULT YllUS NULTI!
lazi Xzl nodi ■od2ll
Ipri : : ’ Valúa of rho ■ ' Xr Idi al!
luaa naar !
Ica Xz9>Xif(((Xz8-Xr)**2<1.0a-6),0,1):Xz8-XrlERD! 
lue udì Iflt Z1«Z24'Z3-1 land 
lue ud2 Ifit zl'*'z2'*'z3'»z4-l land
lue arri Ipri : 'aa* XG NUST BE HOR-REGATIVE aaa > ; |azit 2land
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A ppendix D

Wind Shear Data

co» t^n . » portion of the wind shenr dntn nnnlyted by Knnji 
[41]. The dntn u  clauified by two fncton as follows,

1. Band width. This refers to the 120 seconds of recorded flight before 
lud ing . Band widths 1 and 2 are each of 40 seconds duration, while 
Band widths 3 and 4 are of 20 seconds duration.

2. Gradient separation time iatenml, H.. This represents the elapsed 
time between a  change in the wind velocity gradient.
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C lan Range 
Lower Upper 1 2

Caie Number 
3 4 5 6 7 8

-1.4157 -1.2870 0 0 1 0 0 0 1 0
-1.2870 -1.1583 0 1 0 0 0 1 0 0
-1.1583 •1.0296 0 3 1 2 0 0 0 1
•1.0296 -0.9009 4 6 10 2 0 4 3 1
-0.9009 -0.7722 12 19 15 15 1 10 6 6
-0.7722 -0.6435 24 43 27 29 26 22 13 14
•0.6435 -0.5148 86 92 75 72 41 67 51 41
•0.5148 -0.3861 162 227 153 167 118 140 113 97
•0.3861 -0.2574 433 538 296 351 316 386 222 242
•0.2574 -0.1287 979 1060 540 594 760 839 472 511
•0.1287 0.0 2237 2006 886 749 1843 1691 751 619
0.0 0.1287 2188 1998 882 755 1829 1667 727 627
0.1287 0.2574 1020 1101 589 595 802 878 468 465
0.2574 0.3861 437 538 326 324 324 383 253 246
0.3861 0.5148 186 217 156 168 118 154 95 109
0.5148 0.6435 77 96 63 60 44 59 42 47
0.6435 0.7722 26 33 27 43 18 26 12 16
0.7722 0.9009 9 19 7 13 1 5 5 8
0.9009 1.0296 3 7 1 11 1 2 1 4
1.0296 1.1583 0 0 2 3 0 0 1 1
1.1583 1.2870 1 1 1 0 0 0 0 0
1.2870 1.4157 1 0 0 0 1 0 0 0
1.4157 1.5444 0 0 1 0 0 0 0 0
Band 1 2 3 4 1 2 3 4
H, (aecondt) 0 0 0 0 2 2 2 2

Table D.l: Lobe DUtributioni. Wind Shear D ata
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