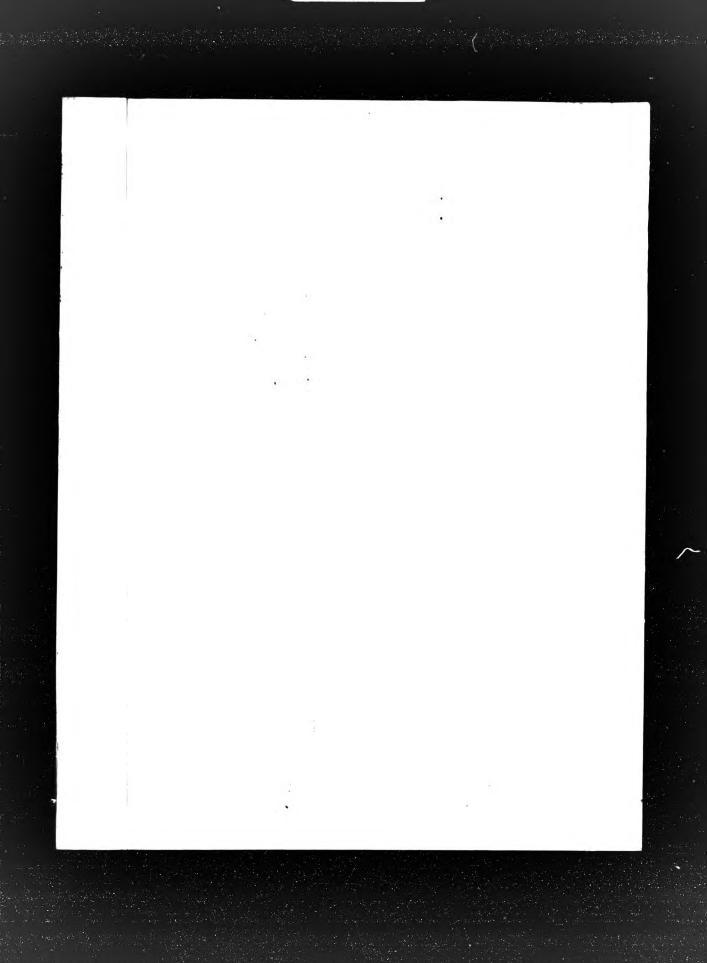

IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk


This PDF was created from the British Library's microfilm copy of the original thesis. As such the images are greyscale and no colour was captured.

Due to the scanning process, an area greater than the page area is recorded and extraneous details can be captured.

This is the best available copy

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

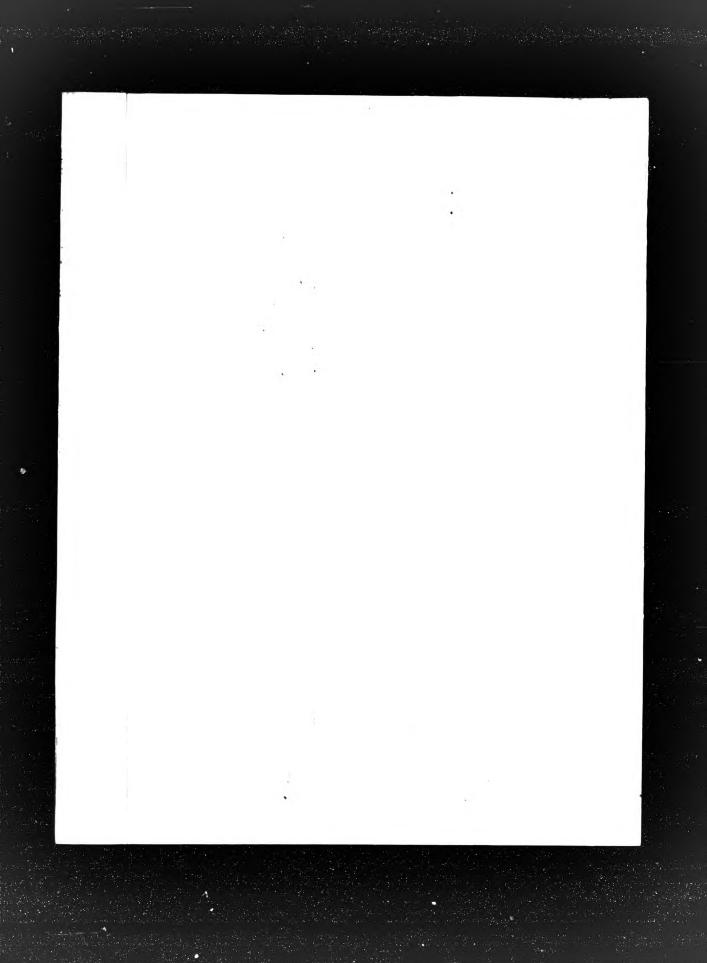
A PHYLOGENETIC STUDY OF THE CYNIPOIDEA (HYMENOPTERA).

AUTHOR

Nigel Donald MacDade FERGUSSON

INSTITUTION and DATE

The City of London Polytechnic C.N.A.A 1990


Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

CAMERA 5

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE Boston Spa, Wetherby West Yorkshire United Kingdom

A PHYLOGENETIC STUDY OF THE CYNIPOIDEA (HYMENOPTERA).

by

Nigel Donald MacDade FERGUSSON

A thesis submitted in partial fulfilment of the requirements of the Council for National Academic Awards for the degree of Doctor of Philosophy.

March 1990

0

The City of London Polytechnic in collaboration with The Natural History Museum.

ABSTRACT

A phylogenetic study of the Cynipoidea (Hymenoptera).

N.D.M. Fergusson

The current classification of the Cynipoidea was subjected to compatibility analysis on the basis of the characters then employed and shown to have a very poor resolution. A comprehensive morphological investigation of 31 exemplar species was undertaken and 234 characters were found, a 450% increase over the established classification. These characters were analysed and the compatibility clique contained 135 appmorphies, 68 of which were synapomorphies. This is an increase of 600% and 300% respectively over the established data, this is a tremendous improvement in the data-base leading to a great improvement in resolution.

In addition, the principal morphological character-suites were analysed independently. This technique was used to locate the weaknesses in earlier classifications and, by this method, the distortion caused by the allometric bias to wing-data was recognized. Many extralimital cynipoids were examined and a new

Many extralimital cynipoids were examined and a new tribe was discovered. Other forms of cladistic analysis, Parsimony and O'Nolan weighting, were undertaken and the results considered. After detailed analysis, a phylogeny of the Cynipoidea was reconstructed.

The evolutionary biology of the Cynipoidea provided particularly strong support for the phylogenetic reconstruction. Concepts of host defence, host range, gall complexity, gall position, host switching, reproductive cycles, biogeographical distribution, plate tectonics, palaeobotany, palaeoclimatology, the origin of hyperparasitism and the adaptive characters associated with xylophagous hosts were all considered. All the available fossil cynipoids were examined and the evolutionary history, holophyly, and relationships of the Cynipoidea with other Hymenoptera were all discussed.

Finally the phylogenetic reconstruction was used to provide the first reasoned classification for the superfamily.

ACKNOWLEDGEMENTS

The following depositories provided Cynipoidea on loan: American Museum of Natural History, New York; Biosystematics Research Institute, Ottawa; Department of Scientific and Industrial Research, Auckland; Institut für Pflanzenschutzforschung, Eberswalde; Museé Royal des l'Afrique Centrale, Tervuren; Museum für Naturkunde der Humboldt-Universität, Berlin; Museum o£ Comparative Zoology, Harvard; Museum of Victoria, Melbourne; National Museum of Ireland, Dublin; National Museum of Natural History, Washington; National Huseum of Wales, Cardiff; Naturhistorisches Museum, Wien; Naturhistoriska Riksmuseet Stockholm; Royal Ontario Museum, Ontario; University Museum, Oxford; Zoological Museum, Bergen; Zoological Museum of the University of Helsinki; Zoologische Sammlung des Bayerischen Staates, Munich; Zoologisk Museum, Copenhagen; Zoological Museum, Lund.

I am pleased to record my thanks to the following people in the Natural History Museum. Dr L. Mound (Keeper of Entomology). My colleagues in the Hymenoptera Section, their talent never ceases to impress. Mr. T. Huddleston for reading the thesis and Miss P. Gilbert for checking the references. Dr P. Eggleton for very many stimulating conversations about our respective Ph.D.'s.

I am also grateful to: Dr R. Blackman, Ms. S. Barnes; Dr G. Gibson; Mr. C. Malumphy, Dr A. Menke; Mr. T. Parminter; Mr. J. Quinlan; Dr A. Ritchie; Dr J. Spradbery; Dr G. Stonedal & Dr L. Vet.

I am particularly keen to thank my supervisors, Dr, G. Underwood and Dr I Gauld, it would be very hard to find better. Dr Underwood kindly provided "state of the art" compatibility programs, and Dr Gauld's extensive knowledge was a great asset.

Most of all, I thank my family for their support. Perhaps when my daughter can read this, she will understand why I could not always come out to play.

TABLE OF CONTENTS

Abstract				2
Acknowledgements				3
Table of contents				4
List of figures				7
List of tables				15
1 INTRODUCTION & METHODS				17
Introduction				17
The study group			•	19
Material		•		19
Selection of operational taxa				20
Methods				21
2 CLADISTIC THEORY	•			24
Phylogenetic reconstruction				24
Homoplasy				24
Holophyly				25
Cladistic analysis				25
Parsimony				26
Compatibility				27
Choice of analytical methods				28
Computer programs				29
Compatibility programs				29
				30
Parsimony program				30
Character scoring				31
Assignment of evolutionary polarity				31
3 ANALYSIS OF THE ESTABLISHED CLASSIFICATION.				34
Establishment of outgroups				34
The taxonomic history of the Cynipoidea				37
Character-states from Weld, 1952				39
Analysis of Weld data				41
Character-states from Quinlan, 1979				47
Analysis of Quinlan data				50
Analysis of combined data				56

4	SURVEY OF CYNIPOID MORPHOLOGY	•••	•	• •	59
	Head	•••	•		59
	A ntennae	•••	•		82
	Thorax		•		96
	Wings	• •	•		126
	Legs		• •		137
	Gaster				140
	Petiole		•		140
	Remaining gastral segments		• •		143
	Female genitalia		•		145
	Female accessory glands				148
	Male genitalia			•	149
	Karyology		•		152
	Immature stages		• •		153
	The egg		•		153
	Larval instars		• •		
	Pupal stage				163
5	PHYLOGENY OF THE CYNIPOIDER			•	176
	Compatibility analysis of master data r				176
	Last characters deleted				
	The clique cladogram				
	Subset analysis				
	Loss characters				193
	Possible improvements to tree				193
	O'Nolan character weighting analysis.				
	Parsimony analysis				
	Comparison of compatibility & parsimony				
	The primary division of the Cynipoidea.				
	Extralimital Cynipoidea				
	Fossil Cynipoidea				
	Relative value of the character-suites.				
	Head				226
	Antennae				227
	Thorax				
	Legs			-	
	Wings				

Petiole
Gaster
Female genitalia
What was wrong with the old classification? 233
Conclusions
Final postulate of cynipoid phylogeny 235
6 DISCUSSION OF EVOLUTIONARY BIOLOGY
Introduction
Phytophagy: the Cynipidae
Biological trends within the Cynipidae 248
Parasitism within trees: the ibaliid lineage 254
Characters associated with xylophagous hosts 259
Blogeography
Parasitism outside trees: the figitid lineage . 270
Summary of cynipoid evolutionary biology 278
7 CONCLUSIONS
Relationships with other Apocrita
The holophyly of the Cynipoidea
A new classification of the Cynipoidea 289
Concluding remarks
Present and past classifications
Future improvements
References
1 Computer programs
2 Data matrices and numerical data 369
3 Description of a new tribe, genus and
species
4 Key to the suprageneric taxa of the
Cynipoidea

LIST OF FIGURES

Page

۰.

Figure	1.	Holophyly, paraphyly & polyphyly.	25
Figure	2.	The four homoplasies of four paired	
		characters.	27
Figure	3.	Königsmann's 1978 arrangement of the	
		Apocrita.	34
Figure	4.	Königsmann's alternative arrangement.	35
Figure	5.	Apocritan phylogeny (Rasnitsyn, 1969).	35
Figure	6.	Rasnitsyn's 1988 arrangement of the	
		Hymenoptera.	36
Figure	7.	Weld data: tree with character 4 retained	43
Figure	8.	Cladogram from the Weld data.	45
Figure	9.	The Weld 5.1 subset.	46
Figure	10.	Simplified tree for the taxa outside the	
		Weld 5.1 subset.	46
Figure	11.	Cladogram from the Quinlan data.	53
Figure	12.	Alternative tree, including character 18.	53
Figure	13.	Tree of the Quinlan 11.1 subset.	54
Figure	14.	Tree of the Quinlan 29 subset.	54
Figure	15.	Summary tree of combined data clique.	55
Figure	16.	Final summary tree of the combined data.	58
Figure	17.	STEP probability plot for eye length v eye	
		breadth.	65
Figure	18.	STEP probability plot for eye length v	
		hight of antennal insertion.	65
Figure	19.	STEP probability plot for eye length v gena	
		length.	66
Figure	20.	STEP probability plot for hight of antennal	
		insertion v gena length.	66
Figure	21.	Paramblynotus X40. Face.	74
Figure	22.	Ibalia X380. Ventral view of head.	74
		Eucoila X170. Mandibles.	74
		Anacharis X300. Mandible.	74
Figure	25.	Cynips X1070. Sensory projection on the	
		apex of the labial palp.	74
Figure	26.	Xyalaspis X1030. Sensory hairs on the base	
		of the labial palp.	74

 Figure 27. Ceroptres X350. Mouthparts in posterior view. Figure 28. Dissected mouthparts of an anacharitine X200. Figure 29. Ephialtes X170 (Ichneumonidae). Rear of head foramen magnum and lower tentorial bridge. Figure 30. Paramesius X250 (Proctotrupoidea). Rear of head "open" hypostomes, and mouthparts. Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 4 X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 32. Codrus X250 4 X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Indricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 4 X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma bridge and suture. 				
 Figure 28. Dissected mouthparts of an anacharitine x200. Figure 29. Ephialtes X170 (Ichneumonidae). Rear of head foramen magnum and lower tentorial bridge. Figure 30. Paramesius X250 (Proctotrupoidea). Rear of head "open" hypostomes, and mouthparts. Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomes in a cavity. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X100. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Ancharoides X80 4 X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal bridge and suture. 	Figure	27.		
 X200. Figure 29. Sphialtes X170 (Ichneumonidae). Rear of head foramen magnum and lower tentorial bridge. Figure 30. Paramesius X250 (Proctotrupoidea). Rear of head "Spen" hypostomes, and mouthparts. Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Nypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X100. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 43. Anacharoides X80 e X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	-			75
 Figure 29. Ephialtes X170 (Ichneumonidae). Rear of head foramen magnum and lower tentorial bridge. Figure 30. Paramesius X250 (Proctotrupoidea). Rear of head "open" hypostomes, and mouthparts. Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X100. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	28.	-	76
 foramen magnum and lower tentorial bridge. Figure 30. Paramesius X250 (Proctotrupoidea). Rear of head "open" hypostomes, and mouthparts. Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomas in a cavity. Figure 39. Paramblynotus X100. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	-	20		75
 Figure 30. Paramesius X250 (Proctotrupoidea). Rear of head "open" hypostomes, and mouthparts. Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 40. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma 	FIGULE	43.		76
 head "open" hypostomes, and mouthparts. Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Plaura	20		75
 Figure 31. Codrus X130 (Proctotrupoidea). Rear of head and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X100. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Symergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	30.	•	76
 and, just visible, the lower tentorial bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Pigure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Pigure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X100. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Symergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	-	21		75
 bridge. Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Pigure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	31.	• • • • • • • • • • • • • • • • • • • •	
 Figure 32. Codrus X250 & X1250. Enlargements of Figure 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Pigure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Pigure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. 				76
 31. Lower tentorial bridge. Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Pigure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	FIGURA	22	-	/0
 Figure 33. Phanacis X300. Rear of head and narrow lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X100. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. 	FIGULE	J2.		
 lower tentorial bridge. Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Pigure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	-	~~	•	76
 Figure 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Pigure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Pigure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	33.		
 between the narrowly separated hypostomes. Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 			-	76
 Figure 35. Andricus X400. Lower tentorial bridge and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 4 X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	34.	-	
 and hypostomal crests. Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 				76
 Figure 36. Andricus X1000. Hypostomal carinae and crests (Figure 83 enlarged). Pigure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Pigure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	35.	-	
 crests (Figure 83 enlarged). Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 				77
 Figure 37. Cynips X250. Hypostomal crests. Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	36.	Andricus X1000. Hypostomal carinae and	
 Figure 38. Ibalia X130. Hypostomes in a cavity. Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 			crests (Figure 83 enlarged).	77
 Figure 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma 	Figure	37.	Cynips X250. Hypostomal crests.	77
bridge in a cavity. Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal				77
 Figure 40. Paramblynotus X700. Figure 39 magnified showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	39.	Paramblynotus X110. Hypostomes and lower	
 showing lower bridge. Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 			bridge in a cavity.	77
 Figure 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	40.	Paramblynotus X700. Figure 39 magnified	
bridge and suture short. Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal			showing lower bridge.	77
 Figure 42. Melanips X130. Rear of head. Hypostomal bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	41.	Xyalaspis X130. Rear of head. Hypostomal	
bridge and suture short. Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma			bridge and suture short.	78
 Figure 43. Anacharoides X80 & X400. Head with a short hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma 	Figure	42.	Melanips X130. Rear of head. Hypostomal	
hypostomal bridge. Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma			bridge and suture short.	78
 Figure 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostomal 	Figure	43.	Anacharoides X80 & X400. Head with a short	
with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma			hypostomal bridge.	78
with long hypostomal bridge and suture. Figure 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma	Figure	44.	Telenomus (Proctotrupoidea) X350. Head	
figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma				78
figitid-like hypostomal bridge and suture. Figure 46. Phaenoglyphis X350. Head with the hypostoma	Figure	45.		
Figure 46. Phaenoglyphis X350. Head with the hypostoma	•			79
	Figure	46.	· · · ·	-
pridge and suture long.	• -		bridge and suture long.	79

Figure	47.	Kleidotoma X250. Rear of head. Fusion of	
		the hypostomes complete and suture lost.	79
Figure	48.	Rhoptromeris X350. Rear of head. Fusion of	
		the hypostomes complete and suture lost.	79
Figure	49.	Trichopria X400 (Proctotrupoidea). Rear of	
		head.	80
Figure	50.	Kleidotoma X2200. Antennal sensilla.	80
Figure	51.	Kleidotoma X800. Antennal sensilla.	80
		Cynips X400. Antennal sensilla.	80
Figure	53.	Trichopria X1700 (Proctotrupoidea). Raised	
		type of antennal sensilla.	80
Figure	54.	Inostemma X920 (Proctotrupoidea). Raised	
20200		type of antennal sensilla.	80
Figure	55.	Lytarmes X1000. (Ichneumonoidea). Antennal	
1.1.7.1.1.1		sensilla.	81
Figure	56.	Melanips X1770. Freeze fracture to show	1.15
100		"floor" to antennal sensilla.	81
Figure	57.	Callaspidia X1220. Closely packed antennal	
		sensilla.	81
Figure	58.	Callaspidia X1770. Gland on modified third	
		segment of male antenna.	81
Figure	59.	Plot of Principal Components axis 1 v axis	
		2 for antennal segment lengths.	85
Figure	60.	Plot of Principal Components axis 1 v axis	
		2 for antennal ratio data.	87
Figure	61.	Plot of length / breadth for the scape	
		versus the third antennal segment.	89
Figure	62.	Anacharis X150. Anterior of thorax, head	
		removed, to show the pronotal plate.	107
Figure	63.	Aspicera X170. Anterior of thorax, head	107
		removed, to show the pronotal plate.	107
Figure	64.	Melanips X110. Anterior of thorax, head	107
	• • •	removed, to show the pronotal plate.	107
Figure	65	Trybliographa X220. Anterior of thorax,	101
	•••.	head removed, to show the raised pronotal	
		plate.	107
Figure	66	Xyalaspis X120. Anterior of the thorax,	10/
		head removed. Lateral view of the pronotal	
		plate.	108
Figure	67	Alloxysta X220. Anterodorsal view of the	100
- TAATC	v / •	HERE'S CONTRACT AND A CONTRACT ATEM OF CUG	

.

1

		pronotum, and frontal bar; head removed.	108
Figure	68.	Figites X150. Dorsal view of frontal bar	
		and caulis (between the submedian	
		depressions).	108
Figure	69.	Neralsia X220. Lateral view of pronotum.	
		Submedian depression and frontal bar.	108
Figure	70.	Ibalia X80. Lateral view of pronotum.	109
Figure	71.	Ibalia X25. Lateral view of thorax.	109
Figure	72.	Liopteron X40. Lateral view of thorax.	109
Figure	73.	Liopteron X70. Mesepisternum. Slit-shaped	
		opening of gland (arrow) and transverse	
		suture.	109
Figure	74.	Paramblynotus X50. Lateral view of thorax.	110
		Aulacidea X120. Lateral view of thorax.	110
Figure	76	Melanips X70. Lateral view of thorax.	110
			111
Figure	78.	Aspicera X50. Dorsal view of thorax.	111
			111
		Figites X70. Lateral view of thorax.	111
		Apocharips X150. Lateral view of thorax.	112
Figure	82.	Alloxysta X130. Lateral view of thorax.	112
		Phaenoglyphis X130. Lateral view of thorax;	
		mesepisternal suture.	112
Figure	84.	Trybliographa X103. Dorsal view of axillae,	
		scutellar foveae and the scutellar plate.	112
Figure	85.	Kleidotoma X170. Posterolateral view of	
		scutellum.	113
Figure	86.	Kleidotoma X300. Posterolateral view of	
		scutellum.	113
Figure	87.	Bucoila X110. Lateral view of scutellum.	
		Fenestra under axillary bar.	113
Figure	88.	Kleidotoma X350. Pubescent cavity at the	
		base of the metapleuron.	113
Figure	89.	Ibalia X40. Dorsal view of thoracic flight	
		muscles; mesonotum removed.	114
Figure	90.	A charipid X150. Lateral view of thoracic	
		musculature; side of thorax removed.	114
Figure	91.	Cynips X80. Lateral view of thoracic	
		musculature.	114

Figure	92.	Ibalia X35. Lateral view of thoracic	
		musculature.	114
Figure	93.	Biorhiza X100. Mesotrochanteral muscle	
		complex.	115
Figure	94.	Biorhiza X300. Mesotrochanteral muscle	
		complex. Enlagement of Figure 93.	115
Figure	95.	Ibalia X40. View from centre into rear of	
		thorax (longitudinal flight muscles	
		removed).	115
Figure	96.	Alloxysta X2000. Sensory hairs, on upper	
		edge of mesepimeron, that touch the wing.	115
Figure	97.	Right mandible of Cynips.	116
Figure	98.	Right mandible of Pycnostigmus.	116
Figure	99.	Hypostomal region of Ibalia.	116
Figure	100.	Thoracic muscles of Andricus.	117
Figure	101.	Biorhiza - lower section of mesothorax	
		showing mesotrochanteral depressor	
		muscle.	117
Figure	102.	Cynipoid wing terminology.	117
Figure	103.	Allometry in hindwings.	118
Figure	104.	Lengthened longitudinal veins of large	
		cynipoids.	119
Figure	105.	Proximal position and short veins of small	
		cynipoids.	119
Figure	106.	Braconidae wings and nomenclature.	119
Figure	107.	Forewing of Liopteron.	120
Figure	108,	Forewing of Austrocynips.	120
Figure	109.	Forewing of Himalocynips.	120
Figure	110.	Forewing of Pycnostigmus.	121
Figure	111.	Forewing of Callaspidia.	121
Figure	112.	Forewing of Aulacidea.	121
Figure	113.	Forewing of Melanips.	122
		Forewing of Xylaspis.	122
		Forewing of Alloxysta.	122
Figure	116,	Forewing of Apocharips.	123
		Forewing of Dilyta.	123
		Forewing of Kleidotoma.	123
		Claw of Diastrophus.	124
Figure	120.	Claw of Liposthenus.	124

Figure	121.	Claw of Kiefferiella.	124
Figure	122.	Claw of Mesocynips.	124
Figure	123.	Hind tarsus of Ibalia.	124
Figure	124.	Hind tibia of Callaspidia.	124
Figure	125.	Hind femur of Oberthuerella.	124
Figure	126.	Lateral view of Diplolepis gaster.	125
Figure	127.	Lateral view of Neuroterus gaster.	125
Figure	128.	Lateral view of Synergus gaster.	125
Figure	129.	Lateral view of Aspicera gaster.	125
Figure	130.	Andricus X60. mesoscutum & scutellum.	165
Figure	131.	Sarothrus X260. Trochantellus.	165
Figure	132.	Liopteron X60. Lateral view of petiole.	165
Figure	133.	Melanips X193. Petiole, semiventral view.	165
Figure	134.	Alloxysta X450. Petiole, lateral view.	165
Figure	135.	Trybliographa X150. Petiole, lateral view.	165
Figure	136.	Aspicera X125. Petiole (frontoventral).	166
		Figites X246. Petiole (frontoventral).	166
Figure	138.	Ibalia X69. Male genitalia.	166
		Anacharis X225. Apex of male genitalia.	166
		Ibalia X193. Digiti of male genitalia.	166
Figure	141.	Figites X700. Apex of male genitalia.	166
		Biorhiza X250. Tergite 9.	167
Figure	143.	Isocolus X200. Tergite 9.	167
		Lonchidia X170. Female genitalia.	167
		Figites X44. Female genitalia.	167
		Paraspicera X120. Female genitalia.	167
Figure	147.	Ibalia X15 Female genitalia.	168
		Aspicera X14.	168
Figure	149.	Pycnostigmus X11.	168
		Ibalia X7.	169
Figure	151.	Diastrophus X14.	169
		Ibalia (X6) antennating bark near the	
		oviposition hole of its siricid host.	170
Figure	153.	Ibalia (X6), hypopygium lowered,	
		ovipositing into a siricid larva in the	
		tree.	170
Figure	154.	Ovipositor types and gastral shape.	171
		Egg of Ibalia.	172
		Accessory glands of the female genitalia.	172

Figure	157.	Cynipoid larvae.	173
Figure	158.	Himalocynips.	174
Figure	159.	Austrocynips.	174
Figure	160.	Alloxysta in dorsal view.	175
Figure	161.	Clique cladogram of the morphological	
		characters for the exemplar cynipoid taxa.	178
Figure	162.	The last 39 character incompatibilities.	180
Figure	163.	Tree with character 2.2 and 26.2 included.	181
Figure	164.	Part of the clique cladogram.	181
Figure	165.	Alternative arrangement including	
		character 64.	181
Figure	166.	Incompatibilities after character 64	
		deleted.	182
Figure	167.	Tree with 168 reversed for the	
		Anacharitinae.	183
Figure	168.	Possible amendments to the cynipoid tree.	184
Figure	169.	Subset analysis tree for the 52.2 clade.	191
Figure	170.	Tree without reduction characters.	194
Figure	171.	First arrangement of the Mesocynipinae.	201
Figure	172.	Second arrangement of the Mesocynipinae.	201
		First arrangement of the Aspicerinae.	201
		Second arrangement of the Aspicerinae.	201
Figure	175.	Consensus tree of parsimony analysis.	202
Figure	176.	Summary of the parsimony tree.	203
		The main cynipoid lineages: alternatives.	206
		Phylogeny of the Cynipidae.	209
Figure	179.	Improved version of the Figitidae tree.	214
		Final reevaluation of the figitid lineage.	215
		Forewing of Archaeocynips.	222
Figure	182.	Forewing of Dahurocynips.	222
Figure	183.	Forewing of Dahurocynips.	222
Figure	184.	Clique cladogram for the head data.	226
		Clique cladogram for the antenna data.	227
		Clique cladogram for the thorax data.	228
		Clique cladogram for the leg data.	229
		Clique cladogram for the wing data.	230
		Clique cladogram for the petiole data.	231
		Revised petiole tree after sculpture	
		reduction in elongated petioles was taken	
		into consideration	231

		Clique cladogram for the gastral data.	232
		Clique cladogram for the ovipositor data.	233
		Cynipoid phylogeny: the four lineages.	236
		Phylogeny of the ibaliid lineage.	236
Figure	195.	Phylogeny of the Cynipidae.	237
f igure	196.	Phylogeny of the figitid lineage.	237
Figure	197.	The host preferences of the parasitoid	
		cynipoids.	240
Figure	198.	Cynipidae: host-plants and phylogeny.	253
Figure	199.	Area cladogram for the ibaliid lineage.	264
Figure	200.	Distribution of the Mesocynipinae.	266
Figure	201.	Distribution of the Liopterinae and	
		Oberthuerellinae.	267
Figure	202.	Palaeogeography and liopterid radiation.	268
		Host preferences and the evolutionary	
		biology of the Cynipoidea.	280
Figure	204.	Hindwing of Pantoclis (Proctotrupoidea).	284
		Hindwing of Ibalia (Cynipoidea).	284
		Hindwing of Pteromalus (Chalcidoidea).	284
		Forewing of Austroserphus (Proctotrupoidea	
		8.5.).	285
Figure	208.	Forewing of Heloriserphus (Proctotrupoidea	
		8.8.).	285
Figure	209.	Forewing of Acanthoserphus (Proctotrupoidea	1
		8.5.).	285
Figure	210.	Forewing of Helorus (Proctotrupoidea	
		5.5.).	286
Figure	211.	Forewing of Ropronia (Proctotrupoidea	
		5.5.).	286
Figure	212.	Forewing of Vanhornia (Proctotrupoidea	
		5.5.).	286
Figure	213.	Wings of B C	293
		Lateral outline of E. c showing	
-		propodeal cleft and gastral tergites.	293
Figure	215.	Scenario of the four families of the	
-		Cynipoidea.	302
Figure	216.	Scenario of the Ibaliidae.	302
		Scenario of the Cynipidae.	303
		Scenario of the Figitidae.	303
-			~ ~ ~

LIST OF TABLES

Table	1.	The 31 cynipoids selected as representative	
		taxa.	21
Table	2.	The O'Nolan algorithm.	30
Table	3.	Ashmead's 1903 classification.	37
Table	4.	The classification from Hedicke, 1942.	37
Table	5.	The classification from Weld, 1952.	38
Table	6.	The classification from Quinlan, 1979.	38
Table	7.	Classification from Evenhuis, 1982.	38
Table	8.	Incompatibilities between Weld characters.	41
Table	9.	LeQuesne ratios for the Weld data.	42
Table	10.	Weld characters ranked in order of their	
		ratios.	42
Table	11.	Boil-down of the Weld characters.	42
Table	12.	LEQUC marks for the Weld data.	43
Table	13.	Data-matrix of the Weld clique; order	
		rearranged.	44
Table	14.	Analysis of the Weld 5.1 subset.	45
Table	15.	Weld data: analysis of the taxa outside the	
		5.1 subset.	46
Table	16.	Incompatibilities between Quinlan	
		characters	51
Table	17.	Quinlan data incompatibilities.	51
Table	18.	Quinlan data: incompatibility ratios as	
		characters are deleted during LEQUB	
		boil-down.	52
		The number of LEGUC marks for each taxon.	52
		Analysis of the Quinlan 11.1 subset.	54
		Analysis of the Guinlan data: 29 subset.	54
		Analysis of the combined data.	55
		Weld and Quinlan character equivalence.	56
		TTL / OTL ratios.	61
		Ocelli measurements.	62
		Eye related measurements.	63
		Ratios of head length to breadth.	67
Table	28.	Palp scoring.	72
Table	29.	Summary data of antennal lengths.	83

Table	30.	Correlation matrix of segment lengths.	83
Table	31.	Principal Component axes of segment lengths.	84
Table	32.	Data for antennal ratios.	86
Table	33.	Correlation matrix for antennal ratios.	86
Table	34.	Principal Components axes for antennal	
		ratios.	86
Table	35.	The numbers of antennal segments in the	
		families and subfamilies of the Cynipoidea.	94
Table	36.	The numbers of antennal segments in various	
		parasitic Hymenoptera.	94
Table	37.	Exemplar lengths of Rs of study taxa.	131
Table	38.	Polarity trends in the cynipoid ovipositor.	147
Table	39.	Initial ranking of characters according to	
		LeQuesne ratio.	176
Table	40.	The character-state deletions, made by the	
		LEQU program, which lead to the formation of	
		the clique.	177
Table	41.	Deleted characters in 53.2 clade.	191
Table	42.	Lengths, in mm, of female cynipoids.	197
Table	43.	O'Nolan weights for the master matrix.	198
Table	44.	The last 7 LEQU & O'Nolan character	
		deletions.	198
Table	45.	Master / Hennig character equivelence.	200
Table	46.	Results of the analysis of cynipoid	
		character-suites.	225
Table	47.	Comparison of character-suite apomorphies.	225
Table	48.	Character-suites used in cynipoid	
		classification.	235
Table	49.	Summary of cynipoid biology.	241
Table	50.	Geological stages of the Upper Mesozoic.	242
Table	51.	Biological trends within the Cynipidae.	247
Table	52.	The congruence of adaptive characters	
		associated with hosts deep in wood.	261
Table	53.	A new classification for the Cynipoidea.	300
Table	54.	Changes to the cynipoid classification.	301

CHAPTER 1: INTRODUCTION AND METHODS

INTRODUCTION

The current classification of the Cynipoidea has been criticized as being, "far from definitive as nearly all authors repeatedly admit... we desperately need a thorough review of the family level classification of the Cynipoidea based on morphology" (Menke, 1989). Riek (1971) complained that "most families and subfamilies are defined more on their biologies than on distinctive morphological attributes". He further commented that the lack of characters for the families was a particular problem. Ritchie (1988) observed that "the families, and later, the subfamilies and tribes, have been expanded without real appraisal over the last 150 years." Thus the current classification of the Cynipoidea is unsubstantiated, and overdue for a complete review.

Objectives

The aims of this investigation are to provide the first detailed study of the phylogenetic relationships of the families, subfamilies and tribes of the Cynipoidea; to relate cynipoid biology to the phylogeny and to propose the first reasoned reclassification of the superfamily.

The thesis consists of the following six principal elements.

- 1 An analysis of the existing classification.
- 2 A comprehensive survey of cynipoid morphology.
- 3 Cladistic analysis of the morphological data; reconstruction of the phylogeny and an evaluation of why previous classifications were unsuccessful.
- 4 A discussion of the evolutionary biology of the Cynipoidea.
- 5 A commentary on cynipoid holophyly and the relationships of the Cynipoidea to other Hymenoptera.
- 6 Construction of a new classification of the Cynipoidea.

Cladistics and the Cynipoidea

Modern cladistic techniques can be employed to uncover "many unexpected patterns" (Kluge, 1983) and because of this they were used in this study. From a purely pragmatic stance, any methodology that provides a new view, not necessarily tied to previous classifications, will, either directly or in response to it, stimulate discussion and a better understanding of the phylogeny.

Very little has been published about phylogenetic relationships within the Cynipoidea. There has been no cladistic analysis of the whole superfamily, and until very recently there were no cladistic studies even of small groups. However, Ritchie (1984) has recently investigated the phylogeny of North American Synergini (Cynipidae). His work on the tribal structure of the family Cynipidae has enabled me, while still including the Cynipidae, to concentrate on the parasitoid Cynipoidea - the area where the greatest confusion exists.

The Cynipoidea is remarkably suitable for studies relating evolutionary biology to taxonomy because the various cynipoid lifeways are thought to be restricted within taxonomic groupings. Such investigations are widely considered to be of major importance (Clutton-Brock & Harvey, 1984; Gould & Lewontin, 1979; Ridley, 1983; Tinbergen, 1963).

The "microhymenoptera"

Cynipoidea, Chalcidoidea and Proctotrupoidea The sensu lato are derived, generally small, Apocrita that exhibit many parallelisms. Therefore, increased knowledge of one superfamily can assist the study of the others. It is. time for one of these superfamilies to be comprehensively investigated, and the size of the Cynipoidea makes it the obvious choice. Phylogenetic investigations of the Chalcidoldea (Gibson, 1985; 1986) are hampered by the large size of this superfamily, and the Proctotrupoidea is not a single holophyletic group.

THE STUDY GROUP: CYNIPOIDEA

The cynipoids are mostly small (5mm or less) or very small parasitoids. They are robust insects, frequently brown or black in colour. The antennae are usually 13 segmented in females, the pronotum reaches back to the tegulae and the gaster is laterally compressed. The characteristic forewing venation is moderately reduced (Fig. 151) compared to that of most Ichneumonidae. The marginal cell is distinctively triangular (Fig. 114). There is usually no pterostigma, the costal vein is absent, and the discal cell is incomplete.

The superfamily consists of about 3500 species but there are many more species, especially Eucoilidae, awaiting description (Nordlander, 1984). The best known Cynipoidea are probably the gall-formers. However, most Cynipoidea are parasitoids of Symphyta, Coleoptera, Neuroptera or Diptera larvae and hyperparasitoids of Homoptera.

MATERIAL

Most of the Cynipoidea that have been examined are from the extensive collection in the Natural History Museum. A large number of additional specimens have been borrowed from collections housed in the major Natural History Institutions of the world (see Acknowledgements).

Collection of material

During the course of this study Cynipoidea were collected using techniques described by Fergusson (1986) and Noyes (1982), including malaise trapping (Townes, 1972), sweep netting, use of pitfall and yellow-pan traps and leaf-litter sampling. The specimens were mounted, on one side, onto pinned card triangles using a water soluble glue.

Rearing Cynipoidea.

Several species were reared in order to acquire

larvae, and fresh adults. Galls were collected and the cynipids reared under ambient conditions or in a controlled environment room (16 hour day, 18 degrees Celsius).

Larvae of the parasitoid species were much more difficult to obtain, but some larvae were obtained from cultures of Diptera in Holland. Older material, including the original slides made by Haviland (1921a; 1921b) were also studied.

Attempts were made to rear eucoilids on decaying banana and on rotten meat but with little success; Alysia manducator (Braconidae) was the only parasitoid reared.

SELECTION OF OPERATIONAL TAXA

It is not feasible with the computer facilities available to perform a detailed cladistic analysis on a large number of taxa. Therefore some form of selection is required before the higher classification of the Cynipoidea can be studied. The last broad-range study of the Cynipoidea (Weld, 1952) lists eleven subfamilies and since then three more subfamilies have been described. These 14 subfamilies provide a basis for the selection of exemplar species.

The International Code of Zoological Nomenclature defines a name of the family-group in terms of a type-genus (Article 63) and the type-genus name is born by a type-species (Article 67a). So the type-species of the type-genus of each of the 14 subfamilies were taken as exemplar species (see Rohwer & Fagen, 1917; 1919). Extra genera (represented, whenever possible, by the type-species) were selected in order to represent diversity and areas of current taxonomic difficulty. Altogether 31 exemplar species were chosen (Table 1). This selection took place after an examination of over 150 nominal genera.

Tax No		Current subfamily (see Chapter 3)
1	Ibalia leucospoides Hochenwarth	IBALIINAE
2	Oberthuerella lenticularis Saussur	COBERTHUERELLINAE
3	Tessmanella expansa Quinlan	
4	Liopteron compressum Perty	I. TOPPED THAP
5	Plastibalia violaceipennis Kieffer	
6	Pseudibalia fasciatioennis Kleffer	
7	Mesocynips insignis Cameron	MESOCYNIPINAE
8	Paramblynotus punctulatus Cameron	
9	Kiefferiella rugosa Ashmead	
10	Aspicera scutellata Villers	ASPICERINAR
11	Callaspidia defonscolombei Dahlbon	
12	Omalaspis carinata Kieffer	
13	Anacharis eucharioides Dalman	ANACHARITINAE
14	Aegilips nitidula Dalman	
15	Xyalaspis laevigatus Hartig	
16	Figites scutellaris Rossi	FIGITINAE
17	Melanips opacus Hartig	12
18	Lonchidia maculipennis Dahlbom	
19	Neralsia rufipes Cameron	
20	Eucoila crassinerva Westwood	EUCOILINAE
21		
22 23	Rhoptromeris heptoma Hartig	2.2
	Dilyta subclavata Förster	CHARIPINAE
24	Apocharips xanthocephala Thomson	
25	Phaenoglyphis xanthochroa Förster	ALLOXYSTINAE
26	Alloxysta macrophadna Hartig	
27	Pycnostigmus rostratus Cameron	PYCNOSTIGMATINAE
28	Aulacidea hieracii Bouché	CYNIPINAE
29	Cynips guercusfolii Linnaeus	
30	Austrocynips mirabilis Rick	AUSTROCYNIPINAE
31	Himalocynips vigintilis Yoshimoto	HIMALOCYNIPINAE

Table 1. The 31 cynipoids selected as representative taxa.

METHODS

Terminology

The morphological terms used in this thesis are taken from Eady (1968), Fergusson (1985, 1986; 1988), Harris (1979), Nordlander (1982), Richards: (1977), Ronquist & Nordlander (1989) and Snodgrass (1935).

Wing vein and cell terminology (Comstock, 1918; Eady, 1974; Rohwer & Gahan, 1916 & Ross, 1936), is illustrated in figure 102. Veins can be present, present only as pigment, or "spectral" i.e. only visible in reflected light (Mason, 1986). Here the normal convention of not including spectral venation has been followed.

The Snodgrass (1941) terminology for male genitalia is widely used for the smaller parasitica and is adopted here, rather than the older Peck (1937) terminology.

Cladistic terminology is explained in chapter 2.

Microscopy

A Leitz T.S. stereo and a Leitz Dialux phase contrast microscope were used for optical microscopy. Scanning Electron Microscope photographs were taken on International Scientific Instruments 60A, Cambridge 180 and Hitachi 2500 machines. Specimens were gold coated on a Polaron E500 coating unit and a Polaron E100 Series II cool sputter coater.

Computation & computers

Principal components analysis is an ordination technique that reduces the dimensionality of hyperspace by calculation of orthogonal eigenvectors. Thus, with a reasonably well structured data-set, a valid summary of variation can be projected in three dimensions. This technique, which is explained in Sneath & Sokal (1973), was used to analyse antennal measurements. The cynipoid data was analysed on a PDP 11/24 minicomputer via the system program PIP and the multivariate analysis facility of MINITAB.

The application of the cladistics programs used in this study is best explained in conjunction with cladistic theory (see chapter 2). The LEQU suite of programs and the O'NOLAN weighting program (see Appendix 1) are written in BASIC. A BBC model B microcomputer with 6502 co-processor was used for this analysis. The parsimony program HENNIG86 was run on a Sanyo MBC-16 Plus 2 microcomputer.

The partition of continuous variables was investigated using the STEP programs. Continuous variables could be divided into intervals each containing one recorded value, but that would quickly overwhelm the analysis. The STEP programs provide a way of chosing a few from the many possible partitions of the continuous data. STEPONE analyses continuous numerical variables, and ranks

the discrete steps in the data. The scores are replaced by their rank numbers, matching scores get matching rank numbers. The lowest score is counted as step zero, the remaining scores are numbered in rank order as steps 1, 2, etc. STEPTWO uses Fisher's 2 X 2 exact probability to assign a probability to each of the possible partitions. The distribution of the data is viewed in the light of the null hypothesis - that there is no difference in the distribution of the data. Thus the most significant partition can be deduced. The program assigns each probability to a significance level on a simple scale representing significance at 5, 1, .33, .1 .033, .01, .0033, .001, .00033 and .0001 percentage levels. The output from STEPTWO consists of a matrix of the rank values for two variables. The matrix cells containing the significance scale values. (For further details see, Underwood and Stimson (in press).] The output Was converted into a three dimensional map of the probability scale contours. [A graph drawing program (Harding, 1982) was modified and used for this purposel. These plots (Figs 17-20) represent the rank value of one variable v that of another v the significance scale number. When two continuous variables are correlated there is a diagonal group of higher significance levels around which other pairs of probabilities form contours. The STEP suite was run, in BASIC, on the BBC computer.

Dissections

Both dry (very brittle) and freshly collected specimens were softened in warm 10% Potassium hydroxide and dissected in distilled water. Dissections were secured in wax, or on adhesive tape and tissue was removed using a needle tip covered in adhesive, the adhesive was applied by scraping the needle over Cellulose acetate tape (Gibson, 1985). Specimens and dissections were cleaned, in Tepol, in a small tube placed in an ultrasonic cleaner. Thoracic musculature was investigated in specimens dried with a Tousimis Research Corporation Samdri-780A critical-point drier.

CHAPTER 2: CLADISTIC THEORY

PHYLOGENETIC RECONSTRUCTION

Orthodox classification (e.g. Mayr, 1963; 1969; Simpson, 1961; 1975) is based on intuitive judgements founded on systematic experience. The results can be excellent but are subjective, and invalid in terms of Popperian logic (Popper, 1959).

Phenetics (Sokal & Sneath, 1963; Sneath & Sokal, 1973) led to the development of numerical techniques, but no account was taken of evolutionary polarity, and the groups were not always uniquely defined (Pratt, 1972; Nelson & Platnik, 1981). Phenetics has now been displaced by cladistics.

Hennig (1950; 1965; 1966; 1969; 1981) produced the first operational method (CLADISTICS) for reconstructing phylogenies. He postulated that common ancestry is defined by shared, derived, homologous character-states (SYNAPOMORPHIES), but not by shared primitive character-states (SYMPLESIOMORPHIES), nor by independently derived and thus non-homologous character-states. Organisms are grouped together (CLADES) on the basis of features that they all possess, and that other organisms do not. Patterns of synapomorphies - CLADOGRAMS are distinguished from representations of evolutionary history - TREES, and from trees that incorporate biological, ecological and similar data - SCENARIOS (Eldredge, 1979; Eldredge & Cracraft, 1980; Eldredge & Tattersall, 1975; Harper & Platnick, 1978; Patterson, 1980; 1982; Platnick, 1977; Tattersall & Eldredge, 1977).

An important advantage of cladistics is that it lends itself to modern computational methods (Farris et.al., 1970; Kluge & Farris, 1969).

Homoplasy

Ideally each character helps to establish the phylogeny, but with real data HOMOPLASY (similarity not due to common descent) will create incompatibilities between characters. Homoplasy is a significant restriction on analysis, and is caused by evolutionary parallelism, convergence or character-state reversal. CONVERGENCE is similarity caused by independent acquisition of an attribute by two or more unrelated lineages whose (remote) common ancestor did not have the character. PARALLELISM is independent development (not as a direct result of common ancestry) of a character-state by related organisms due to similar selective pressures (Cantino, 1985). REVERSALS are back mutations (double apomorphies), they may arise by the failure of genetic suppression of a character (Hecht & Edwards, 1977).

Holophyly

Hennig (1966) defined a MONOPHYLETIC taxon as a group of species derived from a common ancestor. Due to an ambiguity the term HOLOPHYLETIC is now used to include an ancestral taxon and all of its descendants (Ashlock, 1971. c.f. Farris, 1974). A PARAPHYLETIC group consists of the ancestor plus some, but not all, of the ancestor's descendants, and a POLYPHYLETIC assemblage is an artificial aggregation based on shared non-homologous characters. Thus holophyly, paraphyly and polyphyly are characterized by synapomorphies, synapomorphies / symplesiomorphies and convergence respectively (Fig. 1).

1	1+2 = a holophyletic grouping
2	1+2+3 = a paraphyletic grouping
	2+3 = a polyphyletic grouping
4	* = an apomorphy

Figure 1. Holophyly, paraphyly & polyphyly.

CLADISTIC ANALYSIS

Modern science is founded on Occam's Razor (that the best explanation is the one that accommodates all the relevant facts with the fewest explanatory assumptions). However, no method that is consistent with this principle has yet been developed to deal with homoplasy. Instead, the two approaches of making changes to account for all the data, or making no assumptions and accounting for as many facts as possible, have been developed independently. PARSIMONY analysis seeks the answer with the smallest number of character transformations. COMPATABILITY analysis seeks the answer with the largest number of compatible characters (Felsenstein, 1973; 1978a; 1978b; 1979). As the frequency of homoplasy increases so the two methods give increasingly different results (Gauld, 1983). Both methods are NP-complete i.e. they are computations that lack an efficient algorithm (Day, 1983; Day & Sankoff, 1988; Felsenstein, 1982). This means that the results are only locally optimal and cannot be considered completely reliable (hence the need for the supporting evidence e.g. biology).

Parsimony

Apart from doctrinal criticisms by Felsenstein (1981), Friday (1982), Panchen (1982) and Pratt (1972); there are specific criticisms of the parsimony method.

- 1 Because transformations are minimized, a set of "poor" characters can be chosen instead of a slightly smaller set of "good" characters (Gauld, 1985).
- 2 Different (equally parsimonious) trees can be found depending on the sequence of data entry (Gauld, 1985).
- 3 It is not possible to predict the minimum tree length for a data set (Felsenstein, 1982). With as few as twenty taxa it is impracticable to register the vast number of trees in order to select the most parsimonious. Thus it can only be assumed that the result is the shortest tree.
- 4 Parsimony methods estimate minimum transformation, but there is no reason to assume that evolution is by minimum modification (Darwin, 1859; Underwood, 1982; Gauld & Underwood, 1986).
- 5 Parsimony sometimes results in a plethora of minimum length trees with vastly different topologies (Sharkey; 1989).

Compatibility

LeQuesne (1969) following the work of Wilson (1965), showed that the consideration together of independent two-state characters could indicate the possibility of their non-unique derivation. Thus if all 4 possible combinations of a pair of two-state (plesiomorphic 0 to 1 apomorphic) characters occur (0,0; 0,1; 1,0 and 1,1) then there is an incompatibility (Fig. 2). This is a NON-POLAR INCOMPATIBILITY and reversing the 0 and 1 scores does not dispel it. (The states 0,1; 1,0; and 1,1 occuring together in the same lineage, without the 0,0 score, cause a POLAR-INCOMPATIBILITY which can be dissipated by reversing the polarity of either or both the characters.)

11		11		11		11	
10	01	10	01	10	01	10	01
00		0	0		0	C	0

Figure 2. The four homoplasies of four paired characters.

By comparing each character against every other it is then possible to calculate the ratio of the actual number of non-polar incompatibilities found, to the total number o£ non-polar incompatibilities expected (on a null hypothesis of random distribution of character-states) for each character. LeQuesne (1972, 1974, 1979) defined this ratio (expressed as a percentage) as the COEFFICIENT OF CHARACTER STATE RANDOMNESS; a coefficient of 100% would suggest a random distribution. In the production of a totally compatible data-set (CLIQUE) the LeQuesne ratio is used to locate the most incompatible character. This character is deleted from the data and the new set re-analysed. Repeating this "BOIL-DOWN" will eventually leave a clique, which is used to construct the cladogram (Estabrook et.al. 1976a; 1976b; 1977; 1978; 1979; Meacham, 1981).

Compatibility analysis has two significant failings. The clique may be too small to provide sufficent resolution of the taxa (Farris, 1983). Secondly, two or more equally large cliques may be produced with no great evidence to predict which is the better (Kluge, 1976). The first failing can be reduced by the application of LeQuesne's procedure to subsets of the data. Characters eliminated from the clique may still be compatible within a subset and can provide valuable secondary evidence (Strauch, 1984). In response to the second criticism, Estabrook & Anderson (1978) developed a technique of "core" analysis - the core defines a dendrogram that is supported by all the known cliques.

CHOICE OF ANALYTICAL METHODS

According to Felsenstein (1982) it is the rate of evolution in the group, which determines which method should be used. If rates of evolution are uniformly high, then neither method is applicable. If the rate is low and uniform then unweighted parsimony is indicated and if low but unevenly scattered then compatibility is indicated. Unfortunately Felsenstein does not explain what "low" or "high" are, and what sort of scatter is "uneven". Also it is not known in advance what the rate of evolution might be in the Cynipoidea. If the rate of evolution is proportional to the level of homoplasy then the rate is very high in at least some parasitic Hymenoptera (e.g. Gauld, 1985 found a LeQuesne coefficient of 83% in the Ichneumonidae).

There is a strong suspicion that cynipoid homoplasy is not evenly distributed and that this is why the past classifications have been unsuccessful - because they were biased towards certain "poor" character-suites. An advantage of compatibility methods is that they provide the opportunity to see the actual pattern of incompatibilities. "Poor" characters are identified and thus at least some homoplasy may be understood. Such an understanding is vital before a better classification can be produced.

The Cynipoidea, like other derived Hymenoptera, exhibit many loss-characters and these are a major source of homoplasy. It could be argued that these characters should be deleted before analysis but that would be invalid data dredging (Selvin & Stuart, 1966).

It is concluded that compatibility is the most appropriate technique for this study of the Cynipoidea. However, in order to be thorough, a parsimony analysis was also conducted.

COMPUTER PROGRAMS

Compatibility programs

Underwood (1982; Gauld and Underwood, 1986) developed the LEQU programs (see Appendix 1). The characters of the study taxa are awarded binary scores and these scores are converted by the CONVERT program into a form that can be read by the other programs. The program LEQUA prints out a matrix of scores for taxa versus characters. The second program (LEQUB) computes the Lequesne ratio (see above) for each character. The polar and non-polar incompatabilities are tabulated and an overall Leguesne coefficient is computed. The characters are then listed in order of their ratios. A "boil-down" facility enables the compatible clique to be ascertained (see above). The program LEQUC tabulates a matrix of taxa versus characters and the frequency of incompatibilities is used to award "MARKS" (demerits). A "mark" is awarded each time one taxon is uniquely responsible for an incompatibility between a given character pair. The output from the program consists of a character / taxon matrix but, in place of the original score, each cell contains the number of times that a particular score was marked (e.g. Table 12). Against each taxon the LEQUC program prints the number of "marks" accumulated. The taxa or characters most frequently marked will be the most discordant; a high mark for any character / taxon combination indicates the likelihood of homoplasy with respect to the other taxa (see Guise et.al., 1982).

Character weighting

O'Nolan (1985; Moody & O'Nolan, 1987) developed LeQuesne compatibility into a weighting scheme in order to discover the best supported or least contradicted cladogram. Detection of an incompatibility does not indicate which of the characters is homoplasious. However, if one of two such characters has a lower overall compatibility (tested against all the other characters) it is more likely to be the homoplastic character.

Dr G. Underwood has developed O'Nolan's algorithm (Table 2) into a BASIC program (O'NOLAN). The program (see appendix 1) provides weights for the characters and indicates both the surviving characters and those characters that were rejected as having lowest weight on an iteration.

1 Eliminate unvarying and singleton characters.

- 2 Assign a weight of one to all characters.
- 3 Construct a character compatibility matrix.
- 4 Count the compatibilities for each character.
- 5 Construct a new array. For each character A make a pairwise compatibility test using the matrix (above). a) If A is compatible with character B then add B's
 - compatibility total to the total for A.
 - b) If A and B are incompatible then subtract B's total multiplied by the weight for B, from A. [This produces a more conservative weighting by reducing the weight penalty for incompatibility].
- 6 Divide each row sum by the square of (n-1). [This scales the row sum between +1 and -1.]
- 7 If this is the first pass then no characters are elliminated. (This is reduces the influence of poor characters, which have an initial weight of 1.) 8 Eliminate the character(s) of equal lowest weight.
- 9 Stop if remaining characters have a weight of one or if only two characters remain, otherwise go to three.

Table 2. The O'Nolan algorithm.

The parsimony program

HENNIG86 is the most recently available parsimony program. It is subject to copyright so details of the code are unknown. With the large cynipoid data-set only limited tree construction options are available. Extended branch-swapping was applied to the trees found, all but the shortest trees were rejected and the remainder were used to construct a Nelson consensus tree (Farris, 1969; 1970; 1977; 1979).

CHARACTER SCORING

A transformation series can have only one ancestral condition but there may be more than one apomorphic state (Hecht & Edwards, 1976; 1977). The scoring of multistate characters for compatibility analysis is in additive binary form i.e. the binary components of a multistate variable bear the same character number but are distinguished by figures after a decimal point (e.g. Table 8). Branching patterns can be included in this method of scoring. Variable "V" scores will be interpreted as both 0 and 1, and missing scores "-" are not used in character comparison.

Ghiselin (1984) analysed nonsubstantive characters, e.g. distribution, but as distribution is not directly inheritable it is not a valid character (O'Nolan, 1985). In the present study the morphological characters are subjected to cladistic analysis and the results are then compared with the available nonsubstantive characters.

ASSIGNMENT OF EVOLUTIONARY POLARITY

The decision about which character-states are derived (apomorphic) depends on the evolutionary direction or POLARITY of the phenocline (Nelson, 1973; 1978). Several CRITERIA have been used to assign polarity (Solbrig, 1970) and they are discussed below.

In-group analysis of character-state distribution

The most frequently occurring character-state in the group is taken to be primitive. This "commonality principle" infers that shared states are ancestral and not parallelisms (Crisci, 1980; Crowson, 1970; Estabrook et. al., 1977; Melville, 1962; 1963). This criterion is rejected because the frequency of a character-state depends on the evolutionary history of the lineage

(Stevens, 1980) subsequent to the origin of the state.

Out-group analysis of character-state distribution

Out-group analysis requires a knowledge of the relationship between the taxon being examined, its sister-group, and at least one taxon that is more primitive (the latter two being the out-groups). A character-state that occurs in the in-group and the basal group is primitive. A character-state that occurs only in the out-groups is primitive and the state in the in-group is derived.

There are two sources of error that can affect this criterion. The first is homoplasy, but this should be detected during subsequent cladistic analysis. The second 15 that an incorrect out-group may be selected (Throckmorton, 1967). Colless (1967, 1969) asked how a comparison can be made with a closely related group when the phylogeny is unknown. However, the requirement for a close relationship is a practical one (more characters in common). So a provisional phylogeny is acceptable for out-group analysis, providing continued efforts are undertaken to assure holophyly, that the in-group is not the basal group, and that the out-groups are correct (Bremer & Wanntorp, 1978; Hull, 1967; Jong, 1980; Schlee, 1969; Wagner, 1961; 1969; 1973; Walker, 1976).

Palaeontology

7

The temporal sequence of fossils was regarded as central to the concept of phylogeny (Lam, 1959). However, for polarity determination, fossils should be interpreted only after they have been assigned to Recent holophyletic groups (Cracraft, 1974; 1979; Crisci & Stuessy, 1980; Hull, 1980; Patterson, 1977; 1981; Platnick, 1980; Schaffer et.al., 1972). Further it is impossible to study the entire structure (holomorphology) of a fossil organism. Too few fossil Cynipoidea are available for this criterion to be appropriate here.

Karyology

Genetic structure has been used to establish polarity

(Gibby, 1981; Jones, 1977; Turner, 1984). However, little is known about cynipoid karyology and so this criterion is inappropriate at present.

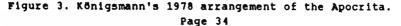
Other Criteria

Complexity, specialization, function, ontogeny, vestigial organs, teratology, correlation, character sequences and trends are now known to be invalid as direct determinants of polarity (Alberch, 1980; Bishop, 1982; Cronquist, 1968; Lande, 1978; Marx & Rabb, 1970; 1972; Platnick, 1979; Sporne, 1976; 1977; Stern, 1978; Thorne, 1976).

Summary

Out-group analysis forms the only acceptable method for assigning evolutionary polarity (Arnold, 1981; Colless, 1967; Jong & Burtt, 1975; Lundburg, 1972; Ross, 1974; Watrous & Wheeler, 1981; Wiley, 1981) to cynipoid character-states.

CHAPTER 3: ANALYSIS OF THE ESTABLISHED CLASSIFICATION


If the classification of the Cynipoidea is to be improved, it is important to understand what is wrong with the current classification. Poor resolution is most likely to be caused by a dearth of characters and particularly too few apomorphies and synapomorphies (poor character definition can be included here) or high levels of homoplasy reducing the information value of characters. In order to establish the extent of these two factors, the existing classification was subjected to cladistic analysis.

ESTABLISHMENT OF OUT-GROUPS FOR POLARITY DETERMINATION

Phylogeny of the Hymenoptera

The Hymenoptera is divided into the Symphyta, which contains the most primitive species, and the Apocrita. The latter is generally considered to be a holophyletic group (Rasnitsyn, 1968; 1969; 1980), but its phylogeny is incompletely resolved. Königsmann (1978) investigated the apocritan lineages and found eleven holophyletic groups (Fig. 3). He also provided an alternative postulate of

	?	Evanioidea
:	· · · · · · · ·	Cynipoidea
:	· · · · · · · · · · · · · · · · · · ·	Chalcidoidea
		Megalyridae
	· · · · · · · · · · · · · · · · · · ·	Ichneumonidae
	· · · · · · · · · · · · · · · · · · ·	Braconidae
		Stephanidae
		Trigonalyidae
	. ?	Ceraphronoidea
	.?	Diapriidae
		Pelecinidae
	· · · · · · · · · · · · · · · · · · ·	Monomachidae
	• • • • • • • • • • • • • • • •	Roproniidae
		Proctotrupidae
•		Heloridae
		Vanhorniidae
		Aculeata

..... Evanioidea Cynipoidea Chalcidoidea Aculeata

Figure 4. Königsmann's alternative arrangement.

which taxa are related to the Cynipoidea (Fig. 4). In both arrangements the Chalcidoidea is the sister-group of the Cynipoidea. The features that link the Evanoidea and Aculeata to the Cynipoidea and Chalcidoidea have been shown to be symplesiomorphies (Gibson, 1985; 1986; Richards, 1977; Mason, in. litt.) and thus Königsmann's second arrangement is not accepted.

Rasnitsyn (1969) provided a different phylogeny of the Apocrita (Fig. 5), which he changed (Rasnitsyn, 1980) to include only four groups: Stephanomorpha, Evaniomorpha, Ichneumonomorpha and Vespomorpha; the "microhymenoptera" (Cynipoidea, Chalcidoidea and Proctotrupoidea) being placed with the Ichneumonoidea in the Ichneumonomorpha. Recently, Rasnitsyn (1988) has produced yet another arrangement (Fig. 6); here the Cynipoidea is contained within the infraorder Proctotrupomorpha. The Cynipoidea is shown as the sister-group of the Diapriidae but the

? Megalyridae ? Trigonalyidae ? Evanioidea ? Ichneumonidae ? Braconidae ? Cynipoidea ? Diapriidae ? Pelecinidae ? Roproniidae ? Proctotrupoidea ? Heloridae ? Xanhorniidae	.?	Ceraphronoidea
? Trigonalyidae ? Evanioidea ? Ichneumonidae ? Braconidae ? Cynipoidea ? Chalcidoidea ? Diapriidae ? Pelecinidae ? Roproniidae ? Heloridae ? Yanhorniidae	.?	Megalyridae
? Evanioidea ? Ichneumonidae ? Braconidae ? Cynipoidea ? Chalcidoidea ? Diapriidae ? Pelecinidae ? Monomachidae ? Proctotrupoidea ? Heloridae ? Yanhorniidae		
Braconidae Cynipoidea Cynipoidea Chalcidoidea Pelecinidae Pelecinidae Proctotrupoidea Heloridae Vanhorniidae		
Cynipoidea Chalcidoidea Chalcidoidea Pelecinidae Pelecinidae Proctotrupoidea Proctotrupoidea Proctotrupoidea Vanhorniidae	:	Ichneumonidae
Chalcidoidea Chalcidoidea Piapriidae Pelecinidae Monomachidae Proctotrupoidea Heloridae Vanhorniidae	· · · · · · · · · · · · · · · · · · ·	Braconidae
? Diapriidae ? Pelecinidae ? Pelecinidae ? Monomachidae ? Roproniidae ? Proctotrupoidea Heloridae Vanhorniidae	: :	Cynipoidea
Pelecinidae Monomachidae ? Roproniidae ? Proctotrupoidea Heloridae Vanhorniidae		Chalcidoidea
Monomachidae ? Roproniidae ? Proctotrupoidea Heloridae Vanhorniidae		Diapriidae
		Pelecinidae
Proctotrupoidea Heloridae Vanhorniidae	• • • • • • • • • • • • • • • • • • • •	Monomachidae
Heloridae Vanhorniidae		Roproniidae
····· Vanhorniidae		Proctotrupoidea
•-		Heloridae
.7 Aculeata	: .	
	.7	Aculeata

Figure 5. Apocritan phylogeny (Rasnitsyn, 1969).

..... Symphyta Stephanidae 🔸 Trigonalyidae Ceraphronoidea Ichneumonoidea Aculeata ····· Gasteruptiidae Evaniidae ... Cynipoidea ... Diapriidae ... Rhoproniidae .. Heloridae Chalcidoidea ... Scelionidae ... Platygasteridae

Figure 6. Rasnitsyn's 1988 arrangement of the Hymenoptera.

characters linking these two groups are loss-features likely to be parallelisms.

Out-groups of the Cynipoidea

The above examples show that it is not possible, at present, to provide anything like a definitive phylogeny of the Apocrita. However, a wide investigation of the likely taxa indicates that the sister-group of the Cynipoidea is probably to be found amongst the Chalcidoidea or proctotrupoid groups.

Polarity determination requires knowledge of the basal out-group and, for the Cynipoidea, this must be sought amongst the less derived Apocrita. Several of the "primitive superfamilies" are rare, specialized, or of a very uncertain position, and therefore the Ichneumonoidea appear to be the most appropriate basal out-group. However, if, during polarity assessment, there was any doubt about the evolutionary direction of a phylenocline, then several groups were investigated and, in order to be assured of knowing the plesiomorphic state, these studies always included examination of Symphyta.

1

Polarity decisions

There has been no previous attempt to establish the

polarity of a comprehensive range of cynipoid character--states. Therefore, a large number of cynipoid and out--group specimens (over 35,000) were examined so that the assessments should be well founded. The inevitably repetitious explanations of the polarity decisions have not been provided in the text because the compatibility programs do not require evolutionary direction for clique formation. A confident assessment of polarity for some, but not necessarily all, characters is sufficient to produce a rooted tree.

THE TAXONOMIC HISTORY OF THE CYNIPOIDEA

Linnaeus (1758) placed the cynipoids in a single genus (Cynips) and in 1805 Latreille elevated them into a family, but it was not until 1899 that their current status, as a superfamily, was recognised by Ashmead (Table

Families	Subfamilies	Tribes
Figitidae	Figitinae	
	Onýchiinae 1	-
	Anacharinae	10 m 1
	Liopterinae	0-11
	Eucoilinae	C-11
	Xystinae 2	Xystini
Cynipidae	Cynipinae	Loboscelidiini 3
		Cynipini Rhoditini Pedaspidini 4
		Aulacini Eschatocerini 4
	Synerginae	-
	Ibaliinae	-

Table 3. Ashmead's 1903 classification (1 = Aspicerinae, 2 = Alloxystinae, 3 - Chrysidoidea, 4 = aberrant genera).

Families	Subfamilies	Tribes
Ibaliidae Liopteridae	-	
Cynipidae	Cynipinae	Cynipini
	Eucoilinae Figitinae	Charlpini
	rigicinae	Figitini Anacharitini Aspicerini

Table 4. The classification from Hedicke, 1942.

Families	Subfamilies	Tribes
Ibaliidae	Ibaliinae	-
Liopteridae	Liopterinae	
-	Oberthuerellinae	-
	Mesocynipinae	-
Figitidae	Figitinae	-
-	Aspicerinae	-
	Anacharitinae	-
Cynipidae	Cynipinae	-
	Pycnostigmatinae	-
	Charipinae	-
	Eucoilidae	-

Table 5. The classification from Weld, 1952.

Families	Subfamilies	Tribes
Ibaliidae	-	
Liopteridae	Liopterinae	-
-	Oberthuerellinae	÷
	Mesocynipinae	÷ .
Figitidae	Figitinae	1 H + 1
-	Aspicerinae	
	Anacharitinae	
	Himalocynipinae	-
Eucoilidae	X - (
Cynipidae	Cynipinae	-
	Alloxystinae	-
	Austrocynipinae	-
	Pycnostigmatinae	-

Table 6. The classification from Quinlan, 1979.

FamiliesSubfamiliesTribesIbaliidae--Bucoilidae--Aspiceratidae--Cynipidae--Anacharitidae--Figitidae--Charipidae--Alloxystidae--

Table 7. Classification from Evenhuis, 1982.

3). Most subsequent authors (e.g. Hedicke, 1942) included the Eucoilinae and the Figitinae in the family Cynipidae (Table 4), but later (Tables 5 & 6) these were accepted as distinct families. The tendency of taxonomists to upgrade higher taxa is shown in a recent classification (Table 7), where all the suprageneric taxa are treated as families.

Representative classification

The most detailed of the modern studies is that of

Weld (1952), but it does not include the Himalocynipinae and Austrocynipinae which were not described until 1970/1. However, these subfamilies are considered in the work of Quinlan (1979). Therefore the classifications of both Weld and Quinlan will be used to represent the "current classification". The family / subfamily keys of these two authors were broken down into their consitituent character-states, which were then analysed.

The family / subfamily keys of both Weld (1952) and Quinlan (1979) contain monochotomies, many badly defined characters and several repetitions. With the exception of the latter, all the characters are listed below. The original wording has been maintained, therefore the terminology is inconsistent with the remainder of this thesis. Comments and polarity assessments are given within brackets - []. Scores: 0 = plesiomorphic state, 1 = apomorphic state.

CHARACTER-STATES FROM WELD, 1952

- 1.1, 1.2 Species larger than 2mm. [0,0]. / Large heavy-bodied forms [1,0]. / Under 2mm long. [0,1].
- 2 Scutellum without spine (0). / Scutellum ending in a spine(s) (1).
- 3 [Scutellum sculptured (0)]. / Scutellum smooth [1].
- 4 Scutellum without a "cup" (0). / Characteristic raised "cup" present on disc (1).
- 5.1, 5.2 Body usually sculptured (0,0). / Thorax without sculpture (0,1). / Thorax dull [rough] sculptured (1,0).
- 6 Radial cell closed [0]. / [open (1)].
- 7 Radial cell less than nine times as long as broad (0).
 / Radial cell at least nine times as long as broad (internal measurements) [1].
- 8 Areolet present [0]. / Areolet absent [1].
- 9 Areolet directly under first cubital cell [0]. / Areolet under centre of radial cell [1].
- 10 Venation normal (0). / Radial cell suggesting a stigma
 (1).
- 11 [winged (0)]. / Fully winged, with rudimentary wings

or wingless (Reduced wings (1)).

- 12 Hind femur unarmed [0]. / Hind femur with a tooth on the underside [1].
- 13 Tarsal claws simple or toothed [toothed (0)]. / [bifid (1)].
- 14 First segment of hind tarsus less than twice as long as segments 2-5 united (0). / First segment of hind tarsus twice as long as segments 2-5 united (1).
- 15 Petiole sulcate [0]. / Petiole smooth [1].
- 16 Petiole inconspicuous or sessile not or scarcely longer than medially broad (0). / Petiole at least as long as medially broad (1).
- 17 Petiole attached normally [0]. / Petiole attached tangentially [1]. {It was considered that only the Liopterinae showed this feature but a careful examination has shown that this is also present in the Oberthuerellinae.}
- 18 (not wedge-shaped (0)). / Body, when seen from above, distinctly wedge-shaped [1].
- 19 (not blade-like (0)]. / Abdomen of female elongated, knife-like [1].
- 20 Tergite two not liguliform [0]. / Tergite two liguliform (actually saddle-shaped (1)).
- 21 Largest [gastral] segment (of female), in side view, tergite two or three (or the two fused with, or without, a visible suture). Never more than one short tergite in front of the large tergite (0). / Largest [gastral] segment (of female), in side view, tergite four, five or six. With two three or four short tergites behind the petiole and preceeding the big tergite [1].
- 22 Tergite two [of female] longer than tergite three [0].
 / Tergite two [of female] shorter than tergite three
 [1].
- 23 Abdomen with tergites two and three not fused [0]. / Tergites two and three fused [1].

ANALYSIS OF WELD DATA

All available specimens of the exemplar species (Table 1) were compared against the Weld characters and species scores were awarded (see Appendix 2). The data was processed through the LEQU programs (Tables 8-13) and fifty four non-polar incompatibilities were found, compared with 102 expected on the null hypothesis (of random distribution), an overall LeQuesne coefficient of 53% (Table 9). There were no polar-incompatibilities, and this strongly suggests that the assigned polarities are correct (or all wrong !). Characters 7, 9, 11, 14, 18 and 19 were completely compatible because they were all plesiomorphic (11, 18) or only scored a single apomorphy (7, 9, 14 and 19). The remaining characters all showed at least one incompatibility.

	1	1	2	2		6	5	6	7	•	•	1 0	1	1	1	1	1	1	1	1	1	2	2	
				3					'	0	,	0	Ŧ	2	3		Э	b	1	8	9	U	T	2
	1	2					2																	
23				~																				
			-		-		X	X	-	-	-	X	-	-	-	-	-	X	-	-	-	-	-	-
22	*	X	X	X	-	X	X	X	-	X	-	-	-	-	X	-					-	-	X	
21	-	-		-	-	-	-	-	-	X	-	-	-	-	-	-	X	Х	-	-	-	-		
20	-	-	х	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					
17	-	-	X	-	-	-	-	-	-	X	-	-	-	-	X	-	-	-						
16			X							X		-	-	-	X	-	X							
15	X	X	-	-		X	-	X	-	X	-	-	-	-	-	-								
14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-									
13	-	-	X	-	-	-	-	-	-	-	-	-	-	-										
12	-	-	-	-	-	-	-		-	х	-	-	-											
11	-	-	-	-	-	-	-	-	-	-	-	-												
10	-	-	-	-	-	X	-	x	-	-	-													
9	-	-	-	-	-	_	-	_	-	_														
8	X	-	X	-	-	x	-	x	-															
7	-	-	-	-	-	-	-	_																
9 8 7 6	-	X	X	х	х	X	х																	
5.2		-		-	-	-	•																	
5.1	-	-	x	-	-																			
4			-																					
	-	_	-																					
3 2	X	-																						
1.2	-																							

Table 8. Incompatibilities (X) between Weld characters.

Char		In	compati	ibilit;	e	5	Ch	ar	Incompatibilities								
		obs	exp	ratio	1	001				obs	exp	ratio	5	201			
1.1	:	5	13.17	0.38	-	0	1	. 2	:	5	11.25	0.44	-	0			
2	:	10	12.15	0.82	-	0	3		:	3	9.98	0.30	-	0			
4	:	2	8.27	0.24	-	0	5	.1	:	7	14.58	0.48	-	0			
5.2	:	3	9.09	0.33	-	0	6		:	11	15.47	0.71	-	0			
7	:	0	0.00	0.00	+	0	8		:	10	8.27	1.21	-	Ó			
9	:	0	0.00	0.00	-	0	10		:	3	5.58	0.54	-	0			
11	:	0	0.00	0.00	-	Ó	12			ĩ	5.58	0.18	_	ò			
13	:	4	5.58	0.72	-	0	14		:	ō	0.00	0.00	-	Ō			
15	:	9	12.91	0.70	-	Ó	16		:	8	13.54	0.59	-	Ō			
17	:	3	11.20	0.27	-	0	18		:	Ō	0.00	0.00	-	Ō			
19	:	0	0.00	0.00	-	0	20		:	1	8.27	0.12	-	Ō			
21	:	5	14.07	0.36	-	0	22		:	12	15.14	0.79	-	Ō			
23	:	6	11.20	0.54	-	0								•			

Table 9. LeQuesne ratios for the Weld data. [Char = character number, obs = number of observed incompatibilities, exp = number of incompatibilities expected if distribution random, ratio = obs/ex, pol = number of polar incompatibilities].

7	9	11	14	18 1.1	19	20	12	4
17	3	5.2	21	1.1	1.2	5.1	23	10
16	15	6	13	22	2	8		

Table 10. Weld characters ranked in order of their ratios.

In	character		
observed	expected	ratio	deleted
54	102.65	0.53	8
44	94.38	0.47	2
35	82.72	0.42	22
25	69.28	0.36	15
18	58.71	0.31	10
15	54.48	0.28	6
9	43.26	0.21	13
7	39.67	0.18	23
4	32.76	0.12	16
1	25.16	0.04	4
0	21.07	0.00	

Table 11. Boil-down of the Weld characters.

The boil-down facility of the LEQUB program was used to find a compatible clique (Table 11) for the data. Homoplasy was eliminated by the deletion of ten characters. The resultant cladogram (Fig. 8) was compiled from the clique apomorphies (Table 13). The cladogram is unrooted and taxa 13-16, 18-20, 27-29 and 31 are unresolved (see Table 1 for taxon numbers). The 1.2 (small size) clade does not correspond to any previously recognized taxon, it contains the Charipidae (Charipinae + Alloxystinae) and most of the Eucoilidae. However, Eucoila is a large eucoilid and has been excluded. The Eucoilidae is traditionally defined by the presence of a scutellar "cup", but this character (4) is incompatible with character 1.2 and was the last character deleted (Fig. 7 shows the alternative tree with character 4 retaind).

The 5.1 clade includes the Ibaliidae, Liopteridae, Aspicerinae and Melanips; this is a novel concept, the Aspicerinae and Melanips are normally associated with the Figitidae. Characters 1.1 and 21 unite the Ibaliidae with the Liopteridae, and within this clade Ibalia has three autapomorphies. The Liopteridae is divided into its traditional subfamilies but only the Oberthuerellinae is holophyletic.

Characters 1 1 1 1 1 1 2 2 2 2

				~	•		-	-	~	•						T					
				2	د	4	Э	Э	6	8	U	2	3	5	6	1	U	T	2	٦	
		1.5	2				1	2													
02 AOUT -	25.2	T.	2				1	2													
Taxa	(N)																				
1	(4)	1	-	-	+	÷	1	-	-	1	-	-	-	4	-	+	-	1	-	-	
2	(5)	-	-	1	-	-	-	-	-	5	-	1	-	-	1	1	-	-	1	-	
3	(1)		÷	-	÷	-	4	Ξ.	-	1	-	1	-	-	-	μ.	-	Ξ.	-	-	
5	(4)	- ÷	-	1	-	-	-	-	-	-	-	-	4	-	1	1	4	-	1	-	
7	(4)	-	-	1	-	~	-	-	-	-	-	-	4	-	1	1	-	-	1	Ξ.	
10	(1)	-	-	1	-	-	-	4	-	-	-	-	-	-	-	2	1	-	2	1	
13	(1)	-	_	-	-	-	-	-	-	-	-	-	-	1	1	-	2	-	-	_	
15	(1)	-	-	1	-	-	-	-	-	-	-	-	-	-	1	-	-	-	1	-	
20	(1)	1.00	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
21	(1)		-	-	-	1	-		1	-	-	-	-	-	-	-	-	-	-	-	
23	(3)	-	-	-	1	-	-	1	-	-	-	-	-	1	-	$\frac{1}{2}$	-	-	-	3	
24	(4)		1	Ξ.	1	-	-	1	-	-	4	-	-	1	-	-	-	-	4		
25	(2)	-	-	-	1	-	-	1	2	-	÷	-	\mathbf{w}	-	-	ч.	-	4	-	-	
27	(3)	-	-	-	-	-	1	-	1	-	3	ч.	-	-	-	-	-	-	-	1	
29	(4)	1	-	-	-	-	1	-	1	4	-	-	-	-	14	-	-	1	-	-	
30	(3)		-	14	4		1	4	1	4	3	а.	-	-	-	-	-	-	-	1	

Table 12. LEQUC marks for the Weld data. (Column N gives the mark component for each taxon.)

Figure 7. Weld data: tree with character 4 retained.

Characters

	5	1	2	1 7	12	7	14	19	2	9	1	3	5	1	1	
	i	i									;2		ż			
Tax											4		4			
1	1	1	1	0	0	1	1	1	0	0	0	0	0	0	0	
2	ī	ĩ	ĩ	ĩ	ĭ	ō	ō	ō	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	
3	ĩ	ĩ	1	î	î	õ	ŏ	õ	õ	ŏ	ŏ	ő	õ	ő	ő	
4	ĩ	ĩ	ĩ	ĩ	ō	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	õ	ŏ	ő	
5	ĩ	ĩ	ĩ	ĩ	õ	ŏ	ŏ	õ	ŏ	ő	õ	ŏ	ŏ	ő	ŏ	
6	ĩ	ĩ	ī	1	ŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	õ	õ	ŏ	õ	
7	1	1	ī	ō	õ	ō	ŏ	ŏ	ŏ	ŏ	õ	õ	õ	ŏ	õ	
8	ī	ĩ	1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	õ	õ	õ	ŏ	0	
9	ī	1	ī	ō	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ő	õ	ŏ	ŏ	ŏ	
10	1	ō	ō	õ	õ	ŏ	ŏ	ŏ	ĭ	ŏ	ŏ	ŏ	ŏ	ŏ	ö	
11	1	ō	0	õ	ō	õ	õ	õ	î	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	
12	1	0	0	0	0	0	ō	ō	ĩ	õ	õ	ŏ	ŏ	ŏ	õ	
17	1	0	0	0	0	õ	Ō	ō	ō	ĩ	õ	ŏ	ŏ	õ	ŏ	
30	1	0	0	0	0	0	0	ō	õ	ō	ŏ	ŏ	ŏ	õ	ŏ	
21	0	0	0	0	0	0	0	0	0	0	1	õ	õ	õ	õ	
22	0	0	0	0	0	0	0	0	0	Ō	ī	õ	ŏ	õ	ŏ	
23	0	0	0	0	0	0	0	0	0	0	ĩ	ĩ	ĩ	õ	ŏ	
24	0	0	0	0	0	0	0	0	0	0	1	ī	ĩ	ŏ	õ	
25	0	0	0	0	0	0	0	0	0	0	1	1	ĩ	õ	õ	
26	0	0	0	0	0	0	0	0	0	0	1	1	ī	õ	ō	
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
14	0	0	0	0	0	0	0	0	0	0	0	0	0	ō	ō	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Table 13. Data-matrix of the Weld clique; order rearranged.

Next, the subsets of the Weld data were reanalysed. Characters eliminated from the clique, but still compatible within the subset, can be used to provide further resolution of the subset (Strauch, 1984). Because subset analysis uses an incomplete sample, it is possible for polarities to be incompatible within the subset while compatible for the clique. Only one of the Weld characters, character 8, caused such a polarity change.

The analysis of the 5.1 subset found 18 incompatibilities, against 36.18 expected, a ratio of 0.5 (Table 14). Characters 8, 2, 13 and 22 were sequentially

	71419	Ibalia
		Oberthuerella
		Tessmanella
		Liopteron
		Plastibalia
	:	Pseudibalia
21		Mesocynips
1		Paramblynotus
-		Kiefferiella
:		Aspicera
		Callaspidia
	÷	Omalaspis
:		Austrocynips
:		Helanips
		Anacharis
		Aegilips
•		Xyalaspis
•	•••••	Figites
		Lonchidia
•		Neralsia
	•••••	
	•••••	Pycnostigmus
• • • • • • • • • • • • • • • • • • • •		Aulacidea
		Cynips
• • • • • • • • • • • • • • • • • • •	•••••	Himalocynips
• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	Eucoila
	•••••	Kleidotoma
· 1, 2 · · · · · · · · ·	• • • • • • • • • • • • • • • •	Rhoptromeris
1	•••••	Dilyta
		Apocharips
	• • • • • • • • • • • • • • •	Phaenoglyphis
		Alloxysta

Figure 8. Cladogram from the Weld data.

Char		Ind	compa	tibilit	ies	5	Char	Incompatibilities						
	0	obs	exp	ratio	1	pol			obs	exp	ratio	pol		
1.1	:	2	7.74	0.26	-	1	2	:	8	7.16	1.12	- 0		
6	:	2	7.16	0.28	-	0	8	:	5	4.27	1.17	- 2		
12	:	1	4.27	0.23	-	0	13	:	4	4.27	0.94	- 0		
16	:	3	7.74	0.39	-	0	17	:	3	7.74	0.39	- 0		
20	:	1	6.16	0.16	-	0	21	:	2	7.74	0.26	- 1		
22	:	5	8.08	0.62	-	0		•	-			-		

Table 14. Analysis of the Weld 5.1 subset (see table 9 for legends).

7		
•	12 ****	Oberthuerella
•		Tessmanella
.16*	1722*	Liopteron
.1,121.:	* * * * * * * * * * *	Pseudibalia
• •		Plastibalia
:13*		Mesocynips
• •		Paramblynotus
		Kiefferiella
•		Aspicera
:2022	*	Callaspidia
:6*:		Omalaspis
	.1,121. 	.16*1722*. .1,121.

Figure 9. The Weld 5.1 subset (* = additional character)

Char	I	ncompat	5	Char	Incompatibilities						
	ob	s exp	ratio	1	pol			obs	exp	ratio	pol
1.2	: 5	7.38	0.68	-	0	2	:	3	3.69	0.81	- 0
3	: 3	6.32	0.47	-	0	4	:	2	5.38	0.37	- 0
5.2	: 3	6.32	0.47	-	0	6	:	7	7.67	0.91	- 1
8	: 0	0.00	0.00	-	1	15	:	5	7.38	0.68	- 0
16	: 2	5.38	0.37	-	0	22				0.79	
23	: 5	6.72	0.72	-	0						•

Table 15. Weld data: analysis of the taxa outside the 5.1 subset (See table 9 for legends).

Figure 10. Simplified tree for the taxa outside the Weld 5.1 subset (* = additional character).

deleted in the boil-down and the resulatant tree is shown in figure 9.

The remainder of the clique was investigated (Table 15), 20 incompatibilities were found against 31.40 expected, that is a ratio of 0.64. Characters 6, 22, 23, 16 and 1.2 were deleted in the boil-down. The tree was compiled (Fig. 10) and it shows character 8 linking all the subset taxa except Cynips, thus the two genera of Cynipidae are separated. Eucoila is now associated with the other Eucoilidae, so perhaps this genus underwent a reversal with regard to character 1.2. Character 15, as well as isolating Anacharis from the other anacharitines, delimits an assemblage of morphologically dissimilar taxa.

CHARACTER-STATES FROM QUINLAN, 1979

- 1 Head broader than thorax when viewed dorsally [0]. / Head narrower than thorax, oblong in dorsal view [1].
- 2 (Clypeus normal (0)). / Clypeus projecting forward and upward away from the labium [1].
- 3 Antenna of male with modified segment, when present, always the third (0). / Male with the fourth, sometimes the third to fith antennal segment(s) modified [1].
- 4 Antenna of male 14-segmented [0]. / Male unknown [other than 14 segments (1)].
- 5.1, 5.2, 5.3 Antenna of female 13-segmented [0,0,0]. / Antenna of female 12-segmented [1,0,0]. / Antenna of female 14 to 19-segmented [0,1,0]. / Antenna of female 20-segmented [0,1,1].
- 6 Pronotum if raised dorsally into an indistinct anterior plate then without a posterior margin [0]. / Pronotum produced frontodorsally into an anterior plate with a strong posterior margin [1].
- 7 Pronotum not sharply angled anteriorly, [0]. / Pronotum generally sharply angled anteriorly, forming a lateral carina (1).
- 8 Scutellum without a spine [0]. / Scutellum with a distinct spine (or spines) at apex [1].

- 9 Scutellum without a "cup" (0). / Scutellum with a "cup"
 on dorsal surface [1].
- 10 Scutellum without three longitudinal carinae (0). /
 Scutellum with one or more [three] longitudinal carinae
 [1].
- 11.1, 11.2 Sculpture present on the vertex, mesonotum, scutellum, mesopleuron or gaster [0,0]. / Vertex, mesonotum, scutellum, mesopleuron and gaster smooth and shiny [0,1]. / Thorax (strongly) sculptured [1,0].
- 12 Radial cell closed (0). / Radial cell open on front margin (R1 and Rs2 not reaching margin of wing) [1].
- 13 Forewing without a pterostigma (0). / Radial cell of forewing with a distinct pterostigma (1).
- 14 Radial cell normal (0). / Radial cell much reduced, its veins thick and heavy [1].
- 15 Radial cell less than nine times as long as broad [0].
 / Radial cell at least nine times as long as broad [1].
- 16 Alate, without apterous forms [0]. / Winged, brachypterous or apterous [1].
- 17 Cubitalis divided externally before point of emission of 2rm (i.e. areolet present though often obsolete) [0]. / Cubitalis (Rs+M) divided externally at the point of emission of 2rm (i.e. areolet vestigial) [1].
- 18 Cubitalis (Rs+M), when visible, arising from a point nearer the middle of basalis (Rs and M) than to the junction of basalis with median (Cu1) [0]. / Cubitalis, when visible, arising from a point at or close to junction of basalis with median (Cu1) [1].
- 19 Cubitus (M) almost reaching apex of forewing, nervellus (Cu and Cu-a) and post nervellus (M-Cu) indicated [0]. / Cubitus vestigial, nervellus and post nervellus absent [1].
- 20 Mid tibia with two distinct spurs [0]. / Mid tibia often with only one spur [1].
- 21.1, 21.2 Hind tibia with two distinct spurs [0,0]. / Hind tibia with one spur [1,1] or more often with two very unequal spurs [1,0].
- 22 Hind tibia not longitudinally ridged or furrowed externally or posteriorly, at most with a longitudinal

carina or groove internally [0]. / Hind tibia, in most genera, longitudinally ridged or furrowed on outer margin or posteriorly [1].

- 23 First segment (proximal) of hind tarsus not as long as segments 2-5 combined [0]. / First segment of hind tarsus as long as segments 2-5 combined [1].
- 24 Hind femur without a tooth [0]. / Hind femur with a distinct ventral tooth [1].
- 25 Hid and hind coxae elongated [0]. / Hid and hind coxae almost round, and strongly swollen [1].
- 26 First gastral segment [petiole] attached normally [0].
 / First gastral segment attached tangentially [1].
- 27.1, 27.2 [In dorsal view] First gastral segment [petiole] as long as broad (0,0]. / Segment 1 of gaster twice as long as wide (1,0]. / Segment 1 of gaster forming a [small] ring or collar, never longer than wide (0,1].
- 28 Petiole sulcate [0]. / Petiole smooth [1].
- 29 Gaster rarely with pubescence at base of tergite two [0]. / Gaster with pubescent ring at base of tergite two [1].
- 30 [not fused (0)]. / Segments two and three of gaster completely fused, without visible suture [1].
- 31 Tergite two of gaster not liguliform [0]. / Tergite two of gaster liguliform [1].
- 32.1, 32.2 Tergite two of gaster (when viewed laterally) longer, along dorsal curvature, than tergite three [0,0]. / Tergite two of gaster shorter than tergite three [1,0]. / Tergite two at least half as long as the remaining visible segments (when viewed laterally) [i.e. T2 approximatly = T3-T8] [0,1]. [0,0 if T2 fused with T3.]
- 33 Both sexes with gaster laterally compressed [0]. / Male with the gaster (almost) cylindrical [1].
- 34 [not wedge shaped (0)]. / Gaster wedge shaped [1].
- 35 Largest segment of gaster the second or third or formed by these two segments fused together. With only one small segment preceding the largest [0]. / Largest

segment of the gaster (in lateral view) the fourth, fifth (except if which has 2-4 fused), or sixth. With two to four small segments preceding the largest segment [1].

ANALYSIS OF QUINLAN DATA

The Quinlan matrix (Appendix 2) was analysed using the LEQU programs, 187 non-polar incompatibilities were found, compared with 280.58 expected on the null hypothesis, this gives a LeQuesne coefficient of 67% (Tables 16 - 19). As with the Weld data, no polar incompatibilities were encountered. The boil-down deleted nineteen characters leaving a clique of twenty two characters, the resultant cladogram is shown in figure 11. The last incompatibilities were between characters 18 versus 5.2 and 18 versus 29 thus the deletion of character 18 seems reasonable. An alternative tree with character 18 retained is shown in figure 12.

The Quinlan cladogram is similar to that from the Weld data. The "large" cynipoids (taxa 1-9 & 31) are arranged in the same way, but here they are not linked with Melanips or the Aspicerinae. The Charipidae and Eucoilidae are again associated, but now Eucoila is united with the other two eucoilid genera. Melanips, Lonchidia (Figitidae) and Aulacidea (Cynipidae) are also associated with the Eucoilidae and Charipidae, together forming the 29 clade. Therefore the two gall-forming genera, Cynips and Aulacidea, are separated.

Next, the Quinlan subsets were investigated. The 11.1 clade was analysed (Table 20), 27 incompatibilities were found compaired with 37.23 expected, a ratio of 0.73. The boil-down procedure deleted characters 17, 21.1, 22 and 27.2. The resultant cladogram is shown in figure 13. Characters 17, 21.1 and 27.2 cause show polar incompatibilities within this subset, but only character 27.2 contributes to the subset clique. However, reversing the polarity of this character would just move Paramblynotus even further from the rest of the Mesocynipinae. So the original assessment seems more

11 $\begin{array}{ccc}1&1&1\\2&7&8\end{array}$ 2 2 2 2 2 2 2 2 2 2 2 3 4 6 7 7 8 9 1 1 9 2 0 2 1 1 3 3 3 3 4 5 0 6 78 9 2 2 3 ż ĩ 2 i ĩ i 2 2 x -x -x x x x -x x 35 ------**** X X ------------XXIXIIXI x - x x - x x ×× 33 32.2 32.1 31 x -

 30
 x

 29

 28
 x

 27.2

 27.1

 26

 23

 21.1

 20

 19

 18

 17

 12
 x

 11.2
 x

 11.1

 10

 x X -97 × · ×× X -6 4

Table 16. Incompatibilities (X) between Quinlan characters

Char	In	compati	bilities	Char	In	compat	ibilities
	Obs	Exp	Ratio Pol		Obs	Exp	Ratio Pol
3:	8	9.41	0.85 - 0	4	: 16	21.84	0.73 - 0
5.2 :	-	13.51	0.59 - 0	6	: 2	13.75	0.15 - 0
7 :	15	24.72	0.61 - 0	8	: 17	20.31	0.84 - 0
9:	2	13.75	0.15 - 0	10	: 4	13.75	0.29 - 0
11.1 :	15	23.34	0.64 - 0	11.2	: 7	15.84	0.44 - 0
12 :	22	25.69	0.86 - 0	17	: 18	13.75	1.31 - 0
18 :		25.16	0.68 - 0	19	: 20	25.47	0.79 - 0
20 :		13.75	8.95 - 0	21.1	: 21	21.58	0.97 - 0
22 :		16.64	1.08 - 0	23	: 13	13.75	0.95 - 0
24 :	-	9.23	0.32 - 0	26	: 7	18.71	0.37 - 0
27.1 :	11	17.79	0.62 - 0	27.2	: 16	24.26	0.66 - 0
28 :		21.58	0.83 - 0	29	: 11	24.19	0.45 - 0
30 :		18.71	0.53 - 0	31	: 4	13.75	0.29 - 0
32.1 :	18	24.21	0.74 - 0	32.2	: 15	20.51	0.73 - 0
33 :	12	18.71	0.64 - 0	35	: 13	23.48	0.55 - 0

Table 17. Quinlan data incompatibilities, (see Table 9 for legends.)

In	compatibili	ties	character
Observed	Expected	Ratio	deleted
187	280.58	0.67	17
169	266.83	0.63	22
152	250.54	0.61	21.1
133	230.16	0.58	3
125	221.57	0.56	20
114	209.17	0.55	28
99	190.58	0.52	8
85	173.81	0.49	19
70	154.17	0.45	12
56	135.38	0.41	32.1
46	118.93	0.39	32.2
38	105.04	0.36	27.1
32	94.66	0.34	4
25	82.23	0.30	7
18	68.97	0.26	27.2
12	56.43	0.21	23
9	50.56	0.18	33
5	42.91	0.12	30
2	35.86	0.06	18
0	26.92		

Table 18. Quinlan data: incompatibility ratios as characters are deleted during LEQUB boil-down.

											С	ha	ra	ct	er	s															
		Э	4	5	6	7	8	9	1	1	1	1 2	17			2	2	2	2	2			2	2	29	3	3				
															-	•	-9	. 7			v	ſ	1	•	3	v	T	_		3	5
-				2						1	2						1					i	2					1	2		
	xa N		-0																			-	-					_	_		
1	(23)	-	3	-	-	-	-	-	-	2	1	1	5	1	1		1	6	4	-	5	1.	_	6	•						
-		-	-	_	_			-	_	-	-	-	1		-	-						•									2
3			-	-	÷.	-	-	-	-	1	-	-	1	-	-	-	1	14	12	5	1	-	1	-7	-	-	-	1	-	2	-
	(2)	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	2	2		1	1		-	-	-	-	-	-	-	2	÷.,
6		-	-	-	-	-	-	-	-	1	-	-	-	1		_		1	12		÷.	*	Π.		-					-	-
7	(1)	17	18	-	-	-	-	-		-	-	-	2	-	-		1.1	120	11		+	-	-	-	-	1	-	-	-	Ū,	1
10	(3)	-	-	-	-	-	3	-	1																						
11	(5)	-	-	-	-	1	-	-	2	-	-	-	- 44	12	12.	1.1.		1.									-			Ę	
12	(2)																														
13	(8)	-	-	-	-	-	-	-	12	1		_	_	1	_		-	4	-	-	7	7	7	Ξ	-	-	1	-	-	ī	-
15	(2)	-																										1	-	1	1
18	(1)	-	-	-	-	î	1	-	-	-	_	_	1	_		-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	-
19	(8)		1	-	-	2	1	-	-	1	5	1	2	1	-	-	-	-	1	-	-	-	-	-	-	-	-	1	-	1	-
21	(2)	-	2	-	1	-	2	1		1	1	÷.	-	*		-	-	-	8	-	-	-	-	-	-	-	-	1	-	-	1
22	(8)	8	1	4	1	-	2	1	5	5	1	÷.	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23	(5)	2	ī	-	2	1	-	2	2	2	4	÷		Ξ.	-	7	-	-	-	-	-	-	-	1	-	1	-	-	1	-	-
24	(3)	-	2	-	1	0	-	-		2	*	Π.	-	-	•	1	-	-	-	-	•	-	•	1	-	5	÷	-	-	ā.	-
25	(1)	_	-	-		_	_	_			÷.	Ξ.	-	-	-	1	-	-	-	-	-	-	-	1	-	-	-	3	-	-	-
26	(8)	8	1	-	1	-	-	1	Ξ.	Ξ.	÷	î						-	-	-	-	-	-					-	_	-	-
27	(6)	-	Ξ.	4	2		2	٥.	Ξ.	3	÷	\$	Ξ.	•		-	7	с.	Ξ	-	Ξ.	τ.	-	1	-	1	-	-	1	-	-
28	(1)	-	-	2			-			-	Ξ.	+	-	-	1	-	1	•	-	•	-	-	Υ.	-	1	3	-	-	1	Ē.	-
29																															
30	(9)	2	1	-	1	÷	-	7	-	1	-	1	6	1	-	-	1	-	-	-	-	-	-	-	-	-	-	-	3	-	1
31	121			2	-		-	-	-	4	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1		-	-
			-	4	2	*	-	-	-	-		-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	_	_

Table 19. The number of LEQUC marks for each taxon. Column N gives the mark component for each taxon ($\theta = 11$).

	15	. Ibalia
	24	. Oberthuerell
		Tessmanella
		. Liopteron
	,35.	. Plastibalia
		. Pseudibalia
	• • • • • • • • • • • • • • • • • •	. Mesocynips
11 , 1		. Kiefferiella
•		. Parmblynotus
•	.5,113	-
•		
:10.	.31	-
•		-
		Anacharis
		. Aegilips
	••••••••••••••••••••	
	•••••••••••••••••••	
•••••	•••••••••••••••••••••••••••••••••••••••	
	• • • • • • • • • • • • • • • • • • • •	. Melanips . Lonchidia
	•••••	
•••	.69	. Eucoila
•		. Kleidotoma
	• • • • • • • • • •	. Rhoptromeris
	•••••••	. Alloxysta
	11,2	. Dilyta
		. Phaenoglyphi
•		Apocharips
		. Aulacidea
	14	
		. Himalocynips
	•	. Cynips

Figure 11. Cladogram from the Quinlan data.

Char		In	compa	tibilit	ies	Char		Incompatibilities						
		Obs	Exp	Ratio	Pol			Obs		Ratio				
4	:	3	5.17	0.58	- 0	8	:	3		0.43	- 0			
17	:	10	4.99	2.00	- 2	21.1		9	7.77		- 2			
22	:	7	4.99	1.40	- 0	23	:	3	4.99	0.60	- 0			
24	:	3	4.99	0.60	- 0	26		3	8.02	0.37	- 0			
27.1	:	4	6.85	0.58	- 0	27.2	•	3	6.80	0.44	- 2			
32.1	:	3	8.02	0.37	- 0	33	÷	3		0.60	- 0			

Table 20. Analysis of the Quinlan 11.1 subset (See Table 9 for legends).

	.24.33*: ···· Oberthuerella	
	.2632,1* Plastibalia	
	Liopteron	
.7*.35.	19* Pseudoibalia	
•	•	
 •	Mesocynips	
 •		
:		
	5,112*1327,2* Austrocynips	
Figure	13. Tree of the Quinlan 11.1 subset (* = extra character).	

Char	•	Inc	ompat:	ibiliti	es	Char		Incompatibilities						
		Obs	Exp	Ratio	Pol			Obs	Exp	Ratio	Pol			
3	:	8	5.80	1.38	- 0	4	:	2	8.13	0.25	- 2			
6	:	2	8.13	0.25	- 0	7	:	2	5.80	0.78	- 2			
9	:	2	8.13	0.25	- 0	11.2	:	5	9.20	0.54	- ō			
12	:	10	9.20	1.09	- 1	18	:		0.00	0.00	- 4			
19	:	4	5.80	0.69	- 0	20		2	5.80	0.34	- 0			
27.2	:	3	5.80	0.52	- 1	28	:	5	9.52	0.52	- 1			
30	:	6	9.20	0.65	- 0	32.1	:	5	5.33	0.94	- õ			
32.2	:	4	7.67	0.52	- 1		•	•	5.55	0.74	- 0			

Table 21. Analysis of the Quinlan data: 29 subset (See Table 9 for ledgends).

Char I	incompatibili	ties	Char	In	compati	bilities
c	bs Exp Rat	io Pol		Obs	Exp	Ratio Pol
C01.1 : 1	5 28.04 0.	53 - 0	C01.2 ;		24.19	0.45 - 0
C02 : 2	21 25.09 0.	84 - 0	C03		20.57	0.39 - 0
C04 :	3 17.01 0.1	18 - 0	C05.1	19	30.70	0.62 - 0
C05.2 :	8 19.68 0.	41 - 0	C06		31.58	0.82 - 0
C08 : 2	21 17.01 1.	23 - 0	C10		10.90	0.64 - 0
C12 :	3 11.41 0.	26 - 0		10	11.41	0.88 - 0
C15 : 2	2 26.42 0.1	83 - 0	C16		27.90	0.50 - 0
C17 :		35 - 0	C20		17.01	0.24 - 0
C21 : 1		52 - 0	C22 :	23	30.98	0.74 - 0
C23 : 1		56 - 0	C26		11.56	
		71 - 0	C28.2	-		0.78 - 0
		18 - 0	C30 :	-	16.76	0.54 - 0
C31 :		24 - 0			30.43	0.59 - 0
			C34 :		30.96	0.68 - 0
		77 - 0	C36 :		17.01	1.00 - 0
		98 - 0	C38 :		20.57	0.97 - 0
		94 - 0	C41.1 :	14	22.20	0.63 - 0
		63 - 0	C42 :	13	29.78	0.44 - 0
	3 30.00 0.4	77 - 0	C43.2 :	18	25.57	0.70 - 0
C44 : 1	.4 23.13 0.0	61 - 0				•••••

Table 22. Analysis of the combined data. (See table 9 for legends.)

		Oberthuerellinae
		Ibalia
	• • • • • • • • • • • • • • • • • • • •	Mesocynipinae
		Austrocynips
		Aspicerinae
•	• • • • • • • • • • • • • • • • • • • •	Taxa 13,14,15,16,19
ат.,		Dilyta + Alloxystinae
		Eucoilidae
-		Melanips
	•••••	Lonchidia + Aulacidea
•		Pycnostigmus
	.c24c25c28,3	Himalocynips

Figure 15. Summary tree of combined data clique.

likely (Fig. 13).

.

Analysis of the 29 subset, found 30 incompatibilities against the 51.76 expected on the null hypothesis, a ratio of 0.58 (Table 21). The boil-down deleted characters 3, 12, 32.1, 19, 30, and 32.2. The resulting tree (Fig. 14) shows the Eucoilidae, Charipidae and Aulacidea linked together by character 27.2 (petiole short). However, this character is also shared by eleven of the other exemplar taxa and therefore it is of limited value in reconstructing the phylogeny. Character 18 was only included after the program changed the polarity of the Aulacidea score, this change is not congruent outside the subset.

ANALYSIS OF COMBINED DATA

Finally the Weld and Quinlan data were combined and analysed as a composite set of 51 characters (see Appendix 2). Fourteen characters occur in both the matrices of Weld and Quinlan (Table 23). The Weld characters were numbered as before but plus COO (i.e. 1.1 becomes CO1.1). The Quinlan characters, minus the 14 repetitions, were renumbered as follows: 1=C24; 2=C25; 3=C26; 4=C27; 5.1, 5.2, 5.3=C28.1, C28.2, C28.3; 6=C29; 7=C30; 10=C31; 13=C32; 14=C33; 18=C34; 19=C35; 20=C36; 21.1, 21.2=C37.1, C37.2; 22=C38; 23=C39; 25=C40; 27.1, 27.2=C41.1, C41.2; 29=C42; 32.1, 32.2=C43.1, C43.2; 33=C44.

			W		Q	W		Q	W	Q		0
2		-	- 4	=	9	5	-	1Ĩ	-	= 12		= 15
8			11	×	16	12	=	24	15	= 28		= 26
18	=	34	20		31	21	=	35	23	= 30	-	

Table 23. Weld (W) and Quinlan (Q) character equivalence.

Analysis of the combined data (table 22) showed 269 incompatibilities against 424.47 expected, a ratio of 0.63. Again no polar incompatibilities were encountered. The clique was established by sequential deletion of characters C08, C37.1, C36, C38, C13, C26, C15, C02, C35, C06, C43.1, C22, C43.2, C10, C27, C41.1, C30, C39, C41.2, C23, C44, C16, C34, C01.2 and C05.1. The resultant cladogram is summarized in figure 15. The last character deleted was C05.1 (thorax dull) and this is incompatible with character C42 (gaster with an anterior ring of hairs). If C42 is rejected in favour of C05.1 then Melanips is placed with the large cynipoids, as shown in the Weld cladogram. Melanips has little morphological similarity with these taxa, it is more like the genus Lonchidia. Character C05.1 is, probably, badly defined - certainly the dull thorax of Melanips although unusual for the Figitidae is not quite as rough as that found in the other genera that are apomorphic for this character.

The subset analysis of the combined data provided an almost identical result to that of the Quinlan data and so it is not reproduced here.

Summary

This study of the characters used in the current classification shows that the superfamily is divided into five units (Fig. 16).

- 1 The large cynipoids (taxa 1-9), which may, or may not, include Austrocynips. Within this group Ibalia has many autapomorphies, the Oberthuerellinae is holophyletic, but the Liopterinae and Mesocynipinae are paraphyletic.
- 2 The Aspicerinae, which is holophyletic.
- 3 The Bucoilidae, Charipidae (both holophyletic groups), Melanips and Lonchidia (Figitidae), and Aulacidea (Cynipidae). The Figitidae appears to be a paraphyletic assemblage.
- 4 The gall-causer Cynips, plus Pycnostigmus and Himalocynips. The Quinlan data places Aulacidea and Cynips in separate lineages, this would indicate that cynipoid gall-causing has a multiple origin.
- 5 The unresolved remainder of the taxa.

The characters given by Weld provided a very limited resolution of the Cynipoidea. The Quinlan characters give a slightly enhanced resolution but even with the benefit of the extra (homoplasious) characters derived from subset analysis, the resolution is still poor. The analysis of all the data makes it abundantly clear that there are not enough "good" characters present to establish the phylogeny of the Cynipoidea.

It is also apparent that the level of homoplasy in the Cynipoidea is not particularly high. The Weld data has a LeQuesne coefficient of 53%, and 60% of the characters survived the boil-down to contribute to the clique. The Quinlan data has a coefficient of 67%, and 54% of the characters formed the clique, and the percentages for the combined data are 63% and 51% respectively. The level of homoplasy, at approximately 60%, is relatively favourable, especially when compared with some other hymenopterous data, for example an analysis (Gauld, 1985) of the Ophioninae (Ichneumonidae) had a coefficient of 86% and clique containing only 10% of the characters.

							1				ί.	ł	•	•	(),	•	•	•	•	•	•	Oberthuerellinae
				á	č.		ł	ĩ			1		•	•	•		,	•	•	•	•	•	Liopterinae
	:		1	•	1	•	;	۰.	•	•			•		(),		•	•		•	•	Ibaliidae
	:						:																Mesocynipinae
	:																						Austrocynipinae
	:																						Aspicerinae
	•			Ī	Ĩ	Ī	Ī	Ī															-
	:	•	•	•	•	•	•	•	•														Anacharis
	:	٠	٠	•	•	٠	•	•	•	٠	•	•	٠	٠	•	•		•	•	•	•	•	Aegilips
	÷	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	Xyalaspis
	:	•	•	•	٠	•	•	•	•	•	•	•	•	•	•			,	•	•	•	•	Figites
	:	•	•	•	•	•	•	•	•	•	•	•	•	•			,	,	•	•	•		Neralsia
•••	:							•	•	•	•	•			ę	r,		,	•			•	Charipidae
	:							ŝ							e			, .				•	Eucoilidae
	:							-							6	۱.							Melanips
	:	•	•	e	•	•	•	ž															Lonchidia
	•							•															Aulacidea
	:							•	•	•	•												
	•			A			•	٠	٠	•	٠	٠	•	•	e	•	•		•	•	•	•	Pycnostigmus
	ľ	ľ		¢	ľ	•	÷	•	•	•	•	•	•		•	•				•	•	•	Cynips
							•	•	•	•	•	•	•	•	e	•	•		•	•	•	•	Himalocynips

Figure 16. Final summary tree of the combined data.

Conclusion

The above analyses confirm that the inadequacy of the currently recognized structure of the Cynipoidea is caused by poor resolution, - more apomorphies and synapomorphies are required. Therefore an extensive search of cynipoid morphology is needed to provide a significant increase in the number of useful characters.

CHAPTER 4: SURVEY OF CYNIPOID MORPHOLOGY

This chapter contains the results of an extensive investigation into the morphology of the Cynipoidea. All the features that appeared to have potential value for phylogenetic analysis of the higher taxa were characterized. A total of 234 apomorphic states were found, and many of these were newly discovered or reassessed.

Where the characters are of common occurrence in the parasitoid Hymenoptera (e.g. some leg features) they are not commented upon, but the majority of the features are discussed at some length.

THE HEAD

The cynipoid head is broad, tapers downwards, and commonly has a short clypeus. The epistomal suture is fine and the anterior tentorial pits are small. The frontal orbits (the lateral face, near the eyes) are not differentiated from the face and the malar space is often marked by a line of fine sculpture, the malar (or subocular) sulcus. The antennal toruli are between the eyes (not near the clypeus, as in some Proctotrupoidea) and, in some taxa, antennal scrobes occur on the frons. The vertex is short and the ocelli are well separated from the compound eyes. The lower face may bear a central swelling or vertical ridge. Facial pubescence varies in both length and direction but provides useful characters only at lower taxonomic levels.

The foramen magnum is flanked by very small posterior tentorial pits and in some taxa a ridge, the postoccipital suture, extends above the foramen and links the posterior tentorial pits. The occipital carina is normally incomplete, but the vertex is distinguishable from the occiput by a change in surface curvature. The genal carina is well developed and separates the postgena (the area outside the postoccipital suture) from the genal (the area between the genal carina and the eye). The genal carina

meets the hypostomal carina at the base of the mandible.

The biting surface of the mandibles is weakly differentiated into a distal "incisor" and a proximal "molar" part. The basal cardo of the maxilla is folded inside the head and attaches, distally, to a large flat stipes, both are loosely articulated (Fig. 28). The galea is large and the lacinea is highly membranous, lightly coloured and pubescent. The visible labium consists mostly of the prementum, a large median plate which closes the oral cavity from below (Fig. 27). The mentum is reduced in cynipoids and the submentum folded within the proboscidial cavity. The glossa and paraglossa consist of membanous folds of almost colourless tissue and the two components are not clearly distinguishable. In many cynipoid taxa, sensory hairs on the labial palp rest against the palpiger of the prementum (Fig. 26) and presumably provide information. positional Similar hairs occur on the maxillary palps but as the proximal segment appears to be rigidly joined to the stipes, at least in some taxa, the sensory hairs are on the next segment. Frequently a stout sensory spine (Fig. 25) is visible on the apices of the labial and maxillary palps.

Head measurements

The number and ease of measurement of most head parameters make the cynipoid head a good subject for morphometrics. In addition to the search for useful characters, it was felt that certain head parameters could be a better measure of size than say body length (gastral segments can telesope).

The agamic and sexual forms of Cynips were found to show significant size differences, so separate values for both forms have been included in the measurements listed below.

Toruli

The inter-toruli distance (TTL) and the eye to toruli distance (OTL) are standard taxonomic indices used

by Hymenopterists. The measurements of TTL and OTL simply reflected the size differences between the exemplar taxa. For example the large cynipoids of the Liopteridae had measurements approximately twice those of the small Charipidae. The ratio of TTL to OTL was calculated for each species, but the results form a continuous series and no separation was available for character formulation (Table 24).

Ibalia Liopteron Mesocynips Aspicera Anacharis Figites Neralsia Rhoptromeris Phaenoglyphis Aulacidea Austrocynips	TTL/ OTL 0.7 0.5 0.5 0.8 1.1 0.5 0.6 0.7 0.8 0.3 0.9	Oberthuerella Plastibalia Paramblynotus Callaspidia Aegilips Melanips Eucoila Dilyta Alloxysta Cynips sexual Himalocynips	TTL/ 0TL 0.5 0.6 1.2 1.1 1.0 0.7 0.8 0.5 0.8 0.8 0.8 0.4	Tessmanella Pseudibalia Kiefferiella Omalaspis Xyalaspis Lonchidia Kleidotoma Apocharips Pycnostigmus Cynips agamic	TTL/ OTL 1.1 0.9 1.3 0.9 0.7 0.7 0.7 0.8 1.1 1.4 1.2
---	--	---	---	--	--

Table 24. TTL / OTL ratios (n=<6).

Ocelli

The standard ocelli measurements are OOL (ocular to posterior ocellar line) and POL (post ocellar line distance between the two posterior ocelli), to these was added the distance between the anterior and posterior ocellus (APL). As with the torular ratios, these measurements were found to show allometric (Gould, 1966) variations. The ratios of OOL to POL, OOL to APL and POL to APL were calculated (Table 25). The OOL / POL and POL / ALP ratios produced almost continuous series. The ratio of OOL to APL was only usable as a character at the highest value which separates Mesocynips from all other taxa.

Measurements related to eye length

The allometric bias found in the above head measurements can be reduced by dividing by a size related parameter. The obvious parameter, head length, was not

					RATIOS	
				00L/	OOL/	POL/
Ibalia	JOOL	POL	APL	POL	APL	APL
	410	256	154	1.60	2.67	1.67
Oberthuerella	563	307	128	1.83	4.40	2.40
Tessmanella	333	326	96	1.02	3.47	3.40
Liopteron	333	410	154	0.81	2.17	2.67
Plastibalia	512	333	109	1.54	4.71	3.06
Pseudibalia	307	461	141	0.67	2.18	3.27
Mesocynips	422	205	58	2.06	7.33	3.55
Paramblynotus	230	224	77	1.03	3.00	2.92
Kiefferiella	160	224	102	0.71	1.56	2.19
Aspicera	154	333	128	0.46	1.20	2.60
Callaspidia	115	275	115	0.42	1.00	2.39
Omalaspis	102	243	122	0.42	0.84	2.00
Anacharis	109	179	64	0.61	1.70	2.80
Aegilips	115	154	58	0.75	2.00	2.67
Xyalaspis	128	166	70	0.77	1.82	2.36
Figites	154	192	96	0.80	1.60	2.00
Melanips	128	224	83	0.57	1.54	2.69
Lonchidia	77	115	58	0.67	1.33	2.00
Neralsia	96	179	77	0.54	1.25	2.33
Eucoila	109	205	102	0.53	1.06	2.33
Kleidotoma	115	96	58	1.20	2.00	1.67
Rhoptromeris	96	102	51	0.94	1.88	2.00
Dilyta	70	96	70	0.73	1.00	1.36
Apocharips	58	102	51	0.56	1.13	2.00
Phaenoglyphis	90	109	51	0.82	1.75	2.00
Alloxysta	90	102	45	0.88	2.00	
Pycnostigmus	141	256	128	0.55	1.10	2.29
Aulacidea	154	154	77	1.00	2.00	2.00
Cynips sexual	90	224	64	0.40		2.00
Cynips agamic	173	237	109	0.73	1.40	3.50
Austrocynips	147	192	51	0.77	1.59	2.18
Himalocynips	269	154	58	1.75	2.88 4.67	3.75 2.66

Table 25. Ocelli measurements (units \sim 0.001mm). Ratios and measurements calculated from graticule units, n = < 6.

used because certain taxa have the genae disproportionally developed (e.g. Lonchidia). Also the curvature of the head can make equivalent measurements of head length difficult. In cynipoids, eye length is a superior measure of size because it is a relatively stable and accurately measurable character. Eye length and several other head parameters, that are easily associated with eye length were analysed together (Table 26). The head was viewed from the side and the eye length, eye breadth, gena length plus the height of the antennal insertion (above the ventral limit of the eye) were measured.

The eye-associated measurements were subjected to

						RATIOS	
	eye	eye	antenna	gena	eye		gena
****	1	b	up eye	1	1/ь	/eye l	/eye 1
Ibalia	1229	819	493	512	1.50	0.40	0.42
Oberthuerella	1126	922	384	973	1.22	0.34	0.86
Tessmanella	845	742	256	717	1.14	0.30	0.85
Liopteron	973	691		1280	1.41	0.30	1.32
Plastibalia	1178	947	307	691	1.24	0.26	0.59
Pseudibalia	1075	870	461	666	1.24	0.43	0.62
Mesocynips	794	640	512	768	1.24	0.65	0.97
Paramblynotus	717	563	282	512	1.27	0.39	0.71
Kiefferiella	499	339	192	358	1.47	0.39	0.72
Aspicera	666	512	205	269	1.30	0.31	0.40
Callaspidia	589	371	192	269	1.59	0.33	0.46
Omelaspis	512	384	160	224	1.33	0.31	0.44
Anacharis	371	282	128	288	1.32	0.35	0.78
Aegilips	384	301	179	250	1.28	0.47	0.65
Xyalaspis	397	307	96	275	1.29	0.24	0.69
Figites	358	243	141	224	1.47	0.39	0.63
Melanips	461	320	224	128	1.44	0.49	0.28
Lonchidia	198	128	51	243	1.55	0.26	1.23
Neralsia	384	275	160	109	1.40	0.42	0.28
Eucoila	531	307	288	160	1.73	0.54	0.20
Kleidotoma	179	128	90	102	1.40	0.50	0.50
Rhoptromeris	192	134	160	154	1.43	0.83	0.80
Dilyta	243	141	96	90	1.73	0.40	
Apocharips	256	160	90	115	1.60	0.35	0.37
Phaenoglyphis	198	134	102	77	1.48	0.52	0.45
Alloxysta	205	147	64	122	1.39	0.31	0.39
Pycnostigmus	422	339	192	294	1.25		0.59
Aulacidea	358	186	128	243	1.93	0.46	0.70
Cynips sexual	416	224	256	115	1.93	0.36	0.68
Cynips agamic	499	275	256	128		0.62	0.28
Austrocynips	435	275	192		1.81	0.51	0.26
Himalocynips	474	346	205	192	1.58	0.44	0.44
	1/1	JUD	205	352	1.37	0.43	0.74

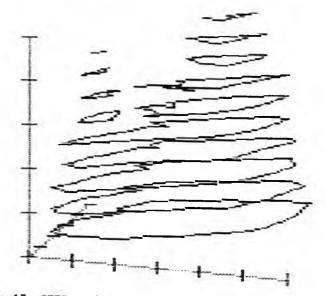
Table 26. Eye related measurements. 1 = length, b = breadth. Units - 0.001mm. (Ratios and measurements calculated from graticule units). n = <6.

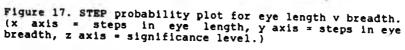
computer analysis using the program STEP (see methods section) and the probability contours mapped at levels of significance of 5%, 1%, 0.33%, 0.1%, 0.03%, 0.01%, 0.0033%, 0.001%, 0.00033% and 0.0001% using a three dimensional plotting program adapted from Harding (1982).

Size

The resultant probability plots were all very noisy. The plots against eye length (i.e. overall size) all show an approximately oval distribution at a significance of 0.33 or better (Figs 17-19). Of course this was expected,

taxa tend to have larger head measurements. bigger However, in most plots, imposed on the general size trend is a bimodality (Figs 17, 18) which only becomes evident at the higher levels of probability. These two nodes separate the "smaller" and "larger" cynipoids from the remaining taxa. The smaller cynipoids are Lonchidia, the Charipidae, Aulacidea, Figites. Also included are the Eucoilidae with the exception of Eucoila which correlates with the analysis of the Weld data, that showed Eucoila to be unusually large for a eucoilid. The "larger" taxa are Ibalia and the Liopteridae, although Kiefferiella is. clearly small for a liopterid. The Aspicerinae (which are large compared to other Figitidae), Himalocynips and Pycnostigmus could also be included in the large taxa but this is less likely (different contour). These results correspond with the results of principal component analysis of antennal segment dimensions.


The size adjusted view (Fig. 18) of the position of antennal insertion (the distance, in lateral view, from the lower eye margin to the toruli) uncovers some allometric displacements, for example the insertions of Ibalia, Pseudibalia, Paramblynotus, Liopteron, Plastibalia and the Oberthuerellinae are "lower" than is indicated by direct measurement. Similarly the antennal insertions of Rhoptromeris, Melanips, Pycnostigmus, Phaenoglyphis and Kleidotoma are "higher" than is apparent.


Gena length

The plots of eye length versus gena length (Fig. 19) and antennal insertion versus gena length (Fig. 20) do not show the small / large bimodality, instead these plots are approximately conical and separate only the larger cynipoids. This shows that although the large taxa have long genae, the small taxa do not have especially short genae.

Ratios

The plots of ratios were mostly not significant and none were of any value for characterization or for phylogenetic reconstruction.

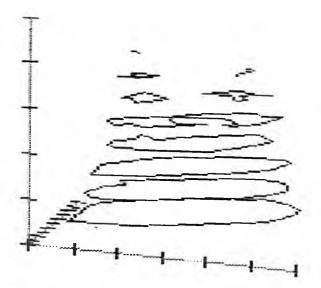


Figure 18. STEP probability plot for eye length v hight of antennal insertion. (x axis = steps in eye length, y axis = steps in hight of antennal insertion, z axis = significance level.)

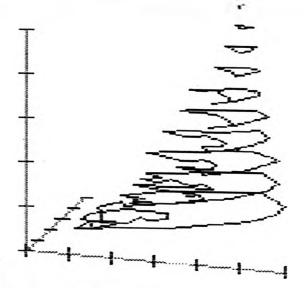


Figure 19. STEP probability plot for eye length v gena length. (x axis = steps in eye length, y axis = steps in genal length, z axis = significance level.)

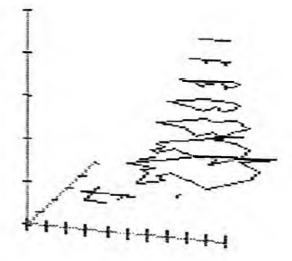


Figure 20. STEP probability plot for hight of antennal insertion v gena length. (x axis = steps in hight of antennal insertion, y axis = steps in genal length, z axis = significance level.)

Although the merit of measuring head length has been questioned, an attempt was made to compare head length (clypeus to top of vertex) against head width (outer margins of eyes, across the vertex). However, the measurements of head length and breadth and their ratio were of little value for characterization. The ratios (table 27) showed an almost normal distribution of the taxa about a value of 0.8. No pattern was evident except that some smaller taxa (Lonchidia, Eucoilidae & Charipidae) tend to have a higher than average ratio.

The value of head measurements

In general the head measurements (and probably most other cynipoid parameters) are strongly influenced by the size of the species. There are three approximate size ranges - the large taxa (Ibalia and most Liopteridae) with eye lengths over 0.7mm, the small taxa (Charipidae and most Eucoilidae) with eye lengths under 0.25mm, and a large section of medium sized taxa. These ranges do not correspond with known (or feasible new) higher categories and it is clear that morphometrics is a poor source of characters.

Ibalia	0.80	Oberthuerella	0.67	Tessmanella	0.73
Liopteron	0.93	Plastibalia	0.77		
Mesocynips	0.85	Paramblynotus		Pseudibalia	0.63
Aspicera	0.80			Kiefferiella	0.81
Anacharis		Callaspidia	0.77	Omalaspis	0.86
	0.76	Aegilips	0.84	Xyalaspis	0.70
Figites	0.73	Melanips	0.58	Lonchidia	1.01
Neralsia	0.86	Eucoila	0.97	Kleidotoma	
Rhoptromeris	0.98	Dilyta			1.12
Phaenoglyphis	0.76		0.89	Apocharips	1.01
Aulacidea	-	Alloxysta	0.91	Pycnostigmus	0.74
	0.87	Cynips sexual	0.80	Cynips agamic	0.69
Austrocynips	0.70	Himalocynips	0.68		

Table 27. Ratios of head length to breadth n=<6.

Other features of the head

Mandibles

-. . .

Cynipoids feed as larvae rather than as adults and it is presumed (Richards, 1977) that the mandibles have

remained stout to aid adult emergence.

The mandible of the gall-inducing Cynipidae has a well defined lower tooth but the upper tooth is incompletely subdivided (Fig. 97). In the parasitoid taxa the upper region tends to be more clearly bifid (Fig. 23). In the Liopteridae and Ibalia (Fig. 22) the mandibles are large, strong and rather blunt. The upper section being chisel-like. The remaining Cynipoidea have cutting / piercing type mandibles (Fig. 23).

Two specialized forms of sharp mandible have been developed; the Anacharitinae have sharp teeth positioned at a characteristic angle (Fig. 24) and in Pycnostigmus (Fig. 98) the lower tooth is a large scythe-shaped blade.

The hypostomal region

A study of the back of the cynipoid head has revealed an important and hitherto unsuspected suite of characters. The characters of the hypostomal / postgenal region are complicated by reversals in the direction of formation or destruction, of "bridges" between the foramen magnum and the proboscidial fossa (Fig. 99). Rasnitsyn (1975, 1980) has studied these features in the Ichneumonomorpha and his work has facilitated interpretation of the characters and establishment of their polarities within the Cynipoidea.

The foramen magnum and the proboscidial fossa (oral cavity) of the higher Hymenoptera were primitively separated by postgenae that close along the vertical medial line (Rasnitsyn 1980). Apart from some Symphyta, in most other Hymenoptera the hypostomes are either "open" (Figs 29-32) and the back of the head capsule is closed by a secondary tentorial plate, or the hypostomes are closed (Figs 41-48). In the least derived Ichneumonidae (e.g. Rhyssa, Xoridini, and Ephialtes) a "primitive" bridge persists (Fig. 29). In more derived taxa subsequent modifications to the labiomaxillary complex (often by elongation of the cardo) has caused an elongation of the proboscidial fossa, this is combined with a posterior widening so that the closed bridge is forced apart. In between the diverging hypostomal crests a triangular

plate, the lower tentorial bridge, emerges to the surface and fills the opening (Figs 34, 36, 38) (Rasnitsyn, 1980; Tobias & Potapova, 1982).

The next phase in the evolution of the hymenopterous hypostoma is the beginning of a movement in the reverse direction, the lower tentorial bridge is secondarily reduced (Figs 41-43) as a result of a decrease in size of the labiomaxillary complex and a corresponding shortening of the oral opening (Rasnitsyn 1980). As the proboscidial fossa "retreats" the space is filled by the hypostomes, rather than postgenae and a second or derived hypostomal bridge formed. (The postgenae are the lower lateral areas under the occiput and behind the genae.)

Morphological states of the cynipoid hypostomal region.

A study of the hypostemal region has revealed the presence of three or perhaps four separate morphological lineages which together show a consecutive sequence of hypostomal development in the Cynipoidea.

<u>Cynipidae: open_hypostomes</u>. The least derived hypostomal morphology occurs in the genera near Aulacidea, in these genera the first hypostomal bridge has only just been lost. In Aulacidea (Fig. 34) and Phanacis (Fig. 33) the hypostomal carinae are parallel in the central region and only diverge dorsally. The hypostomes are separated by a narrow region of lower tentorial bridge this region extends dorsally to form a large triangular area between the divergent hypostomes, the foramen and the posterior tentorial pits. In Isocolus the hypostomal region is shorter and the lower tentorial bridge has increased in size.

In more derived genera (e.g. Aylax) the lower tentorial bridge expands but the hypostomal crests remain relatively close together ventrally. However, the lower bridge eventually forces apart the hypostomal crests so that only the lower bridge separates the foramen magnum from the proboscidial fossa (Neuroterus, Andricus and Callirhytis - Figs 35-37).

In Himalocynips the hypostomes are broadly separated,

and this state may represent a separate lineage.

Ibaliidae & Lipteridae: hypostomes in a cavity. Subsequent stages of hypostomal development involve a reduction of the lower tentorial bridge, closure of the hypostomes and the formation of a hypostomal bridge. In the Ibaliidae and Liopteridae the hypostomal region is set in a deep cavity (Figs 38, 39). The hypostomal crests have started to close again (Ibalia Fig. 38). In Mesocynips insignis hypostomal closure has not progressed very far, but in Oberthuerella the crests have considerably expanded, virtually coming together, and the lower tentorial bridge has retreated towards the foramen.

Liopteron compressum and some species of Hesocynips have a short length of hypostomal bridge. Other species (Plastibalia, Paramblynotus (Fig. 39) show a longer line of hypostomal fusion but the lower tentorial bridge is still present, although reduced (Fig. 40).

Other cynipoids: hypostomes completely fused. In these taxa the hypostomes are not set within a cavity. In the Figitidae and Pycnostigmus, the suture line (of hypostomal fusion) is short (Fig. 42). The carinae from the posterior tentorial pits to the hypostomal carinae are strongly curved in the Anacharitinae (Fig. 41), Aspicera, Callaspidia and Neralsia. However, in Anacharoides, Paraspicera and Melanips these carinae are absent or have moved away from the suture and are more or less vertical under the posterior tentorial pits. (It is possible to further subdivide these heads but the morpological differences are subtle.)

In the next stage the length of the hypostomal region has increased and thus the suture line is long. This state is found in the Charipidae (Fig. 46) and Synergini (Fig. 45). The hypostomal morphology of the Synergini (Cynipidae) is remarkably advanced compared to that of all other Cynipidae.

Finally, in the Eucoilidae, the suture is lost and thus the area has effectively become a postgenal bridge (Figs 47, 48).

Similar hypostomal developments have evolved independently, and to varying extents, in the

Ichneumonoidea (Rasnitsyn, 1980), Cynipoidea, Chalcidoidea and Proctotrupoidea (Figs 31, 44, 49). However, the hypostomal development of the Cynipoidea spans a very "wide" evolutionary range. The primitive gall-wasps have a head morphology not far removed from that found in the less derived Ichneumonidae (e.g. Rhyssa). The subsequent stages of reduction of the lower tentorial bridge and a closing of the hypostomes are frequent amongst the microhymenoptera. Closed hypostomes, like that of the Figitidae are also found in the Diapriidae (Fig. 49) and Scelionidae (Fig. 44) (Mineo & Villa, 1982). Total loss of the suture only occurs in the most advanced Parasitica e.g. Eucoilidae and some Diapriidae (Snodgrass, 1928; 1960 reports the existence of a postgenal bridge in the Vespomorpha).

Palp formula

The palp formula is a two digit expression of the number of maxillary and labial palp segments. The Hymenoptera generally have a formula of 6/4 (Richards, 1977). However, this is reduced in more derived taxa and in the Cynipoidea the plesiomorphic formula is 5/3. Dissection reveals that a small, easily overlooked, basal segment is present on the maxillary palp in most Cynipoidea. (See also Ritchie & Shorthouse, 1987). The labial palp is supported on a palpiger (from the prementum) and the maxillary palp on a palpifer (from the stipes) and these non-palp structures can look like palp segments (Fig. 26). Eight of the study taxa show a reduction of palp segments.

List of head character-states

- 1 Galea normal [0]. / Galea strongly expanded and projecting downwards [1].
- 2.1, 2.2, 2.3 The Eucoilidae, Charipidae and Pycnostigmus all show an apomorphic reduction of palp segments (see Table 28). [This feature could be coded as two characters but that would not give due consideration to the four palp combinations (5/3, 4/2, 4/3 & 5/2)

	LaT	ps	
Maxilla:	ry	Labial.	Code

Most taxa	5	3	0,0,0
Eucoilidae	4	2	0,1,1
Charipidae	4	3	0,1,0
Pycnostigmus	5	2	1,0,0

Table 28. Palp scoring.

represented in the Cynipoidea. It is unlikely that the 4/2 combination was derived from the 5/2 combination because the palps of Pycnostigmus are long and appear to result from segment fusion whereas the other taxa have very small palp segments indicating segment loss.

- 3 Clypeus simple [0]. / Clypeus with a low, central depression and a marginal notch (Fig. 21) [1]. [The notch is weak in Kiefferiella and the depression occupies most of the clypeus in Pseudibalia].
- 4 Clypeus not projecting outwards [0]. / Clypeus projecting upwards and away from the exposed unsclerotized area and the labium beneath [1].
- 5 Face without distinctive radiating striae. [0]. / Lower face strongly striate, the striae forming two conspicuous fan-like radiations [1].
- 6 Face without ridge often with a general hump over this area (0). / Face with a weak central ridge (1).
- 7 Face without a vertical line of striations [0]. / Face with a strip of vertical striations which has a small clear patch on either side [1].
- 8 Face without grooves or at most with a central ridge [0]. / Central facial region with two vertical grooves, separated by a central keel, running from the anterior tentorial pits to the toruli [1].
- 9.1, 9.2 The malar sulcus (subocular sulcus) is usually
 marked by a narrow band of coriaceous sculpture [0,0].
 / Malar sculpture lost [1,0]. / Sulcus represented by a
 fine band of longitudinal striae [0,1].
- 10 Eye glabrous or with short hairs between the facets [0]. Eye publicance long [1].
- 11 Frontal carina absent [0]. / Frontal carina present from the antennae to near the median ocellus [1].

- 12 Frons without distinct scrobes (0). / Frons with scrobes (Fig. 21) [1].
- 13 OOL/APL ratio less than 5.5 [0]. / OOL/APL ratio over 7.0 [1].
- 14 In most taxa the the occipital carina is only present as a dorsolateral extension of the genal carina in the region of the facial orbit (0]. / Occipital carina almost complete, reaching close to the posterior ocelli (1).
- 15.1, 15.2, 15.3 Sculpture of occiput alutaceous [0,0,0].
 / With vertical striae on the occiput [1,0,0]. / With
 transverse or curved striations on the occiput [0,1,0].
 / Occiput smooth [0,0,1].
- 16.1, 16.2 Face with light sculpture (alutaceous, granulate, sparsely punctate, weakly rugose or striate) [0,0]. / Face coarsely sculptured (coarsly striate deeply punctate or rugose (Figs 21, 22) (1,0]. / Face mostly smooth [0,1].
- 17 Head wider than the thorax [0]. / Head narrower than the thorax. [1].
- 18 Mandibles with one simple lower tooth and a subdivided upper tooth [0]. / At least one mandible with three teeth [1].
- 19 Mandibles not chisel-like [0]. / Mandibles blunt and chisel-like (Fig. 22) [1].
- 20 Mandibles not of the piercing- cutting type [0]. / Mandibles of the piercing-cutting type (Fig. 23) [1].
- 21 Mandibles not especially sharp (0). / With sharp cutting mandibles (1).
- 22 Lower tooth of normal proportions [0]./ Scythe-like lower tooth to mandible [1].
- 23 Lower two teeth not spine like [0]. / Lower two teeth
 spine-like [1].*
- 24.1 24.2 24.3 Head flat with lower tentorial bridge ventrally narrow (Fig. 33) [0,0,0]. / Head with hypostomes set in a cavity (Fig. 39) [1,0,0]. / Head with lower tentorial bridge ventrally wide [0,1,0]. / Head flat with hypostomal bridge present (Fig. 41) [0,0,1].

Fig. 21. Paramblynotus X40. Face.

de -

Fig. 22. Ibelia X380. Ventral view of head.

Fig. 23. Eucoila X170. Mandibles.

Fig. 25. Cynips X1070. Sensory projection on the apex of the labial palp.

Fig. 24. Anacharis X300. Mandible.

Fig. 26. Xyalaspis X1030. Sensory hairs on the base of the labial palp.

Fig. 27. Ceroptres X350. Mouthparts in posterior view.

Fig. 28. Dissected mouthparts of an anacharitine X200.

Fig. 29. Ephialtes X170 (Ichneumonidae). Rear of head, foramen magnum and lower tentorial bridge.

Fig. 30. Paramesius X250 (Proctotrupoidea). Rear of head, "open" hypostomes, and mouthparts (below).

Fig. 31. Codrus X130 (Proctotrupoidea). Rear of head &, just visible, the lower tentorial bridge.

Fig. 32. Codrus X250 & X1250. Enlargements of Fig. 31. Lower tentorial bridge.

Fig. 33. Phanacis X300. Rear of head and narrow lower tentorial bridge.

Fig. 34. Aulacidea X1500. Lower tentorial bridge between the narrowly separated hypostomes.

Fig. 35. Andricus X400. Lower tentorial bridge and hypostomal crests.

Fig. 37. Cynips X250. Hypostomal crests.

Fig. 36. Andricus X1000. Hypostomal carinae and crests (Fig. 83 enlarged).

Fig. 38. Ibalia X130. Hypostomes in a cavity.



Fig. 39. Paramblynotus X110. Hypostomes and lower bridge in a cavity.



Fig. 40. Paramblynotus X700. Fig. 39. magnified showing lower bridge.

Pig. 41. Xyalaspis X130. Rear of head. Hypostomal bridge and suture short.

2

Fig. 42. Melanips X130. Rear of head. Hypostomal bridge and suture short.

Fig. 43. Anacharoides X80 & X400. Head with a short hypostomal bridge.

Fig. 44. Telenomus (Proctotrupoidea) X350. Head with long hypostomal bridge and suture.

Fig. 45. Synergus X150. Inquiline with a long figitid-like hypostomal bridge and suture.

Fig. 46. Phaenoglyphis X350. Head with the hypostomal bridge and suture long.

Fig. 47. Kleidotome X250. Rear of head. Fusion of the hypostomes complete and suture lost.

Fig. 48. Rhoptromeris X350. Rear of head. Fusion of the hypostomes complete and suture lost.

Fig. 49. Trichopria X400 (Proctotrupoidea). Rear of head.

Fig. 50. Kleidotoma X2200. Antennal sensilla.



Fig. 51. Kleidotoma X800. Antennal sensilla.

Fig. 52. Cynips X400. Antennal sensilla.

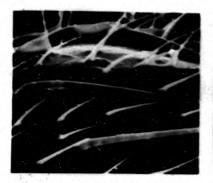


Fig. 53. Trichopria X1700 (Proctotrupoidea). Raised type of antennal sensilla.

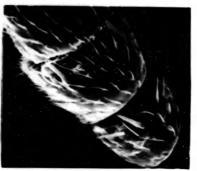


Fig. 54. Inostemma X920 (Proctotrupoidea). Raised type of antennal sensilla.

Fig. 55. Lytarmes X1000. (Ichneumonoidea). Antennal sensilla. (Photo: P. Eggleton.)

Sec

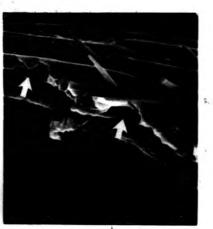


Fig. 56. Melanips X1770. Freeze fracture to show "floor" (arrows) to antennal sensilla.

,

Fig. 57. Callaspidia X1220. Closely packed antennal sensilla.

1 . .

the set

Fig. 58. Callaspidia X1770. Gland (arrow) on modified third segment of male antenna.

25 Concave hypostomes with normal crests (0). / Concave hypostomes with crests strongly expanded [1].

- 26.1 26.2 26.3 Hypostomal fusion incomplete (0,0,0). /
 Hypostomal fusion complete but short (Fig. 41) [1,0,0].
 / Hypostomal fusion complete and long. (Fig. 46)
 [1,1,0]. Suture lost (Figs 47, 48) [1,1,1].
- 27 If with a short hypostomal bridge then without carinae or with approximately straight carinae (Fig. 42) [0]. / The short hypostomal bridge of the Anacharitinae has strongly curved hypostomal carinae (Fig. 41) [1].

ANTENNAB

Antennal measurements

The relative lengths and breadths of various antennal segments have been used as characters for classifying the Cynipoidea (e.g. Quinlan, 1978). As these measurements are likely to be biased by allometry it was felt that detailed analysis was required to establish if these features could be used as valid discriminants.

The dimensions of the antennal segments were measured for a female and male (where available) of each of the 31 exemplar species of Cynipoidea (see Appendix 2). Because of the variation in total numbers of antennal segments between both species and sexes, it was difficult to provide a standardized data-set, for further analysis. The only non-biased system was to take data on the first ten segments, thus avoiding the exaggeration found in the terminal segments (i.e. the apical 13th. and 14th. segments of one species, which would have to be related to ordinary mid-flagella segments in a species with, say, 20-segmented antennae).

Analysis of segment length

The segment lengths (see Appendix 2) obviously bear a relationship to species size, the largest segments generally occurring in the "big cynipoids" (i.e. Ibaliidae

and Liopteridae). The rest of the species show no clear pattern so a Principal Components analysis was performed.

The Principal Components matrix shows a high percentage correlation in segment lengths (Tables 29 & 30), even the lowest correlation, pedicel to segment ten, was over 80%. Thus segment length is most likely to be an allometric character, the length of each flagellar segment being related to that of each other.

Principal components analysis accounted for 94.5% of the total variation in the first dimension, and the first three dimensions accounted for 98.8% of the variation. The variates contribute approximately equally in determining axis 1 (-0.3 or -0.4) only the pedicel at -0.08 has a noticeably lower contribution (Table 31). On the second axis, variate 2 and 6 have a small contribution and variate 3 has the highest, followed by the outer flagellar segments. The scape has the major influence on the third axis. Thus for the first 95% of the variation no variate stands out as a strong determinant which could be a useful character. The impact of the third antennal segment on

Antennal Segment

				4						
Mean	0.24	0.11	0.27	0.28	0.27	0.26	0.24	0.24	0.22	0.21
Minimum	0.08	0.04	0.06	0.04	0.04	0.03	0.03	0.03	0.04	0.04
Maximum	0.74	0.27	0.91	1.04	1.02	0.93	0.80	0.72	0.69	0.67
S. D.	0.16	0.05	0.16	0.22	0.20	0.19	0.18	0.16	0.15	0.14
S. E.	0.02	0.01	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.02

Table 29. Summary data of antennal lengths (S = standard, D = deviation, E = error).

Antennal segment 1 2 3 4 5 6 7 8 9 10 Segment 1 1.00 2 0.90 1.00 3 0.86 0.83 1.00 0.89 0.86 0.93 1.00 4 0.89 0.88 0.93 0.99 1.00 5 6 0.88 0.86 0.92 0.99 0.99 1.00 0.88 0.87 0.90 0.98 0.98 0.99 1.00 0.87 0.85 0.88 0.96 0.97 0.98 0.99 1.00 R 0.85 0.82 0.83 0.93 0.93 0.95 0.97 0.99 1.00 9 10 0.84 0.81 0.81 0.91 0.91 0.94 0.96 0.98 0.99 1.00

Table 30. Correlation matrix of segment lengths.

Segment	Axis	Axis	Axis	
	1	2	3	
1	-0.29	0.39	0.84	
2	-0.08	0.08	0.13	
3	-0.29	0.55	-0.24	
4	-0.41	0.15	-0.23	
5	-0.39	0.13	-0.23	
6	-0.37	-0.03	-0.19	
7	-0.34	-0.16	-0.06	
8	-0.31	-0.28	0.01	
9	-0.28	-0.43	0.15	
10	-0.26	-0.46	0.19	

Table 31. Principal Component axes of segment lengths.

axis 2 and the scape on axis 3 indicates that a plot of these two segments could be of some value (see below).

The plot of Principal Components axes 1 v 2 (Fig. 59) shows most of the Cynipoidea fitting tightly into one large unresolved cluster. Six of the larger cynipoids (Pseudibalia, Oberthuerella, Tessmanella, Plastibalia, Liopteron, and Ibalia, which has seven maximum scores) are outside the cluster but the Mesocynipinae, which are relatively large cynipoids, are clustered with the smaller cynipoids. Therefore this feature appears to be of little use as a discriminant. As the length data appeared to be biased by allometry, ratios of lengths to breadths were investigated to see if they provided a more useful statistic.

Ratios of length to breadth

A principal components analysis was run on the ratios of the first ten antennal segments of each sex for all species (Tables 32-34). available No logarithmic transformations were made. The correlation matrix for ratios provided a more interesting result than the matrix for lengths alone. Although the flagellar segments are highly correlated, there is a very low correlation (sometimes a slight negative correlation) between size of scape or size of pedicel and that of any of the flagellar segments. This indicates that scape or pedicel ratio, when compared with a flagellar ratio, may be a useful character (see below). The scape had little correlation with the pedicel (24%). The flagellum showed a steady relationship, most segments being 95% correlated with the following

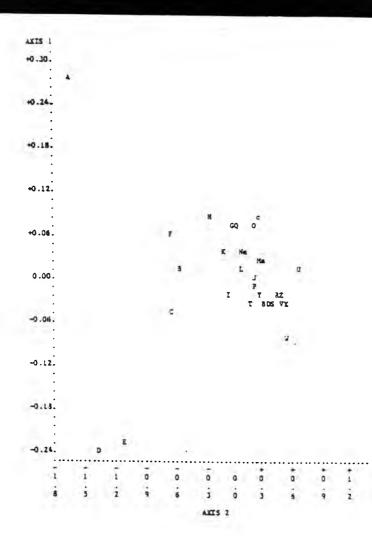


Figure 59. Plot of Principal Components axis 1 v axis 2, for antennal segment lengths. (Females only, for clarity.)

IA = Ibalia, B = Oberthuerella, C = Tessmanella, D = Liopteron, E = Plastibalia, F = Pseudibalia, G = Mesocynips, H = Paramblynotus, I = Kiefferiella, J = Aspicera, K = Callaspidia, L= Omalaspis, M = Anacharis, N = Aegilips, O = Xyalaspis, P = Figites, Q = Melanips, R = Lonchidia, S = Neralsia, T = Eucoila, U = Kleidotoma, V = Rhoptromeris, W = Dilyta, X = Apocharips, Y = Phaenoglyphis, Z = Alloxysta, a = Pycnostigmus, b = Aulacid@a, c = Cynips, d = Austrocynips & e = Himalocynips.1

Antennal Segments

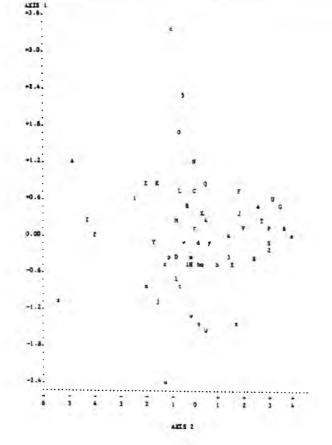
Hean	1.97	1.20	3.08		2.70	2.64	2.45	2.40	2.24	2.21
Minimum										
Maximum										
	0.46									
S. E	0.06	0.04	0.13	0.13	0.12	0.11	0.10	0.10	0.10	0.10

1

2

Table 32. Data for antennal ratios (S = standard D = deviation E = error).

				Sec	gments	5				
	1	2	3	4	5	6	7	8	9	10
Segmer	nts									
1	1.00									
2	0.24	1.00								
3	0.14	0.27	1.00							
4	0.12	-0.07	0.69	1.00						
5	0.13	-0.06	0.64	0.94	1.00					
6	0.12	-0.02	0.57	0.88	0.94	1.00				
7	0.14	0.04	0.49	0.79	0.86	0.94	1.00			
8	0.10	0.11	0.44	0.66	0.70	0.82	0.90	1.00		
9	0.08	0.12	0.39	0.56	0.59	0.74	0.85	0.95	1.00	
10	0.13	0.13	0.32	0.48	0.51	0.65	0.77	0.91	0.95	1.00


Table 33 Correlation matrix for antennal ratios.

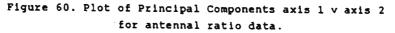

Segmen	t Axis	Axis	Axis
	1	2	3
1	-0.03	0.02	0.10
2	-0.09	0.00	0.30
3	-0.30	0.60	0.70
4	-0.40	0.30	-0.30
5	-0.40	0.20	-0.30
6	-0.40	-0.00	-0.30
7	-0.40	-0.20	-0.10
8	-0.30	-0.30	0.10
9	-0.30	-0.40	0.20
10	-0.30	-0.50	0.30

Table 34. Principal Components axes for antennal ratios.

segment and 85% with the one following that. This decreased with distance so that the third was only 32% correlated with the tenth segment. Thus it seems unlikely that flagellar characters are of widespread value for cynipoid phylogenetics.

In the first axis of the ratio data the scape and pedicel have low scores and little correlation with the rest of the variates which all have very similar scores. 100 the 34

[Females: A = Ibalia, B = Oberthuerella, C = Tessmanella, D = Liopteron, E = Plastibalia, F = Pseudibalia, G = Mesocynips, H = Paramblynotus, I = Kiefferiella, J = Faramblynotus, I = Kiefferiella, J = KieffAspicera, K = Callaspidia, L = Omalaspis, M = Anacharis, N Aspicera, K = Callaspidia, L = Umalaspis, H = Andreaspis, R = = Aegilips, O = Xyalaspis, P = Figites, Q = Melanips, R = Lonchidia, S = Neralsia, T = Eucoila, U = Kleidotoma, V = Directorasia = Directoras X = Apocharips, Y = Rhoptromeris, Ψ = Dilyta, X = Apocharips, Phaenoglyphis, Z = Alloxysta, a = Pycnostigmus, Aulacidéa, c = Cynips, d = Austrocynips & ь = е -Himalocynips. Males: f = Ibalia, g = Oberthuerella, Liopteron, i = Mesocynips, j = Paramblynotus, h Liopteron, i = Hesocynips, j = Paramblynotus, k Aspicera, l = Callaspidia, m = Omalaspis, n = Anacharis, -= 0 = Aegilips, p = Xyalaspis, q = Figites, r = Melanips, s = Lonchidia, t = Neralsia, u = Eucoila, v = Kleidotoma, w = Rhoptromeris, x = Dilyta, y = Apocharips, z = Phaenoglyphis, 1 = Alloxysta, 2 = Pycnostigmus, 3 = NeralsiaAulacidia, 4 = Cynips & 5 = Cynips agamic female.

Page 87

2

The second orthogonal axis, shows the greatest variation between the third and tenth antennal segments. The scape, pedicel and the sixth antennal segment have little impact. The third axis has the greatest difference between the third and fourth to sixth segments.

Principal Components analysis accounted for 71.02% of the variation in the first dimension and 92.32% in the first three dimensions. The axis plots provide no useful discrimination. Most of the species are grouped in one cluster (Fig. 60) and those outside show no obvious relationship.

Segment 3 v segment 10

The analysis of lengths and ratios indicates that segments three to ten are highly correlated and that the least correlated segments and the best source of characters should be ratios of the first versus the third segment. A graph of these ratios (Fig. 61) shows most cynipoids clustered together without any clear delimitation. However, there is a noticeable gap between scape ratios of 1.3 and 1.7. A few taxa with scape ratios of 0.9 to 1.3 fall below this: Austrocynips female (A)Aspicera male (B) Aulacidta male (C) Liopteron male (D) and female (E) Callaspidia male (F) and female (G) Cynips agamic (H) and sexual female (I). This assemblage cuts across all sensible concepts of cynipoid phylogeny. [The other sexes of these taxa (J-P) are not similarly associated - Fig. 61) The lower group can be subdivided into two sections (segment three ratio less than 3 or more than 4) but again, this is of little phylogenetic significance.

Thus the analysis of the antennal dimensions has shown that even the feature most likely to be of value (ratio of scape to ratio of third segment) is of no use for establishing cynipoid phylogeny.

Total antenna length

It is generally assumed (e.g. Richards, 1977) that the antenna of male parasitica is slightly longer than that of the female - having both a greater length and more

0 2.9. 2.8. 2.7. М N 2.6. 2.5. 2.4. τ. 2.3. 2.2. 2.1. π 2.0. 1.9. 1.8. 1.7.* * 1.6. 1.5. 1.4. P G H Ι 1.2. С D Ε 1.1. 8 1.0. 0.9. A 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 AIT

AT

Figure 61. Plot of length / breadth for the scape versus the third antennal segment. (Based on graticule units.)

[A = Austrocynips female, B = Aspicera male, C = Aulacidéa male, D = Liopteron male, E = Liopteron female, F = Callaspidia male, G = Callaspidia female, H = Cynips agamic female, I = Cynips sexual female, J = Aulacidéa female, K = Cynips male, L = Ibalia male, M = Pseudibalia female, N = Aspicera female, O = Melanips female, P = Ibalia female. * = other taxa and sexes.]

segments. The measurements of the Cynipoidea generally support this statement, but the measured specimens of Ibalia leucospoides, Liopteron compressum, and Phaenoglyphis xanthochroa had antennae that were longest in the female. No evolutionary significance attaches to this grouping of diverse taxa.

Antennal sensilla

Although the Cynipoidea have most of the main types of antennal sensilla that are found in other parasitic Hymenoptera, one type, - placoid sensilla (or multiporous plate sensilla), are abundant and have been used as taxonomic characters but were generally called rhinaria (e.g. Quinlan, 1979). Placoid sensilla are considered (Schmidt & Kuhbandner 1983) to be derived from basiconic hair sensilla. Each placoid is a non-socketed elongate plate, which is slightly raised or domed from the antennal surface, but only separated from the surface by a fine groove (Figs 50-52). [According to Gibson (1986) the sensilla of Pseudeucoila lack this groove but my scanning electron microscope photographs show fine grooves in all the Pseudeucoila species that were available for study. However, in several antenna preparations the gold coating covered this fine groove so it is possible that the exception observed by Gibson was an artefact.] The longitudinal axis of the sensillum is always parallel to that of the antenna and the cynipoid placoids do not project beyond the apex of the segments (Fig. 52) to the extent found in the Chalcidoidea and some Proctotrupoidea (Fig. 54).

In the larger cynipoids (e.g. Ibalia) an approximately central pore is visible through the cuticle of the placoid sensilla (Börner, 1919; Chrystal, 1930). Subjecting the antennae to ultrasonic vibration renders the pores visible in both the Cynipoidea and Ichneumonidae.

Trichoid sensilla are the most abundant type of antennal sensilla in cynipoids, they are hair-like, have a thick non-porous cuticular wall and are slightly inclined in the same direction as the antenna. Short pegs in pits

(sensilla coeloconica) occur, often near the distal margin, on the more apical segments in several taxa (e.g. Cynips, Fig. 52). Smooth sensilla have been found in the Ibaliidae, Cynipidae, Charipidae and Eucoilidae. Fluted basiconic sensilla (Norton & Vinson, 1974a) also occur in the Cynipoidea.

Placoids as an indicator of relationships

The types and distribution of cynipoid sensilla are similar to those of many Ichneumonoidea; in both groups trichoid and placoid sensilla are common, and smooth basiconic or coeloconic sensilla often occur singly on each distal segment. However, cynipoids have a remarkably high density of placoid sensilla, the entire surface of the segment is often covered (Fig. 57) and it is obvious that the cynipoids have specialized in the use of this type of sensillum.

The Cynipoidea (Fig. 50), like the Ichneumonoidea (Fig. 55), have each placoid sensillum surrounded by a groove (and ridge) (Barlin & Vinson 1981). The placoid sensilla are integrated into the surface of the antenna and have no part free above the surface. This is a plesiomorphic feature that the Cynipoids share with the less derived parasitic Hymenoptera, e.g. Ichneumonoidea (Schmidt & Kuhbandner, 1983). However, the sensilla of the Cynipoidea (Fig. 51) are higher and more domed than those of the Ichneumonoidea (Fig. 55).

Placoid sensilla are present in the Chalcidoidea s.l. (except Mymarommatidae - Gibson, 1986) and in the small Proctotrupoidea (Diapariidae, Platygasteridae and Scelionidae). In these groups the sensilla are of a more derived type in which the distal end of each sensillum is free and not connected to the antennal surface (Barlin & Vinson, 1981) (Figs 53, 54).

In chalcidoids the placoid sensilla show a difference between the sexes; two forms of sensillum occur on the flagellum of females but only type one occurs in males. The type one sensillum is broader than type two and is attached to the antennal cuticle for almost its entire length, the tip being the only region that is free. The

type two sensillum is attached for half to two thirds of its length (Barlin, Vinson, & Piper 1981). In the Ichneumonoidea the placoid sensilla are reported (Borden, Chong & Rose, 1978) to have no significant sexual dimorphism (although numbers differ) and Gibson (1986) suggests using the presence / absence of sexual dimorphism as a character to distinguish the Chalcidoidea from the Ichneumonoidea. However, at least one ichneumonoid, Cardiochiles nigriceps (Braconidae) is reported to show sexual dimorphism (Norton & Vinson, 1974b). So it seems unwise to make much of this character until a greater number of species has been studied. No great morphological differences were found between the sensilla of males and females in the Cynipoidea. The differences that do exist are of little taxonomic value, for example Chrystal (1930) found that females of Ibalia have slightly more sensilla than males.

The sensilla of the Ichneumonoidea have an internal "floor" (Richardson et al 1972). In chalcidoids there is no floor to the sensilla (Borden, Rose & Charney 1970) and the many neurotubules run longitudinally in a central channel (with transverse ridges) that lies between two pendant lamellae. Studies of carefully fragmented cynipoid antennae indicate that a ichneumonid type "floor" is present (Fig. 56).

Sensilla function

It is generally assumed that all the sensilla mentioned above are involved in chemoreception (Barlin, Vinson, & Piper, 1981; Schneider & Steinbrecht, 1968). Placoid sensilla may also be involved in host finding through perception of infrared radiation (Borden, Rose & Charney, 1978; Richerson & Borden, 1972). The Liopteridae and Ibaliidae could perhaps oviposit at "hotspots" detected on the surface of tree bark over subcortical beetle larvae.

"Sex segment"

The third, or sometimes the fourth or fifth, antennal segment of the male cynipoid frequently has an elongate

cavity. This modified segment is used in precopulation antennation, which is an isolating mechanism of courtship behaviour (Alam, 1969; 1970; Gordh & DeBach, 1978). Olfaction is likely to play an important role in this process. Scanning electron microscope studies of this segment showed the pores and an evaporative surface of a large gland. The gland occurs (Fig. 58) in both parasitic and cecidogenic cynipoids, and it is probably present in most species. It is here postulated that this gland releases a courtship pheromone. Similar large dermal glands have been found on the male "sex segment" of Melittobia australica (Chalcidoidea) (Dahms, 1984) and in Trissolcus basalis, (Proctotrupoidea) (Bin & Vinson, 1986).

The anellus and geniculation

The distinctive geniculate antennae and anellus, or ring segment(s) found in Chalcidoidea and some Proctotrupoidea s.l. do not occur in the Cynipoidea.

Antennal number

In the Cynipoidea the number of antennal segments varies from 12 (reported by Weld, 1952 in a specimen of *Pycnostigmus*) to 20 (Table 35). However, the range is relatively limited and 13:14 (females : males) is very frequent and this combination was treated by Königsmann (1978) as the groundplan number and as a possible synapomorphy for the Cynipoidea. Königsmann (1978) was concerned that the greatest variation in antennal segment numbers was in the possibly "primitive" Cynipinae but several subfamilies have figures other than 13:14, thus the variability in numbers of segments could easily be secondary.

The number of antennal segments is also interesting with regard to other parasitic Hymenoptera (Table 36). The Stephanidae and Ichneumonoidea generally have high numbers of antennal segments (this is probably an apomorphic feature in each group). Other parasitica (Cynipoidea, Evanoidea, Gasteruptionidae, Pelecinidae, Megalyridae,

P. +.

	female	:	male
Ibaliidae	13	:	15
Oberthuerelinae	13	:	14
Liopterinae	13	:	14
Mesocynipinae	13	:	14-15
Aspicerinae	13	:	14
Anacharitinae	13	:	14
Figitinae	13	:	14
Eucoilidae	13-14	:	13-16
Charipidae	13	:	14
Pycnostigmatinae	12-19	:	15
Cynipidae	13-14	:	14-15
Austrocynipinae	15		-
Himalocynipinae	20	:	-

Table 35. The numbers of antennal segments in the families and subfamilies of the Cynipoidea (exceptions are likely).

Chalcidoidea	- 4	to	26
Mymaridae	7	to	13
Mymarommatidae		to	
Scelionidae *	6	to	14
Platygasteridae		to	
Ceraphronoldea		to	
Proctotrupidae	13		
Vanhorniidae	13		
Evaniidae	13		
Cynipoidea	10	to	20
Gasteruptiidae		to	
Pel¢cinidae	14	••	• •
Ropronidae	14		
Megalyridae	14		
Diapriidae		to	15
Monomachidae		to	
Austroniidae		to	15
Heloridae	16		
Trigonalyidae	14	to	32
Stephanidae	30	to	40
Ichneumonoidea	8		92+

Table 36. The numbers of antennal segments in various parasitic Hymenoptera. (After Gibson, 1986.) (* the groundplan number is 14 - Masner,1970).

Monomachidae and many Proctotrupoidea) have a medium number of about 12 to 15. The smallest parasitica (some Proctotrupoidea and Chalcidoidea) have an antennal number in single figures and this is likely to be a derived state. It seems probable that the groundplan number for the Parasitica as a whole is between 10 and 16 segments. Thus like other antennal characters, antennal segment

Page 94

.

number indicates that the Cynipoidea are not as derived as the Chalcidoidea and most Proctotrupoidea.

List of antennal character-states

- 28.1, 28.2, 28.3, 28.4 Antenna of female 13-segmented [0,0,0,0]. / Antenna 14-segmented [1,0,0,0]. / Antenna 15-segmented [1,1,0,0]. / Antenna 19-segmented [1,1,1,0]. / Antenna 20-segmented [1,1,1,1]. [These variations must be treated, at least initally, as a series, but experience suggests that they are probably all independent lineages.]
- 29.1, 29.2 Antenna of male 14-segmented [0,0]. / Antenna of male 15-segmented [1,0]. / Antenna of male 24-segmented [1,1].
- 30.1, 30.2 Number of segments by which antenna of male exceeds that of female: 1 (0,0]; / 2 (1,0) / or 5 (1,1).
- 31.1, 31.2, 31.3, 31.4 Male with the third antennal segment, to some degree, emarginate (sometimes only slightly) (0,0,0,0]. / Male without modified segment (1,0,0,0). Emargination on segments 2+3 (0,1,0,0); / 3+4 emarginate (0,0,1,0) / segments 4+5 emarginate (0,0,0,1).
- 32.1, 32.2, 32.3, 32.4 The cynipoid antenna is often filiform but, as in the Chalcidoidea, the terminal segments of the female may be differentiated (swollen) to form a clava or club. Club absent (0,0,0,0). / Club 3-segmented (1,0,0,0). / Club 6-segmented (1,1,0,0). / Club 7-segmented (1,1,1,0). / Club 8-segmented (1,1,1,1).
- 33 The third antennal segment is usually longer than the fourth [0]. / Third antennal segment shorter than the fourth [1]. [In doubtful cases the measurment of the female was chosen.]
- 34 The antennal segments of almost all Cynipoidea are fully articulated (0). / Two taxa have the last two segments partially fused in the females. The division between the two segments is apparently incomplete or not functional (1). (Scanning electron microscopy of

this character indicates that the segments are not physically amalgamated. However, under light microscopy the apparent fusion is a stable character.]

- 35 Antenna normal [0]. / Antenna slightly flattened [1].
- 36 Antennal segments of females densely covered with placoid sensilla (0). / In a few females an increased area of cuticle is visible between a slightly reduced number of sensilla (1).
- 37 Antennal segments, of males, densely covered with placoid sensilla [0]. / Antennae of males with a slightly reduced number of sensilla [1].
- 38.1, 38.2, 38.3, 38.4, 38.5, 38.6 Antenna of females with
 many sensilla from segment 3 onwards [0,0,0,0,0,0]; / 4
 onwards [1,0,0,0,0,0]; / 5 onwards [1,1,0,0,0,0]; / 6
 onwards [1,1,1,0,0,0]; / 7 onwards [1,1,1,1,0,0]; / 8
 onwards [1,1,1,1,1,0]; / 11 onwards [1,1,1,1,1].
- 39.1, 39.2, 39.3 Males with placoid sensilla from segment 3 onwards [0,0,0]; / 4 onwards [1,0,0]; / 5 onwards [1,1,0]; / 6 onwards [1,1,1].
- 40 Antennal segment four of male not swollen [0]./ Segment four swollen [1].
- 41 Antennal segment three of male not swollen [0]. / Segment three swollen [1].
- 42 Antennae with normal sculpture [0]. / Antenna densely punctate [1].
- 43 Antennae with long placoid sensilla (0) / Placoid sensilla very short [1].

THORAX

The apocritan thorax consists of the pro- meso- and metathorax, which together form the "true" thorax, and the first abdominal segment, the propodeum.

Prothorax

In lateral view the cynipoid pronotum is triangular (Fig. 66), closely joined to the mesepisternum and the posterior corner reaches to the tegula (not so in the Chalcidoidea).

Between the pronotum and the mesopleuron there is a pubescent slit (Figs 72, 73), presumably the opening of a gland. The epomia, netrion and skaphion, occuring in some Proctotrupoidea (Masner, 1979), are absent from the studied cynipoids. The pronotum does not extend round to the mid-ventral line and thus is not fused ventrally (as in Gasteruptidae and some Proctotrupidae). The point of invagination of the occlusor muscle apodeme, (Gibson, 1985) visible near the posterolateral edge of the pronotum in many chalcids (Gibson, 1985), is not clearly indicated in the Cynipoidea.

Pronotal plate

The cynipoid pronotum is modified anteriorly to form a complex structure that in its most derived condition forms a raised pronotal plate (Fig. 65). The groundplan state for this structure is the presence of a frontal bar, caulis, submedian depressions and lateral depressions (c.f. Fig. 68). This is the condition found in the gall-wasps (Fig. 75). Primitively the anterior edge of the pronotal plate, the lobe carina, fades out dorsally (although it is well-developed in Biorhiza pallida). All remaining cynipoids also have a pair of lateral carinae (Figs 64, 66, 67). (In Austrocynips the lateral carinae are indistinct but their position is marked by a ridge or hump on the sides of the pronotum.) Initially the lateral carinae do not meet dorsally. In the Liopteridae and Ibaliidae and the posterior pronotal margin has a median expansion or "tooth" (Figs 70-72, 74). [In dorsal Oberthuerella the lateral carinae are incomplete and the frontal bar is indistinct, but the tooth is virtually absent]. In more derived states the lateral carinae unite dorsally (Fig. 62). The next stage involves the lateral carinae dividing (low down near the lateral depression) into a dorsal and two ventrolateral sections (Fig. 63). The ventrolateral sections are then reduced (Fig. 64) or lost. In the Charipidae the dorsal section is reduced to a trace (Fig. 67), but in other cynipoids this section is well developed and unites with an expanded plate lobe carina, to form a dorsal pronotal plate (Fig. 69). In the

most derived states this plate is partially (Fig. 68) and then fully raised off the pronotum (Fig. 65) to form a very distinctive structure.

A similar, but less complex, structure occurs in the Belytidae and Platygasteridae (Proctotrupoidea), and other forms of pronotal plate occur elsewhere in the Hymenoptera (e.g. Pelecinidae).

Intersegmentalia and the mesothoracic spiracle

The basalare and prepectus are the only intersegmental sclerites between the pro- and mesothoracic segments in the Apocrita. The basalare is present in all macropterous forms but an independent prepectus is found only in the Chalcidoidea, Roproniidae Austroniidae, Stephanidae and Monomachidae (Gibson, 1985; Rasnitsyn, 1980). In other Apocrita, including the Cynipoidea, the prepectus is reduced and fused to the pronotum.

In the Cynipodea, Proctotrupoidea, Evanioidea and Trigonalyoidea the mesothoracic spiracle lies below the lateral edge of the pronotum and is surrounded by a remnant of the prepectus - the posterior pronotal inflection (Gibson, 1985). The inflection forms a groove with the outer edge of the pronotum into which fits the anterior edge of the mesepisternum. The Ichneumonoidea and Chalcidoidea show other, independent, conditions of the spiracle / prepectus (Gibson, 1985).

The mesothoracic spiracle has a thick peritreme (Fig. 70) and the occlusor muscle is twisted around the thin-walled secondary atrium (Tonapi,1958). The pronotal lobe, at the posterolateral corner of the pronotum, is only weakly enlarged and incompletely conceals the spiracle.

Mesothorax

The mesothorax (Figs 71-85) contains the dorsoventral and longitudinal indirect flight muscles (Figs 89-92) and therefore is the largest thoracic segment. Contraction of the indirect flight muscles causes the mesoscutum to flex relative to the posterodorsal scutellar / axillar complex at the transscutal articulation (Figs 71, 75-77). This enables flight by moving, in turn, the anterior and posterior notal wing processes, the axillary sclerites, and finally the wing (Pringle, 1957; Matsuda 1970; Webber 1925). The transscutal articulation is commonly lost in apterous species (Reid, 1941). Some alate Proctotrupoidea and Cynipoidea and many Ichneumonoidea have an incomplete transscutal articulation, but in the Cynipoidea at least a remnant is usually visible at the extreme lateral edge of the mesoscutum. Loss of this articulation in the Apocrita is secondary (Gibson, 1985) and has occurred in several lineages.

The mesoscutum is large and anteriorly curved. The notauli (Figs 75-78, 130) are external indications of internal phragmata (endoskeletal ridges) and mark the line of separation between the dorsolongitudinal (median origin) and dorsoventral indirect flight muscles (lateral origin) (Michener, 1944; Wong, 1963). Percurrent notauli occur in many Cynipoidea but frequently they are absent or only indicated posteriorly.

A percurrent median mesoscutal line occurs in cynipoids but more typically it is present only towards the posterior of the mesoscutum. Dissections show that even when the median line is as deep as the notauli (e.g. Ibalia) it is not invaginated into a phragma and thus is not a true median mesoscutal sulcus (Rasnitsyn, 1980). The cynipoid mesoscutum also shows traces of secondary lines. Anterio-admedian lines (misinterpreted as notauli by Ritchie and Peters, 1981) are usually weakly indicated, also traces of parapsidal lines are present (Fig. 78) in all but the smallest and smoothest cynipoids (Figs 85, 86).

Large axillae are likely to have arisen primarily as a consequence of their role as an attachment site for the second phragmal flexor and the mesotrochanteral depressor muscles (Gibson, 1985). Most parasitica have secondarily lost elements of the axillar muscles and thus the axillae are typically small and widely separated. Therefore the relatively well defined axillae of the Cynipoidea (Fig. 84) must be either a primitive or more probably a secondarily derived feature. The cynipoid axillae are expanded dorsolaterally in the form of the lateral bars (Figs 85, 86), which connect with the scutellum (lateral extensions of the axillae occur in some Ichneumonoidea, Proctotrupinae and Diapriidae). The axillae are partially separated from the scutellum by the scutoscutellar sulcus. In many parasitica this is a transverse groove but in the Cynipoidea it consists mostly of two deep scutellar foveae and, on each side, a lateral groove which continues under the lateral axillary bar. Only a thin area of cuticle, the fenestra (Fig. 87), separates the fovea from the lateral scutellar area. In taxa with a broad axillar bar e.g. Pycnostigmus, the fenestra is in a distinct tunnel under the bar. In some taxa, e.g. Neuroterus, the scutoscutellar sulcus may be lost and the lateral bars absent. Strong scutellar foveae are a groundplan character for the Cynipoidea, only rarely are they absent; in other apocrita with lateral bars there is often a single central fovea. Cynipoid foveae (Figs 78, 84, 130) are usually small but in most Aspicerinae and some Figitidae (e.g. Neralsia) they can be up to half the length of the scutellum. The cynipoid scutellum is strongly raised above the metanotum (Figs 82, 86), this condition has been considered a synapomorphy for the superfamily (Königsmann, 1978), but other parasitica, especially the Chalcidoidea, have a similar scutellum. The scutellum of the Eucoilidae bears a characteristic raised plate (or "cup") (Figs 84-87). The scutellum lacks a frenum (found in Chalcidoidea).

The mesopleuron consists mostly of a large mesopletrnum (Figs 71-76, 79-83). The mesopleuron is posteriorly rotated so that the small mesopleuron lies horizontally above the mesopletrnum. The upper edge of the mesopleron bears a line of sensory hairs that probably provide information on wing position (Fig. 96). The anterior plate of the mesopleternum consists of a large depressed triangular area (Fig. 82), delineated ventrally by the ventral margin of the anterior oblique sulcus. The episternal scrobe is distinct and the subalar pit is concealed but deep (Fig. 80). In certain small taxa (e.g. Kleidotoma and Rhoptromeris) the anterior plate is not depressed, the subalar pit and episternal scrobe are not visible and the epimeron is hardly distinguishable from the mesepisternum (Fig. 85). The posterodorsal corner of the mesopleuron is produced into a weak lobe which conceals most of the second thoracic spiracle. A "speculum" is present in *Ibalia* (Fig. 71); because it lies below the scrobal sulcus it is not homologous with the speculum in other groups which lies above the scrobal sulcus.

Metathorax

The small metathorax (Figs 74, 79-83) bears the hindwings. Laterally it is poorly differentiated from the propodeum. The metanotum is a short, transverse sclerite. The metathoracic spiracle is concealed behind the posterodorsal margin of the mesepimeron. In the larger Hymenoptera (Symphyta, Ichneumonoidea, Evanioidea and most aculeates) this spiracle 15 open, but in the microhymenoptera it is frequently nonfunctional. However, in at least one large cynipoid, Ibalia, it is apparently functional; also a trace of this spiracular system may persist in Aulacidea.

Propodeum

The first abdominal segment, the propodeum (Figs 74, 85) is generally convex and, in dorsal view, divided by carinae into areas. The propodeum, as well as other regions of the functional thorax, have conspicuous fields of sensory hairs (Achterberg, 1977). The propodeal spiracles are conspicuous; they have a raised anterior lip which lies over the opening and reduces it to an elongate slit. The walls of the atrium are thin. The closing mechanism consists of a valve that lies between two large levers, which arise from the anterior propodeal wall (Tonapi, 1958).

Thoracic myology

Cynipoid thoracic musculature (Figs 89-95, 100, 101) is similar to that of other small Hymenoptera (Daly, 1963; Gibson, 1985). Considerable size variation was found, the

largest cynipoids (e.g. Ibalia) have stout muscles, especially the flight muscles (Fig. 89), and each muscle consists of many fibrils. The muscles of small species, especially the Alloxystinae, were often quite fine and more spindle-shaped. This variation probably reflects the lifeways and in particular the differing powers of flight of these two groups. Ibalia is a relatively strong flyer, whereas the Alloxystinae are less active, being mostly windborne like their aphid hosts (Yoshimoto & Gressitt, 1965).

Mesotrochanteral depressor and the second-phragmal flexor. Gibson (1985) studied the distribution of the two muscles thought to be most valuable for phylogenetic analysis of the parasitoid Hymenoptera - the mesotrochanteral depressor and the second-phragmal flexor. The position of these two muscles in the Cynipoidea has been investigated and Gibson's character-states are confirmed as applying to a wide range of cynipoid species.

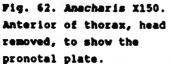
The mesotrochanteral depressor is a mesothoracic muscle (Figs 93-95) that inserts into the basomedial edge of the mesotrochanter; contraction rotates the apex of the trochanter. The mesotrochanteral depressor may consist of two elements, the mesotergal-trochanteral depressor and a much smaller muscle the mesofurcal-trochanteral depressor. The latter muscle is absent from the Chalcidoidea, and many other parasitica lack the mesotergal-trochanteral depressor. In both the Ichneumonoidea and Cynipoidea the mesofurcal-trochanteral depressor is conical or fan-shaped 95). The Pelecinidae, (Figs 94, Proctotrupidae, Vanhorniidae and Evaniidae have a mesofurcal-trochanteral depressor which has a pleural component (mesopleural-trochanteral depressor) and in the Scelionidae only the pleural branch is retained (Gibson, 1985). Reduction of the mesotrochanteral depressor to similar states in the Cynipoidea and Ichneumonoidea is a parallelism and not a reliable indicator of a close evolutionary relationship.

The Second-phragmal flexor is an oblique lateral

muscle (Figs 90-92) from the axilla to a lateral process of the second phragma. According to Daly (1963) the Cynipoidea are the only parasitoid Hymenoptera to have this muscle but Gibson (1985) also found it in the Ceraphronoidea, Diapriidae, Monomachidae and Vanhorniidae. Presence of the second-phragmal flexor in these taxa is regarded as a symplesiomorphy.

List of thoracic character-states

- 44 Lateral pronotal carinae absent [0]. / Lateral pronotal carinae present (Fig. 66) [1].
- 45 Pronotal tooth absent [0]. / Pronotal tooth present (Fig. 70) [1]. [As mentioned above, Oberthuerella is difficult to score for this feature, it will be awarded a variable "V" score thus invoking a scoring option of the LEQU program which will iterate for both 0 and 1.]
- 46 Lateral pronotal carinae curved [0]. / Lateral pronotal carinae straight and converging [1].
- 47 Caulis of pronotal plate curved (Fig. 68) (0]. (In the Anacharitinae the frontal bar caulis and frontal lobe are faint.) / Frontal bar of pronotum very thin so that the caulis is pointed [1].
- 48 Pronotum without a ridge-like hump, either with a carina, no matter how small, or with an evenly curved lateral pronotal surface (0). / Lateral surface of pronotum with a ridge-like hump [1].
- 49 Carinae present laterally but not joined dorsally [0]. / The lateral carinae unite dorsally to form a semicircular plate (Figs 62-63) [1].
- 50 Without a lateral disjunction (Fig. 62) [0]. / With a separation of the dorsolateral part of the carina from the most ventral section (Fig. 64) [1].
- 51.1 51.2 Plate not raised off the surface of the pronotum [0,0]. / Pronotal plate partially raised (Fig. 63) [1,0]. / Plate completely raised, the pronotum is markedly produced frontodorsally into a raised anterior plate with a strong posterior margin (Fig. 65) [1,1].
- 52 Without a precoxal tooth [0]. / With a frontolateral pronotal tooth next to the fore coxa [1].


- 53.1, 53.2 Light mesoscutal and scutellar sculpture (Alutaceous - punctate - granulate - rugulose strigulose) present (0,0) (Figs 75, 76). / Loss of the sculpture so that the dorsal surface, including the scutellum, is smooth and shiny is apomorphic (Figs 81, 82, 85, 160) (1,0). / The acquisition of heavy (rugose - foveolate - striate) sculpture (Figs 70-72, 74) is also apomorphic (0,1). (In Anacharis, the scutellum is almost smooth but there is a little fine sculpture present, so it has been scored 0,0. The Aspicerinae have strong sculpture (e.g. Figs 77, 148) but this just falls within the definitions of rugulose to strigulose and thus they are scored 0,0.]
- 54 Mesoscutal ridges absent (Fig. 81) [0]. / Strong, transverse, mesoscutal ridges present (Fig. 71) [1]. [In Paramblynotus the ridges are distorted by strong foveolate sculpture (Fig. 74).]
- 55 Notauli percurrent (Fig. 77) [0]./ Notauli reduced or lost (Figs 81, 82, 85) [1]. [In Austrocynips the notauli are obscured by strong sculpture.]
- 56 Percurrent median mesoscutal line (sometimes partially obscured by sculpture e.g. Liopteron Figs 77, 130) [0]. / Median mesoscutal line reduced or lost [1].
- 57 Mesoscutal line simple (0). / With a characteristic inverted "Y" pattern to the mesoscutal line (1) (Fig. 77).
- 58 Most cynipoids either have no mesoscutal flanges or have these flanges on the side of the mesoscutum [0]. / Posterolateral corners of the mesoscutum ending in a distinct flange which is preceded by a depression.
- 59 Axillar flange absent [0]. / With a horizontal flange on the axilla [1]. [This flange is not homologous with character 58].
- 60 Axillae present, even if occasionally lacking the distinctive dorsal bar (some Charipidae - Fig. 82) [0]. / Axillae virtually absent dorsally [1].
- 61.1, 61.2 The junction of the axillary bar with the scutellum is not normally visible, or, in those cynipoids with an especially flat and broad axillar

bridge, a trace of the junction may be seen [0,0]. / Axillary bar - scutellum junction evident and the axillary bar transverse [1,0]. / Axillar junction clear and the bar vertical (Figs 84-86) [0,1].

- 62.1, 62.2, 62.3, 62.4 Scutellum without spine(s) (Fig. 82) [0,0,0,0]. / Scutellum with a simple spine (Fig. 78) [1,0,0,0]. / Scutellum with a "spine" that is a continuation of the whole scutellum (0,1,0,0). / With (in various degrees) a small projection on each side of the scutellum (0,0,1,0). / With a central spine in addition to the lateral scutellar projections [0,0,1,1].
- 63 Posterior scutellar ridge absent (0). / With a transverse ridge across the rear edge of the scutellum. It is interrupted centrally by a large emargination (1).
- 64 Scutellum not apically downcurved [0]. / Scutellum roundly declivous posteriorly [1].
- 65 Scutellum smooth, or with small weak carinae, or weak marginal flanges, or with a curved marginal flange (especially posteriorly), or with a short central ridge [0]. / With three large and distinctive scutellar carinae, one median and two lateral (Fig. 77, 78). The carinae are long straight and percurrent (1). (The carinae of Neralsia are similar to those of the derived state but are not complete.)
- 66 Scutellar plate absent [0]. / The scutellum with a unique plate (="cup"), a raised circular or longitudinally oval area that frequently has a central depression (Figs 84-87) [1].
- 67 Scutellar foveae present (Fig. 130) [0]. / Scutellar foveae very faint and shallow or absent (Figs 81, 82) [1].
- 68 Foveae approximately round [0]. / Foveae of a distinctive, transverse, almost trianguar shape [1].
- 69 The central area between the scutellar foveae raised and, at most, moderately sculptured [0]. / Central area striate, either deeply depressed betweeen the striae or the striae are weaker and the area depressed so it almost forms a third fovea [1].

- 70 Scutellar foveae separate [0]. / Foveae virtually fused into one deep fovea [1].
- 71 Scutellum without a posterior depression [0]. / Posterior region of the scutellum with a shallow, approximately triangular, depression (Fig. 158) [1].
- 72 Anterior scutellar flange present above the transscutal articulation and on the mesoscutum [0]. / This flange present on the anterior corner of the scutellum [1].
- 73.1, 73.2, 73.3 Mesepisternal suture absent, or obscured by sculpture (Figs 81, 82) (0,0,0). / With a transverse suture or a line of foveae on the ventral region of the mesepisternum (Figs 83, 85) [1,0,0]. / In two taxa the suture is high on the mesepisternum (1,1,0) and in two others the suture is wide (Fig. 74) (1,0,1).
- 74 Speculum-like area absent [0]. / The mesepisternum of a few large cynipoids has a distinct area (Fig. 71), reminiscent of the speculum found in ichneumonids [1].
- 75 Upper mesepisternal structures distinct [0]. / In some small species the subalar pit and the epistomal scrobe are indistinct and the epimeron is little differentiated from the mesepisternum (Fig. 85) [1].
- 76 The metathoracic spiracle is nonfunctional in most Cynipoidea (0). / The largest cynipoid appears to have a functional spiracle [1].
- 77 Where the anteroventral region of the mesepisternum joins the metapleuron there is an inconspicuous depression [0]. / This depression forming a distinct pubescent cavity (Fig. 88) [1].
- 78.1, 78.2, 78.3 Junction between the metapleuron and the mesepisternum with a vertical metapleural trough which is constricted centrally, (Figs 79, 80, 83); or with a reduced trace of this structure [0,0,0]. / Region of metapleural trough obscured by rough multidirected sculpture rugose to foveolate; without a clear trough, horizontal groove, or constriction (Fig. 72) [1,0,0]. / Metapleuron with upper part of trough and central constriction plus a strong horozontal groove (Fig. 71) [0,1,0]. / Metapleuron with a trough, which has a constriction and a sinuate lower margin

2

Fig. 63. Aspicera X170. Anterior of thorax, head removed, to show the pronotal plate.

Fig. 64. Helanips X110. Anterior of thorax, head removed, to show the pronotal plate.

Fig. 65. Trybliographa X220. Anterior of thorax, head removed, to show the raised pronotal plate.

Fig. 66. Xyalaspis X120. Anterior of the thorax, head removed. Lateral view of the pronotal plate.

Fig. 67. Alloxysta X220. Anterodorsal view of the pronotum, and frontal bar; head removed.

Fig. 68. Figites X150. Dorsal view of frontal bar and caulis (between the submedian depressions).

Fig. 69. Neralsia X220. Lateral view of pronotum. Submedian depression and frontal bar.

Fig. 70. Ibalia x80. Lateral view of pronotum.

留茶意

9

1h

Fig. 71. Ibalia X25. Lateral view of thorax.

Fig. 72. Liopteron X40. Lateral view of thorax.

Fig. 73. Liopteron X70. Mesepisternum. Slit-shaped opening of gland (arrow) and transverse suture.

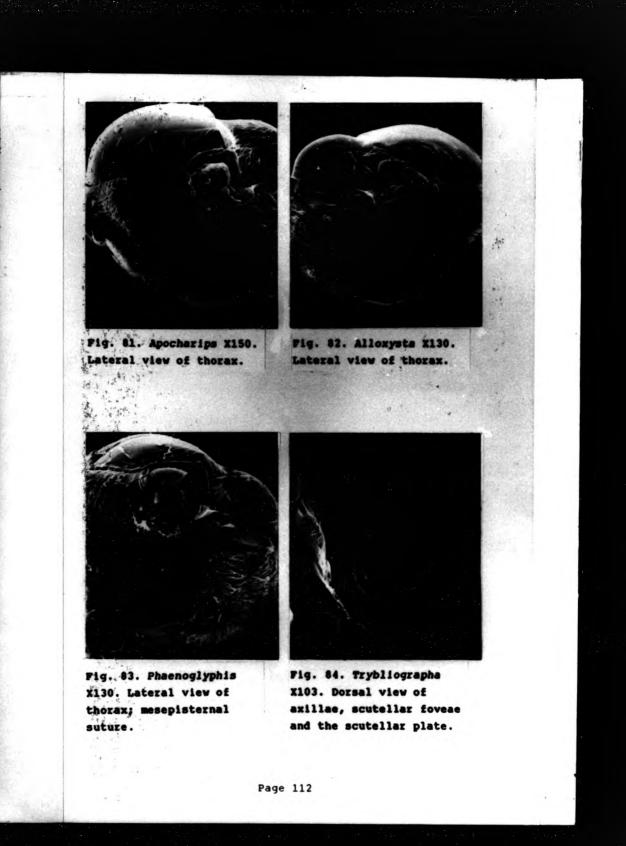
5 Fig. 74. Paramblynotus X50. Lateral view of thorax. 1 Fig. 75. Aulacidea X120. Fig. 76. Melanips X70. Lateral view of thorax. Lateral view of thorax. the state of a Page 110

Fig. 77. Callaspidia X80. Nesoscutum.

12

53 45

Fig. 78. Aspicera X50. Dorsal view of thorax.



Lateral view of thorax. Lateral view of thorax.

X ..: . .

Fig. 80. Figites X70.

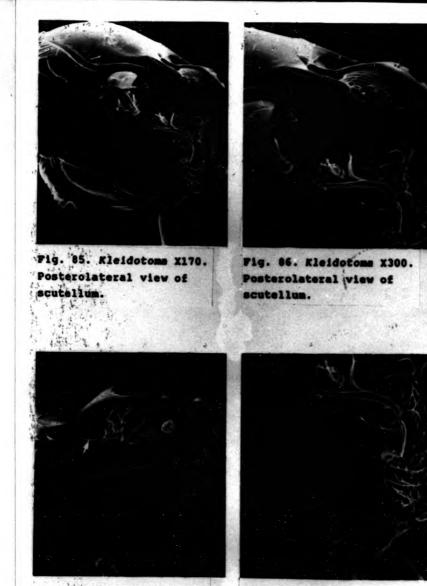


Fig. 87. Eucoila X110. Lateral view of scutellum. Penestra (arrow) under axillary bar.

6 14

Fig. 88. Kleidotoms X350. Pubescent cavity at the base of the metapleuron.

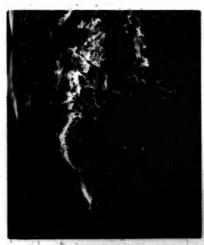


Fig. 89. Ibalia X40. Dorsal view of thoracic flight muscles; mesonotum removed.

1 .1

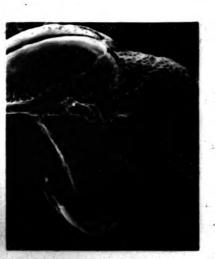


Fig. 90. A charipid X150. Lateral view of the thoracic musculature; side of thorax removed.

Fig. 91. Cynips X80. Lateral view of thoracic musculature. See Fig. 100.

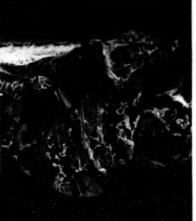
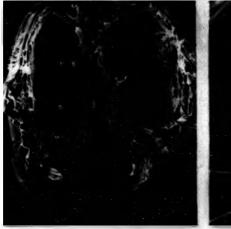
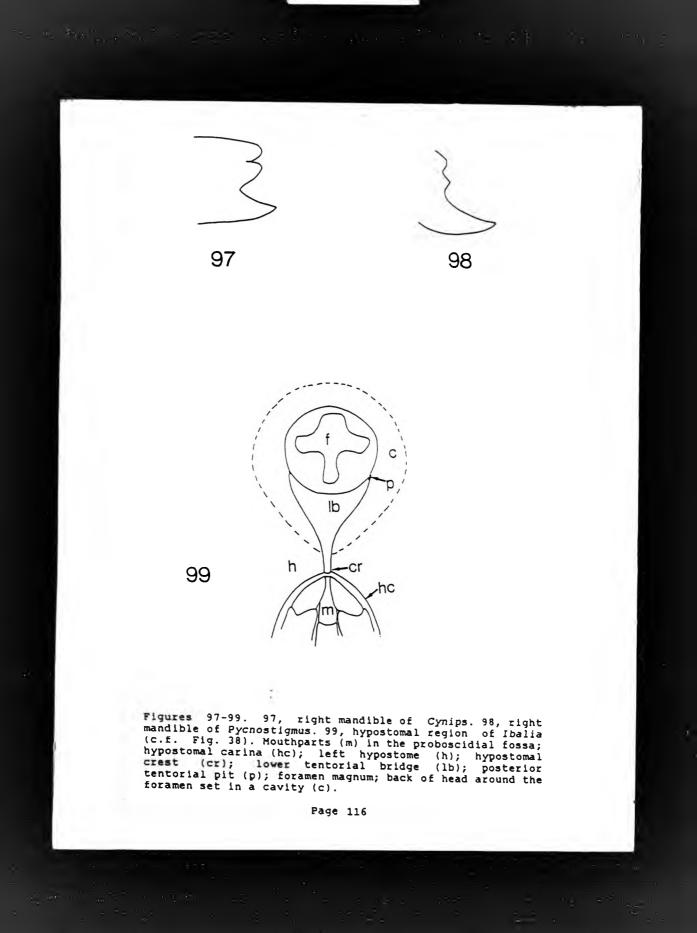
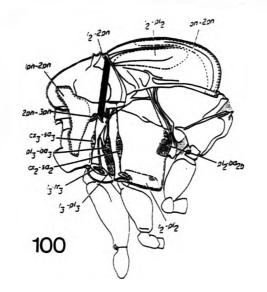
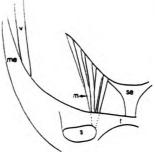


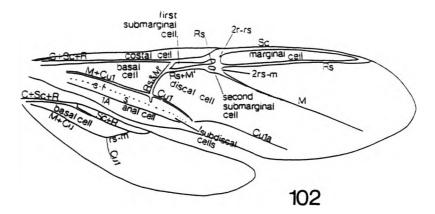
Fig. 92. Ibalia X35. Lateral view of thoracic musculature.

Fig. 91. Biorhise X100. Mesotrochanteral muscle complexe See Fig. 101.

Fig. 94. Biorhime X300. Nesetrochanteral muscle complex. Emlagement of Fig. 93.

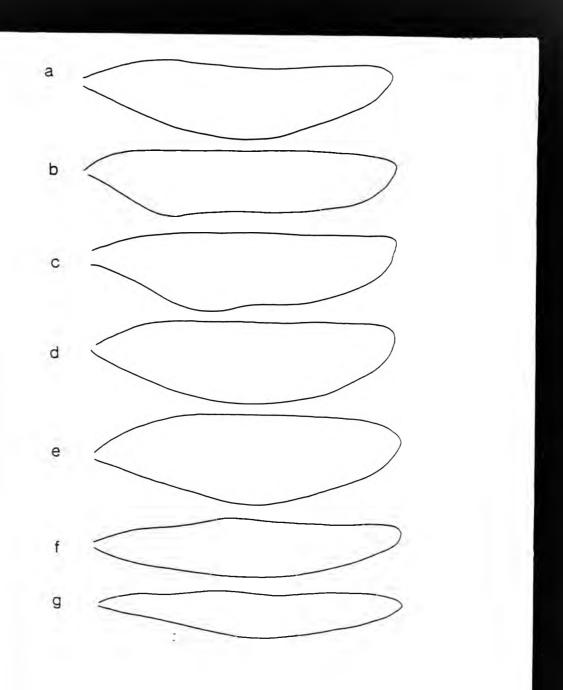
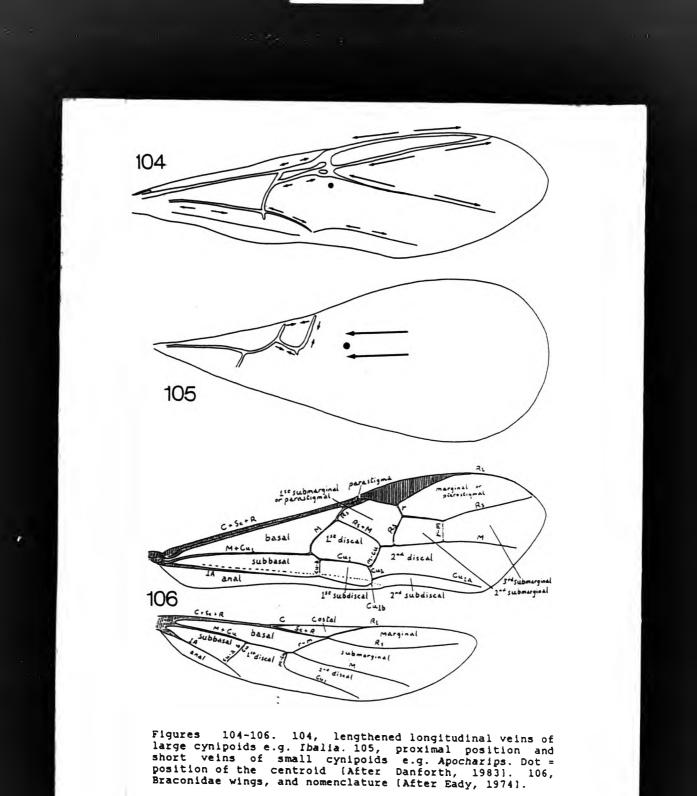
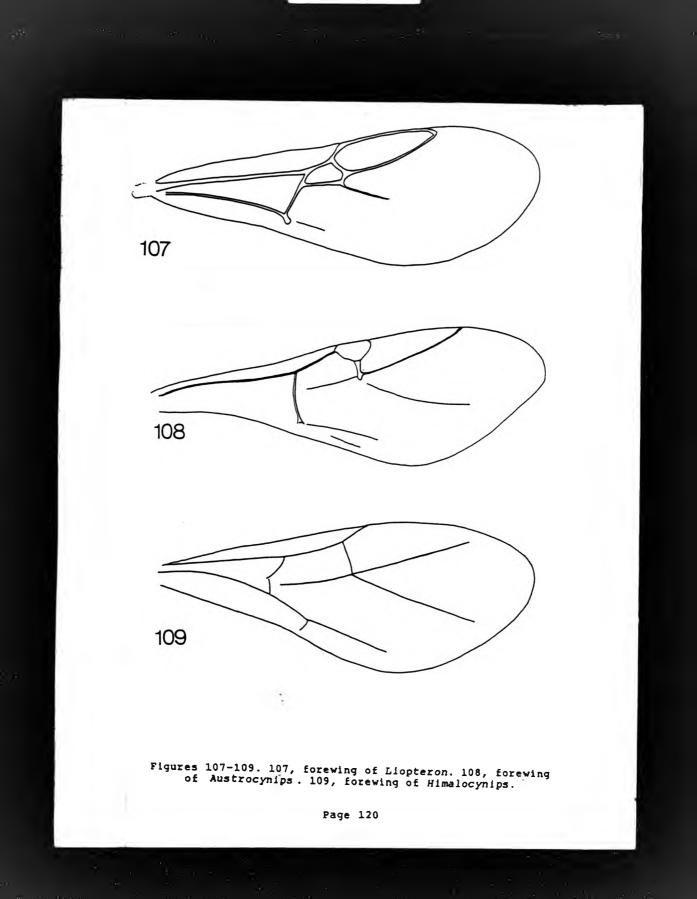
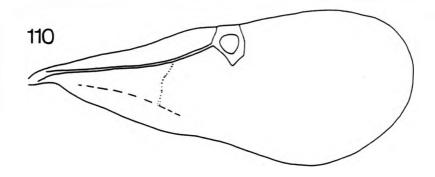
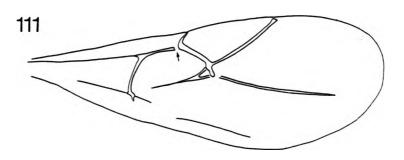




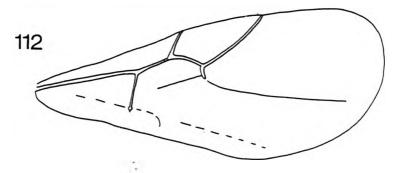

Fig. 95. Ibalia X40. View from centre into rear of thorax (longitudinal flight muscles removed).

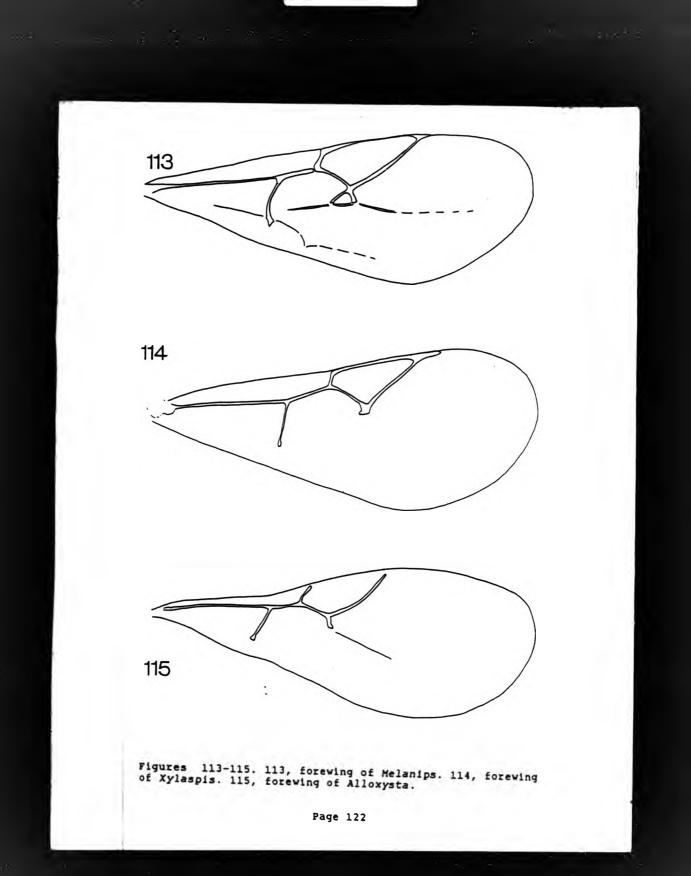

Fig. 96. Alloxysta X2000. Sensory hairs, on upper edge of mesepimeron, that touch the wing (above).

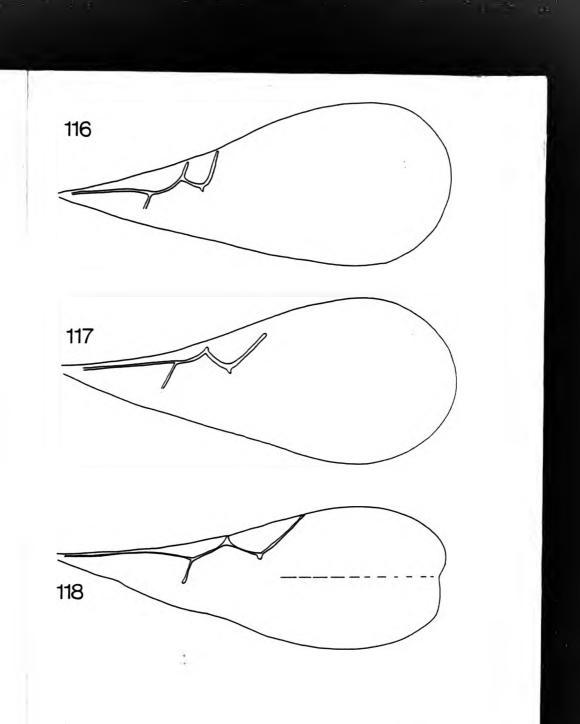
101

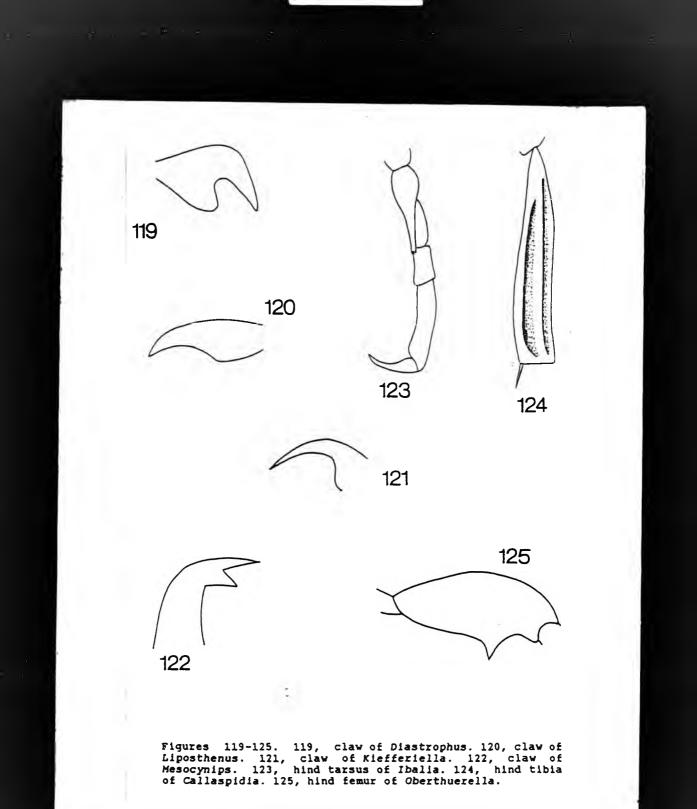
Figures 100-102. 100, thoracic muscles of Andricus; second phragmal flexor (t2-2ph) shown in black. Vertical flight muscle t2-pl2 removed. (After Daly, 1963). 101, Biorhiza - lower section of mesothorax showing mesotrochanteral depressor muscle (m). See Figs 93-94 (me = mesepisternum, s = socket of mid leg, se = septum, t = trochantinal lobe, v = vertical muscles. 102, cynipoid wing terminology (1 = basal vein, 2 = cubital vein, cf = claval furrow, s = subbasal cell) (discal cell = discoidal cell).

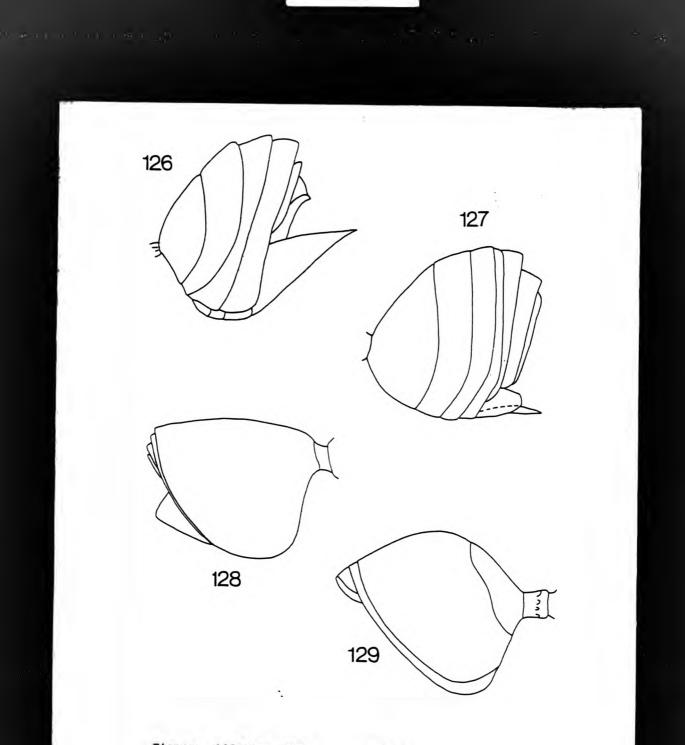







Figure 103. Allometry in hindwings. Hindwing of Ibalia (a), Tessmanella (b), Liopteron (c), Cynips (d), Figites (e), Lonchidia (f) and Rhoptromeris (g), drawn to the same length.






Figures 110-112. 110, forewing of Pycnostigmus. 111, forewing of Callaspidia (fenestra marked by an arrow). 112, forewing of Aulacidea.



Figures 116-118. 116, forewing of Apocharips. 117, forewing of Dilyta. 118, forewing of Kleidotoma.

Figures 126-129. 126, lateral view of Diplolepis gaster. 127, lateral view of Neuroterus gaster. 128, lateral view of Synergus gaster. 129, lateral view of Aspicera gaster.

[0,0,1] [Further subdivision of this character is possible but difficult to characterize. Austrocynips has a shallow groove. In Himalocynips the lower half fades out in a distinctive manner. In Liopteron the groove is effectively absent but part of the posterior margin persists. A similar reduction occurs in the Eucoilidae. The Charipidae show a reduction series culminating in the retention of little more than the central constriction.]

79.1 79.2 Opening of propodeal spiracle partially covered by a flap [0,0]. / The form of the flap giving the opening a "figure-of-eight" shape [1,0]. / Flap small and the opening wide and round [0,1].

WING

The evolution of the apocritan wing is, to a large extent, a series of vein reduction trends. The most primitive and also the most complete wing venation is found amongst the Symphyta. In the Ichneumonoidea (Fig. the 106) venation is still extensive, but in the microhymenoptera the veins are much reduced. In the Chalcidoidea and many derived Proctotrupoidea the fore wing venation is reduced to a single vein complex (based on the submarginal, marginal, stigmal and postmarginal the costal margin, veins) near but in many microhymenoptera some or all of these veins are lost (e.g. Platygasteridae). In general terms the cynipoid venation occupies a position between the venation of the Braconidae and that of most microhymenoptera. The venation and in particular the hind wing venation is more similar to that of certain Proctotrupoidea than to that of the Chalcidoidea.

When the most complete cynipoid venation (Fig. 102) is compared to a generalized ichneumonoid venation e.g. Bracon (Braconidae) (Fig. 106) it is easy to see how the cynipoid venation has evolved. Cynipoids have lost the pterostigma, and the apex of the marginal cell has moved

round to the leading edge of the wing so that the cell becomes triangular. The m-cu cross veins have been lost so that there are no closed discal cells, the subcosta (Sc), and virtually all of the costa (C) is lost and the costal field is very wide. The maximum number of closed cells (Ibalia) is six: basal, marginal, first and second submarginal, subbasal and subdiscal. The last two cells are open where the claval furrow passes through the cu cross veins. The second submarginal cell is very small. It should not be called an "areolet" (Königsmann, 1978) as this is likely to be confused with the well-established and different use of this term in the Ichneumonidae. The hind wing has only one closed (basal) cell.

slightly In less well veined cynipoids (e.g. Cynipidae, larger Liopteridae and Himalocynips) the second submarginal cell is lost. Next the anal veins and the cu cross veins have been lost, and to a lesser extent there is a loss of veins in the basal region. On the hind wing, the basal cell is lost and the venation is reduced to one longitudinal vein (C+ Sc+R). In the smallest taxa the outer region of the wing loses all venation. Pycnostigmus shows a greater reduction of venation than any other cynipoid - veins 2r-rs, 2rs-m, Rs&M and Rs all being lost.

Hamuli

Hamuli, on the leading edge of the hind wing, engage in a fold on the posterior margin of the fore wing and hold the wings together. Cynipoid hamuli are long, close together and there are no costal hamuli. All examined taxa had three hamuli although five have been reported (Königsmann, 1978). A reduced number of hamuli, often three, is common in the microhymenoptera. Unlike many Hymenoptera (Gauld & Bolton, 1988), large body size does not appear to cause an increase in the number of hamuli in the Cynipoidea.

Convex veins

Wing veins are generally alternately convex and concave (Comstock, 1918). However, the Hymenoptera have

lost virtually all concave venation so that in the Apocrita the longitudinal veins are exclusively convex (Mason, 1986). However, in the Cynipoidea the trace venation of the hindwing has become secondarily concave (Mason, 1986), a peculiarity of this group, although it is possible that vein M+Cu is partially concave in some Diapriidae (e.g. Aclista).

Pterostigma

The Cynipoidea have lost the pterostigma but two subfamilies, Himalocynipinae and Pycnostigmatinae, have a "pseudopterostigma" (Figs 108, 110, 149, 159). This structure consists of a small cell surrounded by very thick sclerotized veins and therfore is is not directly homologous with the pterostigma of other Apocrita (Danforth, 1983; Fergusson, 1986; Königsmann, 1978; Weld, this structure homologous with the 1952). Nor is parastigma of the Chalcidoidea - formed by the broadened junction of the submarginal and marginal veins.

In Pycnostigmus the R veins are very thick and the central circular area is only moderately pigmented and smooth. Pycnostigmus has lost many wing veins and it is most likely that the pseudopterostigma helps to strengthen the leading edge of the wing. The pseudopterostigma of Austrocynips is very different to that of Pycnostigmus because the R veins are not so broad and distinct although they are visible. Also the surface of the sclerotized cell is granulate.

Wing pubescence

The wings of small cynipoids (e.g. Charipidae and Eucoilidae) often have a dense fringe of long hairs which increase the aerodynamically effective wing area. Also they have elongate leading edge setae which presumably assist in the generation of turbulence in a thick boundary layer (c.f. Danforth 1983). Many of the larger cynipoids (e.g. Liopteridae) have no wing fringe or only a short fringe of hairs.

Some taxa have conspicuous hairs on Sc+R+Rs these hairs are longest in small taxa, the exemplar

Rhoptromeris, Phaenoglyphis, Apocharips, Dilyta, Figites, Neralsia and Alloxysta all have five of these long hairs. Kiefferiella, a small liopterid, also has very long hairs, but all other Liopterids and other taxa have vein hairs of the same length or shorter than other wing hairs.

Flexion & fold lines

The wings of virtually all but the smallest Hymenoptera have fine flexion lines, which are primarily aerodynamic in function, and wing fold lines (Danforth & Michner, 1988; Wootton, 1979). Insect wings are aerofoils subject to passive deformation by the airstream and the extent of this deformation is partially controlled and limited by the architecture of the wing. This deformation is helped and localized by the flexion lines which permit areas of wing to hinge against each other thus allowing an alternation of camber at different stages of beat-cycle.

In most cynipoids the outer part of the wing is not supported by veins and thus the radial flexion system (a derivative of the median flexion line) found in the Ichneumonoidea is indistinct or absent. However, there may be a fenestra (= bulla) present (Fig. 111) where Sc separates from Rs (e.g. Callaspidia). This corresponds to the characteristic radial flexion fenestra, just proximal to the pterostigma, in other Hymenoptera. The claval furrow is present, just anterior and parallel to the line of vein 1A, in all Cynipoidea studied. It originates at the wing base but there is no clear notch (preaxillary excision) in the distal wing membrane. Flexion lines also occur in the hind wings of many Hymenoptera but only a faint trace of this flexion system is present in the Cynipoidea.

The reduction of these lines in the Cynipoidea means that the great bulk of the forewing and all of the hindwing conists of remigium. Thus wing flexion and indeed cynipoid flight is unlikely to be identical to that of larger Hymenoptera and is more likely to be similar to that of other microhymenoptera, e.g. Chalcidoidea, that have also lost much wing structure (see below).

Insect wings may undergo longitudinal plication along

fold lines (e.g. the jugal fold). Also the fold lines may secondarily contribute in flight (and the flexion lines may help in folding at rest). In the examined Cynipoidea, fold lines were only seen in Kleidotoma. This genus has a semi-longitudinal fold line which runs from a notch in the wing margin to the hind margin of the wing, so the distal part of the wing can flex down when the wings overlap above the gaster.

Allometry and wing shape

In general the hymenopterous wing becomes more elongate and narrow with increasing size (Danforth, 1983) (Fig. 104). In the Cynipoidea this has been found to be true of all but the smallest species where the trend is reversed (Danforth did not study very small Hymenoptera). This is the same bimodal allometry that was detected in the cynipoid head measurements. Wing shape allometry is particularly well evidenced by the hindwing (Fig. 103). In Ibalia and the largest Liopteridae (e.g. Oberthuerellinae) the wings are elongate and narrow, but with decreasing size (e.g. Liopteron) down to the smallest liopterids the wing becomes shorter and broader and the apex becomes round. Medium sized cynipoids (Himalocynips, Austrocynips, Figitidae, Pycnostigmatinae and Cynipidae) all have broad wings and the smallest cynipoids - Charipidae, Lonchidia, Eucoilidae (minus Eucoila) have very thin hind wings.

Allometry and venation

The longitudinal veins, especially the distal elements, become less elongate as the body size decreases (Danforth, 1983). The basal portion of the cynipoid forewing is not so affected, and responds approximately isometrically to size differences. The hindwing venation does not show clear allometric changes because it is limited to the basal region and, except for vein Sc+R+Rs is only present in the largest taxa.

Large cynipoids (Ibalia many Liopteridae, Himalocynips and Austrocynips) tend to retain wing veins (e.g. Cul & Cula) and cells (e.g. submarginal & subdiscal

cells) (Figs 104, 107) which are lost or reduced in smaller taxa. For example vein H is present and reaches to the wing margin in the Oberthuerellinae, Ibalia, Mesocynips, Plastibalia Paramblynotus, Himalocynips (Fig. 109), and Cynipidae, but in smaller taxa it is reduced and finally lost. Similarly Rs is particularly long in Ibalia, Liopteron, Oberthuerella and Plastibalia. It is much shorter in the smaller Liopteridae (Kiefferiella & Paramblynotus) and many Figitidae, and it is very short in the Charipidae and most Eucoilidae (see Table 37).

Ibalia	3.3	Oberthuerella	2.1	Tessmanella	1.5
Liopteron	3.1	Plastibalia	2.4	Pseudibalia	1.6
Mesocynips	1.7	Paramblynotus	0.7	Kiefferella	0.6
Aspicera	0.6	Callaspidia	0.8	Omalaspis	0.5
Anacharis	0.4	Aegilips	0.5	Xyalaspis	0.5
Figites	0.5	Melanips	0.7	Lonchidia	0.3
Neralsia	0.4	Eucoila	0.6	Kleidotoma	0.2
Rhoptromeris	0.3	Dilyta	0.1	Apocharips	0.2
Phaenoglyphis	0.3	Alloxysta	0.4	Pycnostigmus	0.0
Aulacidta	0.6	Cynips sexual	1.1	Cynips agamic	1.6
Austrocynips	1.0	Himalocynips	1.7		

Table 37. Exemplar lengths of Rs (in mm) of study taxa.

The basal part of vein C+Sc+R+Rs is very long in the large taxa (Ibalia and most Liopteridae) it is not so long in mid range cynipoids (e.g. Omalaspis and Xylaspis) but in the smallest taxa where the rotation (see below) of Rs+M is greatest, vein Sc+R+Rs becomes proportionally a little longer again.

Danforth (1983) showed that cross veins are positively allometric with decreasing body size, this is true of all but the smallest cynipoids. For example the costal field, above vein C+Sc+R+Rs, is thin in large taxa (e.g. Ibalia, Oberthuerella, Tessmanella, Pseudibalia, and Plastibalia); and broader in the small examples of the "large taxa" (e.g. Kiefferiella) and in the medium sized taxa (e.g. Xylaspis, Melanips and Cynips). However, the field is long and thin again in very small cynipoids (Apocharips, Dilyta, Lonchidia & Phaenoglyphis).

An important consequence of wing vein allometry is that the cells and veins become withdrawn from the wing

apex with decreasing body size. In the smallest Cynipoidea the venation is restricted to the upper inner quarter of the wing and the majority of the membrane is unsupported (Fig. 105).

Rotation

A suite of venation changes is associated with an angular rotation of Rs+M about the base of the marginal cell, and this rotation increases as wing size decreases. In Ibalia the first and second submarginal cells are complete but in medium sized cynipoids (e.g. Cynipinae) Rs+M is detached from Rs&M and has moved down to a position pointing near the middle of Rs&M (Figs 109, 112), and the submarginal cells are lost. In still smaller species (Figitidae, Charipidae, and Eucoilidae) Rs+M points to the base of Rs&M and becomes faint (Figs 111, 113-115).

Associated with this rotation is a change in the angle of 2r-rs to Rs. Vein 2r-rs is almost vertical in the large liopterids, it is angled in the medium sized cynipoids and in some small Eucoilidae and Charipidae it is closer to the horizontal than to the vertical. Vein 2rs-m moves in a similar fashion, moving outwards from a vertical position under 2r-rs (in Ibalia) to a position under the marginal cell, and then, in the smallest taxa, becomes strongly angled to the vertical. Where vein M is not lost, it tends to become more curved (e.g. Eucoilidae and Charipidae) as the central venation is rotated.

As rotation increases Sc becomes obliquely angled away from the horizontal Sc+R+Rs (Figs 116, 117), becoming nearer the vertical in smaller taxa. Also Sc angles upwards from the point of junction with M&Rs in the most "rotated" taxa.

As the base of the marginal cell rotates, both Rs and the marginal cell must become shorter; this explains why the apex of the cell has moved round the wing margin to form the characteristic triangular marginal cell of the Cynipoidea. In the largest taxon (Ibalia) the cell is exceptionally long (nine times longer than broad) but as Rs shortens the marginal cell becomes smaller so that in the Charipidae the marginal cell is about as broad as long. In two very small taxa (Apocharips and Lonchidia) the cell is so small that the basal angles are 90 degrees (Fig. 116). Finally Rs becomes curved and moves further along the wing edge towards the base. In the highly specialized venation of Pycnostigmus Rs is absent.

Flight & Morphology

Encarsia formosa (Chalcidoidea) 15 the only microhymenopteron that has had its flight well-studied and it has been shown (Weis-Fogh, 1973) to have aerodynamic parameters that are not compatible with the aerodynamics of most other insects. In particular it has a low Reynolds number which means that drag would tend to be greater than lift and therefore normal flight would be energy-expensive. It is clear that such small insects use a flight mechanism which involves wing movements quite different from those of the forward flapping flight of larger insects (see Ellington, 1975). The method employed by Encarsia has been named the clap-and-fling mechanism. The wings clap together at the upper extreme of their motion then suddenly split apart along their leading edges. The wings then twist and separate completely, each carrying with it a vortex providing lift in excess of body weight.

The small cynipoidea (and other microhymenoptera) show three morphological features that would help exploit this clap-fling mechanism. The initial angular movement of flinging open the wings requires a relatively stong leading edge to the wing and in the smaller Cynipoidea the veins are concentrated in this area. Secondly the outer region of the wings tend to become unencumbered with veins, this allows passive flexion. Thus the smallest Cynipoidea (Charipidae and Eucoilidae) have a remarkably limited venation to the upper proximal quarter. (The moment of inertia of a wing about its base depends on the distribution of mass along the wing. Withdrawal of venation from the wing apex moves the centroid outside the veined area and decreases the wing aspect ratio (Danforth, 1983) (Figs 104, 105)).

Lastly the pterostigma is associated with determining

wing pitch and controlling flutter in the standard model of wing motion (Norberg, 1972). These functions are controlled by the fore margin veins in the microhymenopteran clap-fling system and all cynipoids (except Himalocynips and Pycnostigmus) have lost the pterostigma / pseudopterostigma.

Summary

The cynipoid wings show a sequence of vein losses that represents part of an evolutionary trend towards reduced size in most taxa. Further it is likely that many of the characteristic wing features of the smaller Cynipoidea have developed in response to the adoption of a clap-fling flight mechanism. The wing characters show a high degree of homoplasy and a strong allometric bias.

List of wing character-states

- 80 Hindwing with an enclosed basal cell [0]. / Basal cell absent [1].
- 81.1 81.2 Hindwing with M+Cu present [0,0]. / A trace of M+Cu present [1,0]. / M+Cu lost from hindwing [1,1].
- 82.1 82.2 Hindwing with rs-m present [0,0]. / Only a trace of rs-m present [1,0]. / Hindwing with rs-m lost [1,1].
- 83 Hindwing with a slight stub of vein C present [0]. / Vein C lost [1].
- 84 Hindwing with vein M indicated [0]. / H absent [1].
- 85 Hindwing with vein R indicated [0]. / R absent [1].
- 86 Hindwing with a very faint trace of Rs [0]. / Rs absent [1].
- 87 Vein C absent [0]. / Trace of vein C present at base of forewing [1]. [Vein loss is normally considered to be apomorphic, but in the outgroups vein C is closely associated with with Sc+R (Fig. 106), thus the isolated presence of this vein in Ibalia is an apomorphic feature.]
- 88 Vein M+Cul almost complete to wing base (basal cell closed) or at least well indicated [0]. / M+Cul lost or very poorly indicated, often just a fine trace of

pigment [1].

89 Path of vein 1A indicated by a trace of pigmentation which is well indicated and almost complete to the wing base [0]. / 1A weakly indicated or lost [1].

90.1 90.2 When present, vein lcu-a is limited by the claval furrow to being only a stub [0,0]. / Vein lcu-a only indicated [1,0]. / Vein lcu-a absent [1,1].

- 91 Vein culb present or indicated [0]. / Vein culb absent
 [1].
- 92 Vein Cul present [0]. / Cul weakly indicated or absent [1].
- 93 Vein Cula present and long, extending almost to wing edge [0]. / Cula only faintly indicated or absent [1].
- 94 Subbasal cell indicated, almost complete (it is not complete because of the claval furrow) [0]. / Subbasal cell open or absent [1].
- 95 First subdiscal cell present but not complete, or only indicated [0]. / First subdiscal cell absent [1].
- 96.1 96.2 Vein M present and reaching near to wing margin [0,0]. / Vein M indicated [1,0]. / Vein M absent or very weakly indicated [1,1].
- 97.1 97.2 Vein Rs present and reaching margin [0,0]. / Rs present but not reaching margin [0,1]. / Rs absent [1,0].
- 98 Rs mostly straight, or absent [0]. / Rs curved [1].
- 99 Marginal cell without Rs parallel to Sc (0]. / Vein Rs parallel to vein Sc and the basal angles of the marginal cell approximately 90 degrees [1].
- 100.1 100.2 Without a triangular marginal cell [0,0]. / The distinctive triangular marginal cell (Fig. 118) found in the Cynipoidea is regarded as a synapomorphy for the superfamily [1,0]. / Pycnostignus has a highly modified venation and has lost the marginal cell, this exception is considered a higher derived state [1,1].
- 101 Marginal cell much less than nine times as long as broad (0). / The marginal cell exceptionally long (nine times as long as broad) (Fig. 102) [1].
- 102 Marginal cell longer than 1.4mm [0]. / Marginal cell very short, under 1.4 mm long and almost as wide as

high [1] (Fig. 116).

- 103 Marginal cell closed by Sc. [0]. / Sc reduced so that the marginal cell is open, part open, or absent [1].
- 104 Pterostigma (Fig. 106) present [0]. / Pterostigma absent [1].
- 105.1 105.2 Pseudopterostigma absent [0,0]. / Pseudopterostigma present (Figs 149, 159). This is not homologous with the pterostigma and is regarded as an apomorphic feature. R veins very thick and the central area smooth [1,0]. R veins not so broad and the surface granulate [0,1].
- 106 Stub of vein R absent [0]. / Stub of (the second abcissa of) vein R present [1].
- 107 Vein 2rs-m present (0). / Vein 2rs-m absent [1].
- 108 Vein 2r-rs present [0]. / Vein 2r-rs absent [1].
- 109.1, 109.2, 109.3, 109.4 Angle of vein 2rs-m. Vein 2rs-m angled from the vertical and under the marginal cell [0,0,0,0]. / 2rs-m absent [1,0,0,0]. / 2rs-m vertical and under the marginal cell [0,1,0,0]./ 2rs-m vertical and under 2r-rs [0,1,1,0]. / 2rs-m almost horizontal, strongly angled from vertical [0,0,0,1].
- 110 Rs+H clearly present [0]. / Rs+H absent or incompletely indicated [1].
- 111.1 111.2 111.3 Rs+M (cubitalis) complete and joined with Rs&M (first submarginal cell closed) near top of basalis (Fig. 107) [0,0,0]. / Rs+M incomplete and not fully distinct, pointing to the top of the basalis [1,0,0]. / The internal end of Rs+M pointing at the middle of Rs&M (basalis) (Fig. 112) [1,1,0]. / Rs+M pointing at the junction of the basalis with the median (Cul) (Fig. 111) [1,1,1].
- 112.1 112.2 Minute second submarginal cell present [0,0].
 / Second submarginal cell indicated [1,0]. / Second
 submarginal cell lost [1,1]. [A careful examination
 has shown that it is the small part of M that is lost
 not Rs.]
- 113.1 113.2 Vein Rs&M complete with terminal "knob" (0,0). / Vein Rs&M long but without terminal "knob" (1,0). / Vein Rs&M absent, and only indicated by pigment (0,1). 114 Veins covering most of the wing area (Fig. 109) (0) /

Veins restricted to internal upper diagonal (Figs 116, 117) [1].

- 115 Apex of wing regularly curved [0]. / Apex of wing incised (Fig. 118) [1].
- 116 The Hymenoptera normally have hairs on both sides of the wing membrane [0]. Occasionally these hairs are almost or completely lost eg Trichosteresis glabra (Ceraphronoidea). A few cynipoids have reduced pubescence, either no hairs or just a few hair bases or hairs limited to the basal region. [1].
- 117.1 117.2 Wings clear (0,0). / Wing with colour around certain veins (e.g. 2rs-m) [1,0]. / Wing fumate [1,1] [Possibly a camouflage feature of these large taxa].

LEGS

The cynipoid leg is similar to that of other apocritans and the characters present are mostly generic or specific discriminants.

Tibial spurs

Hymenopterous tibiae have distal articulated spurs and the plesiomorphic spur formula is 2,2,2 but, together with many apocrita, most cynipoids have a formula of 1,2,2. The first spur, together with the first tarsal segment, is modified to form an antennal cleaner - the strigil.

Tarsi

The Cynipoidea have five-segmented tarsi, this is a symplesiomorphic number, shared with other parasitica (e.g. the Ichneumonoidea). In more derived microhymenopters the tarsus is reduced, for example to 4, 3 or even 2 segments in some chalcidoids.

Trochantellus

The trochantellus is a section divided off from the proximal end of the femur (Fig. 131). A trochantellus is distinct, at least on the hind leg, in most Ichneumonoidea and Trigonalyoidea and it is often present in the Chalcidoidea. Most Proctotrupoidea have presumably lost the trochantellus but it is retained in Helorus.

In Ibalia and Cynips the trochantellus is a distinct, possibly free, segment on all three legs. In some genera of Liopteridae (Oberthuerella, Tessmanella, Liopteron, Plastibalia and Pseudibalia) the segment is distinct on at least one leg. However, in other taxa it is indistinctly separated and partially fused to the femur. Ultimately it is completely fused and lost, although its position is often traceable from the shape of the femur. The partially fused trochantellus was considered to be a possible groundplan synapomorphy for the Cynipoidea by Königsmann (1978). However, the trend of trochantellus loss occurs as a parallelism in at least three independent lines of the parasitica.

Claws

The structure of the cynipoid claw (Weld character 113) has been reappraised and, under high magnification, a variety of claw structures has become apparent.

All Cynipidae examined, including inquiline genera, have a large basal lobe to the claw; in Aulacid@a, Phanacis, Aylax, Isocolus and Liposthenus (Fig. 120) the lobe is simple but in all other examined genera the lobe is dentate (Fig. 119). The polarity of this character is difficult to assess. The basal lobe found in the Cynipoidea is similar to that found in many other Hymenoptera. Thus it is considered that a basal lobe is primitive in the Cynipoidea. However, the polarity assessment may have to be reviewed after analysis.

The Anacharitinae have a long spine which projects at 90 degrees from the base of the claw. This structure may help these parasitoids of Neuroptera gain a firm hold on the hosts cocoon.

Certain Liopteridae (Liopteron, Plastibalia, Pseudibalia & Mesocynips) have bifid claws (Fig. 122), and in the Oberthuerellinae the second tooth is a small flap of cuticle. The second tooth is not present (Fig. 121) in the smallest Liopteridae (Kiefferiella & Paramblynotus) and thus is likely to be a size-related feature. In the smallest cynipoids (Eucoilidae and Charipidae) the claws are very small and weakly curved, and the arolium is more obvious than the claws. Although the Eucoilidae live in messy habitats (e.g. dung) the Charipidae do not, so claw reduction is more likely to be an allometric effect than a feature associated with microhabitat.

List of leg character-states

- 118 The hind femora are normally without teeth [0]. / Hind femora with a tooth (Fig. 125) [1].
- 119 Trochantellus present on foreleg [0]. / Trochantellus lost [1].
- 120 Trochantellus present on midleg [0]. / Trochantellus lost [1].
- 121 Trochantellus present on hindleg [0]. / Trochantellus lost [1].
- 122 The ground-plan tibial spur formula for the Cynipoidea is 1,2,2. (0). / Thus a reduction to a single spur on the middle tibia is an apomorphic feature (1). / The scoring this character in the very small Charipidae is very difficult as the tibial hairs are of a similar length to spurs. They have been scored as double spur (this interpretation is different from that of the Quinlan scoring of character 220).
- 123 Longitudinal furrow and ridge present on the outer or posterior surface of the hind tibia (Fig. 124) [1]. / Traces of this character occur in other Cynipoidea but not to the same extent [0].
- 124 Teeth of strigil blunt [0]. / Teeth of strigil fine and sharp [1].
- 125 Hind leg without a spur on first tarsal segment (0). / Hind leg with a blunt spur on distal end of the first tarsal segment [1].
- 126.1 126.2 Hind leg without a spur (0,0). / Short blunt spur on distal end of the second tarsal segment [1,0]. / Long blunt spur on distal end of second segment (Fig. 123) [1,1].
- 127 The first segment of the hind tarsus normally conforms to the apocritan pattern [0]. / First segment of hind tarsus long, approximately twice as long as segments

2-5 combined [1].

- 128 Fifth tarsal segment not long, and never much longer than segments 3 plus 4 [0]. / Fifth tarsal segment longer than the second third and fourth together [1].
- 129 Claws with a large basal lobe [0]. / Claws fine and without a basal lobe [1].
- 130 Claws without a spine [0]. / Claws with a basal spine [1].
- 131.1 13\$.2 Without bifid claws (0,0). / Claws bifid [1,0]. / Claws bifid but the second "tooth" is a flange of chilin [1,1].

GASTER

In all apocritans the first abdominal segment (the propodeum) is incorporated into the thorax, therefore the "apparent abdomen" (= gaster) consists of the second and following abdominal segments. Thus, for example, the second abdominal segment is the petiole and the third is the second gastral segment.

PETIOLE

An investigation of many Cynipoidea showed that there are, at least, fourteen different types of petiole. However, these types do not form a simple transformation series and it is clear that homoplasy is present.

The petiole can be short (Fig. 134), simple, lightly sculptured (smooth to granulate) and with a narrow ventral keel (Eucoilidae - Fig. 135) or with a small dorsal lip (Fig. 134) (a recurved part of the distal end of the petiole) (Charipidae, Himalocynipinae and all Cynipidae except the Synergini). The petioles of many species have strong canaliculate sculpture and an anterior flange (Figs 136, 137). This flange may be developed into a complete collar (Oberthuerellinae, some Mesocynipinae and most aspicerines - Fig. 136), but in many cynipoids the two components of the petiole (the first gastral tergite and

sternite) combine, in different ways, to produce a range of incomplete collars. These include a collar with dorsal and ventral elements separated by a lateral indentation (Fig. 137) (Figites, Neralsia and the Synergini); the collar present only dorsally (Fig. 133) (Callaspidia, Melanips); the collar present dorsally and laterally (Lonchidia); the collar present ventrally and laterally but not dorsally (Anacharitinae except Anacharis). Where taxa with these types of petiole also have a long petiole then the collar and sculpture tend to be reduced (Anacharis, Liopterinae). The petiole of many Liopteridae is attached to the gaster at a characteristic angle (Fig. 132).

Other structures may contribute to the apparent petiole. For example in *Pycnostigmus* the petiole is short but the posterior of the propodeum is markedly extended. In Austrocynips the petiole is dominated by a strong, laterally divided, flange which is actually derived from the second gastral segment.

The fourteen forms of petiole were re-assessed in order to produce a list of petiole characters. Characters 132 and 133 were not combined into one series because the morphological evidence indicates that these characters represent separate developments. The apomorphic state of character 137 is similar to, but morphologically distinct from, that of character 136.

Petiole sculpture (138) proved to be most difficult to characterize. Two of the exemplar taxa (Ibalia and Anacharis) have smooth petioles that, although different, are difficult to differentiate with reference only to this feature. However, the sculpture of the condyle (of the petiole / gaster articulation) is distinctive in Ibalia.

List of petiole character-states

132.1, 132.2, 132.3 Collar absent (Fig. 135) (0,0,0]. /
Collar only present dorsally (Fig. 133) (0,0,1). /
Collar present dorsally and laterally [0,1,1]. /
Collar complete (Fig. 136) [1,1,1].
133 Collar absent or present dorsally [0]. / Canaliculate

collar present ventrally and laterally but missing dorsally [1].

- 134 If present then side of collar not notched [0]. / Side of collar with a small notch (Fig. 137) [1].
- 135 Condyle, of articulation with the thorax, exposed [0].
 / Condyle sunk within the collar [1].
- 136 Distal end of petiole without a ventral keel (0). /
 Underside of distal end of petiole with a narrow
 central keel (Fig. 135) [1].
- 137 Petiole without a ventral hump [0]. / Underside of petiole with a narrow hump that forms the under part of a strong but non-continuous collar [1].
- 138.1, 138.2, 138.3 Petiole weakly sculptured (granulate) [0,0,0]. / Petiole strongly canaliculate [1,0,0]. / Petiole smooth, with sparse punctation on underside of condyle (Fergusson, 1985) [0,1,0]. / Petiole smooth, with dense punctation on underside of condyle [0,0,1].
- 139 Without a dorsal lip above distal end of petiole [0].
 / Small dorsal lip present above distal end of petiole
 [1].
- 140 No flange present second gastral segment [0]. / Strong flange present on second gastral tergite and sternite [1].
- 141 Petiole not meeting an extended propodeum [0]. / Short petiole with two ventral indentations meeting an extended propodeum [1].
- 143 Underside of condyle and lower plate of anterior articulation normal [0]. / Underside of condyle incised so that the underlying muscle is visible; lower plate enlarged [1].
- 144 Petiole attached normally [0]. / Petiole attached tangentially to dorsal curvature of gaster (Fig. 132) (Hedicke & Kerrich, 1940) [1].

REMAINING GASTRAL SEGMENTS

Tergites

In the Cynipoidea the sides of the tergites are strongly compressed and there are no laterotergites. Gastral segments two to eight are unspecialized and the hind edge of each tergite overlaps the front margin of the following tergite (Figs 126-129). In a few genera gastral segments two, three (e.g. Dilyta) and sometimes four (e.g. Pycnostigmus) may fuse to form a syntergite (Fig. 149). In at least some Eucoilidae the syntergite composition is related to sex, females having three and males two fused segments. Dissection and clearing often reveal the lines of fusion between the constituent segments. [In all the cases examined the syntergite contains the missing segments. Although an obvious conclusion this has previously only been assumed to be true.) Normally the syntergite is the largest segment but according to Weld (1952) the small anterior tergite of Xenocynips (Oberthuerellinae) is supposed to be the syntergite rather than the larger following segment. This genus was not available for dissection, and the exception remains open to question.

Sternites

Except in certain Anacharitinae, the terminal tergite and sternite are not directly apposed. The sternites are sclerotized, and are often folded along the midline, especially the terminal sternite, the hypopygium (Börner, 1919).

Spiracles

The plesiomorphic apocritan gaster (e.g. most Ichneumonidae) has spiracles on abdominal segments two to eight. The gaster of the Cynipoidea, Chalcidoidea, Mymaridae, Mymarommatidae, Evanioidea, Gasteruptidae, Pelecinidae (females; none in males), Rhopronidae, Megalyridae, Diapriidae, Monomachidae, Austronidae, Heloridae and Stephanidae have only one functional spiracle which is on abdominal segment eight (Gibson,

1986). The Vanhornidae, Scelionidae and Platygasteridae lack gastral spiracles (Nauman and Masner, 1985; Richards, 1977; Tonapi, 1958).

List of remaining gastral character-states

- 145 Gaster not compressed [0]. / A marked lateral compression of the gaster [1] is a characteristic of the Cynipoidea.
- 146 Gaster not blade-like [0]. / Gaster so strongly compressed, laterally, that it is almost flat and blade-like (Fig. 150) [1].
- 147 Without a ruff of hair on the second gastral tergite [0]. / With a ruff of hair on the second gastral tergite (Fig. 135) (1). This ruff may be complete or consist of two tufts, but the extent of the hair and the number of tufts varies considerably.
- 148 The less derived Apocrita have abdominal tergite ten (gastral tergite 9) present [0]./ The cynipoid gaster consists of abdominal segments two to eight, the ninth (gastral 8) forms part of the genitalia and the tenth abdominal segment is lost (fused with the ninth abdominal segment) [1].
- 149.1, 149.2, 149.2 The proportions of the distal gastral tergites, in females, are affected by ovipositor shape. In lateral view, the largest gastral segment is the third, the fourth, or a syntergite of the anterior segments [0,0,0]. / In the apomorphic states gastral tergites four to six, of females, are expanded (in lateral view). (Scoring: gastral tergite five the longest = 1,0,0; tergite six the longest = 1,1,0; tergite seven the longest = 1,1,1].
- 150 More than one gastral segment with spiracles [0]. / Only gastral segment seven (abdominal eight) with spiracles (1).
- 151 The size of the first two post-petiolar tergites is not so dependant on ovipositor characters as are the latter tergites. Second gastral segment the largest (0). / Third gastral tergite longer (dorsally) than the second (1). Where the the two tergites are fused

into a syntergite then the "-" score is applied.

- 152.1, 152.2 Tergites not fused [0]. / Syntergite, in the female, consisting of gastral segments two and three [1,0]. / Syntergite, in female, consisting of gastral segments two, three and four [1,1].
- 153 Anterior tergites not significantly smaller than the following tergites [0]. / Certain taxa have the two anterior tergites of the gaster much smaller than the other tergites [1].
- 154 Hypopygium not produced (0). / Hypopygium produced into a narrow, and sometimes long, ventral spine [1].
- 155 The second gastral tergite (third abdominal) is normally a simple, curved plate (0). / Second tergite saddle-shaped (Fig. 129) (Often inappropriately called liguliform) (1).
- 156 Nearly all male Cynipoidea have some slight sculpture and often some pubescence near the apex of the gaster [0]. / With a very slight upturning of the last tergite [1].

FEMALE GENITALIA

The section of this thesis which describes the cynipoid ovipositor and its functioning, has already been published (Fergusson, 1988) and therefore will not be repeated here. A copy of the paper is bound with this thesis.

Gastral shape and genitalia structure

One aspect that does need to be emphasized is the way that genitalia shape effects the proportions of the gastral segments (Fig. 154). In past classifications (e.g. Weld, 1952; Quinlan, 1979) considerable taxonomic weight has been given to the length and shape of female gastral tergites. It is now known (Fergusson, 1988) that these features all relate to genitalia structure and in particular to the three basic types of cynipoid genitalia. Curved genitalia. In this plesiomorphic condition the gonapophyses are short and gonocoxite 9 is slightly curved (Fig. 144). This structure produces little or no distortion of the distal gastral segments and so the anterior tergites remain the largest. The Anacharitinae and Aspicerinae often have a very short "stabbing" ovipositor in which gonocoxite and tergite 9 are reflexed upwards to reduce the length of the genitalia (Fig. 146). In these species the last tergite and sternite tend to be apposed.

Elbowed genitalia. In many Eucoilidae and Figitidae the ovipositor is elongate, this is achieved by "elbowing" gonocoxite and tergite 9 (Fig. 145). In these species the frontoventral region of the gaster is expanded and, in lateral view, the dorsal margin of the gaster tends to be straight.

Looped ovipositor. The Ibaliidae and Liopteridae have a greatly expanded ovipositor which is accommodated within the gaster by being looped in a complete turn around the ovipositor base (Fig. 147). In these species the distal segments are expanded to accommodate the genitalia (Figs 152, 153).

List of female genitalia character-states

In the study of the cynipoid female genitalia (Fergusson, 1988) 16 new morphological characters were found, of these 14 characters were likely to be useful for establishing the phylogeny. The two characters involving the numbers of sensory spines on the horn and articulation of gonocoxite 9 were too variable to be of any value for further analysis. (Taxon 31 was not available for disection so it could not be fully scored.)

- 157 Gonapophyses not looped around the base (0). / Ovipositor completely looped around the ovipositor--base (Fig. 147) [1].
- 158 Ovipositor not sharply elbowed [0]. / Ovipositor sharply angled or "elbowed" (Fig. 145) [1].
- 159 Remnant of tergite ten present [0]. / Tergite 10 totally lost (Figs 142, 143) [1].

160	Gonostylus	approximately leve	1 [0].	1	Gonostylus
	folded and	downcurved [1].			

- 161 Tergite 9 approximately level inside the gaster [0]. / Tergite 9 folded upward (dorsally) in the middle [1].
- 162 Cerci present [0]. / Cerci absent [1].
- 163 Bulbous articulation present (0). / Bulbous articulation absent (1).
- 164 Bridge present (0). / Bridge absent [1].
- 165 Gonapophysis 9 without cavity [0]. / Gonapophysis 9
 with a cavity (c.f. Rogers, 1972) [1].
- 166 Gonapophysis 9 with teeth [0]. / Gonapophysis 9
 without exposed servations [1].
- 167 Gonapophysis 8 without teeth or with curved teeth [0]. / Apex of gonapophysis 8 with teeth, - one large tooth and often with a second more distal smaller tooth [1].
- 168 Gonostylus not separated from gonocoxite 9 by an indentation. (0]. / "Gonostylus" indicated by an indentation in gonocoxite 9 (1). (Outgroup comparison shows that the presence of a distinct gonostylus, if it occurred in the Cynipoidea, would be primitive. The evidence indicates that the gonostylus is absent from the Cynipoidea but that a few taxa have developed a fold in gonocoxite nine.]
- 169 Apex of "gonostylus" rounded or slightly pointed, without membrane or notch [0]. / Apex of "gonostylus" with a notch covered by a pubescent membrane [1].
- 170 "Gonostylus" long and narrow [0]. / "Gonostylus"
 almost globular, apically [1].

Character			most Apocrita	Cynipoidea		
	gonapophysis gonapophysis		toothed smooth			smooth toothed

Table 38. Polarity trends in the cynipoid ovipositor

The polarity of character 166 is opposite to that of character 167, thus the two halves of the ovipositor have evolved in opposing directions. Although this appears to

be odd it is consistent with what is known of hymenopterous ovipositors. In sawflies both gonapophyses are normally toothed, but in the Apocrita gonapophysis 9 normally has teeth while gonapophysis 8 is often smooth (Richards, 1977). The trends in the Cynipoidea are summarized in Table 38). Character 166 shows the general reduction trend common to many cynipoid features, while character 167 is a specialization.

FEMALE ACCESSORY GLANDS

Associated with the ovipositor are accessory glands which provide a lubricant for the passage of the egg along the lumen of the ovipositor (Robertson, 1968), and venoms that modify the ovipositional substrate (Sychevskaya, 1966). The accessory glands (Fig. 156) were found to be similar in all the Cynipoidea, and little different from those of the Chalcidoidea (Copland, 1976; Copland & King, 1971; 1972a; 1972b; 1972c; Copland, King & Hill, 1973; King & Copland, 1969; King & Ratcliffe, 1969).

In the Cynipoidea the ovaries form two hemispheres, one on each side of the gaster, but when teased out they are elongate and, especially in the larger species, pear-shaped. The generally stout oviducts fuse to form a slightly swollen common oviduct, closely connected to this is a small spermatheca and two pairs of collateral glands. The first pair of glands are long, coiled and blind ended tubes. The second (distal) pair of collateral glands are large sack-like spheres; internally each gland has a thick wall and a large central lumen. Near the top of the ovipositor are the ducts of two further glands; the alkaline proximal gland (or Dufour's gland) 15 inconspicuous, and the distal acid gland is tube-like with a large and obvious reservoir. The Charipidae also have a small accessory gland at the end of the acid gland reservoir and near to the oviduct.

A comparative study of the venom apparatus of the Braconidae by Edson & Vinson (1979) showed that the more advanced taxa had a thinner walled reservoir with fewer

muscles and the gland was reduced to only two filaments. This trend of simplification, especially to just one filament, has been continued in many of the microhymenoptera (Robertson, 1968).

The acid gland, and especially its reservoir, are much larger in the gall-causers than in the parasitoid Cynipoidea. There appears to be a positive correlation between gall complexity and the size of the reservoir. It is therefore speculated that in the Cynipidae the secretions of the acid gland are used in the galling process. Copland et al (1973) reported a similar enlarged acid gland and reservoir in gall-causing Chalcidoidea. The inquiline cynipidae also have a large reservoir.

The parasitoid Figites has been shown (James, 1928) to possess a potent secretion which is injected, at oviposition, into the host to render it quiescent. The entomophagous cynipoids are all endoparasitoids and so venoms are also used to combat the hosts immune defence system. For example the venom from the acid gland of female eucoilids contains lamellolysin which disrupts the hosts encapsulation system (see biology chapter) (Boulétreau & Wajnberg, 1986; Rizki & Rizki, 1984; Streams & Greenberg, 1969; Walker, 1959; Weideli, 1967).

MALE GENITALIA

The general similarity and parallel reduction of features, both within the Cynipoidea and in the microhymenoptera, mean that the male genitalia are of very limited value for elucidating cynipoid phylogeny above the genus level.

The male repoductive organs are similar to those of most Hymenoptera and consist of paired testes, seminal vesicles and vas deferens. The latter join in a common ejaculatory duct, which opens into the aedeagus.

Cynipoid males (Figs 138-141) have slender, and rather short, parameres and a simple aedeagus. The digiti are small, slightly curved and armed with several teeth. The volsellae are partially fused with the parameres, and

the cuspal lobes are reduced or lost. The basal ring is present and has a gonocondyle. The ninth abdominal tergite and sternite are greatly reduced and are closely associated with the genital capsule.

Cuspis

Königsmann (1978) considered that the lack of a cuspis in both the Cynipoidea and Chalcidoidea indicated a sister-group relationship. However, this is a parallel reduction that also occurs in many Proctotrupoidea and some Braconidae (Gibson, 1986).

The presence of a cuspis has been reported for Ibalia (Ronquist & Nordlander, 1989) and Synergus spp. (Schulz, 1961). (The latter case was used by Vasey, 1975 to infer that the parasitoid cynipoids evolved from inquilines like Synergus). This structure occurs in a wide range of cynipoids but, even after scanning electron microscopy, I remain unsure whether it is a remnant of the cuspis or perhaps a fold of the digitus / volsella. These delicate structures are not easy to differentiate and low power microscopy can be deceptive.

Tergite nine

The ninth abdominal tergite is very small and mostly membranous, only the two ventrolateral apices are chitinized and exposed beyond the eighth tergite. In most species a few hairs are present on these chitinized regions and thus, superficially, they look like cerci and it is likely that they perform a similar sensory function. However, only in the Cynipidae are the sensory regions raised from the remainder of tergite nine and thus appear to be true cerci.

Ninth sternite

Sternite nine is very small, lightly chitinized and entirely concealed by the preceding sternite. The main chiling element is a slender median apodeme that links the distal part of the sternite to the muscles of the basal ring.

Although a possible autapomorphy for the Cynipoidea

the reduction of sternite nine is likely to occur, as a parallelism, in some of the smaller Proctotrupoidea. In fact, a limited survey soon located a similar apodeme in Aneurhynchus (Diapriidae) and in Piestopleura (Platygasteridae). No doubt many other examples exist. Presumably the final stage in reduction would, be direct attachment of the basal muscles to sternite eight and the total loss of sternite nine, and this stage may also occur in some small Proctotrupoidea. There have been few extensive studies of chalcidoid male genitalia but the survey by Domenichini (1953) shows an external ninth sternite in a very wide range of taxa. Further, Dr Z. Boucek, who has a vast knowledge of the Chalcidoidea, has not seen this apodeme in any chalcidoid (pers. comm.) Therefore with regard to this single character the Chalcidoidea appear to be the least derived of the microhymenoptera.

Basal ring

The basal ring provides a further difference between the Cynipoidea and the Chalcidoidea. This structure is present in the less derived Hymenoptera, the Cynipoidea and most of the small Proctotrupoidea (Scelionidae -Rasnitsyn, 1980; Nixon, 1936: Diapriidae - Nixon, 1957; Snodgrass, 1941). However, the Chalcidoidea (including mymarids and mymarommatids) lack a complete basal ring (Gibson 1986); although a few males have a groove across the ventral surface of the phalobase which is likely to be a remnant of a basal ring (Snodgrass, 1941). Gibson (1986) noted the absence of a ring from the genitalia of Atanycolus (Braconidae) and Aphanogmus (Ceraphronidae), but my dissections and the work of Dessart (1963) show that the great majority of Aphanogmus species have a small basal ring. Nevertheless it is very likely that separate and independant loss of the basal ring has occurred more than once in the microhymenoptera.

Fusion of the volsellae and parameres.

According to Snodgrass (1941) some cynipoids (e.g. Figites and Diplolepis) have parameres that are entirely

confluent with the volsellae. Although, there is a strong tendency towards fusion, none of the examined taxa (under high magnification) exhibit total fusion. This trend is also found in the Diapriidae and Scelionidae (Proctotrupoidea) where a progressive union takes place between the aedeagus and the volsellae which is eventually accompanied by an elimination of the parameres. This converts the phallus into a single two-segmented shaft, composed of the basal ring and the united aedeago-volsellar shaft (Snodgrass, 1941).

Spines on the digitus

The digitus bears an apical row of short stout spines. Up to fourteen spines were seen in the Cynipoidea, the greatest number were in large taxa e.g. Ibalia, but usually only three to six spines are developed. The number of teeth can vary within a species, and even bilaterally (Wiebs-Rijks 1979). No useful characterization could be defined for this feature.

KARYOLOGY

Chromosome characters have been used in insect taxonomy (Fittakau et al. 1976; Petitpierre, 1981; Yoon et al. 1972) with some success. However, studies of the Hymenoptera have been limited to only a few species, and have concentrated on the determination of chromosome number. The Symphyta have a haploid number (n) of 6 to 26. The parasitica are more restricted, the available evidence shows that 10 is the groundplan number and this is found in the Ichneumonidae (Crozier, 1975) Scelionidae and Cynipoidea (Dodds, 1938). In the Chalcidoidea n = 5 (Hung, 1982), this suggests that the Chalcidoidea are the more derived of the microhymenoptera.

Dodds (1938) reported that cynipoid chromosomes had no characteristic morphological features and that their size gradation made them difficult to study. Certainly my attempts at preparation and interpretation were disappointing and indicated a haploid number between 8 and 11, a more precise figure could not be obtained.

IMMATURE STAGES

It was not possible to examine the immature stages of more than a few cynipoids and therefore this section is largely based on published information (much of it collated here for the first time).

THE EGG

The cynipod egg (Fig. 155) is an elongate oval, sometimes slightly curved (Shorthouse, 1973) or centrally constricted (James, 1928). The egg has a pedicel which is very slightly clavate at the apex (Jenni, 1951). As development proceeds the pedicel gradually degenerates and the egg increases in volume and becomes spherical. The eggs are small, generally 0.1-0.4mm long (excluding pedicel) by 0.02-0.2mm wide (James, 1928). However, the Charipinae have particularly small eggs, being as little as 0.01mm long by 0.006mm wide (Haviland, 1921a).

The Cynipidae have relatively yolky eggs and these could be lecithal and nourished by the female. However, parasitoid cynipoids (also some Braconidae and Platygasteridae) have very small alecithal eggs (Haviland, 1921a; 1921b) with little yolk (Iwata, 1958). Much of the egg nourishment is derived from the host (Oglobin, 1913) and this reduces the cost of infant mortality (Price, 1974).

The eggs are clear or white with a thin smooth chorion (Schröder, 1967). The trophic membrane is visible (Haviland, 1921a), but the abandoned trophamnion does not break up during the larval stages so it is considered not to aid larval nutrition (Chrystal, 1930).

Pedicel (= peduncle or stalk)

Pedicellate eggs are common in the parasitic Hymenoptera (Iwata, 1950) but the Cynipoidea appear to be unusual in having only this type of egg. Pedicellate eggs occur in the Ichneumonidae e.g. Rhyssa and Ephialtes but

in these genera the egg goes into the ovipositor pedicel first (Chrystal, 1930). In contrast the cynipoid pedicel is at the anterior pole and the eggs lie in the ovary with the pedicel pointing away from the oviduct (Sychevskaya, 1974). The micropyle is at the tip of the pedicel (Wishart 4 Monteith, 1954).

The pedicel of the gall-wasps, is very long, three to seven times the length of the egg body (Frühauf, 1924; Marsden-Jones, 1953); in Ibalia, it is up to four times the body length (Chrystal, 1930), but in most of the remaining taxa the pedicel is little longer than the egg body (Clausen, 1940). Although, in Kleidotoma japonica (Huzimatu, 1940) it is only half the body length, and in Aegilips the pedicel is almost absent (Lipkow, 1969).

Pedicel function

As the egg passes down the ovipositor it stretches and the contents are compressed and temporarily diverted into the pedicel, so that the egg "flows down itself". Thus the pedicel enables an egg that is much (up to ten times) broader than the ovipositor lumen to be oviposited (Frühauf, 1924). Once the egg is laid the process is reversed and the egg returns to its original shape. In many Cynipidae this second stage may be used to assist in egg entry; only part of the egg is inserted into the plant tissue and the contents then flow into the inserted portion (Shorthouse, 1973).

As the pedicel is closer to the surface, where the Oxygen tension is higher, than the rest of the egg, the pedicel may also have a respiratory function (Adler, 1881). Cameron (1890) suggested that the pedicel is longest in those gall-wasps that deposit their eggs most deeply; however, Haviland (1921a) thought this to be unlikely.

Egg numbers

All the Cynipidae that were dissected had over one hundred eggs, and up to 1000 eggs have been counted (Beijerinck, 1877; Schröder, 1967; Yasumatsu & Taketani,

1967). Clearly the gall-wasps have a very high reproductive potential. The parasitoid families have a much smaller number of eggs, generally between 20 and 200. Although Sychovskaya (1974) reported 360 in one eucoilid and Ibalia has about 600 eggs (Chrystal, 1930),

LARVAL INSTARS

Metamorphic Cynipids

Gallwasp larvae, because they live within a gall, have little need for highly developed sense organs, legs or a coloured integument. They develop through a series of essentially similar larval instars. The gall-wasp larva is a short and stout grub (Bouche, 1834), it is broadly rounded at both ends, more or less C-shaped, and the integument is smooth and devoid of setae. The head is followed by thirteen body segments (Evans 1965) although these are not easily discernible and sometimes only twelve are reported (Shorthouse, 1973). There are an estimated five larval instars (Evans, 1965; Shorthouse, 1973) and the fully grown larva has inconspicuous open spiracles on segments two to ten (Askew, 1984) or two to eleven (Evans, 1965).

In the first instar the mandibles are only just discernible, but in later stages they become conspicuous, strongly sclerotized and tridentate (Evans, 1965) or quadridentate (Askew, 1984). The larva feeds and grows but only defaecates just prior to pupation, thus avoiding unnecessary contamination of the larval cell. The larva does not make a partial exit from the gall, or accumulate frass in the gall as do some other gallicolous larvae (e.g. some Symphyta).

First larval instar of the hypermetamorphic cynipoids.

In the parasitoid taxa the successive instars are frequently dissimilar to the preceding instar. In particular, the first larval instar is different from subsequent forms. The first instar is probably the most vulnerable larval stage, so it is understandable that it should be the most adaptive. This dramatic change in larval type is known as hypermetamorphosis.

Eucoilidae

The primary larva of the Eucoilidae (Fig. 157e) is of a unique eucoilidiform type which has a pair of long (depending on species) processes on the ventral region of each of the three thoracic segments. The larva also has a long tapering cauda, often as long as the body, which is curved ventrally and terminates in a sharp point. The segment immediately preceding the cauda bears a prominent fleshy projection on the median ventral line. The integument of the posterior abdominal segments and the cauda bears numerous setae, there are also a few setae on the thoracic processes (Molchanova, 1930). The mouth is nearly oval and is borne on a large rounded proboscis (Keilin & Baume-Pluvinel, 1913). Slender mandibles are present inside the proboscis (not seen by James, 1928), and in the middle of the oral cavity there is a small beak-like sclerite which can be moved up and down by means of a large muscle (Huzimatu, 1940). The structure of the mouth indicates that feeding is entirely haemophagous. It is difficult to discern the exact number of abdominal segments; James (1928) and Molchanova (1930) counted seven but presumed that the caudal appendage includes another two; Keilin & Baume-Pluvinel (1913) and Huzimatu (1940) found twelve segments behind the head. The anus opens dorsally at the base of the cauda, it is large, round and has a ring of long inwardly pointing chitinous spines that gives it the appearance of a spiracle.

On hatching the larva remains partially enclosed in the serous membrane, but the head and cauda are free. Later it disengages itself and straightens out.

Figitidae

The larva of Figites anthomyiarum is similar to the eucoilidiform type (Fig. 157c) and consists of a head plus twelve body segments (James, 1928). It has three pairs of short thoracic processes, the prothoracic appendages being very short and only as long as wide. The cauda is short and at its base there is a ventral process. The mouth, like that in the eucoilidiform type, is adapted for haemophagy, it is borne on a proboscis and is surrounded by a number of papillae. A minute sclerite is discernible inside the oral region. The anus is not of the enlarged type found in the Eucoilidae or Charipidae.

Charipidae

Haviland (1921a; 1921b) described the larvae of several alloxystines. The first instar is remarkable in that it is armoured with dark segmental plates of whitin (Fig. 157b). The larva has a long cauda, but no thoracic appendages. The mouth is produced into a proboscis, within which lie two simple mandibles. The round anus is large and conspicuous, it is surrounded by a chitinous ring and bands of chitin radiate from the periphery to the centre.

Ibaliidae

The larva of Ibalia is polypodeiform, each of the twelve body segments bearing a pair of long fleshy processes ("pseudopodia") (Fig. 157a). The body 15 elongate (0.6 - 2.0mm by 0.1 - 0.3mm, Spradbery, 1970) and the segments taper rapidly from the fifth onwards, the larva ends in a prominent cauda (Chrystal, 1930). The labral region forms a broad arch over the mouth cavity and extends over the conspicuous scythe-like mandibles. The salivary glands are prominent. The large sac-like mesenteron occupies most of the body and the proctodaeum has a large lumen. The anus is dorsal but has no conspicuous ring round it. The two malpighian tubules are short and narrow and the nerve cord is visible almost to the cauda (Chrystal; 1930).

Respiration: larval processes and the rectum

Early cynipoid instars are apneustic and respiration is cutaneous. It is possible that the cauda (a feature present in the first instars of all parasitoid cynipoids), the thoracic processes (found in Eucoilidae and Figitidae)

and the "pseudopodia" of Ibalia, all assist in cutaneous respiration by increasing the surface area of the larva.

Proctodaeal respiration has been postulated for some braconids (Thorpe, 1932) and it is possible that rectal respiration occurs in many parasitoid cynipoids. In particular alloxystimes are likely to respire rectally because their chilineus cuticle must hinder cutaneous respiration. In the first instars of all the parasitoid cynipoids the rectal lumen is large and yet the proctodaeum is not connected to the mesenteron. Also in alloxystines and eucoilids the anus is enlarged and described as "spiracle-like". Further, the anus and the rectal lumen diminish in size as the tracheal system develops and the alimentary tract unites. The large proctodaeum (together with the malphigian tubules) of the parasitic cynipoids may, additionally be a secretory area, producing chemicals important for control of the endoenvironment. For example Pimpla and Itoplectis (Ichneumonidae) larvae have a large rectum and produce a secretion from the malpighian tubules which has antibiotic properties (Führer & Willers, 1986). The maintenance of asepsis is important because digestion of the host will liberate the bacteria from the host's alimentary tract.

James (1928), Kopelman & Chabora (1984) and Sychevskaya (1974) postulated that both the cauda and the thoracic processes assist the larva to escape from the egg membrane and possibly help during fighting between different species. Movement of the processes was observed (James, 1928) but did not result in locomotion, so a locomotary function has not been established.

Later larval instars of the hypermetamorphic cynipoids

Cynipoid second instars show some of the diversity found in the first instars, but subsequent stages differ little betweeen taxa. In mature larvae the cauda and the ventral processes are lost and the anus moves to a terminal position. During the later stages the proctodaeum is reduced, haemophagy and rectal respiration cease and a

tracheal system develops.

Figitidae - Anacharitinae

The second instar of Aegilips, has a head, followed by thirteen body segments and a short stubby cauda (Lipkow, 1969). The body is without projections and the mandibles are dagger-like. Handlirsch (1886) and Hiller & Lambdin (1985) have described the fifth instar of Anacharis (Fig. 157h). This larva is unusual because it has a pair of fleshy pointed projections, set with hairs, on the dorsal surface of segments two to nine (one to nine, in Miller & Lambdin, 1985), segments ten to twelve either have very small projections or are unarmed. [The presence of dorsal projections in Anacharis but not in Aegilips, (Fig. 1571) a very similar genus, is probably usable as a generic level character.] The larva is 3mm long, the anterior end is reflexed dorsally, and on the side of each thoracic segment there is a large rounded tubercle. The mandibles are strong and triangular, with a long apical tooth and two shorter basal teeth. In both genera the spiracles are located near the anterior edge of body segments two to ten.

Figitidae - Figitinae

The second instar is polypodeiform (Fig. 157d), there are a pair of ventral processes (decreasing posteriorly) on each of the first ten body segments (James, 1928). A cauda is present and held almost at right angles to the rest of the body and the integument is smooth and devoid of hairs or setae. The larva has eleven (James, 1928), or more likely twelve body segments, as in the final instar. There is a chitinous endoskeleton inside the head and the mouth is suctorial. About the mouth are a pair of long sensory papillae and the head has a conspicuous ventral sensory organ consisting of a chitinous projection surmounted with a transparent tip. In following instars the pseudopodia and cauda shorten and disappear. A tracheal system develops which consists of two lateral trunks each of which gives off dorsal and ventral segmental branches. Pairs of spiracles are present on

segments two to ten.

Eucoilidae

Because of the similarity of the later, hymenopteriform, larval stages. The exact number of eucoilid instars is uncertain, but in most cases is likely to be five (James, 1928; Molchanova, 1930; Sychevskaya, 1974; Huzimatu, 1940). Some authors (Wishart & Monteith, 1954; Nappi and Streams, 1970) noted only four and from their descriptions it appears that these authors have missed an instar near to the third instar.

The second instar may be polypodeiform (Fig. 157f), the first ten body segments having a pair of ventral processes, but in other eucoilids the second instar lacks abdominal processes. The cauda is reduced compared with the previous eucoiliform stage. The anus is small, transversely oval, and not furnished with spines. James (1928) counted eleven body segments but other authors found ten (Eskafi & Legner, 1974 a&b), twelve or thirteen (Wishart & Monteith, 1954).

The rounded proboscis and beak-like sclerite of the first instar are lost. The mouth is still suctorial, the maxillae and labium being fused (Huzimatu, 1940). The head segment now contains a conspicuous endoskeleton. James (1928) did not see the mandibles, but other authors (Huzimatu, 1940) found distinct mandibles. According to Eskafi & Legner (1974a; 1974b) the mandibles are rod-like and capable of a coordinated back and forth movement that assists in the suctorial function of the mouth.

In the remaining stages tail reduction continues and the larva becomes sac-like and hymenopteriform (Fig. 157g). Size (0.9 to 4.4mm by 0.9 to 2.8.mm) depends on the size of the host (Sychevskaya, 1974). The mandibles are adapted to feeding on hard tissues and the mesenteron now occupies almost the entire body cavity. The fifth (mature) stage larva is large 2.5 - 5mm, by 1.0-2.0mm. The tracheal system is now extensive and there are pairs of spiracles on the second and third thoracic segments and on each of the first seven adbominal segments (Wishart & Monteith, 1954).

Charipidae

The second instar resembles the first except that the chitinous plates are absent, and the thoracic segments now have a pair of ventral processes. The mouthparts are less produced and furnished with two large, simple mandibles. Below the mouth is a pair of ventrolateral lobes, surmounted by conspicuous sensory papillae. The salivary glands are two straight tubes which lie on either side of the mesenteron. The two Halpighian tubules are very short. The large proctodaeum communicates with the exterior via a wide anus.

In the third and later stages the larva increases in size, the tail becomes reduced and the thoracic processes disappear. As the cauda is reduced the anus becomes terminal, and proportionally smaller. The mandibles become conspicuous. The proctodaeum includes a typhlosole-like outgrowth into the lumen.

The tracheal system consists of two main lateral trunks which are united by an anterior and a posterior commissure. Dorsal and ventral lateral branches are given off in each segment. There are six pairs of open spiracles. The first is between segments one and two and the remainder on segments three, four, five, seven and nine. Rarely there may be an additional pair on on segment eight (Haviland, 1921a).

Ibaliidae

The "pseudopodia" of the first instar have now completely disappeared. The body is more cylindrical, although arched dorsally, and the cuticle is traversed by minute furrows. The mandibles are still large. The third instar is hymenopteriform, and measures approximately 4 -6mm by 0.7-1.4mm (Chrystal, 1930). The cauda is now small and the mandibles are straight. There are spiracles on the second and third thoracic segments and the anal opening is transverse and terminal.

The final instar does not feed; it measures approximately 10 mm by 4mm. The head and the last segment are both retracted within the rest of the body. Longitudinal pleural folds are very marked on abdominal segments one to six. There are ten pairs of well-developed pleural swellings on body segments two to eleven. These swellings are oval and thickly beset with minute spines (Chrystal, 1930). There are ten pairs of spiracles (on thoracic segments two and three and abdominal segments one to eight), the last spiracle is vestigial and the spiracles on the first abdominal segment much reduced (Spradbery, 1970). Ibalia is the only cynipoid larva known to to have spiracular valves (Spradbery, 1970). As it is considerably larger than other larvae studied, this and also the presence of vestigial tenth spiracle on abdominal segment 8 could be allometric features.

James / Berlese theory

James (1928) compared cynipoid larval types to certain putative developmental phases which in other insects are passed through in the egg (Berlese, 1913). These stages are protopod (appendages on thorax), polypod (appendages on thorax and abdomen) and oligopod (thoracic appendages retained but abdominal appendages resorbed (thus showing homoplasy with the protopod stage)). James opined that protopod first instars would be followed by polypod second instars. However, Huzimatu (1940) and Eskafi & Legner (1974a; 1974b) have shown that this is not necessarily true in the Eucoilidae. Further the larvae of the Alloxystinae do not conform to this simplistic theory.

Summary

The number of instars reported in the literature is often only an estimate but most cynipoids appear to have five, although the Ibaliidae and Charipidae have four. Many cynipoids have 12 body segments. However, in most cynipoids, the number of body segments needs confirmation; many authors have admitted difficulty in ascertaining a figure. Most Cynipoidea have nine spiracles (although ten have been recorded in the Cynipidae - Evans, 1965). The Charipidae have six, rarely seven, spiracles and therfore show the most derived condition. A similar reduction

occurs in other microhymenoptera (Parker & Thompson, 1925; Stehr, 1987). The second instars of hypermetamorphic cynipoids are all caudate. The Figitidae and Eucoilidae have a weakly polypodeiform second instar, but some taxa go straight to the hymenopteriform stage. The Charipidae have a modified form of this type with only thoracic processes and the chitinous armour of the first instar has Ibaliidae is unique in having a been lost. The polypodeiform first instar, all other parasitoid Cynipoidea have evolved a specialised first instar and deferred the (reduced) polypodeiform type to the second instar.

In cynipoids strong scythe-like mandibles only occur in Ibalia. In other Hymenoptera the mandibulate larval type occurs in both endoparasites and ectoparasites. It is a common larval type in the Ichneumonoidea and Proctotrupoidea and frequently occurs where early instars fight other parasitoids.

PUPAL STAGE

There may be a short prepupal resting stage (Eskafi & Legner, 1974a&b; Matejko & Sullivan, 1980; Shorthouse, 1973).

Although a cocoon, even if slight, is of general occurence in the Hymenoptera, the Cynipoidea and and Chalcidoidea do not have one and the pupae are exarate (Schröder, 1967). In the parasitoid forms pupation is inside the host's cocoon (Anacharitinae), puparium (Eucoilidae, and most Figitidae), aphid mummy (Charipidae) or in the tunnel of the host (Ibaliidae). Gall-wasps, in their sheltered environment have no need of a cocoon. In Andricus quercuscalicis (Cynipidae) there is a cocoon-like structure present, but this appears to be of plant origin and may represent a detached sclerenchyma layer.

The pupal stage can last a few days in summer generations but in overwintering generations diapause occurs in the mature larva or pupal state (Haviland,

1920a) and then it may take up to 300 days, in some Eucoilidae (Sychevskaya, 1974).

Finally the cynipoid becomes hardened and darkened and then eats its way out of the host or gall (Connold, 1901).

As the information, given above, on the immature stages is based on isolated examples mostly taken from the literature, it would be inappropriate to subject the data to LeQuesne analysis.

Conclusion

It was shown (Chapter 3) that the existing classification of the Cynipoidea is based on too few characters. In chapter 4 an extensive study of cynipoid morphology has produced 234 characters (including multistates); this is a 450% increase in the number of characters over that of the established classification. It is believed that this character bank will be sufficiently comprehensive, both in number and range of characters, to provide the basis for an increased resolution of cynipoid phylogeny.

In the next chapter this morphological data will be scored and analysed.

Page 164

Fig. 130. Andricus X60. mesoscutum & scutellum.

Fig.131. Sarothrus X260. Trochantellus.

Fig. 132, Liopteron X60. Lateral view of petiole.

Fig. 133. Melanips X193. Petiole, semiventral view.

Fig. 134. Alloxysta X450. Petiole, lateral view.

Fig. 135. Trybliographa X150. Petiole, lateral view.

Fig. 136. Aspicera X125. Petiole (frontoventral).

1

.

Fig. 137. Figites X246. Petiole (frontoventral).

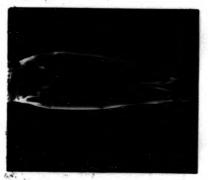


Fig. 138. Ibalia X69. Male genitalia.

Fig. 139. Anacharis X225. Apex of male genitalia.

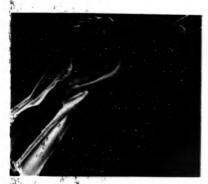


Fig. 140. Ibalia X193. Digiti of male genitalia.

Fig. 141. Figites X700. Apex of male genitalia.

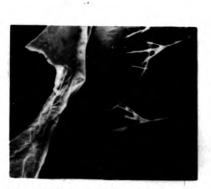


Fig. 142. Biorhiza X250. Tergite 9.

Fig. 143. Isocolus X200. Tergite 9.

Fig. 144. Lonchidia X170. Female genitalia.

Fig. 145. Figites X44. Female genitalia.

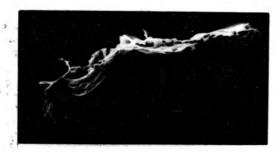


Fig. 146. Paraspicera X120. Female genitalia.

Fig. 147. Ibalia X15. Female genitalia.

Fig. 148. Aspicera X14.

Fig. 149. Pycnostigmus X11.

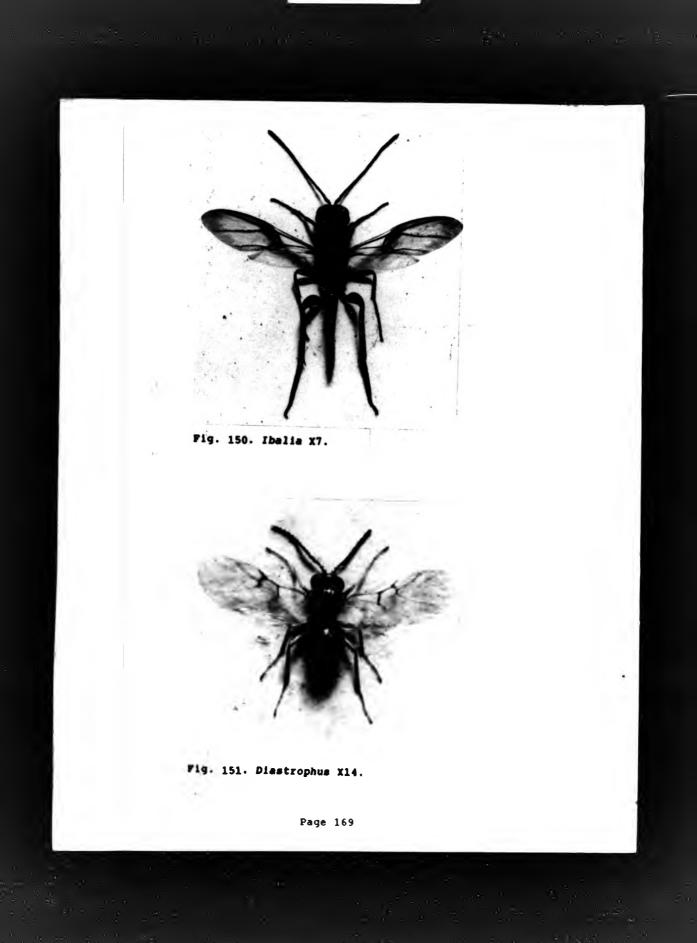


Fig. 152. Ibelie (X6) antennating bark near the oviposition hole of its siricid host (Photo: Spradbery).

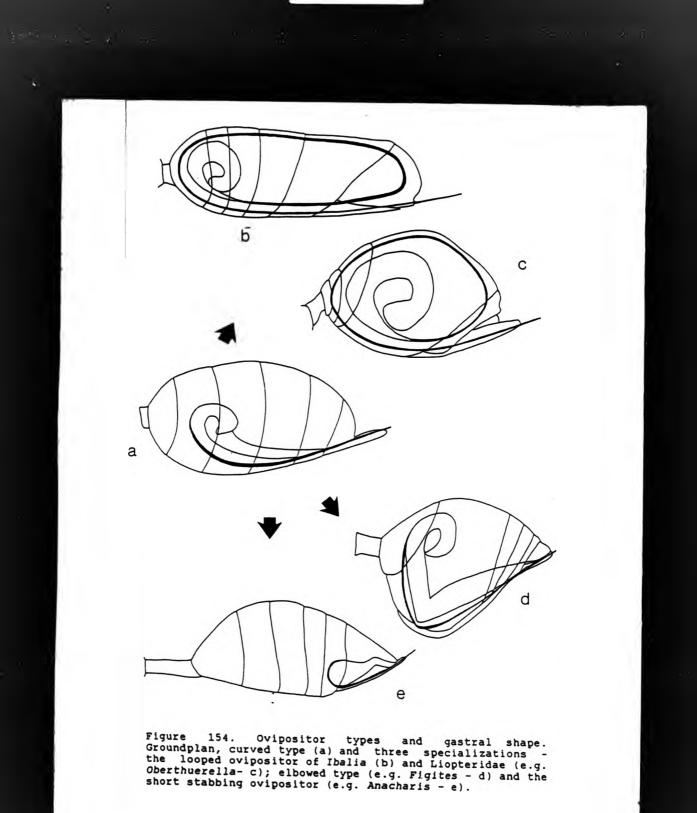
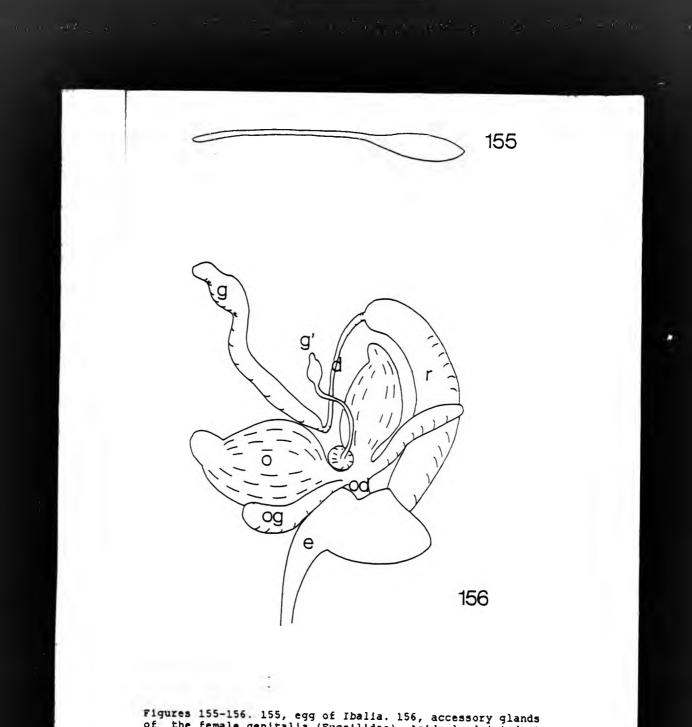




Fig. 153. Ibalia (X6), hypopygium lowered, ovipositing into a siricid larva in the tree (Photo: Spradbery).

Figures 155-156. 155, egg of Ibalia. 156, accessory glands of the female genitalia (Eucoilidae). Acid gland (g) duct (d) and reservoir (r); alkaline gland (g'); ovary (o); common oviduct (od); collateral or oviducal gland (og); and the base of the external genitalia (e). (After Rizki & Rizki (1984) and dissections.]

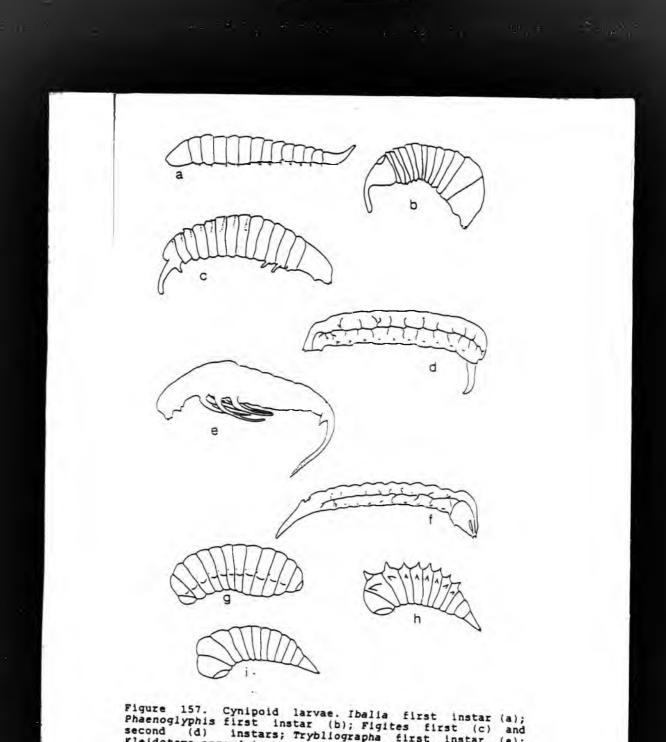
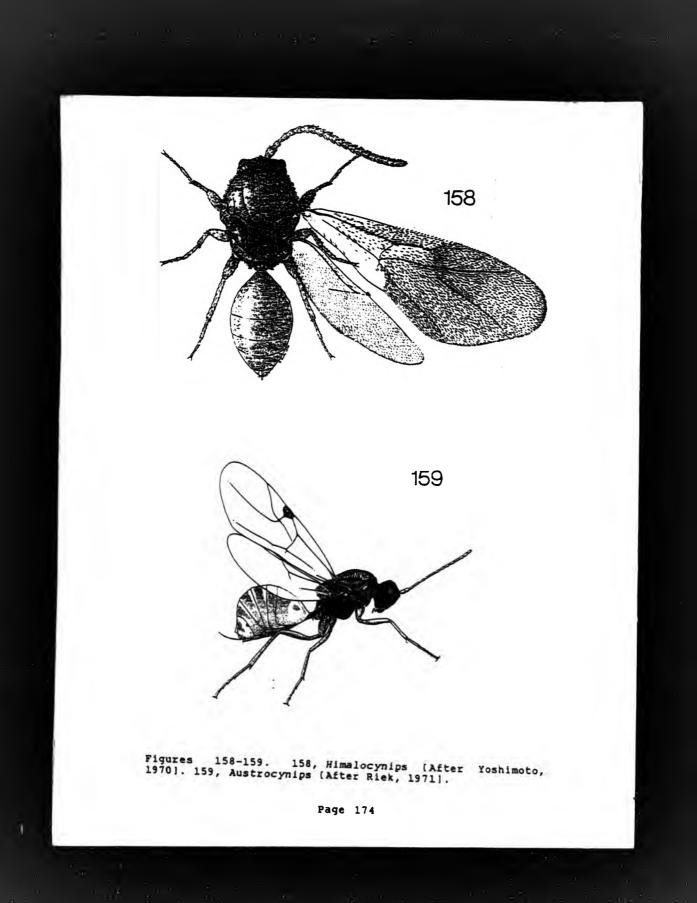



Figure 157. Cynipoid larvae. Ibalia first instar (a); Phaenoglyphis first instar (b); Figites first (c) and second (d) instars; Trybliographa first instar (e); Kleidotoma second instar (f); Cothonaspis late instar (g); Anacharis (h) and Aegilips (i) late instars (After: Chrystal, 1930; Haviland, 1921a; James, 1928; Molchanova, 1930 & Lipkow, 1969].

CHAPTER 5: PHYLOGENY OF THE CYNIPOIDEA

CLADISTIC ANALYSIS OF CYNIPOID MORPHOLOGY

The 31 exemplar taxa (see Table 1) were compared against the morphological character-states listed in Chapter 4, and scores (0, 1, - or V) were awarded. The resultant master matrix (Appendix 2) consists of 234 binary characters (including multistates) and therefore 7254 (234 X 31) cells. It is believed that this matrix is one of the largest, on any group of the parasitic Hymenoptera, ever to have been subjected to cladistic analysis. A LeQuesne compatibility analysis was completed which took over three days of continuous computer time to run the boildown to a compatible clique. The initial matrix of incompatibilities and the LeQesne ratios of character-state randomness are shown in Appendix 2. The analysis found a total of 4022 incompatibilities compared

	1	2.1	4	5	7	8	13	14	5.1	
	22	24.2	28.4	29.2	30.2	31 2	31 4	30 6	20 2	
	40	41	42	43	46	47	4 9	52	59.5	
	60	61.1	62.2	63	68	70	71	72	76	
	78.2	79.1	79.2	80	87	97.1	100 1	100 2	101	
	104	105.1	105.2	106	108	109.1	109.3	111 1	113 1	
	113.2	112	122	125	126.2	127	137	178 2	120 2	
	40	141	142.1	143	145	146	148	160	160	
	170	23	21	130	177	163	164	1 3 4		
	15	T03.4	39.2	25	69	118	121 2	62 4	72 2	
	00	11	01.Z	124	136	51.2	22	0 2	26.2	
		30	102	114	511	54	66	67	40.J	
	/3.3	31.3	144	153	62.3	159	128	10		
	T 7 3	51.1	165	142.2	2.2	26 2	111 2	24 2	6	
	13	720	26.1	24.1	149.1	111 2	55	0.2	167	
	T00	58	131.1	117.2	49	160	161	00	10.0	
	132.2	50		78.1	167	117 1	E 4	26	E 3 . 0	
	31	122.1	89	11	45	162	00 0	140 0	00.0	
	86	88	139	85	32.3	16 1	91.2	160	30.2	
	02.1	01	30.1.	38.4	154	9.4	56	166	0 E	
	93	67	10	112.1	12	82.2	116	100	30	
	31.1	32.2	132.1	32.4	126 1	15 2	120 1	102	132	
	TT0	132.2	151	119	28 2	72 1	112 2	122 2	20.0	
	3.1	04.1	36	149.3	30.1	38 5	120	20 1	20 2	
	38.2	33	39.1	81.1	121	123	30 1	43.1	20.3	
Ta	able 39). Ini	tial	rankin	ng of	chara	cters	accor	ding	+

Table 39. Initial ranking of characters according to LeQuesne ratio. (The first 81 characters show no incompatibilities.)

	patibilit:			Incom	patibiliti	les cl	naracter
found	expected	ratio	deleted	£ound	expected	ratio	deleted
4022	7735.04	0.52	107	3955	7687.45	0.51	97.2
3907	7645.08	0.51	38.1	3830	7574.65	0.51	123
3741 3550	7486.62 7289.10	0.5	121	3614	7357.07	0.49	81.1
3310	7027.82	0.49	38.2	3430	7159.12	0.48	33
3116	6810.44	-	39.1	3230	6939.88	0.47	120
2935	6602.02	0.46	29.1 38.5	3022 2867	6702.5	0.45	30.1
2761	6398.03	0.43	28.3		6522.51	0.44	36
2628	6235.78	0.42	38.3	2729 2533	6359.54 6118.31	0.43	9.1
2499	6075.83	0.41	73.1	2533	5955.28	0.41	149.3
2343	5878.09	0.40	151	2262	5774.43	0.40	112.2 132.3
2171	5657.3	0.38	119	2083	5542.03	0.39	132.3
1998	5428.66	0.37	82.1	1956	5372.79	0.36	132.2
1879	5268.14	0.36	132.1	1810	5173.02	0.35	138.1
1730	5062.37	0.34	32.2	1665	4971.06	0.33	31.1
1591	4867.4	0.33	32.4	1551	4811.65	0.33	28.2
1513	4758.36	0.32	15.3	1446	4663.85	0.31	110
1389	4580.88	0.30	17	1345	4515.13	0.30	103
1275	4409.67	0.29	28.1	1233	4345.57	0.28	82.2
1167	4242.07	0.28	166	1118	4161.92	0.27	56
1062	4066.49	0.26	126.1	1042	4032.37	0.26	38.4
994	3949.08	0.25	67	945	3862.34	0.24	116
911	3801.04	0.24	62.1	893	3767.89	0.24	95
850	3688.15	0.23	93	815	3621.12	0.23	96.1
772	3536.25	0.22	32.3	739	3470.21	0.21	12
706	3404.42	0.21	10	679	3347.91	0.2	112.1
664	3316.14	0.2	32.1	627	3236.72	0.19	94
596	3167.91	0.19	81.2	560	3085.22	0.18	86
529	3012.68	0.18	84	502	2946.37	0.17	90.2
468	2861.53	0.16	85	447	2808.72	0.16	37
423	2748.78	0.15	96.2	392	2666.10	0.15	16.1
364	2591.09	0.14	99	354	2563.50	0.14	88
327	2488.95	0.13	158	304	2423.30	0.13	45
281	2351.52	0.12	15.2	266	2303.90	0.12	154
259	2281.33	0.11	147	237	2210.39	0.11	139
220	2149.36	0.10	109.2	210	2112.39	0.10	74
200	2075.52	0.10	11	182	2006.34	0.09	149.2
169	1957.25	0.09	152.1	156	1908.41	0.08	162
143	1854.42	0.08	89	130	1795.59	0.07	21
116	1727.97	0.07	152.2	108	1687.30	0.06	92
96	1623.56	0.06	91	84	1560.82	0.05	142.2
77	1522.58	0.05	161	70	1483.95	0.05	160
63	1445.76	0.04	90.1	53	1391.26	0.04	55
45	1345.73	0.03	35	39	1310.06	0.03	16.2
31	1252.66	0.02	83	26	1209.62	0.02	26.2
21	1165.58	0.02	2.2	16	1121.42	0.01	64
14	1103.70	0.01	73.3	12	1086.08	0.01	31.3
10	1067.82	0.01	20	6	1017.77	0.01	111.2
4	974.73	0.00	117.1	2	929.13	0.00	49
0	881.96	0.00					

Table 40. The character-state deletions, made by the LEQU program, which lead to the formation of the clique.

Page 177

	Taxa
.11	5,15263.76.78,2.79,1.80.87.101.F. 1 (Ibalia)
:	2 (Oberthuerella)
•	3 (Tessmanella)
	128
D 	73,2. 125. 6 (Pseudibalia)
53,2.54.157	52,3.144.153 4 (Liopteron)
: ::	117,2.131,1 7 (Hesocynips)
· · ·	.50. 8 (Paramblynotus)
	78,1
	48105,2140170
•	5765155 10-12 (Aspicerinae)
•	.50
•	
	75.109,4. 38,6.115. 21 (Kleidotome)
:	51,1.165
÷	
:	· · · · · · · · · · · · · · · · · · ·
.a.	70
· ·	17 (Helanips) -
•••	41113,1. 23 (Dilyta)
1	68 24 (Apocharips)
: : :	
A.: : :	31,439.3. 26 (Alloxysta)
24,3.26,1.111,3	.2,1.22.29,2.30,2.60.97,1.100,2B 27 (Pycnostigmus)
	138,2.142,1. 13 (Anacharis)
	2327130133163164
• •	
	4424346475961,1.68.71.72 31 (Himalocynips)
• • • • • • • • • • • • • • • • • • • •	

Figure 161. Clique cladogram of the morphological characters for the exemplar cynipoid taxa. (Note: multistates are normally shown with a decimal point but for clarity this has been replaced by a comma in the trees. Code: A =100.1 104 145 148 150; B = 105.1 108 109.1 113.2 141 169; C = 2.3 9.2 26.3 51.2 61.2 66 77 124 136; D = 6 19 24.1 149.1 156; E = 25 62.4 69 118 131.2; F = 109.3 111.1 122 126.2 127 138.3 143 146 £ G = 18 44 129 159)

with the 7735.04 expected on the null hypothesis. This represents an overall LeQuesne coefficient of 52%, which is a "good" figure indicating a moderately well-ordered data-set. However, this value for the coefficient also shows the presence of a considerable amount of homoplasy a common state of affairs in the parasitoid Hymenoptera. Analyses of other apocritan groups e.g. Ichneumonidae have produced much higher randomness ratios e.g. 70% (Eggleton, 1989) to over 80% (Gauld, 1985).

Initially the LEQU program ranked the characters in the order shown in Table 39. The stepwise deletion of the worst character, the "boil-down", led to the removal of 99 binary characters (Table 40) to give a clique of 135 binary characters (almost 60%).

The resultant clique cladogram was plotted (Fig. 161). The program indicated that two of the clique characters (80 & 111.1) should have their polarities reversed. Both of these wing venation characters were only plesiomorphic in Ibalia and their reversal to become autapomorphies for this genus seems feasible. The cladogram is rooted with five characters (31.2 and 106 are ostensible symplesiomorphies) - triangular marginal cell (100.1), true pterostigma absent (104), lateral compression of gaster (145), number of tergites, i.e. tergite 10 lost, (148) and gastral spiracles limited to tergite 8 (150). These five features are all classic characters of the superfamily. All these synapomorphies are discussed in the section on cynipoid holophyly.

LAST TEN CHARACTERS DELETED

An investigation of the last few characters deleted during the compatibility analysis can give an insight into the more likely of the alternative trees. The position of the analysis at ten deletions before clique establishment is shown in figure 162. The first deletion to be reconsidered is that of character 83. This character was rejected because it is incompatible with five characters $(3, 58, 78.1, 117.2, \pounds 131.1)$ and it also shows polar

														-													
	2	3	2		3	4	5	5	5	5	5	6	73	73	75	7	83	1	1	1	11	1 2	1 3	15	1 6	1	
	_	_	U		1	9	0	1	3	4	8	4			5	8	3	9	1	7	7	8	1	7	5	7	
	2			2	3			i	2				2	3		i		i	2	i	2		i				
168		١.				x																					
167	x			x		x	•	•	•	•	•	•	•	•	•	•	1	٠		٠	•						
165	x		•	x		^	•	•	•	•	•	•	•		•	•	1	•		•	•			•			
157	^	•	x	•	•	•	•	•	•	•	•	•	•	•	•	•		•	2	٠	٠	×					
131.1	•	•	^	•	•	•	•	•	•	•	•	•	•	4	٠	•	1	•	:	•	•	•	Υ.				
128	•	•	•	•	•	•	•	•	•	•	•		٠	X	٠	•	x	•		•	•						
117.2	•	•	•	•	•	•	•	•	•	•	•	X	•	4	٠	٠	÷	•	1	•	٠						
117.1	•	•	x	•	•	•	•	•	:	:	٠	•	•	x	•	٠	х	•									
111.2	•	x	•	•	•	•	٠	•	X	X	•	•	•	٠	٠		:	•	4								
109.4	•	^	•	•	:	•	•	•	:	:	•	٠	٠		•	x	•										
83	•	:	٠	٠	X	•	٠	٠	•	٠	•	•	•	٠	•	1	•										
	•	X	•	•	•	٠	•	•	:	:	X	•	•		•	x											
78.1	٠	•	٠	٠	•	•	•	•	•	٠	•		٠	÷													
75	•	•	٠	•	X	•	٠	•	٠	•	•	•	•														
73.3	٠	•	٠	•	•	٠	•	•	•	•	•	•															
73.2	٠	٠	•	•	٠	٠	•	٠	•	•	•	x															
64	•	•	•	٠	•	•	•	•	•	•																	
58	٠	•		•	•	٠	•	•	•	•																	
54	•	•	х	•	•	•	•	•																			
53.2	•	•	х	•	•			•																			
51.1	x	•		x			•																				
50	x	•		x																							
49	х			x																							
31.3				4																							
26.2																											
20	4		-																								
3	•																										

Figure 162. The last 39 character incompatibilities.

incompatibilities with characters 53.2, 54, 117.1 and 157. Character 83 links all the taxa except 1-6, if the polarity was reversed then Ibalia (taxon 1) would be linked to the Oberthuerellinae (taxa 2 \pm 3) and Liopterinae (taxa 4-6) but not to the Mesocynipinae. Such an arrangement would be unacceptable, Ibalia is a most distinct genus with many unique features. Both the polarity reversal and parallelisms need to be postulated in order to accommodate this character into the clique.

The next character deleted was 26.2, this is incompatible with characters 49, 50, 51.1, 165 and 167. The same incompatibilities are shared by character 2.2, the subsequent deletion. Both 26.2 and 2.2 link the Charipidae with the Eucoilidae but oppose the close link with the genera near Figites (Fig. 163). These two characters are morphological features (palp reduction and hypostomal stucture) that cannot be dismissed, so it is most likely that these are parallelisms, and in particular character 2.2 is probably a feature of small cynipoids.

• • • • • • • • • • • • • • • •	Aspicerinae
· · · · 2, 2 · · 26, 2 · · · ·	Eucolidae
	Charipidae
	Figites / Neralsia
• • • • • • • • • • • • • • • • • • •	Melanips
• • • • • • • • • • • • • • • • • • • •	Lonchidia

Figure 163. Tree with character 2.2 and 26.2 included.

Character 64 (scutellar curvature) was deleted next. This feature links Liopteron with Plastibalia and is opposed by two apparently "good" characters 73.2 (anterior scutellar flange) and 128 (length of last tarsal segment) (Fig. 164), so it is possible that character 64 could show reversals in Pseudibalia and the Oberthuerellinae. Both Plastibalia and Liopteron were highly marked by the LEQUC program (see Appendix 2) for character 64 - scoring 11 marks. A reversal could also be postulated for Liopteron with respect to character 128 (Fig. 165). However, character 73.2 does not occur in Liopteron and a reversal

> Oberthuerellinae .128.. Plastibalia Plastibalia Pseudibalia Liopteron

Figure 164. Part of the clique cladogram (simplified).

seems unlikely, thus the Liopteridae must remain paraphyletic.

The incompatibilities still remaining are shown in figure 166. Character 73.3 (wide mesepisternal suture) was deleted because it is incompatible with 117.2 & 131.1. It links Pseudibalia and Mesocynips and this is probably a parallelism. A direct link between these two genera is rejected as unlikely because the total morphology of Pseudibalia has much more in common with Plastibalia than it has with Mesocynips. Both Mesocynips and Pseudibalia were highly marked by LEQUC for character 73.3 - each scoring 12 marks.

> 111111 2 3 4 5 5 7 7 7 0 1 1 1 3 5 6 0 1 9 3 4 3 5 8 9 1 7 7 1 7 7 301934358917 3 2 3 142121 168 X 167 . x 157 . X 131.1 · · · · X · · · · 117.2 х.... 117.1 . x . . x x 111.2 X . . . : : . . X 109.4 . . X 78.1 75 . . X 73.3 54 . x . . . 53.2 . x . . 49 . . . 31.3 20

Figure 166. Incompatibilities after character 64 deleted.

The next character deleted was 31.3 (position of emargination on male antenna) this is a highly homoplasious character amongst the Cynipoidea and is of little value above the generic level.

Character 20 was removed because of its incompatibity with characters 53.2, 54, 117.1 and 157. Austrocynips, however, has piercing-cutting mandibles and this is inconsistent with its position in a group adapted for a wood associated biology. The alternative position of

Austrocynips (near to Himalocynips) will be considered later.

Character 111.2 (loss of second submarginal cell) is shared by taxa 9-31 and is an allometric feature, in no sensible classification would Kiefferiella be linked with the figitids. However, if the large cynipoids are secondarily large then this could be an apomorphy for all of the Ibaliidae / Liopteridae except Kiefferiella. The character is rejected.

The penultimate character deleted was 117.1. This wing colour feature is not supported by a study of extralimital taxa, and it was highly scored (33 marks) by the LEQUC program. This character is easily rejected.

The final character deleted was 49, it is incompatible with characters 168 and 167. Character 49 was only lightly marked by the LEQUC program and both 167 and 168 had worse scores (see Appendix 2). Character 49 (complete lateral carinae) links taxa 10-16 + 19-22. As mentioned above it is hard to support the exclusion of the Anacharitinae from the 168 clade (Fig. 167). It seems most likely that the anacharitines have secondarily lost the gonostylus (character 168) in the same way as they lost the bridge (164) and bulbous articulation (163). The incompatibility between characters 49 and 167 (teeth on gonapophysis 8) is a more complex problem. Here also a secondary loss in the Anacharitinae is likely. It is also

	•••••	Aspicerinae
		Eucoilidae
		Figites & Neralsia
		Anacharitinae
168.		Charipidae
	• • • • • • • • • • • • • • • • • • •	Lonchidia
		Melanips
		Pycnostigmus

Figure 167. Tree with 168 reversed for the Anacharitinae.

Page 183

possible that these ovipositor teeth have been secondarily lost by the Charipidae and Pycnostigmus (taxon 27), perhaps such teeth are not required in order to puncture the soft cuticle of their hosts. So Pycnostigmus and the Charipidae could be outside or inside the 167 grouping (Fig. 168). [See the study of extralimital taxa for a further consideration of this problem.]

Figure 168. Possible amendments to the cynipoid tree. A study of the last 10 deletions indicates that characters 167 and 168 could show reversals in the Anacharitinae.

To summarize; nine of the last ten deletions are accepted, but the last deletion is not. There is good morphological evidence that the Anacharitinae show a secondary reduction of the female genitalia and therefore this reduction is also likely to include reversals of characters 167 and 168 (Fig. 168).

THE CLIQUE CLADOGRAM

The cladogram divides the Cynipoidea into taxa 28, 29 (the Cynipidae) and the remaining taxa, this latter unit is subdivided into the ibaliid group, the figitid group and the Himalocynipinae. These groupings are discussed below.

The Cynipidae

The clique cladogram places the Cynipidae as the least derived of all the Cynipoidea and, partly because of their primitive nature, no morphological autapomorphy exists for them. They are the paraphyletic sister-group of all other Cynipoidea.

The remaining cynipoids

The remaining cynipoids are united by four synapomorphies. Character 18 (mandibles with three teeth) is a particularly poor character, and one which does not stand up well against a study of extralimital taxa (i.e. cynipoids outside the 31 exemplar taxa). For example some species of Melanips, (i.e. M. microcera) can have mandibles quite like those of the Cynipidae. Character 129 (claw with basal lobe) would appear to be a similarly poor character that is unlikely to survive detailed examination of a large number of extralimital taxa. Character 44 (lateral ridges on the pronotum) is present in taxa 1-27, 30 £ 31 and absent from the exemplar Cynipidae (both gall-wasps), but this feature is present in the inquiline Cynipidae. The distribution of this character causes one to wonder if these ridges could have been present in the ancestor, lost in the Cynipidae (as an apomorphy), and regained in the inquilines as a apomorphic reversal! Character 159 (remnant of tergite 10 lost - Figs 142, 143) appears to be a good character, but the apomorphic state is loss-condition, so parallel losses are quite a feasible. A second possibility is that character 159 underwent a reversion to the primitive state in the gallwasps, thus with the polarity reversed this character would become an autapomorphy for the Cynipidae.

Thus the primary node of the clique cladogram is rather dubious and in need of further consideration (see improvements section, below).

The ibaliid group

The clique cladogram shows that the ibaliid group is holophyletic and well defined by three characters - 53.2

(heavy sculpture), 54 (transverse mesoscutal ridges) and 157 (looped ovipositor). These features form part of a fundamental suite of adaptive characters (see Chapter 6). Size is also a factor here, because the majority of this lineage are large and strong (well muscled - Fig. 89) cynipoids.

Austrocynips has previously (Quinlan, 1979) been placed in the Cynipidae and indeed it has a generalized "primitive" morphology like that of Himalocynips. However Austrocynips has the looped ovipositor and strong sculpture of the ibaliid group. Austrocynips 18 characterized by several autapomorphies - facial striae (5), pronotal hump (48), pseudopterostigma (105.2), flange on the petiole (140), and gonostylus almost globular (170). The possession of a pseudopterostigma is a most interesting feature, the cladogram position of Austrocynips shows that this structure could be а primitive feature. However, it is unlike the linear pterostigma found in the oldest fossil cynipoid (see section on fossils) so it is likely to be a secondary feature analogous (and not homologous) to the secondary pseudopterostigma of Pycnostigmus. There is no doubt that Austrocynips is a very specialized (and extremly rare) relict genus having little in common with other genera in the ibaliid group. As the cladogram shows, its morphology is perhaps closest to that of Ibalia.

The remaining taxa are grouped together by five characters - 6 (central ridge on face), 19 (blunt mandibles), 24.1 (hypostoma in a cavity), 149.1 (expansion of gastral segments) and 156 (uplifting of the last tergite).

Ibalia is characterized by the following unique features. Characters 15.1 (occiput with striae), 52 (precoxal tooth present), 63 (scutellar ridge), 122 (single mid-tibial spur), 126,2 (spur present on the second tarsal segment) and 127 (long hind basitarsus) form a suite of related adaptations (see later). Characters 146 (blade like gaster), 143 (petiole condyle incised) and probably 138.3 (petiole smooth) relate to oviposition.

Characters 76 (open metathoracic spiracle) and 79.1 (shape of the flap to the propodeal spiracle) and wing characters 80, 87, 101, 109.3 and 111.1 are all allometric features relating to the large size of this insect.

The remaining taxa constitute the Liopteridae, and are defined by two characters - a notched clypeus (character 3) and an obscured metapleural trough (78.1). The latter is not a strong morphological feature and the is only slightly better. Also at least one former extralimital liopterid (Paramblynotus yangambicola) is very Ibalia-like so this "family" construction looks weak. Within the 3 / 78.1 clade, the smaller taxa are separated plesiomorphically; Kiefferiella is removed first, and the remaining taxa are defined by character 58 (mesoscutal flanges). Paramblynotus (Mesocynipinae) is plesiomorphic to the Oberthuerellinae plus Liopterinae plus Mesocynips, which are grouped together by characters 117.2 (wing with colour around veins) and 131,1 (claws bifid). Although 117.2 is a weak feature, character 131.1 appears to be sound. Mesocynips is removed from the remaining taxa by two specializations - characters 13 (OOL/APL ratio) and 137 (hump on petiole). Thus the cladogram does not support the "Mesocynipinae" as a subfamily.

The Liopterinae is linked with the Oberthuerellinae by characters 62.3 (scutellar spines) 144 (tangential petiole) and 153 (small anterior tergites). These all seem particularly "good" characters and this node is considered to be well founded.

Liopteron has normal tarsomeres and so is excluded from the 128 clade, within which the other two liopterine genera (Plastibalia and Pseudibalia) are linked by character 73.2 (mesepisternal suture high).

The Oberthuerellinae is exceptionally well-characterized by five characters - 25 (condyles expanded), 62.4 (scutellar spines), 69 (striations between the scutellar foveae), 118 (tooth on hind femur), 131.2 (claws bifid).

The clique cladogram supports only one subfamily of

the established liopterid classification, the Oberthuerellinae. The Liopterinae and Mesocynipinae are paraphyletic assemblages. As the older classifications were not based on autapomorphies it is not surprising that they have failed to be supported by analysis.

Himalocynips

Himalocynips is intermediate in size between the ibaliid and figitid taxa and like Austrocynips it is a rare, very specialized (Yoshimoto, 1970) and yet primitive taxon. Himalocynips was heavily marked by the LEQUC program (see Apendix 2). This genus has 13 unique features and the anatomical distribution of these autapomorphies is rather interesting. Two are facial characters (4 \pm 8), one is hypostomal (24.2), three are antennal characters (28.4, 42, 43), two pronotal characters (46 \pm 47) and five are scutellar / axillar characters (59, 61.1, 68, 71, 72). The bias to, and the function of the thoracic modifications are a puzzle that is unlikely to be solved until the biology of this species is known.

The figitid group

The remaining taxa consist of the smaller parasitoids. This group is probably the most phylogenetically interesting and the centre of most controversy as to exact relationships. The reconstruction postulated in the clique cladogram is largely new and, in my opinion, reasonable (improvements will be suggested below).

The figitid taxa are defined by three characters 24.3 26.1 & 111.3. The latter (position of Rs & M) is an established wing venation character that, although very difficult to use, remains as a feature of major importance. Fortunately it is now supported by two new hypostomal characters (24.3 and 26.1).

Within the figitid group the Anacharitinae is holophyletic and, in the initial cladogram (Fig. 161) the sister-group of the remaining taxa. This is a totally new arrangement. The holophyly of the Anacharitinae is demonstrated by six characters. The lower two mandibular teeth are spine-like (23), and the claws have a fine basal spine (130). The ovipositor of the Anacharitinae is secondarily reduced - (bulbous articulation and bridge absent; characters 163, 164) and the petiole is specialized - character 133. The function of character 27 (hypostomal carina curved) is not understood. Additional petiole characters (138,2 142,1) that may be associated with oviposition are found in Anacharis.

The remaining taxa are united by character 168 (gonostylus indicated) but it seems likely (see above) that the secondary reduction of the anacharitine genitalia could also include secondary loss of the gonostylus (Fig. 168).

Pycnostigmus is very specialized having 13 autapomorphies: 2.1 (palp formula), 22 (scythe-like lower mandibles), 29.2 (number of segments in antenna of male), 30.2 (number of segments by which antenna of male exceeds that of female), 60 (reduced axillae), 141 (short petiole with two indentations), 169 (gonostylus with notch) plus six characters that relate to the very reduced and specialized venation (97.1, 100.2, 105.1, 108, 109.1, 113.2).

The residual taxa are divided into two lineages; the Charipidae, and the remaining Figitidae plus the Eucoilidae. The Charipidae is a holophyletic group defined by the traditional feature - their smooth thorax (53.1), and a new character (114 - the extent of the wing covered by veins). Both these characters reflect the very small size of these species, and therefore this group still lacks a nonallometric autapomorphy, other than its hyperparasitic lifeway.

The cladogram supports the two subfamilies of the Charipidae. Character 39.2 (extent of antennal sensilla), which "defines" the Alloxystinae, is a poor character and is unlikely to apply to all alloxystine species. The Charipinae is supported by three characters - 34 (fusion of terminal segments), 98 (curvature of Rs) and 102 (small

marginal cell). The last two are size related characters are not especially significant. Character 34 is the traditional delimiting feature for this subfamily, it appears to be a good character. The validity of these two subfamilies is open to question, and they will be discussed further (below).

The 167 (gonostylus 8 with teeth) group has Lonchidia and Melanips as primitive genera. (The Anacharitinae could also be included here (Fig. 168) - see above.) The remaining taxa are united by character 50 (pronotal disjunction). Within the 50 clade the Aspicerinae form a well-defined holophyletic group (57 - shape of mesonotal line, 65 - scutellar carinae & 155 - shape of second gastral tergite).

The 51.1 group unites the Eucoilidae with the genera near Figites. It has already been noted (Fergusson, 1986) that the genera near Figites are well removed from other Figitinae genera near Melanips. This 51.1 grouping is remarkable because it means that the Figitidae, as currently defined, can no longer be supported as a holophyletic group. The most derived Figitidae are now the sister-group of the Eucoilidae. The characters that define the 51.1 clade (51.1 - pronotal plate part raised & 165 gonostylus with cavity) appear to be particularly strong morphological characters. The genera near Figites are defined by 78.3 (metapleural trough) and 134 (petiole with notch).

The Eucoilidae is strongly supported by nine characters - 2.3 (palp formula), 9.2 (malar sulcus), 26.3 (hypostomal fusion), 51.2 (pronotal plate raised), 61.2 (axillar / scutellum junction), 66 (tear-shaped plate), 77 (ventral cavity of metapleuron), 124 (fine teeth to the strigil) and 136 (underside of petiole). This is the best defined of all the groups within the superfamily. Two of the eucoilid genera are united by size-related characters (75 and 109.4) which exclude the larger genus Eucoila.

SUBSET ANALYSIS

An analysis of the subsets of the clique cladogram was undertaken in an attempt to enhance the phylogenetic reconstruction (as was done with the Weld and Quinlan data - see chapter 3). There are two major subsets to the clique cladogram the 53.2 clade and the 24.3 clade, both were analysed.

The 53.2 clade

This clade includes taxa 1 to 9 and taxon 30. Analysis of this subset found 884 incompatibilities against 1191.35 expected on the null hypothesis; a LeQuesne coefficient of 74%. The boil-down deleted 41 characters in the order shown in Table 41. The resultant tree was constructed (Fig. 169) but the analysis of the

45	149.3	38.2	30.1	29.1	123	126.1
81.1	112.2	110	121	112.1		96.1
	132.3			132.1		
120	73.1	95	84	109.2		
78.1	3	93		58	36	131.1
117.2	142.2	89		111.2		

Table 41. Deleted characters in 53.2 clade.

Figure 169. Subset analysis tree for the 53.2 clade. * = many autapomorphies & polarity changes.

53.2 subset was of little value. The 62.3 clade, consisting of taxa 2-6 was supported in the same format as in the clique cladogram. The remaining taxa - Mescynipinae + Ibalia + Austrocynips are in a new configuration defined only by character 12 (presence of scrobes). Scrobes help to protect the antennae from damage during emergence from the host's tunnel in the tree. This is an adaptive feature that could have arisen independently in these taxa, or could have been secondarily lost in the 62.3 clade.

The Mesocynipinae are linked to Austrocynips by characters 56, 81.2, 83, 86 and 119. These are allometric reduction states relating to the small size of the mesocynipines compared to the larger Liopteridae and Ibalia. Austrocynips shares these characters because it is of a similar size and has a relatively simple morphology (even though it is a very specialized taxon).

In summary, the 62.3 subgroup is sound, but the Mesocynipinae are weakly resolved and their placement is easily upset by extraneous factors. A further investigation of the Mesocynipinae is required (see extralimital taxa).

The 24.3 clade

Analysis of the figitid subset produced very little additional information. Several extant groupings were further supported by additional characters. The Neralsia / Figites grouping was supported by character 17, the Aspicerinae by characters 21 and 56, the Anacharitinae by character 164, the Charipinae by 139, and the 51.1 clade by character 166. One difference was that character 132.1 links Aspicera with Omalaspis; this is because the third aspicerine genus (Callaspidia) lacks the complete petiolar collar of the other two taxa. However, this character was rejected in the full analysis because the Aspicera-type of petiole also occurs in some Liopteridae. Therefore the subset analysis of the master data-set provided very little additional information. This is interpreted as a sign of the robustness of the large master matrix.

LOSS CHARACTERS

As well as the presence of unique structures, hypothesised apomorphic character-states can also be reductions, fusions or losses. These latter types of character are generally considered (Hecht, 1976) to be the least reliable of all transformations, because it cannot be determined whether common absence is the result of single or multiple loss.

Most groups of Parasitica exhibit parallel trends of diminutions leading to reduction or loss of sculpture, wing venation and other structures. The cynipoid data-set includes many loss characters and now that a cladogram has been produced it is instructive to assess how much reliance has been placed on these loss characters.

The clique cladogram was redrawn with all the loss characters removed. The reconstruction is very robust and the resultant tree (Fig. 170) is little changed from the cladogram. Only one subfamily, the Alloxystinae is no longer supported.

POSSIBLE IMPROVEMENTS TO THE TREE

Many of the master matrix characters were reinvestigated to see if some of the homoplasy could be explained and the resolution improved. In most cases this involved the postulation of multiple parallelisms. However, in a few cases the required assumptions were more limited and therefore could be considered here.

Character 12 (presence of scrobes) links taxa 1,7,8, & 9. The functional nature of this feature, mentioned in the subset analysis, would make it probable that this was an early acquisition of the "wood-associated" taxa which was lost in the more derived examples.

Character 16.1 (head sculpture) links taxa 1-6, 8, 9, 30 \pm 31. It is quite reasonable to assume an apomorphic loss in taxon 7 (*Mesocynips*). This would then point to *Himalocynips* being in the ibaliid group. As stated

Та	ca
.15,152637679,1.87.101.109,3.F.	(Ibalia)
· · · · · · · · · · · · · · · · · · ·	(Oberthuerella)
	(Tessmanella)
128	5 (Plastibalia)
D	(Pseudibalia)
	(Liopteron)
117,2.131,1	(Mesocynips)
.58,	
3.78,i	=
· · · · · · · · · · · · · · · · · · ·	
.,548105,2140170	
	(Aspicerinae)
.50) (Eucoila)
· · · · · · · · · · · · · · · · · · ·	(Rhoptromeris)
·	(Kleidotome)
·51,1.165 · .167714 1	(Nerelsia)
·	· · · ·
· · · · · · · · · · · · · · · · · · ·	-
1	-
• • • • • • • • • • • • • • • • • • • •	(Dilyta)
· ·	(Apocharips)
	Phaenoglyphis)
	(Alloxysta)
	(Pycnostigmus)
. 24,3.26,1.111,3	
· · ·	
· · · · · · · · · · · · · · · · · · ·	· ·
4824,228,4424346475961,1.68.71.72 3	
	(Aulacidea)

Figure 170. Tree without reduction characters. [A = 100.1 145; B = 108 109.1 113.2 141 169; C = 61.2 66 77 124 136; D = 6 19 24.1 149.1 156; E = 25 62.4 69 118 131.2; F = 111.1 126.2 127 138.3 143 146 & G = 18 44 129.]

elsewhere there is a case for this, but on present evidence it cannot be accepted.

Character 20 (piercing mandibles) did not survive analysis and that may have been due to an incorrect polarity determination. If reversed, character 20 would be apomorphic for taxa 1-9 and the Cynipidae. This would reflect a two-fold origin of blunt mandibles developed, in both lineages, for chewing an exit from plant tissue.

Character 35 (flattened antennae) was apomorphic for taxa 4-7. A secondary loss of this feature can be postulated for the Oberthuerellinae, then this character would further support the 117.2 clade.

Character 45 (pronotal crest present) the weak state of this character in Oberthuerella (scored as V) is most likely to be a secondary reduction.

Character 49 will be considered in the section on extralimital taxa.

Character 58 could be used to separate Kiefferiella from its close relative Paramblynotus. However, extra of Kiefferiella material borrowed from American institutions included a second, and undescribed, species which bridges the gap between this genus and Paramblynotus. Therefore the two genera will be synonymized, the name Kiefferiella having priority. A careful re-examination of character 58 (mesoscutal flanges) has revealed that Kiefferiella rugosa does have a trace of this flange and so this score must be revised.

Characters 117.2 and 131.1 divide the Mesocynipini into two sections. These characters were re-examined to see if this division was valid. Character 117.2 (wing colour) is a poor feature which, although prevalent in the Liopteridae, occurs sporadically across the Cynipoidea. Amongst the mesocynipines it occurs in species of Mesocynips Paraibalia, Dallatorrella and Kiefferiella (= Paramblynotus). Unlike wing colour, claw structure (131.1) appears to useful character that separates be a Kiefferiella, Paraibalia, and Paraegilips which have simple claws, from a second group of mesocynipines (Dallatorrella and Mesocynips) which have bifid claws.

Characters 160 and 161 (gonostylus and tergite 9 folded) link Aspicera, but not other aspicerines, with the anacharitines. It is postulated (see chapter 4) that these genital modifications relate to oviposition over very short distances. In the anacharitines this means oviposition into neuropterous larvae. If Aspicera is the least derived taxon within the 50 clade then this same short stabbing action may have been transferred to the initial parasitism of dipterous larvae.

Characters 157 to 170 were not recorded for Himalocynips because only two specimens of this genus are known. As complete dissection of the genitalia was not acceptable, "-" scores were used in the analysis. However, the phylogenetic reconstruction of the Cynipoidea has established the great importance of these features. So a careful but limited investigation of the female genitalia of the paratype was undertaken. The ovipositor is not looped (character 157) or elbowed (158). The gonostylus (160) and the ninth tergite (161) are not downcurved. Gonapophysis 9 is without a cavity (165) and has apical teeth (166). The apex of gonapophysis 8 is without teeth (167), the gonostylus is not indicated (168) and there is no apical notch (169) or swelling (170). All these scores are plesiomorphic. The scores for characters 163 and 164 are not known and further dissection was not risked, but these scores are probably also plesiomorphic. The only apomorphic scores are for characters 159 and 162. Like all non-Cynipidae the small remnant of tergite ten is not present (159). The cerci are well-developed (162), this character also occurs in several other cynipoids and was deleted during analysis. The above scores confirm that Himalocynips belongs in the position indicated by the compatibility analysis.

Size

The modification of gastral segments in many taxa means that body length is only a crude measurement of size. (c.f. head measurements in Chapter 4). However, it was thought worthwhile to measure the overall body length

of a small sample of the study taxa (Table 42). As the males of several taxa are not known, this sex was not measured.

Size could be used as a character (Weld, 1952) to divide the cynipoids into the small (Charipidae and Eucoilidae), medium and large (Ibaliidae and Liopteridae) taxa. However, the regions of of separation are muddled by exceptions. For example "large" could be over 6mm, but there is a Synergus (Cynipidae) over 7mm long (Shorthouse 4 Ritchie (1987).

As a character, size is unworkable; this is unfortunate because the underlying size trends are pervasive, even if not expressable as characters.

Ibalia	14.0	Oberthuerella	10.6	Tessmanella	8.2
Liopteron	9.6	Plastibalia	11.6	Pseudibalia	
Mesocynips	8.5	Paramblynotus	6.5		9.0
Aspicera	3.0			Kiefferiella	4.5
		Callaspidia	4.1	Omalaspis	3.2
Anacharis	3.5	Aegilips	2.8	Xylaspis	2.7
Figites	2.2	Melanips	3.8	Lonchidia	2.0
Neralsia	3.0	Eucoila	3.9	Kleidotoma	1.4
Rhoptromeris	1.6	Dilyta	1.2	Apocharips	
Phanoglyphis		Alloxysta			1.4
Aulacidia			1.3	Pycnostigmus	3.2
	2.2	Cynips	2.3	Austrocynips	4.0
Himalocynips	5.5				•

Table 42. Lengths, in mm, of female cynipoids (n = < 4).

O'NOLAN CHARACTER WEIGHTING ANALYSIS

The master data matrix was subjected to the O'Nolan character weighting program. The matrix was so large that the O'Nolan program took four days to complete. The assigned weights are shown in Table 43. The resultant cladogram is identical to that of the LEQU analysis. The last seven characters, just outside the clique, are listed in table 44; the same characters, in a slightly different sequence were the last seven deletions in the LEQU analysis. The O'NOLAN results strongly support the results of the LEQU analysis and this independent support increases the confidence that can be placed in the phylogenetic reconstruction.

char.	weight	char.	weight	char.	weight	char.	weight	
2.2	0.86	2.3	1.00	3	1.00	6	1.00	
9.1	0.06	9.2	1.00	10	0.70	11	0.68	
12	0.06	15.2	0.70	15.3	0.22	16.1		
16.2	0.67	17	0.51	18	1.00			
20		21			1 00		1.00	
24.3	1.00	25	1.00	26.1	0.10	26.2	0.96	
26.3	1.00 1.00 0.88 0.94 0.41	27	1.00	28.1	0.10 0.54 0.20	28.2	0.76	
28.3	0.88	29.1	0.14	30.1	0.20	31 1	0.19	
31.3	0.94	32.1	0.40	32.2	0.21	32.3	0.41	
32.4	0.41	33	0.02	34	1 00	35		
36	0.02	37	0.54	38.1	0.30	38.2		
38.3	0 06	30 4	0.30	38 5	1.00 0.30 0.26	39.1		
39.2	1.00		1.00	38.5 45 51.2 55	0.55	49	0.22	
			1.00 1.00	51 2	1.00			
53.2	1.00	54	1.00	55	0.76		1.00	
57	1.00	58	1.00	61 2	1 00	50 1	0.27	
62.3	1.00	62.4		64	1.00	62.1	0.77	
66		67		69	0.94	65		
	1.00	73.3	0.94	74	1.00	73.1	0.06	
77	1.00	78 1	1.00	79 2	0.74 1.00	75	1.00	
81.2	1.00 0.38	82.1	0.49	82.2	1.00	81.1	0.38	
84	0.38	85	0.49 0.59	86	0.18 0.48 0.39 0.39 0.57 0.13 0.29 0.33	83	0.86	
89	0.61	90 1	0.59	00 0	0.48	88	0.46	
92	0 64	93	0.00	90.2	0.39	91	0.64	
96.1	0.61 0.64 0.35	95.2	0.40	94	0.39	95	0.35	
99	0.79	102	1.00	97.2	0.57	98	1.00	
109.2	0 74	109.4	1.00	103	0.13	107	0.31	
111.3	1.00	112.1	1.00	110	0.29	111.2	0.94	
116	0.53	117.1	0.67	112.2	0.33	114		
119	0.10	120	0.01	117.2	1.00	118	1.00	
119	1.00	126 1	0.01	121			0.21	
130	1.00	120.1	0.64	128	1.00			
132.2	0.12	131.1	1.00 0.06	131.2	1.00	132.1		
135	0.12	132.3	0.06	133	1.00	134	1.00	
142.2	0 0 0	136	1.00		0.16	139		
	0.83	144	1.00	147	0.59		1.00	
149.2	0.73	149.3	0.82	151	0.20	152.1	0.65	
152.2	0.80	153		154	0.84	155	1.00	
	1.00			158	0.56	159	1.00	
160	0.84	161 165	0.84	162	0.74	163	1.00	
164	1.00	165	1.00	166	0.36	167	1.00	
168	1.00							

Table 43. O'Nolan weights for the master matrix. Initial all-plesiomorphic scores and initial singleton apomorphies are omitted, for brevity. (char = character number.)

	LEQU ANALYSIS	O'NOLAN AN	ALYSIS
deletion	character	character	weight
7	64	20	0.89
6	73.3	64	0.94
5	31.3	73.3	0.94
4	20	31.3	0.94
3	111.2	111.2	0.94
2	117.1	117.1	0.94
1	49	49	0.94

Table 44. The last 7 LEQU & O'Nolan character deletions.

PARSIMONY ANALYSIS

Apart from compatibility, the main cladistic methodology is parsimony analysis. In this technique trees are produced by making a minimum (most parsimonious) number of enforced changes to the scores. In order to provide a robust phylogenetic reconstruction the cynipoid data was also analysed using a parsimony program -HENNIG86 (Version 1.5 - J.8. Farris 1988). This is, at the moment, the most recently available parsimony program that attempts to calculate the shortest tree.

The master compatibility matrix was recoded to fit the data entry parameters of the HENNIG86 program (Table 45). This program cannot cope with complex multistate characters involving more than one lineage, so these were re-scored, either as separate characters or as simple transformation series - e.g. state 1 - state 2 - state 3 being scored 1, 2 or 3. Variable scores are not accepted by this program, they were recorded as unscored i.e. "-".

With large data-sets, like the cynipoid matrix, only certain tree construction options are feasible. The option selected for this analysis applied extended branch-swapping to the trees found, all but the shortest trees were rejected. This option produced four trees which differed in the arrangement of only two clades. Two sequences of the mesocynipine genera (Figs 171, 172) were generated and the aspicerines also generated two different answers (Figs 173, 174).

The four trees were used to construct a Nelson consensus tree (Figs 175, 176). The program made 484 enforced character-state changes. The consensus tree shows considerable similarity with the compatibility clique cladogram (considering that the two data sets are not identical). The robustness of the compatibility method is demonstrated by the areas where the reconstructions differ, because all of these areas represent problems that had already been considered following the compatibility analysis.

1 = H00	2.1 = H002	2.2 = H003	2.2
3 = HOC	4 4 = H005	5 = H006	2.3 = -
7 = H00		9.1 = H010	6 = H007
10 = H01			9.2 = H011
14 = H01		12 = H014 15.2 = H018	13 = H015
16.1 = H02			15.3 = H019
19 = H02			18 = H023
23 = H02			22 = H027
25 = H03		24.2 = -	24.3 = H030
27 = H03		26.2 = -	26.3 = -
28.4 = -		28.2 = -	28.3 = -
30.2 = -		29.2 = -	30.1 = H036
31.4 = H04	-	31.2 = H038	31.3 = H039
32.4 = -		32.2 = -	32.3 = -
36 = H04	JJ - HU42	34 = H043	35 = H044
38.3 = -		38.1 = H047	38.2 = -
39.1 = H04	30.4	38.5 = -	38.6 = -
		39.3 = -	40 = H049
41 = H05		43 = H052	44 = H053
45 = H05		47 = H056	48 = H057
49 = H05		51.1 = H060	51.2 = -
52 = H06		53.2 = H063	54 = H064
55 = H06		57 = H067	58 = H068
59 = H06		61.1 = H071	61.2 = H072
62.1 = H07		62.3 = H075	62.4 = -
63 = H07		65 = H078	66 = H079
67 = H08		69 = H082	70 = H083
71 = H08		73.1 = H086	73.2 = H087
73.3 = H081		75 = H090	76 = H091
77 = H09		78.2 = H094	78.3 = H095
79.1 = H090	5 79.2 = H097	80 = H098	81.1 = H099
81.2 = -	ATT - 4100	82.2 = -	83 = H101
84 = H102	2 85 = H103	86 = H104	
88 = H100	5 89 = H107	90.1 = H108	87 = H105 90.2 = -
91 = H109	92 = H110	93 = H111	94 = H112
95 = H113		96.2 = -	
97.2 = H116	98 = H117	99 = H118	97.1 = H115
100.2 = -		102 = H121	100.1 = H119
104 = H123		105.2 = H121	103 = H122
107 = H127		109.1 = H129	106 = H126
109.3 = -	109.4 = H131	110 = H132	109.2 = H130
111.2 = -	111.3 = -	112.1 = H132	111.1 = H133
113.1 = H135		112.1 - H134 114 = H137	112.2 = -
116 = H139	117.1 = H140	117.2 = -	115 = H138
119 = H142	120 = H143		118 = H141
123 = H146			122 = H145
126.2 = -	127 = H150		126.1 = H149
130 = H153			129 = H152
132.2 = -	132.3 = -	131.2 = - 133 = H156	132.1 = H155
135 = H158			134 = H157
138.2 = H162			138.1 = H161
141 = H166	142.1 = H167	139 = H164	140 = H165
144 = H170		142.2 = H168	143 = H169
148 = H174		146 = H172	147 = H173
150 = H176		149.2 = -	149.3 = -
153 = H179		152.1 = H178	152.2 = -
157 = H183		155 = H181	156 = H182
161 = H187		159 = H185	160 = H186
165 = H191		163 = H189	164 = H190
169 = H191		167 = H193	168 = H194
	170 = H196		

Table 45. Master / Hennig character equivalence.

..... Mesocynips Paramblynotus Kiefferiella

Figure 171. First arrangement of the Mesocynipinae.

..... Paramblynotus Mesocynips Kiefferiella

Figure 172. Second arrangement of the Mesocynipinae.

..... Omalaspis Callaspidia Aspicera

Figure 173. First arrangement of the Aspicerinae.

..... Callaspidia Omalaspis Aspicera

Figure 174. Second arrangement of the Aspicerinae.

COMPARISON OF THE PARSIMONY AND COMPATIBILITY TREES

First node

The first dichotomy of the compatibility cladogram (Fig. 161) was between the Cynipidae and the parasitoid groups. However, the synapomorphies used to define the parasitoid grouping were subsequently shown to be weak. The parsimony tree (Fig. 176) has a different first node, here the Ibaliidae/Liopteridae are divided from the remaining Cynipoidea. However, there are no synapomorphies for taxa 10-31, unless considerable character-state changes are postulated. For example, the closest characters are H25 and H108 both of these would require two character-state changes. Neither of these characters

•••	•	•	• •	•	•		• •	•	•	•	•	•	•		•	•	•	•	•	•	•	•	• •	• •				Ibalia
:							•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	• •	•		• •	• •	Mesocynips
				•	• •			•	•	•	•	•	•		•		•	•	•	•	•	•	• •				• •	Paramblynotu
:				•			:			•	•		•								• •						• •	Kiefferiella
:.			• •	•									•															Oberthuerella
				•				:	•	•	•	•	•								• •							Tessmanella
			1	•	• •	• •	•	:																				Plastibalia
								•					•															Liopteron
													• •	•	•	•	•	Ì	Ū									
																	•	•	•	•								
	ľ	i					•	•	•	•																		
	:	•	•••			•	•	•	•																			
	:						:	•	•	•	•		• •	•														
	:						•	•	•	•	•	•	•	•	•													
			•				:	•	•	•	•	• •	•	•	•	•	•	•	• •	• •	•	•	• •	•	•	•	•••	Melanips
			•	í			•												• •		• •	•	• •	•	•	•	•••	Omalaspis
			•		• •	•	•				• •	• •	•	•	•	•	•	•	•				• •	•	•	•		Callaspidia
							:												•			•	•			•		Aspicera
							:				•															•		Rhoptromeris
							•	•	•	•	•												:	•	•	:		Kleidotoma
																					••	•	:					Eucoila
																		•	• •									Figites
											1							•		•	•	•	•					Neralsia
														•				•						Ì	Ì			Lonchidia
														•											ľ		1	Apocharips
														•									•	•	•	:	•••	
												•		;							•		:			•	•••	Dilyta
														•			•	• •	. :				•	•	•	•	•••	Alloxysta
														:			•		•	•	•	•	•	•	•	•	•••	Phaenoglyphis
																	•			•	•	•	•	•	•	•	•••	Pycnostigmus
									•										•				•	•	•	•	• •	Anacharis
																						1	:			•	•••	Aegilips
																							'	•	•	:		Xyalaspis
			 						nre 175. Con	· · · · · · · · · · · · · · · · · · ·	·····																	

				•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•					•	Ibalia	*
	•	• •							•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		Oberthuerellinae	я *
	:					;	1	•	:		•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	Liopterinae	# *
•	:		•	1	•	ļ	•	•	•	•	•	•	•															Mesocynipinae	# *
	:		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				Cynipidae	<u>k</u>
	•	• •							•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	Himalocynips	
						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	Austrocynips	
			•		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Melanips	
								•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Aspicerinae	
									•	•	•	ł									•	•	•	•	•	•	•	Eucoilidae	R
												÷						:	•	1	:			•	•	•	•	Figites	R R
												;			•	•	•	•			•	1	1	;	•	•	•	Neralsia	r b
												i			•			•	•	•	•	•	•	•	•	•	•	Lonchidia	t k
												i	•	•	•			•	•	•	•	•	•	•	•	•	•	Charipidae	ł
																	1	•			•	•	•	•	•	•	•	Pycnostigmus	
																					•	•	•	•	•	•	•	Anacharitinae	

Figure 176. Summary of the parsimony tree. (* = section that corresponds with the compatibility tree)

(mandible shape; reduction of vein cu-a) is a sufficiently strong feature for such an important node.

As both the parsimony and compatibility trees lack a robust first node, this basal division will be discussed further (below).

The ibaliid group

The parsimony arrangement of the Ibaliidae + Liopteridae is almost the same as that of the compatibility cladogram. The only difference is that Liopteron is here included with the other Liopterinae. The parsimony program has assumed a secondary loss of character H151 (128 - length of last tarsal segment) and H87 (73.2 - mesepisternal suture). These changes were considered in the discussion of the last characters deleted to form the compatibility clique. A secondary loss of character 128 was considered possible but that of 73.2 was unlikely.

Himalocynipinae / Austrocynipinae

The difficulties associated with these two taxa have already been identified during the compatibility analysis. The Austrocynipinae has many features of the ibaliid group (e.g. coiled ovipositor, strong sculpture). However, these characters are associated with a particular biology and could have been acquired secondarily by Austrocynips in response to host switching. Himalocynips does not, quite, have the rough sculpture nor the looped ovipositor of the ibaliid group. Similarly a host switch by Himalocynips could have caused the loss of these features. However, there is no synapomorphy for just these two taxa, in fact they have many differences and it is not reasonable to place them together. Their characters must be accepted at face value, thus Himalocynips forms an independent lineage, outside both the ibaliid and figitid groups. The parsimony position of Austrocynips cannot be accepted, this genus is best placed as shown in the compatibility tree.

The figitid group

The HENNIG86 tree is least satisfactory in its arrangement of the figitid lineage. In parts, it is a poor representation of the morphological similarities. For example, although it is true that Melanips has some less derived features and shows a resemblance to the Cynipidae, yet it is placed too far away from Lonchidia, a genus with which it is similar. The position of the Aspicerinae as the sister-group of the remaining taxa would be more viable if Pycnostigmus (and probably the Charipidae) were excluded. Linking the Charipidae, Pycnostigmus and the Anacharitinae together in a clade has no advantages and there is no synapomorphy to justify this grouping.

Phaenoglyphis

Within the Charipidae, the primitive nature of Phaenoglyphis is perhaps better represented here, than in the compatibility cladogram. The parsimony analysis does not support the Alloxystinae as a subfamily, while the

Charipinae is supported.

Eucoilidae

The Eucoilidae and the figitine genera Figites and Neralsia have the same arrangement in both parsimony and compatibility trees.

Comment

Generally the parsimony tree seems rather unsympathetic, forcing dichotomies where a less structured approach is more consistent with the morphology. Some character-state changes are postulated which seem most unlikely. For example the "clean" arrangement of the Liopteridae does not reflect the morphological realities. Therefore the parsimony answer is, in the main, rejected in favour of the compatibility tree. However, this is not necessarily a rejection of parsimony. The cynipoid matrix was much too large to get optimal results from the parsimony program, and a very limited operational option had to be selected. Further by the appropriate application of iterative weighting it would, presumably have been possible to remove the more unacceptable of the forced character-state changes made by the program.

THE PRIMARY DIVISION OF THE CYNIPOIDEA

The parsimony and compatibility analyses provide very different versions of the first node of the tree. Although, in both, it is evident that there are four basal groups (the ibaliid lineage, the figitid lineage the Cynipidae and Himalocynips). There are just three likely arrangements (Fig. 177) of these basal groups (other arrangements are not supported by analysis).

Arrangement A is supported by the compatibility cladogram. There was no synapomorphy for the Cynipidae. The four characters (18, 44, 129 and 159) that define the parasitoid group have already been discussed. The first two are poor features, the third occurs in extralimital Cynipidae and character 159 (Figs 142 & 143) could, if the ... parasitoids ... Cynipidae Arrangement A ibaliid group
.... Cynipidae
.... figitid group
+ Himalocynips

Arrangement B

..... ibaliid group figitid group Himalocynips Cynipidae

Arrangement C

Figure. 177. The main cynipoid lineages: alternatives.

polarity was reversed, be an apomorphy for the Cynipidae. [It was speculated (Fergusson, 1988) that this feature was a remnant of tergite 10, but it could be a unique depression to house the cerci in the phytophagous lineage.] The main attraction of arrangement A is the clear division between phytophagous and entomophagous taxa.

Arrangement B is supported by the parsimony analysis, but not by the morphological evidence. Although, the evidence from fossils (see later), size and biogeography all indicate that the Ibaliidae are a distinct lineage, this does not necessarily imply that the remaining taxa had a common origin.

Arrangement C is the most acceptable configuration. It is consistent with the early origin of the Ibaliidae, the single and early origin of phytophagy, and the reinterpreted compatibility tree. This arrangement can be criticised for not being a dichotomy. But after considerable analysis, it is now evident that the Cynipoidea consist of four major units that show no obvious interrelationships. (The polarity of character 159 is reversed.) Although this is a pragmatic solution it is consistent with the available evidence and has the advantage of being stable. Himalocynips: can it be "merged" with another lineage?

As one of the four main cynipoid lineages consists of a single species, perhaps it can be incorporated into one of the other three groups.

features, and also the parsimony tree, Several indicate that there could be a link between Himalocynips and Austrocynips. So could Himalocynips be "fitted" into the ibaliid lineage? The relevant characters (16.1, 19, 24.1, 45, 53.2, 54, 78.1, 117.1, 149.1 and 156) were re-evaluated, but only in one case Was a change reasonable. Rough head sculpture (16.1) is present in all these taxa except Mesocynips. Thus a secondary loss could be postulated for this exception, and indeed this score was marked 22 times by the master LEQUC analysis. This change would mean that rough head sculpture, not an especially good character, would be the sole feature defining a ibaliid / Himalocynips group. Although this reversal is likely, the occurrence of this feature in both Himalocynips and the ibaliid lineage could so easily be a parallelism.

There is very little support for the placement of this genus in the Cynipidae.

The possibility of placing Himalocynips in the figitid group was also explored, but there are few potential synapomorphies. Characters 20, 24.3, 26.1 and 111.3 were reinvestigated but a reversal of 20 is unlikely and reversals of 24.3 or 26.1 are very unlikely. When character 111.3 (position of Rs&M) was re-examined (see section on fossils) it was found that Himalocynips has a unique venation feature - a small gap in the basalis (Rs+M).

It is concluded that Himalocynips must stand isolated from other cynipoids. It probably was derived from ancestors of the ibaliid lineage but so long and so many specializations ago that the morphological links have been lost.

Conclusion

It can only be concluded that the cynipoidea consists

of four main lineages - the ibaliid group, the figitid group, Himalocynips and the Cynipidae.

EXTRALIMITAL TAXA

The detailed analysis of the Cynipoidea was, of necessity, confined to a limited number of representative taxa. In this section of the thesis many of the remaining cynipoid genera are discussed in the light of the analysis. The generic content for each of the higher categories is taken from Weld (1952), the last revision to give such information for all the Cynipoidea.

Cynipidae

Of all the Cynipoidea only the Cynipidae have had their phylogeny investigated. Kinsey (1920) provided a tribal structure for the gall causers based on morphological, biological and gall characters. More recently Ritchie (1984) has improved on this structure and has included the inguilines. The work of Ritchie has not been duplicated in this thesis, rather his results have been used (with permission) as support for the phylogenetic study of the superfamily. In view of the existence of these works it was considered that two Cynipidae were sufficent representation of the family amongst the 31 exemplar species. However, most cynipid genera were examined to see if Ritchie's phylogeny was supported.

Aulacideini

Kinsey (1920) placed the primitive gall-wasps (e.g. Aulacidea, Aylax, Phanacis, Isocolus) in a tribe, the "Aulacini". This is an incorrect formation of the family group name, and actually applies to another (non-cynipoid) group of the Hymenoptera (Aulacus: Aulacidae). The correct family group name from Aulacidea is Aulacideini. Askew (1984) used the tribal name Aylaxini but this changes the nomentypical genus to Aylax and this is not necessary. [Kovalev (1982) raised the tribe to a subfamily, mistakenly spelled Aylacinae, but such a status cannot be justified.]

I have examined all the available Aulacideini genera and, like other authors (Kinsey, 1920; Ritchie, 1984) can find no synapomorphy for this assemblage. Ritchie (1984) has shown that Diastrophus (which has strongly lobate claws) is the sister-group of the inquiline taxa, so the Aulacideini is a paraphyletic aggregation at the stem of the cynipoid lineage (Fig. 178).

Kinsey (1920) placed Pediaspis in a tribe Pediaspidini but other workers (e.g. Weld, 1952) have placed this genus in the Aulacideini and there is no reason, at present, to change this latter interpretation.

Synergini

Most authors (e.g. Burks, 1979; Eady & Quinlan, 1963; Quinlan, 1979; Ritchie & Shorthouse, 1987) have recognized the holophyly of the inquilines, placing them either in a subfamily or a tribe - Synergini. Ritchie (1984) has supported this group as, at most, a tribe. The holophyly of the inquilines is demonstrated by their possession of a long hypostomal bridge. This is a very derived condition compared to that of most other Cynipidae and is similar to that of the Figitidae. Further, lateral pronotal carinae are present in the Synergini, (again, like the Figitidae) but absent from the pronota of Cynips and Aulacidea. Finally the Synergini have the visible gaster consisting of one large tergite, although this last character also occurs elswhere in the superfamily (e.g. Eucoilidae).

..... Aulacideini
..... Diastophus (Aulacideini)
..... Synergini
..... Rhoditini
..... Cynipini

Figure 178. Phylogeny of the Cynipidae (Ritchie, 1984).

Rhoditini & Cynipini

Kinsey (1920) showed that the derived gall-inducers were composed of two tribes, the Rhoditini and their sister-group the Cynipini. Both Weld (1952) and Eady & Quinlan (1963) showed that the synapomorphy for these two tribes was their short (in dorsal view) pronotum which is less than 1/7 of its lateral length. The Rhoditini consists of Diplolepis (= Rhodites) and the autapomorphy for this tribe is its peculiar ploghblade-shaped hypopygium. The synapomorphy (Ritchie, 1984) for the Cynipini being the developed hypopygidial spine (which has distinct ventral hairs). This feature also occurs in Himalocynips and Pycnostigmus but without the hairs.

Kinsey (1920) elevated the genus Eschatocerus to a tribe (Eschatocerini) but this is not required as this genus is similar to Diplolepis, having the same type of hypopygium (Weld, 1952) (c.f. Figs 126, 127).

Ibaliidae

Weld (1952) listed two genera of Ibaliidae, Ibalia, (see analysis), and Protoibalia, (considered below, in the section on fossils). Kerrich (1973) placed Myrmoibalia with Ibalia but it was already a synonym of Heteribalia, a mesocynipine. Recently, Ronquist & Nordlander (1989) have moved Heteribalia to the Ibaliini. Unfortunately the types are not available and the placement cannot be confirmed. Specimens under the name Myrmoibalia in the Natural History Museum collection are probably species of Ibalia, but one may possibly be of a second genus quite similar to Ibalia.

Oberthuerellinae

Oberthuerella and Tessmanella were analysed. The third genus, Xenocynips, is a typical oberthuerelline and has the characteristic spine on the hind femur (118), although the claws are simple (c.f. 131.2). There is only one small tergite before the large gastral tergite (see note on this genus in Chapter 4).

Llopterinae

The three known genera were all analysed.

Mesocynipinae

Weld listed seven genera - Mesocynips, Kiefferiella, Paramblynotus, Dallatorrella, Paraibalia, Heteraibalia and Paraegilips. The first three were analysed. No specimens of Heteribalia could be obtained.

Dallatorrella exhibited apomorphic scores for characters 3, 6, 19, 24.1, 53.2, 54, 58, 78.1 (only just), 117.2, 131.1, 149.1, 156 and 157. It is plesiomorphic for the 62.3 clade and therefore it is placed next to Mesocynips in the tree. It does not share character 13 but has a similar, although less well-developed, petiole (character 137). Kieffer (1911) elevated Dallatorrella to subfamily status but this was unnecessary as the Mesocynipinae had already been designated (c.f. Weld, 1952: 161).

Paraegilips has similar scores up to the 117.2 clade, it is apomorphic for this, poor, character but plesiomorphic for the important bifid claw character (131.1). Therefore like Dallatorrella, this genus should be placed next to Kiefferiella (= Paramblynotus).

Paraibalia has very similar scores although character 156 is weak and the clypeus has more of a depression than a notch (3). This genus is plesiomorphic for both 117.2 and 131.1, and also belongs near Kiefferiella. Paraibalia has a peg-like projection on the hind basitarsus, that distinguishes it from all neighbouring genera.

E----ini

The new genus E------ (see Appendix 3) is apomorphic for characters 18, 44, 53.2, 54, 129 and 157; that places it within the wood-associated group. It does not have the Austrocynips characters (5, 48, 105.2, 140 & 170). Of the characters that unite taxa 2-9 with Ibalia, the new genus is apomorphic for 19, 24.1, 149.1 and 156 (trace); but not character 6 (face with central ridge). E------ is plesiomorphic for the Ibalia characters and the liopterid characters (3 and 78.1). Although the clypeus (character 3) is depressed rather than being notched, this is a similar modification. This genus forms a unique lineage and must be placed between Ibalia and taxa 2-9, as a new tribe - the B------ini.

Pycnostigmatini

This tribe contains a second genus, Tylosema, but unfortunately type-material cannot be found. The type-material was examined by Weld (1952) and he showed that the two genera are quite close, differing in petiole structure and notauli.

Examination of further material, to that analysed, of Pycnostigmus has shown that the female has a ventral spine on the hypopygium similar to that of the Cynipidae. Thus the score for character 154 must be amended, but as this was not a clique character the change does not alter the cladogram.

Charipidae

Weld (1952) lists nine genera, five have been synonymized (see Fergusson, 1986) and three, plus a recently described genus (Apocharips), have been analysed (Chapter 4). [Adelixysta, recently described by Kierych (1988), will shortly be synonymized with Alloxysta (Menke & Evenhuis, in prep.).] That only leaves Lytoxysta. This rare genus is unlike all other charipids because it has weak alutaceous sculpture; also the vein area is not particularly reduced. Lytoxysta occupies an intermediate position between the Charipidae and the Figitidae. It does not fit into either subfamily of the Charipidae and thus it makes these subfamilies less tenable. Lytoxysta lacks the triangular depression under the epimeron on the mesopleuron but this may also be absent in some Eucoilidae and is probably a size-related feature

Aspicerinae

The following aspicerine genera are listed by Weld -Paraspicera, Balna, Prosaspicera, Anacharoides, plus the three taxa analysed (Aspicera, Omalaspis and Callaspidia). Prosaspicera and Balna correspond with all the cladogram

characters for the Aspicerinae, except that the genitalia characters 167 and 168 could not be examined. Balna has a spine in the centre of the mesonotum. remarkable Paraspicera posesses the above characters but the hypostomal bridge is very short - this indicates a primitive position amongst the Aspicerinae and confirms the less derived status of the group with respect to most other Figitidae. Anacharoides has the aspicerine characters but it also has two interesting features: the scutellum has a distinctive round apical cavity and the pronotal plate (character 50) is only present ventrally, the dorsal part above where the disjunction would be is missing.

Anacharitine

Weld (1952) listed 10 anacharitine genera, three (Anacharis, Aegilips and Xylaspis) have been analysed, one (Prosynaspis) is a synonym of Aegilips. Acanthaegilips is consistent with the Anacharitine characters although the genitalia were not dissected (for characters 163 and 164) and no claws were present (for character 130). The remaining 5 genera were not available for study.

Figitinae

Weld (1952) lists the following genera of Figitinae -Pegacynips, Hormorus, Lonchidia, Figites, Neralsia, Melanips, Xyalophora, Anolytus, Paraschiza, Sarothrus, Thrasorus, Trischiza, Zygosis, Australofigites and Thoreauella. The first two were not available for study; the next four have been analysed, and Anolytus is now a synonym of Melanips (Fergusson, 1986). A study of the remaining taxa led to the reappraisal of characters 49 (complete carinae) and 50 (disjunction in the lateral carina of the pronotal plate).

The Anacharitinae have a complete lateral carina from the base of the pronotum on one side, over the dorsal region to the base on the other side. The Aspicerinae have a discontinuity or disjunction in the lateral carina (character 50). In Aspicera (Fig. 63) this is a step or

lip, in Callaspidia and Omalaspis (also aspicerines) the lateral carina is raised at this point and there is a cavity under the step. The Charipidae have the ventral portion of the lateral carina present but the dorsal portion is very weak, although still indicated (especially in the less derived examples, e.g Phaenoglyphis). Pycnostigmus only has the ventral portion of the lateral carina present. The morphology of all these taxa makes it likely that this reduction of the dorsal element occurred after the carina split into two (character 50). Neralsia, Figites and the Eucoilidae all have a well-developed dorsal element. The genera near Melanips have a partial development of the dorsal portion of the carina, although it is almost lost in one of them (Lonchidia). Thus characters 49, 50 and 51 form part of the same transformation series. First the carina is "complete" (character 49) - found only in the Anacharitinae. This stage was followed by a division of the carina in all other Figitidae (but now obvious only in the Aspicerinae) which in turn was followed either by a reduction of the dorsal portion of the carina (Charipidae & Pycnostigmus) or a development of this section into a partially (51.1) fully (51.2) raised plate (in Figites and the or Eucoilidae). This sequence confirms that the Anacharitinae are the least derived Figitidae (Fig. 179).

The re-evaluation of characters 49 and 50, prompted

		51,2	Eucoilidae
		•	Figites / Neralsia (Figitinae)
		• • • • • • • • • • • • • • • • • • • •	Melanips / Lonchidia (Figitinae)
	50R	<u>.</u>	Pycnostigmus
.49R.	. 50 .	••••••	Charipidae
. 49		• • • • • • • • • • • • • • • • • • • •	-
	••••	• • • • • • • • • • • • • • • • • • • •	Anacharitinae
Figure [R =	179. Imp feature	roved version of lost in a a highe	the Figitidae tree. Fr character-state.

by study of the extralimital material, provides a marked improvement in the tree, especially with regard to the incompatibility of character 49 with characters 167 and 168. In the discussion of the last character deletions, it was shown that reversals of 167 and 168 were likely for the anacharitines and that 167 could also have reversed in the Charipinae. (Thus implying that the ancestor of the Figitidae had characters 167 and 168). Now that these four characters have been investigated more fully, they and the reversals postulated for them together provide a tree (Fig. 180) that fits the specimens much better than previous postulates.

	.51,2. .51,1.	Eucoilidae
		Figites / Neralsia (Figitinae)
		Melanips / Lonchidia (Figitinae)
	.50R.	Pycnostigmus
	49R.50.	Charipidae
49.167.168.	• • • • • • • • • • • • • • •	Aspicerinae
	.167R168R	Anacharitinae

Figure 180. Final re-evaluation of the figitid lineage R = feature not evident in a higher character state

The extralimital taxa did not precisely conform to character 51.1 (plate partially raised off the surface) for example Trischiza is midway between the positions of Melanips (no undercut or raised lateral portion of the plate) and Neralsia (plate round and distinct laterally, and slightly raised dorsally). Probably a better way of dividing the genera of the Figitinae is on the presence / absence of gastral hair tufts; this feature (character 147) also occurs in the Charipidae and Eucoilidae and therefore was outside the clique but in the Figitinae it appears to be a useful character. Melanips, Lonchidia, Sarothrus, Pegocynips and Paraschiza have hair tufts.

Figites, Neralsia, Xylophora, Trischiza, Zygosis and Hormorus are without tufts.

The available extralimital taxa were examined (except for genitalia characters 165, 167 & 168 which require dissection) to see how they relate to the study taxa. Zygosis, Trischiza and Xylophora fit into the tree near Figites, although in Xylophora characters 78.3 and 134 are poorly defined. Sarothrus is apomorphic for character 78.3 but character 134 is not well-defined. Paraschiza has a petiole similar to that of Melanips but the metapleural furrow is more like that of Figites. This renders untenable any idea of the genera near Melanips being an independent group / tribe.

It is evident that after the Figitinae had evolved a derived element of this group developed into what is, at present, called the Eucoilidae. In this context Paraschiza cupressana is interesting because its scutellum is smooth with a sculptured and slightly raised margin. This could represent the very first stage of the development of the eucoilid-type scutellar plate (see Eucoilidae below).

Australian taxa

Several slightly unusual genera have been described, as Figitidae, from Australia.

Thoreauella

Thoreauella was described (Girault, 1930) in a privately printed, but valid, publication (see Gordh et al, 1979).

The only specimen, the type of *T. amatrix*, is in poor condition. It is very small, under imm long, and therefore has features in common with other small cynipoids. The thorax is smooth (c.f. Charipidae) but the hypostomal bridge is complete, like that of the Bucoilidae. The wing is bifid and similar to that of the eucoilid genus Kleidotoma. However, the venation is like that of the Charipinae, being restricted to the upper

inner quarter. The marginal cell is small, almost parallel-sided and like that of the Charipidae, but it is also reminiscent of Pycnostigmus. The presence of the "pseudopterostigma" of Pycnostigmus rather detracts from the underlying similarity of this genus to the Charipinae, but the similarity of Thoreauella to both these taxa makes the link obvious.

Other features: antennna 12-segmented; thorax long and ending in a round cavity; percurrent notauli; metapleural trough and sulcus similar to that of Lonchidia (Figitidae); propodeum and second gastral segment with dense pubescence; genitalia obscured. The maxillary palps appear to be three-segmented and the labial palps appear to be only two-segmented. If these values are correct then the reduction of palp segments goes beyond that in Pycnostigmus, the Eucoilidae and the Charipidae.

This genus has unique features that places it in a separate lineage within the Figitidae - a new tribe, Thoreauellini - unfortunately known only from one glue encrusted specimen. Further evaluation of this tribe must be postponed until more material is available.

Thrasorus

Weld (1944) described Thrasorus from a species (T. pilosus) which he considered to be close to Sarothrus (Figitidae). Rick (1970, 1971) transferred Thrasorus to the Cynipidae, without any explanation. Many specimens of this genus (including several undescribed species) are present in Australian collections, they undoubtedly belong in the Cynipidae because they have the indented area (character 159) on the ninth tergite. The host records show that this genus is an inquiline (Synergini) in galls of the Brachyscelidiphaginae (Chalcidoidea) on Acacia and Eucalyptus. Like other Synergini the pronotum is well-developed, but in this genus the carina and the pronotal plate are especially well-developed and form a plate which, although not raised, is very similar to that of the Eucoilidae (51.2). This homoplasy is yet another example of the derived morphology of the Synergini in comparison to other Cynipidae, and their parallelism with

the Figitidae.

As in other inquilines, characters 18 and 129 are plesiomorphic, the hypopygidial spine is present and gastral tergites two and three are fused.

Australofigites

Girault (1932) described this genus and likened it to Amblynotus (= Melanips). The head of the type is missing, the rest of the specimen is embedded in glue and is very difficult to identify. It could be either a figitid near Melanips, or a gall-wasp. Several undescribed species were examined, from the collections of the Natural History Museum and various Australian museums, that appear to be close to Melanips, and have figitid wing venation (character 111.3). These specimens all illustrate the symplesiomorphic similarities between Melanips and the Cynipidae (in this case Cynipidae near Thrasorus). Both groups often have medium-sized species with distinctive granulate sculpture, and the general shape of the head and thorax similar. These similarities are not surprising considering the less derived position of Melanips with regard to the derived Figitidae and Eucoilidae. Riek (1970) raised Australofigites to a tribe but a subdivision of the Synergini for the Australian inquilines is not justified by known morphological characters.

Eucoilidae

The genera of the Eucoilidae are too numerous to investigate here, beyond those already analysed. However, the group has no obvious subdivisions.

The genus Emargo was described as a figitid (Weld, 1960) but Quinlan (1988) placed it in the Eucoilidae. This reassesment is supported by the cladogram characters except that the ventral cavity of the metapleuron is virtually absent. The "typical" tear-drop shaped plate of the Eucoilidae is only just discernible in Emargo and this genus shows the close relationship between the Eucoilidae and Figitidae.

The tear-drop shaped plate is also very reduced in

certain species of Nordlanderia, especially an undescribed species from Tonga.

FOSSIL CYNIPOIDEA

Fossil Cynipoidea are particularly scarce (Carpenter, 1937), only fourteen species have been recognized from just five localities. There are several other references to fossil cynipoids but they are too vague to be ascribed to this superfamily with any assurance, e.g. Cynips succinea described by Presl (1822), (Kinsey, 1919; 1937; Menge, 1856).

List of cynipoid fossils Andricus vectensis Cockerell, 1921. Oligocene Marls. Isle of Wight, England (Examined). Archaeocynips villosa Rasnitsyn & Kovalev, 1988. Cretaceous sediments. Buryataskaya, U.S.S.R. Archaeocynips major Rasnitsyn & Kovalev, 1988. Cretaceous sediments. Chitinskaya, U.S.S.R. Aulacidea ampliforma Kinsey, 1919. Miocene. Florissant, Colorado, U.S.A. [Examined]. Aulacidea progenitrix Kinsey, 1919. Miocene. Florissant, Colorado, U.S.A. [Examined]. Aulacidea succinea Kinsey, 1919. Oligocene, Baltic amber. West Germany. Dahurocynips dahurica Rasnitsyn & Kovalev, 1988. Cretaceous sediments. Chitinskaya, U.S.S.R. Figites planus Statz, 1939. Oligocene, Baltic amber. Rott, West Germany . Figites rotundalis Statz, 1939. Oligocene, Baltic amber. Rott, West Germany . Figites solus Brues, 1910. Miocene. Florissant, Colorado, U.S.A. [Examined]. Figites spiniger Statz, 1939. Oligocene, Baltic amber. Rott, West Germany. Protimaspis costalis Kinsey, 1937. Cretaceous amber. Cedar Lake, Manitoba, Canada (Examined).

Protoibalia connexiva Brues, 1910. Miocene. Florissant, Colorado, U.S.A. [Examined].

Diplolepis (=Rhodites) vectus Cockerell, 1921. Oligocene Marls. Isle of Wight, England [Examined]. Comb. nov.

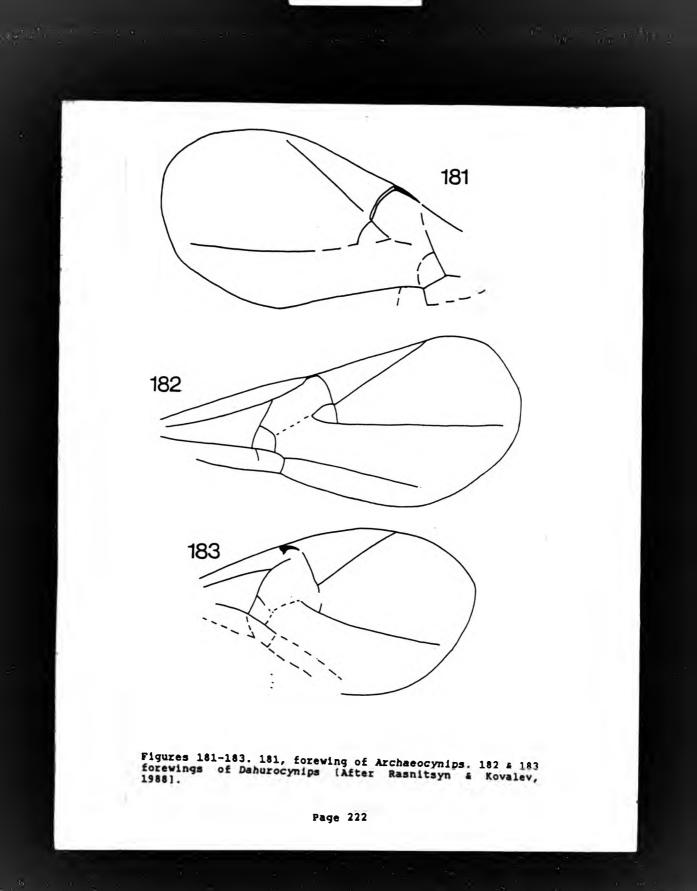
Oligocene / Miocene cynipoids

The fossils that are attributable to the Cynipoidea are mostly Cynipidae, and the less derived gall-wasps (e.g. Aulacidea) are particularly well-represented. The Oligocene and Miocene cynipids, especially Andricus vectensis and Diplolepis vectus are very similar to modern species.

Statz (1939) described three species which he tentatively placed in the genus Figites (Figitidae). Unfortunately I have not been able to examine these specimens, the descriptions are not sufficient to enable these species to be placed into a genus, nor perhaps even a family, with any degree of confidence. Figites was used in a similar, liberal sense when Brues (1910) described F. solus, and this specimen could be either a cynipid or a figitid species.

All these Oligocene / Miocene fossils are cynipids or possible figitids. However, Brues (1910) described a Miocene ibaliid - Protoibalia connexiva. I have carefully examined this fossil and I believe that it is a cynipid. True, the mesocutum bears transverse sculpture and both the side of the pronotum and the scutellum are reticulate, but this form of sculpture is within the range of variation of the Cynipidae. For example, Callirhytis has mesoscutal striations of a very similar nature, and various species of Synergus are strongly sculptured. Crucially, the ovipositor of Protibalia, although distorted, is clearly not of the looped Ibalia type.

Cretaceous cynipoids


Until very recently the earliest known cynipoid was Protimaspis costalis (Kinsey, 1937), a well-preserved specimen in Cretaceous amber. This insect has several interesting features. The antennae are at least 14-segmented and probably 15-segmented. If the latter is the case, then it supports the contention that the usual cynipoid number is a reduction. The antennae are well supplied with distinct multiporous plate sensilla. Vein Rs+M points to the middle of Rs&M (character 111.2) (see below). The wing venation is not very reduced - vein M reaches to the edge of the wing and veins Cul, Cula and Culb are present. The genitalia appear to be unremarkable and the hypopygium does not reach to the end of the gaster. Apart from being rather hairy this is, as might be expected, a rather unspecialized species. Kinsey showed that it belongs to the group of genera near Aulacidea, and is therefore near to the base of the Cynipidae. However, it is not particularly different from the Oligocene and Miocene fossils.

In 1973, Zerichin & Sukaceva reported further (unnamed) Cynipoidea from Cretaceous amber, in Northern Siberia. Recently, Rasnitsyn & Kovalev (1988) described three more Cretaceous cynipoids (Archaeocynips villosa, A. major & Dahurocynips dahurica). These fossils are from early to middle Necomian sediments of the Transbaikalia. Rasnitsyn & Kovalev have placed these Necomian cynipoids in a new family, the Archaeocynipidae (not made available for study]. This family has three important features. Vein m-cu is present in the forewing and therefore the first discal cell is complete (Figs 181-183). There is a slight remnant of a linear pterostigma. Finally the gaster does not appear to be especially compressed from the side. Thus the wing venation of this family is very different from of extant Cynipoidea. Otherwise the family is that representative of the Cynipoidea and has the typical marginal cell. The thorax of Archaeocynips shows similarities with that of Protoibalia.

What does the oldest fossil tell us about cynipoids?

Pterostigma

The small linear pterostigma of the Archaeocynipidae shows that the cynipoids must have lost their pterostigma by gradual reduction. Thus it is now clear that the pseudopterostigma of Pycnostigmus is a derived structure.

The status of the pseudopterostigma in Austrocynips is still not absolutely certain but it is also likely to be a derived feature and is clearly dissimilar to the pterostigma of Archaeocynips.

Wing venation

The wing venation of Archaeocynips is like that of the other Cretaceous fossil, Protimaspis costalis, and some living cynipoids that have a distinct anal venation. The assigned polarities and character transformations given in the section on wing venation (Chapter 4) are largely confirmed by comparison with the venation of the Archaeocynipidae. The loss of veins Cul, Cula and Culb, the shortening of vein M, and the rotation of RS+M etc are all shown to be derived features.

Character 111.3 (position of Rs+M) is one of the traditional characters that has been used to recognize the Figitidae. This character survived the compatibility analysis and remains an important discriminant. It is a particularly difficult character to use but it is only after the discovery of the Archaeocynipidae that the significance of this character has been proven. In Archaeocynips there is present a remnant of the discal cell and it is to the upper outer corner of this cell that Rs+M points. With the loss of the discal cell in all remaining Cynipoidea vein Rs+M was left free. This central and primitive position is shown in the Cynipidae. The Figitidae have a more derived position where Rs+M has moved downwards and points to the base of the basalis. The Ibaliidae/Liopteridae group are demonstrably an independent lineage with Rs+M high and joined to Rs&M so that the first submarginal cell is closed, at least in the less derived (or large) representatives. The fourth cynipoid lineage - Himalocynips also has а unique configuration with a small gap in vein Rs&M (Fig. 109).

Cynipoid phylogeny

Rasnitsyn & Kovalev considered the Archaeocynipidae as the probable ancestral group for all the Cynipoidea.

However, I feel that the ibaliid/liopterid lineage should be excluded from this scenario. The Archaeocynipidae are small (4mm or less) and morphologically much closer to the cynipid and figitid lineages. It is not possible to say whether only the Cynipidae, or the figitid group or both together, evolved from an ancestor of this type.

The age of the Cynipoidea

The Archaeocynipidae are from Early to Middle Necomian strata. This would place the origin of the Cynipoidea in the Berriasian (135mya). The ibaliid group are unlikely to have originated much earlier than this because the Apocrita evolved in the Middle to Upper Jurassic (Rasnitsyn, 1980).

Although the basic divisions of the Cynipoidea probably arose in the Necomian, the more derived Cynipoidea must have evolved much later, perhaps in the Upper Cretaceous. Even in such a limited fossil record it is significant that there are no Charipidae or Eucoilidae present. However, these families and the majority of extant groups are likely to have become established by the late Tertiary.

Fossil galls

The oldest known insect caused galls are from the upper Cretaceous (Hickey & Doyle, 1977; Larew, 1986; Möhn, 1960;). Pre-Quarternary cynipid galls are very rare and those that are recorded are of doubtful identity. Brues (1910) described the gall of Andricus myricae but it is a Cecidomyia gall (Kinsey, 1919). Scudder (1886) mentions Cynipidae galls found at Florissant but Kinsey (1919) found that they are not cynipoid galls. An examination of all the fossil galls in the Palaeontology of the Natural History Museum and in a Department collection of material on loan from American Universities and Museums was conducted, but no cynipoid galls were found. Definite evidence of fossil cynipoid galls does not occur until Recent (0-2 mya) times. Larew (1986) recorded

Callirhytis acorn galls inside the mouth of a Sabre-tooth cat in the tar pits of California. Even more modern are the galls preserved by carbonization at Herculaneum when Vesuvius erupted in A.D. 79 and destroyed a commercial store of galls (Larew, 1987).

RELATIVE VALUE OF THE CHARACTER-SUITES

In past classifications great emphasis was placed on a few character-suites e.g. wing venation and gastral segmentation. However, the results of the compatibility analysis indicate that these are probably not the best character-suites.

The large data-set assembled for this thesis was used to assess the relative merits of the cynipoid character-suites. The data was subdivided into obvious suites and each unit analysed separately (Tables 46-47).

Incompatibilities Character-suite found expected ratio polar

head	69	226.51	0.30	0
antenna	126	135.38	0.93	ŏ
thorax	50	205.50	0.24	õ
legs	20	30.68	0.65	Ō
wings	224	413.71	0.54	14
petiole	11	35.31	0.31	Ō
gaster	7	29.82	0.23	Ó
ovipositor	16	42.93	0.37	0

Table 46. Results of the analysis of cynipoid character-suites. [LeQuesne coefficient = ratio X100]

	SUITE No. of Chars	CLIQUE % in clique	MASTER No. in clique	CLIQUE \$ of clique		R CLIQUE morphies
head	37	64.9	24	17.6	13	
antennae	34	38.2	13	9.6	13	20.6
thorax	47	78.8	37	27.2	20	31.8
legs	16	68.8	11	8.1	7	11.1
wings	53	43.4	23	16.9	6	9.5
petiole	18	61.1	11	8.1	4	6.4
gaster ovipositor	15	53.3	8	5.9	4	6.4
UVI POSICOI	14	64.3	9	6.6	7	11.1

Table 47. Comparison of character-suite apomorphies.

The 37 head features included many new characters and a good (low) LeQuesne coefficient. Twenty four hađ characters contributed to the master clique. That was second only to the contribution provided by the thoracic data. Twenty per cent of the head apomorphies were synapomorphies, so again this was an important character--suite that provided much information. The head-data cladogram (Fig. 184) is similar to the master clique cladogram, although Austrocynips is placed near Himalocynips (a position discussed and rejected). The only oddity is the placement of the Eucoilidae as the sister-group of the Charipidae, but this is caused by parallelisms in these derived groups.

	ella
	ella
	nips
	& 9
• • • • • • • • • • • • • • • • • • •	eron
	5,17
24,326,1.	
••••••••••••••••••••••••••••••••••••••	iđia
	lsia
• • • • • • • • • • • • • • • • • • •	<u>j</u> mus
2,3.9,2.26,3. Eucoil: 2,2.26,2	ldae
Charip	ldae
	nips
	nips
Cynip:	ldae

Figure 184. Clique cladogram for the head data.

Head

Antennae

The antennal data was highly homoplasious and had the highest LeQuesne coefficient. Only 38% of the antennal characters got through to the antennal clique, and only two characters were synapomorphies in the master clique. Many of the antennal characters were of a rather speculative nature e.g. position of placoid sensilla; or the number of segments in the club (32.1). [There was a need to investigate such characters even though they were suspected to be very plastic features.] For example, the antennal cladogram (Fig. 185) shows a disparate assemblage of taxa (2-6, 13-15, 24, 27, 30 and 31) linked by the presence of an emarginate segment (character 31.1).

• • • • •	• • • • • • • • • • •	• • • • • • • •	• • • • • • • •		Taxa 1,7	-12,17,28
•						
•			• • • • • •	• • • • • • • • •	Figites,	Neralisa
•						
•						Dilyta
•						_
•		•				. Eucoila
•		•		3		. Eucoila ptromeris
•			· · ·	40	Pho	
	32,2	•			••••• Kn0	priomeris
• • •	•				Lonchidi	a, Cynips
	.1					
	2				к	.
•	• • • • • • • • • •	,			K	leidotoma
•						
					Taxa 2-6	12 15 24
			•••••		Taya 7-0	,13-15,24
•	•					
•	•			442	.43 Him	alocvnine
	,1	28 3			.43 Him	arociuthe
	/		••• ••• •		Рус	
•	· · · · · · · · · · · · · · · · · · ·	•		230,2	Рус	nostigmus
•	28,2.				-	•
•					Aus	
			••••••		···· Aus	crocynips
•						
•		. 31, 4	.39,3		•••••••	Alloyveta
			•			
						_
	• • •		• • • • • • • •		Phae	noglyphis
		*	•	.		

Figure 185. Clique cladogram for the antenna data.

Thorax

The thoracic data had the greatest number of characters (47) for almost the lowest LeQuesne coefficient (24%). Only the wings provide more characters, but their coefficient was poor (54%). The thoracic data made the greatest contribution to the master clique, providing 37 characters, which is 10% more than any other suite. Twenty of these apomorphies were synapomorphies, so the thoracic data provides almost one third of the cardinal characters of the master clique. The thoracic cladogram is similar to, but slightly less resolved than, the master clique cladogram (Fig. 186).

	52637678,279,1 Ibalia
	. Oberthuerella
	• •
	• • • • · · · · · · · · Liopteron
	· · · · · · · · · · Plastibalia
•	
•	Mesocynips78,173,3
•	· · · Paramblynotus
•	
•	48 Austrocynips
•	
:	78,3 Figites / Neralsia
•	51,1. Bucoila
	.51,261,26677 Kleidotoma
50.	75.
	Rhoptromeris
. 49	5765 Aspicerinae
	62,2 Xyalaspis
	Anacharis, λegilips
.44.	
•••••	
•	Melanips
•	
•	
	5961,1687172 Himalocynips
• • • • • • • • • • • • • •	
	Aulacidia
• • • • • • • • • • • • •	Clique cladogram for the thorax data.

There were only 16 leg characters but these were highly incompatible, having a LeQuesne coefficient of 65%. Leg characters formed only 8% of the master clique but 11% of the clique synapomorphies. Leg characters are important discriminants of the Ibaliidae / Liopteridae lineage (see next chapter for reason). Apart from these taxa the leg cladogram provides very limited resolution of the Cynipoidea (Fig. 187). Character 120 (loss of mid trochantellus), forms a spurious group containing a wide range of taxa.

122126,2127 Ibalia
• • • • • • • • • • • • • • • • • • •
• • • · · · · · · · · · · · · · · · · ·
Anacharitinae
Taxa 10,16,17,19,21,22&30
Cynipidae

Figure 187. Clique cladogram for the leg data.

Wings

. .

The wing data was particularly poor, and were badly affected by allometric factors. It was the only suite to show polar incompatibilities, no less than 14 of them, and these were caused by the large taxa. The 53 characters had a LeQuesne coefficent of 54%. Less than half of these characters survived analysis to contribute to the master clique and only 6 were synapomorphies.

The wing data cladogram is particulary poor, many taxa are "taken off" plesiomorphically (Fig. 188). Allometric characters progressively isolate the largest down to the smallest cynipoids and this cladogram bears no relation to the master cladogram.

Legs

100,1.10487101109,3
80.111,1 Oberthuerella
Liopteron, Plastibalia
Mesocynips, Himalocynips
Paramblynotus
.89 Cynipidae
106 agamic Cynips
105,2 Austrocynips 90,1
91.92 Kiefferiella
11,12,17,20 111,3
.*. Pycnostigmus
96,2 115 21 .109.4.
·
24 98.102
113,1. 23

Taxa

Figure 188. Clique cladogram for the wing data. * = 97.1, 100.2, 105.1, 108, 109.1 & 113.2

Petiole

The petiole is here treated separately from the remaining gastral characters (see below) because they appear to be influenced by different evolutionary trends.

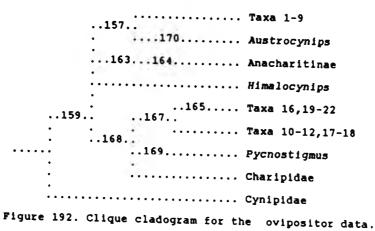
The 18 petiole characters had a good (low) LeQuesne coefficient (31%) and provided 11 (8%) of the master clique apomorphies, but only four of these were synapomorphies. The petiole suite cladogram is very poor (Fig. 189). It is likely that many of the characteristic petiole types represent reduction states and thus parallelism is widespread. For example, character 139 links the Charipidae, Cynipidae and Himalocynips; similarly many taxa are linked by character 138.1 (petiole with rough sculpture).

	Taxa 2,3,8,9,10,12
138,1 ·	· · ·
•	
•	•
•	· · · · · · · · · · · · · · · · · Aegilips / Xyalaspis
•	Austrocynips
	139 Taxa 23-26,28,29,31
•	
•	138.2142.1 Anacharis
	89. Clique cladogram for the petiole data.

..... Oberthuerella .144.137..... Mesocynips .132,1. Taxa 8-12 ..135. Melanips, Lonchidia141...... Pycnostigmus ...132,3... Aegilips, Xylaspis ..138,1..139...... Charipidae, Cynipidae & Himalocynips Figure 190. Revised petiole tree after sculpture reduction in elongated petioles was taken into consideration.

Several of the taxa with long petioles show a reduction of collar structure and petiole sculpture compared with related taxa. These secondary reductions in long petioles is particularly shown by Anacharis, Liopteron, Plastibalia, Pseudibalia and to a lesser extent Callaspidia. However the revised tree, with these scores reversed (characters 132.1, 132.2, 132.3, 135 & 138.1) is still not congruent (Fig. 190) with the master cladogram.

Gaster


The gastral data had a good LeQuesne coefficient (23%). However, it made the lowest contribution to the master clique, providing only 8 apomorphies and of these only half were synapomorphies. The gastral cladogram (Fig. 191) gives a very poor resolution of the taxa. It creates two spurious groups, Himalocynips is linked to Cynips, and the fusion of gastral tergites links the Eucoilidae with Pycnostigmus and Dilyta, these are clearly parallel states.

	1.40	146	. Ibalia
	••±43,	.3	
1	L49,1156	,3	socynips
•			
•		153	Taxa 2,3
•			
•		Таха	4-6,8,9
• • •	155		I CAY I DAA
·T43·T48·T2A			
	52.1	Eucoilidae / Pycno	
		•••••	. Dilyta
• • •		Cynips / Hima	locynips
•			
•••	Та	xa 13-19, 24-26, 3	28 & 30
Figure 191.	Clique cladogra	m for the gastral	data.

Pemale genitalia

The ovipositor data had a good (low) LeQuesne coefficient, the 14 characters provided the master clique with 9 apomorphies and no less than 7 synapomorphies. Thus this data gives a high proportion (11%) of the of cardinal

characters of the master clique. The ovipositor synapomorphies are of major importance, as they link large groups of taxa. The influence of the ovipositor data far outweighs the size of its data-set. Apart from its diminished resolution, the ovipositor cladogram (Fig. 192) was congruent with the master clique.

Evaluation of suites: "good" suites / "poor suites"

The separate analysis of the character-suites shows that the head, thoracic, leg and ovipositor data were very important sources of synapomorphies. However, the petiole and gastral characters were not particularly valuable and the antennal data is highly homoplasious. The wing data is extremly misleading and heavily biased by allometric factors. Weld included size as a character, but this feature is part of many characters, especially the wing data, and is not easy to analyse independently.

WHAT WAS WRONG WITH THE OLD CLASSIFICATION ?

It is necessary to find out why the previous classification was so poor. So that any newly proposed classification does not suffer from the same faults.

Size of data-set

It has already been shown (Chapter 3) that the established classification was founded on too few characters to provide adequate resolution. The Weld, Quinlan and combined classifications consisted of only 25, 41 and 51 characters respectively. Analysis of these three data-sets produced cliques of only 15, 22 and 23 characters and only 9, 11 and 12 of these were synapomorphies (the characters vital for establishing phylogeny).

Character-suite balance

Table 48 shows the proportions o£ the character-suites used by Weld and Quinlan. Weld did not use head or ovipositor characters and yet, in the master data, these are the second and third most important character-suites for providing clique synapomorphies. Weld unfortunately chose two thirds of his characters from poor character-suites. In particular, wing venation and gastral characters were heavily used (half of all his characters). The Quinlan data relies slightly less on gastral and wing characters but many antennal characters were used and again almost two thirds of the characters are from poor character-suites.

It is now evident that the previous attempts at classification were poor because firstly there were too few characters to provide resolution and secondly the morphological distribution of the characters was not well balanced, too much emphasis being placed on gastral and wing characters. These two suites have a low percentage of synapomorphies and high degrees of incompatibility. Wing characters are particularly poor because some are strongly distorted by allometry. It was most unfortunate that weld and Quinlan made little use of the more productive character-suites (head, thorax) and none of the singularly important ovipositor characters.

	WELD DATA		QUINL	ILAN DATA COH		BINED	MASTER DAT	
;	char. states	<pre>% of total</pre>	char. states	<pre>% of total</pre>	char. states	<pre>% of total</pre>	char. states	total
GOOD SU	I TES							
head	0	0	2	5	2		37	16
thorax	5	20	7	17	8	15	47	20
legs	3	12	7	17	9	17	16	20
oviposi	tor O	0	0	0	Ō	Ō	14	6
Good	• • • • • • •	••••••	••••••	••••	• • • • • • •	• • • • • •		
• 6000		32		39		36		49
POOR SU	ITES		• • • • • • • •	• • • • • • •	••••••	• • • • • •	• • • • • • •	••••
antenna	0	0	5	12	5	10	34	14
wings	6	24	8	20	10	20	53	23
petiole	3	12	4	- 9	5	10	18	2-3 8
gaster	6	24	8	20	10	20	15	ő
size	2	8	Ō	Ō	2	4	Ĩõ	Ő
Poor	• • • • • • •		••••••	• • • • • • •	• • • • • • •	• • • • • •		
• F001		68		61		64		51

Table 48. Character-suites used in cynipoid classification

CONCLUSIONS

For this thesis 234 characters were investigated, an increase of 450% over the established classification. Analysis of these characters yielded 135 clique apomorphies, 68 of which were synapomorphies. This is a 600% increase in the number of apomorphies and a 300% increase in the number of synapomorphies, leading to an enormous improvement in resolution over previous studies. The characters are as extensive and as well balanced (amongst the character-suites) a representation of cynipoid morphology as is currently feasible.

Final postulate of cynipoid phylogeny

The Cynipoidea has been extensively analysed using cladistic techniques. The resultant postulate of the cynipoid phylogeny is shown in the following four trees (Figs 193-196).

20R4553,254157 IBALIIDAE
. 4.8.24,2.28,4.42.43.46.47.59.61,1.68.71.72 Himalocynips
24,326,149111,3167168 FIGITIDAE

Figure 193. Cynipoid phylogeny: the four lineages.
[A = 18,20,44,100.1,104,145,148,150. R = reversal.]
[Polarity of 159 now reversed.]

•	.15,152637678,2	79,18087A Ibalia
•		Eini @
•		.45R. Oberthuerella .B.
c.		.128. Tessmanella
•••		· · · · · · · Plastibalia
•••		Pseudibalia
•••	.35.131,1	1 Liopteron
•••		Dallatorrella 🖲
•••	.117,2.	13137 Mesocynips
••		Paraegilips @
	Кі	efferiella (=Paramblynotus)
•		Paraibalia @
5.	48105,2140170	Austrocynipinae

Figure 194. Phylogeny of the ibaliid lineage [A = 101 109.3 122 126.2 127 138.3 143 146; B = 25 35R 62.4 69 118 131.2; C = 6 19 24.1 45 149.1 156; D = 12R 62.3 144 153. P = parallelism; R = reversal; @ = extralimital taxa.]

Figure 195. Phylogeny of the Cynipidae [a = pronotum short dorsally, 1/7th. of its lateral length; b = hypopygium ploughblade-shaped; c = hypopygium spine-like; ' = character regained, @ = extralimital taxa.]

..2,3..9,2..26,3...E... Eucoilidae .51,1.165. 78,3.134.147P.. Figites / Neralsia (7Zygosis Xylophora Trischiza) @ Melanips / Lonchidia [? sarothrus Pegocynips Paraschiza] @ ... ??..... Australofigites @ ... ??.... Thoreauellini @ .50R.53,1..114..167R..147P..... Charipidae ... ??.... Lytoxysta (? Charipidae) @ .49R..50.. .2,1.22.29,2.30,2.60.97,1..F.. Pycnostigmus57....65....155...... Aspicerinae .23..27..130..133..163..164..167R..168R... Anacharitinae

Figure 196. Phylogeny of the figitid lineage E = 51.2 61.2 66 77 124 136 147P; F = 100.2 105.1 108 109.1 113.2 141 169. P = parallelism; R = reversal; ?? = lineage requiring more study; @ = extralimital taxa.]

The next stage in this study will be to investigate the biology of the Cynipoidea in terms of the reconstructed phylogeny. If the result is a coherent and believable sequence of evolutionary biology, then the phylogeny established in this chapter will be a reasonable approximation to the evolution of the Cynipoidea. CHAPTER 6: DISCUSSION OF EVOLUTIONARY BIOLOGY

INTRODUCTION

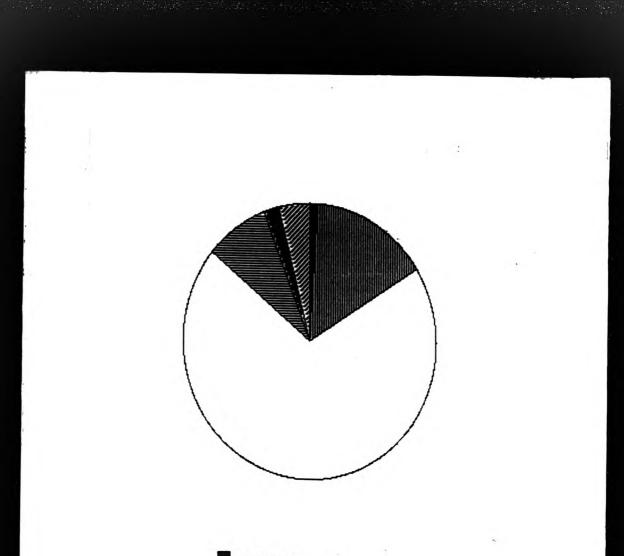
Origin of the Cynipoidea

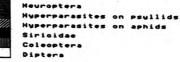
The earliest known fossil apocritans are from the Jurassic and the evidence from fossils indicates that cynipoids originated in the Berriasian (135mya) at the start of the Cretaceous (Rasnitsyn & Kovalev, 1988) (Table 50). The derived morphology and biology of the Cynipoidea means that the origin of the modern Cynipoidea probably occurred after the very first "flush" of apocritan radiation. If the cynipoids were a very early group of the Apocrita then the ibaliid lineage would be expected to consist of idiobiont ectoparasitoids (see below), like many other hymenopterous parasitoids of wood-borers. On the other hand, the cynipoids are by no means a late group (such as Apidae) and they probably originated along with other derived microhymenopterans in a second or subsequent wave of apocritan evolution.

The ancestral cynipoid is most likely to have been a "medium" sized apocritan (say 3-6mm long) [the Archaeocynipidae are approximately 3-4mm long] with a parasitoid biology perhaps similar to that of the ancestors of other microhymenoptera.

Parasitoidism

Hymenopterous parasitoidism is likely to have arisen when endophytic hymenopteran larvae consumed other larvae that they happened to encounter endophytic (Bradley, 1958; Handlirsch, 1907; Königsmann, 1977; 1978; Lanham, 1951; Raznitsyn, 1980; Telenga, 1969). Co-development by the adult female of host / prey location behaviour, and deliberate oviposition, through the plant material, near to the new source of larval food, led to a form of parasitoidism not far removed from the least specialized lifeway of modern Hymenoptera - ectoparasitic idiobiosis (Askew & Shaw, 1986).


Many potential hosts have an exposed feeding stage followed by a quiescent concealment period before pupation. Another parasitoid strategy - koinobiosis (Askew & Shaw, 1986) takes maximum advantage of this situation. Koinobionts oviposit onto or into their hosts when they are easily located, and larval development is delayed thus gaining the selective advantage of concealment within the host's pupation retreat. Ectoparasitic koinobiosis is restricted to a few groups (attachment of the egg to the host needs to be especially secure). However, endoparasitic koinobiosis is a very common lifeway which has evolved independently in several lineages of the more derived Parasitica. As far as is known all the parasitoid Cynipoidea are koinobiont endoparasitoids.


Cynipoid koinobiont endoparasitoidism

The cynipoid slowly develops inside its host, which continues to be mobile and capable of feeding. Later, when the host is ready to pupate (some Hymenoptera can control host pupation - Shaw, 1981; Varley & Butler, 1933), the cynipoid develops rapidly to a late instar, eats its way out, consumes most of the host remains (and thus kills the host), and then pupates within the host's cocoon or puparium. Most parasitoid cynipoids attack early larval instars of their hosts so often being early in the parasitoid succession on any given host.

Host range

The endoparasitoid must live in a physiologically demanding environment. Mechanisms must be developed to overcome or avoid the host's immunodefence system without seriously interfering with the host's metabolism. Defence suppression mechanisms are often specific, thus koinobiont endoparasitoids tend to be limited to a narrow host range. However, the parasitoid Cynipoidea have a surprisingly limited range of hosts (Table 49); only the Hymenoptera, Coleoptera, Neuroptera and Diptera are attacked. Other superfamilies of the Hymenoptera (e.g. Ichneumonoidea & Chalcidoidea) have a much broader host range. Moreover in

:

Figure 197. The host preferences of the parasitoid cynipoids. Over 70% being parasitoids of Diptera.

the Cynipoidea about 70% of all the parasitoid genera attack Diptera (Fig. 197) a remarkable specialization that has not been emphasised in the past. The Cynipoidea (in common with other Parasitica) that attack Diptera appear to have moved into an "evolutionary sink" and have little prospect of moving onto other host groups (Gauld, 1988).

Taxa

Host

Cynipidae Ibaliidae Liopteridae	phytophagy: cecidogenic or inquilines Siricidae larvae deep in pine trees Siricidae larvae in deciduous trees
Austrocynips Anacharitinae Alloxystinae	Coleoptera larvae in deciduous trees ?? on Araucaria seeds Neuroptera: Hemerobiidae Hyperparasitoids of Homoptera, Aphidoidea
Charipinae	via hymenopterous primaries Hyperparasitoids of Homoptera, Psylloidea via hymenopterous primaries
Aspicerinae Figitinae	Diptera, Cyclorrhapha (Syrphidae) Diptera, Cyclorrhapha (many families)
Eucoilidae	Diptera, Cyclorrhapha (many families)

Table 49. Summary of cynipoid biology.

appears that endoparasitoidism of distantly It related (and therefore chemically dissimilar) hosts is difficult (Brues, 1921). There are no cynipoid primary parasitoids of the Apterygota, Exopterygota or of the non-insect Arthropods (e.g. spiders). It is not clear why the cynipoids, unlike some other groups (e.g. Chalcidoidea and Ichneumonoidea) have been unable to overcome these difficulties. The delayed larval development o£ koinobiosis means that there are no (or few) cynipoid egg (one species of Ibalia may be an exception) or pupal parasitoids (situations where rapid development can be an advantage).

The four cynipoid lineages

The original cynipoid lineage is likely to have developed koinobiont endoparasitoidism before subdividing into the four basic lineages (see last chapter). The

biology of Himalocynips is not known but each of the remaining three lineages has a distinctive biology. The ibaliid lineage are parasitoids of xylophagous hosts and are secondarily large. The Cynipidae are phytophagous and have remained medium-sized. The figitid lineage developed a lifeway closest to the original biology, they exploited smaller hosts, became secondarily small and eventually specialized mostly on Diptera. These three lineages are discussed below.

CAENOZOIC millio	n years ago
QUATERNARY	
PLIOCENE	2-0
MIOCENE	6-2
OLIGOCENE . TERTIARY	40-25
EOCENE	60-40
PALABOCENE	65-60
MESOZOIC	
UPPER CRETACEOUS	95-65
MAASTRICHTIAN	
CAMPANIAN	
SANTONIAN .SENONIAN	
CONIACIAN	
TURONIAN	
CENOMANI AN	
LOWER CRETACEOUS	135-95
ALBIAN	
APTIAN	
BARREMI AN	
HAUTERIVIAN	
VALANGINIAN .NEOCOMIAN	
BERRIASIAN	
UPPER JURASSIC	155-135
TITHONIAN	
KIMMERIDGIAN	
OXFORDIAN	
MIDDLE JURASSIC	175-155
CALLOVI AN Bathoni an	
BAJOCIAN	
LOWER JURASSIC	
TOARCIAN	200-175
PLENSBACHIAN	
SINMURIAN	
HETTANGIAN	
TRIASSIC	240-200
PALAEOZOIC	600-240

Table 50. Geological stages of the uppe Mesozoic (After Howarth, 1981).

The four main lineages must have developed early in cynipoid evolution because development of the complex host and host-plant interactions of modern cynipoids must have taken a considerable time (Askew, 1984). However, the fossils indicate that the Cynipoidea had gained its current configuration by the mid to late Tertiary.

PHYTOPHAGY: THE CYNIPIDAE

The Cynipidae are distinguished from all other cynipoids by being phytophagous. Evidence that this habit has arisen only once and that the family is holophyletic is provided by the unique depressed area on tergite nine (character 159, polarity reversed).

It is widely accepted that the Cynipidae are derived from (parasitoid) apocritan ancestors (Königsmann, 1978; Telenga, 1969). The postulated Neocomian origin for the Cynipoidea confirms that the cynipoids evolved from ancestral apocritans after the evolution of entomophagy in the Jurassic. Therefore the phytophagy of the Cynipidae is most likely to be secondary. So why did one cynipoid family revert to phytophagy? Firstly it must be said that adoption of the phytophagous habit is perhaps not such a large change as might be imagined. Certainly the Chalcidoidea have adopted this lifeway separately in several distinct lineages. Both the Cynipoidea and Chalcidoidea are small insects, and that is likely to be an advantage when developing in galls, especially complex galls. Also, the well-developed apocritan ovipositor has retained its suitability as a penetrator of plant tissue. However, the cynipoid reversion to phytophagy is most easily explained in terms of exploitation of the massive radiation of the angiosperms. Major shifts onto flowering plants occurred in many animal groups during the Lower Cretaceous. Indeed, from the Mid-Cretaceous almost all terrestrial animal life has been largely dependent on angiosperms as primary producers. Soon after the Barremian the angiosperms became established and rapidly

differentiated (Couper 1958; Friis et al., 1986). Modern cynipid host-plants were soon available for galling. For example Rosidae were present in the Albian and Fagaceae in the Turonian (Friis et al., 1987). It is possible that the Cynipidae were initially parasitoids of endophytic insects, perhaps stem-miners (Quinlan, 1986) but there is now no remnant of such a stage.

Malyshev's "seed-eaters" theory

Although Malyshev (1968) accepted that the Cynipidae are secondarily phytophagous, he felt that they (and other Apocrita) were derived from "seed-eaters". He equated the meristematic site of gall formation with plant embryonic tissue, and the nutritive area of the gall with the seed nutritive supply. He felt that the gall chamber was similar to the confines of the seed and that both the Cynipoidea and the seed-eaters show the same "imprint".

This theory of simplistic generalizations is based on analogy and the characters used to support it are symplesiomorphic (Königsmann, 1978), this theory is widely rebutted (Tobias, 1967, 1981). The kataplasmic galls of primitive cynipids do not have a defined nutritive area. A key element in Malyshev's argument is that a great majority of cynipidae are cecidogenic on generative organs (equivalent to seeds). This is simply not true of the less derived gall-wasps which are overwhelmingly stem-galling species (Kinsey, 1920). I see no reason to accept a seed-eating origin for cynipid phytophagy.

Climate and the expansion of the Cynipidae

After an origin in the Lower Cretaceous, the Cynipidae continued to develop its cecidogenic biology during the Upper Cretaceous and the fossil evidence indicates that this process was complete by the early Tertiary.

The climate during the Upper Cretaceous was relatively stable and this was perhaps the warmest interval during Phanerozoic time (Upchurch & Wolfe, 1987).

The latitudinal temperature gradient was low (Parrish 1987) and due to the abundant precipitation, humid multistratal non-seasonal forests occupied palaeolatitudes 32 degrees North to 32 degrees South (Creber & Chaloner, 1985). From the early Cenomanian the higher palaeolatitudes (45 degrees N and 45 degrees S) of Laurasia were populated by seasonal broad-leaf forest (Reid & Chandler, 1933; Dilcher, 1973; Parrish, 1987). Later the climatic gradation from pole to equator became less isothermal and there was a considerable replacement of the subtropical forests by modern high density deciduous forests (Upchurch & Wolfe, 1987). It was these North Laurasian forests that nurtured the Cynipidae and the expansion of these strongly seasonal forests provided ideal conditions for the success and radiation of the higher Cynipidae (especially the Cynipini) which could incorporate plant seasonality into their complex life-cycles.

Cynipoid cecidogenesis

Cecidogenesis can be caused, as in the Symphyta, by venoms injected at oviposition (Leach, 1987; McCalla et al., 1962; Meyer, 1957; 1987; Maresquelle, 1983). However, Cynipidae galls are initiated by secretions from the immature wasp. Cynipid eggs produce lytic enzymes (Bronner, 1973; 1977) that convert the underlying plant cells into a highly vacuolated concave pad of cells. At eclosion the larva moves into this cavity and within a few days is enclosed by plant tissue. Apart from the numerous digestive enzymes, the saliva of cynipid larvae contains auxins, amino acids and amides which promote gall growth (Rohfritsch & Shorthouse, 1982). In fact Molliand (1917) was able to induce gall formation by injecting a homologate of Aulax papaveris larvae into the host plant (Papaver). If the cynipid larva dies then gall formation stops (Shorthouse 1986).

Galls

There has been much speculation (see below) as to the

possible evolutionary advantage of developing the cecidogenic habit. The main theories involve supposed refuge / defence, microhabitat or nutritional advantages for the cynipoid.

Mani (1964) argued that galling has advantages for the plant - as an encapsulation response by the plant against the herbivore. However, galls diminish host plant fitness (Abrahamson, & McCrea, 1986; Craige et al., 1986; Weis, & Kapelinski, 1984; Schröder, 1967; Whitham, 1980). Further, if galling is a plant defence then its distribution would be correlated with plant phylogeny, as is the distribution of alkaloids and mustard oils. Price, Waring & Fernandes, (1986) have shown however, that the distribution of cecidogenesis is a function of cecidozoan, not hostplant phylogeny.

REFUGE 1 DEFENCE. One possible advantage of cecidogenesis is as a refuge or defence against parasites (Niblett 1940). However, the contents of galls have such a concentrated nutritive value that attempted parasitism, inguilinism or predation is almost inevitable (Mani, 1964; Shorthouse, 1973; Shorthouse et al., 1986). Evidence for the defence value of galls is not strong (Price & Pschorn-Walcher, 1988). For example, increase in gall size can reduce parasitoid attack (Weiss Abrahamson, & McCrea, 1985), but so can reduction in size (Price, Waring, & Fernandes, 1986). Similarly the high concentrations of tannic acid in some galls (over 50% in Cynips tinctoria -Marsden-Jones, 1953) could have a possible defensive function, but it is now thought that tannin content may not necessarily have the deterrent effect that was generally supposed (Bernays, 1981). Both Askew (1961) and Cornell (1983) explain gall diversity in terms of defence against the diversity of parasitoids. However, Price et al. (1986) showed that cecidozoans without parasites (e.g. some eriophyid mites and aphids) had similar levels of diversity. The defence factor clearly has some relevance because some galls develop nectaries (c.f. Bequaert, 1924)

that attract ants which, in turn, reduce gall parasitism by approximately 25% (Washburn, 1984). However, nectaries, and gall diversity are features of derived galls and would have little bearing on the evolution of the first cynipoid galls.

MICROHABITAT. The argument in favour of galls providing microhabitat advantages like shelter (c.f. Felt, 1940) is not strong. For example plant tissue closely parallels ambient temperature (Baust et al., 1979; Uhler, 1951) so the gall provides little thermal insulation, although it is possible that hygrothermal stress is reduced within the gall.

NUTRITION. It seems most likely that the early developed cecidogenesis to provide cynipoids the nutritional advantages of increased plant protein and mineral concentrations and reduced levels of phenols that occur in their galls (Price, Waring, & Fernandes, 1986; Shannon, & Brewer, 1980; Wangberg, 1978; Gandar, 1979; Shorthouse 1986). It may be supposed that cynipoid cecidogenesis originated when salivary secretions caused a swelling to appear at the feeding site. The greater the amount of the excrescence the greater the tendency to feed on it (Cockerell, 1890) and the greater the tendency to develop the growth promoters found in modern gall-wasps. Accompanying this habit would be the evolution of oviposition and other behavioural developments to locate the potential gall site.

Gall structure - from simple to complex.
 Reproduction - from simple to complex.
 Gall site - from stem galls to bud galls.
 Host-plant range - from general to specific.

Table 51. Biological trends within the Cynipidae

Biological trends within the Cynipidae

The Cynipidae have four distinctive biological features each with an evident evolutionary trend (Table 51).

1. Gall structure

The morphological variety of complex cynipoid galls is specific to the cynipid species and not determined by the plant taxon. Some gall polymorphism does occur in cynipids, but this is correlated with insect activity, e.g. parasitism or secondary site for oviposition (Shorthouse & Ritchie, 1984).

The galls of the genera near Aulacidea are simple or kataplasmic galls (Kuster, 1911) with no tissue differentiation, the homogeneous gall parenchyma being little changed from the original plant meristematic tissue. Larval cells are not distinct and there is little hypertrophy. This tribe is less derived than other gall-wasps.

The galls of the Rhoditini (Blair, 1944) and to a greater extent, those of the Cynipini have evolved from kataplasmic galls (Wells, 1921), into complex, prosoplasmic galls, with a definite size, external form and internal structure (especially noticeable in unilocular galls). In these galls the plant cells lining the larval chamber differentiate to become a nutritive layer, the sole larval food, which is rich in acid phosphatases, soluble sugars and amino-soluble products (Bronner, 1977). The surrounding parenchymatous cells accumulate starch reserves which increase in concentration outwards, and there is a lipid gradient in the reverse direction (Shorthouse 1986). A vascular layer, which connects the gall to the vascular bundles of the host plant, develops between the nutritive layer and а supportive, lignified, sclerenchyma layer (Fourcroy & Braun 1967). A cortical layer of enlarged parenchyma cells contains tannins and large vacuoles which store water

(Maresquelle & Meyer, 1965). The cortex has an outer epidermis, the gall wall, which is derived from the epidermis of the host plant. It is a protective layer, often pigmented with anthocyanins, and may be rough, hairy, or have nectaries (Rohfritsch & Shorthouse, 1982). Winter galls harden as they age, thus increasing the protection against predation and parasitism (Askew, 1961). In some cases gall abscission may occur (Cosens, 1912; Hough, 1953), the wasp overwintering in the protection of the leaflitter.

The Synergini are (believed to be) incapable of gall formation, they inhabit and are dependant on the galls of other cynipids (and rarely those of the Chalcidoidea or Diptera). A few inquilines may slightly modify the external shape of the gall (Askew, 1961). Others cause more definite changes, for example Cynips mirabilis has a smooth spherical gall but Synergus pacificus converts it into a knobbly sphere (Heyer 1987). Parasites may have a similar effect (Shorthouse & Ritchie, 1984) e.g. the gall of Diastrophus rubi is given a ribbed appearance by Eurytoma rosae (Chalcidoidea).

Some Synergus species construct subsidiary chambers inside the host gall, making the galls plurilocular, and do not come into contact with the gall-causer (Sternlicht, 1968). Other species (e.g. Periclistus) develop so rapidly that they obliterate the host's chamber and may kill the gall-causer (Askew, 1971; Shorthouse 1973) and sometimes the host is eagen by the inquiline (Askew, 1984).

2. Reproduction and life cycles

Like most other Hymenoptera, some Cynipoidea have haploid males which develop by arrhenotokous parthenogenesis from unfertilized eggs and diploid females which develop from fertilized eggs. However, in the Cynipidae development of diploid females from unfertilized eggs (thelytokous parthenogenesis) is also prevalent (Askew, 1984). The Aulacideini and Rhoditini are surpassed in reproductive specialisation by the complex heterogony

found in the Cynipini.

I bisexual species

In Diastrophus rubi, Aulacidea hieracii, Aylax minor, Xestophanes potentillae and X. brevitarsis (all Aulacideini) both females and males occur although males are less common. Mated females produce females from fertilized eggs and males from unfertilzed eggs. These species are normally univoltine, the larvae overwinter in the gall and adults emerge in early summer.

II unisexual species

In Phanacis hypochoeridis, P. lampsae, Aulacidea pilosellae and A. substerminalis (all Aulacideini) males are absent or very rare (<5%). Females normally produce only females, by thelytokous parthenogenesis. These species are also univoltine. Although a few Rhoditini may be bisexual most species are unisexual; males occur, but are rare. The species are univoltine and not heterogonous (Shorthouse & Ritchie, 1984).

III heterogonous species

Only one species of the Aulacideini is known to have this advanced reproductive mechanism. Pedaiaspis aceris has two alternating generations on Acer, an agamic generation on the roots and a sexual generation on leaves (Meyer 1987). Heterogony is particularly associated with the Cynipini. The female-only agamic generation lays unfertilized eggs in plant tissue, galls containing the sexual generation form and these develop quickly, usually in spring or early summer. Males and females emerge from these galls and mate. The fertilized female oviposits into the host-plant, and galls of the agamic generation develop slowly, overwintering and the agamic females emerge in the following spring (although exceptions occur). The life cycle may be from one to several years. The galls of the two generations are usually very dissimilar and on different locations on the host-plant. The most derived cynipini have highy complex heterogony, involving

different types of females in one generation. These systems are very far from being fully understood.

Presumably this form of life cycle increases reproductive potential (Askew, 1984) at the expense of some reduction in genetic variability. Early galls may have a low parasitoid load (Askew, 1984) and the autumnal galls are mostly more substantial, so the diversity may reduce mortality. However, the potential doubling of parasite opportunity must reduce some of the advantage.

The Synergini contain bisexual, but with both univoltine and bivoltine, species. In bivoltine species the two generations show morphological differences (Wiebes-Rijks, 1979) and do not necessarily attack the two generations of the same bivoltine host. Synergus species (or populations in polyphagous species) adapt to the optimum host seasonality, this may involve a one or two year diapause in the ultimate larval instar (Evans 1965).

3 Gall position

Each gall-wasp is specific in the position of its gall on the plant. Closely related cynipids often show resource partitioning and niche differences in the form of widely divergent gall structures and locations (Cornell, 1983).

Over half of the Aulacideini form galls in plant stems, about 25% of the species gall fruits or flowers, 15% are on leaves and 10% on roots. About one third of the Rhoditini are stem-gallers, the remainder have advanced to leaf-galling. Very few Cynipini gall stems, approximately 40% form galls on buds, 25% are on fruits or flowers, and 25% are on leaves.

Plant stems are likely to have been the primitive gall site. Galling soft stems must have been a relatively simple beginning for prosoplasmic gallers. The shift to ovipositing into undifferentiated tissue, like leaflets still within the bud, coincides with optimum host cell plasticity (Shorthouse, 1973; 1982; 1986) and must be an advantage for the formation of complex galls.

4 Host-plant range

The genera near Aulacidea represent about 15% of gall-wasp species, they gall a wide range of about 40 different plants and this accounts for approximately 90% of cynipid host-plant diversity. This assemblage includes the very few cynipid species that gall more than one plant genus (Kinsey, 1920). Diastrophus species gall Rosaceous genera (Fragaria, Potentilla, and Rubus), as do the Rhoditini (Rosa plus one species on Rubus). The restricted host-plant range of Diastrophus (Fig. 198) was one of the why Kinsey (1920) described this genus as reasons "incipiently specialized". Ritchie (1984) has confirmed this and showed that this genus is the sister-group of the Synergini.

The inquilines are usually host-plant specific but they often have broad host-gall ranges. Most species (Synergus, Ceroptres, Saphonecrus and Euceroptres) occur in galls on Quercus. Periclistus species are inquilines of the Rhoditini in Rose galls and Synophromorpha rubi and S. terricola are in Diastrophus galls on Rubus.

The Cynipini represent about 80% (Askew 1984; Kinsey, 1920; Felt, 1940) of the gall-wasps and they almost all gall Quercus (plus two genera on allied Fagaceae) species. reason for this extreme specialization is not The understood, Quercus belongs to a small family and has a limited distribution. However, oaks must have optimal host plant characteristics for complex galls. One such characteristic may be slow growth, which means that fresh plant tissue is available for galling, by the several generations, over most of the year (Malyshev, 1968). Also woody shrubs and trees may provide a good substrate for overwintering. Whatever the advantages of oaks, it is not apparent why other plants are so little used as hosts by the Cynipidae, especially when they are exploited by other gall-inducers e.g. Diptera (Darlington, 1968).

The available evidence indicates that the primitive Cynipidae galled a range of plants, especially those with

soft but robust stems (Fig. 198). Diastrophous, the Rhoditini and some inquilines have rosaceous host-plants, and in particular Rubus appears to be a likely ancestral host plant for all these taxa (Ritchie, 1984). Later the Cynipini dramatically radiated as gall-causers on Quercus.

	range of plants	Aulacideini	
	Rosaceae	Diastrophus	(Aulacideini)
?Rubus.	Inguilines.	Synergini	
	Rose	Rhoditini	
	Oak	Cynipini	

Figure. 198. Cynipidae: host-plants and phylogeny (After Ritchie, 1984).

Inguilines

Although Askew (1984) felt that the Synergini was a mixed assemblage, there is now good morphological evidence of their holophyly (see Chapters 4 & 5). The Synergini show several very derived states compared to other cynipids and show similarities with the Figitidae.

In general, inquilines are frequently related to their host species (Emery's rule - c.f. Wilson, 1971). For example, inquiline ants are closely related to their slave species (Gauld & Bolton, 1988). Therefore it is reasonable to ask (Shorthouse, 1975, 1980) if the Synergini are primitive gall-wasps, only just entering the cecidozoic lifeway, or derived cynipids that once were cecidogenic. The structure of the back of the head and the pronotum provide the answer, the Synergini are firmly placed in a derived position. It is therefore presumed that the inquilines are likely to have originated from a gall-inducing ancestor.

Origin of inquilinism

It can be speculated that a lack of oviposition sites or temporal urgency in relation to lateness of the season and development time, may have led to gall induction in the tissue of other galls. This could have been followed by an obligate inquilism and development of specificity. This theory is supported by the fact that the ability to induce cell proliferation is retained in many species e.g. Periclistus pirata (Shorthouse, 1980). A parallel situation occurs amongst inquiline Bees, where Psithyrus species take over the nests of Bombus species. Both (1927) and Wheeler (1919) showed that the Richards immediate cause of inquilinism in Bees was the urgency of oviposition.

Askew (1971) has suggested that inquilinism is a stage on the path from phytophagy to entomophagy. Although this is probably true, the Synergini are nevertheless not directly related to the parasitoid cynipoids.

Cynipidae larvae

The reversion to phytophagy has affected the larval stages of the Cynipidae. Unlike that of other cynipoids the cynipid larva is not markedly caudate, also it does not undergo hypermetamorphosis. The mandibles are relatively blunt - for feeding on plant tissue. Unlike gall-inducing sawflies and parasitoid cynipoids there is no external larval phase in the Cynipidae.

Larval development within the gall cavity has led to the cynipids having a characteristic "chunky" shape that is not seen in other Cynipoidea.

PARASITOIDISM OF HOSTS WITHIN TREES: THE IBALIID LINEAGE

Siricinae (Symphyta) hosts in Pine trees

The first Hymenoptera, the Symphyta, developed (in the Triassic) on the ancient Palaeozoic plant communities (Rasnitsyn, 1969,1980). A large element of this flora was

the Coniferopsida, and of these the Pinaceae began a major radiation so that the distribution of Conifers was probably pan-global by the Lower Cretaceous (Miller, 1976; 1977). Some of the sawflies (e.g. Siricidae: Siricinae) exploited this radiation. The parasitoid Hymenoptera originated in the Jurassic (Rasnitsyn, 1980) and, in time, some of these (e.g. Rhyssa & Ibalia) became parasitioids of the Siricinae in Pines. Brues (1921) noted that the host defence reaction increases with taxonomic distance, and thus parasitoidism of another hymenopteran may be relatively "easy" to establish.

In the Cynipoidea, parasitoidism of Siricinae in Pine trees led to the development of the ibaliid/liopterid lineage and the specialized suite of characters associated with xylophagous hosts (see below). One of the important aspects of this biology was the development of host location using the semiochemicals associated with the host and the host habitat. In the case of Ibalia the female antennates (Fig. 152) the tree bark (Spradbery, 1970) and locates the host by the odour of acetaldehyde (Madden, 1968) emanating from a fungal symbiont (e.g. Amylostereum spp.) of the host (Spradbery, 1973; 1974). The Ibalia female responds to this cue by inserting its ovipositor into the host's oviposition shaft and probing for the host (Fig. 153). The egg is placed in the haemocoel usually of an early stage larva.

Parasitoidism by Ibalia affects the feeding behaviour of the siricine larva, in the first year the tunnel is only half the normal length and it tends to turn toward the surface (a feature normally only shown at the end of the larval development) (Clausen, 1940).

The Ibalia larva develops inside the host, the third instar emerges from the host, completes feeding externally and moults to a long, non-feeding, fourth instar. The life cycle is long, and can be 3 years (Flanders, 1962), finally the adult Ibalia must chew its way out of the tree. Males emerge first and congregate near emerging females (Chrystal, 1930).

The two European species of Ibalia demonstrate complementary usage of the host resource. In August to October, I. leucospoides oviposits into early host instars, before they migrate too far from the oviposition shaft. However, in May to June of the following year, the less common, I. drewseni, oviposits into overwintering host larvae, of up to the third instar, even when these have tunnelled some millimeters from the oviposition shaft (Spradbery 1970). The two species respond to the odours of different developmental stages of the fungal symbiont (Madden, 1968). The emergence of I. drewseni coincides with that of Rhyssa persuasoria (Ichneumonidae) an ectoparasitoid of siricid larvae, and it is possible that drewseni behaves as a facultative cleptoparasitoid, utilising the drill shafts of R. persuasoria to gain access to host.

Ousting of the Pines

During the Barremian to Aptian (Table 50) the angiosperms became established and then dramaticaly increased in both diversity and abundance (Axelrod, 1959). Within a relatively short time (Aptian to Turonian) the angiosperms started to out-compete the gymnosperms. During the upper Cretaceous and early Tertiary the gymnosperms, ferns, horsetails and lycopods were replaced by an Angiosperm-dominated vegetation (Friis et al., 1987). At this time there were widespread extinctions (k-t boundary extinctions) in many groups that had once dominated the vegetation. These extinctions were then followed by an expansion of modern plant types.

Palynological evidence shows that Angiosperm radiation began at low palaeolatitudes (Brenner, 1976; Huges, 1976) and spread polewards (Axelrod, 1959). The range of the Pinaceae was reduced to mostly northern and high altitude habitats (Flenley, 1979; Upchurch & Wolfe, 1987). The Siricinae, and their parasitoids, e.g. Ibalia, have remained specialized (Benson 1942) on this reduced flora up to the present. Thus Ibalia is a relict genus with a basically alpine-boreal distribution.

Siricidae hosts in deciduous trees

While the Siricinae with their Pinaceae host-plants survived the anglosperm expansion, other Sawflies (e.g. Siricidae: Tremicinae & Xiphidriidae) underwent a host-plant shift to exploit the new arborescent Angiosperm fauna. Similarly, some of the parasitoid cynipoids presumably responded, to the same pressure, by host-switching from Sawflies in Pines to Sawflies in Angiosperm trees.

Although most species of Ibalia are associated with Siricinae in pines there are a few on deciduous trees. For example Ibalia maculipennis from the eastern U.S.A is a parasitoid of Tremex (Siricidae: Tremicinae) (Weld, 1952). It is likely that a cynipid with this second type of biology gave rise to the Liopteridae. Indeed one of the least derived liopterids, Heteribalia divergens, has also been bred from Tremex (Maa, 1949). Another similarity between Ibalia and the less derived Liopteridae is shown by Kiefferiella (= Paramblynotus) yangambicola comb. nov. This species has a gaster similar to that of Ibalia, and therefore may have a similar deep-oviposition type of biology. Once established, the Liopteridae became the main group of cynipoids exploiting hosts in deciduous trees.

Coleoptera in deciduous trees

The siricid fauna of deciduous trees formed a rather limited resource when compared to the greatly expanding numbers of xylophagous Coleoptera that were exploiting the radiation of arborescent angiosperms during the Lower Cretaceous. So it was almost inevitable that a second host-switch, from Symphyta to coleopterous larvae, occurred soon after the first move. The early Liopteridae were already adapted for deep-wood parasitoidism so this new shift to coleopterous hosts, some of which occur near to the surface, would have been a relatively simple change. A significant aspect of this host-switch would have been the retention of host-location by use of fungal cues.

Unfortunately there are few published host records

for the Liopteridae. Kiefferiella (= Paramblynotus) zonatus comb. nov. is a parasitoid of Oncideres SD. (Cerambycidae) (Diaz, 1973) and Kiefferiella sp. was recorded (Weld, 1952) from a Acmaeodera (Bruprestid) tunnel. То these, can be added a new record -Oberthuerella crassicornis from Kilimanjaro (Tanzania), on a dry stump of Chlorophora excelsa infested with Trachyostus schausussi (Coleoptera, Platypodidae).

As far as is known the Liopteridae exploit dry (sound or rotting) timber but it is possible that some have moved onto hosts in moist rotting timber, which have a different suite of fungal cues. It is also possible that some liopterids have gone on to attack Coleoptera in other habitats because the gaster of Liopteron abdominale is very similar to the gaster of those Proctotrupidae that parasitize beetle larvae in the soil and in fungi.

Parasitoidism inside the tree - stasis

The ibaliid / liopterid taxa develop in a relatively stable environment and the uniformity of conditions inside the tree are likely to be conducive to species conservation. Indeed there are many xylophagous examples of relatively primitive host groups and parasitoids which have persisted as relicts of a once larger fauna (Brues, 1921; 1927). The frequency of this lifeway encourages the speculation that xylophagous Coleoptera are relatively "easy" hosts with weak immune defences. However, although wood-boring / -probing is a relatively primitive lifeway, it is a specialization, involving morphological adaptations, and thus is not the ancestral lifeway of the Apocrita.

Austrocynips

Like Ibalia, Austrocynips is a Pine relict species, it was probably more widespread in the Southern Hemisphere but now it is only known from one Australian locality. The details of its biology are not known, but it occurs on the Hoop Pine (Araucaria cunninghami). It may be (Riek, 1971)

associated with the cones, if so that would be a specialization. That might explain why it has a long ovipositor (for ovipositing into seeds inside cones) but not the characters associated with the biology of the Ibaliidae/Liopteridae.

Himalocynips

Although Himalocynips has some morphological similarities with the large cynipoids, especially Austrocynips, it does not have a looped ovipositor. Nothing is known of its biology other than that it was found at 6000ft. Its rarity (only two known specimens) may indicate that it is a relict species. It is a relatively large cynipid so it could perhaps be associated with Pine or broadleaf trees (ancient forests of both types are present in the Himalayan region).

CHARACTERS ASSOCIATED WITH XYLOPHAGOUS HOSTS.

Many of the characters of the 53.2 group form an adaptive character-suite which is associated with the biology of this group. The Ibaliidae, Liopteridae and possibly Austrocynips all parasitize symphytan or coleopterous hosts which live within the wood of trees (some may be subcortical). There are two separate problems associated with this habitat - reaching the host in order to oviposit, and secondly emergence of the adults from the tree.

The most obvious morphological adaptation for reaching to the host is a long and strong ovipositor, and all the 53.2 taxa have this feature. As the cynipoid ovipositor is internal, the confines of the gaster neccesitates coiling the long ovipositor (Fergusson, 1988) within the gaster (character 157). Following from this there are associated changes to the proportions of the gastral segments (character 705). Other characters that assist deep oviposition are the possession of a long petiole (142) and, in some Liopteridae, a tangential attachment of the petiole to the rest of the gaster (144), both of these characters increase gastral mobility.

Getting an egg onto the host is not so difficult, especially if, like Ibalia, the host's oviposition tunnel is used. The great problem of exploiting this habitat is escape! The cynipoid must chew and squeeze its way out, and to do that an array of adaptive characters has been developed. Firstly it needs strong, massive rather than sharp, mandibles (19). These mandibles need a strong mandibular axis and that involves having the hypostomal crests well separated (25) and set in a depression (24.1). Also the mouthparts and clypeus tend to be modified (1 & 3). Wriggling out of the escape tunnel is aided by spurs and ridges on the legs (118, 122, 123, 125, 126.1 & 126.2), possibly by bifid claws (131.1 & 131.2) and by having elongated tarsal segments (127, 128). Coarse sculpture on the head (16.1) and thorax (53.2) including distinctive transverse ridges (54), and scutellar spines (in some liopterids) (62.3, 62.4) probably all help to gain purchase on the inside of the tunnel. The head can have a facial and a frontal carina (6, 11); and scrobes (12) protect the antennae. The cynipoids exploiting this habitat tend to be large and this size factor is reflected in allometric characters, such as features of the wing venation. The thorax is often slightly flattened and the propodeum elongated.

Character congruence amongst the Parasitica

Parasitism of hosts in the deep-wood habitat is a relatively primitive lifeway of the parasitic Hymenoptera and it occurs in many of the less derived lineages. In each of these groups a very similar character-suite has evolved independently. This is a remarkable example of adaptive character congruence. Similar characters occur in the Pelecinidae, Monmachidae, Vanhorniidae, some Chalcidoidea (e.g. Leptofoenus), Stephanidae, Aulacidae, Megalyridae, Ichneumonidae (e.g. Rhyssa) and Braconidae (Doryctinae) - Table 52. These taxa tend to have rough sculpture, a long propodeum, a flattened thorax, strong claws, elongated legs, a large head with strong mandibles, and powerful mandibular muscles.

	PELECINUS	M ON OM A C U S	V ANHORNIA	LEPTOFOENUS	S T E P H A N I D A E	A U L A C I D A E	M E G A L Y R I D A E	R H S S A	D O R Y C C T I N A E
MANDIBULAR HODIFICATIONS									
Strong mandibles		+	+	+	+	+	+	+	-
Modified mouthparts / clypeus	-	-	-	~	+	+	+	+	-
Hypostoma in cavity	+	+	+	+	+	+	+	+	+
Wide hypostoma	+	+	+	+	+	+	+	÷	+
HEAD SCULPTURE									
Head sculpture rough	+	t	-	+	+	+	+	-	-
Median facial carina or hump	+	+	+	-	+	+	+	-	t
Frontal carina or hump	t	-	-	-	+	-	-	-	÷
Scrobes	t	-	-	+	-	-	+	-	+
THORACIC SCULPTURE									
Pronotal tooth, hump or ridge/s		+	-	+	+	-	-	+	+
Rough sculpture		-	-	+	-	+	+	+	+
Transverse mesoscutal ridges	-	-	-	÷.	-	+	-	+	+
LEGS									
At least one spur, peg or spine	+	-	-	+	+	+	+	-	+
With strongly thickened region	+	+	-	-	-	-	-	-	-
Tarsi, or all of leg, elongated	+	+	+	+	+	+	+	+	+
Strong claws		+	+	+	+	+	+	+	+
SIZE & SHAPE									
Large head	+	+	+	+	+	+	+	+	-
Long neck	-	+	t	+	+	+	-	-	+
Propodeum long	+	+	+	+	+	+	+	+	+
Thorax dorsally flattened		t	t	+	+	t	t	+	+
OVIPOSITOR/GASTER LENGTH									
Petiole long		+	-	+	+	-	-	-	+
Gaster long		+	+	+	+	-	-	+	+
Ovipositor long		-	+	+	+	+	+	+	+
Ovipositor toothed	+	-	-	+	+	t	+	+	+
Petiole attachment very mobile	+	+	-	+	+	-	-	-	-

Table 52. The congruence of adaptive characters associated with hosts deep in wood. [T = trace, weak or +/-.]

The modifications take slightly different forms in each group. Deep penetration is achieved in the cynipoids by a long ovipositor which is coiled inside the gaster. In

Vanhornia the ovipositor is long and external, but it is carried in a ventral groove (Mason, 1983). The Ichneumonidae have a long trailing ovipositor and the terminal gastral segments can pivot. In Pelecinus (Mason, 1984) and Monomachus the ovipositor is short but it is at the apex of a remarkably long gaster. These two genera may oviposit into soft or rotting wood, which would allow them to thrust the gaster into the substrate.

In nearly all cases the gaster is very flexible, this is achieved either by a complex hinge between gaster and propodeum, or by a long gaster or petiole. The dorsal flattening of the thorax is often an adaptation for moving under horizontally layered substrates, and occurs in various habitats e.g. within grass stems (Fergusson, 1983), and in this character-suite it may assist movement under bark or in the host's tunnels.

There is most variety in the rough sculpture characters, as might be expected with a more "plastic" type of feature. The most remarkable example being the ring of spines around the median ocellus in the Stephanidae. The remaining characters are rather variable, e.g. the clypeal modification, and these may relate more to host-specific activities.

The doryctines are marginal examples of this character-suite, many are parasites of beetles in softer (rotting) wood and do not show the modifications for hard healthy wood but some taxa are clearly modified for this latter habitat and the example chosen here was Curtisella.

The chalcidoid genus Leptofoenus is a classic example of the dangers of this type of adaptive character-suite, because it was these very characters that caused it to be mistakenly placed in the Aulacidae until LaSalle & Stage (1985) recognized its correct position.

BIOGEOGRAPHY

In terms of their distribution the Cynipoidea divide into two units - the Cynipidae + figitid taxa which are Laurasian, and the ibaliid lineage which are mostly

Gondwanan.

Laurasian cynipids

The Cynipidae and the figitid lineage have essentially the same, Holarctic distribution. About two thirds of all cynipoid genera occur in the Holarctic; 25% in the Palaearctic, 25% in the Nearctic and the remaining 16% (approximately) are common to both regions (percentages based on Weld, 1952). This strong bias suggests a Laurasian origin for these taxa leven after making allowance for the limited number of collections from the tropics).

The superfamily is reasonably well represented in the Neotropical region (17% of all genera) but poorly represented from the rest of the world. The Ethiopian, Indo-Oriental, Polynesian-Australasian regions each having only 5% (approximately) of the genera. In particular, the gall-wasps are poorly represented in the tropics, although other cecidogenic insects (e.g. Thrips, Scale-insects and Gall-midges) are present. (Gagné, 1984).

Endemism is not very marked in these cynipoids. The Pycnostigmatinae are restricted to Africa and there are some interesting genera from the Australian region (see extralimital taxa). However, in general there are no obvious large-scale distributional patterns.

From the origin of the cynipoids in the early Neocomian (see Chapter 5) until the Upper Cretaceous, North America and Europe remained in tectonic contact (Pitman et al., 1974). The exchange of species would have been hindered only by shallow seaways, and even these may have been crossed by land bridges (e.g. the Faeroes bridge) (Parrish, 1987; Vail et al. 1977). Therefore these Cynipoids are likely to have become dispersed in the North before the Coniacian when Greenland + Scandinavia moved away from Canada (Schuchert, 1955).

From this primary distribution in Laurasia a restricted number of cynipid and figitid genera then spread to the rest of the world. In particular the Eucoilidae have radiated in the tropics.

Distribution linked to that of Pine trees.

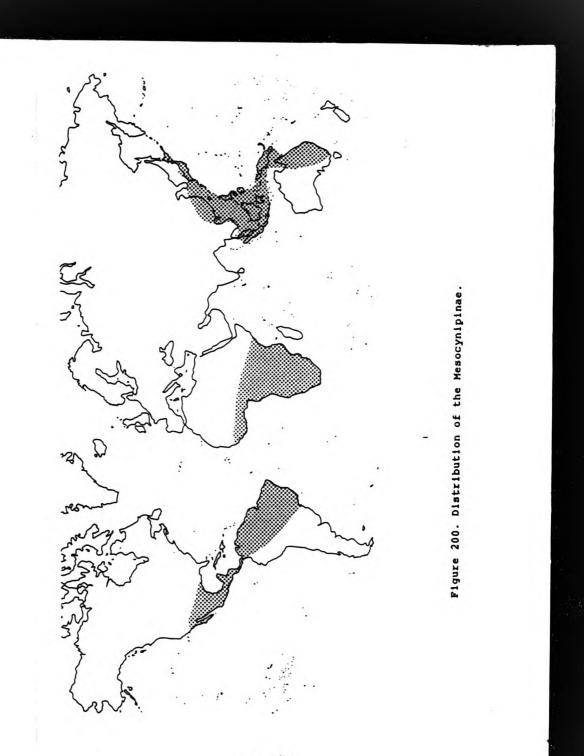
Unlike the Cynipoidea mentioned above the groups of the ibaliid lineage have major distributional pattens that correlate with their phylogeny. The distributions of the Ibaliini and Austrocynips have already been mentioned in connection with the Pine-associated evolutionary biology of these taxa. Ibalia is basically a boreal genus which has a similar distribution to that of Pine trees. Ibalia now occurs in Australasia, where it was introduced to control Sawflies (Taylor, 1965).

Vicariance and dispersal of the Liopteridae.

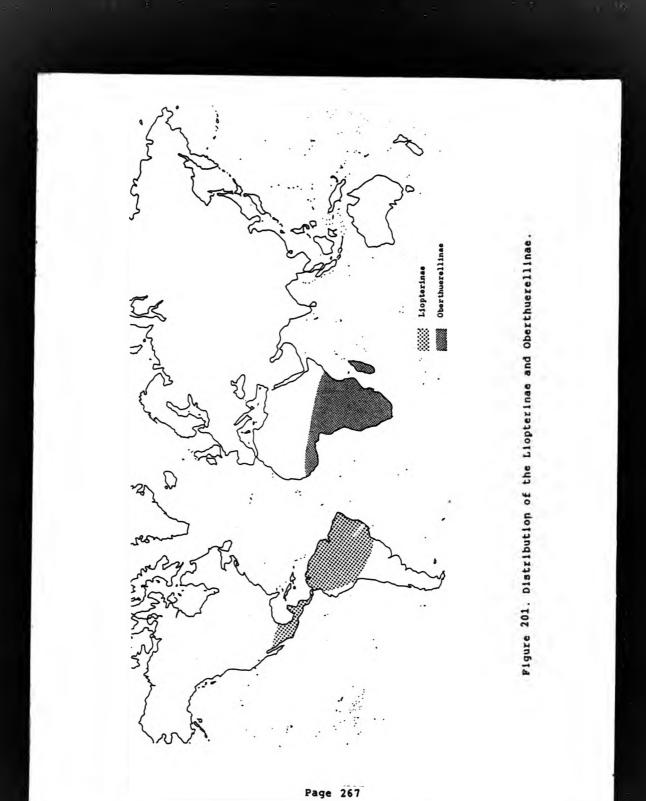
Kennigian principles can be applied to biogeography, and area cladograms constructed by superimposing areas of endemism onto morphological cladograms (Humphries & Parenti, 1986; Nelson 1978; Nelson and Platnick, 1981). The area cladogram for the Liopteridae (Fig. 199) shows a perplexing alternation of Old and New World taxa. Apart from the Oberthuerellinae the subfamilies of the established classification are not supported.

In order to improve the resolution of the biogeographical cladogram, the locality data of a large number of Liopteridae was examined. This data shows that the Oberthuerellinae is known only from the Ethiopian region. The "Liopterinae" is from the Neotropical (Plastibalia & Liopteron) and Sonoran (Pseudibalia) regions. The "Mesocynipinae" occurs in the Sonoran, Neotropical, Oriental (Kiefferiella and Mesocynips),

..... Africa (Oberthuerellinae) Neotropical (Plastibalia) Mexico (Pseudibalia) Neotropical (Liopteron) Orient/Texas (Mesocynips) Orient ("Paramblynotus") South Nearctic (Kiefferiella)


Figure 199. Area cladogram for the ibaliid lineage.

Ethiopian, Australasian (Dallatorrella) and just into the East Palaearctic region (Heteribalia). Distribution maps of the three "subfamilies" illustrate the difficulty (Figs 200, 201): the Oberthuerellinae and the "Liopterinae" each have a distinct range but the "Mesocynipinae" are pantropical and overlap the other two distributions.


It will be shown below that this distribution pattern, when considered in the light of plate tectonics and the separation of Gondwana, can be used to explain why parts of the lighterid classification are paraphyletic.

Postulate of liopterid distribution

The expansion of the angiosperms, during the Upper Cretaceous led to the development of extensive Angiosperm forests between palaeolatitudes 32 degrees North and 32 degrees South (Creber & Chaloner, 1985). The Liopteridae responded to this major floristic change by switching from hosts in gymnosperms to exploit hosts in the southern part of these new, high density, Angiosperm forests (see sections of this chapter on climate and the Cynipidae, and parasitoids within trees). Evidence from the cladogram and distribution records leads me to the speculation that Kiefferiella, was the first modern liopterid. It probably originated in the forests of the Borneo-Australasian-Antarctic plate and then expanded westwards from the "Orient" across southern latitudes. However, very few, if any, "mesocynipines" reached Africa from this plate because of the south-western arm of the Tethys Sea which was expanding between Africa and Antarctica in the Hauterivian (Howarth, 1981) (Fig. 202). Between the Hauterivian and 'the Cenomanian, Kiefferiella and other "mesocynipines" expanded northwards in the Neotropical forests. It is likely that the "mesocynipines" that reached Africa did so from the Neotropical plate before its separation from Africa in the Cenomanian. Eventually the "mesocynipines" reached the Sonoran region, their northern limit in the West; they similarly expanded northwards in the East and reached Japan and mainland China.

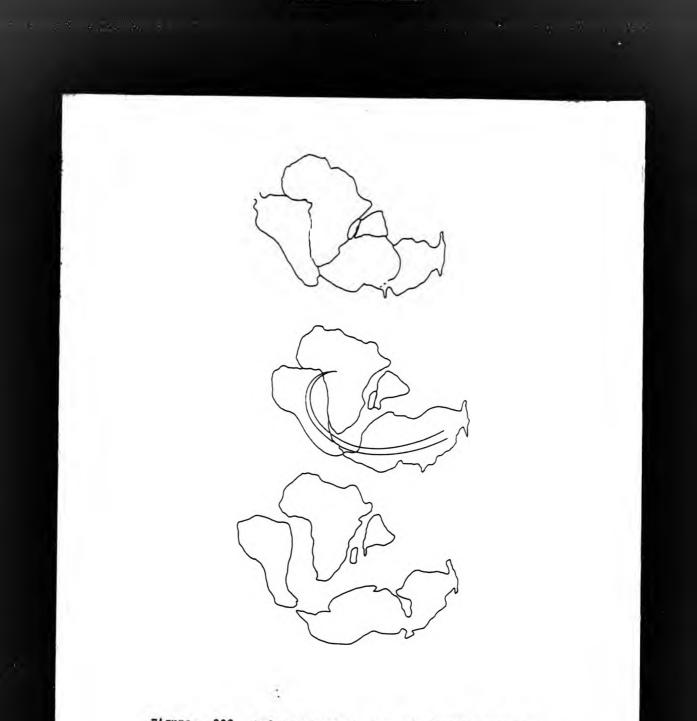


Figure 202. Palaeogeography and liopterid radiation. Approximate positions of southern continental plates (land + epicontinental sea) in the Triassic (top), Hauterivian (middle) and Senonian (bottom); before, just after, and well after, the primary radiation (main direction shown by the arrow) of the Liopteridae (Maps after Howarth, 1981).

At or about the Aptian - Albian, one element of the Neotropical "mesocynipine" lineage formed a separate group, which became the "Liopterinae". Distribution records indicate that this occurred in the North or North East of the Neotropical region. The reason for this event is not known but it may have involved a host-related specialization.

At this time (Aptian-Albian) South America and Africa were still joined in the North, but the rift-faulted division between them was open at the southern end and the sea reached as far North as Angola (Maack, 1969). A more derived element of the new North East Neotropical "liopterine" lineage, originated and crossed into Africa before this continent finally separated from the Neotropical plate in the Cenomanian (Reyment & Taitt, 1972; Reyre, 1966). Because of its taxonomic isolation this last, oberthuerelline, lineage did not interact with the very few "mesocynipine" species that had also crossed to Africa. Once established in Africa the Oberthuerellinae specialized and rapidly developed many autapomorphies.

In the Neotropical region, the "liopterine" lineage was not sufficiently isolated (taxonomically or geographically) from the "mesocynipine" lineage to avoid interaction, and this accounts for the paraphyly of the "Liopteridae" and "Mesocynipinae".

During the Senonian - Tertiary, sea-floor spreading and continental drift led to further breakup of Pangea (Fig. 202). Sea levels were relatively high (Savin, 1977) and the biogeographical distribution of the Liopteridae was almost in its modern configuration.

The Borneo-Australasian-Antarctic plate finally separated into its constituent parts and the eastern "mesocynipines" "rode" on the Borneo plate into the Orient and, presumably by island hopping, reached Japan and mainland China. Eventually, global climatic cooling led to a reduction of the tropical forests which left the Liopteridae isolated as relict species with their present distribution pattern.

The Palaearctic nature of the Indian fauna is a

result of the separation of the Indian plate (Moullade & Nairn, 1978) before the origin of the Cynipoids. Only when it collided with the Palaearctic, in the Tertiary, was it colonised by cynipoids. Similarly the presence of the Oberthuerellinae in Madagascar must have been a recent event, perhaps aided by man, because the Malagasy plate was isolated (Moullade & Nairn, 1978) before the origin of the cynipoids.

PARASITOIDISM OUTSIDE THE TREE: THE FIGITID LINEAGE

Origin of the figitid biology

The third major cynipoid group, the figitid lineage, consists of species (parasitoids of larvae) with relatively vulnerable larval stages. Although some species of the figitid lineage parasitize hosts within plant tissue, many parasitize more exposed hosts and tend to develop quite rapidly (for koinobionts), being bi or trivoltine (Roberts, 1935).

When host preferences are plotted on the figitid phylogenetic tree, it is clear that figitid biology originated on the predator complex associated with aphids. The aphid-associated cynipoids exhibit three distinct biologies - parasitoidism of aphidophagous Neuroptera, parasitoidism of aphidophagous Diptera and hyperparasitoidism of aphids. Hyperparasitoidism is a derived lifeway (see below), so which host group came first, Diptera or Neuroptera? Gauld (1988) has shown that it is most unusual for hymenopterous parasitoids of Diptera to make any significant host-shift to other groups. The considerable adaptations required to overcome the dipterous immune system (see below) once attained, tend to limit the parasitoid to this host group. Parasitoidism of Diptera is obviously a major evolutionary step, in comparison the Neuroptera appear to be less "difficult" hosts. In fact the Neuroptera have much to recommend them as the early hosts of the figitid lineage: they are not too small (parasitoidism of the smallest hosts is a derived feature in the Cynipoidea), they are an ancient insect group but, like the Cynipoidea, they

exploited the faunal changes associated with Anglosperm radiation. The Neuroptera do not appear to have effective chemical defences, and they have a vulnerable inactive cocoon stage.

Therefore it seems very likely that the ancestral figitid was a parasitoid of Neuroptera and that this biology has persisted up to the present in the Anacharitinae.

Neuroptera frequently occur in the crevices of shrubs and trees (Lipkow, 1969). or even under bark (Psychopsidae). Thus the three main cynipoid lineages all show, at least initally, a distinct plant association.

Of the three major cynipold groups, the figitid lineage has a biology (exophytic parasitoidism) closest to that of most apocritans and therefore, it is speculated, closest to that of the Cynipoid ancestor. If the cynipoid ancestor was a parasitoid of Neuroptera then parasitoidism of hosts within their cocoon could have led the cynipoidea to the development of endoparasitoidism and then koinobiosis. Also parasitoidism of Neuroptera had already been achieved elsewhere in the Apocrita - for example the Heloridae (Proctotrupoidea s.s.) (Fergusson & Smith, 1974), one of the earliest (Jurassic) apocritan families (Rasnitsyn, 1980).

Anacharitinae: parasitoids of Neuroptera

Anacharitines are solitary endoparasitoids of Hemerobiidae (Neuroptera) larvae (Cave & Miller, 1987; Handlirsch, 1886; Hiller & Lambdin, 1985). During oviposition the parasitoid curves its gaster downwards, between the legs, and inserts the ovipositor into the centre of the hemerobiid's dorsum. This oviposition technique accounts for the distinctive petiole of the Anacharitinae (character 133) and the tendency for the petiole to be long (142.1). It may also be the reason for the reduction of the female genitalia (characters 163 & 164). The characteristic mandibular tooth (character 23) and the spine on the claw (130) are probably modifications for cutting open and holding the host's cocoon during

emergence.

Oviposition is into late second and third instar larvae, a later host stage than that exploited by most primary parasitoid cynipoids and this may be an indication of a biology less derived than that of other figitid taxa. The host larva is allowed to spin its cocoon before it is killed. The last larval instar of the anacharitine emerges from its host and in a short external phase (probably common to all parasitoid cynipoids) eats the remains. The mature anacharitine larva pushes its gaster through cocoon to excrete the meconium, withdraws its gaster back inside the host's cocoon and then pupates (Selhime & Kanavel, 1986). There may be a facultative larval diapause, induced by short daylength, and hibernation is as a late larva or prepupa within the host's cocoon.

Pycnostigmatini

Pycnostigmus has a very specialized and distinctive morphology, but unfortunately its biology is unknown. Weld (1952) commented on the similar fusion of gastral tergites in Pycnostigmus and the inquilines (Synergini). However, this also occurs in the Charipinae and Eucoilidae and it does not imply an inquiline lifeway.

Aspicerinae & Melanips: parasitoidism of the Syrphidae

The next stage in the evolutionary biology of the Figitid group was the lateral shift, from the anacharitine lifeway of parasitising aphidophagous Neuroptera to the aspicerine / Helanips opacus lifeway of parasitising aphidophagous Diptera (Syrphidae).

The aspicerines and Melanips opacus oviposit into the head (central ganglion) of syrphids (Rotheray, 1979; 1981) thus ovoiding early exposure to the hosts haemocyte immune system (see below). This type of oviposition may also disrupt central nervous control of the host's physiology. The similar lifeways of Melanips and the Aspicerines is reflected in their very similar short ovipositors.

Syrphids are relatively large hosts and thus the Aspicerinae (Fig. 148) and Melanips opacus are larger than

many of the more derived figitids that parasitize smaller Diptera.

Figitinae & Eucoilidae: parasitoids of Diptera

Species of Melanips are not restricted to the Syrphidae, the Chamaemylidae (Schizophora) are also parasitized. This genus illustrates how the Figitinae have expanded from initial parasitoidism of the Syrphidae to attack a wider range of dipterous hosts (Cyclorrhapha -Aschiza and Schizophora) (Eskafi & Legner, 1974a; 1974b; Carton et al., 1986; Nappi & Streams, 1970; Schreiber & Campbell, 1986).

The analysis (Chapter 5) linked the genera near Figites to the Eucoilidae, this relationship is also shown by the biologies of these groups. The genera near Figites are frequently parasitoids of flies in carrion and dung, often sharing the same hosts with eucoilids. For example the horn fly, Haematobia irritans, is parasitized by Trischiza sp. (Figitini) and by several eucoilid genera -Eucoila, Kleidotoma, Rhoptromeris and Cothonaspis.

Both figitine and eucoilid larvae develop in the haemocoel of the host larva, later they complete their development inside the host's puparium. The mouthparts of early instars are haematophagous but later instars develop chewing mandibles. The primary instars of the Eucoilidae, and to a lesser extent the Figitini, have long thoracic processes; it is supposed that these processes are an adaptation to conditions within the haemocoel (See Chapter 4).

During the summer the life cycle is short e.g. 60 days in Figites (James, 1928), in the overwintering generation diapause is as a mature larva, prepupa or pupa, inside the host puparium (Kopelman & Chabora 1984; Sychevskaya, 1974).

The cynipoids are a very important element in the natural control of many economically important Diptera. Parasitoidism is often very effective, with up to 40% of the available hosts killed; and exceptionally parasitoidism may approach 80% (Sychevskaya, 1974). The Cynipoidea have pursued their dipterous hosts into many different habitats. They are parasitoids of coprophagous, saprophagous, fungivorous and carrion flies; also flies living on sap, yeasts, fruit (many drosophilid species), and on endophytic flies (including leafminers). It appears that any environment that can support a fly can also support its parasitoid. For example Kleidotoma japonica is a parasitoid of Scatella calida the immature stages of which occur in a very hostile environment - hot acidic springs (Huzimatu, 1940).

Dipterous defences

The eggs of these derived cynipoids are placed in the haemocoel, either free floating or attached to the intestine, malpighian tubules or fat body. The shift to dipterous hosts involved overcoming their elaborate immune reactive haemocyte system (Nappi, & Carton, 1986).

Dipterous haemolymph contains spherical phagocytic cells (plasmatocytes) that can differentiate into flat lamellocyte cells (Carton et al., 1986). When a foreign protein, e.g. a cynipoid egg, is detected there is a precocious production of lamellocytes and these adhere to the parasite to form a compact laminated cellular capsule (Carton, & Boulétreau, 1985). Crystal cells, another type of haemocyte, then lyse and release phenol oxidases that melanize the capsule (Nappi, & Carton, 1986). The melanized capsule isolates, asphyxiates and starves the parasitoid (Carton, et al 1983; 1986; 1987).

Successful development in the dipterous haemocoel depends upon the parasitoid's ability to avoid encapsulation. The eggs of some Parasitica have а specialized surface that does not arouse a response, or fine projections that inhibit encapsulation (Salt, 1968; 1980). Other parasitoids actively interfere with the immune reaction. This may be by injecting a symbiotic virus, from the genital glands, which affects the host (Edson et. al., 1981). However, many Apocrita have evolved sophisticated venoms which can overcome host defences (Van Veen, 1981).

Although little studied, the development of these

venoms must have played a crucial part in the evolution of the parasitic Cynipoidea. The venom secreted by the acid of female eucoilids contains lamellolysin gland (Boulétreau & Wajnberg, 1986; Rizki & Rizki, 1984; Streams & Greenberg, 1969; Walker,1959; Weideli, 1967). This substance, when injected into the host's haemocoel, affects the host's lamellocytes which become distorted and die, but most importantly it causes the lamellocytes to lose their adhesivness and this makes effective encapsulation difficult (Nappi & Carton, 1986). Only host lamellocytes are affected, other haemocytes and the host's ability to heal wounds and phagocytose bacteria is not affected (Rizki, & Rizki, 1984).

In the cynipoids that oviposit into the host's central ganglion a venom is used to temporarily paralyse the host and thus facilitate accurate placement of the egg (Rotheray, 1981).

Even if a fly larva manages to encapsulate the cynipoid, the adult fly will tend to have a reduced weight, size, and fecundity when compared to the average unparasitized fly (Carton & David, 1983). This reduced fitness slows down the dissemination amongst the fly population of any genes providing resistance against the parasitoid, and this favours parasitoid virulence.

Charipidae: hyperparasitoids

Hyperparasitoidism is a highly evolved lifeway which only occurs in Hymenoptera, Diptera and Coleoptera (Sullivan, 1987). Although hyperparasitoidism has evolved several times in the Hymenoptera it is relatively uncommon amongst the less derived Parasitica. For example, hyperparasitoidism is limited to a few subfamilies of Ichneumonoidea (chiefly Pimplinae, Phygadeuontinae and Mesochorinae). However, in the microhymenoptera it is a more frequent strategy. Amongst the Proctotrupoidea (s.l.) it occurs in a few isolated genera e.g. Ismarus (Chambers, 1955) and Dendrocerus (Fergusson, 1980). In the Cynipoidea hyperparasitoidism is limited to the Charipidae. However, in the Chalcidoidea approximately half the families have some hyperparasitoid species (Sullivan, 1987).

The host of hymenopterous hyperparasitoids is usually another hymenopteran itself parasitising a phytophagous host. Hymenopterous hyperparasitoids are more likely to be parasitic on other Hymenoptera because their physiological similarity (Brues, 1921) makes it easier to overcome the primary parasitoid's defence mechanisms.

Origin of charipid hyperparasitoidism

Hyperparasitoidism generally originates from one of three a host, primary parasitoid, or associations, predator association (Pseudohyperparasitoids, that attack the primary parasitoid only after it has killed the host, may be exceptions) (Gauld & Bolton, 1988; Sullivan, 1987). In the case of the Charipidae, there are no obvious host or primary parasitoid associations but, there are predator associations; the Aspicerinae, Melanips and the Anacharitinae all have aphidophagous hosts. So it is likely that the Charipidae evolved by host-switching from ancestors that were primary parasitoids on aphidophagous hosts.

The two subgroups of the Charipidae (Alloxystinae and Charipinae) have slightly different host preferences.

Alloxystinae: hyperparasitoids on aphids

The Alloxystinae lay a single egg (Haviland, 1921a; 1921b) into the haemocoel of a late larval instar, usually the third or fourth (Matejko & Sullivan, 1980; Sullivan, 1972), of the primary parasitoid (often Braconidae; Aphidiinae). [Oviposition into late instar larvae is unusual in the Cynipoidea.] The primary parasitoid is in the haemocoel of the host aphid (Aphididae). [This cynipoid lifeway differs from that of some other hyperparasitoids e.g. Dendrocerus (Ceraphronidae) and Asaphes (Chalcidoidea) which insert their eggs only after the primary parasite has spun its cocoon, also these examples are ectoparasitoids.) The first instar larva has a strongly chitinised cuticle, presumably for protection against attack from other larvae. The primary parasitoid kills the aphid, the skin of the aphid then becomes parchment-like and is known as a "mummy". The primary host

lines the mummy with silk and pupates, only then is it killed by the cynipoid. The cynipoid larva eventually emerges and completes its feeding externally, but within the aphid mummy (not observed by Gutierrez & Van Den Bosch). This ectoparasitic phase only lasts for about 12 hours. The adult emerges by biting an irregular hole in the aphid skin (Spencer, 1926; Gutierrez & Van Den Bosch, 1970a; 1970b; Gutierrez, 1970a; 1970b).

Charipinae: hyperparasitoids on psyllids

Until recently it was believed that the Charipinae were primary parasitoids (Fergusson, 1986; Quinlan & Evenhuis, 1980) but Herard (1986) showed that Dilyta subclavata is a hyperparasitoid of Psylla pyri (Psylloidea) via Prionomitus mitratus (Chalcidoidea, Encyrtidae). Rathman and Brunner (1988) and Rathman and Paulson (In Menke & Evenhuis, in press) have recently shown that Dilyta rathmani is a hyperparasitoid, via Trechnites sp. (Encyrtidae), on a pear psyllid (Cacopsylla pyricola) and additionally on Cacopsylla alba nymphs on Willow (Salix exigua). The details of charipine biology have yet to be elucidated.

The shift from the ancestral, aphid, host (see above) to psyllids means that the Charipinae are the more derived of the two subfamilies.

Dispersal of the alloxystines

Aphids are mostly distributed by winds. The evolutionary advantage for the Alloxystinae to be dispersed along the same thermals as their hosts has been a contributory factor in the close size and weight correlation between the two groups. Therefore there is a close congruence in the aerial distribution (both number and altitude at any given flight time) of aphids and aphid parasitoids (Glick, 1939; Yoshimoto & Gressitt, 1964).

Host searching and the figitid lineage

The cynipoids that are parasitoids of aphidophagous Syrphidae and those that are hyperparasitoids of aphids respond not to the odours of their hosts, but to cues emanating from the aphid colonies (Hagen, 1986). These cynipoids are not normally restricted to the odour of any one aphid species, and this is an advantage as few of the hosts are specific to only one aphid (Rotheray, 1979; 1981).

Many figitids and eucoilids parasitize Diptera that frequent carrion or dung, and the adult females of these cynipoids are attracted to the odour of such habitats (James, 1928; Sychevskaya, 1974). Eucoilids are often highly specific in their response to the olfactory cues from different microhabitats. For example Leptopilina clavipes is attracted only to decaying fungi, Cothonaspis rapae and Kleidotoma dolichocera to decaying plants and L. bouardi and Pseudeucoila bochei to decaying fruit. All these species are attracted only to a certain stage of decay, which is synchronised with the succession period of their particular dipterous hosts (James, 1928; Vet, 1984).

Once in the host habitat the host must be located. This is achieved by vibrotaxis, antennation, and by probing with the ovipositor (Vet 1984; Vinson, 1976). Alloxystines, anacharitines and Melanips normally antennate their hosts (Gutierrez, 1970a; 1970b; Rotheray, 1979, 1981). However, many figitids and eucoilids tend to probe the substrate with the ovipositor, presumably because of its messy nature - dung, fermenting fruit etc (Lenteren, 1972, Sychevskaya, 1974).

The final stage before oviposition is host acceptance and this is achieved by probing into the host with the ovipositor. Chemoreceptors present at the tip of the ovipositor (Fergusson, 1988), enable the cynipoid to recognize an acceptable host and distinguish parasitized (usually avoided - c.f. Fulton, 1933) from unparasitized hosts (Lenteren, 1972; 1976; Singh & Srivastava 1988). Probed larvae are not necessarily parasitized (Gutierrez, 1970a; 1970b).

Summary of cynipoid evolutionary biology

The biological evidence strongly correlates with the results of the cladistic analysis (Chapter 5), and these

both support the following reconstruction of cynipoid evolutionary biology (Fig. 203).

The ancestral cynipoid probably had a generalized apocritan type biology. Endoparasitism and koinobiosis were developed and then the Cynipoidea divided into three main lineages with different lifeways (the biology of the fourth lineage is unknown). This division occurred very early in cynipoid evolution.

The Ibaliid lineage developed parasitoidism of hymenopterous larvae in Pine trees. With the expansion of the angiosperms the lineage shifted (in Gonwanaland) to parasitoidism of hymenopterous and then coleopterous larvae boring in wood of deciduous trees. This lineage consists of relatively few, relict, species, they are specialized but not very derived.

Another the gall-wasps, exploited the lineage, expansion of the angiosperms by developing a phytophagous lifeway; they specialized in cecidogenesis. The first gall-wasps had simple life-cycles and made simple stem-galls probably on Rosaceae or perhaps Compositae. The derived species developed heterogony and highly structured galls on Oak. Diastrophus and the Rhoditini appear to occupy intermediate stages. The Synergini originated from early lineage, underwent considerable а relatively specialization and developed inquilinism.

The smaller cynipoids probably continued, for some time, a lifeway similar to that of the ancestral cynipoid. (This may have involved following neuropterous hosts in a switch from ancient plant types to the angiosperms.) This line eventually developed into the modern figitid lineage. The first hosts of this lineage were aphidophagous Neuroptera, later a more derived group became parasitoids of aphidophagous Diptera (Syrphidae). The association with aphid predators led to the development of a specialized group of hyperparasitoids, first of aphids and then of psyllids.

The move into dipterous hosts, that have sophisticated host defences, was first achieved by oviposition into the cerebral ganglion. Once the cynipoids had developed the appropriate venom chemistry (e.g. lamellolysin), the remaining Figitinae and Eucoilidae went on to become major parasitoids of a wide range of dipterous hosts.

	Cecidogenesis Cynipidae
phytophagy	* • • • • • • • • •
•	Synergini
.siricids in pin	
	.Coleoptera in deciduous trees Liopteridae
i	Neuroptera Anacharitinae
•	Alloxystinae
.aphid predators	
	Aspicerinae
	Neralsia / Figites .other diptera.
	Eucoilidae

Figure 203. Host preferences and the evolutionary biology of the Cynipoidea.

Page 280

1

CHAPTER 7: CONCLUSIONS

THE RELATIONSHIPS OF THE CYNIPOIDEA WITH OTHER APOCRITA

It was shown in chapter 3 that the phylogeny of the Apocrita is not established with any exactitude. However, the investigation of cynipoid morphology and biology has shown that the Cynipoidea share many similarities with the more derived parasitoid superfamilies.

The Cynipoidea have occasionally been linked with less derived parasitoids, e.g. Ichneumonoidea (Dalla Torre Kieffer, 1910; Rasnitsyn, 1980), but the quoted similarities are symplesiomorphies or parallelisms and thus do not imply a close relationship. For example the comparatively complete venation of the Ibaliidae and the horizontal type of placoid plate sensillae found in all Cynipoidea are plesiomorphic features that are also in the Ichneumonoidea. In general the present Ichneumonoidea are amongst the more primitive Apocrita (Richards, 1977) and they are currently placed near the bifurcation of the aculeate and the parasitoid lineages (Gauld & Bolton, 1988).

Similarly the Evanioidea and the microhymenopteran superfamilies have a parallel reduction in the number of abdominal spiracles to a pair on segments 1 and 8. Mason (in litt.) has shown that the Evanioidea form a holophyletic group with a unique type of petiole. Thus there is no direct relationship between the Evanioidea and the Cynipoidea.

Microhymenoptera

The Chalcidoidea, Cynipoidea and the derived proctotrupoid families are morphologically similar. They share many parallelisms, especially reduction-states: reduced venation, reduction in the number of abdominal spiracles and loss of the cocoon. In particular the loss of the pterostigma probably occurred several times in the microhymenoptera. All three groups have a low number (two to three, seldom five) of hamuli which are concentrated on a narrow area of the hind wing (Rasnitsyn, 1969). However, this feature is related to wing length, flight-range and thus to body size (Richards, 1949).

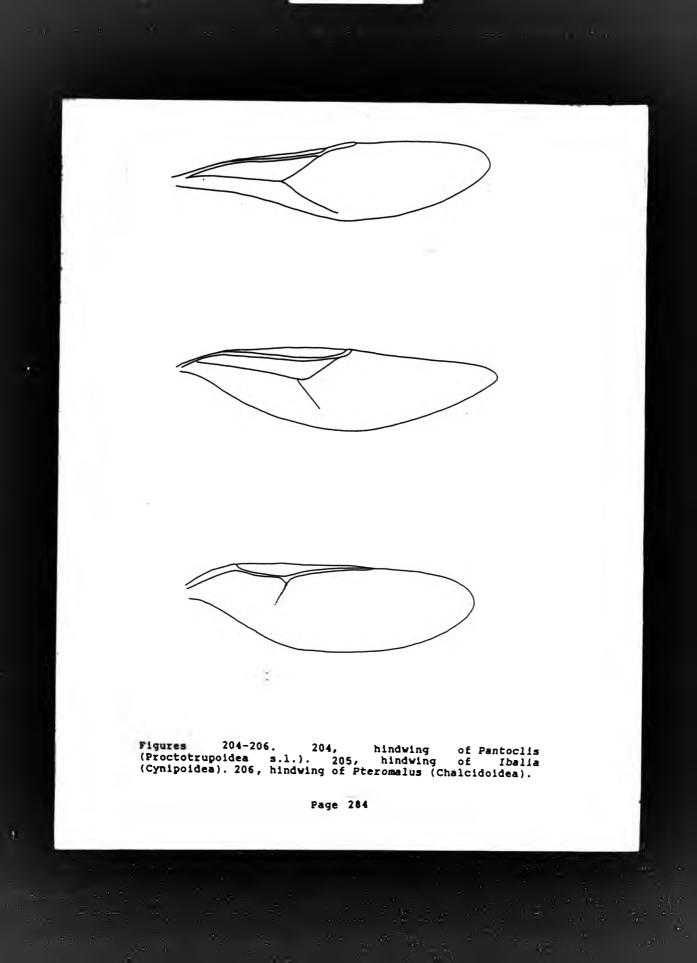
Chalcidoidea s.l.

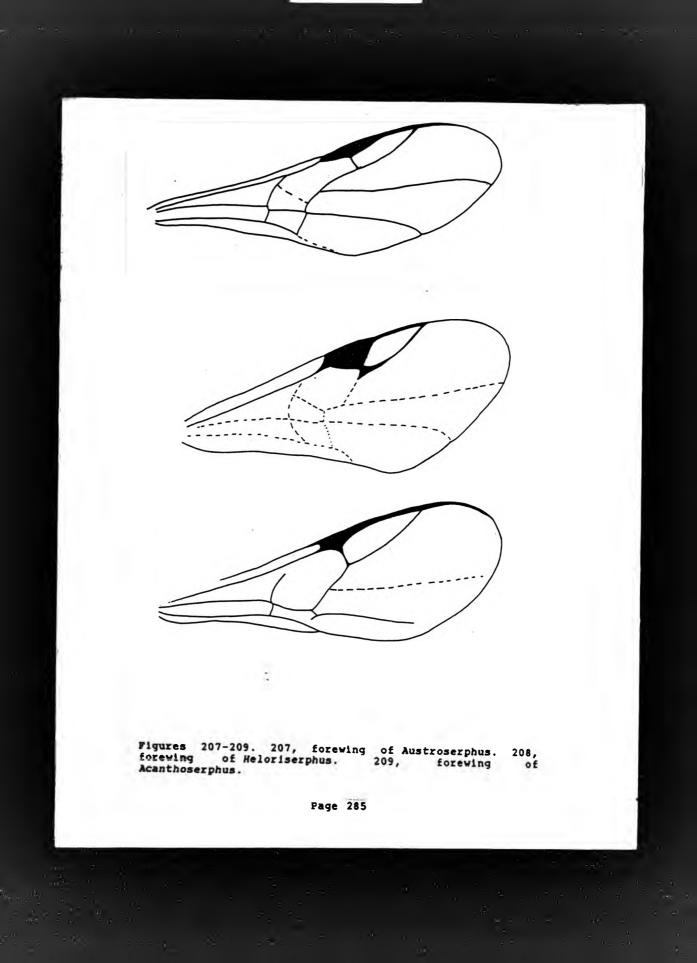
The Cynipoidea and Chalcidoidea share a general similarity and both superfamilies have repesentatives that are secondarily phytophagous (Malyshev, 1968). The wing venation is similar (Bradley, 1958) although generally more reduced in the Chalcidoidea. Farish (1972), from studies of their grooming behaviour, concludes that the two superfamilies are related, but this requires further study before its validity can be assessed.

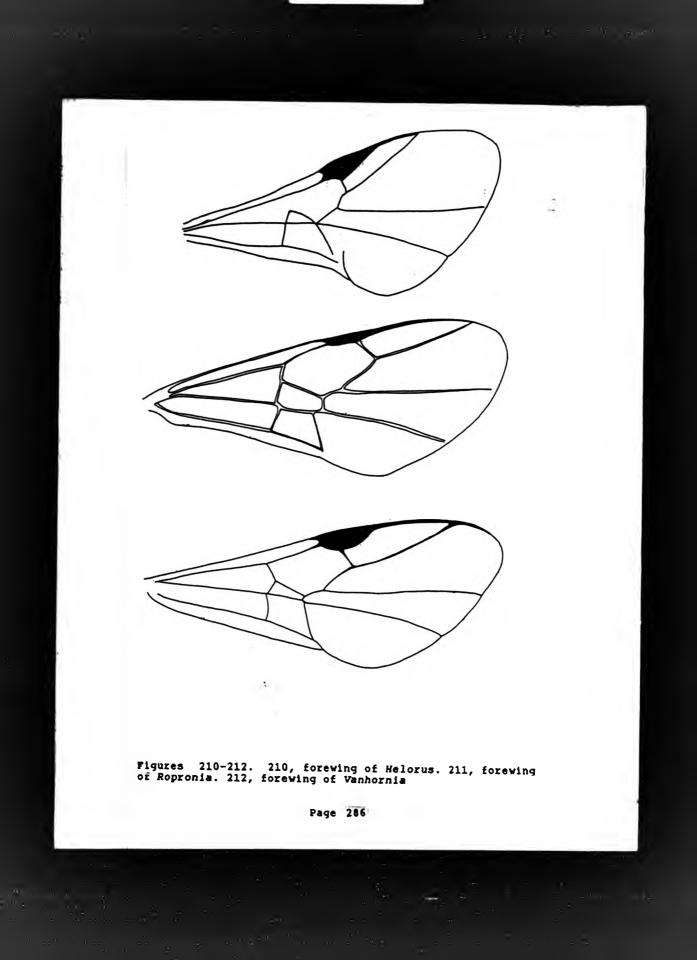
Both the Chalcidoidea and Cynipoidea have a low number of antennal segments, with a possible commony geound-plan number of 13. However, a number of this magnitude would be to the for many Parasitica (the very large numbers found in the Ichneumonoidea and the low numbers found in the Scelionidae and Chalcidoidea being derived).

Similarities of the female genitalia (Königsmann, 1978; Domenichini, 1953) may be parallel adaptations associated with comparable lifeways. In both superfamilies the male genitalia lack a cuspis (although, there may be an indication of a cuspis-like process in some cynipoids see chapter 4) but, unlike the Cynipoidea, the Chalcidoidea have lost the basal ring (Snodgrass, 1941).

Although the Cynipoidea and Chalcidoidea share many parallelisms, there are no reliable synapomorphic states shared by both superfamilies that are not also possessed by the Proctotrupoidea (Gibson, 1985; 1986). Further there are some significant differences between the Cynipoidea and Chalcidoidea. The chalcidoids have placoid sensilla that are raised above the surface of the antennae, the chalcidoid pronotum does not reach to the tegulae (in some Chalcidoidea, Eucharitinae and Perilampidae, the posterolateral angle of the pronotum appears to extend to the tegula but only because the prepectus is secondarily fused to the pronotum); the chalcidoid hindwing venation is not similar to that of the Cynipoidea (Figs 205, 206).


In particular the Chalcidoidea have a unique type of prepectus (Gibson, 1985; 1986).


Proctotrupoidea s.l.


All small Parasitica that were not Chalcidoidea or Cynipoidea have traditionally been placed in the Proctotrupoidea s.l., and it is evident that this "superfamily" is polyphyletic (Masner, 1956). The Cynipoidea is similar to the Proctotrupoidea in that the pronotum reaches to the tegulae and the prepectus is concealed but fused to the posterolateral edge of the pronotum forming a groove with the outer edge of the pronotum (Gibson 1985, 1986). The hind wings of the Diapriidae have have a similar venation to the Cynipoidea, in that there are usually four veins (Figs 204, 205): R, M+Cu, rs-m and Cu, the last three form a Y-shape with M+Cu forming the stem. (The venation of less derived proctotrupoid families is similar.) There are further similarities in the structure of the petiole (Mason, in litt.). It is not clear how many of these similarities are parallelisms, and how many are genuine indicators of some relationship.

The origin of the Cynipoidea has been clarified by the recent discovery of the Archaeocynipidae, fossil cynipoids, from very early Cretaceous strata. These fossils indicate that the ancestor of the Cynipoidea may have been similar to certain of the less derived families of the Proctotrupoidea. The small and linear pterostigma of Archaeocynips is similar to that of Austroserphus and Acanthoserphus (Proctotrupoidea s.s.) (Figs 207, 209) and shows that the cynipoids must have lost their pterostigma by gradual reduction. The closed discal cell of the Archaeocynipidae is particularly reminiscent of the venation of the proctotrupoid families - Proctotrupidae, Heloridae, Roproniidae, and Vanhorniidae (Figs 207-212). Thus it is suggested here that the Cynipoidea plus at least some of the less derived proctotrupoid families had a common ancestor.

It is possible that all the microhymenoptera had a common ancestor. However, the morphology of the

Chalcidoidea, especially the type of prepectus and the small chromosome number, indicates that this superfamily has not shared a recent ancestor with the Cynipoidea plus Proctotrupoidea.

The microhymenoptera have evolved separately, yet in parallel, for a considerable time and they have adopted similar solutions to the problems inherent in size reduction, biology etc. This homoplasy makes it unlikely that the relationships of the microhymenopteran superfamilies will be fully resolved at least until the problems of the proctotrupoid classification are resolved.

THE HOLOPHYLY OF THE CYNIPOIDEA

The morphological evidence indicates that the Cynipoidea is likely to be a single Holophyletic group. However, because the Cynipoidea have developed in parallel with other groups of microhymenoptera, there are very few unique cynipoid features. The clique cladogram has seven "rooting" characters (31.2, 100.1, 104, 106, 145 148 and 150) although characters 31.2 and 106 are symplesiomorphies.

Characters 148 and 150 are reduction states shared by many other microhymenoptera. The cynipoid gaster (148) consists of abdominal segments two to eight, tergite nine being part of the genitalia. Although a small tenth tergite occurs in the less derived Apocrita (e.g. some Ichneumonidae and Proctotrupidae), in the Cynipoidea, Chalcidoidea and the derived Proctotrupoidea this tergite is fused with tergite nine. Similarly the plesiomorphic apocritan gaster has spiracles on the second to eighth abdominal tergites but the Chalcidoidea, Cynipoidea and many derived Proctotrupoidea have a single spiracle on tergite eight (150). The Platygasteridae (Proctotrupoidea) exhibit the most extreme reduction, they have no gastral spiracles.

Character 145 (lateral compression) applies particularly to the gaster, but also to the thorax. This

character can be weak, and is perhaps least obvious in the Anacharitinae (and the Archaeocynipidae). This feature is not particularly common in other apocritans and, in them, is often related to their need to oviposit in crevice living hosts.

The remaining characters (100.1 and 104) are wing venation features. The distinctive triangular marginal (101.1) is present in all cynipoids except cell Pycnostigmus, the phylogenetic reconstruction shows that this genus is a highly derived cynipoid, and thus its reduced venation must be accepted as a specialization. Loss of the pterostigma (104) is a feature shared by the Cynipoidea, the derived Proctotrupoidea and the Chalcidoidea. Two cynipoids that are not closely related, Austrocynips and Pycnostigmus, have a pseudopterostigma, but these structures are not homologous with the linear pterostigma of the earliest known fossil cynipoid so in both genera the pseudopterostigma is likely to be a secondary structure.

Several other features have been suggested (Königsmann, 1978; Richards, 1977) as delimiters of the Cynipoidea: pygostyles absent; antennal number 13 (female) / 14 (male); pronotum reaching to the tegulae; lack of enclosed hindwing cells. These features, however, are ground-plan characters which are not unique to the Cynipoidea, and except for the pronotum character show exceptions within the Cynipoidea.

The wing venation of the Cynipoidea is particularly interesting because it marks a stage in vein reduction between that of the less derived Parasitica and that of the most derived microhymenoptera. The distinctive nature of the cynipoid venation is caused by a suite of characters associated with the angular rotation of Rs+M about the base of the marginal cell and also movement of the marginal cell upwards and inwards (see section on venation). The totality of these characteristics is most easily visualized in the distinctive shape of the cynipoid marginal cell. A few other Apocrita, especially certain less derived Proctotrupoidea (e.g. Figs 207-212) have similar marginal cells and these may represent a stage prior to that found in the Cynipoidea.

To quote Königsmann (1978) "the monophyly of the Cynipoidea is very probable, although the constituent characters are not very striking". The lateral compression and the triangular marginal cell are the most significant features of the Cynipoidea.

A NEW CLASSIFICATION OF THE CYNIPOIDEA

The overview of past classifications given in Chapter 3 highlighted the general trend to upgrade all taxa without adequate justification. This was shown in its most extreme form in the Evenhuis (1982) classification, where virtually all recognisable groupings were called families. The phylogenetic reconstruction (Chapter 5 provides a very different and more conservative structury for the superfamily. The Cynipoidea is divided into four lineages which, given the presumed holophyly of the Cynipoidea, are interpreted as families -Cynipidae, Ibaliidae, Himalocynipidae and Figitidae. The Himalocynipidae is upgraded (after deliberation) from its current subfamily status, the Cynipidae is unchanged but the Ibaliidae and Figitidae have very different constructions from their previous usages. This new family-level structure is robustly supported by morphological, palaeontological, biogeographic and biological evidence (Table 53).

The families, subfamilies and tribes of the Cynipoidea are discussed below and a key to these taxa is provided in Appendix 4. A summary of all the changes to the classification is given in Table 54 and scenarios showing the phylogeny and biology of the cynipoid families are provided (Figs 215-218) at the end of this thesis.

Cynipidae

The Cynipidae is distinguished from all other cynipoids by being phytophagous. Except in the Synergini, there are no lateral carinae on the pronotum and the hypostomes are not fused. The development, in the female,

of a hypopygial spine is cited by Ritchie (1984) as a synapomorphy for the family. This feature is poorly developed in some of the less derived Cynipidae. However it also occurs in Himalocynips and Pycnostigmus. In contrast, the depressed area (Fig. 142) on tergite nine (character 159) is unique to the Cynipidae. Unlike the larvae of the other cynipoid families, the cynipid larva is neither hypermetamorphic nor markedly caudate.

The cynipids are subdivided into four tribes -Aulacideini, Synergini, Rhoditini and Cynipini, but the Aulacideini is a paraphyletic assemblage. Although the Rhoditini and the Cynipini could be linked together as a subfamily, the remaining taxa would be paraphyletic and could not be justified as a second subfamily. Thus in the following classification all the tribes are included in a single subfamily - Cynipinae.

Aulacideini

The species of this tribe form simple galls, often stem-galls, on a wide range of host plants. They have a simple life-cycle and an unspecialized morphology. The pronotum is long, and the gaster and hypopygium are simple.

Synergini

Species of the Synergini have a distinctive biology, inquilinism, and are morphologically derived. In particular the structure of the hypostomes (Fig. 45) and pronotum is similar to that of the Figitidae (homoplasy). The gaster usually appears to consit of a single tergite (tergite 2 fused with tergite 3) and the maxillary palps are reduced to four segments. The Synergini is a very specialized tribe and this has, in the past, made them difficult to place, but it has now been shown (character 159) that they are indubitably members of the Cynipidae.

Rhoditini

This tribe is represented in the Holarctic region by

Diplolepis, which has a specialized plough-blade like hypopygium (Fig. 126). The species mostly make stem or leaf-galls on Rosaceae. Eschatocerus, from Acacia galls in the Neotropical region, has a similar hypopygium.

Cynipini

The Cynipini contains the most derived gall-formers, they usually make complex galls on Oak and have complex heterogonous life cycles. Like the Rhoditini they have (in dorsal view) a very short pronotum (median length less than 1/7 of lateral height). The hypopygium is modified into a long spine (Fig. 127) which has ventral hairs.

Ibaliidae

This family consists of the Austrocynipinae plus two previous families, the "Ibaliidae" and "Liopteridae". The Ibaliidae now contains all the large cynipoids (4.5 -30mm) that are parasitoids of xylophagous larvae. The very long ovipositor of these cynipoids is coiled in a loop within the gaster (Figs 154b, 154c). Adult emergence is helped by the presence of strong mandibles and coarse sculpture on the head and thorax. The Ibaliidae tend to have distinct biogeographical distribution patterns.

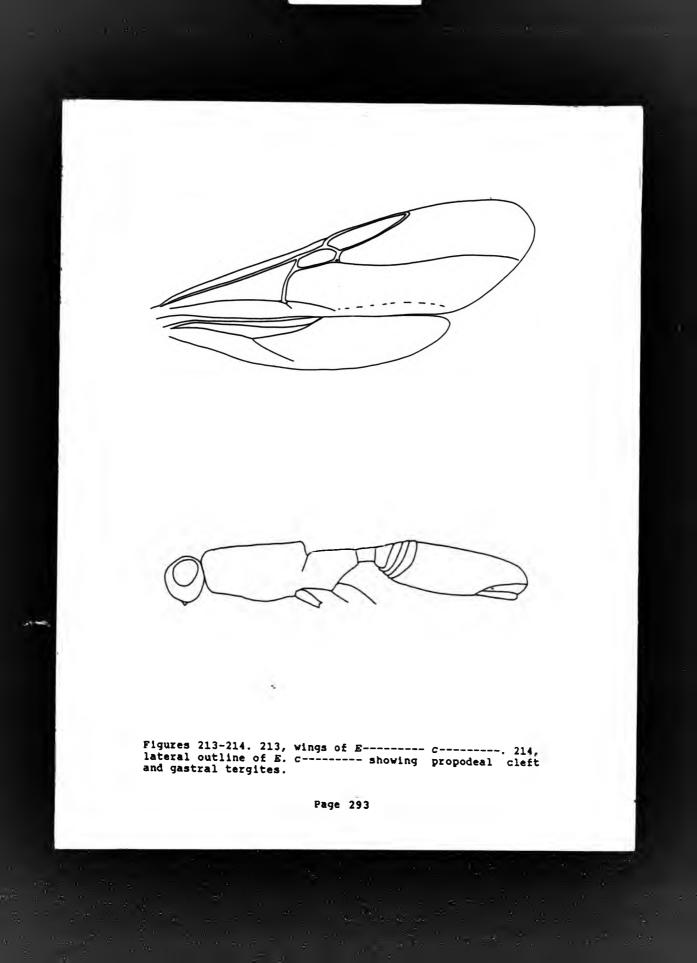
Austrocynipinae

This subfamily consists of a single aberrant species (Fig. 159) which has a pseudopterostigma on the forewing; fan-like facial striae; 15-segmented antennae; a pronotal hump; a distinctive petiolar flange and an almost globular gonostylus. This is the only species with a coiled ovipositor not to have a distinct expansion of the distal gastral segments. The male is unknown.

Ibaliinae

The Ibaliinae have the hypostomal region set in a cavity (Fig. 39). The face has a weak central ridge (except E------) and there is a normally a dorsal tooth on the pronotum (Fig. 70). The posterior gastral tergites are expanded to accommodate the long coiled ovipositor,

and the last tergite has a slighty upturned end.


Ibaliini

The Ibaliini is represented by a single genus Ibalia (Fig. 150) (although there may be further genera, see Chapter 5). It is defined by many autapomorphies. It has an occipital suture with vertical striae; a frontolateral precoxal tooth on the pronotum, and the rear of the scutellum has a transverse ridge which is interrupted centrally by a large emargination. The metanotal spiracle appears to be functional and the propodeal spiracle has a figure-of-eight shaped opening. The upper part of the metapleural trough is present and has a strong horizontal groove (Fig. 71). Wing venation: the hindwing has a closed basal cell; in the forewing there is a trace of vein C, a long marginal cell (9 times as long as broad), vein 2rs-m is vertical and under vein 2r-rs, and the cubitus (Rs+H) is complete and joined with Rs & M (Fig. 102). The midleg has only a single tibial spur, the hindleg has a long blunt projection on the second tarsal segment (Fig. 123) and the hind basitarsus is very long (about twice as long as tarsal segments 2-5 combined). The petiole is smooth and the gaster is laterally compressed and blade-like (Fig. 150).

Ibalia is the only member of the Ibaliidae to have had its larvae studied. The larval instars have large sharp mandibles, the first instar is polypodeform (Fig. 157) and late instars are the only cynipoid larvae reported to have spiracles with valves.

E----ini New Tribe

This new tribe is described in Appendix 3, it has several distinctive characteristics (Figs 213, 214): antennae 14-segmented; thorax long and thin, in side view about three times longer than high. The propodeum is very long and separated from the metanotum by a deep incision. The seventh gastral tergite is greatly elongate and forms most of the gaster. The placement of this genus in a position between the Ibaliini and Liopterini tends to

confirm that the separation of these two taxa into families was an excessive division.

Liopterini

These insects all have a notch or depression in the centre of the clypeal margin, although this can be weak (e.g. Kiefferiella). The metapleural trough is obscured by sculpture and the posterolateral corners of the mesonotum end in a flange. A number of species have scutellar spines and modifications to the legs (e.g. Fig 125) which aid egress from the trees in which their hosts live. The petiole is often long and tangentially attached to the gaster (Fig. 132).

The Liopterini is not easily subdivided, the old subfamilies ("Oberthuerellinae", "Mesocynipinae" and the "Liopterinae") could be recognised as subtribes but only the "Oberthuerellina" would be holophyletic, the "Liopterina" and "Mesocynipina", or a fusion of the two, would be paraphyletic assemblages. The only reasonable alternative is to treat them as generic groups and to recognise the strength of the morphological and biogeographic isolation of the general near Oberthuerella. The latter is the best solution, especially as subtribes have not previously been employed in the Cynipoidea and are not needed elsewhere in this classification.

Himalocynipidae New family

The phylogenetic reconstruction shows that Himalocynips vigintilis constitutes an independent lineage of the Cynipoidea. Himalocynips is a very distinctive insect (Fig. 158) with many unique features. The clypeus projects upwards and away from the labrum. The face has two vertical grooves separated by a keel, which extends from the anterior tentorial pits to the toruli. The hypostomes have the lower tentorial bridge exposed and wide. The antennae have 20 segments, and these are densely punctate, and have very short placoid sensilla. The pronotal plate has straight lateral carinae, a thin frontal bar and a pointed caulis. The axillar flange is horizontal, the junction between the axillae and the

scutellum is evident, the axillar bar is transverse, and the scutellar foveae are transverse and almost triangular. The anterior corner of the scutellum bears a flange (this is on the mesoscutum in other cynipoids). The posterior region of the scutellum has a distinctive, approximately triangular, depression.

It is possible that this genus was derived from ancestors of the Ibaliidae but so long and so many specializations ago that the morphological links have been lost. Creation of a family for a single species is not something that should be done casually. However, the alternatives have been examined and rejected (see Chapter 5).

Figitidae

The Figitidae have a distinctive venation with vein Rs+M pointing at the junction of the basalis with the median (Fig. 111). The back of the head is flat, the hypostomal bridge is present and hypostomal fusion is complete (Figs 41-43, 46-48). The pronotum has at least a trace of lateral carinae and a gonostylus is present (except in the Anacharitinae).

This arrangement is the most controversial of the proposed changes because it merges the three previous families of small non-phytophagous cynipoids ("Figitidae", "Eucoilidae" and "Charipidae") into one new family.

The "Charipidae" cannot be justified as a family purely on its hyperparasitoid lifeway. Indeed in many other Hymenoptera (e.g. the Megaspilidae), hyperparasites and parasites occur together in the same taxonomic group, or even in the same species in some chalcids. The distinctive features of the hyperparasitoid cynipoids are functions of their small size, and family level status cannot be justified on these features alone. In fact the extralimital genus Lytoxysta makes it difficult to sustain even a tribal rank for these cynipoids.

The "Eucoilidae" represent the apex of cynipoid evolution; this group has dramatically radiated - to the point where it accounts for the majority of cynipoid

species. The group is very well-defined with many "strong" characters. Indeed, this is the main problem of the figitid classification. Compared to its relatives the "Eucoilidae" is almost overdistinct (Quinlan, 1979) and thus appears to justify a higher status than it truly deserves. The reconstruction shows that the "Eucoilidae" cannot be more than a tribe. This explains why the classification of the small parasitoids was so poor - one very successful tribe has dominated the other less numerous "also rans" of the Figitidae.

Anacharitinae

The Anacharitinae have spine-like lower teeth to the mandibles (Fig. 24) and the claws have a fine basal spine. The hypostomal carinae are curved. The petiole has elements of the collar present ventrally and laterally but not dorsally. Although, examples (e.g. Anacharis) with long petioles tend to lose the collar. Finally the ovipositor has lost both the bridge and the bulbus articulation.

Aspicerinae

The aspicerines are easily recognized by their scutellum, which has three long carinae, one median and two lateral (Fig. 78). The mesoscutal line is distinctive and in the form of an inverted Y (Fig. 77). The hind tibia usually has a longitudinal ridge or furrow on the outer or posterior surface (Fig. 124). The petiole is short and the second gastral tergite is saddle-shaped (Fig. 129). Aspicerines are slightly larger than most other Figitidae as they are parasitoids of relatively large dipterous hosts (Syrphidae).

Figitinae

This subfamily is not strongly defined, it is based on a single character reversal (character 50 - see chapter 5). Either there is a dorsal pronotal plate or the lateral carinae of the pronotum are reduced (e.g. Charipini - Fig. 67). It is the many reduction states of the Charipini that make this part of the classification particularly

difficult to improve.

Pycnostigmatini

This tribe is very well characterized, especially by its specialized venation. It has a pseudopterostigma; vein Rs is short; the marginal cell is absent, as are veins M, 2rs-m and Rs&M (Figs 110, 149). The antennae have 12 to 19 segments in the female and 15 segments in the male. The labial palps have only 2 segments, the lower mandibular tooth is scythe-like (Fig. 98), the axillae are reduced, the gonostylus has a notch and the short petiole has two ventral notches. The hosts of this tribe are unknown.

Charipini

These species are all small (1-2mm) and the tribe is defined by size-related characters, vein area reduced to the upper inner guarter (Figs 116, 117) and lack of thoracic sculpture (Figs 81, 82). Neither feature is particularly "strong", and one genus (Lytoxysta) has some thoracic sculpture. Also some Eucoilini may approach the Charipini both these features. The genera near in Alloxysta are hyperparasitoids of aphids and those near Dilyta are hyperparasitoids of psyllids, in both groups the primary hosts are other Hymenoptera. These two generic groups are not well distinguished. Alloxysta + Phaenoglyphis share character 39.2 (placoid sensilla from segment 5 onwards) which is a very poor character. Dilyta + Apocharips share two allometric features (98 & 102) and have the terminal antennal segments partially fused, a character of doubtful value. Other characters have been used as delimiters (e.g. mandibular shape, tergal proportions, presence of a frontoclypeal sulcus, open / closed marginal cell) but they all fail to some extent. Menke and Evenhuis (in prep.) recently considered this problem but found no real support for a subdivison.

Only the genera near Alloxysta have had their larvae described, the first instars are heavily chitinized and have a stigma-like anus.

Figitini

The Figitini are paraphyletic. The genera near Figites form the sister-group of the Eucoilini. This group of genera have a metapleural trough with a constriction and a sinuate lower margin. There is a ruff of hairs on the second gastral segment (e.g. Fig. 135), also the side of the petiole has a small notch (Fig. 137). Along with the Eucoilini these genera have a strongly developed pronotal plate and a cavity in gonostylus 9. The remaining Figitini (genera near Melanips) lack the ring of pubescence but are without a synapomorphy.

The first instar larva of the Figitini is similar to the eucoilidiform type of larva and is probably the precursor of this larval type.

Eucoilini

The Eucoilini is extremely well-defined with no less than nine synapomorphies. The palp segments are reduced to four maxillary and two labial segments, the malar sulcus is present as a fine band of longitudinal striae. The hypostomal fusion is complete and the suture is lost. The pronotal plate is raised frontodorsally and has a strong posterior margin. The junction of the axillae with the scutellum is distinct and the axillary bar is vertical. A pubescent anteroventral cavity 15 present on the metapleuron (Fig. 88), the legs have a strigil with fine sharp teeth and the petiole has a ventral keel. The most characteristic feature being the raised tear-drop shaped plate on the scutellum (Figs 84-87). The Eucoilini have a characteristic type of first instar larva, named after this group, the eucoilidiform larva (Fig. 157e).

CONCLUDING REMARKS .

Present and past classifications

Past classifications of the Cynipoidea have been criticized (Menke, 1989; Ritchie, 1988) for their dearth of characters and for representing biology rather than morphology. In this investigation the extensive morphological survey has remedied the first point. The second criticism was answered by investigating the biology only after the morphological characters had been analysed and a phylogeny reconstructed. In fact the new classification is very well-supported by biological, distributional, fossil and other evidence.

The comment (Ritchie, 1988) that there are genera that appear to be intermediate between two or more "subfamilies" has now been shown to be true. Where possible this has been resolved but the generic groups of the Liopterini and the tribes Figitini and Aulacideini remain paraphyletic. Paraphyletic assemblages are almost inevitable in complex, highly homoplasious, groups like the Parasitica. But such assemblages can still be useful as long as it is remembered that they are not uniquely defined by apomorphies (Gauld & Mound, 1982).

The high level of homoplasy that is prevalent in the parasitic Hymenoptera has not prevented the production of a robust reconstruction. Also the establishment of polarity proved to be relatively straightforward. So it is claimed that the analysis and reconstruction represent a success. One aspect of this study, the status of the Eucoilini, has particularly highlighted the advantages of a reasoned phylogenetic classification. This approach has enabled the, very understandable, overgrading of what is now known to be only a tribe (Eucoilini), even if a very well-defined tribe, to be recognized.

Future improvements

It is not suggested that the reconstruction presented in this investigation (Figs 215-218) is the one and only correct answer, of course new characters will be discovered and more exceptions to existing features will be found. Although a representative selection of taxa have been analysed and a wide range of extra taxa have been examined, it was not possible extensively to investigate all the taxa. Therefore the study of other taxa will give rise to corrections and improvements. However, this first cladistic reconstruction of cynipoid phylogeny provides a strong and reasoned foundation for future work. Hopefully the existence of this thesis will now make posible more compartmentalized (smaller but more detailed) research, and that should help future workers.

Hopefully further fossil evidence will be discovered that will improve the knowledge of the first node of the tree. The discovery of an early Cretaceous Ibaliid would tell us much about the position of the ancestors of the Cynipoidea, in relation to other Hymenoptera and, the relationships of the four cynipoid families.

More research is need into some of the rare extralimital taxa, especially the Australian genera. The

I BALI I NAE	EUCOILINI FIGITINI (p)
•	EUCOILINI FIGITINI (p)
•	EUCOILINI FIGITINI (p)
AUSTROCYNIP	INAE EUCOILINI FIGITINI (p)
. AUSTROCYNIP	EUCOILINI FIGITINI (p) FIGITINI (p)
	EUCOILINI FIGITINI (p) FIGITINI (p)
	FIGITINI (p)
	FIGITINI (p)
	FIGITINI (p)
	FIGITINI (p)
	•
	•
	CULDIDIT.
FIGITINAE	CHARIPINI
•	PYCNOSTIGMATINI
•	-
•	THOREAUELLINI
ASPICERINAE	
ANACHARITIN	AE
CYNIPINAE	AULACIDEINI (p)
	AULACIDEINI (p)
	SYNERGINI
	14 6 10
	CYNIPINI

validity of the Charipini and especially the "awkward" genus Lytoxysta would benefit from an autapomorphy that could inspire some confidence.

Finally, the biology of three very specialized genera (Himalocynips, Austrocynips and Pycnostigmus) is unknown and information on these would help improve our understanding of the Cynipoidea.

NEW compared with the OLD classification

IBALIIDAE	Ibaliidae, Liopteridae & Austrocynipinae
IBALIINAE	= Ibaliidae + Liopteridae
IBALIINI	no change
EINI	new tribe, genus and species
LIOPTERINI	downgraded from a family
AUSTROCYNIPINAE	no change, but moved from the Cynipidae
HIMALOCYNIPIDAE	upgraded from a subfamily of Figitidae
FIGITIDAE	= Figitidae + Charipidae + Eucoilidae
FIGITINAE	= Figitinae + Charipidae + Eucoilidae
EUCOILINI	downgraded from a family
FIGITINI	no change
CHARIPINI	downgraded from a family
PYCNOSTIGMATINI	down & moved from subfamily of Cynipidae
Australofigites	downgraded from a tribe
THOREAUELLINI	upgraded from a genus
ASPICERINAE	no change
ANACHARITINAE	no change
CYNIPIDAE	no change
AULACIDEINI	no change
SYNERGINI	no change
RHODITINI	no change
CYNIPINI	no change
	-

Table 54. Changes to the cynipoid classification. [Also Paramblynotus is synonymized under Kiefferiella].

A = .18.20.44.100, 1.104.145.148.150.

Figure 215. Scenario of the four families of the Cynipoidea. [R = reversal. Polarity of 159 reversed.]

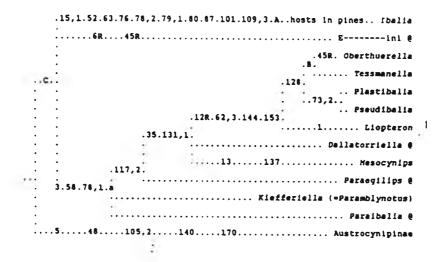


Figure 216. Scenario of the Ibaliidae.

[A = 122 126.2 127 138.3 143 146; B = 25 35R 62.4 69 118 131.2; C = 6 19 24.1 45 149.1 156. P = parallelism; R = reversal; a = hosts in deciduous trees; 0 = extralimital taxa, with apomorphies not included in analysis.]

• • • • •	Gell a wide range of plants Aulacideini
	Gall Rosaceae Øiøstophus (Aulacideini) §
	44regained24,3P26,1PInquilines Synergini @
.sh	.ploughblade-like hypopygium. Gall mostly Rose. Rhoditini @ rt prenotum.

Figure 217. Scenario of the Cynipidae. [@ = extralimital taxa. P = Parallelism.]

	.2,3.9,2.26,J.51,2.61,2.66A. Eucoilini 51,1.165.dipterous hosts.
	parasitoids of dipterous hosts Nelanips / Lonchidia [? Sarothrus Pegocynips Paraschizal @
	?? Australofigites @
49R.50	?? 2? Lytoxysta (? Charipini) @
	5765155parasitoids of Syrphidae (Diptera) Aspicerinae
.23.27.1	30.133.163.164.167R.168R parasitoids of Neuroptera Anacharitinae

Figure 218. Scenario of the Figitidae.

1.4

A = 77 124 136 147P; B =109.1 113.2 141 169. P = parallelism; R = reversal; ?? = lineage requiring more study; @ = extralimital taxa, with apomorphies not included in analysis.]

REFERENCES

Abrahamson, W.G. & McCrea, K.D. 1986. The impacts of galls and gallmakers on plants. Proceedings of the Entomological Society of Washington 88: 364-367.

Achterberg, C. van. 1977. Sensory bristle-fields of the petiolar segment in some Hymenoptera. Entomologische Berichten 37: 101-102.

Adler, H. 1881, Ober den Generationswechsel der Bichen -Gallwespen. Zeitschrift für Wissenschaftliche Zoologie 35: 151-246.

Alam, J. van den. 1969. Reproductive behaviour of Pseudoeucoilia bochei 1. A. description of courtship behaviour. Netherlands Journal of Zoology 19: 641-648.

Alam, J. van den. 1970. Courtship and mating in Lariophagus distinguendus (Först.). (Hymenoptera, Pteromalidae). Netherlands Journal of Zoology 20: 329-352.

Alberch, P. 1980. Ontogenesis and morphological diversification. American Zoologist 20: 653-667.

Arnold, E.N. 1981. Estimating phylogenies at low levels. Zeitschrift für zoologische Systematik und Evolutionsforschung 19: 1-35.

Ashlock, P.D. 1971. Monophyly and associated terms. Systematic Zoology 20: 63-69.

Ashmead, W.H. 1899. Super-families in the Hymenoptera and generic synopses of the families Thynidae, Myrmosidae and Mutillidae. Journal of the New York Entomological Society 7: 45-60.

Ashmead, W.H. 1903. Classification of the gall-wasps and the parasitic cynipoids, or the superfamily Cynipoidea 3.

Psyche, Cambridge 10: 140-155.

Askew, R.R. 1961. On the biology of the inhabitants of Oak galls of Cynipidae (Hymenoptera) in Britain. Transactions of the Society for British Entomology 14: 237-268.

Askew, R.R. 1971. Parasitic insects. 316pp. London.

Askew, R.R. 1984. The biology of gall wasps. In Ananthakrishnan, T. W. The biology of gall insects. 400pp. London.

Askew, R.R. & Shaw, M.R. 1986. Parasitoid communities: their size structure and development. Symposia. Royal Entomological Society of London 13: 225-264.

Axelrod, D.I. 1959. Poleward migration of early Angiosperm flora. Science 130: 203-207.

Barlin, M.R. & Vinson, S.B. 1981. Multiporous plate sensilla in antennae of the Chalcidoidea (Hymenoptera). International Journal of Insect Morphology and Embryology 10: 29-42.

Barlin, M.R., Vinson, S.B. & Piper, G.L. 1981. Ultrastructure of the antennal sensilla of the Cockroach-egg parasitoid, Tetrastichus hagenowii (Hymenoptera: Eulophidae). Journal of Morphology 168: 97-108.

Baust, J.G., Grandee, R., Condon, G. & Morrissey, R.E. 1979. The diversity of overwintering strategies utilized by separate populations of gall insects. *Physiological* 20010gy 52: 572-580.

Beijerinck, M.W. 1877. De legboor van Aphilothrix radicis Fabr. Tijdschrift voor Entomologie 20: 186-198.

Benson, R.B. 1942. Studies in Siricidae, especially of

Europe and Southern Asia (Hymenoptera, Symphyta). Bulletin of entomological Research 34: 27-51.

Bequaert, J. 1924. Galls that secrete honeydew. A contribution to the problem as to whether galls are altruistic adaptations. Bulletin of the Brooklyn Entomological Society 19: 101-124.

Berlese, A. 1913. Intorno alle metamorfosi degli insetti. Redia 9: 121-136.

Bernays, E.A. 1981. Plant tannins and insect herbivores: an appraisal. Ecological entomology 6: 33-360.

Bin, F. & Vinson, S.B. 1986. Morphology of the antennal sex gland in male Trissolcus basalis (Woll) (Hymenoptera, Scelionidae) an egg parasite of the Green Stink bug Nezara viridula (Hemiptera, Pentatomidae). International Journal of Insect Morphology and Embryology 15: 129-138.

Bishop, M.J. 1982. Criteria for the determination of the direction of character state changes. Zoological Journal of the Linnean Society 74: 197-206.

Blair, K.G. 1944. A note on the economy of the rose bedeguar gall, Rhodites rosae L. Proceedings and Transactions of the South London Entomological and Natural History Society 1943-1944: 55-59.

Borden, J.H., Chong, L & Rose, A. 1978. Morphology of elongate Placoid sensillum on the antenna of Itoplectis conquistor. Annals of the Entomological Society of America 71: 223-277.

Borden, J.H., Rose, A. & Charney, R.J. 1978. Morphology of the elongate sensillum placodeum on the antennae of Aphidius smithi (Hymenoptera: Aphidiidae). Canadian Journal of Zoology 56: 519-525.

Börner, C. 1919. Stammesgeschichte der Hautflüg.

Biologisches Zentralblatt 39: 145-186.

Bouché, P.F. 1834. Naturgeschichte der Insekten, besonders in Hinsicht ihrer ersten. Zustande als larven und puppen. 216pp. 10pls. Berlin.

Boulétreau & Wajnberg, E. 1986. Comparative responses of two sympatric parasitoid cynipids to the genetic & epigenetic variations of the larvae of their host, Drosophila melanogaster. Entomologia Experimentalis et Applicata 41: 107-114.

Bradley, J. 1958. The phylogeny of the Hymenoptera. Proceedings of the International Congress of Entomology 10: 265-269.

Bremer, K. & Wanntorp, H.E. 1978. Phylogenetic systematics in Botany. Taxon 27: 317-329.

Brenner, G.J. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. In Beck, C.B. Origin and early Evolution of Angiosperms. pp. 23-47. New York.

Bronner, R. 1973. Propriétés lytiques des oeufs de Biorhiza pallida Ol. [Male et Femelle]. Compte Rendu de l'Academie des Sciences (D) 276: 189-192.

Bronner, R. 1977. Contributions a l'etude histochimique des tissus nourriciers des zoocecidies. Marcellia 40: 1-134.

Brues, C.T. 1910. The parasitic Hymenoptera of the Tertiary of Florissant, Colorado. Bulletin of the Huseum of Comparative Zoology 54: 1-125.

Brues, C.T. 1921. Correlation of taxonomic affinities with food habits in Hymenoptera with special reference to parasitism. American Naturalist 55: 134-164.

Brues, C.T. 1927. Observations on wood-boring insects,

their parasites and other associated insects. Psyche, Cambridge 34: 73-90.

Burks, B.D. 1979. Cynipoidea. In. Krombein, K.V., Hurd, P.D., Smith, D.R. & Burks, B.D. (Eds.) Catalog of Hymenoptera in America North of Mexico 1: 1045-11087.

Cameron, P. 1890. A monograph of the British phytophagus Hymenoptera. 3. 274pp. London.

Cantino, P.D. 1985. Phylogenetic inference from non-universal derived character states. Systematic Botany 10: 110-123.

Carpenter, F.M., Folsom, J.W., Essig, E.O., Kinsey, A.C., Brues, C.T., Boesel, M.W. & Ewing, H.E. 1937. Insects and arachnids from Canadian amber. University of Toronto Studies Geological Series 40: 21-28.

Carton, Y. & Boulétreau, M. 1985. Encapsulation ability of Drosophila melanogaster: a genetic analysis. Developmental and Comparative Immunology 9: 211-219.

Carton, Y., Boulêtreau, M., Alphen, J.J.M. Van & Lenteren, J.C. Van. 1986. The Drosophila parasitic wasps. In. Ashburner, M. & Wright, T.R.F. The genetics and biology of Drosophila. 3c. pp. 347-394. London.

Carton, Y. Chibani, F. Haouas S. & Marrakchi, M. 1987. Egg-laying strategy under natural conditions of Leptopilina boulardi a hymenopteran parasite of Drosophila spp. Entomologia experimentalis et Applicata 43: 193-210.

Carton, Y. & David, J.R. 1983. Reduction of fitness in Drosophila adults surviving parasitization by a cynipid wasp. Experientia 39: 231-233.

Cave, R.D. & Miller, G.L. 1987. Notes on Anacharis melanoneura (Hymenoptera, Figitidae) and Charitopes mellicornis (Hymenoptera: Ichneumonidae) parasitizing Micromus posticus (Neuroptera: Hemerobidae). Entomological News 98: 211-216.

Chambers, V.H. 1955. some hosts of Anteon spp. (Hym., Dryinidae) and a Hyperparasite Ismarus (Hym., Belytidae). Entomologist's Monthly Magazine 91: 114.

Chrystal, R.N. 1930. Studies on the Sirex parasites. Oxford Forestry Memoires 11: 1-63.

Clausen, C.P. 1940. Entomophagous Insects. 688pp. New York.

Clutton-Brock, T.P. & Harvey, P.H. 1984. Comparative approaches to investigating adaptation. In Krebs, J. & Davies N. (eds) Behavioural ecology: an evolutionary approach. pp. 7-29. New York.

Cockerell, T.D.A. 1890. The evolution of insect galls. Entomologist 23: 73-76.

Cockerell, T.D.A. 1921. Fossil arthropods in the British Museum. V. Oligocene Hymenoptera from the Isle of Wight. Annals and Magazine of Natural History (9) 7: 1-25.

Colless, D.H. 1967. The phylogenetic fallacy. Systematic Zoology 16: 289-295.

Colless, D.H. 1969. The interpretation of Hennig's "Phylogenetic systematics" - a reply to Dr Schlee. Systematic Zoology 18: 115-126.

Comstock, J.H. 1918. The wings of insects. 430pp. New York.

Connold, E.T. 1901. British Vegetable galls. xii + 312pp. London.

Copland, M.J.W. 1976. The female reproductive system of

the Aphilinidae (Hymenoptera: Chalcidoidea). International Journal of Insect Morphology and Embryology. 5: 151-166.

Copland, M.J.W. & King, P.E. 1971. The structure and possible function of the reproductive system in some Eulophidae and Tetracampidae. Entomologist 104: 4-28.

Copland, H.J.W. & King, P.E. 1972a. The structure of the female reproductive system in the Torymidae (Hymenoptera: Chalcidoidea). Transactions of the Royal Entomological Society of London 124: 191-212.

Copland, M.J.W. & King, P.E. 1972b. The structure of the female reproductive system in the Eurytomidae (Hymenoptera: Chalcidae). Journal of Zoology, London 166: 185-212.

Copland, M.J.W. & King, P.E. 1972c. The structure of the female reproductive system in the Chalcididae (Hym.) Entomologist's Monthly Magazine 107: 230-239.

Copland, M.J.W., King, P.E. & Hill, D.S. 1973. The structure of the female reproductive system in the Agaonidae (Chalcidoidea, Hymenoptera). Journal of Entomology A 48: 25-35.

Cornell, H.V. 1983. The secondary chemistry and complex morphology of galls formed by the Cynipinae (Hymenoptera): why and how? American midland naturalist 110: 225-234.

Cosens, A. 1912. A contribution to the morphology and biology of insect galls. Transactions of the Royal Canadian Institute 9: 297-387.

Couper, R.A. 1958. British Mesozoic microspores and pollen grains, a systematic and stratigraphic study. Palaeontographica (B) 103: 75-179.

Cracraft, J. 1974. Phylogenetic models and classification. Systematic Zoology 23: 71-90. Cracraft, J. 1979. Phylogenetic analysis, evolutionary models and paleontology. In Cracraft, J. & Eldridge, N. Phylogenetic Analysis and Palaeontology. 7-39. New York.

Craige, T.P., Price, W. & Itami, J.K. 1986. Resource regulation by a stem-galling sawfly on Arroyo willow. Ecology 67: 419-425.

Creber, G.T. & Chaloner, W. G. 1985. Tree growth in the Mesozoic and early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology 52: 35-60.

Crisci, J.V. 1980. Evolution in the subtribe Nassauviniinae (Compositae, Mutiseae): a phylogenetic reconstruction. Taxon 29: 213-240.

Crisci, J.V. & Stuessy, T.F. 1980. Determining primitive character states for phylogenetic reconstruction. Systematic Botany 5: 112-135.

Cronquist, A. 1968. The evolution and classification of flowering plants. 396pp. London.

Crowson, R.A. 1970. Classification and Biology. 350pp. New York.

Crozier, R.H. 1975. Hymenoptera. Animal Cytogenetics 3(7): 1-95.

Dahams, E.C. 1984. An interpretation of the structure and function of the antennal sense organs of Melittobia australica (Hymenoptera: Eulophidae) with the discovery of a large dermal gland in the male scape. Memoirs of the Queensland Museum 21: 361-85.

Dalla Torre, K.W. & Kieffer, J.J. 1910. Cynipidae. Das Tierreich 24: 1-891.

Daly, H.V. 1963. Close-packed and fibrillar Huscles of the

Hymenoptera. Annals of the entomological society of America 56: 295-306.

Danforth, B.N. 1983. The evolution of Hymenopteran wings: The importance of size. 105pp. Kansas.

Danforth, B.N. & Michner, C.D. 1988. Wing folding in the Hymenoptera. Annals of the Entomological society of America 81: 342-349.

Darlington, A. 1968. The pocket encyclopaedia of plant galls in colour. 191pp. London.

Darwin, C. 1859. On the Origin of the Species by means of Natural Selection. 440pp. London.

Day, W.H.E. 1983. Computationally difficult problems in phylogenetic systematics. Journal of Theoretical Biology 103: 429-438.

Day, W.H.E. & Sankoff, D. 1988. Computational complexities of inferring phylogenies by compatibility. Systematic Zoology 35: 224-239.

Dessart, P. 1963. Contribution a l'étude des Hyménoptères Proctotrupoidea. Revision des Aphanogmus (Ceraphronidae) décrites par C.G. Thomson. Bulletin et Annales de La Societé Royal d'Entomologie de Belgique 99: 387-416.

Diaz, N.B. 1973. Una familia de Cynipoidea nueva para la Argentina. Neotropica 19(60): 141-144.

Dilcher, S. 1973. A palaeoclimactic interpretation of the Eocene floras of South East North America. In Graham, A. The Vegetation and Vegetational History of Northan Latin America. pp. 36-59. Amsterdam.

Dodds, K.S. 1938. Chromosome numbers and spermatogenesis

in some species of the Hymenopterous family Cynipidae. Genetica 20: 67-84.

Domenichini, G. 1953. Studio sulla morfologia dell'addome degli Hymenoptera Chalcidoidea. Bolletino di Zoologia Agraria e Bachicolture 19 (3): 1-115.

Eady, R.D. 1968. Some illustrations of microsculpture in the Hymenoptera. Proceedings of the Royal Entomological Society of London A 43: 66-72.

Eady, R.D. 1974. The present state of nomenclature of wing venation in the Braconidae (Hymenoptera), its origins and comparison with related groups. Journal of Entomology (B) 43: 63-72.

Eady, R.D. & Quinlan, J. 1963. Hymenoptera Cynipoidea. Key to families and subfamilies, and Cynipinae (including galls). Handbooks for the Identification of British Insects 8(1a): 1-81.

Edson, K.M. & Vinson, S.B. 1979. A comparative morphology of the venom apparatus of female braconids (Hymenoptera: Braconidae). Canadian Entomologist 111: 1013-1024.

Edson, K.H., Vinson, S.B., Stoltz, D.B. & Summers, M.D. 1981. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid's host. Science 211: 582-583.

Eggleton, P. 1989. The phylogeny and evolutionary biology of the pimplinae (Hymenoptera: Ichneumonidae). 295pp. London. (Unpublished thesis.)

Eldredge, N. 1979. Cladism and common sense. In Cracraft, J. & Eldridge, N. Phylogenetic Analysis and Paleontology. pp. 165-198. New York.

Eldredge, N. & Cracraft, J. 1980. Phylogenetic Patterns

and the Evolutionary Process. 349pp. New York.

Eldredge, N. & Tattersall, I. 1975. Evolutionary models, phylogenetic reconstruction, and another look at hominid phylogeny. Contributions to Primatology 5: 218-242.

Ellington, C.P. 1975. Non-steady state areodynamics & flight of Encarsia formosa. In Wu, T.Y, Brokau, C.J. & Brennen, C. Swimming & flying in nature. 2: 763-796.

Eskafi, F.M. & Legner, E.F. 1974a. Parthenogenetic reproduction in Hexacola sp. near websteri, a parasite of Hippelates eye gnats. Annals of the Entomological society of America 67: 767-768.

Eskafi, F.H. & Legner, E.F. 1974b. Descriptions of immature stages of the Cynipid Hexacola sp. near websteri (Eucoilidae: Hymenoptera), a larval-pupal parasite of Hippelates eye gnats (Diptera: Choropidae). Canadian entomologist 106: 1043-1048.

Estabrook, G.F. & Anderson, W.R. 1978. An estimate of phylogenetic relationships within the genus Crusea (Rubiaceae) using character compatibility analysis. Systematic Botany 3: 179-196.

Estabrook, G.F., Johnson, C.S. & McMorris, F.R. 1976a. An algebraic analysis of cladistic characters. Discrete Mathematics 16: 141-147.

Estabrook, G.F., Johnson, C.S. & McMorris, F.R. 1976b. A mathematical foundation for the analysis of cladistic character compatibility Mathematical Bioscience 29: 181-187.

Estabrook, G.F. & Meacham, C.A. 1979. How to determine the compatibility of undirected character state trees. Mathematical Bioscience 46: 251-256.

Estabrook, G.F., Stauch, J.G. & Fiala, K.L. 1977. An application of compatibility analysis to the Blackith's data on orthopteroid insects. Systematic Zoology 26: 269-276.

Evans, D. 1965. The life History and immature stages of Synergus pacificus McCrchen & Egbert (Hymenoptera: Cynipidae). Canadian Entomologist 97: 185-188.

Evenhuis, H.H. 1982 In Achterberg, C. van. Familietabel van de Hymenoptera in Noordwest-Europa. Wetenschappelijke Mededelingen von de Koninklijke Nederlandse Natuurhistorische Vereniging 152: 1-27.

Farish, D.J. 1972. The evolutionary implications of qualitative variation in the grooming behaviour of the Hymenoptera (Insecta). Animal Behaviour 29: 662-676.

Farris, J.S. 1969. A successive approximations approach to character weighting. Systematic Zoology 18:374-385.

Farris, J.S. 1970. Methods for computing Wagner trees. Systematic Zoology 19: 83-92.

Farris, J.S. 1974. Formal definitions of paraphyly and polyphyly. Systematic Zoology 23: 548-554.

Farris, J.S. 1977. Phylogenetic analysis under Dollo's Law. Systematic Zoology 26: 77-88.

Farris, J.S. 1979. The information content of the phylogenetic system. Systematic Zoology 28: 483-519.

Farris, J.S. 1983. The logical basis of phylogenetic analysis. In Platnick, N. J. & Funk, V.A. Advances in cladistics 2: 7-36.

Farris, J.S., Kluge, A.G. & Eckardt, M.J. 1970. A numerical approach to phylogenetic systematics. Systematic

Zoology 19: 172-189.

Felsenstein, J. 1973. Maximum likelihood estimation of evolutionary trees from continous characters. American Journal of Human Genetics 25: 471-492.

Felsenstein, J. 1978a. The number of evolutionary trees. Systematic Zoology 27: 27-33.

Felsenstein, J. 1978b. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27: 401-410.

Felsenstein, J. 1979. Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology 28: 49-62.

Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological Journal of the Linnean Society 16: 183-196.

Felsenstein, J. 1982. Numerical methods for inferring evolutionary trees. Quarterly Review of Biology 57: 379-404.

Felt, E.D. 1940. Plant galls and gall makers. 364pp. New York.

Fergusson, N.D.H. 1980. A revision of the British species of Dendrocerus Ratzeburg (Hymenoptera: Ceraphronoidea) with a review of their biology as aphid hyperparasites. Bulletin of the British Museun (Natural History) Entomology 41: 255-314.

Fergusson, N.D.H. 1983. A review of the genus Platytelenomus Dodd (Hymenoptera: Proctotrupoidea). Entomologist's Monthly Magazine 119: 199-206. Fergusson, N.D.M. 1985. British species of the parasitic cynipid-wasp genus Aegilips (Hymenoptera: Cynipoidea, Anacharitinae). Journal of Natural History 19: 811-818.

Pergusson, N.D.M. 1986. Charipidae, Ibaliidae & Figitidae. Hymenoptera, Cynipoidea. Handbooks for the Identification of British Insects 8(1c): 1-55.

Fergusson, N.D.H. 1988. A comparative study of the structures of phylogenetic importance of female genitalia of the Cynipoidea (Hymenoptera). Systematic Entomology 13: 13-30.

Fergusson, N.D.M. & Smith K.G.V. 1974. Helorus rugosus Thomson (Hym. Heloridae) in Britain. Entomologist's Monthly Magazine 109: 222.

Fittkau, E.J., Reiss, F. & Hoffrichter, O. 1976. A bibliography of the Chironomidae. Gunneria 26: 1-177.

Flanders, S.E. 1962. The parasitic Hymenoptera: specialists in population regulation. Canadian Entomologist 94: 1133-1146.

Flenley, J. 1979. The Equatorial Rain Forest: a Geological History. 162pp. London.

Fourcroy, M. & Braun, C. 1967. Observations on gall of Aulax on Glechoma. Marcellia 34: 3-30.

Friday, A.E. 1982. Parsimony, simplicity and what actually happened. Zoological Journal of the Linnean Society 74: 329-335.

Friss, E.M., Chaloner W.G. & Crane, P.R. 1987. The origins of Angiosperms and their biological consequences. 358pp. Cambridge.

Friss, E.M., Crane P.R. & Pedersen K.R., 1986. Floral evidence for Cretaceous chloranthoid Angiosperms. Nature

320: 163-164.

Frühauf, E. 1924. Legeapparat und Eiablage bei Gallwespen (Cynipidae). Zeitschrift für Wissenschaftliche Zoologie 121: 656-723.

Führer, E. & Willers, D. 1986. The anal secretion of the endoparasitic larva Pimpla turionellae, sites of production and effects. Journal of Insect Physiology 32: 361-367.

Fulton, B.A. 1933. Notes on Habrocytus cereatellae parasites of the Angoumais grain moth. Annals of the Entomological Society of America 26: 536-551.

Gagné, R.J. 1984. The Geography of gall insects. In Ananthakrishnan, T.N. Biology of gall insects. pp. 305-337. Faridabad.

Gandar, M.V. 1979. The effect of the gall forming moth Dactylethra siccifolii (lepidoptera; Gelichiidae) on Solanum panduraeforme (Solanaceae). Journal of the Entomolgical Society of South Africa 42: 283-286.

Gauld, I.D. 1983. The classification, evolution and distribution of the Labeninae, an ancient southern group of Ichneumonidae (Hymenoptera). Systematic Entomology 8: 167-178.

Gauld, I.D. 1985. The phylogeny, classification and evolution of parasitic wasps of the subfamily Ophioninae (Ichneumonidae). Bulletin of the British Museum (Natural History). Entomology 51: 61-185.

Gauld, I.D. 1988. Evolutionary patterns of host utilization by ichneumonid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biological Journal of the Linnean Society 35: 351-377.

Gauld, I.D. & Bolton, B. 1988. The Hymenoptera. 322pp.

Oxford.

Gauld, I.D. & Mound, L.A. 1982. Homoplasy and the delineation of holophyletic genera in some insect groups. Systematic Entomology 7: 73-86.

Gauld, I.D. & Underwood, G. 1986. Some applications of the LeQuesne compatibility test. Biological Journal of the Linnean Society 29: 191-222.

Ghiselin, M.T. 1984. Definition of character and other equivocal terms. Systematic Zoology 33: 104-110.

Gibby, M. 1981. Polyploidy and its evolutionary significance. In Forey, P.L. (Ed.) The evolving Biosphere. 87-96. London.

Gibson, G.A.P. 1985. Some pro- and mesothoracic structures important for phylogenetic analysis of Hymenoptera, with a review of terms used for the structures. Canadian Entomologist 117: 1395-1443.

Gibson, G.A.P. 1986. Evidence for monophyly and relationships of Chalcidoidea, Mymaridae and Mymarommatidae (Hymenoptera: Terebrantes). Canadian Entomologist 118: 205-240.

Girault, A.A. 1930. New pests from Australia viii. [6pp] (unnumbered). Brisbane.

Girault, A.A. 1932. New lower Hymenoptera from Australia and India. 6pp. Brisbane.

Glick, P.A. 1939. The distribution of Insects, spiders and Mites in the air. Technical Bulletin of the United States Department of Agriculture 673: 1-150.

Gordh, G. & DeBach, P. 1978. Courtship behavior in the Aphytes lingnanensis Group, its potential usefulness in Taxonomy, and a review of sexual behaviour in the parasitic Hymenoptera (Chalcidoidea: Aphilinidae). Hilgardia 46: 1-75.

Gordh, G., Menke, A., Dahms, E.C. & Hall, J.C. 1979. The privatly published papers of A.A. Girault. *Hemoirs* of the American Entomological Institute 28: 1-400.

Gould, S.J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews of the Cambridge Philosophical Society 41: 587-640.

Gould, S.J. & Lewontin, R. 1979. The Spandrels of San Marco and the Panglossian paradigm; a critique of the adaptionists programme. Proceedings of the Royal Socity of London 205: 581-578.

Guise, A., Peacock, D. & Gleaves, T.A. 1982. A method for identification of parallelism in discrete character sets. Zoological Journal of the Linnean Society 74: 293-303.

Gutierrez, A.P. 1970a. Studies on host selection and host specificity of the Aphid Hyperparasite Charips victrix (Hymenoptera: Cynipidae). 3. Host suitability studies. Annals of the entomological society of America 63: 1486-1491.

Gutierrez, A.P. 1970b. Studies on host selection and host specificity of the Aphid hyperparasite Charips victrix (Hymenoptera: Cynipidae). 6. Description of sensory structures and a synopsis of host selection and host specificity. Annals of the entomological society of America 63: 1705-1709.

Gutierrez, A.P. & Bosch, R. Van Den 1970a. Studies on host selection and host specificity of the Aphid hyperparasite Charips victrix (Hymenoptera: Cynipidae). 1. Review of Hyperparasitism and field ecology of Charips victrix. Annals of the entomological society of America 63: 1345-1354.

Gutierrez, A.P. & Van den Bosch, R. 1970b. Studies on host selection and Host specificity of the aphid hyperparasite Charips victrix (Hymenoptera: Cynipidae). 2. The binomics of Charips victrix. Annals of the Entomological Society of America 63: 1355-1359.

Hagen, K.S. 1986. Ecosystems analysis: plant cultivars (HPW), entomophagous species & food supplements. In Boethel D.J. & Eikenbary R.D. (Eds) Interactions of plant resistance and parasites and predators of Insects. pp. 151-197. Chichester.

Handlirsch, A. 1886. Die Metamorphose zweier Arten der Gattung Anacharis Dalm. Verhandlung Zoologisch-botanischen Gesellschaft 36: 235-237.

Handlirsch, A. [1906-] 1908. Die fossilen Insekten und die Phylogenie der rezenten Formen 1420pp. Leipzig.

Harding, R. 1982. Graphs and Charts on the BBC Microcomputer. 104pp. Cambridge.

Harper, C.W. & Platnick, N.I. 1978. Phylogenetic and cladistic hypotheses: a debate. Systematic Zoology 27: 354-62.

Harris, R.A. 1979. A glossary of surface sculpturing. Occasional papers of the Bureau of Entomology, California Department of Agriculture 28: 1-31.

Haviland, M.D. 1921a. On the Bionomics and Post-Embryonic Development of certain Cynipid Hyperparasites of Aphides. Quarterly Journal of Microscopical Science 65: 451-478.

Haviland, M.D. 1921b. Preliminary note on a cynipid hyperparasite of aphids. Proceedings of the Cambridge Philosophical Society 20: 235-238.

Hecht, M.K. 1976. Phylogenetic inference and methodology

applied to the vertebrate record. Evolutionary Biology 9: 353-363.

Hecht, M.K. & Edwards, J. 1976. The determination of parallel or monophyletic relationships: the proteid salamanders. American Naturalist 110: 653-677.

Hecht, M.K. & Edwards, J. 1977. The methodology of phylogenetic inference above the species level. In Hecht, M.K., Goody, P.C. & Hecht, B.M. Major patterns in vertebrate evolution. pp. 3-51. New York.

Hedicke, H. 1942. Superfamilia Cynipoidea. In Ceballos, G. 1941-1942. Las tribus de los Himenópteros de España. 220-221. Madrid.

Hedicke, H. & Kerrich, G.J. 1940. A revision of the family Liopteridae. Transactions of the Royal Entomological Society of London 90: 177-225.

Hennig, W.W. 1950. Grundzäge einer Theorie der phylogenetischen Systematik. 370pp. Berlin.

Hennig, W.W. 1965. Phylogenetic Systematics. Annual Review of Entomology 10: 97-116.

Hennig, W.W. 1966. Phylogenetic Systematics. [Translated by Davis, D.D. & Zangerl, R.] 263pp. Urbana.

Hennig, W. 1969. Die Stammesgeschichte der Insekten. Frankfurt.

Hennig, W. 1981. Insect Phylogeny (Translated and edited by Pont, A. C.). 514pp. Chichester.

Herard, F. 1986. Annotated list of the entomophagous complex associated with Pear Psylla, pyri (L.) (Hom.: Psyllidae) in France. Agronomie 6: 1-34.

Hickey, L.J. & Doyle, J.A. 1977. Early Cretaceous fossil

evidence for Angiosperm evolution. Botanical Review 43: 3-104.

Hough, J.S. 1953. Studies on the common spangle galls of Oak. I. The developmental history. New Phytologist 52: 149-177; 218-228; 229-237.

Howarth, M.K. 1981. Palaeogeography of the Mesozoic. In Cocks, L.R.M. The evolving earth. 197-200. London.

Hughes, N.F. 1976. Palaeobiology of Angiosperm Origins. 242pp. Cambridge.

Hull, D.L. 1967. Certainty and circularity in evolutionary taxonomy. Evolution 21: 174-189.

Hull, D.L. 1980. The limits of cladism. Systematic Zoology 28: 416-440.

Humphries, C.J. & Parenti, L. R. 1986 Cladistic Biogeography. Oxford monographs on biogeography 2: 1-98.

Hung, A.C.F. 1982. Chromosome and isozyme studies in Trichogramma (Hymenoptera: Trichogrammatidae). Proceedings of the Entomological Society of Washington 84: 791-796.

Huzimatu, K. 1940. The life history of a new cynipid fly Kleidotoma japonica n. sp. Science Reports Tohoku Imperial University (4)15: 457-480.

International Trust for Zoological Nomenclature. 1985. International code of zoological nomenclature. xx + 338pp. London.

Iwata, K. 1950. Biology of Ichneumon parasites on bagworms in Japan, 1. Transactions of the Kansai Entomological Society 15: 37-42.

Iwata, K. 1958. Ovarian eggs of 233 species of the Japanese Ichneumonidae. Acta Hymenopterologica 1: 63-74.

James, H.C. 1928. On the life-histories and economic status of certain Cynipid parasites of Dipterous larvae, with descriptions of some new larval forms. Annals of Applied Biology 15: 287-316.

Jenni, W. 1951. Beitrag zur morphologie und biologie der Cynipidae Pseudeucoila bochei Weld. Eines larvenparasiten von Drosophila melanogaster Meig. Acta Zoologica 32: 177-254.

Jones, K. 1977. The mode of Robertsonian change in karyotype evolution in higher plants. Chromosomes Today 6: 121-129.

Jong, K. & Burtt, B.L. 1975. The evolution of morphological novelty examplified in the growth patterns of some Gesneriaceae. New Phytologist 75: 297-311.

Jong, R. De. 1980. Some tools for evolutionary and phylogenetic studies. Zeitschrift für zoologische Systematik und Evolutionsforschung 18: 1-23.

Keilin, D. & Baume-Pluvinel, C. 1913. Formes larvaires et Biologie d'un Cynipidae Entomophage. Bulletin Scientifique de La France et de La Belgique (7) 17: 88-104.

Kerrich, G.J. 1973. On the taxonomy of some forms of Ibalia Latreille (Hymenoptera: Cynipoidea) associated with conifers. Zoological Journal of the Linnean Society 53: 65-79.

Kieffer, J.J. 1911. Nouveaux cynipides exotiques. Bollettino della Società Entomologica Italiana 41(1909): 244-256.

Kierych, E. 1988. A new genus and a new species of cynipoids (Hymenoptera Cynipoidea Charipidae) from Poland. Annales Zoologici 41: 351-354.

King, P.E. & Copland, M.J.W. 1969. The structure of the

female reproductive system in the Mymaridae (Chalcidoidea: Hymenoptera). Journal of Natural History 3: 349-365.

King, P.E. & Ratcliffe, N.A. 1969. The structure and possible mode of functioning in Nasonia vitripennis (Hymenoptera: Pteromalidae). Journal of Zoology 157: 319-344.

Kinsey, A.C. 1919. Fossil Cynipidae. Psyche, Cambridge 26: 44-49.

Kinsey, A.C. 1920. Phylogeny of cynipid genera and biological characters. Bulletin of the American Museum of Natural History 42: 357-402.

Kinsey, A.C. 1937. Family Cynipidae. In Carpenter, F.M., Folsom, J.W., Essig, E.O., Kinsey, A.C., Brues, C.T., Boesel, M.W. & Ewing, H.E. Insects and arachnids from Canadian amber. University of Toronto Studies Geological Series 40: 21-28.

Kluge, A.G. 1976. Phylogenetic relationships in the Lizard family Pygopodidae: an evaluation of theory, methods and data. Miscellaneous Publications of the Museum of Zoology, University of Michigan 152: 1-72.

Kluge, A.G. 1983. Cladistics and the classification of the great apes. In Ciochon, R.L., & Corruccini, R.S. (eds) New interpretations of ape and human ancestry. pp. 151-177. New York.

Kluge, A.G. & Farris, J.S. 1969. Quantitive Phyletics and the evolution of Anurans. Systematic Zoology 18: 1-32.

Königsmann, E. 1977 Das phylogenetische System der Hymenoptera, 2, Symphyta. Deutsche Entomologische Zeitschrift 24: 1-40.

Königsmann, E. 1978. Das phylogenetische System der

Hymenoptera, 3 Terebrante (Unterordnung Apocrita). Deutsche Entomologische Zeitschrift 25: 1-55

Kopelman, A.H. & Chabora, P.C. 1984. Immature stages of Leptopilina boulardi (Hymenoptera: Eucoilidae) a protelean parasite of Drosophila spp. (Diptera: Drosophilidae). Annals of the entomological Society of America 77: 264-269.

Kovalev, O.V. 1982. Gall causing subfamily Aylacinae Stat. nov. (Hymenoptera Cynipidae) and its species described in the Figitidae (In Russian). Trudy Zoologicheskogo Instituta Leningrad 110: 85-93.

Kuster, E. 1911. Die gallen der Pflanzen. x+437pp. Leipzig.

Lam, H.J. 1959. Taxonomy: general principles and angiosperms. In Turrill, W.B. Vistas in Botany. 3-75. New York.

Lande, R. 1978. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32: 73-92.

Lanham, U.N. 1951. Review of the wing venation of higher Hymenoptera (Suborder Clystogastra) and speculations of the phylogeny of Hymenoptera. Annals of the entomological society of America 44: 614-628.

Larew, H.G. 1986. The Fossil record: a brief summary. Proceedings of the entomological Society of Washington 88: 385-388.

Larew, H.G. 1987 Two cynipid wasp acorn galls preserved in the LaBrea Tar pits (Early Holocene). Proceedings of the entomological Society of Washington 89: 831-833.

LaSale, J. & Stage, G.I. 1985. The chalcidoid genus Leptofoenus (Hymenoptera: Pteromalidae). Systematic Entomology 10: 285-298.

Latreille, P.A. 1805. Histoire naturelle des Crustaces et des Insectes. 432pp. Paris.

Leach, C.K. 1987. A note on the evolution of Hymenopteran gall causers. Cecidology 2: 46-48.

Lenteren, J.C. van. 1972. Contact-chemoreceptors on the ovipositor of Pseudeucoila bochei Weld (Cynipidae). Netherlands Journal of Zoology 22: 347-350.

Lenteren, J.C. van. 1976. The development of host discrimination and the prevention of superparasitism in the parasite Pseudeucoila bochei Weld (Hym. Cynipidae). Netherland Journal of Zoology 26: 1-83.

LeQuesne, W.J. 1969. A method of selection of characters in numerical taxonomy. Systematic Zoology 18: 201-205.

LeQuesne, W.J. 1972. Further studies on the uniquely derived character concept. Systematic Zoology 21: 281-288.

LeQuesne, W.J. 1974. The uniquely evolved character concept and its cladistic application. Systematic Zoology 23: 513-517.

LeQuesne, W.J. 1979. Compatibility analysis and the uniquely derived character concept. Systematic Zoology 28: 92-94.

Linnaeus, C. 1758. Systema naturae regnum animalae 10th. Ed. 823pp. Lipsiae.

Lipkow, E. 1969. Cynipoidea und Ichneumonidae (Hym) als parasiten von Boriomyia subnebulosa (Steph.) (Neur., Hemerobiidae) Entomophaga 14: 229-241.

Lundberg, J.G. 1972. Wagner networks and ancestors. Systematic Zoology 21: 398-413.

Maa, T.C. 1949. A revision of the asiatic Ibaliinae.

Treubia 20: 263-274.

Maack, R. 1969. Kontinentaldrift und Geologie des südatlantischen Ozeans 164pp. Berlin.

Madden, J.L. 1968. Behavioural responses of parasites to the symbiotic fungus associated with Sirex noctilio. Nature 218: 189-190.

Malyshev S.I. 1968. Genesis of the Hymenoptera and the phases of their evolution. 319pp. London.

Mani, M.S. 1964. Ecology of plant galls 434pp. Hague.

Maresquelle, H.J. 1983. Anatomie des galles. 662pp. Berlin.

Maresquelle, H.J. & Meyer, J. 1965. Physiologie et morphologenèse des galles d'origine animale (Zoocècidies). Handbuch der Pflanzenphysiologie 15: 280-329.

Marsden-Jones, E.M. 1953. A study of the life-cycle of Adleria kollari Hartig, the Marble or Devonshire Gall. Transactions of the Royal Entomological Society of London 104: 195-222.

Marx, H. & Rabb, G.B. 1970. Character analysis: an empirical approach applied to advanced snakes. Journal of Zoology 161: 525-548.

Marx, H. & Rabb, G.B. 1972. Phyletic analysis of fifty characters of advanced snakes. Fieldiana (Zoology) 63: 1-321.

Masner, L. 1956. First preliminary report on the occurrence of genera of the group Proctotrupoidea (Hym.) in CSR. (First part family Scelionidae). Acta Faunistica Entomologica Musei National Prague 1: 99-126.

Masner, L. 1970. A new species of Nixonia. Proceedings of the Entomological Society of Washington 72: 90-93

Masner, L. 1979. Pleural morphology in scelionid wasps (Hymenoptera: Scelionidae) - an aid to higher classification). Canadian Entomologist 111: 1079-1087.

Mason, W.R.M. 1983. The abdomen of female Vanhornia eucnemidarum (Hymenoptera: Proctotrupoidea). Canadian Entomologist 115: 1483-1488.

Mason, W.R.M. 1984. Structure and movement of the abdomen of female Pelecinus polyturator (Hymenoptera: Pelecinidae). Canadian Entomologist 116: 419-426.

Mason, W.R.M. 1986. Standard drawing conventions and definitions for venational and other features of wings of Hymenoptera. Proceedings of the Entomological Society of Washington 88: 1-7.

Mason, W.R.M. A new classification for Parasitic Hymenoptera. (Unpublished Manuscript.)

Matejko, I. & Sullivan, D.J. 1980. Bionomics and behavior of Alloxysta megourae an aphid hyperparasitoid (Hymenoptera: Alloxystidae). Journal of the New York Entomological Society 87: 275-282.

Matsuda, R. 1970. Morphology and evolution of the insect thorax. Memoires of the Entomological Society of Canada 76: 1-431.

Mayr, E. 1963. Animal species and evolution. 797pp. Cambridge.

Mayr, E. 1969. Principles of systematic zoology. 428pp. New York.

McCalla, D.R., Genthe, M.K. & Hovanitz, W. 1962. Chemical

nature of an insect gall growth factor. Plant Physiology 37: 98-103.

Meacham, C.A. 1981. A probability measure for character compatibility. Mathmatical Biosciences 57: 1-18.

Melville, R. 1962. A new theory of the Angiosperm flower. I. The gynoecium. Kew Bulletin 16: 1-50.

Melville, R. 1963. A new theory of the Angiosperm flower. II. The androecium. Kew Bulletin 17: 1-63.

Menge, λ . 1856. Lebenszeichen vorweltlicher im Bernstein engleschlossener Thiere. 32pp. Danzig.

Menke, A.S. 1989. Cynipoidea. 20pp. Washington. (Unpublished manual of the Smithsonian Museum course on parasitic Hymenoptera).

Menke, A.S. & Evenhuis, H.H. In prep. Nomenclature of North American Charipidae, with a new species of Dilyta Förester from Washington State (Hymenoptera: Cynipidae).

Meyer, J. 1957. Cécidogenese comparée de quelques galles d'arthropodes et évolution cylologique des tissues nouriciers. 321pp. Strasbourg.

Meyer, J. 1987. Plant galls and gall inducers. 291pp. Berlin.

Michener, C.D. 1944. Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the American Museum of natural History 82: 157-326.

Miller, C.N. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101-117.

Miller, C.N. 1977. Mesozoic conifers. Botanical review 43:

217-280.

Miller, G.L. & Lambdin, P.L. 1985. Observations on Anacharis melanoneura (Hymenoptera: Figitidae), a parasite of Hemerobius stigma (Neuroptera: Hemerobiidae). Entomological News 96: 93-97.

Mineo, G. & Villa, L. 1982. The morphology of the back of the head of Gryonini (Hymenoptera, Proctotrupoidea, Scelionidae). Bollettino de Laboratorio di Entomologia Agraria 39: 133-162.

Möhn, E. 1960. Eine neue Gallmu"cke aus der niederrheinischen Braunkohle, Sequoiomyia krauseli n.g. n. sp. (Diptera, Itonididae). Senckenbergiana Lethaea 41: 513-522.

Molchanova, O.P. 1930. On the biology of Cothonaspis rapae Westw., a parasite of the cabbage fly. Izvestiya otdela Prikladnoi Entomologii 4: 369-370. (In Russian.)

Molliard, M. 1917. Production artificielle d'une gall. Compte rendu de l'Academie des Sciences 165: 160-162.

Moody, S.M. & O'Nolan, P. 1987. An a priori character weighting method for cladistic analysis American Zoologist 27: 108A.

Moullade, M. & Nairn, A.E.M. 1978. The Phanerozoic geology of the World II. The Mesozoic. 529pp Amsterdam.

Nappi, A.J. & Carton, Y. 1986. Cellular immune responses & their genetic aspects in Drosophila. In Brehélin, M. Immunity in Invertebrates. pp. 171-187. Heidelberg.

Nappi, A.J. & Streams, F.A. 1970. Abortive development of the Cynipoid parasite Pseudeucoila bochei (Hymenoptera) in species of the Drosophila melanica group. Annals of the Entomological Society of America 63: 321-327. Nauman, I. & Masner, L. 1985. Parasitic wasps of the proctotrupoid complex: a new family from Australia and a key to world families (Hymenoptera: Proctotrupoidea s.l.). Australian Journal of Zoology 33: 761-783.

Nelson, G.J. 1973. The high level phylogeny of vertebrates. Systematic Zoology 22: 87-91.

Nelson, G.J. 1978. Ontogeny, phylogeny, paleontology, and the biogenetic law. Systematic Zoology 27: 344-345.

Nelson, G.J. & Platnick, N.I. 1981. Systematics and Biogeography: Cladistics and Vicariance. 567pp. New York.

Niblett, M. 1940. Parasites of gall-causing insects. Proceedings of the South London Entomological and Natural History Society 1939-1940: 85-89.

Nixon, G.E.J. 1936. New Parasitic Hymenoptera from Africa (Proctotrupoidea Subfam. Telenominae). Annals and Magazine of Natural History (10)17: 558-564.

Nixon, G.E.J. 1957. Hymenoptera Proctotrupoidea Diapriidae, Subfamily Belytinae. Handbooks for the Identification of British Insects 8(3diii): 1-107.

Norberg, J. 1972. The pterostigma of insect wings: an inertial regulator of wing pitch. Journal of Comparative Physiology 81: 9-22.

Nordlander, G. 1982. Systematics and phylogeny of an interrelated group of genera within the family Eucoilidae (Insecta: Hymenoptera, Cynipoidea). 34pp. Stockholm.

Nordlander, G. 1984. Vad vet vi om parasitiska Cynipoidea? Entomologisk Tidskrift 105: 36-40.

Norton, W.N. & Vinson S.B. 1974a. A comparative ultrastructural and behavioral study of the antennal

sensory sensilla of the parasitoid Cardiochiles nigriceps (Kym: Braconidae). Journal of Morphology 142: 329-350.

Norton, W.N. & Vinson, S.B. 1974b. Antennal sensilla of three parasitic Hymenoptera. International Journal of Insect Morphology and Embryology 3: 305-316.

Noyes, J.S. 1982. Collecting and preserving Chalcid wasps (Hymenoptera: Chalcidoidea). Journal of Natural History 16: 315-334.

Oglobin, A.A. 1913. (Contribution to the biology of Coccinellidae) Russkoe Entomologicheskoe Obozrenie 13: 27-43 (In Russian).

O'Nolan P. 1985. Character weighting in Cladistic Analysis. 229pp. Athens. [Unpublished thesis.]

Panchen, A.L. 1982. The use of parsimony in testing phylogenetic hypotheses. Zoological Journal of the Linnean Society 74: 305-328.

Parker, H.L. & Thompson, W.R. 1925. Notes on the larvae of the Chalcidoidea. Annals of the Entomological Society of America 18: 384-395.

Parrish, J.T. 1987. Global palaeogeography and palaeoclimate of the Late Cretaceous and Early Tertiary. In Friis, E.M., Chaloner, W.G. & Crane, P.R. (Eds) The origins of angiosperms and their biological consequences. pp. 51-73. Cambridge.

Patterson, C. 1977. The contribution of paleontology to teleostean phylogeny. In Heckt, M.K., Goody, P.C. & Heckt, B.M. Major Patterns in Vertebrate Evolution. pp. 579-643. New York.

Patterson, C. 1980. Cladistics. Biologist 27: 234-240.

Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics 12: 195-223.

Patterson, C. 1982. Morphological characters and homoplasy. In Joysey, K.A. & Friday, A.E. Problems of Phylogenetic Reconstruction. pp. 21-74. London.

Peck, O. 1937. The male genitalia in the Hymenoptera (Insecta) especially the family Ichneumonidae. Canadian Journal of Research (D) 15 : 221-274.

Petitpierre, E. 1981. New data on the cytology of Chrysalina (Mots.) and Oreina Mots. (Coleoptera, Chrysalinidae). Genetica 54: 265-272.

Pitman, W.C., Larson, R.L. & Herron, E.M. 1974. The age of the ocean basins. Geological Society of America Map and Chart Series: MC-6.

Platnick, N.I. 1977. Cladograms, phylogenetic trees and hypothesis testing. Systematic Zoology 26: 438-442.

Platnick, N.I. 1979. Philosophy and the transformation of cladistics. Systematic Zoology 28: 537-546.

Platnick, N.I. 1980. Philosophy and the transformation of cladistics. Systematic Zoology 28: 537-546.

Popper, K.R. 1968. The logic of Scientific discovery. 480pp. London.

Pratt, V. 1972. Numerical Taxonomy - a critique. Journal of Theoretical Biology 36: 581-592.

Presl, J.S. 1822. Additamenta ad faunam protogaeam sistens descriptiones aliquot animalicum in succino inclusorum. In Presl, J.S. & Presl, K.B. Deliciae Pragenses, historiam naturalem spectantes. 191-210. Prague. Price, P.W. 1974. Strategies for egg production. Evolution 28: 76-84.

Price, P.W. & Pschorn-Walcher, H. 1988. Are galling insects better protected against parasites than exposed feeders?: a test using tenthredinid sawflies. Ecological entomology 13: 195-205.

Price, P.W, Waring, G.L. & Fernandes, G.W. 1986. Hypotheses on adaptive nature of galls. Proceedings of the entomological society of Washington 88: 361-363.

Pringle, J.W.S. 1957. Insect Flight. 133pp. Cambridge.

Quinlan, J. 1978. Hymenoptera Cynipoidea: Eucoilidae. Handbooks for the Identification of British Insects 8(1b): 1-58.

Quinlan, J. 1979. A revisionary classification of the Cynipoidea (Hymenoptera) of the Ethiopian Zoogeographical region. Aspicerinae (Figitidae) and Oberthuerellinae (Liopteridae). Bulletin of the British Museum (Natural History) Entomology 39: 85-133.

Quinlan, J. 1986. A key to the Afrotropical genera of of Eucoilidae (Hymenoptea), with a revision of certain genera. Bulletin of the British Museum (Natural History) Entomology 52: 243-366.

Quinlan, J. 1988. A revision of some Afrotropical genera of Eucoilidae (Hymenoptea). Bulletin of the British Museum (Natural History) Entomology 56: 171-229.

Quinlan, J. & Evenhuis, H.H. 1980. Status of the subfamily names Charipinae and Alloxystinae (Hymenoptera: Cynipidae). Systematic Entomology 5: 427-430.

Rasnitsyn, A.P. 1968. Development of the function of the ovipositor in relation to the origin of parasitism in

Hymenoptera). Entomologicheskoe Obozrenie 47: 61-70.

Rasnitsyn, A.P. 1969. Proischozdonie i evoljucija nizsich pereponcatokrylych. Trudy Paleozoologicheskago Instituta 123: 3-196.

Rasnitsyn, A.P. 1975. Early evolution of higher Hymenoptera (Apocrita). Zoologichieskii Zhurnal 54: 848-860.

Rasnitsyn, A.P. 1980. The origin and evolution of hymenopteran insects. Trudy Paleontologicheskogo Instituta Akademiya Nauk SSSR 174: 1-191. (In Russian.)

Rasnitsyn, A.P. 1988. An outline of evolution of the Hymenopterous Insects. Oriental Insects 22: 115-145.

Rasnitsyn, A.P. & Kovalev O.V. 1988. The oldest Cynipoidea from the Early Cretaceous Transbaikalia (Hymenoptera, Cynipoidea, Archaeocynipidae Fam. N.). Vestnik Zoologii 1 (1989): 18-21.

Rathman, R.J. & Brunner, J.F. 1988. Observations on the biology of a new species of Dilyta (Hymenoptera: Charipidae) from Washington State. Pan-Pacific Entomologist 64: 93-97.

Reid, J.A. 1941. The thorax of the wingless and short-winged Hymenoptera. Transactions of the Royal entomological Society of London 89: 185-344.

Reid, E.M. & Chandler, M.E.J. 1933. The Flora of the London Clay. 561. London.

Reyment, R.A. & Taitt, E.A. 1972. Biostratigraphical dating of the early history of the South Atlantic Ocean. Philosophical Transactions of the Royal Society of London (B) 264: 55-95.

Reyre, D. 1966. Particularités géologiques des bassins

côtiers de l'ouest African. In Sedimentary basins of the Africa Coasts, Part 1 Atlantic Coast. pp. 253-304. Paris.

Richards, O.W. 1927. The specific characters of the British Humblebees (Hymenoptera). Transactions of the entomological society of London 75: 233-268.

Richards, O.W. 1949. The significance of the number of wing-hooks in Bees and Wasps. Proceedings of the Royal entomological Society of London. 24: 75-78.

Richards, O.W. 1977. Hymenoptera. Introduction and key to families. Handbooks for the Identification of British Insects 6: 1-100.

Richerson, J.V. & Borden, J.H. 1972. Host finding by heat perception in Coeloides brunneri (Hymenoptera: Braconidae). Canadian Entomologist 104: 1877-1881.

Ridley, M. 1983. The exploration of organic diversity; the comparative method and adaptations for mating. 272pp. Oxford.

Rick, E.F. 1970. Hymenoptera. In The Insects of Australia. 867-959. Melbourne.

Riek, E.F. 1971. A new subfamily of Cynipoid wasps (Hymenoptera, Cynipoidea) from Australia. In. [? Editor] Entomological essays to commemorate the retirement of Professor K. Yasumatsu. 107-112. Tokyo.

Ritchie, A.J. 1984. A review of the higher classification of the inquiline gall-wasps (Hymenoptera: Cynipidae) and a revision of the Nearctic species of Periclistus Foerster. 368pp. Ottawa. [Unpublished thesis]

Ritchie, A.J. 1988. Key to families of Cynipoidea. In Goulet, H. Finamore, A.T. Masnet, L. Mason, W.R.M. Ritchie, A.J. Sharkey. M.J. & Yoshimoto C.N. Manual of Hymenopterous families of Canada. 74-78 & 153-154 Ottawa. Ritchie, A.J. & Peters, T.M. 1981. The external morphology of Diplolepis rosae (Hymenoptera: Cynipidae, Cynipinae). Annals of the Entomological Society of America 74: 191-199.

Ritchie, A.J. & Shorthouse, J.D. 1987. Revision of the genus Synophromorpha Ashmead (Hymenoptera: Cynipidae). Canadian Entomologist 119: 215-230.

Rizki, R.M. & Rizki, T.M. 1984. Selective destruction of a host blood cell type by a parasitoid wasp. Proceedings of the National Academy of Sciences 81: 6154-6158.

Roberts, R.A. 1935. Some North Amrican parasites of blowflies. Journal of Agricultural Research 50: 479-494.

Robertson, P.L. 1968. A morphological and functional study of the venom apparatus in representatives of some major groups of Hymenoptera. Australian journal of Zoology 16: 133-166.

Rogers, D. 1972. The Ichneumon wasp Ventura canescens: oviposition and avoidance of superparasitism. Entomologia Experimentalis et Applicata 15: 190-194.

Rohfritsch, O. & Shorthouse, J.D. 1982. Insect galls. In Kahl. G. & Schell, J.S. (Eds) Molecular biology of plant tumors. pp. 131-152. New York.

Rohver, S.A. & Fagan, M.M. 1917. The type-species of the genera of the Cynipoidea, or the gall wasps and parasitic cynipoids. Proceedings of the United States National Museum 53: 357-380.

Rohwer, S.A. & Fagan, M.M. 1919. Additions and corrections to "The type-species of the genera of the cynipoidea or the gall wasps and parasitic Cynipoids". Proceedings of the United States National Museum 55: 237-240.

Rohwer, S.A. & Gahan, A.B. 1916. Horismology of the hymenopterous wing. Proceedings of the entomological society of Washington 18: 20-26.

Ronquist, F. & Nordlander, G. 1989. Skeletal morphology of an archaic cynipoid, Ibalia rufipes (Hymenoptera: Ibaliidae). Entomologica Scandinavica. Supplement 33: 1-60.

Ross, H.H. 1936. The ancestry and wing venation of the Hymenoptera. Annals of the Entomological Society of America 29: 99-109.

Ross, H.H. 1974. Biological Systematics 345pp. Reading.

Rotheray, G.E. 1979 The biology and host searching behaviour of a cynipoid parasite of aphidophagous syrphid larvae. Ecological Entomology 4: 75-82.

Rotheray, G.E. 1981. Host searching and oviposition behaviour of some parasites of aphidophagous Syrphidae. Ecological Entomology 6: 79-87.

Salt, G. 1968. The resistance of insect parasitoids to the defence reactions of their hosts. Biological reviews of the Cambridge Philosophical Society 43: 200-232.

Salt, G. 1980. A note on the resistance of two parasitoids to the defence reactions of their insect hosts. Proceedings of the Royal Society of London B 207: 351-353.

Savin, S.M. 1977. The history of the Earth's surface temperature during the past 100 million years. Annual review of Earth and Planetary Sciences 5: 319-356.

Schaeffer, B, Hecht, M.K. & Eldredge, N. 1972. Phylogeny and paleontology. Evolutionary Biology 6: 31-46.

Schlee, D. 1969. Hennig's principles of phylogenetic

systematics, an "intuitive statistico-phenetic taxonomy ?" Systematic Zoology 18: 127-134.

Schmidt, K. & Kuhbandner, B. 1983. Ontogeny of the Sensilla placodea on the antenna of Aulacus striatus Jurine (Hymenoptera: Aulacidae). International journal of Insect Morphology and Embryology 12: 43-57.

Schneider, D. & Steinbrecht, R.A. 1968. Checklist of Insect olfactory sensilla. Symposia of the Zoological Society of London 23: 279-297.

Schreiber, E.T. & Campbell, J.B. 1986. Parasites of the Hornfly in Western Nebraska. The southwestern Entomologist 11: 211-214.

Schröder, D. 1967. Diplolepis (= Rhodites) rosae (L.) (Hym.: Cynipidae) and a review of its parasite complex in Europe. Technical Bulletin of the Commonwealth Institute of Biological Control 9: 93-131.

Schuchert, C. 1955. Atlas of paleogeographic maps of north America. 177pp. New York.

Schulz, U. 1961. Verleichende morphologische Betrachtung des männlichen äußern Genitalapparates von Sunergus-Arten. Entomologische Mitteilungen aus dem Zoologischen Staatsinstitut u. Zoologischen Museum Hamburg 32: 1-8.

Scudder, S.H. 1886. Systematic review of fossil insects. Bulletin of the United States Geological Survey 5(31): 9-128.

Selhime, A.G. & Kanavel, R.F. 1986. Life cycle and parasitism of Micromus posticus and M. subanticus in Florida. Annals of the Entomological Society of America 79: 1212-1215.

Selvin, H.C. & Stuart, A. 1966. Data dredging procedures in survey analysis. American Statistician 20: 20-23.

Shannon, R.E. & Brewer, J.W. 1980. Starch and sugar levels in three coniferous insect galls. Zeitschrift für Angewandte Entomologie 89: 526-533.

Sharkey, M.J. 1989. A hypothesis-independent method of character weighting for cladistic analysis. Cladistics 5: 63-86.

Shaw, M.R. 1981. On evolution of endoparasitism: the biology of some genera of Rogadinae (Braconidae). Contribution of the American Entomological Intitute 20: 307-328.

Shorthouse, J.D. 1973. The insect community associated with rose galls of Diplolepis polita (Cynipidae, Hymenoptera). Quaestiones entomologicae 9: 55-98.

Shorthouse, J.D. 1975. The roles of insect inhabitants in six Diplolepis Cynipidae, Hymenoptera) Rose leaf galls of Western Canada. 293pp. Saskatoon (Ph. D. thesis, University of Saskatchewan.)

Shorthouse, J.D. 1980. Modification of galls of Diplolepis polita by the inquiline Periclistus pirata. Bulletin de la Société Botanique de France 1980: 79-84.

Shorthouse, J.D. 1982. Resource exploitation by gall wasps of the genus Diplolepis. Proceedings of the international symposium of Insect-plant relationships 5: 193-198.

Shorthouse, J.D. 1986. Significance of nutritive cells in insect galls. Proceedings of the entomological society of Washington 88: 368-375.

Shorthouse, J.D. & Richie, A.J. 1984. Description and biology of a new species of Diplolepis Fourcroy

(Hymenoptera: Cynipidae) inducing galls on the stems of Rosa acicularis. Canadian entomologist 116: 1623-1636.

Shorthouse, J.D., West, A., Landry, R.W. & Thibodeau, P.D. 1986. Structural damage by female Hemadas nubilipennis (Hymenoptera: Pteromalidae) as a factor in gall induction on Lowbush Blueberry. Canadian Entomologist 118: 249-254.

Simpson, G.G. 1961. Priciples of Animal Taxonomy. 247pp. New York.

Simpson, G.G. 1975. Recent advances in methods of phylogenetic inference. In Luckett, W. P. & Szalay, F. Phylogeny of the Primates. pp. 3-19. New York.

Singh, R. & Srivastava, P.N. 1988. Host-acceptance behaviour of Alloxysta pleuralis, a cynipoid hyperparasitoid of an aphidiid parasitoid Trioxys indicus on aphids. Entomologia experimentalis applicata 47: 89-94.

Sneath, P.H. & Sokal, R.R. 1973. Numerical Taxonomy. 573pp. San Francisco.

Snodgrass, R.E. 1928. Morphology and evolution of the insect head and its appendages. Smithsonian miscellaneous collections 81(3): 1-158.

Snodgrass, R.E. 1935. Principles of Insect Morphology. 667pp. New York.

Snodgrass, R.E. 1941. The male genitalia of Hymenoptera. Smithsonian Miscellaneous Collections 99 (14): 1-86 + 33pl.

Snodgrass, R.E. 1960. Facts and theories concerning the insect head. Smithsonian miscellaneous collections 142(1): 1-61.

Sokal, R.R. & Sneath, P.H. 1963. Principles of Numerical Taxonomy. 359pp. San Francisco.

Solbrig, O.T. 1970. The phylogeny of Gutierrezia: an eclectic approach. Brittonia 22: 217-229.

Spencer, H. 1926. Biology of the parasites and hyperparasites of Aphids. Annals of the Entomological Society of America 19: 119-153.

Sporne, K.R. 1976. Character correlations among Angiosperms and importance of the fossil record in assessing their significance. Annual Review of Ecology and Systematics 9: 312-329.

Sporne. K.R. 1977. Some problems associated with character correlations. Plant Systematics and Evolution Supplement 1: 33-51.

Spradbery, J.P. 1970. The biology of Ibalia drewseni Borries (Hymenoptera: Ibaliidae), a parasite of siricid woodwasps. Proceedings of the Royal Entomological Society of London A 45: 104-113.

Spradbery, J.P. 1973. A comparative study of the phytotoxic effects of siricid woodwasps on conifers. Annals of applied Biology 75: 309-320.

Spradbery, J.P. 1974. The responses of Ibalia species (Hymenoptera: Ibaliidae) to the fungal symbionts of siricid woodwasp hosts. Proceedings of the Royal entomological Society of London (A) 48: 217-222.

Statz, G. 1939. Neue Funde parasitischer Hymenopteren aus dem Tertiär von Rott am siebengebirge. Verhandlungen des Naturhistorischen Vereins 98A: 1-144.

Stehr, W. 1987. Immature insects. 754pp. Dubuque.

Stern, W.L. 1978. A retrospective view of comparative anatomy, phylogeny and plant taxonomy. Bulletin of the International Association of Wood Anatomists 1978: 33-39. Sternlicht, M. 1968. The Oak galls of Israel. Israel Journal of entomology 3: 17-58.

Stevens, P.F. 1980. Evolutionary polarity of character states. Annual Review of Ecology and Systematics 11: 333-358.

Strauch, J.G. 1984. Use of homoplastic characters in compatibility analysis. Systematic Zoology 33: 167-177.

Streams, F.A. & Greenberg, L. 1969. Inhibition of defense reaction of D. melanogaster parasitized simultaneously by wasps P. bochei and P. mellipes. Journal of Invertebrate Pathology 13: 371-377.

Sullivan, D.J. 1972. Comparative behaviour and competition between two aphid hyperparasites: Alloxysta victrix and Asaphes californicus Hymenoptera Cynipidae; Pteromalidae. Environmental Entomology 1: 234-244.

Sullivan, D.J. 1987. Insect hyperparasitism. Annual review of Entomology 32: 49-70.

Sychevskaya, V.I. 1966. Biology of Brachymeria minuta (L.) (Hymenoptera, Chalcidoidea), a parasitoid of synanthropic flies of the family Sarcophagidae (Diptera). Entomological Review 45: 424-429.

Sychevskaya, V.I. 1974. The Biology of Eucoila trichopsila Hartig (Hymenoptera, Cynipoidea), a parasite of the larvae of synanthropic flies of the family Sarcophagidae (Diptera). Entomological Review 53: 36-44.

Tattersall, I. & Eldredge, N. 1977. Fact, theory, and fantasy in human paleontology. American Scientist 65: 204-211.

Taylor, K.L. 1965. Research on Sirex noctilio in Australia, with particular reference to biological control. Proceedings of the International Congress of Entomology 12: 705-706.

Telenga, N.A. 1969 Origin and evolution of parasitism in Hymenoptera Parasitica and development of their fauna in the USSR. 112pp. Jerusalem.

Thorne, R.F. 1976. A phylogenetic classification of the Angiospermae. Evolutionary Biology 9: 35-106.

Thorpe, W.H. 1932. Experiments upon respiration in the larvae of certain parasitic Hymenoptera. Proceedings of the Royal Society (B)109: 450-471.

Throckmorton, L.H. 1967. Concordance and discordance of taxonomic characters in Drosophila classification. Systematic Zoology 17: 355-387.

Tinbergen, N. 1963. On the aims and methods of ethology. Zeitschrift für Tierpychologie 20: 410-433.

Tobias, V.I. 1967. An outline of the classification, phylogeny and evolution of the family Braconidae (Hymenoptera). Entomologicheskoe Obozrenie 46: 645-669.

Tobias, V.I 1981. In Pristavko, V.P. Insect behavior as a basis for developing control measures against pests of field crops and forests. pp. 181-189. New Delhi.

Tobias, V.I & Potapova, Y.S. 1982. Morphological charcateristics of the head capsule of Braconids (Hymenoptera, Braconidae) and the main trends in their evolution. Entomologicheskoe Obozrenie 61: 614-619.

Tonapi, G.T. 1958. A comparative study of spiracular structure and mechanisms in some Hymenoptera. Transactions of the Royal entomological Society of London 110: 489-520.

Townes, H. 1972. A light-weight Malaise trap. Entomological News 83: 239-247.

Turner, J.R.G. 1984. Mimicry: the palatability spectrum and its consequences. In Vane-Wright, R.I. & Ackery, P.R. The Biology of Butterflies. pp. 141-161. London.

Uhler, L.D. 1951. Biology and ecology of the goldenrod gall fly Eurosta solidaginis (Fitch). Memoirs of the Cornell University Agricultural experimental station 300: 1-51.

Underwood, G. 1982. Parallel evolution in the context of character analysis. Zoological Journal of the Linnean Society 74: 245-266.

Underwood, G. & Stimpson, A.F. In press. Journal of Zoology.

Upchurch, G.R. Jr. & Wolfe, J.A. 1987. Mid-Cretaceous to Early Tertiary vegetation and climate: evidence from fossil leaves and woods. In Friis, E. M., Chaloner, W.G. & Crane, P.R. (Eds) The origins of angiosperms and their biological consequences. pp. 75-106. Cambridge.

Vail, P.R., Mitchum, R.M. & Thompson, S. 1977. Seismic stratigraphy and global changes of sea level. Part 4: Global cycles of relative changes of sea level. In Payton, C.E. Seismic Stratigraphy - Applications to Hydrocarbon Exploration. Memoirs of the American Association of Petroleum Geeologists 26: 83-97.

van Veen, J.C. 1981. The biology of Poecilostictus cothurnatus (Hymenoptera, Ichneumonidae) an endoparasite of Bupalus pinicarius (Lepidoptera, Geometridae). Annales Entomologica Fennici 47: 77-93.

Varley, G.C. & Butler C.G. 1933. The acceleration of development of insects by parasitism. Parasitology 25: 263-268.

Vasey, C.E. 1975. The evolution of male genitalia in

Nearctic Hymenoptera, excluding the Aculeata. Dissertation Abstracts B 35(11): 5468.

Vet, L.E.M. 1984. Comparative ecology of Hymenopterous parasitoids. 218pp. Alblasserdam.

Vinson, S.B. 1976. Host selection by insect parasitoids. Annual review of entomology 21: 109-133.

Wagner, W. 1961. Problems in the classification of ferns. Recent advances in botany 1: 841-844.

Wagner, W. 1969. The construction of a classification. In Sibley, C. G. Systematic Biology : 67-90. Washington.

Wagner, W. 1973. Some future challenges of fern systematics and phylogeny. In Jermy, A.C., Crabbe, J.A. & Thomas, B.A. The phylogeny and classification of the Ferns. pp. 245-256. London.

Walker, I. 1959. Die Abwehrreaction des Wirtes Drosophila melanogaster gegen die zoophage Cynipidae Pseudeucoila bochei. Revue Suisse de Zoologie 66: 569-632.

Walker, J.W. 1976. Comparative pollen morphology and physiology of the Ranalean complex. Annual review of ecology and systematics 9: 241-299.

Wangberg, J.K. 1978. Biology of gall formers of the genus Valentibula (Diptera: Tephritidae) on rabbitbrush in Idaho USA. Journal of the Kansas Entomological Society 51: 472-483.

Washburn, J.O. 1984. Mutualism between a cynipid gall wasp and ants. *Ecology* 65: 654-656.

Watrous, L.E. & Wheeler, Q.D. 1981. The outgroup comparison method of character analysis. Systematic Zoology 30 : 1-11. Webber, H. 1925. Der thorax der Hornisse. Zoologischer Jahresbericht 67: 1-100.

Weideli, H. 1967. Untersuchungen über die freien ninhydrin-positiven Substanzen und Proteine in der Haemolymphe der durch Schupfwespen infizierten Larven von D. melanogaster. 37pp. Zurich.

Weis-Fogh, T. 1973. Quick estimates of flight fitness in hovering animals including novel mechanisms for lift production. Journal of Experimental Biology 59: 169-230.

Weiss, A.E., Abrahamson, W.G. & McCrea, K.D. 1985. Host gall size and oviposition success by the parasitoid Eurytoma gigantea. Ecological Entomology 10: 341-348.

Weiss, A.E. & Kapelinski, A. 1984. Manipulation of host plant development by the gall midge Rhabdophaga strobiloides. Ecological entomology 9: 457-465.

Weld, L.H. 1944. Descriptions of new Cynipidae including two new genera (Hymenoptera). Proceedings of the Entomological Society of Washington 463: 55-66.

Weld, L.H. 1952. Cynipoidea (Hym.) 1905-1950. 352pp. Ann Arbor.

Weld, L.H. 1960. A new genus in Cynipoidea (Hymenoptera). Proceedings of the entomological Society of Washington 62: 195-196.

Wells, B.W. 1921. Evolution of zoocecidia. Botanical gazette 71: 358-377.

Wheeler, W.M. 1919. The parasitic Aculeates, a study in evolution. Proceedings of the American Philosophical Society 58: 1-40.

Whitham, T.G. 1980. The theory of habitat selelection: examined and extended using Pemphigus aphids. American

Naturalist 11: 449-466.

Wiebes-Rijks, A.A. 1979. A character analysis of the species of Synergus Hartig, Section II (Mayr, 1872) (Hymenoptera, Cynipidae). Zoologische Mededeelingen 53: 297-321.

Wiley, E.O. 1981. Phylogenetics. The theory and practice of phylogenetic systematics. 439pp. New York.

Wilson, E.O. 1965. A consistency test for phylogenies based on contemporaneous species. Systematic Zoology 14: 214-220.

Wilson, E.O. 1971. The insect Societies. 548pp. Cambridge.

Wishart, G. & Monteith, E. 1954. Trybliographa rapae (West) (Hymenoptera: Cynipidae), a parasite of Hylemya spp. (Diptera: Anthomyiidae). Canadian Entomologist 86 (4): 145-154.

Wootton, R.J. 1979. Function, homology and terminology in insect wings. Systematic entomology 4: 81-93.

Wong, H.R. 1963. The external morphology of the adults and ultimate larval instar of the larch sawfly, Pristiphora erichsonii (Htg.) (Hymenoptera: Tenthredinidae). Canadian Entomologist 95: 897-921.

Yasumatsu, K. & Taketani, A. 1967. Some remarks on the commonly known species of the genus Diplolepis Geoffroy in Japan. Esakia 6: 77-87.

Yoon, J.S., Rensch, K. & Wheeler, M.R. 1972. Cytogenetic relationships in Hawaiian species of Drosophila. I. The Drosophila hystriosa subgroup of the "modified mouthparts" species group. Studies in Genetics 7: 179-199.

Yoshimoto, C.M. 1970. A new subfamily of Cynipoidea (Hymenoptera) from Nepal. Canadian Entomologist 102: 1583-1585. Yoshimoto, C.M. & Gressitt, J.L. 1964. Dispersal studies on Aphididae, Agromyzidae and Cynipoidea. Pacific Insects 6: 525-531.

Zerichin, V.V. & Sukaceva, J.D. 1973. Onekotorych nasekomonosnych "jantarjach" (retinitach) sevora Sibiri. Voprosy paleontologii 24: 3-48.

APPENDIX 1: COMPUTER PROGRAMS

The computer programs used in this thesis (see chapters 1 & 2) are listed below. The three dimensional plotting program used for the probability constructs of head allometry was adapted from L3-CO3D (Harding, 1982), this program and also the parsimony program HENNIG86 are subject to copyright and are therefore not listed below.

1. The data conversion program CONVERT.

100 REM *EXEC Input filename 120 CLOSE\$0 130 INPUT"Enter output filename ";F\$ 140 A=OPENOUT F\$ 150 READ M,N 160 PRINT\$A,M,N 170 FOR X=0 TO M 180 FOR Y=0 TO N 190 READ B 200 PRINT\$A,B 210 NEXT 220 NEXT 230 CLOSE\$0 240 END

2. The first main program, LEQUA.

10 REM LEQUA Prints binary coded data 20 CLOSE#0 30 INPUT"Enter input filename ";F\$;" Enter date ";D\$ 40 CH=OPENIN F\$ 50 INPUT#CH, M%, N% 60 T%=M%-1: P%=N% 70 DIM Q%(T%,N%),C%(T%),D(1,N%) 80 FOR YS=0 TO NS 90 INPUT#CH, D(0, Y%):D(1, Y%)=Y% 100 NEXT 110 FOR X%=0 TO M%-1 120 C%(X%)=X% 130 FOR YS=0 TO NS 140 INPUT#CH,Q%(X%,Y%) 150 NEXT 160 NEXT 170 PRINT"P = Print data" 180 PRINT"I = Invert scores of specified character" 190 PRINT"E = End run" 200 I\$="Y":PRINT'': INPUT "Enter P,I or E";H\$ 210 IF H\$="E" THEN 1010 220 IF H\$="P" THEN 250 230 IF H\$="I" THEN 840 240 REM Data printout 250 INPUT "Enter title";T\$ 260 INPUT"Characters Unchanged or Rearranged - U OR

```
R";E$
270 IF ES="U" OR ES="u" THEN 370
280 INPUT"How many characters ";P%
290 PRINT"Enter nos., singly"
300 FOR 2%=1 TO P%
310 INPUT D(1,2%)
320 FOR YS=1 TO NS
330 IF ABS(ABS(D(0,Y%))-D(1,Z%))>1E-4 THEN 350
340 D(1,Z%)=Y%: Y%=1000
350 NEXT
360 NEXT
370 INPUT "Taxa Unchanged or Rearranged - U OR R";U$
380 IF U$="U" OR U$="u" THEN 480
390 INPUT "How many taxa "; T%
400 PRINT"Enter taxon nos., singly"
410 FOR 2%=0 TO T%-1
420 INPUT C%(2%)
430 FOR X%=0 TO M%
440 IF C%(Z%)<>Q%(X%,0) THEN 460
450 C%(Z%)=X%: X%=1000
460 NEXT
470 NEXT: T%=T%-1
480 INPUT; "Scereen or Printer - S or P"; S$
490 IF S$<>"P" THEN 510
500 VDU2
510 PRINT'TAB(20);T$,D$''' "Taxon"'"Nos.",,"Character
    Nos."
520 FOR 2%=1 TO N% STEP 23
530 R%=-1:PRINT;TAB(8);
540 FOR Y*=Z* TO Z*+22 STEP 2
550 R%=R%+1
560 IF YS>PS THEN 580
570 PRINT; TAB(8+6*R%); D(0, D(1, Y%));
580 IF YS>PS THEN YS=1000
590 NEXT
600 R%=-1:PRINT'TAB(10);
610 FOR Y%=Z%+1 TO Z%+22 STEP 2
620 R%=R%+1
630 IF Y%>P% THEN 650
640 PRINT; TAB(11+6*R%); D(0, D(1, Y%));
650 IF Y$>P$ THEN Y$=1000
660 NEXT
670 PRINT''
680 FOR X%=0 TO T%
690 PRINT;Q%(C%(X%),0);TAB(8);
700 FOR YS=ZS TO ZS+22
710 IF YS>PS THEN 770
 720 IF Q%(C%(X%),D(1,Y%))<2 THEN 760
730 IF Q%(C%(X%), D(1, Y%))>3 THEN 750
740 PRINT; "V ";: GOTO 780
750 PRINT; "- ";: GOTO 780
 760 PRINT;Q%(C%(X%),D(1,Y%));" ";
 770 IF YS>PS THEN YS=1000
 780 NEXT
 790 PRINT': NEXT X%
800 PRINT''': NEXT Z%
 810 VDU3
 820 GOTO 200
```

```
Page 352
```

```
830 REM Inversion of scores
     840 INPUT "Invert the scores of how many characters
         "; VN
     850 PRINT"Enter character nos., singly"
     860 FOR Z&=1 TO VA
     870 INPUT W
     880 FOR Y%=1 TO N%
     890 IF ABS(D(0, Y%))=ABS(W) THEN 910
     900 GOTO 920
     910 W=Y%: Y%=1000
     920 NEXT
     930 FOR X%=0 TO M%-1
     940 IF Q%(X%,W)>1 THEN 980
     950 IF Q%(X%,W)=0 THEN 970
     960 Q%(X%,W)=0: GOTO 980
     970 Q%(X%,W)=1
     980 NEXT
     990 NEXT
    1000 GOTO 200
    1010 END
3. The compatability program LEQUB.
      10 REM LEQUB computes LeQuesne matrix, randomness
         ratios and boil-down
      20 CLOSE#0:READ G$
      30 DATA Incompatibilities: observed expected ratio
         - polar
      40 INPUT"Enter input filename ";F$;"Enter title
         ";T$;"Enter date ";DATE$
      50 CH=OPENIN F$
      60 INPUT#CH, M%, N%
      70 M&=M&-1
      80 DIM Q%(M%,N%),C(M%,3),D(4,N%)
      90 FOR Y&=0 TO NA: D(4,YA)=.1: INPUT#CH,D(0,YA):
         NEXT
     100 FOR X%=0 TO M%
     110 C(X%,0)=X%
     120 FOR YN=0 TO NN
     130 INPUT#CH,Q%(X%,Y%)
     140 NEXT
     150 NEXT
     160 A$="N": C$="N": E$="N": N2=N%: R%=0:
     170 PRINT"I = Invert scores of specified character"
     180 PRINT"O = One LeQu run"
     190 PRINT"B = 'Boil down' data"
     200 PRINT"D = Delete all characters"
     210 PRINT"R = Restore all characters"
     220 PRINT"E = End run"
     230 I$="Y":INPUT'"Enter I,O,B,D,R or E";H$
     240 IF H$="D" THEN 280
     250 IF H$="R" THEN 270
     260 GOTO 290
     270 FOR Y%=1 TO N%: D(4,Y%) = ABS(D(4,Y%)): NEXT:
         GOTO 230
     280 FOR Y%=1 TO N%: D(4,Y%)= -ABS(D(4,Y%)): NEXT:
         GOTO 230
```

290 IF H\$="E" THEN 2480 300 IF HS="I" THEN 370 310 INPUT "Data Unchanged or Altered - U or A";D\$ 320 IF D\$="A" THEN 2180 330 IF H\$="O" THEN 540 340 A\$="N": B\$="N": I\$="N" 350 IF H#="B" THEN 590 360 REM Inversion of scores 370 INPUT*Invert the scores of how many characters ";L3 380 PRINT" Enter the character nos., singly" 390 FOR 2%=1 TO L3 400 INPUT C4 410 FOR YS=1 TO NS 420 IF ABS(D(0,Y%))=ABS(C4) THEN 440 430 GOTO 450 440 C4=Y%: GOTO 460 450 NEXT 460 FOR X%=0 TO M% 470 IF Q%(X%,C4)>1 THEN 510 480 IF Q%(X%,C4)=0 THEN 500 490 Q%(X%,C4)=0: GOTO 510 500 Q%(X%,C4)=1 510 NEXT 520 NEXT 2 530 GOTO 230 540 INPUT; "Title changed - Y or N"; U\$ 550 IF U\$="N" THEN 570 560 INPUT;"Enter new title";T\$ 570 INPUT "LeQuesne matrix - Y or N";A\$ 580 INPUT "Ratios - Y or N"; I\$ 590 INPUT "Screen or printer - S or P";S\$ 600 IFS\$<>"P"THEN620 610 VDU2 620 IF A\$="N" THEN 640 630 R=0:K=0 640 FORX%=0 TOM%: C(X%,1)=0: NEXT 650 C34=0 660 FOR YA=1 TO NA 670 IF D(4,Y%)<0 THEN 710 680 D(4,Y%)=.1 690 C3%=C3%+1 700 D(3,C3%)=Y% **710 NEXT** 720 FOR W=1 TO C3% STEP 23 730 IF A\$="N" THEN 880 740 PRINT'TAB(10);T\$;" ";DATE\$' 745 PRINT"Taxa analysed: ";: FOR X=0 TO M%: IF Q\$(X,0)>0 THEN PRINT;Q\$(X,0);" "; 746 NEXT: PRINT' 750 N1=-1: PRINT; TAB(7); 760 FOR YS=W TO W+22 STEP 2 770 N1=N1+2 780 IF Y%>C3% THEN 810 790 PRINT; D(0, D(3, Y\$)); TAB(10+3*N1); 800 NEXT 810 PRINT'; TAB(10);: N1=1 820 FOR YN=W+1 TO W+22 STEP 2

```
830 N1=N1+2
 840 IF Y$>C3$-1 THEN 870
 850 PRINT; D(0, D(3, Y%)); TAB(7+3*N1);
 860 NEXT
 870 PRINT'
 880 FOR 2%=C3% TO W+1 STEP -1
 890 Z1%=D(3,Z%)
 900 IF A#="N" THEN 920
 910 PRINT; D(0, Z1%); TAB(7);
 920 W1=W+22
 930 FOR YS=W TO W1
 940 IF Y%>C3% THEN 1620
 950 IF Y%>Z%-1 THEN 1610
 960 Y1%=D(3,Y%)
 970 IF INT(D(0,Y1%))-INT(D(0,Z1%))=0 THEN 1620
 980 A%=0: B%=0: C%=0: D%=0: E%=0: F%=0: G%=0
 990 FOR X&=0 TO H&
1000 IFQ%(X%,0)<0 THEN 1230
1010 Q1=(Q%(X%,Y1%)+Q%(X%,Z1%))
1020 IFQ1>6 THEN 1230
1030 IFQ1=0 THEN 1140
1040 IFQ1=2 THEN 1170
1050 IFQ1>2 THEN 1080
1060 IFINT(Q$(X$,Z1$))=0 THEN 1160
1070 GOTO 1150
1080 IF Q1>3 THEN 1110
1090 IF INT(Q%(X%,Z1%))=0 THEN 1180
1100 GOTO 1200
1110 IF INT(Q%(X%,Z1%))=1 THEN 1190
1120 IF INT(Q%(X%,Y1%))=1 THEN 1210
1130 GOTO 1220
1140 A%=A%+1: A1%=X%: GOTO 1230
1150 B%=B%+1: B1%=X%: GOTO 1230
1160 C%=C%+1: C1%=X%: GOTO 1230
1170 D%=D%+1: D1%=X%: GOTO 1230
1180 A%=A%+1: A1%=X%: C%=C%+1: C1%=X%: GOTO 1230
1190 B%=B%+1: B1%=X%: D%=D%+1: D1%=X%: GOTO 1230
1200 A%=A%+1: A1%=X%: B%=B%+1: B1%=X%: GOTO 1230
1210 C%=C%+1: C1%=X%: D%=D%+1: D1%=X%: GOTO 1230
1220 A%=A%+1: A1%=X%: B%=B%+1: B1%=X%: C%=C%+1:
     C1%=X%: D%=D%+1: D1%=X%
1230 NEXT
1240 IF B&=0 THEN 1320
1250 IF C%=0 THEN 1320
1260 IF D%=0 THEN 1320
1270 IF AS=0 THEN 1290
1280 GOTO 1340
1290 D(4,21%)=D(4,21%)+1: D(4,Y1%)=D(4,Y1%)+1
1300 IF A$="N" THEN 1370
1310 PRINT;": ";: GOTO 1370
1320 IF AS="N" THEN 1370
1330 PRINT;"- ";: GOTO 1370
1340 IF AS="N" THEN 1360
1350 PRINT; "X ";
1360 D(1,Y1%)=D(1,Y1%)+1: D(1,Z1%)=D(1,Z1%)+1: R%=R%+1
1370 IF AS<DS THEN 1390
1380 K1=-1: GOTO 1400
1390 K1=1
```

```
Page 355
```

1400 IF B%<C% THEN 1420 1410 K1=K1-2: GOTO 1430 1420 K1=K1+2 1430 IF K1=-3 THEN 1490 1440 IF K1=-1 THEN 1480 1450 IF K1=1 THEN 1470 1460 E%=A%+B%: F%=A%+C%: G%=B%+D%: GOTO 1500 1470 E%=B%+D%: F%=A%+B%: G%=C%+D%: GOTO 1500 1480 E%=A%+C%: F%=A%+B%: G%=C%+D%: GOTO 1500 1490 E%=C%+D%: F%=A%+C%: G%=B%+D% 1500 I=1: J=1: H%=A%+B%+C%+D% 1510 IF EX<2 THEN 1620 1520 FOR X%=0 TO E%-1 1530 I=I*(F%-X%)/(H%-X%) 1540 J=J*(G%-X%)/(H%-X%) 1550 NEXT 1560 P=1-I-J 1570 IF P<1E-8 THEN 1620 1580 D(2,21%)=D(2,21%)+P 1590 D(2,Y1%)=D(2,Y1%)+P: K=K+P 1600 GOTO 1620 1610 W1=W1-1 1620 NEXT Y%: IF AS="N" THEN 1640 1630 PRINT' 1640 NEXT 2%: IF AS="N" THEN 1660 1650 PRINT' 1660 NEXT W 1670 IF IS="N" THEN 1700 1680 PRINT'"LeQuesne's coefficient of character state randomness = ratio x 100%" 1685 PRINT"Taxa analysed: ";:FOR X=0 TO M%:IF Q%(X,0)>0 THEN PRINT;Q%(X,0);" "; 1686 NEXT: PRINT' 1690 PRINT'TAB(10);T\$;" ";DATE\$''G\$': 2%=0 1700 FOR Y%=1 TO N% 1710 IFD(1,Y%)=0 THEN D(3,Y%)=0: IF D(4,Y%)<0 THEN 1880 1720 IF I\$="N" THEN 1750 1730 PRINT; TAB(2%*32); D(0, Y%); TAB(6+2%*32)": "; 1740 PRINT; D(1, Y%); TAB(12+2%*32); 1750 IF D(2,Y%)>.01 THEN 1790 1760 IF I\$="N" THEN 1780 1770 PRINT;"--";: GOTO 1840 1780 IF D(1,Y%)=0 THEN 1830 1790 D(3, Y) = D(1, Y) / D(2, Y)1800 D(2,Y%)=(INT(D(2,Y%)*100+.5))/100 1810 IF I\$="N" THEN 1880 1820 PRINT; D(2, Y%); TAB(19+Z%*32); INT(D(3, Y%)*100 +.5)/100; 1830 IF I\$="N" THEN 1850 1840 PRINT; TAB(23+2%*32);" - "; INT(D(4,Y%)); 1850 IF ZN=0 THEN 1870 1860 Z%=0: PRINT: GOTO 1880 1870 Z%=1: PRINT; TAB(32); 1880 NEXT 1890 IFI\$="N"THEN1910 **1900 PRINT** 1910 PRINT'"Grand total - ";

```
Page 356
```

1920 PRINT; R%; " ";(INT(K*100+.5))/100;" ";(INT(R% /K*100+.5))/100; 1930 IF R\$>0 THEN 1950 1940 VDU3: PRINT: GOTO 230 1950 A2=0: IF H\$="B" THEN 1970 1960 PRINT''"Ranking ratios" 1970 C2=1E6 1980 FOR YS=1 TO NS: IF D(3, YS)<0 THEN 2030 1990 IF D(4, Y%)<0 THEN 2030 2000 IF D(3,Y%) <C2 THEN 2020 2010 GOTO 2030 2020 C2=D(3,Y%): Y1%=Y% 2030 NEXT 2040 IF C2=186 THEN 2090 2050 IF H\$="B" THEN 2080 2060 A2=A2+1: PRINT;D(0,Y1%);TAB(A2*7);: D(3,Y1%)=-1: IF A2<10 THEN 1970 2070 A2=0: PRINT: GOTO 1970 2080 D(3,Y1%)=-1: GOTO 1970 2090 IF H\$="B" THEN 2110 2100 PRINT: GOTO 2130 2110 D(4,Y1%)=-D(4,Y1%): N2=N2-1 2120 PRINT;" Ch. deleted : ";D(0,Y1%) 2130 K=0: R%=0 2140 FOR Y%=1 TO N%: D(2,Y%)=0: D(1,Y%)=0: NEXT 2150 IF H\$="B" THEN 630 2160 VDU3 2170 GOTO 230 2180 C3%=0: INPUT "Delete or restore characters, taxa or both (1st C then T) - C, T or B ";C\$ 2190 IF C\$="T" THEN 2220 2200 N1=N%: GOTO 2230 2210 C\$="T" 2220 N1=M% 2230 INPUT"How many ";F 2240 A\$="N": PRINT"Enter singly" 2250 FOR 2%=1 TO F 2260 INPUT G 2270 FOR Y&=1 TO N1 2280 IF C\$="T" THEN 2350 2290 IF ABS(D(0, Y%))=G THEN 2310 2300 GOTO 2380 2310 IF D(4,Y%)>0 THEN 2330 2320 N2=N2+1: GOTO 2340 2330 N2=N2-1 2340 D(4,Y%)=-D(4,Y%): GOTO 2390 2350 IF ABS(Q%(Y%,0))=G THEN 2370 2360 GOTO 2380 2370 Q%(Y%,0)=-Q%(Y%,0): GOTO 2390 2380 NEXT 2390 NEXT 2% 2400 IF C\$="B" THEN 2210 2410 FOR Y%=1 TO N% 2420 IF D(4,Y%)<0 THEN 2450 2430 C3%=C3%+1 2440 D(3,C3%)=Y% 2450 NEXT 2460 IF H\$="B" THEN 340

```
2470 GOTO 540
    2480 END
4. The compatability program LEQUC.
      10 REM LEQUC LeQuesne test program computes marks
      20 CLOSE#0
      30 INPUT"Enter input filename ";F$;"Enter title
         ";T$;"Enter date ";DATE$
      35 INPUT; "Screen or Printer: S or P "; S$
      36 IF S$ = "P" THEN VDU3
      40 CH=OPENIN FS
      50 INPUT #CH,M%,N%
      60 DIH Q(H$,N$),E$(H$),D$(3,N$)
      70 FOR Y%=0 TO N%
      80 D%(0,Y%)=1
      90 D%(2,Y%)=Y%
     100 NEXT
     110 FOR X%=0 TO M%
     120 FOR YS=0 TO NS
     130 INPUT#CH,Q(X%,Y%)
     140 NEXT YS
     150 NEXT
     160 INPUT "Data Unchanged, Altered or End run - U, A
         or E ";D$
     170 IF D$="A" THEN 1280
     180 IF D$="E" THEN 1600
     190 FOR X%=1 TO M%:E%(X%)=0:NEXT
     200 J%=0
     210 FOR YS=1 TO NS
     220 D%(3,Y%)=0
     230 IF D&(0,Y&)<0 THEN 260
     240 J%=J%+1
     250 D%(2,J%)=Y%
     260 NEXT
     270 FOR Z%=J% TO 1 STEP -1
     280 Z1%=D%(2,Z%)
     290 FOR Y%=1 TO J%
     310 IF Y$>28-1 THEN 750
     320 Y1%=D%(2,Y%)
     330 IF INT(Q(0,Y1%))-INT(Q(0,Z1%))=0 THEN 750 ELSE
         A%=0: B%=0: C%=0: D%=0
     350 FOR X%=1 TO M%
     360 IF Q(X%,0)<0 THEN 590 ELSE Q1%=INT(Q(X%,Y1%)+
         Q(X%,Z1%))
     380 IF Q1%>6 THEN 590
     390 IF Q1%=0 THEN 500
     400 IF Q1%=2 THEN 530
     410 IF Q1%>2 THEN 440
     420 IF INT(Q(X%,Z1%))=0 THEN 520 ELSE 510
     440 IF Q1%>3 THEN 470
     450 IF INT(Q(X$, 21$))=0 THEN 540 ELSE GOTO 560
     470 IF INT(Q(X$, 21$))=1 THEN 550
     480 IF INT(Q(X$, Y1$))=1 THEN 570 ELSE 580
     490 GOTO 580
     500 A%=A%+1: A1%=X%: GOTO 590
     510 B%=B%+1: B1%=X%: GOTO 590
```

520 C%=C%+1: C1%=X%: GOTO 590 530 D%=D%+1: D1%=X%: GOTO 590 540 AN=AN+1: A1%=X%: C%=C%+1: C1%=X%: GOTO 590 550 B%=B%+1: B1%=X%: D%=D%+1: D1%=X%: GOTO 590 560 AN=AN+1: A1N=XN: BN=BN+1: B1N=XN: GOTO 590 570 C%=C%+1: C1%=X%: D%=D%+1: D1%=X%: GOTO 590 580 A%=A%+1: A1%=X%: B%=B%+1: B1%=X%: C%=C%+1: C1%=X%: D%=D%+1: D1%=X% 590 NEXT 600 X1%=0: IF A%*B%*C%*C%*D%=0 THEN 750 640 IF AN>1 THEN 660 ELSE X1N=A1N: PROCHARK 660 IF B%>1 THEN 680 IF B1%=X1% THEN 750 ELSE X13=B13: PROCHARK 680 IF C%>1 THEN 700 IF C1%=X1% THEN 750 ELSE X1%=C1%: PROCHARK 700 IF D\$>1 THEN 750 IF D1%=X1% THEN 750 ELSE X1%=D1%: PROCMARK 750 NEXT 760 NEXT 765 INPUT; "Screen or printer: S or P "; S\$ 766 IF S\$<>"P" THEN 780 770 VDU2 780 PRINT'"Species and characters 'marked'" 790 PRINT: PRINT; TAB(20); T\$;" ";DATE\$: PRINT: PRINT; "Taxon": PRINT; "Nos" 800 C%=0 810 FOR YS=1 TO NS:IF DS(3,YS)=0 THEN 830 820 C%=C%+1: D%(1,C%)=Y% 830 NEXT 840 FOR W=1 TO C% STEP 17 850 N1=-1: PRINT; TAB(14); 860 FOR YN=W TO W+16 STEP 2 870 IF Y>>C% THEN 900 880 N1=N1+2: PRINT; ABS(Q(0, D%(1, Y%))); TAB(18+4*N1); 890 NEXT 900 PRINT: PRINT; TAB(18);: N1=1 910 FOR YN=W+1 TO W+16 STEP 2 920 IF Y%>C% THEN 950 930 N1=N1+2: PRINT; ABS(Q(0,D%(1,Y%))); TAB(14+4*N1); 940 NEXT 950 PRINT' 960 FOR X%=1 TO H% 970 IF E%(X%)=0 THEN 1120 980 V=Q(X%,0): GOSUB 1550 990 IF W>1 THEN 1010 1000 PRINT;" (";E%(X%);")"; 1010 PRINT; TAB(14);: N1=1 1020 FOR YS=W TO W+16 1030 IF YS>CS THEN 1090 1040 I=Q(X%,D%(1,Y%)) -INT(Q(X%,D%(1,Y%))) +1E-5 1050 IF I<.0001 THEN 1070 1060 PRINT; INT(I*100); TAB(14+4*N1);: GOTO 1100 1070 PRINT; "--۳; 1080 GOTO 1100 1090 PRINT: Y%=1000 1100 N1=N1+1: NEXT Y% 1110 PRINT 1120 NEXT X%

```
Page 359
```

1130 PRINT'': NEXT W 1140 PRINT; "Unmarked taxa: "; 1150 FOR X&=1 TO H& 1160 IF E%(X%)>0 THEN 1190 1170 IF Q(X%,0)<0 THEN 1190 1180 PRINT;Q(X%,0);" "; 1190 NEXT: PRINT 1200 Z%=0: PRINT' 1210 VDU3 1220 FOR X%=1 TO M 1230 FOR YS-1 TO NS 1240 Q(X%,Y%)=INT(Q(X%,Y%)) 1250 NEXT 1260 NEXT 1270 GOTO 160 1280 H=0 1290 INPUT; "Delete or restore characters, taxa or both
 (1st C then T) - C, T or B ";C\$
1300 IF C\$="T" THEN 1330 1310 N1=N%: GOTO 1340 1320 C\$="T" 1330 N1=M% 1340 INPUT "How many";F 1350 A\$="N": PRINT "Enter singly" 1360 FOR 2%=1 TO F 1370 INPUT G 1380 FOR Y&=1 TO N1 1390 IF C\$="T" THEN 1430 1400 IF ABS(Q(0,Y%))=G THEN 1420 1410 GOTO 1460 1420 D%(0,Y%)=-D%(0,Y%): GOTO 1470 1430 IF ABS(Q(Y%,0))=G THEN 1450 1440 GOTO 1460 1450 Q(Y\$,0)=-Q(Y\$,0): GOTO 1470 1460 NEXT YS 1470 NEXT 2% 1480 IF C\$="B" THEN 1320 1490 FOR Y&=1 TO N& 1500 IF D%(0,Y%)<0 THEN 1530 1510 H=H+1 1520 D%(2,H)=Y% 1530 NEXT YN 1540 GOTO 190 1550 IF V<10 THEN 1590 1560 IF V<100 THEN 1580 1570 PRINT; V;: RETURN 1580 PRINT;" ";V;: RETURN 1590 PRINT;" ";V;: RETURN 1600 CLOSE#0: END 1610 DEFPROCMARK 1620 Q(X1%,Y1%)=Q(X1%,Y1%)+.01: Q(X1%,Z1%)=Q(X1%,Z1%)+ .01:E%(X1%)=E%(X1%)+1:D%(3,Y1%)=1: D%(3,Z%)=1 1630 ENDPROC

5. The character weighting program O'NOLAN"

5 REM O'NOLAN

```
10 REM O'NOMOD computes O'Nolan weights from
    compatibility matrix,
 11 REM avoiding same variable comparisons in
    multistate characters
 20 CLOSE#0
 30 INPUT"Enter input filename ";F$;"Enter title
    ";T$;"Enter date ";DATE$
 40 CH = OPENIN F$
 50 INPUT#CH, M&, N&
 60 DIM Q%(M%+1,N%),C%(N%*(N%-1)/2),B%(N%),D(2,N %):
    P^{=} = M^{+1}
 70 REM
          FOR Z = 1 TO N * (N - 1)/2: C (Z ) = -2:
    NEXT
 80 FOR Y% = 0 TO N%: INPUT#CH,D(0,Y%): D(2,Y%) = 1:
    NEXT
100 FOR X% = 1 TO M%
110 FOR Y = 0 TO N
120 INPUT#CH,Q%(X%,Y%)
130 NEXT: NEXT
140 PRINT"R = Run"
150 PRINT"T = Delete or restore Taxa"
160 PRINT"E = End run"
170 VDU3: INPUT'"Enter R, T or E";H$
180 IF H$ = "E" THEN 1150
190 IF H$ ="T" THEN GOSUB 1170
200 FOR YS = 1 TO NS
220 0 = 0: 1 = 0
230 FOR X% = 1 TO M%
235 IF Q%(X%,0)<0 THEN 270
240 IF Q%(X%,Y%) = 7 THEN 270
250 IF Q%(X%,Y%) = 0 THEN 0% = 0%+1: GOTO 270
260 IF Q(X, Y) = 1 THEN IS = IS+1 ELSE OS = OS+1;
    I^{*} = I^{*+1}
270 NEXT
280 IF 0%<2 OR 1%<2 THEN D(0,Y%) = -D(0,Y%): D(1,Y%)
    = -11
290 NEXT
300 INPUT; "Title changed - Y or N"; U$
310 IF US = "N" THEN 330
320 INPUT; "Enter new title"; T$
330 INPUT; "Screen or Printer - S or P"; S$
340 IF SS = "P" THEN VDU2
355 PRINT; "Program O'NOMOD
                               Datafile:";F$
360 PRINT'TAB(10);T$;"
                          ";DATE$'
380 PRINT"Taxa analysed "
390 FOR X% =1 TO M%: IF Q%(X%,0)>0 THEN
    PRINT;Q%(X%,0); " ";
400 NEXT: PRINT'
410 PRINT; TAB(8); "Ch.nos."; TAB(18); "Weights"; TAB(40);
    "Ch.nos.";TAB(50);"Weights"
420 FOR Z% = 1 TO N%
430 IF D(0,2%)<0 THEN 720
440 FOR YS = 28+1 TO NS
450 IF Y$>N$ THEN 710
460 IF D(0,Y%)<0 THEN 710
463 IF INT(D(0, Y%))-INT(D(0, Z%)) = 0 THEN 710 470 A%
    = 0: B = 0: C = 0: D = 0
480 FOR X% = 1 TO M%
```

```
490 IF Q%(X%,0)<0 THEN 670 ELSE Q1% = (Q%(X%,Y%)+
    Q%(X%,Z%))+1
500 IF Q1>>4 THEN 550
510 ON Q1% GOTO 580, 520, 610, 540
520 IF Q%(X%,Z%) = 0 THEN 600 ELSE 590
530 IF Q1%>3 THEN 560
540 IF QN(XN,ZN) = 0 THEN 620 ELSE 640
550 IF Q1$>7 THEN 670
560 IF Q%(X%,Z%) = 1 THEN 630
570 IF Q%(X%,Y%) = 1 THEN 650 ELSE 660
580 A% = A%+1: GOTO 670
590 B% = B%+1: GOTO 670
600 C% = C%+1: GOTO 670
610 D% = D%+1: GOTO 670
620 AS = AS+1: CS = CS+1: GOTO 670
630 B% = B%+1: D% = D%+1: GOTO 670
640 A% = A%+1: B% = B%+1: GOTO 670
650 C% = C%+1: D% = D%+1: GOTO 670
660 A% = A%+1: B% = B%+1: C% = C%+1: D% = D%+1
670 NEXT
680 IF A**B**C**D*>0 THEN 690 ELSE 700
690 C%(Y%*(Y%-3)/2+2%+1) = 0: GOTO 710
700 C(Y^{(Y)}(Y^{(Y)})/2+Z^{(Y)}) = 1; Q(0,Y) = Q(0,Y)+1;
    Q^{(0,Z^{)}} = Q^{(0,Z^{)}+1}
710 NEXT
720 NEXT
722 FOR Y% = 1 TO N%
723 IF D(0,Y%)<0 THEN 729
724 FOR Z% = 1 TO N%
725 IF D(0,Z^{(0)}) < 0 OR INT(D(0,Y^{(0)}) - INT(D(0,Z^{(0)})) = 0
    THEN 728
727 Q(P, Y) = Q(P, Y) +1
728 NEXT
729 NEXT
730 FOR Z% = 1 TO N%
740 IF D(0,2%)<1 THEN 890
750 D(1,2) = 0: F =
                        0
760 FOR YS = 1 TO NS
770 IF D(0,Y%)<1 THEN 870
775 IF YS = 2% THEN 870
780 IF INT(ABS(D(0,Y%)))-INT(ABS(D(0,Z%))) = 0 THEN
    870
790 F = F+Q*(P*,Y*)
800 IF Y$>2$ THEN 810 ELSE C$ = Z$*(Z$-3)/2+Y$+1:
    GOTO 830
810 C% = Y%*(Y%-3)/2+2%+1
830 IF C%(C%) = 0 THEN 850
840 D(1,Z%) = D(1,Z%)+Q%(0,Y%): GOTO 870
850 IF D(2,Y%)<0 THEN D(2,Y%) = (D(2,Y%)+1)/2
860 D(1, 2\%) = D(1, 2\%) - Q\%(0, Y\%) * D(2, Y\%)
870 NEXT
880 D(1,Z%) = D(1,Z%)/F%
890 NEXT
900 G = 100
910 FOR YS = 1 TO NS
920 IF D(0,Y%)<1 THEN 940
930 IF D(1, Y) \leq G THEN G = D(1, Y)
940 NEXT: VDU3
```

```
950 IF G<1 THEN 980
960 IF S$ = "P" THEN VDU2
980 PROCPrint
1000 FOR YS = 1 TO NS
1010 IF D(0, Y%) <1 THEN 1050
1020 IF D(1,Y%) = G THEN 1030 ELSE 1040
1030 D(0,Y%) = -ABS(D(0,Y%)): GOTO 1050
1040 D(2,Y) = D(1,Y) : D(1,Y) = 0 : Q(0,Y) = 0
1050 NEXT
1060 FOR 2% = 1 TO N%
1070 IF D(0,2%)<1 THEN 1130
1080 FOR Y& = Z&+1 TO N&
1090 IF YS>NS THEN 1120
1100 IF D(0,Y%)<1 THEN 1120
1110 IF C(Y) = Q(0, Y) = 0
     Y)+1:Q(0, Z) = Q(0, Z)+1
1120 NEXT
1130 NEXT
1140 IF G<1 THEN FOR YS = 1 TO NS: QS(PS,YS) = 0:
     NEXT: GOTO 722
1145 FOR Y% = 0 TO N%: D(0,Y%) = ABS(D(0,Y%)): D(1,Y%)
     =1: D(2,Y%) = 1: NEXT:GOTO 170
1150 VDU3: CLOSE#0: END
1170 INPUT"Delete or restore how many taxa ";F%
1180 PRINT"Enter singly"
1190 FOR 2% = 1 TO F%
1200 INPUTH
1210 FOR X% = 1 TO M%
1220 IF ABS(Q(X), 0) = H THEN Q(X), 0 = -Q(X), 0)
1230 NEXT:NEXT
1250 RETURN
1680 DEFPROCPrint
1690 Z = 0
1700 FOR Y = 1 TO NA: BA(YA) = 0
1730 PRINT; TAB(10+Z%*32); ABS(D(0,Y%)); TAB(16+Z%*32)":
1740 IF D(1,Y%) <-10 THEN PRINT; "-";: GOTO 1850
1750 PRINT; INT((D(1,Y%)*100)+.5)/100;
1850 IF Z% = 0 THEN 1870
1860 Z% = 0: PRINT: GOTO 1880
1870 Z% = 1: PRINT; TAB(42);
1880 NEXT
1950 A2 = 0
1960 PRINT''"Ranking weights"
1970 C2 = -10
1980 FOR Y% = 1 TO N%: IF D(1,Y%)<-10 THEN 2030
1990 IF B%(Y%)<0 THEN 2030
2000 IF D(1,Y%)≺ = C2 THEN 2030
2020 C2 = D(1,Y%): Y1% = Y%
2030 NEXT
2040 IF C2 = -10 THEN 2100
2060 A2 = A2+1: PRINT; D(0, Y1%); TAB(A2*7);: B%(Y1%)=-1:
     IF A2<10 THEN 1970
2070 A2 = 0: PRINT: GOTO 1970
2100 PRINT: ENDPROC
```

6. STEPONE - a program to step code continuous variable data. **10 REM STEPONE** 20 CLOSE# 0: 0% = 10 30 INPUT "Enter input filename ";E\$ 40 F = OPENIN E\$ 50 INPUT "Enter date "; D\$ 60 INPUT "Enter title "; T\$ 70 INPUT#F,M&,N& 80 DIM AS(MS,NS),C(MS,NS) 90 FOR X% = 0 TO M% 100 FOR YS = 0 TO NS 110 INPUTS F,C(X%,Y%) 120 IF $C(X^{+}, Y^{+}) > -1$ THEN $A^{+}(X^{+}, Y^{+}) = M^{+}1$ ELSE A(X,Y) = -1130 NEXT 140 NEXT 150 FOR YS = 1 TO NS 160 PRINT; Y%; " "; 170 GRADE\$ = 0 180 REPEAT 190 B = 1E6200 FOR X% = 1 TO M% 210 IF A%(X%, Y%) < GRADE% OR C(X%, Y%) <0 OR C(X%, Y%)> = B THEN 230 220 B = C(X%,Y%) 230 NEXT 240 R = 0250 FOR 2% = 1 TO M% 260 IF A%(2%,Y%)>M% THEN R% = R%+1 270 IF C(Z%,Y%)<>B THEN 290 280 A\$(2\$, Y\$) = GRADE\$ 290 NEXT 300 GRADE\$ = GRADE\$+1 310 UNTIL R% = 0 320 NEXT:PRINT 322 INPUT; "Screen or Printer - S or P"; S\$ 324 IF S\$<>"P" THEN 330 325 VDU2 330 PRINT; TAB(18); "Step coding of continuous variables" 335 PRINT; TAB(17); "St=Step no. Raw=Raw score of variable" 340 PRINT; TAB(10); T\$; TAB(40); E\$;" ";D\$ 350 PRINT; "Sample"; TAB(30); "Variable nos." 360 PRINT; "nos. 370 FOR WS = 1 TO NS STEP 7 380 ZS = WS-1: W7S = WS+6: YS = 0: PRINT; TAB(7); 390 REPEAT 400 Z% = Z%+1: Y% = Y%+1 410 PRINT; C(0, Z%); TAB(7+10*Y%); 420 UNTIL Z% = W7% OR Z% = N% 430 Y% = 0: Z%=W%-1: PRINT; TAB(3); 440 REPEAT 450 YA = YA+1: ZA = ZA+1 460 PRINT;" St Raw "; 470 UNTIL YS =7 OR ZS = NS

```
480 PRINT'
     490 FOR X% = 1 TO M%
     500 PRINT; C(X%, 0);: 2% = W%-1: Y% = 0
     510 REPEAT
     520 Z = Z +1: Y = Y +1: D = 10*(Y -1)
     530 PRINT; TAB(5+D%); A%(X%,Z%); TAB(8+D%); C(X%,Z%);
540 UNTIL Z% = W7% OR Z% = N%
     560 PRINT
     570 NEXT
     580 PRINT'
     590 NEXT W
     595 VDU3
     600 CLOSES 0:END
7. STEPTWO - probability matrix program for step coded
variables.
      10 REM STEPTWO
      11 REM For characters 1 to N against N to x,
      20 CLOSE#0
      30 DIM PR(9): FOR X% = 0 TO 8: READ PR(X%): NEXT
      40 DATA .01,.0033,.001,.00033,.0001,.000033,.00001,
          .0000033,.000001
      50 INPUT "Date"; D$: INPUT "Title"; T$: INPUT "Enter
         input filename ";F$
      60 B = OPENIN F$
      70 INPUT#B,M%,N%
      80 DIM A(M%,N%),C(M%),I%(M%,1),J%(N%),E(24),G%(3)
         ,F(3)
      90 FOR X% = 0 TO M%
     100 FOR YS = 0 TO NS
     110 INPUT#B, A(X%, Y%)
     120 NEXT
     130 NEXT
     140 E(24) = N+1: TSTEP = 0
     150 FOR Y% = 1 TO N%
     160 FOR X% = 1 TO M%
     170 C(X%) = A(X%,Y%): A(X%,Y%) = H%+1
     180 NEXT
     190 GRADE$ = 1
     200 REPEAT
     210 B = 1E6
     220 FOR X% = 1 TO M%
     230 IF A(X%,Y%) < GRADE% OR C(X%) > = B OR C(X%) <0 THEN
         250
     240 B = C(X%)
     250 NEXT
     260 R = 0
     270 FOR X% = 1 TO M%
     280 IF A(X%,Y%)>M% THEN R% = R%+1
     290 IF C(X%)<0 THEN A(X%,Y%) = -4
     300 IF C(X%) <> B THEN 320
     310 A(X%,Y%) = GRADE%
     320 NEXT
     330 GRADE$ = GRADE$+1
     340 UNTIL R = 0
     350 J%(Y%) = GRADE%-3: TSTEP% = TSTEP%+J%(Y%)
```

```
360 PRINT; J%(Y%); ": "; TSTEP%; " ";
370 NEXT YN
374 INPUT'"Screen or Printer - S or P";S$
376 IF S$<>"P" THEN 390
380 VDU2
390 PRINT''TAB(10);T$;TAB(55);F$;TAB(65);D$''
    "Fisher's exact probability"
400 PRINT; TAB(11); "Number: - 1
                                 2
                                              5
                                      3
                                           4
                                                      6
                         **
           8
                 9
    7
410 PRINT; "Significant at % :- 5
                                     1
                                        . 33
                                             .1 .033
    .01 .0033 .001 .00033 .0001*'
420 L% = 1: 0% = TSTEP%-J%(N%): PROCSet: WB% = 0
430 Y = 1: K = 1
440 F^{*} = 0
450 FOR WAS = L& TO J&(Y%)
460 F% = F%+1: K% = K%+1
470 E(F^) = \lambda(0, Y^) + WA^/100
480 IF F% = 23 THEN 530
490 IF K% = 0% THEN 520
500 NEXT
510 Y% = Y%+1:L% = 1: GOTO 450
520 E(F%+1) = N%+1
530 @% = £00020205: D% = -1
540 PRINT
550 FOR Z% = 1 TO F% STEP 3
560 D% = D%+1: PRINT; TAB(7+9*D%); E(2%);
570 NEXT
580 D% = -1: PRINT
590 FOR Z% = 2 TO F% STEP 3
600 D% = D%+1: PRINT; TAB(10+9*D%); E(Z%);
610 NEXT
620 D% = -1: PRINT
630 FOR Z% = 3 TO F% STEP 3
640 D% = D%+1: PRINT; TAB(13+9*D%); E(2%);
650 NEXT
660 PRINT'
670 Y1% = N%
680 FOR X% = 1 TO M%:I%(X%,0) = 0: NEXT: W1% = 1
690 FOR 2% = J%(Y1%) TO 1 STEP -1
700 PRINT; A(0, Y1%)+Z%/100; TAB(7);
710 FOR X% = 1 TO H%
720 IF A(X^{1})>Z^{1} THEN I^{(X^{1},0)} = 1
730 NEXT
740 W% =1: E1% = INT(E(1))
750 IF WB% = 0 THEN 790
760 FOR X% = 1 TO M%
770 IF A(X^{,E1}) < = WB^{,THEN} I^{,X}_{,1} = 0
780 NEXT: W1% = W8%+1
790 REPEAT
800 X% = 0
810 REPEAT: X% = X%+1
814 IF A(X%,E1%)>-1 THEN 820
816 I%(X%,1) = -4: GOTO 830
820 IF A(X^{+},E1^{+}) = W1^{+} THEN I^{+}(X^{+},1) = 0
830 UNTIL X% = M%
840 A% = 0: B% = 0: C% = 0: D% = 0
850 X = 0
860 REPEAT: X% = X%+1
```

```
Page 366
```

870 Q% = I%(X%,0)+I%(X%,1) 880 IF Q%<0 THEN 930 890 IF Q% = 0 THEN A% = A%+1 900 IF Q% = 2 THEN D% = D%+1 910 IF Q%<>1 THEN 930 920 IF IS(XS,0) = 0 THEN CS = CS+1 ELSE BS = BS+1 930 UNTIL X% = M% $940 \ G(0) = A(G(1)) = B(G(3)) = C(G(2)) = D(G(2))$ 950 ASS% = A%*D%-B%*C% 960 IF ASSA<0 THEN ASSS = "-" ELSE ASSS =" " 970 PROCrelabel: TP = 0980 I = -1990 REPEAT: n = 0: ap = 1 1000 I = I + 11010 PROCprob(I%+1,a+b) 1020 PROCprob(d-a+1%+1,c+d) 1030 PROCprob(a+c-I%+1,a+c) 1040 PROCprob(a+b-I%+1,b+d) 1050 TP = TP+ap 1060 UNTIL IN = a 1070 IF TP>.05 THEN 1140 1080 S = -11090 REPEAT 1100 S% = S%+1 1110 UNTIL TP>PR(S%) OR S% = 9 1120 IF S%<9 THEN PRINT; ASS\$; STR\$(S%+1);" "; ELSE PRINT; ASS\$;"* "; 1130 GOTO 1150 1140 PRINT;" . "; 1150 W% = W%+1: W1% = W1%+1 1160 IF E(W%) <E1%+1.01 THEN 1180 1170 E1% = INT(E(W%)): W1% = 1: PROCSet 1180 UNTIL W% = F%+1 OR INT(E(W%)) = A(0,Y1%) 1190 W1% = 1: PRINT': NEXT Z% 1200 Y1 = Y1 - 11210 IF Y1% = INT(E(1)) THEN 1230 1220 GOTO 680 1230 PRINT'': IF K% = 0% THEN 1270 1240 PRINT: IF WAS<JS(YS) THEN 1260 1250 Y% = Y%+1: WB% = 0: GOTO 440 1260 L% = WA%+1: WB% = WA%: GOTO 440 1270 VDU3 1280 END 1290 DEF PROCrelabel $1300 \min = 0$: F(min) = G%(0) 1310 IF G(1) < F(0) THEN min = 1: F(0) = G(1)1320 IF G(2) < F(0) THEN min = 2: F(0) = G(2)1330 IF G(3) < F(0) THEN min = 3: F(0) = G(3)1340 F(1) = G((1+min)MOD4)1350 F(2) = G((2+min)MOD4)1360 F(3) = G((3+min)MOD4)1370 a = F(0): b = F(1): d = F(2): c = F(3)1380 ENDPROC 1390 DEF PROCprob(x,y) 1400 IF x>y GOTO 1450 1410 J% = \bar{x} -1 1420 REPEAT: J% = J%+1 1430 n = n+1: ap = ap*J/n

Page 367

10, ₁ +

1440 UNTIL J% = y 1450 ENDPROC 1460 DEF PROCSet 1470 X% = 1 1480 REPEAT: I%(X%,1) = 1: X% = X%+1 1490 UNTIL X% = M% 1500 ENDPROC

APPENDIX 2: DATA MATRICES & NUMERICAL DATA

MATRIX OF THE WELD DATA (See Chapter 3)

Characters

	1 i	1 . 2	2	3	4	5 1	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3
Taxa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30	111111111000000000000000000000000000000	0000000000000000001111100000	011010000100010001000000000000000000000	000000000000000000000111100000	000000000000000001110000000000000000000	11111111110000100000000000	000000000000000000000000000000000000000	000000001110001011010110101111	100000000000000000000000000000000000000	001111111111111111111111111111111111111	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	011000000000000000000000000000000000000	000010100000000000000000000000000000000	100000000000000000000000000000000000000	100000000001000000000111101000	011111000001110000000000000000000000000	011111000000000000000000000000000000000	000000000000000000000000000000000000000	100000000000000000000000000000000000000	000000011100000000000000000000000000000	111111110000000000000000000000000000000	011111000111000101100001000000000000000	0000000000000000111100010000
31	0	Ō	Ō	Ō	Ō	õ	Õ	ĩ	Ō	ī	Ō	ō	Ō	Õ	Ō	Ŏ	Õ	Ō	Ō	Ō	Õ	Ō	Ō	Ŏ	Ō

Page 369

2

MATRIX OF THE QUINLAN DATA (See Chapter 3)

Characters

Таха	1	2	3	4	5 1	5.2	5	6	7	8	9	1 0	1 1 i	1 1 2	1 2	1 3	1 4	1 5	1 6	1 7	1	1 9	2 0	2 1 1	2 1 2	2 2	2 3
Taxa 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 8 9 20 21 22 3 24 25 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 8 9 10 11 12 3 16 11 12 2 12 2 12 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1000001000000000001110000101	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000001110000000000000000000	111111111111111001000110000001	01101000100010001000000000000000	000000000000000001110000000000000000000	000000001110000000000000000000000000000	111111111000000000000000000000000000000	000000000000000000000111100000	000000001110001011010110101111	000000000000000000000000000000000000000	000000000000000000000000000000000000000	100000000000000000000000000000000000000	000000000000000000000000000000000000000	001111111111111111111111111111111111111	0000000011111111111111111110001	00000100011111110111111111110000	100000000000000000000000000000000000000	1011110001011111111111111101011	000000000000000000000000000000000000000	100100001100000000000000000000000000000	100000100000000001000000000000000000000

[- = a missing score, e.g. a character of the male when only the female is known.]

Quinlan matrix continued

	2 4	2 5	2 6	2 7	27	2 8	2 9	3 0	3 1	3 2	32	3 3	3 4	3 5
_				1	2					1	2			
Taxa	•	~	~	~					•	•		-	-	
1	0	0	0	0	1	1	0	0	0	0	0	0	0	1
2 3	1	0	1	0	0	0	0	0	0	1	0	1	0	1
4	0	0	1	1	0	0	0 0	0	0	1	0	1	0	1
5	ŏ	0	i	1	Ö	0	ŏ	0	0	1	0	0	0	1
6	ŏ	ŏ	î	ī	ŏ	ŏ	ŏ	ŏ	ŏ	1	ŏ	0	0	1
ž	ŏ	ŏ	ō	ō	ĭ	ŏ	ŏ	ŏ	ŏ	ō	ŏ	õ	ŏ	î
8	ŏ	ŏ	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ī
9	ō	ō	ō	ō	ī	ō	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	î
10	Ó	0	0	0	1	Ō	Ō	Õ	Ĩ	ī	ŏ	ŏ	ō	ō
11	0	0	0	0	0	0	0	0	1	1	Ó	Ō	Ō	Ō
12	0	0	0	0	1	0	0	0	1	1	0	0	0	0
13	0	0	0	1	0	1	0	0	0	0	0	1	0	0
14	0	0	0	0	0	0	0	0	0	0	1	1	0	0
15	0	0	0	0	0	0	0	0	0	0	1	1	0	0
16	0	0	0	0	1	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	0	0	0	0
18	0	0	0	0	0	0	1	0	0	1	0	0	0	0
19 20	0	0	0	0	1	0	0	0	0	1	0	0	0	0
21	Ő	0	ŏ	0	1	0	1 1	1	0	0	0	0	0	0
22	õ	ŏ	0	0	1	ŏ	1	1	0	0	0	0	0 0	0 0
23	ŏ	ŏ	ŏ	ŏ	i	ĭ	i	î	ŏ	ŏ	0	ő	Ő	ŏ
24	ŏ	ŏ	ŏ	ŏ	î	î	ī	ō	ŏ	1	ŏ	ŏ	ŏ	ŏ
25	ŏ	ŏ	ŏ	ŏ	ī	î	ī	ŏ	ŏ	ō	ĭ	ŏ	õ	ŏ
26	ō	ō	ŏ	ŏ	ī	ĩ	ĩ	ŏ	ŏ	ŏ	î	ŏ	ŏ	ŏ
27	Ō	ŏ	ō	õ	ĩ	ō	ō	ĭ	ŏ	ŏ	ō	ŏ	ŏ	ŏ
28	0	Ō	Ō	Ō	ĩ	1	ī	ō	ō	ō	ĩ	õ	ō	ŏ
29	Ō	Ō	0	Ō	1	Ō	õ	Ő	Ō	ŏ	ī	ō	ō	õ
30	0	0	0	0	1	0	0	0	0	0	Ō	Ō	Ō	Ō
31	0	0	0	0	1	0	0	0	0	0	1	0	0	0

COMPOSITE MATRIX OF THE WELD AND QUINLAN DATA (See Chapter 3)

Tava	C 0 1 1	C 0 1 . 2	C 0 2	C 0 3	C 0 4	C 0 5 .1	C 0 5 . 2	C 0 6	C 0 7	C 0 8	C 0 9	C 1 0	C 1 1	C 1 2	C 1 3	C 1 4	C 1 5	C 1 6	C 1 7	C 1 8	C 1 9	C 2 0	C 2 1	C 2 2	C 2 3	C 2 4	
Taxa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	111111110000000000000000000000000000000	00000000000000000000000111111000	01101000010001000100000000000	0000000000000000000000001111000	0000000000000000001110000000	1 1111111111100001000000000000000000000	2 00000000000000000000000001111000	0000000011100010110101101011	100000000000000000000000000000000000000	001111111111111111111111111111111111111	000000000000000100000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	011000000000000000000000000000000000000	000010100000000000000000000000000000000	100000000000000000000000000000000000000	1000000000010000000001111010	011111000000111000000000000000000000000	011111000000000000000000000000000000000	000000000000000000000000000000000000000	100000000000000000000000000000000000000	000000011100000000000000000000000000000	111111110000000000000000000000000000000	01111100011100010110000100000	000000000000000001111000100	000000000000000000000000000000000000000	
30 31	0	0	0	0	0	1	0	1 1	0	1	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Composite matrix continued

	C 2 5	C 2 6	C 2 7	C 2 8	C 2 8 . 2	C 2 8 . 3	C 2 9	C 3 0	C 3 1	C 3 2	C 3 3	C 3 4	C 3 5	C 3 6	C 3 7 1	C 3 7 2	C 3 8	C 3 9	C 4 0	C 4 1	C 4 1 . 2	C 4 2	¢ 4 3 1	C 4 3 ·2	C 4 4
Taxa 1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 22 23 4 5 6 7 8 9 10 11 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1000001000000000001110000101-	1 0000000000000000000000000000000000000	2 0000000000000000000000000000000000000	3 0000000000000000000000000000000000000	00000000000000000011100000000	1111111111111100100011000000	000000011100000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000001111111111111111111111000	000010001111111011111111111000	100000000000000000000011000000	1 101111000101111111111111111110101	2 0000000000000000000000000000000000000	100100001100000000000000000000000000000	100000100000000001000000000000000000000	000000000000000000000000000000000000000	1 0011110000001000000000000000000000000	2 100000101101000100111111111111111	0000000000000001101111110100	1 01111100011100010110000100000	2 0000000000011000000000110110	011000000001110000000000000000000000000
31	1	-	-	0	1	1	0	1	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0

MEASUREMENTS OF ANTENNAL SEGMENTS (See Chapter 4)

(L = length in mm, B = breadth in mm) (R = ratio of L/B.) (Principal components analysis based on graticule units)

				_						
		5.0				umber				
1	2	3	4	5	6	7	8	9	10	11
12	13	14							10	**
Ibalia	leuc	ospoi	des							
				1	Femal	e				
L 0.74	0.27	0.91	1.04	1.02	0.93	0.80	0.67	0.50	0.43	0.34
	0.48									
B 0.26	0.22	0.21	0.19	0.18	0.18	0.18	0.18	0.18	0.18	0.18
	0.19									
R 2.9 1.7		4.3	5.5	5.7	5.2	4.4	3.7	2.8	2.4	1.9
					Male					
L 0.54	0.21	0.66	0.81	0.74	0.70	0.64	0 62	0 56	0 6 2	0 40
0.50	0.48	0.43	0.42		••••	0.04	0.01	0.30	0.55	0.48
B 0.22	0.18	0.18	0.16	0.16	0 16	0 16	0 10	0 10	0.10	
0.15	0.15	0.18	0.13	0.10	0.10	0.10	0.10	0.19	0.10	0.16
R 2.5				4.6	A A	4.0	2.4		• •	
3.3	3.2		3.2	1.0		4.0	3.4	3.1	3.3	3.0
			~							

Oberthuerella lenticularis

 Female

 L
 0.54
 0.22
 0.40
 0.53
 0.48
 0.40
 0.42
 0.37
 0.35
 0.35
 0.43

 B
 0.32
 0.29
 0.29
 0.32
 0.32
 0.34
 0.34
 0.34
 0.35
 0.35
 0.34

 B
 0.32
 0.29
 0.32
 0.32
 0.34
 0.34
 0.34
 0.35
 0.35
 0.34

 B
 0.35
 0.32
 0.32
 0.32
 0.34
 0.34
 0.34
 0.35
 0.35
 0.35
 0.34

 C
 0.35
 0.32
 0.32
 0.32
 0.34
 0.34
 0.34
 0.35
 0.35
 0.34

 R
 1.7
 0.8
 1.4
 1.7
 1.5
 1.2
 1.2
 1.1
 1.0
 1.0
 1.3

 Male
 Male
 Male
 Male
 Male
 0.29
 0.29
 0.30
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.53
 0.30
 0.30
 0.30
 <

Tessmanella expansa (male unknown)

 Female

 L
 0.42
 0.13
 0.38
 0.64
 0.56
 0.48
 0.43
 0.40
 0.40
 0.36
 0.35

 0.32
 0.58
 0.22
 0.16
 0.13
 0.16
 0.18
 0.19
 0.18
 0.19
 0.20
 0.19

 0.20
 0.21
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

Liopteron compressum

 Female

 L
 0.56
 0.21
 0.59
 0.82
 0.77
 0.78
 0.75
 0.72
 0.69
 0.67
 0.61

 0.51
 1.10

 B
 0.46
 0.24
 0.22
 0.26
 0.24
 0.26
 0.27
 0.27
 0.27

 0.26
 0.26
 R
 1.2
 0.9
 2.7
 3.7
 3.0
 3.3
 2.9
 2.8
 2.6
 2.5
 2.3

2.0 4.2

											Ma	1e						
L	0 û	10). J.	19 53	0	.53	0	. 67	0	.62	0.	61	0.5	8	0.57	0.54	0.54	0.50
B	0.	23	0.	24	0	.22	0	. 22	0	. 22	0.	22	0.2	2	0.22	0.24	0.24	0.24
R		2		8	2	.4	3	.1	2	. 8	2.	8	2.6	5	2.6	2.3	2.3	2.1
P	las	ti.	bal	ia	v	101	ac	eip	en	nis	(0	nlv	/ £1	75	st 10	Seam	ents :	
1	Ma 1	e	unk	nov	'n	}		-										
	•		^	• •	~						Fem	ale	•	_				
1	ÿ.	20	0.	18	0	-42	0	.77	0	.70	0.	69	0.6	7	0.62	0.61	0.56	
		30	0.	10	0	. 20	0	.30	0	. 32	0.	32	0.3	2		0.34		
	1.	-	0.			. 6		. 6		. 2	2.	_	2.1		1.9	1.8	1.8	
P	seu	d1)	bal	ia	f	85C.	ia	tip	en		(m. ?em.			kn	iown)			
L	0.	61	0.	17	0	. 45	0	. 56	0	. 51	0.	48	0.4	n	0 38	0 37	0.34	0 22
	0.	29	0.	53			-		Ť		••	••	• • •	Č	0.30	0.37	0.34	0.32
В	Ο.	22	0.	18	0	.19	0	. 20	0	. 21	0.3	22	0.2	4	0.25	0.26	0.27	0 27
	٥.	26	Ο.	26														0.27
R	2.	8	0.	9	2	.4	2	. 8	2	. 4	2.3	2	1.7		1.5	1.4	1.3	1.2
	1.	1	2.	0														
Me	250	cyi	nip	s i	n	sigi	nis	5										
						_				I	'em	ale						
L	0.	40	0.3	14	0	. 30	0	. 27	0	. 2 2	0.3	21	0.1	9	0.19	0.19	0.19	0.19
	υ.	18	0.	43														
В		19	0.3		0	.14	0.	. 16	0	.18	0.3	18	0.1	8	0.18	0.18	0.18	0.19
			0.3															
R	2.		1.0		2	.1	1.	. 7	1.	. 2	1.2	2	1.1		1.1	1.1	1.1	1.0
	1.	0	2.	4														
	~	~ ~					_		_		Ma]	Le						
L	0.	00	0	10	0.	.51	0.	. 49	0	. 46	0.4	47	0.4	6	0.48	0.45	0.45	0.43
~						. 40			_				_					
D	×.	16	0.1	10	0.	.16	0.	16	0.	18	0.1	L 8	0.1	8	0.18	0.17	0.16	0.16
Ð	3.	10	1 1	L 2		.14			~	~	~ .							_
R	2.		1.0			.2 .9	3.	1	2.	. 6	2.6	>	2.6		2.7	2.7	2.8	2.7
						-		_										
Pa	ra:	mb]	ynd	otu	5	pur	nct	ula	ti			_						
Ŧ	•	2.4	<u>.</u>		~		~			F	ema	le	. -					
6	0.	34 10	0.1	L4)4	υ.	40	0.	40	0.	37	0.3	35	0.3	0	0.27	0.24	0.23	0.23
D	ŏ.		0.1		^		~	• •	~									
Þ			0.1		υ.	14	υ.	13	υ.	14	0.1	1	0.1	1	0.10	0.10	0.10	0.10
D	1.		1.1		2	•	2	•	2	~						. .		_
	1.3		2.4		۷.	9	3.	1	2.	0	3.2	<u>.</u>	2.7		2.7	2.4	2.3	2.3
	4 • ·	,	4.9	•							M - 1							
L	ο.	29	0.1	1	٥	35	•	25	^	24	Mal		۰ · ·	.				
-	0.	29	0.2	22	ň.	29	۰.	33	υ.	24	v.3		0.3	۷ ا	0.32	0.29	0.29	0.27
	ŏ.:		0.1				0	11	0	11	• •	1	• •	•		• • •		
	ö .(0.0			08	υ.	*1	υ.	TT.	0.1		0.10		0.10	0.09	0.10	0.09
	ĭ.		0.9		3.		з.	2	з.	1	3.4		3.2		2 2			
	3.		2.4		3.		. د	4	э.	+	3.4	1	J.Z		3.2	3.2	2.9	3.0
		-		•	٠.													

Kiefferiella rugosa (male unknown)

Female L 0.21 0.10 0.22 0.35 0.34 0.32 0.29 0.24 0.19 0.18 0.19 0.18 0.26 0.08 0.08 R 1.9 1.0 2.3 3.3 3.7 5.0 4.9 5.3 4.8 4.0 3.2 2.6 2.4 Aspicera scutellata Female L 0.26 0.08 0.18 0.18 0.16 0.18 0.16 0.14 0.14 0.14 0.13 0.13 0.26 B 0.10 0.08 0.06 0.07 0.08 0.08 0.08 0.10 0.09 0.08 0.08 0.09 0.08 R 2.6 1.0 1.4 3.3 3.0 2.6 2.0 2.3 2.0 1.4 1.6 1.8 1.6 Male L 0.13 0.08 0.22 0.18 0.19 0.18 0.19 0.18 0.17 0.16 0.16 0.16 0.14 0.22 B 0.11 0.10 0.09 0.09 0.08 0.08 0.10 0.10 0.09 0.09 0.09 0.09 0.08 0.08 R 1.2 0.8 2.4 1.8 1.8 2.8 2.0 2.4 2.3 1.9 1.8 1.9 1.8 1.8 Callaspidia defonscolombei Female L 0.19 0.08 0.40 0.35 0.34 0.32 0.29 0.27 0.24 0.22 0.19 0.19 0.42 0.10 0.10 R 1.4 0.7 1.9 4.2 4.0 3.5 3.4 3.2 2.9 2.7 2.4 2.0 1.7 Male L 0.16 0.08 0.32 0.32 0.32 0.32 0.30 0.29 0.26 0.26 0.24 0.26 0.24 0.34 0.08 0.08 0.08 R 1.2 0.7 2.9 3.2 2.9 2.9 3.0 2.9 2.6 2.6 2.4 3.3 3.0 4.3 Omalaspis carinata Female L 0.19 0.10 0.26 0.24 0.22 0.22 0.19 0.18 0.17 0.17 0.16 0.18 0.34 0.08 0.08 R 1.9 1.3 3.3 4.0 3.7 3.7 2.4 2.3 2.1 2.1 2.0 2.3 4.3 Male L 0.16 0.06 0.22 0.22 0.19 0.21 0.21 0.19 0.18 0.18 0.16 0.14 0.13 0.24 B 0.09 0.08 0.10 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.06 0.06 R 1.8 0.8 2.2 3.7 2.7 3.0 3.0 2.4 2.3 2.3 2.0

1.8 2.2 4.0

Anacharis eucharioides

AI	nachai	C13 el	char	loides			_				
τ.	0 17	0 09	0 21	0 10	0 16	remale	, , , , , ,	0.14			
	0.11	0.27	0.21								
в	0.07	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06
R	2.4	1.5	3.5	3.8	3.2	3.0	3.0	2.8	2.6	2.0	2.2
		1.5				M-1-					
L	0.21	0.09	0.23	0.23	0.21	Male 0.21	0.20	0.20	0.19	0.19	0.19
в		0.16	0.22	0.06	0.07	0.07	0.06	0.06	0.06	0.06	0.06
	0.06	0.06	0.06	3.8							
R	3.2	2.7	3.7	3.0	3.0	3.0	3.3	3.3	3.2	3.2	3.2
λ	aili	os ni	tidula								
				-	I	remale					
L	0.24	0.10	0.26	0.23	0.21	0.21	0.18	0.17	0.16	0.16	0.14
B	0.09	0.08	0.06	0.07	0.06	0.08	0.08	0.08	0.09	0.08	0.08
R	0.08	0.08	4.3	3.3	3.5	2.6	2.3	2.1	1.8	2.0	1.8
	1.8	2.6									
L	0.19	0.10	0.24	0.21	0,22	Male 0.21	0.19	0.21	0.18	0.18	0.18
	0.18	0.16	0.22 0.08								
	0.06	0.06	0.06								
R	1.7 3.0	1.3 2.7	3.0 3.7	2.6	2.,8	2.6	2.4	2.6	2.3	2.6	2.6
v.		-1- 1									
• • •	4143	PIS 1 6	sevi ga	e cus		Female					
L	0.26	0.10	0.29	0.24				0.16	0.16	0.14	0.13
в		0.19	0.06	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.08
	0.08	0.08									
ĸ	2.6 1.6	1.3 2.4	4.8	4.0	3.5	2.7	2.3	2.3	2.0	1.8	1.6
						Male					
L	0.24	0.11 0.19	0.26	0.27	0.26	0.24	0.24	0.22	0.21	0.21	0.19
B	0.10		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.07	0.07
R	2.4	1.4	3.3	3.4	3.3	3.0	3.0	2.8	2.6	3.0	2.7
	2.7	3.2	4.0								
Fi	lgites	s scut	tella:	ris							
						emale					
	0.16	0.23	0.19								
B	0.11	0.10	0.08	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.11
R	2.2	1.2	2.4	1.4	1.5	1.5	1.5	1.5	1.3	1.5	1.5
	1.5	2.1									
			0.24	0.22	0.24	Male 0.24	0.23	0.24	0.22	0.24	0.24
		0.23									

0.08 0.08 0.08 R 1.9 1.1 2.4 2.2 2.4 2.4 2.3 3.0 2.8 3.0 3.0 3.0 2.9 4.0 Melanips opacus Female L 0.24 0.11 0.37 0.27 0.22 0.24 0.22 0.21 0.19 0.18 0.18 0.18 0.32 B 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.10 R 1.9 1.1 3.7 2.7 2.2 2.4 2.2 1.9 1.9 1.8 1.8 1.8 3.2 Male L 0.29 0.08 0.46 0.29 0.29 0.26 0.22 0.22 0.22 0.24 0.21 0.22 0.18 0.30 0.09 0.08 0.08 R 2.2 1.0 3.5 2.9 2.9 2.6 2.2 2.2 2.2 2.4 2.1 2.4 2.3 3.8 Lonchidia maculipennis Female L 0.11 0.09 0.15 0.11 0.10 0.09 0.10 0.12 0.11 0.11 0.12 0.13 0.26 B 0.06 0.05 0.04 0.04 0.03 0.04 0.03 0.05 0.05 0.06 0.06 0.06 0.08 R 1.8 1.8 3.8 2.8 3.3 2.5 3.3 2.4 2.2 1.8 2.0 2.2 3.3 Male L 0.14 0.08 0.29 0.27 0.24 0.26 0.24 0.26 0.24 0.22 0.19 0.19 0.19 0.27 0.05 0.05 0.05 R 2.3 1.3 4.8 5.0 4.0 4.3 4.0 4.3 4.0 4.4 3.8 3.8 5.4 3.8 Neralsia rufipes Female L 0.16 0.09 0.11 0.13 0.12 0.14 0.14 0.14 0.11 0.11 0.11 0.11 0.22 B 0.10 0.08 0.06 0.08 0.08 0.09 0.10 0.10 0.10 0.09 0.09 0.10 0.10 R 1.6 1.1 1.8 1.6 1.5 1.6 1.4 1.4 1.1 1.2 1.2 1.1 2.2 Male L 0.21 0.10 0.22 0.29 0.29 0.29 0.26 0.27 0.21 0.23 0.22 0.21 0.19 0.27 0.08 0.08 0.07 R 2.1 1.0 2.8 2.9 2.9 2.9 2.6 3.4 2.6 2.9 2.8 2.6 2.4 3.9 Eucoila crassinerva Female L 0.21 0.13 0.19 0.16 0.14 0.18 0.18 0.18 0.16 0.18 0.16 0.18 0.24 B 0.11 0.10 0.08 0.09 0.10 0.11 0.13 0.13 0.13 0.13 0.13

0.13 0.13

R 1.9 1.3 2.4 1.8 1.4 1.6 1.4 1.4 1.2 1.4 1.2 1.4 1.9 Male L 0.24 0.13 0.29 0.35 0.35 0.37 0.37 0.37 0.40 0.38 0.40 0.35 0.35 0.35 0.38 0.09 0.08 0.08 0.08 **1.9 1.0 2.2 2.7 2.7 2.9 3.4 3.4 4.0 3.8 4.4 3.9 4.4 4.4 4.8** R 1.9 1.0 Klidotoma psiloides Female L 0.10 0.06 0.08 0.04 0.04 0.03 0.03 0.03 0.04 0.04 0.08 0.08 0.10 0.05 0.05 R 2.5 1.5 2.7 1.3 1.3 1.0 1.0 1.0 1.3 1.0 1.6 1.8 2.0 Male 0.11 0.10 0.10 0.10 0.04 0.03 0.03 0.03 R 1.8 1.2 4.5 2.5 2.8 3.3 3.3 3.3 2.5 2.5 2.5 2.5 2.8 2.8 2.8 Rhoptromeris heptoma Female L 0.10 0.05 0.08 0.08 0.06 0.06 0.07 0.08 0.08 0.08 0.08 0.08 0.10 B 0.04 0.04 0.03 0.03 0.03 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.04 R 2.5 1.3 2.7 2.7 2.0 2.0 1.8 1.6 2.0 2.0 2.0 1.7 2.2 Male L 0.09 0.04 0.10 0.18 0.11 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.04 0.04 0.04 0.04 R 1.8 0.8 2.0 3.0 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.3 Dilyta subclavata Female L 0.08 0.07 0.06 0.04 0.04 0.05 0.07 0.10 0.10 0.10 0.10 0.09 0.10 B 0.04 0.04 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.05 R 2.0 1.8 1.8 2.0 2.0 2.0 2.0 2.5 2.3 3.3 3.3 2.5 2.5 Male L 0.08 0.07 0.07 0.04 0.05 0.08 0.08 0.09 0.10 0.10 0.08 0.09 0.08 0.09 0.04 0.04 0.04 R 2.0 1.8 2.3 1.3 1.7 2.0 2.0 2.3 2.5 2.5 2.0 2.3 2.0 2.3

Apocharips xanthocephala Female L 0.09 0.07 0.09 0.07 0.06 0.07 0.07 0.09 0.08 0.08 0.08 0.08 0.10 0.05 0.05 3.0 2.3 2.0 2.3 2.3 3.0 2.0 2.0 1.6 R 2.3 1.8 1.6 2.0 Male L 0.08 0.07 0.11 0.08 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.10 0.04 0.04 0.04 R 2.0 1.8 3.7 2.5 2.3 2.5 2.0 2.3 2.5 2.5 2.5 2.5 2.5 2.5 Phaenoglyphis xanthochroa Female L 0.12 0.10 0.18 0.15 0.15 0.15 0.14 0.14 0.13 0.15 0.13 0.13 0.20 0.04 0.04 R 2.0 2.0 3.3 5.0 4.5 3.8 3.0 3.0 3.5 2.8 3.3 3.8 3.3 Male L 0.11 0.08 0.16 0.11 0.12 0.13 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.13 B 0.06 0.05 0.04 0.03 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 R 1.8 1.6 4.0 3.7 2.4 2.6 2.4 3.3 3.0 3.0 3.0 3.0 2.8 3.3 Alloxysta macrophadna Female 0.09 0.12 0.04 0.04 R 2.0 1.4 4.3 4.3 3.7 3.7 2.5 2.5 2.8 2.5 2.5 2.3 3.0 Male L 0.13 0.09 0.13 0.14 0.13 0.12 0.11 0.11 0.10 0.10 0.10 0.10 0.08 0.10 0.04 0.04 0.04 4.7 3.9 3.0 2.8 2.8 2.5 2.5 2.5 R 2.2 2.3 4.3 2.5 2.5 2.0 Pycnostigmus rostratus Female L 0.19 0.10 0.20 0.15 0.18 0.11 0.13 0.13 0.13 0.11 0.12 $0.11 \ 0.12 \ 0.11 \ 0.11 \ 0.11 \ 0.10 \ 0.10 \ 0.18$ 0.09 0.09 0.08 0.09 0.09 0.09 0.08 0.09 R 1.9 1.1 2.5 1.9 2.3 1.4 1.6 1.4 1.4 1.4 1.3 1.2 1.3 1.4 1.2 1.2 1.1 1.3 2.0 Male L 0.18 0.11 0.15 0.13 0.13 0.12 0.13 0.13 0.11 0.12 0.12

 $0.12 \ 0.11 \ 0.11 \ 0.11 \ 0.10 \ 0.10 \ 0.10 \ 0.10 \ 0.10 \ 0.10$ Page 380

- "

0.10 0.15 0.08 0.08 R 2.2 1.4 1.8 1.6 1.5 1.5 1.5 1.5 1.4 1.4 1.5 1.5 1.4 1.5 1.4 1.4 1.2 1.2 1.2 1.3 1.3 1.3 1.3 2.0 Aulacidea hieracii Female L 0.13 0.09 0.12 0.15 0.15 0.15 0.13 0.13 0.12 0.12 0.11 0.10 0.21 0.06 0.05 2.4 2.5 2.5 2.5 2.2 2.2 2.0 2.0 1.8 R 1.9 1.5 1.7 4.2 Male L 0.11 0.10 0.13 0.16 0.16 0.15 0.14 0.13 0.11 0.12 0.10 0.10 0.10 0.15 0.06 0.06 0.06 R 1.1 1.3 2.2 2.3 2.3 2.1 2.3 1.9 1.8 2.0 1.7 1.7 1.7 2.5 Cynips quercusfolii Female L 0.13 0.11 0.25 0.23 0.19 0.16 0.13 0.11 0.10 0.09 0.09 0.07 0.08 0.12 B 0.10 0.09 0.04 0.05 0.06 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.08 0.07 1.2 6.3 1.0 1.7 R 1.3 4.6 3.2 2.7 2.2 1.6 1.4 1.1 1.1 0.9 1.0 Male L 0.17 0.10 0.28 0.21 0.20 0.21 0.16 0.18 0.17 0.16 0.14 0.16 0.15 0.13 0.15 0.08 0.07 0.07 0.06 R 2.1 1.0 3.5 2.3 2.5 2.6 2.0 2.3 2.1 2.0 1.8 2.0 2.1 1.9 2.5 Agamic L 0.16 0.10 0.35 0.32 0.27 0.23 0.18 0.16 0.12 0.11 0.11 0.10 0.20 0.09 0.08 R 1.3 1.0 4.4 4.0 3.4 2.9 2.0 1.8 1.5 1.4 1.3 1.1 2.5 Austrocynips mirabilis (male unknown) Female L 0.13 0.09 0.14 0.15 0.15 0.15 0.12 0.13 0.14 0.13 0.13 0.13 0.13 0.13 0.10 0.06 0.06 0.06 0.06 R 0.9 1.3 2.8 3.0 3.0 2.4 2.2 2.3 2.2 2.2 3.0 2.2 2.2 2.2 1.7 Himalocynips vigintilis (male unknown) Female L 0.30 0.16 0.26 0.16 0.19 0.17 0.21 0.18 0.16 0.16 0.15

0.14 0.16 0.16 0.16 0.14 0.15 0.13 0.13 0.28 B 0.15 0.14 0.14 0.14 0.14 0.16 0.18 0.17 0.16 0.14 0.16 0.14 0.16 0.15 0.16 0.15 0.16 0.16 0.14 0.14 R 2.0 1.1 1.9 1.1 1.4 1.1 1.2 1.1 1.0 1.1 0.9 1.0 1.0 1.1 1.0 0.9 0.9 0.8 0.9 2.0

THE CYNIPOID DATA MATRIX AND THE OUTPUT FROM THE COMPATIBILITY PROGRAMS (See Chapter 5)

Master matrix of scores for the morphological characters and thirty one exemplar taxa.

[0 = plesiomorphic state 1 = apomorphic state]
 [V = variable score - = missing score]

Characters

	1	2	2	2	3	4	5	6	7	8	9	9	1 0	1 1	1 2	1 3	1 4	1 5	1 5	1 5	1 6	1 6	1 7	1	1	2 0	2 1
		i	2	3							1	2						ì	2	3	i	;2					
Tax	a																										
1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	0	1	0	0	1	1	0	0
2	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0
3	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0
5	1	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0
6	0	ŏ	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0
7	ő	õ	õ	õ	i	ŏ	ŏ	1	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0
8	õ	ŏ	ŏ	ŏ	ī	ŏ	ŏ	î	õ	õ	1	0	0	i	1	0	0	0	0	1	0	0	0	1	1	0	0
9	0	0	Ō	õ	ī	õ	õ	î	ŏ	ŏ	î	ŏ	õ	î	i	ŏ	ŏ	õ	õ	i	1	0	0	i	1	0	0
10	0	0	0	0	0	0	ō	ō	õ	õ	ī	õ	ŏ	ō	ō	ŏ	ŏ	ŏ	ĭ	ō	ō	0	0	1	ò	1	0
11	0	0	0	0	0	0	0	0	0	0	1	0	Ō	1	õ	õ	ŏ	ŏ	î	õ	ŏ	õ	õ	î	ŏ	i	õ
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	õ	ī	ō	õ	ō	õ	ĩ	õ	î	õ
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	ī	ō	ī	ĩ
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1
16	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	0	1	1
17	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
19	ő	ő	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1
20	ő	ŏ	1	ĩ	ŏ	0	õ	0	ō	0	0	0	1	0	0	0	1	0	0	1	0	1	1	1	0	1	1
21	õ	ŏ	î	î	õ	õ	õ	õ	õ	ŏ	ŏ	î	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1
22	Ō	õ	ĩ	ĩ	ŏ	ŏ	õ	õ	ŏ	õ	ŏ	i	õ	ŏ	0	0	õ	õ	õ	i	0	1	0	1	0	1	1
23	0	0	1	0	ō	õ	õ	õ	ŏ	õ	ĩ	õ	ŏ	ŏ	õ	ŏ	ŏ	õ	õ	1	0	î	0	1	0	1	1
24	0	0	1	0	0	0	0	0	0	0	ī	õ	ō	õ	õ	õ	õ	ŏ	ŏ	î	õ	î	ŏ	î	ŏ	î	i
25	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	ō	õ	ī	õ	ĩ	0	i	ŏ	î	i
26	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	ō	1	0	ĩ	ī
27	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	1	1
28	0	0	0	0	0	0	0	0.	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
30 31	0	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	1	1	0	0	1	0	1	1
53.		- 1	15	2	-	-				•			*	•	•	0	U	0	U	+	÷	U	T	1	U	1	0

	022	0 2 3	0 2 4 1	024	0 2 4 .3	025	026	026.2	026.3	0 2 7	0 2 8 1	028.2	0 2 8 .3	0 2 8 ·4	0 2 9 1	029.2	0 3 0 .1	0 3 0 .2	0 3 1 1	0 3 1 .2	0 3 1 .3	0 3 1 4	0 3 2 1	032.2	032.3	0 3 2 4	0 3 3
Tax: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 3 14 5 16 7 8 9 11 12 3 14 5 16 7 8 9 11 12 3 14 5 16 7 8 9 10 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a 000000000000000000000000000000000000	000000000011100000000000000000000000000	111111110000000000000000000000000000000	000000000000000000000000000000000000000	00000000111111111111111110000	011000000000000000000000000000000000000	000000001111111111111111110000	00000000000000000111111100000	0000000000000000111000000000	000000000011100000000000000000000000000	000000000000000000000000000010111	000000000000000000000000000010011	000000000000000000000000000000000000000	100000000000000000000000000000000000000	10000010-0000000001110000101		10000010-0000000001110000100		01111100-000111000000000100100-		00000000 - 00000000000000	000000000000000000000000000000000000000	0000000000000101111100000100	000000000000010111011000000100	000000000000001001101100000000	000000000000010001000100000000	11111101110000000010010010101010

Characters

	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 8 ·	0 3 8	038.4	038	038	039	039 .	039	040	041	042	043	044	045	04	047	048	049	050	051	051	052
					T	2	3	4	5	6	1	2	3												1	2	
Taxa 1 2 3 4 5 6 7 8 9 10 11 12 13	000000000000000000000000000000000000000	0001111000000	100000010000	00 0 1 00 0000	1 1 1 1 1 1 1 0 1 0 1 1 1	010100000010	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	10 - 0 - 1 00 - 0000	0010110010000	0010110010000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	111111111111111111111111111111111111111	1 1 1 1 1 1 1 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000001111	000000001110	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1000000000000
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	000000000110000000	000000000000000000000000000000000000000	110010011111100011	0000100011111000		11101111110100011	1010011110100011	000010011110100010	000010010100000010	000000100000000000	0000000001011010	000000000011000	000000000000000000000000000000000000000	000000001000000000	000000000100000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1111111111110011	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	11110011110000000000	0001001111000000000	0001001111000000000	000000111000000000	000000000000000000000000000000000000000

	0 5 3	5		055		057	5	5	060	061	061	062	6	062	062	063	6	6	066	067	068	069	0 7 0	071	072	073	0 7 3	
	i	ż								i	ż	:	ż	:	:						•		Ů	-	•			
	-	-								1	2	1	2	3	4											1	2	
Tax																												
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
23	0	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	
4	ő	1	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	
5	ŏ	i	i	ŏ	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	
6	Ō	ī	ī	ŏ	ŏ	ŏ	i	ŏ	õ	0	ŏ	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	1	
7	0	1	1	0	1	ō	ī	õ	ŏ	ŏ	ŏ	õ	ŏ	ō	0	0	0	0	0	0	0	0	0	0	0	1	1	
8	0	1	1	0	1	0	1	0	0	0	Ō	ō	ō	õ	ŏ	õ	õ	ŏ	õ	ŏ	0	0	0	0	0	1	0	
9	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	õ	ō	õ	õ	ŏ	ŏ	õ	ŏ	õ	õ	i	õ	
10	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	Ō	ō	õ	õ	ŏ	ī	õ	
11 12	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	
13	ő	ő	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	
14	ŏ	ŏ	ŏ	õ	i	0	ő	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
15	0	Ō	õ	ŏ	ī	ŏ	ŏ	ŏ	õ	õ	õ	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
16	0	0	0	0	1	õ	õ	õ	ŏ	õ	ŏ	ŏ	ō	õ	õ	0	õ	õ	0	0	0	0	0	0	0	0	0	
17	0	0	0	0	1	0	0	0	0	0	0	Ō	õ	õ	ŏ	ŏ	õ	ŏ	õ	õ	õ	0	õ	0	0	0	0	
18	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	Ō	õ	õ	ŏ	ŏ	õ	1	0	õ	õ	õ	
19 20	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	ō	0	õ	õ	õ	
20	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	
22	õ	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	
23	ĩ	õ	õ	1	i	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	
24	ī	õ	ŏ	î	ī	õ	õ	õ	õ	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
25	1	0	0	ō	ī	ŏ	ŏ	ŏ	õ	ŏ	õ	õ	ŏ	õ	0	0	0	0	0	0	0	0	0	0	0	0	0	
26	1	0	0	1	1	0	0	Ō	õ	õ	ŏ	õ	ŏ	õ	ŏ	õ	0	õ	õ	1	0	0	0	0	0	1	0	
27	0	0	0	0	1	0	0	0	1	0	0	0	0	Ō	õ	ŏ	ŏ	õ	ŏ	ō	ŏ	ŏ	ŏ	õ	õ	õ	õ	
28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	õ	õ	ŏ	ŏ	ŏ	õ	ŏ	
29	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	Ō	õ	õ	
30 31	0	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
31	0	0	0	U	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	

	073.3	074	0 7 5		077	0 7 8	0 7 8 · 2	078.3	0 7 9 .1	079.2	0 8 0	8	0 8 1 .	0 8 2 .	082.	0 8 3	8	8		0 8 7	0 8 8		090.	090.	0 9 1	0 9 2	0 9 3	
						1	4	3	+	4		1	2	1	2								1	2				
Tax					2	d.																						
1 2	0	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
3	ŏ	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	
4	õ	ō	ŏ	ŏ	ŏ	ī	õ	õ	õ	ő	1	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	
5	0	0	0	0	0	1	0	ō	õ	õ	1	î	ŏ	î	ō	õ	õ	0	0	0	0	0	0	0	0	0	1	
6	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	Ő	õ	õ	õ	ŏ	ŏ	ŏ	õ	i	
7	1	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	ī	
ğ	ō	õ	0	ŏ	ő	1	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	1	0	0	0	0	1	
10	Ō	Ō	ŏ	0	ŏ	ō	ŏ	õ	õ	õ	i	i	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
11	0	0	0	0	0	0	0	0	0	0	ī	ī	ī	ī	ō	î	î	i	i	õ	i	i	1	0	1	1	1	
12	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	ī	ī	1	ī	î	î	
14	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	
15	õ	ŏ	ŏ	ŏ	õ	õ	õ	õ	õ	0	1	1	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1	
16	0	0	0	0	0	0	Ō	1	õ	Ō	ī	î	î	î	1	ī	i	i	1	0	1	1	1	1	1	1	1	
17	0	0	0	0	0	0	0	0	0	0	1	1	0	1	ō	1	ī	ī	1	õ	ī	î	î	ō	i	i	i	
18 19	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	ī	ī	
20	ŏ	ŏ	0	0	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
21	Ō	Ō	ĩ	õ	î	ŏ	ŏ	ŏ	ŏ	ŏ	i	i	1	i	1	1	1	1	1	0	1	1	1	1	1	1	1	
22	0	0	1	0	1	0	0	0	0	0	ī	ī	ī	ī	ī	ī	ī	î	î	0	1	i	1	1	1	1	1	
23	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	ī	ī	ī	î	î	î	î	
25	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
26	ŏ	ŏ	ŏ	õ	ŏ	0	õ	ŏ	0	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
27	0	0	0	0	0	0	Ō	õ	õ	õ	î	î	i	î	i	i	1	i	1	ŏ	1	1	1	1	1	1	1	
28	0	0	0	0	0	0	0	0	0	0	1	1	0	1	ō	ī	ī	î	ō	õ	ō	i	1	ō	ō	0	0	
29 30	0	0	0	0	0	0	0	0	0	1	1	1	0	1	0	1	1	1	1	0	0	ī	ī	0	Ō	Õ	õ	
31	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1	1	0	0	1	1	0	0	0	0	
	-	-	-	-	-		•	0	•	0	+	0	U	0	0	1	0	1	1	0	0	0	0	0	0	0	0	

0 9 4	0 9 5	096.1	096.2	0 9 7 .1	097.2	0 9 8	099	1000.1	100.2	1 0 1	102	103	104	105.1	105.2	106	107	108	1 0 9 1	109.2	1 0 9 .3	109.4	1 1 0	1 1 1	1 1 1 2	1 1 1 3	
Taxa 1 0 2 0 4 0 5 1 6 0 7 1 8 1 10 1 11 1 12 1 13 1 14 1 15 1 17 1 18 1 19 1 20 1 122 1 18 1 19 1 20 1 22 1 23 1 24 1 27 1 27 1 28 1 10 2 10 2 20 1 22 1 23 1 26 1 27 1 20 1	000101111111111111111111110010	0001010011111111111111111110010	000000001001111011011111110000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	111111111111111111111111111111111111111	000000000000000000000000000000000000000	100000000000000000000000000000000000000	000000000000000000000000000000000000000	000000001110000011010110111111	111111111111111111111111111111111111111	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000010000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	111000000000000000000000000000000000000	100000000000000000000000000000000000000	000000000000000000000000000000000000000	001111111111111111111111110000	011111111111111111111111111111111111111	000000011111111111111111111111111111111	000000001111111111111111110000	

1 1 2 1	1 1 2 .2	1 1 3 1	113.2	1 1 4	115	1 1 6	1 1 7 1	117.2	1 1 8	1 1 9	1 2 0	1 2 1	1 2 2	1 2 3	1 2 4	1 2 5	126.1	126.2	1 2 7	1 2 8	1 2 9	1 3 0	1 3 1 1	1 3 1 ·2	1 3 2 1	1 3 2 2	
Taxa 1 0 2 0 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 13 1 14 1 15 1 16 1 17 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 11 1 21 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 16 1 17 1 18 1 19 1 10 1 11 1 12 1 16 1 17 1 18 1 19 1 10 1 11 1 12 2 1 22 1 23 1 12 2 1 23 1 1 23 1 1 25 1 26 1 27 1 28 1 29 1 20 1 1 27 1 28 1 29 1 29 1 20 1 1 27 1 28 1 29 1 20 1 1 27 1 28 1 29 1 20 1 1 27 1 28 1 29 1 20 1 1 27 1 28 1 29 1 30 1 1 29 1 1 20 1 1 20 1 1 20 1 1 27 1 28 1 30 1 1 31 1 1 29 1 31 1 29 1 31 1 20	0011111111111111111111110011	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000111100000	000000000000000000000000000000000000000	00000000100001001000000000010	111111111000000000000000000000000000000	011111100000000000000000000000000000000	011000000000000000000000000000000000000	0000001111111110111001111110001	0001001110111100101001111110001	0011101111011110111001111100001	100000000000000000000000000000000000000	100100001100000000000000000000000000000	0000000000000000111000000000	000001000000000000000000000000000000000	100010000000000000000000000000000000000	100000000000000000000000000000000000000	100000000000000000000000000000000000000	011011000000000000000000000000000000000	111111111111111111111111111111111111111	000000000011100000000000000000000000000	011111100000000000000000000000000000000	011000000000000000000000000000000000000	011000111101000000000000000000000	0110001111110001011000000010000	

	132	133	134	135	136	137	138	138	138	139	1 4 0	1 4 1	1 4 2	1 4 2	1 4 3	1 4 4	1 4 5	1 4 6	1 4 7	1 4 8	1 4 9	1 4 9	1 4	150	1 5	1 5 0	1 5	
	3						i	2	3			-	i	2	1		3	0	'	•	i	2	9.3	0	1	2	2 . 2	
Tax 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 8 9 10 11 12 3 14 5 8 9 10 11 12 3 14 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	011000111111011111100000000100	000000000011100000000000000000000000000	000000000000001001000000000000000000000	01100011111000111100000000000	0000000000000000011100000000	000000100000000000000000000000000000000	01111111111011111111100001001	000000000010000000000000000000000000000	100000000000000000000000000000000000000	00000000000000000000000011110110	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000001000000000000000000000000000	001111000000000000000000000000000000000	100000000000000000000000000000000000000	011111000000000000000000000000000000000	111111111111111111111111111111111111111	100000000000000000000000000000000000000	00000000000000011011111101010	111111111111111111111111111111111111111	111111110000000000000000000000000000000	111000110000000000000000000000000000000	100000100000000000000000000000000000000	111111111111111111111111111111111111111	01111100011100010111 100 - 00	00000000000000000001111000100	000000000000000001110000100	
	-	-	-	-	-		-	-	-	-	-			-			1	0	1	1	0	Ō	0	1	0	0	0	

Matrix continued

	1 5 3		5	5	5	5	5	6	6	6		6	6	6	6	6	6	7	
Taxa																			
1	0	0	-		1	0	1	0	0	1	0	0	0	0	0	0	0	0	
2	1	0	0		1	0	1	0	0	1	0	0	0	0	0	0	-	-	
3	1	0	0	_	1	0	1	0	0	1		-	0	0	0	0	0	0	
4	1	0	0		1	0	1	0	0	1	-	-	0	0	0	0	0	0	
5	1	0	0	1	1	0	1	0	0	1		-	0	0	0	0	0	0	
7	1	0	0	1	1	0	1	0	0	1		-	0	0	0	0	0	0	
8	0	0	0	1	1	0	1	0	0	1	0		0	0	0	0	0	0	
9	ő	0	0	1	1	0	1	0	0	1	0	-	0	1	0	0	0	0	
10	ŏ	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	
11	ŏ	ŏ	i	õ	0	ő	1	1	1	0	0	0	0	0	1	1	0	0	
12	ŏ	ŏ	ī	õ	ŏ	õ	1	0	0	0	0	0	0	0	1	1	0	0	
13	õ	ŏ	ō	ŏ	ŏ	ŏ	i	1	1	1	1	1	0	0	1	1	0	0	
14	ō	ŏ	ŏ	ŏ	ŏ	ŏ	i	i	ī	1	1	1	0	0	0	0	0	0	
15	0	Õ	ō	õ	õ	ŏ	î	î	i	1	1	1	0	0	0	0	0	0	
16	0	0	Ō	Ō	õ	ĩ	ī	ō	ō	i	ō	ō	1	1	1	1	0	0	
17	0	0	0	0	Ō	ō	ī	õ	õ	ō	õ	õ	ō	ō	i	1	0	0	
18	0	0	0	0	0	0	ī	ō	õ	1	ŏ	ŏ	õ	0	1	1	0	0	
19	0	0	0	0	0	1	1	0	Õ	ī	ŏ	ŏ	1	1	i	i	0	0	
20	0	0	0	0	0	1	1	0	0	1	õ	ŏ	ī	ī	î	i	ŏ	0	
21	0	0	0	0	0	1	1	0	0	1	0	Ō	1	ī	ī	î	ŏ	ŏ	
22	0	0	0	0	0	1	1	0	0	1	0	0	1	1	1	1	õ	õ	
23	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	Õ	õ	
24	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	
25	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	
26 27	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	
28	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	1	1	0	
29	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
30	0	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
31	õ	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	1	
	•	•	•	0	-	_	-	-	-	-	-	-	-	-	-	-	-	-	

H	trix of incompatibilities (X) between characte	ers
	(: = polar incompatibility. See Chapter 5.)	
	characters	
	111111111222222222222222222222222222222	33344
	2236990125566789013445666788890112222345678888	1899459
	23 12 2312 13 123 12311131234 1234	
hars	23 12 2312 13 123 12311131234 1234	1512
68		YY I
67	$X \dots X \dots X \dots X \dots X \dots Y \dots Y Y YYYY YYYYY$	· v
66	X.XXX.XXX.XXX.XXX.XX.XX.XX. YY YYYY YYY	Y Y1
65	X X XX	v
64	······································	
63		
61	····x · · x · x · · x · · x · · x · · · x · · · x · · · x · · · x · · · · · x · · · x ·	·x)
60	xxxx	
59	····X····X····X····X····X···X··X··X··X·	• • • • • •
58	XXX.XXX.XX.XXXX.XX.XX.XXY.YYYY YY YYY	YY Y 1
57	····X····X····XX····XX·····XX·YYY Y Y Y	vv
56	····X···X·XX	v
55	····X··X···	
54	····X···XX···XX··X·X·····XX····XX····XY·····	Y
53	····X····· · · · · · · · · · · · · · ·	~
52.2	XXXXX.YYYYY YY YYY	Y
51	xx.xx.xxxxx.xxxx.xx	XX)
49.3	x.xxx.xx.xxxxx.xxx.xx.xx	X XX
49.2		·X
49.1	······································	.xx.
47		· X · · · ·
44	· · · · X · · · · · · · · · · · · · · ·	
42.2	····X····· · · · · · · · · · · · · · ·	
39	XX.XXXXX:XYY.YY. YYYY Y YYYYY	VV .
38.1	XXX.XXXXXXXX.XXXXXXX.XX,XXXXXXX.XXXXX,XXYYY	Y YY
36	VVV VV	v
35	* • XXX • XXXXXXXXX • XXX • XX • X • • • • • • • YYY • YYYYY • YYYYY	V VV
33	····· XX	
32.3	······································	
32.2		XXX
32.1		X XX
31.2	•••••••••••••••	v
31.1	····Ā···Ā···Ā···Ā···	v
30	· · · · · · · · · · · · · · · · · · ·	
29	· · · · · · · · · · · · · · · · · · ·	Y
28	· · · · Ā · · · · · · · · · · · · · · ·	
26.1	··X·X···X·X···························	
23	XXX XXX	X
21		.x.,xx
20	**************************************	XXXX
19	xxxxxx . xx . xxxx . xxx . xx . xxx . xx . xxxxxx	XXXX
18	• • • • • • • • • • • • • • • • • • • •	~
17.2	····X···X···X···	v
17.1		10
16		xx

** ** ****	890112222345678888899459
23 12 2312 13 123 123	311131234 1234512
114	
112.2	YYY YY Y Y YY U U
114.1	
111.3	
111.2X:X:X.XX	
	•• • • • • • •
110	
109.4	······································
109.2	····X··XA··X····X····X····X····
107	XXX XXXX.
103 XY., XYYYYYYYYY YY Y YYY	XXX.XX.
	*** ****** ****************************
	···X·XXXX·····XX····
	· · X · XX · · · X · · · · · · X · · · · · X
	···X·XXXX······XX····
097.2 XX.XXXXX.X.X.XXX.XXX 096.2 XXXXXXXXX.XX.XX	XXXX.XXX
096.2 XXXXXXX.XXXXX.XXX 096.1XXX.XXX.XX.XX.X	XXXXXXXXXX.XXXXXXX
	XXX.XXX.XX.XXXX.X.
	XXX.XXX.XX.XXXX.X
	XXXX.XX.:XXX.:X.
977 · · · · · · · · · · · · · · · · · ·	YY YY Y V VVVVV v
	YYY YY Y V VVVVVV v
U31	YYY YY Y Y YUUUUU
	YYY YY Y V VVVVV VV
UJU,1	
	YYY Y Y IVY V V
	YYY YY Y YY VVVVV v
U00	YYY · YY · Y · Y · Y
U05	YYY • YY • Y • •
109 · · XXX · XXX · X : · X : XX · Y · · · · · · · · · · · · · · · ·	YYY Y VV . VV . V
U83 .X:X:X.X:	YYY · YY · Y · Y
US2.2XXX.XXXXXXXXXXXXXXXXX	YYY YY Y VY VVVVV vv
U62.1XX.XXX.X: X:XXX.X.	· · · · · · · · · · · · · · · · · · ·
**** • • • • • • • • • • • • • • • • •	$\mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y} \mathbf{Y} \mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y} \mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}\mathbf{Y}$
USI.IXXX.XXX.X: Y:YY. Y.Y YYY	YYY Y Y
080	······································
0/0.3	VV V
078.1 X X X.	····XA····X
077	^^^····
075	
074	· · · X · XX · X · · · X · · · X · · · · X · · · · X
073.3XX	AAA
073.2	**
073.2	
069	XXX.XXXXXXXXXXXXXXXXXXXX
069 067 xx.xxxxxxx.xxxx.xx	· · · · · · · · · · · · · · · X · · · ·
066	x.x.xxxxxxxxxxxxxxxxx
	XXXX
	• • • • • • • • • • • • • • • • • • •
	Y
062.3	· · · · · · · · · · X · · · X · · · · ·
U62.1X.XXX.XXX	YYY. YY
V01.2	YYYY YY YYY
058	

	223699	111111	1111222 6789013	22222222222	23333333333333 9011222234567	3333333444
	23 12				11131234	1234512
057			-			
056			XXX	XX . X	x	XXX X XXX
055	· · · . X .			 . '	XXX.XXXXX vv	
054 053.2	· · · · X ·		· · · · XX.	· · · · · · · · XX · :	xxxxxx. xxxx.	XXXXXX
053.1					Y . YYYYY	YYYYY
051.2					. YYYY YY	YYY
051.1	X	X	XX	X	XXXXXX. YY	***
049	XX.	XXX.	XXX.	· · · · X · · · · · · · · · · · · · · ·	XXXXXXXXX XXX.XXXXXXX	XXXXX
045	X.X.				YYY Y Y	vv v
044	X.		·X····	X X	XXXX.	Y Y
039.2						YYY
038.5	xxxx	· ^ ^ · ^ ^	X	X.XX	** * * * * * * * * * * * * * * * *	.xxxx.
038.4	XXXX	.xxx	X	X.XXX.XX.	*******	
038.3	×XXX	XXXXXX	XXXX.	. X . XXXXXXXX	********	
038.2	X . XXX . . YYY	XXXXXX	XX.XXXXX	(XXXX . XXXX)	xxx.xxx.xx xxxx	
037	XXXX	• • • • • • •	• • • • • • • • •	· · · · XX · · · · · ·	ו••×ו•ו••	
036	XXXXXX	XXX.XX	XX.XXXXX	(X.XXXXXXX)	******	
035		X.X			XXX	
034	******	· · · · · · · · · · · · · · · · · · ·	•••••	(x.xxx.xx.)	X.XXXX.	
	XX.XX	X	~~~~~~~~~ XX	· · · · XX · · · · ·)	(XXXXXX) (Y_Y	
032.3	XXXX	Χ	XX		r x	
032.2	XXXX	xx.	XXX.XX	x.xxx.x)	cx.	
031.1	XX. Y.YYY	XX. YY YYY	XXX.XX Y YYY Y	X.XXX X.XXX	(X.	
030.1	X.XXX.	XXX.XX	XXXX.X	(X . XX X)		
029.1	X.XXX.	XXX.XX	XXXXXX.X	x.xx		
028.3	••••	X	xxx.	X.X		
	· · · · X ·	XXXX. XXX.YX	XXX XXX.XX	X.X		
027		XX.				
026.2	· · · · X ·			••		
026.1	····X.	XXX.	. X X . X X	· · ·		
024.1	x.	x.xx	• A • • • A • •	0		
023		XX.				
021	· · · · X · :					
020	· · · . X.					
018	x.					
017		xxx	C			
016.2	···X.					
016.1	XXX.:					
015.2	· · · · X ·					
012	xxx.					
011	····X.	•				
009.1	A • XX					

	55555 01133	55555666 45678122	666666777777 245679333457	78888888888899999999999999999999999999	11 900 923
	1212			3 1212 12 122	
168					
167		······	••••	····X.XXX	X
166	¥ ¥	· · · · · · · · · · · · · · · · · · ·	••••		X . X
165		Y Y	*******	····· · · · · · · · · · · · · · · · ·	. X
164			•••••	· · · · · · · · · · · · · · · · · · ·	X
163		••••••	•••••	••••••••••••••••••••••••••••••••••••••	• • •
162	Y	* *	· · · · · · · · · · · · · · · · · · ·	.::X:X:::XX::XXXX:XXX.	• • •
161	¥	YY Y	· · · · A · A · · · · · · · · · · · · ·	·····X	X
160	Y.	YY Y	· · A · A · A · · · · · · · ·	····X···X	X
159		Y		····X···X····X····	• • •
158	¥	YY Y	····	X.XXXXXXX.XXX.	•••
157			·····	····X:X:::XX::XXX:XXX:XX	X
156		Y	· · · · A · A · · · · · · · · · · · · ·	. :XXXX:X:X:XXXXXXXXXXXXX	X
155				X	• • •
154				····X.XXXXX	• • •
153			· · · · · · · · · · · · · · · · · · ·	··X·X·X·X··X	•••
152.2	XX	¥	••••••	· · · · · · · · · · · · · · · · · · ·	
152.1	XX.X.	¥	· · · · · · · · · · · · · · · · · · ·	·····X	- X
151		XXX.Y	· · · · · · · · · · · · · · · · · · ·		.xx
149.3		Y Y	····A·A··A··A	·····	X
149.2		** *		· : XXXXXXXXXXX · XXX ·	
149.1		Y	•••••	.:XXXX:X:XXXXXXXXX	
147	XY.	*	· · · · · · · A · · · · · · ·	· · · X · X · · · XX · · XXXX · XXXX · · · ·	• • •
144			· · · · A · A · · · · · · · · · · · · ·	···X·X···XX···XXX·XXX·XXXX·	X
142.2		••••••	· · · · · · A · · A · · A · · A · · A · · A · · A · · A · · A · · A · · A · · A · · · · A · · · · A · · · A · · · A · · · A · · · A · · · A · · · A · · · A · · · A · · · A · · · A · · · · A · · · A · · · A · · · · A · · · · A · · · A · · · A · · · A · · · · A · · · · A · · · A · · · · A · · · A · · · · A · · · · A · · · · A · · · A · · · · · A · · · · A · · · · A · · · · A · · · · · A · · · · A · · · · A · · · · · A · · · · A · · · · A · · · · · A · · · · A · · · · A · · · · · A · · · · · A · · · · · · A ·		• • •
139		YY	·····	····XXXX.X.XXXXXXXXXXXXXXXXXXXXXXXXXXX	•••
138.1	· · · · · · · · · · · · · · · · · · ·	· ^ ^ · · · · · · · · ·	•••••		(.X
136		~~~ · · · · ·	••••		(.X
135	XX XX	· · · · · · · · · ·			Х
134	~~ · · ^	~ · · · · · · · · · · · · · · · · · · ·	· · · · X · X · · X · · X	···xx · xx x x x x x x x x x x x x	(.X
133		•••••		••••••••••••••••••••	• • X
	YY YY	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	• •
132.2	YY Y	·····	••••	xx . xxxxxxxxxxxx . xxxxx xx . xxxxxxxx	x
132.1	Y. YY	· · · · · · · · · · · · · · · · · · ·	· · · · A · A · · A · · A · · A	X X . X X X X X X X X X X X X X X X	(.X
131.2				· · X · · X X X X X X X X X X X · X X X X ·	.x
			V VV		••
130			·····	· · · · · · · · · · · · · · · · · · ·	••
129			¥	· · · · · · · · · · · · · · · · · · ·	••
128			Y Y Y		• :
126.1		Y Y	Y	.:X.X	••
124				· · · · · · · · · · · · · · · · · · ·	
	XXX		YY Y Y V V	. : XXXXXXXXXXXX . XXXXXXX	. X
121	XXX Y	XXXXX YA	· · · · · · · · · · · · · · · · · · ·	· : XXXXXXXXXXXX · XXXXXXX · · · ·	. X
120	XXX.XX	YYYYY Y	*****	···XXXXXXXXXXXXXXXXXXXXXXXXXXX	. X
119	XXX.XX	(XX.YY.		··· XXXX · X · · · XXXXXXXXXXX · · ·	. X
118				· · X · · · · X · · · X · · · · · · · ·	. x
117.2		. ¥			••
117.1			····· ·· · · · · · · · · · · · · · · ·	::XXX:::XX::XXX:XX	••
116	XX. YY	. XX.		····XX::::XX::XXX:XX:XX	· X
114		¥		····XX · · · X · · XXXX · · · X · · · ·	. X
112.2		. Y . Y . YY	···A·A·····		• X
112.1		¥ **		· · X · X · XXXX · XX · · · XX · · · ·	. X
				· · · · · · · · · · · · · · · · · · ·	

	555	55	555	556	666	566	66	66	571	77	27		17	A A	A.	R R	RA		• •		٥٥	•		• •			1	11
	011	334	156	781	122	224	56	575	3:	33	45	578	8	01	1	22	34	15	68	19	33 00	12	1	23	56	733 578	191)U 21
	12	•••		10								1.19		1.4								7						
	+ 4	12		•	213				12	23		1	.3	1	2:	12					12				12	22		
111.3		••	×	•••		•••		x.	x.						¥	Y					v					~		ŝ
111.2	•••		i . A						ж.					· ¥	· • •	**	· •		vv	~			100	~ ~				
111.1											•																	
110		• ~ •									х.	. 1			Y		Υv	~	v	~	~			-				
109.2																												X
107				. X .		. 1			YY			- v	•		v	~	~ ~		~ ~									•
103			XX.				.х		х.		. X	Υ.	Y	. Y	'Y'	YY 1	×	• •	٧v	***	vv	٧v	~		~~			X
102																										~		
099 098			Ā.,					X.																			^	
098																										-		
096.2)		A					x						~~	**	~~									XX			
096.1	XXX.	xx	.x	. X .		ż	** 	A. Y.	λ. ΥΥ	•	•••	Å.	•	• •		X	•••				X	•••	•••	•				
095			. . X .	.x.	.х	. X	· - '	Υ.	YΥ			Y			×	•	vv	v١	•	~			-					
094				. X .	. X	. X			YΥ			~					~~	~ ~					Ŷ	•				
093			• X •				[`]	Χ.			r			¥	×		vv	٧N		v v			^					
092 091						÷		Χ.	Χ.			. Y			Y	¥.												
090.2	x	XX	• Å • Y 1	••	÷.	۰.	•••	χ.	x.	• •	••	. X	• •	•	Х.	X	••	• •	••	•	•							
090.1		XX	· ~ /			•••	K	Χ.	χ.	• •	• •	. X		•	•••	Χ.	••	• •	•	•								
089		XX	.х.	х.					Χ.	Υ.	1.0	Y		•	Y٧	Y			rv.	•								
088		XX	.х.	х.			3	Χ.	Υ.			Y		•	v	v.												
086		XX		х.					Χ.	1.1	1.2	x		¥.	Y	Y	Y											
003		::		х.	. X 3	Χ.		. X	XX	. 1	٢.	. X		Y	Y	Y												
083		**	· X ·	÷.	• X	•••	• •	•••	XX	•••	•	. X	• •	•	. X	XX	(
082.2	x	xx	. x x	Ŷ.	. Y	· • •	 			•••	•	.X	• •	X,	. X	X												
		XX	. X .				7	τ.,		27	÷.,		•••	•	K. V													
081.2		XX	.x.	Χ.				C. 3	٢.			Y	•••	~	~													
081.1		XX	.x.	Χ.	. X)	C.,		X.		. X		Y																
080 078.3	• • • •	**	• • •	•••	•••	•••	••	•••	• •	. :	• •	•																
078.1	••••	••		•••	Ă.,	•••	••	•••	•••	•••	• •																	
077	••••	•••	• • •	•••	•••	•••	•••	• • •	•••	. х	• •																	
075																												
074				X.3	č																							
073.3	• • • •	•••		• • •		• •																						
073.2		•••	•••	•••	X		••	• •																				
069	xx.x :	X X 3	(X .)	x.)	cx.	••	. X	•																				
067	x	 	X.			•••	•																					
066		• • •					•																					
065			••	3	t																5	55	5	5 6	5			
064	• • • •																						3:					
062.4	• • • •																											
062.1																		_					1:	2				
061.2	• • • • •																	5	-				.)		•			
			••	•													- 0	5			- v	~	~					
058 057			x.															54	-			• •	X.	•••				

6 P

00111111111111111222222333333334444455555556666 7901112246778901368901122235892479912256780126 2 12312 1 12123 1 12123 166 XX.XXXXXXXXX.X.X.X.X.XXX.XX		111111111111111111111111111111111111111	111111111111111111111111111111111111111
2 1 12123 1 2 12		00111111111112222223333	33333334444455555555666666
164 XXXXXXXXXXXXXXXXX 165			
166	1.2.4		
165		XXXXXX	XX.XXX.X.X.X.XXXX
164 X. X. X. XX. X. X. XX. 163 X. X. X. XX. X. XX. 164 X. X. X. XX. XX. XX. 165 X. X. X. XX. XX. XX. 166 X. X. X. XX. XX. XX. 160 X. X. X. X. XX. XX. 156 X. X. X. X. XX. XX. 157 X. X. X. X. XX. XX. 158 X. X. X. X. XX. XX. 157 X. X: X. X. XX. XX. 158 X. X. X. XX. XX. 157 X. X: X. XXX. XXX. XX. 158 X. X. X. XX. XXX. 154 XX. XXX. XXX. 155. XX. XXX. XXX. 154 XX. XXX. XXX. 155. XX. XXX. XXX. 154. XXX. XXX. 155. XX. XXX. XXX. 156. XX. XXXX. XXX. 157. XX. XXXX. XXX. 152.1 X. X. XXXX. XXX. 154. XXX. XXX. 152.1 XX. XXXXX.			
163	165	••••••••••••••••••••••••••••••••••••••	
162			. X X.
161	0.00		X X
160		······································	(XX.XXXXXXXX
159		······································	(XX.XXXX
158 X.XX.X.X.XXXXXXXX.XXX.XXX.XXX.XX			
157 X.X::.:X.X.XXXXXXXXXXXXXXXX		X.XX.X.XXXX	XX.XXX. X YY
156 X. X: X. XXX. XXX. XX. XXX. 155 X. X. XXX. XXX. XXX. 153 XXX. XXX. XXX. 154 XXX. XXX. XXX. 155 XXX. XXX. XXX. 152.2 X. XXX. XXX. 155 XXX.XXXXXXXXXXXXX. XXX. XXX. 156 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		X.X::.:X.XXXXXX	XX.XX. Y
155		X.X.:.:XXXXXX	XX.XX. Y
153 XXXXXXXXXXXXXXXXX		X XXX XXX	
152.2 XXXX.XXX.XXXX.XXXX.XXXXXXXXXXXXX		····X··X··XXXX	
152.1 XXX		Y	
151 .XX. XXXXXXXX. XXXXXXX. XXX. XXX. 149.3 .XX:XXXXXXXXX.XXX.XXXX 149.2 .X:XXXXXXXXXXX.XX.XX 149.1 X.X:XXXXXXXXXXX.XX.XX 149.2 .X:XXXXXXXXXXX.XX.XXX 149.1 X.X:.XXXXXXXXXXXX.XXX.XX 149.2 .X:.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXYY.	¥¥ ¥¥ ¥
149.3 .XX: .XXXX .XXXXXX .XXX .XX .XX 149.2 .X: .:XX .XXXXXXX .XXX .XX .XX 149.1 X.X: .:XXXXXXXXX .XX .XX 149.1 X.X: .XXXXXXXXX .XX .XX 149.1 X.X: .XXXXXXXXX .XX .XX 141 X.X: .X .XXXXXX .XXX			XX.XXXXXY
149.2		·XX:XXX.XXXXXX.X	XX XX
149.1 X.X:::XXXXXXXX.XX 144 XXXXXXXXXXXX.XX 144 XXXXXXXXXXXXX.X 139 .X.X.X.X.XXXXXXXXXXXX.X 139 .X.X.X.X.XXX.XXXXXXXX.X 136.1 .XX.XXXXXXXXXXXXX.X 136 .XX.XXXX.XXX.XXXX.XX		"X::XX.XXXXXXX.X	XX.XX.XY
144 XXXXXXXXXXXXX.X 139 X.X.X.XXXXXXXXXX.XXXXX.X 136 X.XXXX.X.XXXXXXX.XXXX. 136 X.XXXX.XXX.XXXX.XXX.X.XX. 136 X.XXXX.XXX.XXX.XXX.X.X.X.X. 136 X.XXXX.XXX.XXX.X.X.X.X.X. 137		X:X::.:XXXXXX XXXX	(XX.XX
142.2 XX		···X··X·X····XXX···X	XX.XXX
139		· · · · · · · · · · · · · · · · · · ·	XX.X
138.1 .XX.XXXXXXXXXXXX. 136 .XX.XXXX.XXX.XXXX.X.XX. 135 .XX.XXXX.XXX.XXXX.XXX.X.X. 134			
136	138.1	. XX. XXXX X XXXXX X	X.
134		· · · · · · · · · · · · · · XXX	• • •
133			x
132.3 XXX.XXXX.XXX.XXX.XXX.XXX. 132.2 XXX.XXXX.XXX.XXX.X.XXX.X.X. 132.1 .XX.XXX.XXX.XXX.X.X.X.X. 132.1 .XX.XXX.XXX.XXX.X.X.X.X. 131.1 .XXXXX. 131.1 XXXXXXXXXX. 130			
132.2 XXX.XXXX.XXX.XXX.X.X.X. 132.1 .XX.XXXX.XXX.XXX.X.X.X. 131.2 .XXXXXXX.X. 131.1 XXXXXXXXXX. 130		**************************************	.x
132.1 .XX.XXXX.XXX.XXX.X.X.X.X. 131.2 .XXXXXXXX. 131.1 XXXXXXXXXX. 130			
131.2		.XX.XXXX.XXX.XXX.Y	
131.1 XXXXXXXXXX 130			
129		XXXXXXXXXX	
128 XXXXXX.X 126.1 XXXXXXX 124 XX 123 .XX:XXX.XXX.XXX 123 .XX:XXX.XXX.XXX 121 XXXXXX.XXX 122 X.X.XXXXXXX 120 X.X.XXXXX 120 X.X.XXXXX 119 X.X.XXXXX. 116 XX 117.2 XXXXX 117.1 X.X:XX 111.3 X 111.1 111.2 117.2 XXXXX 111.1 111.2 117.2 XXXXX 111.1 XX. 111.1 XX. 111.1 XX. 111.1 XX. 1110 .X 112.2 .XX 110 .X 112.2 .XX. 110 .X 109.4 .			
126.1 XXX:XXXXX 124 XXX. 123 .XX:XXXX.XXX.XXX 121 XXX.XXX.XXXX 121 XXX.XXXXXX 121 XXX.XXXXXX 121 XXX.XXXXXX 120 X.X.XXXXX 111 001 120 X.X.XXXXX. 119 X.X.XXXXX. 116 .XXX 117.2 XXXXX. 117.1 X.X.XX. 116 X.X. 111.1 111.2 114 114 112.2 .X.X 110 .X 112.2 .X.X 109.4			
124 .xx:xxxx.xxx 111 121 xxx.xxxxxxxx 001 120 x.x.xxxx.x 790 119 x.x.xxxx.x 790 119 x.x.xxxx.x 111.3 117.2 xxxxx. 111.3 117.1 x.x:x 111.3 116 x.x. 111.2 116 x.x 111.1 114 110 112.2 .x.x 109.4	126 1	*** · · · X · · · · X · X	
123 .XX:XXX.XXX.XXX 111 121 XXX.XXXXXXXX 001 120 X.X.XXXXXX 001 120 X.X.XXXX.X 790 119 X.X.XXXXX. 790 116 .XXX 2 117.1 X.X.XX 111.3 116 X.X. 111.2 117.1 X.X.X. 111.1 114 110 112.2 .X.X 109.4	124		
121 XXX.XXXXXXXX 001 120 X.X.XXXX.X 790 119 X.X.XXXXX. 790 118 XX 2 117.2 XXXXX. 111.3 117.1 X.X.XX. 111.2 116 X.X. 111.1 114 110 112.2 .X.X 109.4			111
120 X.X.XXXX.X 790 119 X.X.XXXXX. 2 116 .XXX 2 117.2 XXXXX 111.3 117.1 X.X.XX 111.2 116 X.X. 111.1 117.1 X.X.X. 111.1 114 110 112.2 .X.X 109.4		XXX.XXXXXXXX	
116		X.X.XXXX.X	
117.2 XXXXX 111.3 X 117.1 X.X:::X 111.2 X.X 116X.X. 111.1 .:. 114 110 .X 112.2 .XX 109.4 .			
117.1 X.X:::X. 111.2 X.X 116X.X. 111.1 .:. 114 110 .X 112.2 .X.X 109.4 .			
116			
114 112.2 .XX 109.4			
112.2 .XX 109.4			
	112.2		
	112.1		

Compatibility analysis data for the cynipoid characters (char). Polar (pol) observed (obs) and expected (exp) incompatibilities, and the ratio of observed to expected.

•						00000	LVEU LU	expect	EQ.
		ncompat:	ibiliti	65		I	ncompat:	ibiliti	es
char	obs	exp	ratio	pol	char	obs	exp	ratio	pol
							-		•
1	00	000.00	0.00	0	2.1	00	000.00	0.00	0
2.2 3	37	115.02	0.32	0	2.3	14	71.85	0.19	0
5	49	120.53	0.41	0	4	00	000.00	0.00	0
7	00	000.00	0.00	0	6	- 44	125.17	0.35	6
9.1	113	000.00	0.00	0	8	00	000.00	0.00	0
10	60	136.59 86.76	0.83	3	9.2	14	71.62	0.20	0
12	71	98.95	0.69 0.72	0	11	66	131.64	0.50	6
14	00	000.00	0.00	2 0	13 15.1	0	000.00	0.00	0
15.2	38	88.13	0.43	ŏ		00	000.00	0.00	0
16.1	75	126.98	0.59	9	15.3 16.2	93	120.60	0.77	0
17	68	86.88	0.78	0	18.2	53 15	134.89	0.39	0
19	44	125.17	0.35	6	20	58	48.97	0.31	14
21	63	137.28	0.46	ŏ	22	00	131.85	0.44	0
23	8	73.17	0.11	ŏ	24.1	44	124.17	0.00	0
24.2	00	000.00	0.00	ŏ	24.3	47	134.37	0.35 0.35	6 0
25	9	48.31	0.19	ŏ	26.1	47	133.63	0.35	ŏ
26.2	37	114.04	0.32	ŏ	26.3	14	71.09	0.20	ŏ
27	8	73.17	0.11	ŏ	28.1	66	85.09	0.78	ŏ
28.2	54	67.21	0.80	Ó	28.3	38	42.08	0.90	ŏ
28.4	00	000.00	0.00	0	29.1	103	114.80	0.90	3
29.2	00	000.00	0.00	0	30.1	95	107.87	0.88	3
30.2	00	000.00	0.00	0	31.1	94	126.85	0.74	Ō
31.2	00	000.00	0.00	0	31.3	12	47.86	0.25	Ō
31.4	00	000.00	0.00	0	32.1	73	118.91	0.61	0
32.2 32.4	86	113.49	0.76	0	32.3	57	97.79	0.58	0
34	54 10	70.84	0.76	0	33	126	136.75	0.92	6
36	115	48.45	0.21	0	35	37	88.12	0.42	0
38.1	77	70.79	0.85 1.09	3	37	50	100.84	0.50	0
38.3	105	128.23	0.82	11 0	38.2	123 73	133.68	0.92	0
38.5	75	84.99	0.88	ŏ	38.4 38.6	00	112.22	0.65	0
39.1	85	92.18	0.92	3	39.2	8	44.64	0.00	0
39.3	00	000.00	0.00	õ	40	00	000.00	0.18 0.00	0 0
41	00	000.00	0.00	ō	42	00	000.00	0.00	ŏ
43	00	000.00	0.00	0	44	15	48.97	0.31	14
45	65	126.55	0.51	2	46	00	000.00	0.00	ō
47	00	000.00	0.00	0	48	00	000.00	0.00	ŏ
49	51	132.18	0.39	0	50	49	121.27	0.40	Ō
51.1	31	99.34	0.31	0	51.2	14	71.97	0.19	0
52	00	000.00	0.00	0	53.1	19	87.91	0.22	0
53.2	54	127.82	0.42	6	54	54	128.62	0.42	6
55 57	39	108.44	0.36	0	56	85	129.11	0.66	0
59	17 00	73.17	0.23	0	58	43	115.25	0.37	0
61.1	00	000.00	0.00	0	60		000.00	0.00	0
62.1	30	48.56	0.00 0.62	0 0	61.2	14	72.39	0.19	0
62.3	27	98.74	0.82	ŏ	62.2 62.4	00 9	000.00	0.00	0
63	ōo	000.00	0.00	ŏ	64	11	47.90 48.10	0.19 0.23	0
65	17	73.17	0.23	ŏ	66	14	72.39	0.19	0
67	83	121.07	0.69	ŏ	68		000.00	0.00	0
			-	-					•

	ī	ncompat							
char	obs	exp	ratio		a b a c		ncompat		
	000	avb	Tacio	pol	char	obs	exp	ratio	pol
69	9	48.31	0.19	•	70				
71	00			0	70	00		0.00	0
73.1	110		0.00	0	72	00		0.00	0
			0.81	0	73.2	9	47.46	0.19	0
73.3	12		0.25	0	74	- 35	72.87	0.48	3
75	7		0.14	0	76	00	000.00	0.00	Ō
77	- 14		0.19	0	78.1	49	120.14	0.41	ŏ
78.2	00	000.00	0.00	0	78.3	6	48.57	0.12	ŏ
79.1	00	000.00	0.00	0	79.2	00	000.00	0.00	ŏ
80	00	000.00	0.00	31	81.1	67	69.66	0.96	9
81.2	77	127.93	0.60	Ō	82.1	56	67.23		
82.2	98		0.72	ŏ	83	39	108 23	0.83	12
84	68		0.63	ğ	85		108.22	0.36	18
86	62		0.54	2		51	88.62	0.58	18
88	70		0.55		87	00	000.00	0.00	0
90.1	58			o	89	60	120.07	0.50	8
91			0.47	7	90.2	73	136.28	0.54	0
93	61	133.79	0.46	0	92	61	133.79	0.46	0
	67	98.02	0.68	0	94	70	107.29	0.65	9
95	78	114.51	0.68	0	96.1	80	123.99	0.65	0
96.2	73	135.87	0.54	0	97.1	00	000.00	0.00	ŏ
97.2	48	42.49	1.13	0	98	10	48.45	0.21	õ
99	19	48.97	0.39	0	100.1	00	000.00	0.00	ŏ
100.2	00	000.00	0.00	0	101	00	000.00	0.00	ŏ
102	10	48.45	0.21	Ō	103	100	136.80	0.73	4
104	00	000.00	0.00	ō	105.1	00	000.00		-
105.2	00	000.00	0.00	ŏ	105.1	00		0.00	0
107	67	47.58	1.41	ŏ	108	00	000.00	0.00	0
109.1	00	000.00	0.00	ŏ			000.00	0.00	0
109.3	00	000.00	0.00	õ	109.2	35	72.69	0.48	3
110	84	107.29		-	109.4	7	48.27	0.15	0
111.2	43		0.78	0	111.1		000.00	0.00	31
112.1	34	119.89	0.36	15	111.3	47	134.37	0.35	0
		48.94	0.69	22	112.2	72	88.69	0.81	0
113.1	00	000.00	0.00	0	113.2	00	000.00	0.00	0
114	19	88.72	0.21	0	115	00	000.00	0.00	0
116	64	88.12	0.73	0	117.1	53	127.40	0.42	11
117.2	41	107.30	0.38	0	118	9	48.31	0.19	0
119	107	134.12	0.80	0	120	122	136.83	0.89	ō
121	130	132.04	0.98	0	122	00	000.00	0.00	ŏ
123	90	88.84	1.01	2	124	14	72.39	0.19	ŏ
125	00	000.00	0.00	Ō	126.1	37	48.10	0.77	2
126.2	00	000.00	0.00	Ō	127	00	000.00	0.00	
128	26	87.33	0.30	ō	129	15	48.97		0
130	8	73.17	0.11	ŏ	131.1	41		0.31	14
131.2	9	47.99	0.19	ŏ	132.1	-	107.90	0.38	0
132.2	105	132.28	0.79	ŏ		86	113.34	0.76	0
133	8	73.17	0.11	õ	132.3	110	135.38	0.81	0
135	99	134.26	0.74		134	6	48.97	0.12	0
137.0	00	000.00		0	136	14	72.39	0.19	0
138.2	00	000.00	0.00	0	138.1	97	125.23	0.77	0
139			0.00	0	138.3	00	000.00	0.00	0
	66	114.89	0.57	4	140	00	000.00	0.00	0
141	00	000.00	0.00	0	142.1	00	000.00	0.00	0
142.2	28	87.25	0.32	0	143	00	000.00	0.00	ŏ
144	27	99.30	0.27	0	145	00	000.00	0.00	õ
146	00	000.00	0.00	0	147	64	129.34	0.49	õ
148	00	000.00	0.00	0	149.1	44	123.90	0.36	6
149.2	53	98.90	0.54	3	149.3	42	48.26	0.87	2
								• •	-

	I	ncompat	ibiliti	es		I	ncompat	ibiliti	
char	obs	exp	ratio	pol	char	obs	exp	ratio	pol
150	00	000.00	0.00	0	151	94	118.25	0.79	0
152.1	49	98.72	0.50	0	152.2	35	87.42	0.40	ŏ
153	27	99.30	0.27	0	154	28	43.01	0.65	ŏ
155	17	73.17	0.23	0	156		125.17	0.35	ě
157	46	126.82	0.36	12	158		114.23	0.60	ŏ
159	14	48.53	0.29	14	160	34	87.98	0.39	õ
161	34	87.98	0.39	ō	162		107.71	0.52	12
163	8	72.49	0.11	ŏ	164	8	72.49	0.11	0
165	31	98.73	0.31	ŏ	166	-	107.51	0.66	ŏ
167	53		0.42	ŏ	168		134.56		-
169	00	000.00	0.00	ŏ	170	00	000.00	0.37	0
	••		0.00	•	110	00	000.00	0.00	0

Grand total of incompatibilities

		LeQuesne	
Observed	expected	ratio	polar
4022	7735.04	0.52	398

Marks matrix from the program LEQUC. (Unmarked characters omitted.) (See Chapter 5.)

Characters

		2	2	3	6	9	9	1	1	1 2	1 5	1 5	1 6	1 6	17	1	1 9	-
		•	•			•												
	2.25	2	3			1	2				2	3	1	2				
a				22	1.5													
1	(345)	•	•	10	5	4	•		2	18		29	5				5	
2	(157)	•	•	5						1		2						
3	(60)	•	•	•		1												
4	(51)	•	•	1		1						1						
5	(128)		•	2	1	1		1	1	1		1	1	1			1	
6	(20)																	
7	(147)			5	2	4				6		1	22				2	
8	(80)			2	2	2			2	4		1	3				2	
9	(63)			6	4				1	3			3				4	
0	(131)					3		1	1		5	2		3	1			
1	(24)								12		2							
2	(25)					3					2	2						
3	(64)										21	8		2				
4	(8)									1.2							•	
6	(32)	1						2						6	2		•	
7	(13)																•	
8	(32)	2	<u></u>													•	•	
9	(44)					1		2		1	1	i		5	3	•	•	
0	(107)	2	8				8				-			1		•	•	
1	(67)		4			1	4					•	•	-	•	•	•	
2	(60)		2		16	1	2				•	•	•	•	•	•	•	
3	(130)	1		10.2		4		i		•	•		i	i	i	•	•	
4	(65)	3									•	•	-	-		•	•	
5	(30)	1	10					:	•	•	•	•	•	•	•	•	•	
6	(11)	-									ं	- 1	•	•	•	•	•	
7	(188)	2		1	1			12	i		•	•	ż	4	2	•	i	
8	(122)		1	- 2-	ī	5			î	•	•	i	1		4	15	1	
9	(185)					6	:	2	-	•	•	5	î	:	20	15	Ŧ	i
0	(164)				i	2		ĩ	7	18	•	2	6	2		13	;	
1	(297)	i			5	3	•	31	8	1	•	i	10	2	15	i	1 5	
_	/	-	•	•	-	-	•		0	+	•	+	TO	4	13	1	2	1

was unmarked.]

									Ch	ara	cte	rs						
	2	23	24	2	25	26	26	2	27	2	2	2 2	29	3	3	3	3	
							10.0								1.10			
12			1	3		1	ż	3		1	2	ż	i	i	i	3	i	-
Ta	xa		1.1										-				•	
1	•	•	5	•	1		•			1	1		15	24	9			
23	•	•	•	•	9	•							2	2	4			
3	•	•	•	•	8	•	•	•										
4 5 6	i	•	:	:	•		•	•	•						1			
5		•	1	1	•	1	•	•		1	1	1	2	2	1			
7	•	•	:	•	•	•		•	•	•	•	•						
78	i	•	22	;	•	:	•	•	•	•	•	•	9	9	3			
9	-	•	4	1	•	1	•	•	•	•	•	•	2	2			1	
9	ŝ	•	-	1	•	1	•	•	•	•	•	•	•	•	•			
ĩĩ		•	•	i	•	1	•	•	•	•	•	•		•	2		1	1
12	•	•	•		•		•	•	•	•	•	•	•	•				
13	i	i	•	•	•	•	•	•	;	•	•	•	•	•	:	•		
14		1	•	•	•	•	•	•	7	•	•	•	•	•	2	•		
6			•		•		i	•	T	•	•	•	•	•	•	•		
7	2			i	•	i		•	•	•	•	•	•	•	•	•	•	
8					•	-	ż	•	•	•	•	•	•	•	:	•	:	
9	1				•	•	_	•	•	•	•	•	•	•	1	•	1	1
20				1			ż	8	•	•	•	•	i	i	•	.:	1	1
21					1			4	•	•	•	•	1	1	•	12	•	.:
2								2			•	:	i	i	•	2 12	•	13
23	1			1		1	1		1	i	i	i	ī	1	3		ż	27
4							3								14	•	4	4
25							1					•				•		4
26											1		•	•	•	•	•	•
27	2		1	4		4	2			21	25	38	3	4	7	•	ż	•
8	2		1	2		2				4			5			•	4	ż
9	2			2		2				13	i	i	9	i	i	1	28	28
0	15		1	4		4				10	16	-		-		•	1	
1	4		5	3		3	1			8	16	38				•	3	;

									Ch	ara	cte	rs							
	32	32	3	3	35	3	37	3	3	3	3	3	3	3	4	4	4	5	
	2	2	3	4	5	6	7	8	8	8	3	3	9	39	4	5	9	ŏ	
	3	4						i	ż	ż	4	5	i	;2					
Ta	xa												-	-					
1			1		2	14			3	1	2.5		31			7			
1 2 3 4						2			3 11				4	•	•	21	•	•	
3					1				5						•	125	•	•	
4					2				4						•	•	•	•	
5 6 7 8			1		3	1			1						•	i	•	•	
6					1										1		•	•	
7			20		24	1		1					i	•	•	÷	•	•	
8	•••		1		1			26	1					•	•	22	i	i	
9 10						3										5	_	-	
10	1		6					23	ż						•		i	3	
11 12	•		1							- A						•	i	2	
12									6	8					•			-	
13						6			6								i	i	
14										8						•	-	-	
16	1	15	3							2							•	•	
17																	•	•	
18				1			5				3	5							
19	1	2	4					1	1	2						1.69		•	
20	1	16	1			13	1			12	11		1.5		•	•	•	•	
21	13		2				4				1	23		-	- Ö.		i	i	
22	4	1	14			1	25			1	1 2 2	2				•	i	î	
23	19	23		10		1	1				2	11	9	ं	•		2	2	
24	3	3		10			1				1	4	5	•	•	•	-	-	
25			1				3		6	4	4		1	8	•	•		•	
26			3						1	1	1			8	•	•	•	•	
27			1		1	2			5	1 2	-	- 1			•	i	i	i	
28			4				124	4					ż	•	15	-		-	
29			6			1		28	4	i			5	•	15	•	•	•	
30			3			1			i	5	24	27		•	15	i	i	i	
31	1	1	5	1		1 4		i	2	11	1	1	•	•	i	-		T	
						-			_		-	-	•	•	+	•	•	•	

Characters 5 1 5 1 5 5 5 55 56 57 5 6 62 62 62 6 65 6 67 69 3 3 4 8 4 i ;2 i ż 2 i ; 4 Taxa 1234567 3 3 6 8 55 • . . 1 . • • . 1 1 • . • • • • 5 9 • • . . 9 . • • • • • • • . • 8 8 • • . • • • • 12 . 33 • . • . . 11 i . • • • i • • • • . • 1 • • 11 1 • . . • • • • • : . ż 1 • .223 53 . 4 • • • • • • • • • 1 • . • . • • • 8 23 • . • • • • • • . . . • 1 . 9 . i i . . . 8 • • 30 • • • 8 3 • . 10 11 12 13 14 16 17 18 20 21 22 23 24 25 26 27 28 29 30 • • . • . • . • . 45 • • . • 4 • ·2 1 • . •••••2 • • • . . • . • • 5 • • • • • i . • . • • • • • • . • • • • • . • • . i • . . • . • • • • • • • • • • • . . • • . . • • • · · 12312 • i i • • . • • • . • . . i • i • . i • 30 • • • • i • • • . 4 . 1 . • • : • . 8 • . • • • • • • • • 42 • • • 4 • . • • . . . • • i 2 • • ·13322 •••• • • . . • . ;4 . • • . • • . . • . • • • ····i • 471 • • • • 23 . • . . • • • • : • • . • • . • . • . • • • i . i 1 111 i 1 • i • . • . . . • • • • . • :4 . • . . • • • . • . . • • • . 1i 8 11 • • • . i . • • 12 . • • • • • • • 7 2 i 3 • • • • . • • . • • 31 8

Marks matrix from the program LEQUC - continued.

Characters

	73	73	73	7	7	7	7	7	8	8	8	8	8	8	8	8	8	8	
	3	3	3	4	75	7	8	8	1	1	2	2	83	84	85	8	8	9	
	1	2	3				i	3	i	2	i	ż							
Tax	a										-	- 7							
1	3	1	1	27			10		10	3	26	2	17	7	20	6	2	2	
2 3				3			5		27		2		1		10		4	4	
3	1			6					7		•				7	•	•	•	
4		1			- 5		i			i		12	2	:		:	:	•	
5	3	9		1			2	•	i	1	i			3	4	2	1	:	
6		9			•	•		•	+	1	-	2	2	3	3	1	1	1	
4 5 6 7	i		12	i	•	•	÷	•	i	5	:	:	1	8	1	•	•.	•	
8	_	•	12	-	•	•	52	•	T	2	1	1	4	1	1	4	5	4	
9	•	•	14	•	•	•		•	•	•	•	•	•					4	
10	:	•	•	•	•	•	6	•	•	•	•					•			
10	2	•	•	•	•	•		1				2							
11	•	•	•	•	•	•	•					4							
12		•	•		•	•	•	•											
13	6			•	•														
14	•	•													1.1				
16								6	÷.,								•	•	
17										9					•	•	i	•	
18													•	•	•	•	-	•	
19	1				1.			6				•	•	•	•	•	•	•	
20	1				1	8			1	•	•	•	•	•	•	•	•	•	
21	1			1	7	4		•	•	•	•	•	•	•	•	•	•	•	
22			- 1		7	2	•	•	•	•	•	•	•	•	•	•	•	•	
23		•	•	•	'	4	•	•	:	:	:	:	•	:	•	•	•	•	
24	•	•	•	•	•	•	•	•	1	1	1	1	•	1	•		1	1	
25	5	•	•	•	•	•	•	•	•	•	•	•	•		•	•			
26		•	•	•	•	•	•	•	•	•		•		•		•			
27	1 2	:	•	•	•	•	•	•	•		•	•							
	2	1	•	•	•	•	1		1	2	2	4	1	2	1	1	4	2	
28	•	•	•	•	•					1		1				23	2	1	
29	1		•		•				1	4	1	1 3		1		5	23	ī	
30		•							1	4	15	3		ī			5	î	
31				1					33	6	15	3	3	25	i	;	4	20	
										-		-	-		+	3		20	

								C	har	act	ers							
	9	9	•	٩	•	•	•	•	9	9			1	1	1	1	1	1
	ó	Ó	9	9 2	93	9	9 5	9	6	7	9	9	1 0 2	1 0 3	07	0 9	0	1
	i	ż						i	ż	ż								v
Tax		2						1	2	2						ż	4	
	2		12.		18	8	4	1						2	1	27		1.1
1 2 3				:	3			-	•	•	•	•	•	2	1	3	:	4 20
3												•	•	•	•	6	•	7
4						2		3					•	•	i		•	
4 5 6 7 8	1	1	1	1	1	11	3 5 2 1	332	1			:	:	i	67	i	•	i
6							2	2						1	1	1	•	-
7	1 2				1	2	ī						:	:	-	i	•	i
8	2	1	1	1				1						i				-
9	8	19	15	15													•	•
10		4	1	1				i	10					2			1	
11														1				•
12		5														- 25		
13														1		- 22		
14																		
16	•		•											5			- 33	103 (m
17			1	1										1				
18											1	19	1			- 22		- 74
19		1	•			•								2				
20	•			•		•			20								1	
21	•	•	•			•								11			17	
22	•								1					3			7	
23	1	1	1	1	1	1	1	i	1	48	10	3	10	1				1
24	•									3	10	19	10					
25	•		•											4				
26	•			•										1				
27	2	4	4	4	3	1	2	2	4	1				1	67			3
28	1	1	22	22	3		2	2						1				2
29	1	2	2	2	4	1	4	3		1								23
30	1 19	1 2 2 3	4	4	8	1 25	3	2336	3					4				7
31	19	3	3	3	6	25	8	6	3	48	1		1	6	1	1		76

	÷	1																	
	1 1 1	1	1	1 1 2	1	1	1	1 1 7	1 1 8	1 1 9	1 2 0	1 2 1	1	1	1	1	1	1	
	1	1	1	1	1	1 6	1	1	1	1	2	2	1 2 3	1 2 4	2	2	2	3	
		1	2	2	4	6	7	7	8	9	0	1	3	4	1 2 6	1 2 8	1 2 9	1 3 0	
	ż	ż	i	ż			i	ż											
-	2	3	1	2			1	2							1				
Taxa				1			1.1												
1 2 3 4 5 6 7 8 9 10	8	•	33	7 24	•	•	2	7 5	1	1	1	26	21		37	4			
4	1	•	34	24	•	•			9	•	•	6	1		1	7			
3	•	•	5	7	•	•	•	•				7							
1	i	i	i	i	•	•	•	1 2		1	92		15		1	2			
5	1	1	1	1	•	•	1	2	•	1	2	3	15 2		37	4			
6	:	•	i	i		•	i	15				3 3			1	3			
1	2	•	1	1			1	15		4	i	1	i		1				
8	·2 3 3	1	•	•	•		2	1			1								
9		1	•	•	•		3												
10		1	•			15					6		8						
11 12	•	1										4	1						
12	•												1 3						
13																		7	
14														1				i	
16		•				3					1								
17		1	•										100						
18					1													•	
19						1							1					•	
20										10	12	11		8				•	
21														4			•	•	
22										3	ż	3		2		•	•	•	
23		1			7		1										•	•	
24					4											•		•	
25					7						1.5					•		•	
26					1										•	•	•	•	
27	1	4					2	1		i	i	3	•	•	i	i	•	•	
28	1	2		2			ī						•	•	-	-	15	•	
29		22		2 11				:	:	3	i	3	•	•	•	•	15 15	•	
30		4				32	15			2	1 1 7	1	•	•	•	•		•	
31		3		ż	1		14		•	2 10	7	1 8	•	•	•	•	;	•	
1000				-	-	•		•	•	10	'	0	•	•	•	•	1	•	

	1 3 1	1 3 1	1 3	1 3 2	1 3 2	1 3 3	1 3 4	1 3 5	1	13	13	1 4	1	1 4	1	1	1	1	
	3	3	3	3	3	3	3	3	1 3 6	3	3	4	4	4	4	1 4	1	5	
	_	_	2	2		3	4	5	6	8	9	2	4	7	9	9	9	5	
	i	ż	i	ż	ż					i		ż			i	ż	ż		
Tax		-	-	4	3					1		2			1	2	3		
1	7	1								~~			1.2	1.1		1.1			
1 2	5	9	56	5 5	5 5 1	•	•	5 5 1	•	22	1	1	5	1	5	15	42	7	
3		8	1	1	2	•	•	5	•	3	•	6 15	5			2	1	4	
3	:		T			•	•	1	•	•		15	•			1			
1	1 2	•	•	i	i	•	•	•	•	•		5	3						
2		•	•			•	•	•	•	1	•	3	3		1	i	i	1	
45678	15	•	:	ż	ż	•	•	•				5 3 2 1	1						
!	15	•	4	2	2	•	•	4	•	1		1	1		ż	4	42	3	
8	1	•	1	•	•	•	•	•							2	3	1	1	
9 10	•	•	16	•											4				
10			6	2			1	2										3	
11 12 13	•	•	3																
12			1									1							
13				1	9	7		1		10							:	i	
14						1													
16				1	1		6	1 1 4						i	:	•	•	•	
17				1				1				•	•			•	•	i	
18				1 5	4			4		i	i		:	i	•	•	•	i	
19			1				6					:	:	-	•	•	•	-	
20						1.0			8			•	:	:	•	•	•	•	
21									4	1		•			•	•	•	•	
22									2	•	•	•	•	•	•	•	•	•	
23										4	4	•	•	;	•	•	•	•	
24				i	i	•	•	i	:	2	3	•	•	1	•	•	•	:	
25					_	•	•					•	•		•	•	•	7	
26					•	•	•	•	•	•	•	•	•	•	•	•	•	:	
27	i	•	•	i	6	•	•	i	•	i	:	:	:	:	:	•	•	1	
28		•	•		1.5	•	•	1011	•		1	1	1	2	1	•	•	•	
29	•	•	i	i	;	•	•	:	•	1	3	•	•	20	1	•	•	1	
30	•	•		+	1	•	•	1	•	1	2	•	•	4	•	•		2	
31	•	•	•	1 2	1 2	•	•	1	•	23	.:	•	•	2	15	•	•	1 2 2 1	
71	•	•	•	2	2	•	•	•	•	3	11			1	5	1		1	

									Ch	ara	cte	s							
	152	. 1	1	1	1	1	1	. 1	1	1	1	1	1	,					
	5	1 5 2	1 5 7		5	5	5		5	1 6	ŝ	÷	÷	1 6	-	1 6	16	1 6	
	2	2	3	4	1 5 5	156	1 5		1 1 5 9	ő	1 6 1	1 6 2	1 6 3	4	1 6 5	6	7	8	
	i	ż													-	•	'	•	
1		2																	
	xa																		
1	•		5	•		5	3				1.00					- 62			
1 2 3 4 5 6 7 8 9 10 11 12 13			5	• •										1		•	•	•	
3													1		•	•	•	•	
4			3										•			•	•	•	
- 5	1	1	3			1	1	1				•	•	•	•	•	•	:	
6			1								•	•	•	•	•	•	•	1	
7			1			2			•	•	•		•	•	•	:	•	•	
8						2 2	1 2 3	i	•	•	•	i	•	•	•	1	:		
9						4	2	- T		•	•		•	•	•	40	1	1	
10				- <u>.</u>	8			i	•	26	26	:	•	•	:	•	ż	•	
11		1.5		•	4	•	•	-	•	20	26	5	•	•	1	1		3	
12		•	•	•	5	•	•	•	•	•	•	1 3 1	•	•		•	1	1	
13		· •	•	•	2	•	•	•	•	:	:	3	•						
14		•	•	•	•	•	•	•	•	2	2		7	7			i	1	
16	i	•	•	•	•	•	•	•	•	1	1		1	1					
17	-	•	•	•	•	•	•	•	•	•	•	•			1				
18	•	•	•	•	•	•	•	•	•	•		2					2	1	
	•	•	•	•	•	•	•										1		
19	:	:	•	•	1	•	•	1		1	1	1			1	1			
20	1	3	•	•	•										2				
21	:	1	•	•	•			1							3	1	1		
22	1	2	•	•				1							1				
23	14	•		1				3				100			2	1 2	2		
24	3			•													ĩ		
25	•										1				•				
26											1						•	•	
27	14	21	1	1		1	2	4				•	•	•	ż	ż	2	;	
28				3		1	1	30	14			3	•	•				3	
29				28		1.		5	14		•	5	•	•	i	i	:	23	
30					1	1	10	ĩ		•	•	1.5	•	•	T	T	1	3	
31	2	1		28		5		1	1	•	•	•	•	•	•	•	1	4	
		-				-	•	•	•	•	•	•	•	•	•	•	•	•	

Page 409

HENNIG CHARACTER MATRIX

Scores for the morphological characters and exemplar taxa reworked for the Hennig parsimony program (See Chapter 5).

(0 = plesiomorphic state; 1,2 etc = apomorphic states; - = missing score)

	H 0 0 1	H 0 0 2	H 0 0 3	H 0 0 4	H 0 0 5	H 0 0 6	H 0 0 7	H 0 0 8	H 0 9	H 0 1 0	H 0 1 1	H 0 1 2	H 0 1 3	H 0 1 4	H 0 1 5	H 0 1 6	H 0 1 7	H 0 1 8	H 0 1 9	H 0 2 0	H 0 2 1	H 0 2 2	H 0 2 3	H 0 2 4	H 0 2 5	H 0 2 6	H 0 2 7	
Tax: 1 2 3 4 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 0 11 12 13 4 5 6 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 0001000000000000000000000000000000000	2 0000000000000000000000000000000000000	3 000000000000000000000222111100	4 0111111110000000000000000000000000000	5 0000000000000000000000000000000000000	6 0000000000000000000000000000000000000	7 1111111100000000000000000000000000000	8 0000000000000000000000000000000000000	9 0000000000000000000000000000000000000	0 1110000111100000110000111101	1 0000000000000000000111000000	_	3 1111111101000000000000000000000000000	_		-	_	_	-	_	_			_	_			
29 30 31	000	000	000	000	001	010	000	000	0 0 1	0 1 0	0000	001	0 1 0	0 1 0	0000	0000	000	000	0 1 1	0 1 1	000	1 0 1	0 1 1	0000	0 1 1	0 1 0	0 0 0	

	H	H	H	H	H	H	H	H	H	н	н	н	H	H	н	н	н	н	н	н	н	н	н	H	н	н	н	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ö	ö	0	ö	ö	ö	
	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	5	5	5	5	š	
	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	õ	ĭ	2	3	4	
Tax	a																											
1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	1	0	1	1	0	0	0	0	1	1	
2	0	1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	Ō	2	ō	ŏ	ŏ	ŏ	ŏ	î	۰.	
3	0	1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	õ	õ	-	ĩ	-	ŏ	ŏ	ŏ	ŏ	î	1	
4	0	1	0	0	0	0	0	0	0	1	0	Ó	0	.0	1	Ō	1	ō	0	2	0	õ	õ	õ	õ	i	1	
5	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	ĩ	õ	1	ĩ	1	õ	õ	ŏ	ŏ	î	i	
6	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	ō	-	ĩ	-	õ	õ	õ	õ	î	i	
7	0	1	0	0	0	0	0	1	1	Ō	Ō	Ő	Ó	0	ō	õ	ĩ	ŏ	0	î	0	ŏ	õ	õ	ŏ	î	i	
8	0	1	0	0	0	0	0	0	0	Ō	ŏ	Ō	ō	0	ĩ	õ	ō	ŏ	ŏ	ō	õ	ŏ	õ	õ	0	i	1	
9	0	1	0	0	0	0	0	4	-	1	1	-	-	õ	î	ŏ	ŏ	1	-	ĩ	-	ŏ	õ	0	ő	1	1	
10	0	0	2	0	1	0	0	0	0	0	0	0	0	ŏ	î	ŏ	ŏ	ò	0	ō	0	0	õ	0	0	1	ō	
11	0	0	2	0	1	0	0	0	Ō	Ō	ō	ō	õ	ŏ	ō	õ	ŏ	õ	ŏ	1	õ	ŏ	õ	ŏ	ő	1	ő	
12	0	0	2	0	1	0	Ō	ō	Ō	ŏ	ŏ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	õ	õ	3	0	0				1	-	
13	1	0	2	0	ĩ	1	ō	ŏ	ŏ	ĭ	ŏ	ŏ	ŏ	ŏ	õ	õ	õ	õ	ő	1	0	0	0	0	0	1	0	
14	1	0	2	0	1	1	õ	ō	ō	ī	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1	õ	3	ő	0	ő	0	0	-	0	
15	1	0	2	0	1	ĩ	0	õ	ŏ	î	ŏ	ŏ	ŏ	ŏ	õ	ŏ	ŏ	i	0	2	ő	ő	0		0	1	0	
16	0	Ô	2	0	ī	ō	ŏ	õ	ŏ	ô	ŏ	ŏ	õ	4	ŏ	õ	õ	0	0	3	0	0		0	0	1	0	
17	0	0	2	Ó	ĩ	ō	ŏ	õ	ŏ	ŏ	ŏ	ŏ	õ	ō	õ	0	ŏ	0	0	1	0	0	0	0	0	1	0	
18	Ō	õ	2	ō	ĩ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	Ö	õ	2	0	0	õ	ĩ	1	5	0		0	0	0	1	0	
19	0	0	2	ō	ī	õ	õ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	3	ĩ	õ	ŏ	ō	0	2	0	0	0	0	0	1	0	
20	Ō	ō	2	õ	3	õ	ŏ	ĭ	ĭ	ŏ	ŏ	1	ŏ	4	ō	õ	0	0	0	2	0	•	0	0	0	1	0	
21	0	0	2	ō	3	õ	õ	ĩ	î	ŏ	ŏ	ō	õ	i	õ	ŏ	õ	1		-		0	0	0	0	1	0	
22	Ō	õ	2	õ	3	ŏ	ŏ	î	î	ŏ	ŏ	1	õ	3	1	õ	ő	i	0	6	0	0	0	0	0	1	0	
23	0	õ	2	ŏ	2	ŏ	ŏ	ô	ō	ŏ	ŏ	ō	õ	4	ō	-		-	_	4	0	1	0	0	0	1	0	
24	Ō	ŏ	2	ŏ	2	ŏ	õ	õ	ŏ	ĭ	ŏ	0	õ			1	0	1	1	5	1	0	1	0	0	1	0	
25	Ő	ŏ	2	ŏ	2	ŏ	ŏ	ŏ	ŏ	0	ŏ	Ö	0	0	0	1	0	1	1	4	0	0	0	0	0	1	0	
26	ŏ	ŏ	2	ŏ	2	ŏ	õ	õ	0	ŏ	ŏ	-	-	0	0	0	0	1	1	1	2	0	0	0	0	1	0	
27	ŏ	ŏ	2	ŏ	í	ŏ	3	2	2	1	-	0	1	0	1	0	0	1	1	4	3	0	0	0	0	1	0	
28	ŏ	ŏ	ő	ŏ	ō	ö	0	ő	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	
29	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1	1	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	
30	ŏ	ŏ	ŏ	õ	ŏ	ö	2	÷.	U	U	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	
31	ŏ	õ	ĩ	õ	õ	0	4	-	-	-	-	-	-	0	1	0	0	1	-	5	-	0	0	0	0	1	0	
~1			•		0	0		-	-	-	_	-	-	0	0	0	0	1	-	3	-	0	0	1	1	1	0	

Characters

111111111111111111111111111111111111111	H H H H H 1 1 1 1 1 1 2 2 2 8 9 0 1 2	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	H H H H H H H H 1 1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 8 9 0 1 2 3 4 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	3	3	3	3	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	6	6	6
	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2
Tax 2 3 4 5 6 7 8 9 10 112 13 14 15 16 7 8 9 10 112 13 14 15 16 7 8 9 20 21 22 3 4 5 6 7 8 9 10 112 13 14 5 6 7 8 9 10 112 13 14 5 6 7 8 9 10 112 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a 000000000000000000000000000000000000	0000000000000000000000111100000	000000000000000000000000000000000000000	000000001000010010000000000000000000000	122222211000000000000000000000000000000	011000000000000000000000000000000000000	0000001111111110111001111110001	0001001110111100101001111110001	001110111101111011100111100001	100000000000000000000000000000000000000	100100001100000000000000000000000000000	000000000000000001110000000000000000000	000001000000000000000000000000000000000	200010000000000000000000000000000000000	100000000000000000000000000000000000000	011011000000000000000000000000000000000	111111111111111111111111111111111111111	000000000001110000000000000000000000000	022111100000000000000000000000000000000	033000333323011212200000020000	000000000001110000000000000000000000000	000000000000000000000000000000000000000	011000111111000111110000000000000	000000000000000001110000000000000000000	000001000000000000000000000000000000000	0111111111101111111111000010010	000000000001000000000000000000000000000

H	1 6	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6		6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	8	8	8	8	8	8	8	8	8	8
3		5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
Taxa 1 1 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 11 0 12 0 13 0 14 0 15 0 14 0 15 0 14 0 15 0 16 0 17 0 18 0 20 0 21 0 22 0 23 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 21 0 21 0 22 0 23 0 23 0 23 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 21 0 20 0 21 0 22 0 23 0 23 0 23 0 23 0 23 0 23 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 21 0 22 0 23 0 23 0 23 0 25 0 26 0 27 0 28 0 29 0 20 0 21 0 22 0 23 0 24 0 25	00000000000000000000000111101101	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000001000000000000000000000000000	001111000000000000000000000000000000000	100000000000000000000000000000000000000	011111000000000000000000000000000000000	111111111111111111111111111111111111111	100000000000000000000000000000000000000	0000000000000011011111101000	111111111111111111111111111111111111111	322111321000000000000000000000000000000	111111111111111111111111111111111111111	0111110001110001011 100 - 0000	000000000000000000000000000000000000000	011111000000000000000000000000000000000	000000000000000000000000000000000000000	000000011100000000000000000000000000000	111111110000000000000000000000000000000	111111111000000000000000000000000000000	00000000000000100111100001100-	111111111111111111111111111111111111111	000000001001110000000000000000000000000	0000000010011100000000000000000	1111111110001111011111111111001 -	000000000001110000000000000000000000000

Characters

	H 1 9 0	H 1 9 1	H 1 9 2	H 1 9 3	H 1 9 4	H 1 9 5	H 1 9 6	
Taxa 1 2 3 4 5	00000	00000	00000	00000	00000	00000	00000	
6 7 8 9 10	000000	0 0 0 0 0	0 0 1 0 0	0 0 0 0 1	0 0 0 0 1	0 0 0 0 0 0	0 0 0 0 0	
11 12 13 14 15 16	0 0 1 1 1 0	0 0 0 0 0	0 0 0 0 0	1 1 0 0 1	1 1 0 0 1	0 0 0 0 0 0	0 0 0 0 0 0	
17 18 19 20 21	0 0 0 0	0 0 1 1 1	0 0 1 1 1	1 1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	
22 23 24 25 26 27 28 29	0 0 0 0 0 0	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0 0	1 1 1 1 1	0 0 0 0 0 1	0 0 0 0 0 0	
28 29 30 31	000	000	0 0 0	0 0 0	000	000	0 0 1 -	

Page 417

1.1

APPENDIX 3: DESCRIPTION OF A NEW TRIBE, GENUS AND SPECIES

During the course of this investigation a new species has been discovered which constitutes a new tribe of the Cynipoidea. This tribe will be formally described in a widely circulated journal rather than in this thesis, and therefore the new tribe, genus and species are NOT NAMED below. (Only the initial letters are used as these are not valid names (article 11h of the International Code of Zoological Nomenclature).]

E-----ini Tribe n.

This tribe consists of a single genus and species.

E----- Gen. n.

Description

E. c----- sp. n.

Species description

Antennae with short dense pubescence; third antennal segment slightly shorter than the second and much less than the fourth; the seventh antennal segment longer than the fifth. Mandibles with two stout blunt teeth; with long pubescence. Face strongly rugose. Small keel present

between antennal toruli; scrobes present.

Thorax long and thin, in side view about three times longer than high. Propleuron with a depression just above the anterior coxa. Mesoscutum strongly transversely striate; notauli absent. Scutellum transversely striate and foveae deep; with lateral carinae slightly protruding. Mesepisternum punctate; metapleuron elongate and with a deep depression to accommodate the coxa of the mid leg. Propodeum very long; with two longitudinal carinae and many transverse carinae; deeply rugose laterally; with a ventral depression above each hind coxa. Claws simple; first segment of hind tarsus about 60% of the rest of the tarsus.

Marginal cell long, thin and closed; vein M reaching to the wing margin; submarginal cell closed and narrow. Hindwing with three hamuli and a costal cell (Fig. 213).

Dorsally and laterally the petiole has a distinct, sulcate collar (with anterior flange) but this is absent ventrally, although the first gastral sternite is sulcate. Gaster with tergite two short and tergites three to five very short (Fig. 214). Gastral tergite six greatly lengthened, forming most of gaster. Gaster laterally compressed, but not blade-like; covered (especially posteriorly) with long white pubescence. In side view the gaster is approximately 3.4 times longer than high.

Head, thorax and gaster black, legs mostly orange, tibiae orange-brown. Wings brown with a clear patch at the base of the hindwing.

Long and slender; length (excluding antennae) 8.5 to limma.

Material examined

HOLOTYPE female. Papua New Guinea, Bulolo. 18. 1. 1978. H. Roberts. Stony logging area. On Xanthophyllum. PARATYPES: 6 females, same data as holotype.

Etymology

This very elegant cynlpoid, is named after my wife and daughter.

Remarks

This species has long and thin body, and ventral depressions in the thorax allow the legs to be folded tight against the body. The hind coxa can only be partially accommodated in the last depression so the remainder must fit under the petiole which is lengthened. Thus 1t 15 most likely that E----has а wood-associated biology like that of other large cynipoids. Perhaps it is a parasitoid of coleopterous that bore larvae into the rather tough wood of Xanthophylum (= Brakenridgea).

Affinities

E----- c----- is clearly a member of the group (Ibaliidae) o£ large timber-associated (wood-probing) Cynipoidea that have coiled ovipositors, transverse sculpture and relatively complete venation. E----- does not belong to the Ibaliini as the marginal cell is not long enough and gaster is not blade-like. The venation is similar to that of the Liopterini but E----- does not correspond to any of the subgroups of that tribe. It is not closely related to Oberthuerella as it lacks a femoral spur and scutal spine. The petiole is not attached tangentially so E----- is not related to Liopteron. E----- is perhaps closest to the Mesocynips group but the petiole is too long for the genus to fall the traditional concept of this group. The within structure of the petiole is similar to that of Mesocynips in that the collar is absent ventrally, but E----does not have the ventral hump which is present in Mesocynips. Other genera near Mesocynips e.g. Pseudibalia have a complete collar.

This new genus clearly belongs to a new tribe, the E-----ini, which is positioned between the Ibaliini and the Liopterini. The most significant tribal features being elongation of the body and the deep incision between the metanotum and propodeum.

APPENDIX 4: KEY TO THE SUPRAGENERIC TAXA OF THE CYNIPOIDEA.

- 5 Mesonotum with rough sculpture (rugose, foveolate or striate), and with strong transverse ridges (Fig. 71). Ovipositor looped in a complete circle within the gaster (Figs 147, 154). Parasites of Siricidae or Coleoptera larvae in trees. Large insects, 5-30mm, usually over 10mm. IBALIIDAE. . 6
- Mesonotum with light sculpture (alutaceous, punctate, granulate, rugulose, strigulose or smooth), without strong transverse ridges (Figs 76, 82) Ovipositor not forming a complete loop (except in Sarothrus).
 Parasites of Diptera, Neuroptera or hyperparasites of Homoptera via hymenopterous primaries. Not associated

with trees. Small insects, 1-6mm, usually under 4mm . .

- 6 "Pterostigma" present (Fig. 159); lower face with two conspicuous fan-shaped areas of striations; hypostomal region not set in a cavity; gastral tergites 5-7 not expanded; petiole with a strong anterior flange consisting of both first tergite and first sternite; gonostylus almost globular; apex of gaster not upturned; lateral surface of pronotum with a ridge-like hump. On Araucaria (Cupressaceae) Rare, endemic to Australia AUSTROCYNIPINAE - Pterostigma absent (Fig. 150); lower face not strongly striate (Fig. 21); hypostomal region of head set within in a cavity (Figs 38, 39); gastral tergites 5 to 7 elongate; petiole without a strong anterior flange including a sternal element; gonostylus elongate (Fig. 147); apex of gaster slightly upturned; pronotum without a lateral hump. On Pinaceae or Deciduous trees.

8 Propodeum greatly elongate and separated from metanotum

by deep cleft (Fig. 214). Mesonotal trough not obscured by rough sculpture and with a strong horizontal groove.
Propodeum not particularly elongate and not separated from metanotum by a deep cleft. Mesoscutal trough obscured by rough sculpture but without a strong horizontal groove.

- 9 Vein Rs+M visible and pointing to middle of basalis; (Fig. 109) hypostomes not fused and lower tentorial bridge visible; clypeus projecting upwards away from labium; face with two vertical grooves separated by central keel; lateral propodeal carinae straight and converging, caulis pointed; scutellar foveae transverse, almost triangular; scutellum with an approximately triangular posterior depression (Fig. 158). Nepal. Rare HIMALOCYNIPIDAE - Vein Rs+M not visible or pointing to junction of basalis with median (Fig. 111); hypostomal bridge present (Fig. 42), lower tentorial bridge not visible; clypeus normal, not projecting upwards; face without vertical grooves; propodeal carinae curved, caulis not pointed; scutellar foveae approximately round; posterior of scutellum without triangular depression. .
- 11 Pronotal carina complete (Fig. 62), from the ventral region on one side - across the dorsum to the ventral region on other side. Postgenal carina curved; bulbous

articulation and bridge absent; claws with fine basal spine; petiole with a collar ventrally and laterally but not dorsally. Parasites of Neuroptera

- Pronotal carinae indistinct (Fig. 67) or with a small lateral gap (Fig. 63), or present only as a developed dorsal plate (Fig. 65). Postgenal carina not markedly curved; bulbous articulation and bridge present; claws without a fine basal spine; petiole otherwise.
 Parasites of Diptera or Hyperparasites of Homoptera..12

- 14 Scutellum without a tear-drop shaped plate (Fig. 80); suture line of hypostomal fusion present and long (Fig.

[N.B. The single specimen of the Thoreauellini is in such poor condition that it was not practicable to include this tribe in the key. See Chapter 5 for details of the features that are visible.]

Systematic Entomology (1988) 13, 13–30

A comparative study of the structures of phylogenetic importance of female genitalia of the Cynipoidea (Hymenoptera)

N. D. M. FERGUSSON Department of Entomology, British Museum (Natural History), London

> ABSTRACT. The structure of the female genitalia of the Cynipoidea is described, compared with that of other Hymenoptera and its method of operation discussed. The comparative morphology and the major evolutionary trends within the superfamily are discussed. Cynipoidea have two extraordinary modifications of the female genitalia: the ninth tergite is very long, narrow and centrally bisected so that it apparently forms an extra pair of ovipositor 'sheaths'; and the ovipositor is so elongate in some families that, in order to accommodate it within the gaster, it forms a complete loop.

Introduction

The Hymenoptera is the only order of holometabolous insects that has retained a primitive lepismatid form of ovipositor (Scudder, 1961; Chapman, 1969). In the most primitive hymenopterans, xyeloid sawflies (Rasnitsyn, 1980), the ovipositor is used by the female to place her egg precisely within or adjacent to a highly nutritious food source. For example, Xyela species oviposit amongst the microspores in the developing male sporophyll of gymnosperms. The possession of this form of ovipositor has been of major importance in the evolution and radiation of the order (Gauld & Bolton, 1988). In many symphytans the ovipositor is not only used to place an egg accurately, it serves a second function. This is the introduction of a 'venom', a secretion from one of the glands associated with the ovipositor, into the larval food source; this venom in some way modifies the substrate making it more suitable for larval development. For example, substances injected by some nematine sawflies initiate gall formation

Correspondence: Mr N. Fergusson, Department of Entomology, British Museum (Natural History), Cromwell Road, London SW7 5BD.

(McCalla et al., 1962), whilst stricoids inject a venom which promulgates growth of a symbiotic fungus upon which the development of the siricid larva depends (Spradbery, 1973). Amongst the Apocrita, which generally use an animal larval food source, the ovipositor is of major importance. In various evolutionary lineages it has been modified in diverse ways. It may be used to obtain access to concealed hosts which are injected with a paralysing venom and then oviposited upon (e.g. as in the ichneumonid Rhyssa), to inject a host modifying venom (e.g. Fitton et al., 1968), or to place an egg internally in a host in a position where it may escape encapsulation by host haemocytes (e.g. Salt, 1968; Van Veen, 1981). There are striking differences in the form and function of the ovipositor complex between different apocritan evolutionary lineages. However, these differences are little studied, thus have not been employed in attempts to resolve the phylogeny of the order.

The Cynipoidea is a large superfamily of Apocrita that contains worldwide about 4000 species. The group is perhaps best known because of the 'gall-wasps', the Cynipidae, which are phytophagous and cause galls on various angiosperms. Approximately 75% of

13

European Cynipidae gall Quercus species (Askew, 1984). A few genera (e.g. Synergus) are inquilines in the galls of other cynipoid species. Also currently included in this family are two poorly known monogeneric subfamilies, the Austrocynipinae from Australia, and the Pycnostigmatinae from Africa.

The remaining families consist of kunobiont endoparasitoids (Askew & Shaw. 1984) of the immature stages of other insects. These families are much less well known than the 'gall-wasps', but they comprise the majority of the Cynipoidea. The Ibaliidae are large (at least 10 mm long) and are rare internal parasites of siricid wood wasp larvae (Hymenoptera: Symphyta. Siricidae) in timber (Abies, Picea, Pinus and Larix). The Lioptendae are also large (at least 7 mm long) and in general habitus are similar to the Ibaliidae. There are few host records for this very rare family which is probably associated with hosts living in trees (Diaz, 1973).

The other families contain much smaller species (often 2-4 mm long). The Figitidae consists of four subfamilies. The Figitinae are parasites of Diptera, often in carrion or dung. The Aspicerinae are mostly parasites of larvae or puparia of Syrphidae (Diptera). The Anacharitinae parasitize Hemerobiidae (Neuroptera) whilst the host of the Himalocynipinae (only one species from Nepal) is not known. The Eucoilidae are endoparasites of Diptera, they are figitid-like but have a characteristic 'cup' on the scutellum. Finally, the two subfamilies of Charipidae are very small (often 1-2 mm) and smooth. The Charipinae are parasites of Psylloidea and the Alloxystinae are hyperparasites of aphids via Aphidiinae (Hymenoptera: Braconidae) and Aphelinidae (Hymenoptera: Chalcidoidea).

These families, which show considerable biological diversity, are grouped together because they all have a laterally compressed gaster, and distinctive venation, with a triangular radial cell.

The families of the Cynipoidea are poorly defined and the limits of the various suprageneric taxa are interpreted differently by different authors. In most classifications (e.g. Weld, 1952; Quintan, 1979) considerable taxonomic weight has been given to easily visible features of the female gaster such as shape, lengths of tergites, etc. These features all relate (as will be shown below) to the ovipositor complex. However, although a few papers describe the form of the genitalia of single, or a few related species (Chrystal, 1930; Wishart & Monteith, 1954; Frühauf, 1924), no study has investigated the comparative functional morphology in a wide range of species in the superfamily. This paper reports the investigation of a wide range of morphological variety within the superfamily; the method of operation of the cynipoid ovipositor is elucidated; and outgroup comparison is used to establish which forms are primitive. The evolutionary implications of the morphological variation are discussed.

Methods and Materials

Specimens were dissected initially with microscissors and pins and then with micropins mounted in matchsticks. Both dry and freshly collected specimens were softened in warm 10% potassium hydroxide and dissected in distilled water: however, dry specimens remained very brittle. For electron microscopy specimens were mounted on double-sided cellulose acetate tape. A fine micropin was then used to scrape up a small amount of glue from the tape and this was used to remove fibres (see Gibson, 1985). The genitalia were cleaned in Teepol in a durham tube which was placed in an ultrasonic cleaner. However, due to the fragility of the specimens, adequate cleaning was difficult. Specimens for optical microscopy were mounted on slides. Other specimens were gold coated with a sputter coater and examined either with an International Scientific Instruments 60A or a Cambridge 180 scanning electron microscope.

The species examined are listed in Appendix 1.

Terminology

Accounts of the general morphology of the hymenopterous ovipositor are 'given by King (1962). Scudder (1961). Smith (1969) and Snodgrass (1935). Unfortunately there is no consistency in their terminology - synonymic names are listed in Table 1. The latest terminology, that of Smith (1969, 1970), has been adopted here (although there is some doubt as to the exact embryonic origin of 'Gonocouite 8').

Female genitalia of the Cynipoidea 15

TABLE 1. Synonymics of terminology used to describe the Hymenopterous ovipositor system.

Snodgrass, 1935	Scudder, 1961	King, 1962	Smith, 1969
First valvifer	Conangulum	Fulcral plate	Gonocoxite 8
Second valvifer	Second gonocoxa	Inner plate	Gonocoxite 9
First valvula	First gonapophysis	Stylet	Gonocoxite 9
Second valvula	Second gonapophysis	Stylet sheath	Gonocophysis 9
Third valvula	Gonoplac	Inner plate	Gonostylus
Ninth tergite	Ninth tergite	Outer plate	Ninth tergite

Review of the general morphology of the hymenopterous ovipositor

The plesiomorphic apocritan ovipositor system (for example that of many Ichneumonidae) consists of five basic elements (see Table 1; Fig. 1) which have been derived from the appendages of the eighth and ninth abdominal segments (Smith. 1969). These are both spatially and functionally associated intimately with tergite 9 which is generally fused with the reduced tenth tergite (Richards, 1977) (to form a so-called syntergite) and which posteriorly bears paired cerci (=pygostyles sensu Richards, 1977). Primitively the ovipositor has no system for retraction into the abdomen and when the ovipositor is long it pro-

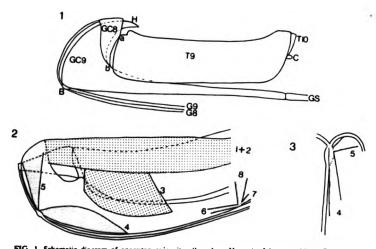
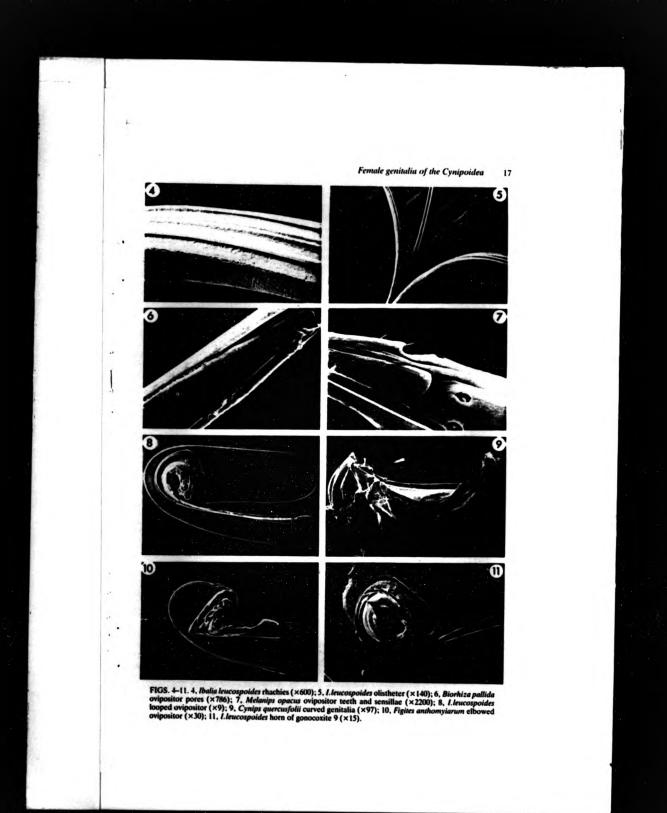


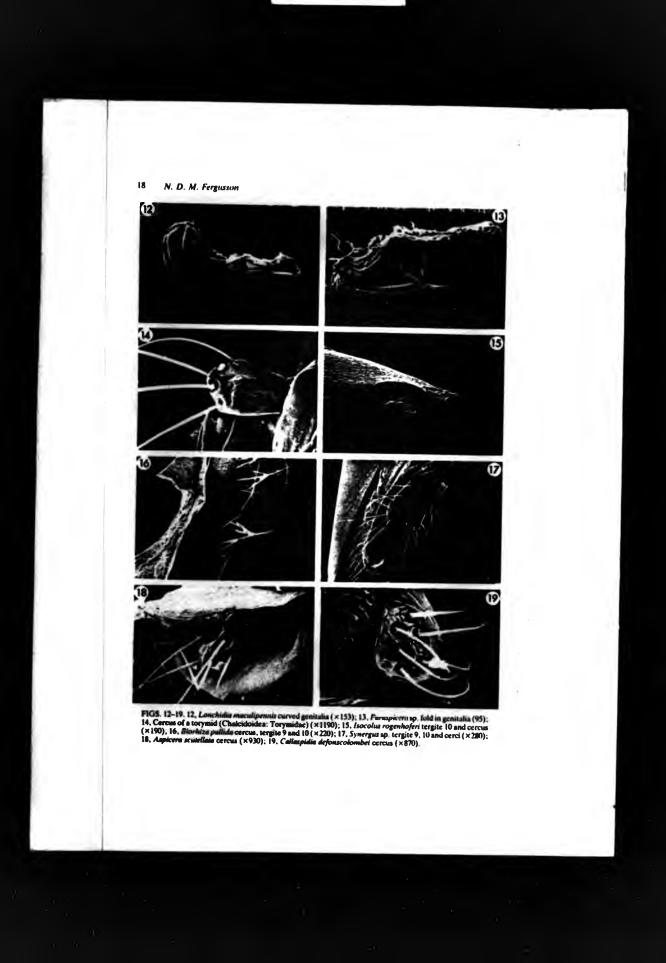
FIG. 1. Schematic diagram of apocritan ovipositor (based on *Venturia*: Ichneumonidae). B=bulbous articulation. GC9=gonocoxite 9. GC8=gonocoxite 8. GS=gonostylus, G9=gonapophysis 9. G8=gonapophysis 8. H=horn of gonocoxite 9. T9=tergite 9. T10=tergite 10. a=articulation of tergite 9 with gonocoxite 9. b=articulation of gonocoxite 8 with gonocoxite 9.

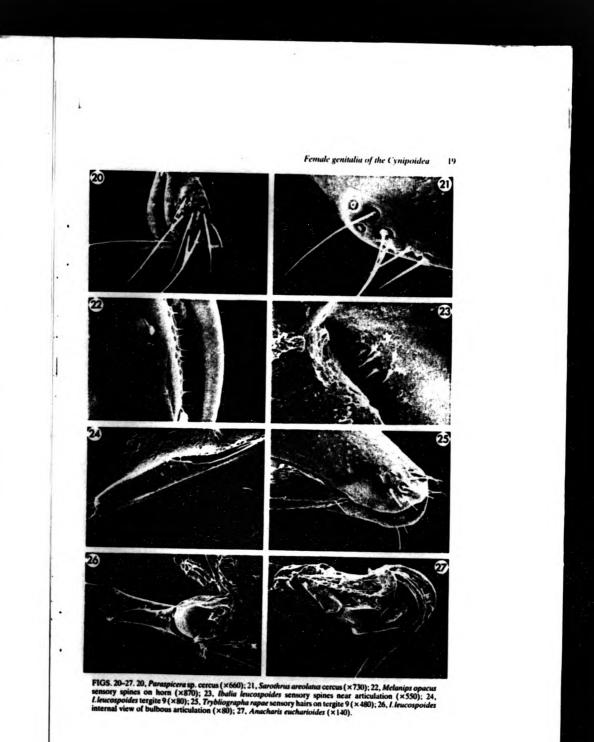
FIG. 2. Schematic diagram of the musculature of the cynipoid ovipositor. 1+2=upper+lower gonapophysis 8 protractors, 3=gonapophysis 8 retractor, 4=gonapophysis 9 depressor, 5=gonapophysis 9 levator; 6, 7 and 8 are respectively the anterior, posterior and superior gonastylus muscles.

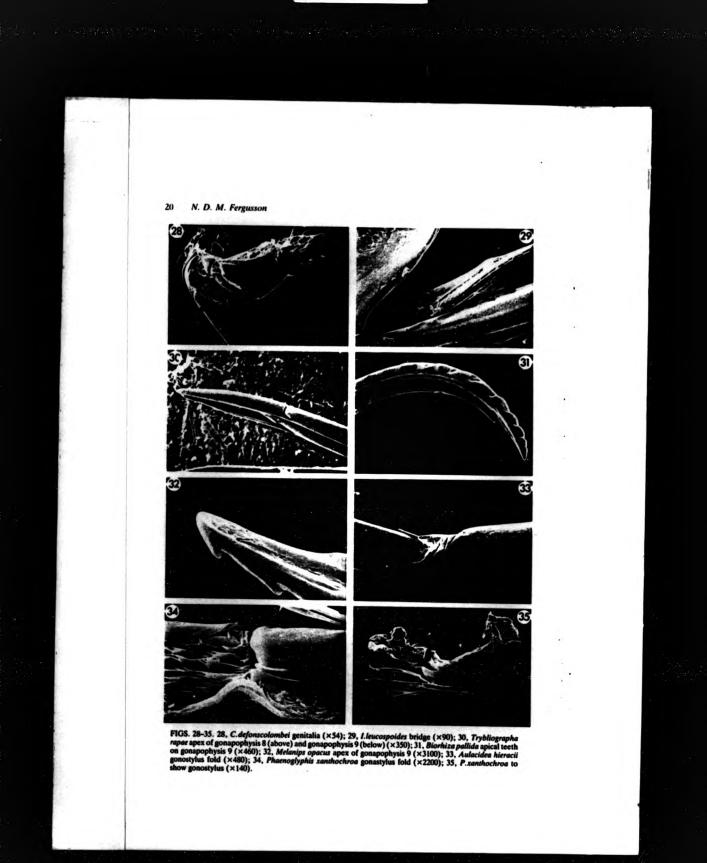
FIG. 3. Dorsal view of the bulbous articulation to show orientation of the gonapophysis 9 depressor (4) and levator (5) muscles.

jects beyong the apex of the abdomen and is protected, at rest, by a sheath (Austin, 1983). GONOCOXITE 8 in a small, flat and almost triangular rocking plate (Figs. 9, 12) anteriorly it is fused to the base of gonapophysis 8 (Snodgrass, 1935). Its distal edge has two well-developed articulations (Figs. 27, 28), the upper with tergite 9 and the lower with gonocoxite 9 (Smith, 1969). Anteriorly the two sides of the genitalia curve into each other. GONOCOXITE 9 is large and elongate, centrally it is expanded to accommodate the muscles that are attached here and run to tergite 9 and to the bulbous articulation (Fig. 2) (Smith. 1969). Posteriorly gonocoxite 9 extends (Figs. 35) into the GONOSTYLUS (Scudder, 1961). Internally the two gonastyli are concave, they project backwards and form the sheath about the ovipositor but are deflected during oviposition (Chapman, 1969). The base of GONAPOPHYSIS 9 is attached to gonocoxite 9 at the BULBOUS ARTICULATION - this is a large ball and socket joint (Figs. 26, 28) which allows the shaft of gonapophysis 9 to pivot downwards and permits some degree of rotation (Copland & King, 1972). A dorsal ramus of gonapophysis 9 extends with gonapophysis 8 up to gonocoxite 8. GONAPOPHYSIS 8 meets with gonapophysis 9 immediately after the bulbus articulation at a complex structure, the BRIDGE (Fig. 29), at which the ninth gonapophyses are fused (Fulton, 1933). The anterior ramus of gonapophysis 8 lies in a shallow groove in the edge of gonocoxite 9 (Copland & King, 1972). There is a row of basiconic sensillae (Fig. 22) on gonapophysis 9 near the groove, these almost certainly monitor the degree of extension of gonapophysis 8 (Copland & King, 1972). The movement of gonocoxite 8 relative to gonocoxite 9 is monitored by an area of sensory pegs sited on gonocoxite 9 just below the articulation (Fig. 23). These spines are known from the Chalcidoidea (Copland & King, 1971, 1972) and are here recorded from the Cynipoidea, Braconidae and Proctotrupoidea, so it is likely that most if not all Apocrita have them.


The OVIPOSITOR is a hollow tube consisting of three parts (Fig. 5), the fused ninth gonapophyses (dorsal) and the two eighth gonapophyses (ventral) (Chapman, 1969). The components are crescent shaped in cross section and enclose the egg canal (Snodgrass, 1935). The parts can slide back and forth against one another without disengaging because of a 'tongue and groove' mechanism known as the olistheter


(Smith, 1969). This mechanism consists of a pair of longitudinal ridges (termed rhachies) on the ninth gonapophyses (Fig. 4) which link with two grooves (aulax) one on each of the eighth gonapophyses (Fig. 5) (Smith, 1969). As the ovipositor system is comprised of separate sliding parts it may thus accommodate a degree of flexion and in some species even flex in use (Copland & King, 1972). Posteriorly orientated spines (the pectines) are located along the inside of the ovipositor valves, when the gonapophyses move back and forth these cause the egg to move along the ovipositor and into the host (Austin & Browning, 1981). The egg is often large [20 times the width of the ovipositor in the cynipid Diplolepis rosae (Bronner, 1985)] but the gonapophyses do not separate as the egg passes down the ovipositor. The egg membrane is distorted hydraulically and the cytoplasm flows within the membrane during passage down the ovipositor tube, it goes down stalk last (Fulton, 1933).


The ovipositor is moved by two opposing sets of muscles (Figs. 2, 3), a protractor (often massive) that extends from the anterodorsal end of gonocoxite 9 to the anterodorsal region of tergite 9 and a retractor set extending from the posteriordorsal apodeme on gonocoxite 9 to an internal ridge on the inside of tergite 9 (Snudgrass, 1935). Contraction of the protractor muscle moves tergite 9 forwards and downwards exerting pressure on gonocoxite 8 via the tergal/gonocoxite 8 articulation. Gonocoxite 8 pivots downwards about its articulation with gonocoxite 9 so that the antenor end is depressed and gonapophysis 8 slides along gonapophysis 9 until its apex projects beyond gonapophysis 9 (Smith, 1969). Contraction of the retractor muscle reverses this process. but since the apical teeth on gonapophysis 8 prevent its retraction, the net result is usually that gonapophysis 9 moves along gonapophysis 8 (Snodgrass, 1935).


General structure of the cynipoid ovipositor

The above review shows that the general structure and function of the hymenopterous ovipositor is reasonably well understood. However, much of the detail is still to be resolved. The remainder of this paper shows, for the first time, the detailed structure of the cynipoid ovipositor characters and how these characters vary between different taxonomic groups.

The cynipoid ovipositor is a thin structure [a small diameter is thought to lessen damage to the host (Austin & Browning, 1981)]. This delicate structure requires a degree of protection, so at rest it is invaginated within the gaster and methods of protraction and retraction have been developed. The base of the ovipositor tends to be in an anterior position. Tergite 9 is deeply bisected (from the anterior towards the posterior) (Fig. 24), the dorsal surface is limited to the distal extremity where it is retained to maintain the fulcrum between tergite 9 and tergite 8. The remainder of tergite 9 is retracted and less sclerotized; it is so long and thin and the dorsal separation so extended that, in most families, it looks like an extra pair of ovipositor 'sheaths' (Figs. 8, 24, 25, 28). Tergite 10 is fused with tergite 9. However, tergite 8 is always sclerotized and the system is not as delicate and membranous as that found in the advanced Proctotrupoidea, e.g. Diapriidae or Scelionidae. Gonocoxite 9 is elongate and almost vertical, it is the main element of the cynipoid ovipositor system and is expanded and curved upwards into a 'horn' (Figs. 9, 11, 12, 28), and moved anteriorly in order to accommodate an increase in the length of the ovipositor.

The apex of the ovipositor bears pores (Fig. 6), setae and sensory structures that are probably used to determine the suitability of the substrate for oviposition (Vinson, 1976). King & Fordy (197C) noticed peg-like structures and depressions with a central dome in the Cynipinae, van Lenteren (1972) found them in the eucoilid Pseudeucoila, and I have found these to be present in many other cynipoids (see e.g. Fig. 7, Melanips opacus). The terminal teeth protect these sense organs as the gonapophyses enter the host, and the structures probably flatten into their depressions to avoid damage on the return stroke. The dome-and-peg organs may have been evolved from articulating spines that have lost all but the base (King & Fordy, 1970).

In general terms the ovipositor of Cynipoidea is most like that of the Chalcidoidea (the two superfamilies were considered probable sister-groups by Königaman, 1978). The ovipositor systems in both superfamilies have a similar curving of gonocoxite 9 into an anterior horn, and one chalcidoid family, the Eurytomidae, has gonocoxite 9 strongly curved dorsally, for example in *Eurytoms abialls* it is curved through 130° (Copland & King, 1972). Many cynipoids have a strongly

Female genitalia of the Cympoidea 21

curved ovipositor and some (e.g. *Ibalia*, gonocoxite 9 curved through 270°, Fig. 11) have the gonapophyses forming a complete loop (Fig. 8) around the base of the sclerites. In both the Eurytomidae and the 'looped' cynipoids the gaster has become laterally compressed. One of the lew proctorupoids with lateral flattening is *Synopeus* (Platygastridae). I found that the ovipositor system of this genus curves round ventrally to become inverted. Thus the principle of colling of the ovipositor is similar to that found in the Cynipoidea and Chalcidoidea but the coiling in *Synopeus* is in the opposite direction so that gonocoxite 8 is ventral to gonocoxite 9 instead of dorsat.

Another mechanism for accommodating a long, internal ovipositor occurs in the Proctotrupoidea. Most species of *Inostemma* (Platygastridae) and several scelionid genera (e.g. *Odontacolus*) extend a loop of the ovipositor into a hom-like protrusion from the first gastral segment. In *Inostemma* this horn can reach forwards beyond the head. In these species the gaster is often dorsoventrally flattened.

Musculature and function

The female genital musculature of the Cynipoidea consists of five main muscles (Figs. 2, 3). Muscle 1 the upper protractor of gonopophysis 8] is attached along the upper ridge of tergite 9 and runs to the upper horn region of gonocoxite 9. Muscle 2 [lower protractor of gonapophysis 8] is a large muscle running from the main surface of tergite 9 to the central horn region of gonocoxite 9. The upper and lower protractors are difficult to distinguish in many Cynipoidea. Muscle 3 [gonapophysis 8 retractor] is a large muscle that runs from a ridge on gonocoxite 9 to the diagonal ridge on tergite 9. Muscle 4 [gonapophysis 9 depressor] attaches to the apex of the bulbous articulation and runs to the lower part of gonocoxite 9. Muscle 5 [gonapophysis 9 levator] runs from the antenor part of the bulbous articulation to the edge of the horn of gonocoxite 9. There is a small group of secondary muscles nearer the tip of the gaster (Fig. 3). Muscle 6 [anterior muscle of gonostylus], muscle 7 (posterior muscle of gonostylus] and muscle 8 [superior muscle of gonostylus] link the gonostylus to tergite 9 above, and give mobility to the gonostylus.

In Neralsia (Cynipoidea: Figitidae) the lower

fibres of muscle 2 form a muscular bundle which attach to gonocovite 9 near the articulation of gonocovite 8. This bundle is not a ligament of the whole muscle. In the Chalcoloulea [evept Agaonidae and some Epichrysomallinae (Copland et al., 1973)] a strong ligament, part of muscle 2, connects tergite 9 to the same point on gonocovite 9. This ligament is not present in the Cynipoidae. Muscles 1 and 2 are discrete in chalcoloids but in the Cynipoidea they tend to form a broad band of fibres attaching down the horn from the apex to the mid horn region.

At the commencement of oviposition the female cynipoid lowers the gaster towards the substrate with the tip of the ovipositor slightly exposed. An upward movement of the anterior end of the hypopygium causes the external part of the hypopygium to pivot downwards (to the substrate) which together with an upward movement of the terminal tergites depresses the ovipositor and raises gonocoxite 9. The angular moment applied to the base of tergite 9 is limited by the distal edge of tergite 8. Gonapophysis 9 is depressed by the muscle (muscle 4) that reaches from the bulbous articulation to the mid-horn region of gonocoxite 9, and is opposed by a levator muscle (muscle 5) extends from the bulbous articulation to gonocoxite 9. These two muscles also act as a brace for gonapophysis 9. The first thrust of the tip of the ovipositor into the host is caused by a downward deflection of the abdomen, but movement of gonapophysis 8 on gonapophysis 9, produced by protractor (muscle 1 plus muscle 2) and retractor (muscle 3) muscles, produces further penetration. Contraction and relaxation of the muscles between tergite 9 and gonocoxite 9 control the rotational movement of gonocoxite 8 (the only muscle directly attached to gonocoxite 8 runs to tergite 8 and probably functions as a brace) about its pivot (the articulation with gonocoxite 9). This in turn moves gonapophysis 8 relative to gonapophysis 9. Thus gonozovite 8 rocks on the stationary gonocoxite 9. Tergite 9 is virtually bisected into a pair of plates that are free to move independently of each other and as the rest of the system is bilateral, asynchronous movements of the two sides are used to push gunapophysis 8 deeper into the wound. The tip of gonapophysis 9 usually has 'teeth' (Figs. 31, 32) which not only cut but also help to maintain it in the wound, these teeth are small and do not prevent disengagement. Retraction of the ovipositor is achieved by reversing the procedure described above, and the

genitalia and gastral segments are rotated back to the normal position

Character states in cynipoid female genitalia

Before any phykogenetic assessment can be made it is essential to make a detailed examination of the character states of the cynipoid female genitalia.

Genitalia shape and position in gaster

To obtain access to the prospective host the cynipoid needs to penetrate the structure or substance within which the host resides. The morphological diversity of ovipositor systems reflects the diversity of substrata which have to be penetrated. There are three basic types of cynipoid ovipositor system which reflect the habits of the adult: type A is used to penetrate shallow plant tissue or animal tissue: type B, less accessible animal tissue; and type C, wood (or deep plant tissue).

Type A. curved genitalia. In this type the gonapophyses tend to be short and gonocoxite 9 is often only slightly curved (Figs. 9, 12, 28, 35). Even in the taxa with the longest ovipositors at can be accommodated by increasing the curvature of gonocoxite 9 rather than looping the ovipositor or moving the base forwards in the gaster as in type C (see below).

The mechanism of oviposition, in terms of gonocoxal movement, is illustrated by *Diplolepis* (Cynipidae). The gonocoxites are positioned near the apex of the gaster (in contrast to the anterior position in Ibaliidae. Liopteridae and Austrocynipinae) and they are angled upwards distally (e.g. Fig. 9). During oviposition the genitalia base is rotated downwards over 100° so that the gonapophyses emerge ventrally from near the centre of the gaster. The sternites telescope backwards on oviposition to allow the vertical thrust to be made.

The curved (type A) genitalia is the plesiomorphic condition of this character, and is similar to the genitalia of many parasitic Hymenoptera. Type A genitalia are found in the gall-wasps (Cynipidae) and in the parasitic cynipoids (Charipidae and most Figiidae) that oviposit directly into host insect tissue (or at most through a cocoon or aphid mummy). The

Cympidae are the only family of the Cynipoidea not to deposit the egg in animal tissue, so oviposition is both through and into plant tissue. The eggs are deposited at or near the surface (most galls of Cynipidae are surface structures), so there is little requirement for a long ovipositor. Compared with the smaller parasitic Cynipuidea the Cynipidae are generally well muscled, this is presumably because they must penetrate relatively tough plant tissue rather than animal tissue. Like the Cynipidae the type A parasitic cynipoids have a short curved ovipositor which they use to stab at hosts that are at, or very near, the surface of the substrate. For example, the Anacharitinae parasitize exposed Neuroptera coccoms. The very small parasitic cynipoids of the Charipidae (Fig. 35) have the capsule in an apical position. In this family it is likely that the tergal muscles are capable of moving the capsule back and forth to some degree. This form of movement is found in some of the smaller Proctotrupoidea (s.l.) (e.g. Scelionidae. Diapriidae), and prohably is only feasible in species with small capsules. As the capsule is apical, only a short movement is required for this mechanism to aid oviposition. The genera of the Anacharitinae and some Aspicerinae have a relatively small genital capsule that is also apical in position but in these taxa the ovipositor folds upwards in the middle so that when the ovipositor is exposed the proximal part of the capsule is aligned more vertically than horizontally (Fig. 13).

Type B, elbowed genitalia. The Eucoilidae, some Figitidae (e.g. Figites, Neralsia) and one cynipid (Aulacidia hieracii) have elbowed genitalia (Fig. 10). The gonocoxites are sharply curved, in some species almost to the proportions found in looped genitalia (see below) but the ovipositor does not have a complete loop. In the species with the kngest ovipositors the shaft is expanded away from the elbow regions so that it extends forwards to the petiole (the genital capsule occupies a posterior position). This type of genitalia provides a moderate increase in ovipositor length, without the need for looping. so that a medium depth of ovipositor penetration can be achieved.

Type C, looped ovipositor. The ovipositor is very long, the extra length is accommodated by moving the ovipositor base to the anterior region of the gaster, by the ninth gonecoxite being curved anteriorly (up to 270°) and by

Female genitalia of the Cynipoidea 23

gonapophyses being coiled one complete turn around the basal gonocoxites (Figs. 8, 11). The curving of gonocoxite 9 and the looping of the ovipositor is a remarkable adaptation to keeping the extra length of the ovipositor contained within the gaster. This specialization is considered to be independent of the elbowed ovipositor (see Discussion).

Although the ovipositor is very long for a small hymenopteran, it is not long by the standdards of the parasitic Hymenoptera as a whole, especially as the more primitive parasitica can have the ovipositor greatly extended externally. Townes (1975) surveyed the length of exposed ovipositors in the Apocrita. He found that the parasitic Hymenoptera seldom have an ovipositor longer than 1.3 times the length of the head plus body. He found that a few species had larger ovipositors, the longest were in the Braconidae - between 2.7 times and 7.7 times the total body length (see Achterberg, 1986). In the Cynipoidea the longest is the looped ovipositor of Ibalia (Ibaliidae), specimens were dissected, unwound and measured. The maximum exposable part of the Ibulia ovipositor is 1.5 times the length of the head plus body. If the total length of the ovipositor is measured then the ratio is 2 times. Thus the ovipositor of Ibalia is not excessively long, but is much longer than the gaster.

Oviposition in those Cynipoidea with a looped ovipositor requires that it be uncoiled in order to use the maximum shaft length. This is achieved by the intertergal muscles contracting and telescoping the tergites which tighten the loose coil of the ovipositor thus causing the ovipositor to protrude from the gaster. The inward telescoping of the tergites has a secondary effect in that it causes the gastral volume to be decreased and thus the hydrostatic pressure is increased, which assists ovipositor protrusion. This method of telescoping the gastral tergites is a fundamentally different mechanism to that found in many other parasitica, e.g. Ichneumonidae, where the gaster is extended during oviposition. In Ibalia the pointed tip of the hypopygium just enters the oviposition hole (made by the host's parent) and it guides the uncoiling ovipositor down the open boring.

Where the ovipositor is looped the central tergites (T4, T5 and T6) must be wide and able to telescope within one another so that the maximum available length of shaft can be uncoiled

during oviposition. This is most efficiently effected if the central tergites are the largest gastral tergites (in lateral view). In the Cynipoidea which do not have a looped ovipositor tergite 2 or 3 is the longest. Where the ovipositor is long its outer coil follows and indeed determines the contours of the gaster, also the greatest degree of lateral compression of the gaster occurs in the species with the most coiled ovipositors, so that in the most extreme example, *Ibalia*, the gaster is very flat, blade-like with sharp dorsal and ventral ridges.

The looped (type C) ovipositor is found in the Ibaliidae. Liopteridae. Austrocynipinae and one species of Figitidae. The long ovipositor enables parasitism of hosts living further from the surface than can be reached by most Cynipoidea ovipositors. In the Ibaliidae and probably in the Liopteridae and Austrocynipinae the ovipositor penetrates through wood or deep plant tissue which may involve either drilling, or probing down pre-existing borings. The eventual object of oviposition is animal tissue, i.e. wood-dwelling larvae.

Sarothrus areolatus is the only species of Figitidae found to have a looped ovipositor like that of *Ibalia*. It also has, to a lesser extent, a similar lateral compression of the gaster and an expanded fourth gastral segment (although it retains the typical Figitinae gastral pattern with the second segment the largest). The hosts of *S arrolatus* are anthomyid Diptera. The host larvae are found deep near the developing seed in lettuce flowers in the autumn, and they pupate in the parasite is needed to penetrate between the flowers or into the soil.

Tergite 10 and cerci

The cerci (=Pygostyles) are a pair of short articulating appendages which project from the apex of the gaster, they carry a tuff of sensory hairs, and are present in most parasitic Hymenoptera. In the more primitive taxa cerci occur on the tenth abdominal tergite but when tergite 10 is reduced or lost (many Chalcidoidea, e.g. Torymus (Fig. 14) and Proctotrupoidea) then the cerci are present on the ninth tergite. In the Cynipoidea the ninth tergite is mostly internal, and it was considered (Königsmann, 1978) that both tergite 10 and the cerci were lost. For most families this is true, but the Cynipidae retain a small area (Fig. 15) of tergite 10 [primitive] and the Cympidae and certain Figitidae possess cerci or remnants of them (Figs. 15–21) [the plesiomorphic condition].

It is impossible to prove the exact origin of the depressed area of tergite that carries the cerci in Cynipidae. However, the fact that in some of the more primitive gall-wasps (e.g. Isocolus, Fig. 15) it is clearly a discrete piece of cuticle. strongly suggests that this area represents the last stage in the loss of tergite 10, where the lateral remnant of tergite 10 that bears the cerci has fused to the ventral margin of tergite 9 (any dorsal element of tergite 10 being lost earlier in this family). The depressed area is most unlikely to he an advanced feature (i.e. secondurily acquired) because the family Cynipidae shows a clear reduction sequence for both the area itself and the cerci from the most primitive to the most advanced taxa.

The cercus of Cynipidae is a raised ridge-like structure sited in a depressed area at the ventral margin, and near to the apex of tergite 9 (Figs. 15-17). The cerci in other Hymenoptera are upright cylindrical structures attached at the base (Fig. 14) but in the Cynipidae the cylinder lies along the tergite and is partially fused with it. The genera of the Cynipidae can be arranged in a series with respect to degree of cercus reduction and fusion with the tergite. This series corresponds with the phylogeny of Cynipidae genera. as established by Kinsey (1920). In the most primitive Cympidae (e.g. Isocolus, Fig. 15) the cercus is still slightly raised at the apex but it becomes progressively more fused (Phanacis) and less distinct until it becomes a longitudinal ridge on the tergite (Aylax and Aulacidea) and the ridge progressively decreases in size (Xestophanes) until in the most advanced gallformers it is virtually absent and the sensory hairs emerge directly from the tergite (Cynips, Biorhiza, Fig. 16). In Diastrophus the cerci are slightly more disc-like than cylindrical but this is a derived genus in other respects (Kinsey, 1920). Kinsey did not include the inquiline genus Synergus in his study, but it has relatively well developed ridge-like cerci (Fig. 17) which indicates that it is not derived from the advanced gall-wasps (e.g. Cynips, Andricus).

Apart from the Cynipidae none of the other Cynipoidea examined have a remnant of tergite 10 present, but the taxa of two subfamilies of Figitidae, the Aspicerinae and Figitinae, have

cerci present on tergite 9. In Aspicera (Fig. 18) the cercus is vertical on the tergite, unlike the almost horizontal aspect of the cerci of the Cynipidae. The most developed cerci in the Figitidae were found in Paraspicera (Fig. 20) here they form a ridge raised from the tergite anteriorly but fused with the tergite along the posterior edge. The cercus has seven long sensory hairs. In Aspicera the cercus lies along the tergite and in Prosaspicera it is fused with the tergite. In Callaspidia (Fig. 19) the structure is slightly more dome shaped than a ridge. In the Figitinae a few genera related to Melanips show the last traces of cerci. In Melanips there is an irregular ridge with seven sensory hairs. If this is viewed obliquely and ventrally it is slightly raised off the tergite. In Sarothrus (Fig. 21) the seven hairs are mounted on a very slightly raised area and in Lonchidia (Fig. 12) the five remaining hairs emerge directly from the tergite. Several texa of Liopteridae have sensory hairs with large basal depressions at the apex of tergite and taxa from other families (e.g. Trybliographa, Eucoilidae; Fig. 25) also have long hairs on tergite 9, these hairs must represent the position of lost cerci.

Female genitalia of the Cynipoidea

Xyalaspis petiolata 6, Figites scutellaris 5, Melanips opacus 8, Neralsia rufipes 5, Phaenoglyphis xanthochroa 5. Pycnostigmus rostratus 5). There are fewer sensilla in the smaller species such as those of the Eucoilidae (3 sensilla in Eucoila crassinerva. Kleidotomu psiloides. Rhoptromeris heptomu and 2 in Trybliogrupha rapae) and only 2 or less sensilla in the very small taxa, e.g. Lonchidia maculipennis, Alloxysta macrophadna and Dilyta subclavata (1 spine). The larger taxa, i.e. those with looped ovipositors, have more sensilla [a derived state] (Oberthuerella lenticularis 20, Ibalia leucospoides 26. Mesocynips insignis 19) but the equally large Liopteron compressum and Paramblynotus punctulatus (simple gonapophysis 9) have respectively only 7 and 5 sensilla. Thus the number of sensilla in this group appears not to be simply related to size. presumably the need for accuracy is also a significant factor affecting numbers of spines. The Cynipidae have a large number for their size, 14 in Trigonaspis megaptera and Biurhiza pullida. 17 in Cynips quercusfolii but only 5 in Aulacidea hieracii.

Basiconic sensilla at gonocoxite 9 articulation

There is a small plate of sensory spines near the point of articulation of gonocoxite 8 with gonocoxite 9 (Fig. 23). These sensilla enable the cynipoid to locate the eighth gonocoxite relative to gonocoxite 9 and hence establish the position of its ovipositor. In the families of small parasitoids the ground-plan number of these sensilla is approximately 5 (examples: Aspicera scuellata 6, Callaspidia defonscolombei 6, Anacharis eucharioides 5, Aegilips nitidula 5.

Marginal sensilla of gonocoxite 9

A series of basiconic sensilla occur along the anterior margin of the horn of gonocoxite Ψ (Fig. 22), it is surmised that they monitor the movement of gonapophysis 8. The number of sensilla is approximately constant in any one species. The large cynipoids with looped ovipositors have the greatest number of sensilla, 30-59. Most gall-causers have 17-23 but *Biorhiza pallida* has the relatively high number of 35. The remainder of the parasitic species have between 10 and 22 with the exception of the very small

TABLE 2. The number of marginal sensilla found on gonocoxite 9 in selected species of Cynipoidea.

Ibalia leucospoides	50-52	Oberthuerella lensicularis	59
Liopteron compressum	48	Mesocynips insignis	- 54
Paramblynonis punctulatus	30	Aspicera scutellata	. Id
Callaspidia defonscolombei	22	Anacharis eucharioides	14
Acgilips nitidula	10	Xyalaspis petiolata	ic
Figites scutellaris	20	Neralsia rufipes	17
Eucolla crassinerva	22	Trybliographa repar	is
Kleidotoma pelloides	11	Rhoptromeris heptoma	Ш
Phaenogyphis zanshochroa	9	Pycnostigmus rostratus	- 29
Aulacidea hieracii	18	Cynips quercusfolii	23
Trigonaspiz megaptera	17	Andricus ostreus	21

25

26 N. D. M. Fergussim

species such as Lonchidia muculipennis and Alloxysta macrophadna with 6 and 5 respectively. Therefore the ground-plan number for most of the Cynipoidea is probably about 20. This number is reduced in the derived parasitic taxa, e.g. Charipidae and Lonchidia, and increased in the larger cynipoids, also derived. Examples of the number found in other Cynipoidea are given in Table 2.

Shape of tergite 9

Apart from a small exposed distal region the ninth tergite is internal in the Cynipoidea. The ninth tergite is virtually separated into two lateral components but these are united where the distal extremity of the tergite is exposed (Fig. 24). Each lateral element forms a long strap like structure, linking the articulation of gonocoxite 8 with the apex of the gaster. Tergite 9 is loosely attached distally to tergite 8, and a degree of flexion is possible. In the large [derived] Cympoidea (Ibaliidae and Liopteridae) the ninth tergite is long and very thin (Fig. 24), the middle part having a lessened structural importance [agaonid chalcids have a similar membranous centre to tergite 9 (Copland & King, 1972)]. In other cynipoids the ninth tergite is shorter and broader (Figs. 9, 12, 13), the plesiomorphic condition.

Beyond the articulation with gonocoxite 8 and gonocoxite 9 there is a broad central region which has an internal flange running diagonally down from the upper articulation. This is the site of attachment for muscle 2, this ridge is very clear in strongly muscled species such as *Biorhize pallida* but it is also present, although reduced, in species like *Ibalia* with long thin genitalia.

The distal section is not so broad, and it simply links the muscular section to the apex where the two lateral elements fuse. In the Anacharitinae the last section of tergite 9 is clearly downcurved (derived), the gonostylus is also downcurved because the genital capsule is sited close against the apical curvature of the gaster.

Ritchie & Peters (1961) have suggested that the tergites of *Diplolepts rosae* differ from the typical hymenopterous pattern. However, this is not so; the authors have evidently misinterpreted the gastral segmentation of this species. They overlooked the small sternites and so concluded that the hypopygium is composed of sternites 3–7 rather than the usual 5–7; they missed the spiracle on tergite 8, and confused part of tergite 9 with gonocosite 9. Also they have erroneously subdivided abdominal tergite 9 at the point where it is folded, misinterpreting the distal part as an extra tergite – abdominal 10 (gastral 9). There is no tenth tergite in most cynipoids, and where one does occur in the microhymenoptera it is small and reduced.

Bulbous articulation and bridge

The bulbous articulation is a complex 'ball and socket' joint connecting gonapophysis 9 with gonocoxite 9 (Figs. 26, 28). It also provides processes for muscle attachment for muscles 4 and 5. It is a paired structure consisting of a lateral socket in each ninth gonocoxite which articulates with the basal rami of gonapophysis 9. The bulbous articulation is present (the plesiomorphic state | in all Cynipoidea except the Anacharitinae (Fig. 27), where the absence of this joint affects the whole structure of the ovipositor base. The two ninth gonocoxites unite basally and articulate laterally with a point on the inside of gonocoxite 9. This articulation is a simple hinge. The united part of gonocoxite 9 is raised as a fold of tissue. This fold forms the muscle attachment for the bulbous articulation. An analogous, although larger, structure, the 'spur', occurs in the Mymaridae (King & Copland, 1969), which is the only family of Chalcidoidea not having a bulbous articulation. As there is no bulb the ovipositor shaft is not so firmly held as it is in other cynipoids during oviposition. The bulbous articulation of some Aspicerinae (e.g. Paraspicera) is twisted to one side

Just before the point where gonapophysis 9 joins with gonocoxite 9 at the bulbous articulation, gonapophysis 8 must disengage from gonocoxite 9 and continue on to gonocoxite 8. This point was termed the Bridge by Fulton (1933). In the Chalcidoidea this is a laminated structure composed of discrete vertical plates, but in the Cynipoidea laminations are not visible. The bridge is present (Fig. 29) [the plesiomorphic state] in all cynipoids except the Anacharitinae.

Apex of gonapophysis 8

In the Ibaliidae the eighth gonapophysis ends in a simple blade, in the Liopteridae the termination is simple, pointed (except Paramblynotus in which it is blunt) and the teeth have been lost. In most Cynipidhe gonapophysis 8 is simple and rather blunt (Fig. 9), but in Aulacidea hieracii there are three widely separated short teeth. In Pycnostigmus, the Anacharitinae and the Charipidae gonapophysis 8 is simple and without teeth, although in Dilyas subclavate the apex is rather like a acimitar in shape. In the Eucoilidae, Aspicerinae and Figitinae there are teeth present (Figs. 7, 20, 30) [derived], usually there is a small apical tooth followed by a very large tooth. These teeth are not morphologically homologous with those of Aulacidea.

Apex of gonapophysis 9

In most cynipoids the apex of the ninth gonapophysis is armed with ridges (Fig. 32) [the plesiomorphic state]. The wood-drilling genera have stong teeth, for example Mesocynips (which probably bores into wood to attack Cerambycidae, see Diaz, 1973) has 8 strong and 2 weaker teeth, but Ibalia which exploits prebored holes has only 12 weak ridges present. Spradbery (1970) found that the breadth of the ovipositor was much less (approximately one third) than the width of the oviposition hole made by the host (Sirex) so in Ibalia the teeth on gonapophysis 9 are presumably used to cut through any debris in the tunnel. In Paramblynorus punctulatus (Liopteridae) gonapophysis 9 is blunt, rounded and untoothed, this presumably reflects the biology of Paramblynous, which is more likely to be a woodprober than a wooddriller. Liopteron compressum has 11 teeth and Oberthuerella lenticularis has 14, the first 5 being large and sharp.

The gall-causers have strong teeth (Fig. 31), in order to penetrate woody plant tissue (generally oak), Aulacidea hieracii has 3 sharp teeth and Cynips quercusolii has 7 large teeth plus further ridges.

Most of the remaining parasitic cympoids have small teeth on gonapophysis 9 (Fig. 32). The Aspicerinae (e.g. Aspicera and Callaspidia) have six equally spaced sharp teeth. The Anacharitinae have a similar number of more irregular teeth and the Charipidae have two or more very small teeth. However, the figitine genera Figites and Nemisia and all the Eucoilidae examined do not have exposed serrations on gonapophysis 9 (Fig. 30). In these taxa the gonapophysis is to pered to a sharp

Female genitalia of the Cympondea 27

point that must be used for thrusting rather than for cutting. Just before the apex of the gonapophysis there is a deep cavity which is almost covered by a flap of chilin projecting from the proximal margin (Fig. 30). This cavity can be seen, through the thin flap of chilin, with transmitted light microscopy.

Junction of gonocoxite 9 with the gonostylus

Gonocoxite 9 of the Chalcidoidea and certain Proctotrupoidea s.l. is often divided by an articulation, the distal region forming the gonostylus. although this division is absent in the Eurytomidae and Mymaridae (Copland & King, 1972). No articulation exists in the Cynipoidea, and usually the division is not clearly indicated (the plesiomorphic state] but when visible it is an indentation (Figs. 33, 34). In the taxa with looped ovipositors (Ibaliidae, Liopteridae and Austrocynipinae) there is a continuous transition from gonocoxite 9 to the gonostylus, and in the Cynipidae a very slight bend is present (Fig. 33), in other families there is a some degree of indentation so that the gonostylus is indicated. This indentation is most marked in the Charipidae e.g. Phaenoglyphis (Figs. 34, 35). In most Figitidae the gonostylus is long and there is a distinct line across gonocoxite 9 (although it is barely visible in Figites). The indentation is poorly defined in the Eucoilidae.

In the Anacharitinae the gonostylus is angled downwards at this point (Fig. 13), and it is broad. In Aspicera (Aspicerinae) a ventral incision marks the short, distinct and downcurved gonostylus. In these taxa the genitalia are apical and so positioned that the proximal part is more vertical than horizontal when the ovipositor is exposed (Fig. 13). Compression, by the intertergal muscles, folds the middle of the capsule upwards and then decreases the angle subtended by gonocoxite 9 to the gonostylus until the ovipositor is exserted.

Shape of the gonostylus

In Pycnostigmus (Pycnostigmatinae) the apex of the gonostylus has a notch which is covered by a pubescent membrane [derived]. All other Cynipoidea examined have a simple, curved or slightly pointed apex to the gonostius.

Austrocynips mirabilis (Austrocynipinae) has a unique, approximately globular, gonostylus, The gonostylus of all other taxa examined is long, thin and almost parallel sided.

28 N. D. M. Fergussim

Discussion

The structure of the ovipositor complex is only the first of several morphological systems that are being investigated as part of a phylogenetic study of the Cynipuidea. It would be premature to derive a phylogeny from the results of this investigation of a single system, but nonetheless this work has provided some surprising evidence about possible relationships within the superfamily.

The Ibaliidae and Liopteridae have genitalia modified in a remarkably similar manner. Both have the ovipositor looped and have a large number of sensillae on the horn of gonocoxite 9. Austrocynips mirabilis, the only representative of the Austrocynipinae (presently included as a subtamily in the Cynipidae), also exhibits these apomorphic features. All also have similar cutisculpture. cular suggesting that the Iballidae+Liopteridae+Austrocynipinae may comprise a holophyletic group. There are no genitalic apomorphies shared by only the Austrocynipinae and other Cynipidae, so the placement of Austrocynips mirabilis within the Cynipidae is highly questionable.

Only one other looped ovipositor has been found in the Cympoidea (in Sarothrus areolatus). In many other characters this species is typical of the Figitidae, so the looped ovipositor of this species is considered a separate specialization (convergence).

Initially I considered that the looped ovipositor could be derived from the elbowed ovipositor. However, the absence of a gonostylus fold in both the Cynipidae and the looped forms strongly suggests that this is not a simple transformation series and that the elbowed and looped forms are both independently derived from the curved type.

The Anacharitinae lack a bulbous articulation and bridge. These autapomorphies strongly support the holophyly of the subfamily.

Two distinct sets of genitalic specializations have been found in the Figitinae. Some genera near Melanips have both cerci on tergite 9 and teeth on gonapophysis 9 like the Aspicerinae, while genera near Fighter have elbowed ovipositors and a covered orifice in gonapophysis 9 which suggests they are related to the Eucoilidae. I have not been able to find a single apomorphy supporting the holophyly of the Figitidae; the evidence available suggests this is an unnatural group.

.....

acters so that it is not yet possible to assign them a position in the phylogeny with any degree of confidence, other than placing them among the small parasitic Cynipoidea with a distinct gonostylus.

The parasitic forms have lost all trace of tergite 10. This implies that the phytophagous family Cynipidae, which retains a remnant of tergite 10, is the most primitive of the Cynipoidea.

The presence, in Aulacidea, of tergite 10 and teeth on gonapophysis 9 shows that this genus is not closely related to the Eucoilidae, so the development of an elbowed ovipositor in both these taxa must be functional parallelism.

The evidence from the ovipositor characters divides the Cympoidea into four major groups: the Cynipidae (which are primitive); the looped ovipositor group (Ibaliidae, Liopteridae and Austrocynipinae); the Anacharitinae; and the remaining parasitic taxa (which require further resolution).

Acknowledgment

I am indebted to my colleagues in the Hymenoptera section of the British Museum (Natural History) for helpful discussions about hymenopterous ovinositors

References

- Achterberg, C. van (1986) The oviposition behaviour of parasitic Hymenoptera with very long oviposi-tors (Hymenoptera: Braconidae). Entomologische Berichen, 46, (8), 113-116. Askew, R.R. (1984) The biology of gall wasps. In:
- The Biology of Gall Insects (ed. by T. N. nthakrishnan). London Ana
- Askew, R.R. & Shaw, M.R. (1986) Parasitoid communities: their size structure and development. Symposia of the Royal Entomological Society of London, 13, 225-264.
- Austin, A.D. & Browning, T. (1981) A mechanism for movement of eggs along insect ovipositors. Inser-national Journal of Insect Morphology and Embryology, 10, 93-108.
- stin, A.D. (1983) Morophology and mechanics of the ovipositor system of *Ceratobacus* Ashmead (Hymenoptera: Socionidae) and related genera. Instructional Journal of Insect Morphology and Embryology, 12, 139-155. ronner, R. (1985) Anatomy of the ovipositor and
- oviposition behaviour of the gall wasp Diplotent oviposition behaviour of the gall wasp Diplotent rosse (Hymenopters: Cynipidae). Canadian Entomologist, 117, 849-858. apman, R.F. (1969) The Insects, Structure and
- Ch Function, London

- Copland, M.J.W. & King, P.E. (1971) The structure and possible function of the reproductive system in some Eulophulae and Tetracampidae. *Envolveno-gat.* 104, 4–28.
 Copland, M.J.W. & King, P.E. (1972) The structure of the found in structure in the structure.
- of the female reproductive system in the Torymidae (Hymenoptera: Chalciduidea). Transactions of the Royal Entomological Society of London, 134, (2), 191-212.
- don, Los, (2), 191-212. Opland, M. J.W., Klog, P.E. & Hill, D.S. (1973) The structure of the female reproductive system in the Agnonidae (Chalcidoidea, Hymenoptera). Jour-nal of Emomology (A), a. (1), 25-35. Chrystal, R.N. (1930) Studies on the Sirve parasites Orbital Evertum Amount 11, 145-35.
- Curyani, K.N. (1930) Studies on the Sizex parasites Oxford Forestry Memoirs, 11, 1-63.
 Diaz, N.B. (1973) Una familia de Cynipoidea nueva para la Argentina. Neoropica, 19, (60), 141-144.
 Fitton, M.G., Shaw, M. & Gauld, I.D. (1988) Fimplinae (Hymenoptera: Ichneumonidae). Handbooks for the Identification of British Insects. 7, (2) (16 press)
- Handbooks for me recently show of Britan Inector, 7, (2) (In press).
 Frühauf, E. (1924) Legeapparat und Eiablage bei Galfwespen (Cympidae). Zeisschrift für Wissenschaftliche Zoologie, 121, 656-723.
 Fulton, B.B. (1933) Notes on Habrocytas cerealellae, Annalo de Annuella entite methods Annalo de Re-
- Purton, B. B. (1933) reals on reasons that a reason of the formation of th
- Classin, E.D. & DRIOTI, D. (1996) An Introduction to the Hymenopteria. (In press.) Gibson, C.A.P. (1985) Some pro- and mesothoracic structures important for phylogenetic analysis of Hymenoptera, with a review of terms used for the structures. Canadian Entomologist, 117, 1395-1448
- King. P.E. (1962) The muscular structure of the ovipositor and its mode of function in Nasonia vitriwir (Walker) (Hymenoptera: Pteromalidae). Proceedings of the Royal Ensamological Society of London (A), 37, (10-12), 121-128.
- King, P.E. & Copland, M.J.W. (1969) The structure of the female reproductive system in the Mymaridae (Chalcidoidea: Hymenoptera), Journal of Natural History, 3, 349-365.
- King. P.E. & Fordy. M.R. (1970) The external ng. P.E. & Fordy. M.R. (1970) The external morphology of the 'pore' structures of the tip of the ovipositor in Hymesoptera. Extomologist's Monthly Magazine, 166, 65-66. nesy. A.C. (1920) Phylogeny of Cynipid genera and biological characteristics. Bulletin of the American Massum of Natural History, 42, 337-402. Migisunan, E. (1978) Das phylogenetische System der Hymenoptera. 3. Terebrantes (Unterordaune Apocita). Drutterke Entomologische Zeitschrift, 25. 1-53.
- KA
- 25, 1-55.
- Lenteron. J.C. van. (1972) Contact-chemoreceptors on the ovpositor of Pseudencolin bochet Weld (Cynigidia). Netherlands Journal of Zoology, 22 (3), 347-350.
- McCalla, D.R., Genthe, M.K. & Hovanitz, W. (1962) Ches Chemical nature of an insect gall growth factor.

- nlan, J. (1979) A revisionary classification of the Cympoidea (Hymenoptera) of the Ethiopian Zoogcographical Region. Bulletin of the Ethiopian Zoogcographical Region. Bulletin of the British Museum (Neural History), Entomology, 39, (2), 82-133.
- Raznitzin, A.P. (1980) Origin and evolution of
- tion of Britch Insects, 6, (1), 1-(0) Ritchie, A.J. & Peters, T.M. (1981) The external
- morphology of Diplolepis roser (Hymenoptera: Cynipidae, Cynipinae). Annals of the Entomotoer-can Suciety of America, 74, 191-199
- Salt, G. (1968) The resistance of insect parasitoids to the defence reactions of their hosts. Biological Reviews of the Cambridge Philosophical Suciety. 43. 200--232
- Scudler, G.G.E. (1961) The comparative morphol-ogy of the insect ovipositor. Transactions of the final Entomological Society of Lundon, 113, 25
- Smith, E.L. (1969) Evolutionary morphology of the external insect genitalia. I. Origins and relationships to other appendages. Annals of the inlogical Society of America. 62, 1051-1079 Enion
- Smith, E.L. (1970) Evolutionary morphology of the external intect genitalia. 2. Hymenoptera. Annals of the Entomological Society of America, 63, 1-27.
- Snodgrass, R.E. (1935) Principles of Insect Morphology. New York.
- ogy. rew turn. Spradhery. J.P. (1970) The binlogy of Ibalia drewsenu Burries (Hymenoptera: Ibalidae), a parasite of Siricia woodwasps. Proceedings of the Royal Entomological Society of London (A), 45, (7-9), 104-113.
- 101-113: Spradbery, J.P. (1973) A comparative study of the phytotoxic effects of stricid woodwarps on con-ifers. Annals of Applied Biology, 75, 309-333. Townes, H. (1975) The parasitic Hymenoptera with the longest ovipositors, with descriptions of two new Ichneumonidae. Entomological News, 86 (5 & 4) 172-137.
- Van Veen, J.C. (1981) The biology of Poecilosticius cothurnanus (Hymenoptera, Ichneumonidae) an endoparasite of Bupalus pinicarius (Lepidoptera, Geometridae). Annales Entomologica Fennici, 47, 77-93.
- Vinnon, S.B. (1976) Host selection by insect para-sitoids. Annual Review of Ensomology, 21, 109-133.
- Weld, L.H. (1952) Cynipoides (Hym.) 1905-1950. Michigan. Wishart, G. & Monteith, E. (1954) Trybliographa
- manit. U. at momentin, E. (1934) rypingraphic raper (West) (Hymenoptera: Cynipodae), a para-site of Hylemye spp. (Duptera: Anthomyidae). Canadian Ensomologist, 86 (4), 145–154.

Accepted | July 1987

Appendix 1

List of cynipoid species examined IBALIIDAE

Ibulia leucospoides Hochenwarth

LIOPTERIDAE

Oberthuerella lenticularis Saussure Liopteron compressum Perty Mesocynips insignis Cameron Paramblynotus punctulatus Cameron

FIGITIDAE

Figitinae Sarothrus areolatus Hartig Lonchidia maculipennis Dahlbom Melanips opacus Hartig Figites anthomyiarum Bouché Figites scutellaris Rossi Neralsia rufipes Cameron Aspicerinae Aspicera scutellata Villers Paraspicera sp. Prosaspicera sp. Callaspidia defonscolombei Dahlbom Anacharitinae Anacharis eucharioides Dalman Aegilips nitidula Dalman Xyalaspis petiolata Kieffer

EUCOILIDAE Pseudeucoila sp. Eucoila crassinerva Westwood Trybliographa rapac Westwood Kleidotoma psiloides Westwood Rhoptromeris heptoma Hartig

CHARIPIDAE

Alloxysta macrophadna Hartig Phaenogyphis xanthochroa Förster Dilyta subclavata Förster

CYNIPIDAE

Pycnostigmatinae Pycnostigmus rostratus Cameron Austrocynipinae Austrocynips mirabilis Rick Cynipinae Isocolus rogenhoferi Wachtl Diplolepis rosae Linnaeus Phanancis sp. Aylax sp. Aulacidea hieracii Bouché Xestophanes sp. **Biorhiza pallida Olivier** Diastrophus rosae Linnaeus Andricus ostreus Hartig Cynips quercusfolii Linnaeus Trigonapsis megaptera Panzer Synergus sp.

.

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

TITLE A PHYLOGENETIC STUDY OF THE CYNIPOIDEA (HYMENOPTERA).

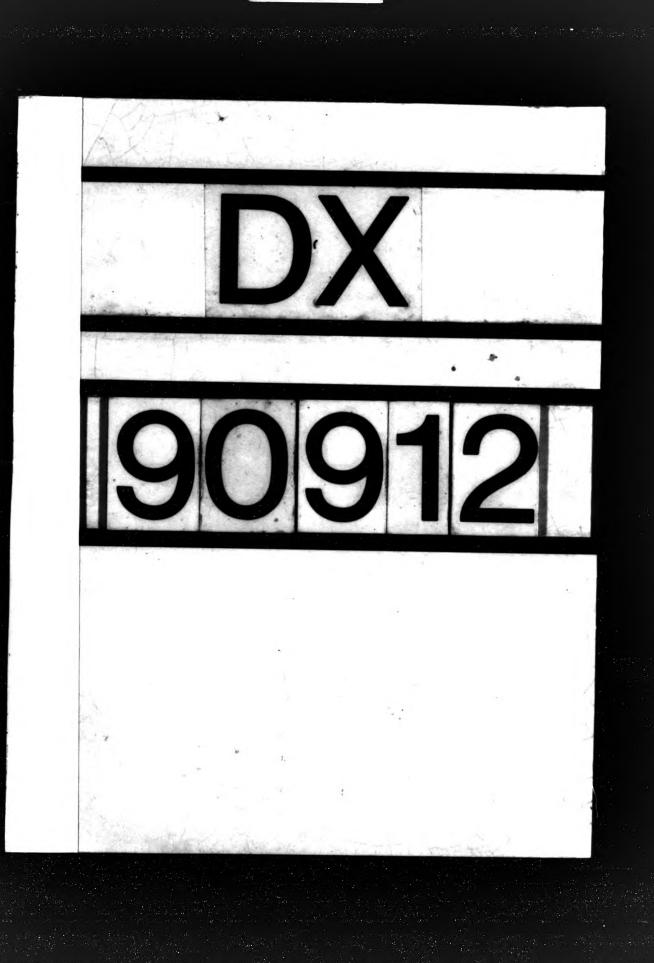
AUTHOR Nigel Donald MacDade FERGUSSON

INSTITUTION and DATE

The City of London Polytechnic C.N.A.A 1990

20

REDUCTION X :


Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no information derived from it may be published without the author's prior written consent.

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE Boston Spa, Washerby Wesi Yorkalikire United Kingdom

CAMERA 5

GUL

