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Abstract—Proposed in this manuscript is a miniaturized Ultra-Wideband (UWB) bandpass filter (BPF) 

based on broadside coupled technology wherein microstrip and coplanar waveguide (CPW) are present on 

either side of the substrate. The ground plane of the proposed BPF contains a short-circuited multiple mode 

resonator (MMR) based CPW which is electromagnetically coupled through the dielectric to two open 

circuited microstrip lines on the top. The MMR is initially designed to allocate its first three resonant 

modes quasi-equally within the specified UWB spectrum. Later, the back-to-back arrangement of 

microstrip lines is optimized to generate a tightly coupled broadband response. This configuration generates 

an UWB response possessing insertion loss <0.26 dB in simulation, two transmission zeros at the lower and 

upper passband edges that improve selectivity and a wide stopband with appreciable attenuation. The 

predicted theory is validated by testing the simulation result against the measured data of the fabricated 

prototype. The prototype measures only 14.6×9.2 mm2. 

Keywords—Bandpass Filter (BPF), broadside coupled, coplanar waveguide (CPW), microstrip-to-CPW 

transition, ultra-wideband (UWB). 
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1.  INTRODUCTION 

Research on design and development of passive Ultra-Wideband (UWB) components have taken an 

exponential leap since the allocation of 3.1-10.6 GHz spectrum by Federal Communications Commission 

(FCC) for indoor communications [1]. One such essential component of the UWB system is the UWB 

bandpass filter (BPF) which unlike the conventional narrow band filters requires understanding of an 

advanced theory. These theories were put to use in the design of several UWB filters using different 

principle [2-12]. An initial filter designed in this respect consisted of a microstrip line mounted on a 

composite lossy substrate to realize attenuation at high frequencies [2], whereas the basic idea of cascading 

high pass filter with low pass filter to develop an UWB-BPF was used in [3]. Perhaps, the most convenient 

method used in designing UWB filters was using a multiple mode resonator (MMR) which provides the 

flexibility of adjusting the bandwidth using its inherent resonant modes [4, 5]. The impedance ratio of low-

impedance central arm and high impedance arms on ends is properly adjusted to simultaneously excite its 

resonant modes and place them quasi-equally within the passband. Another excellent method of UWB filter 

construction is using the broadside coupled technology of microstrip-to-coplanar waveguide (CPW) 

transition [6-12]. The ground plane consists of CPW based open-circuited [6-8] or short-circuited MMR [9-

12] which is excited to place the resonant modes within the UWB passband and then the optimized 

coupling of the transition generates a smooth passband with possible transmission zeros (TZ). However, 

most of the structures mentioned above possess several drawbacks in form of absence of TZs [6-9, 12], 

which leads to poor selectivity [6, 8], poor return/insertion loss [6, 8], large size [6-12]. 

In this manuscript we report a miniaturized UWB-BPF which overcomes the above mentioned 

shortcomings. The proposed structure is based on microstrip-to-CPW transition with microstrip lines 

aligned back-to-back on the top and electromagnetically coupled to the short circuited MMR based CPW in 

the ground (Fig. 1). Initially, the short circuited MMR is optimized in geometry to allocate its first three 

resonant modes near the lower, central and upper end of requisite UWB spectrum. Later, microstrip lines on 

top are optimized in dimensions so as to ensure a tight coupling of the transition thereby generating the 

specified UWB with multiple TZs, minimum insertion loss, high return loss, wide stopband and flat group 

delay. Commercial full-wave electromagnetic (EM) software IE3D was used to design and optimize the 

structure on the RT/Duriod 6010 substrate with relative permittivitty εr = 10.8 and height 0.635 mm. The 

proposed UWB filter is then fabricated to justify its predicted performance in S-magnitudes and group 

delay. The following sections deal with the design and implementation of the proposed UWB-BPF. 
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Fig. 1 Microstrip-to-CPW transition based proposed UWB filter. Dark shade conductor and white shade 

etched part. All dimensions are in mm.                              

2. PROPOSED UWB-BPF 

2.1. CPW BASED SHORT CIRCUITED MMR 

The ground plane of the proposed structure consists of a CPW which houses a short-circuited MMR. The 

MMR has one high-impedance (narrow) central section and two similar low-impedance (wide) sections at 

either ends, the geometry and equivalent transmission line model of which are depicted in Fig. 2(a, b). In 

our analysis we have ignored the two CPW step discontinuities present at the end since their effect is 

minimum on the UWB characteristics [4]. To utilize the MMR characteristics for design of UWB-BPF, the 

resonant condition of all the modes must be established. In view of this, the input impedance at the left 

short-end (Zin), looking into the right is derived and depicted in equation (1).  

                                                           (I) 

Here, K = Z1/Z2 is the ratio of the central and end sections of the MMR. At resonance, Zin = 0, and this 

condition provides some set of equations which can be solved to obtain the lowest resonant frequencies, f1, 

f2, and f3. For our design, the electrical lengths of three sections are taken as θ1 ≈ θ2 ≈ θ. Hence, the first 

three resonant frequencies are obtained from these equations, i.e.,  
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                                                θ(f1) = tan-1√K                                                                                               (2a) 

or                                                  f1 = (c/2πl) tan-1√K                                                                                  (2b)                                  

                                                θ(f2) = π/2                                                                                                     (3a) 

or                                                  f2 = c/4l                                                                                                    (3b) 

                                                θ(f3) = π - tan-1√K                                                                                         (4a) 

or                                                  f3 = (c/2πl) (π - tan-1√K)                                                                          (4b) 

 

(a) 

 

(b) 

Fig. 2 (a) Geometry of the MMR based CPW. (b) Equivalent transmission line model.  

      The above equations depict that the lower and higher frequencies (f1, f3) are mainly affected by the 

impedance ration, whereas, the mid frequency (f2) is a function of lengths of three sections. Fig. 3(a) depicts 

the relationship of resonant modes relative to the fundamental mode as a function of impedance ratio K. 

From the graph it can be observed that for K<1, the resonant modes deviate away from the fundamental 

mode whereas they draw closer for K >1, which essentially is utilized for generating UWB spectrum. In our 

case, for l1 = 5.83 mm (≈ λgCPW1/4), y1 = 0.98 mm, l2 = 3.185 mm (≈ λgCPW2/8), y2 = 3.28 mm and s = 0.4 

mm, K ≈ 1.2. The weak coupling response of the CPW based MMR against variable impedance ratio is 

plotted in Fig. 3(b). It depicts that with increasing impedance ratio, the position of fundamental resonant 

mode frequency (f1) remains somewhat fixed whereas the higher resonant frequencies (f2, f3) move closer to 

f1. 
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(a)                                                                  (b) 

Fig. 3 (a) Relationship between normalized resonant frequencies and impedance ratio. (b) Weak coupling 

response for variable impedance ratio. 

2.2. ΜICROSTRIP-TO-CPW TRANSITION 

Having modeled the CPW, the objective now is to optimize the microstrip-to-CPW transition so as to 

generate the requisite UWB spectrum with minimum insertion loss and multiple TZs. The transition 

coupling is capacitive in nature and maximum coupling at the central UWB frequency can be achieved by 

matching the characteristic impedances of the microstrip line with that of CPW i.e., Z0(microstrip) = 2Z0(CPW1) 

[9]. In the proposed structure, for l1 = 5.83 mm, y1 = 0.98 mm and s = 0.4 mm, Z0(CPW1) = 51.58 Ω, and for t 

= 0.15 mm, Z0(microstrip) = 81 Ω. Ideally Z0(microstrip) = 102 Ω would have best suited the above relation, 

however, 81 Ω is used because it provides wider bandwidth, proper upper TZ and plunged stopband with 

negligible effect to other frequency characteristics as seen in Fig. 4. Also, for Z0(microstrip) = 102 Ω, the 

thickness of microstrip lines, t = 0.12 mm is little difficult to fabricate. From the simulated response of Fig. 

4, it can be observed that the passband extends from 3.05-10.7 GHz with return/insertion loss better than 

15/0.54 dB. The two TZs at 0.95 GHz and 11.7 GHz provide a sharp roll-off > 34 and 48 dB/GHz 

respectively at lower and upper passband edges. The third TZ at 16 GHz ensures a wide and deep stopband 

with attenuation greater than 25 dB. 

  Figs. 6a and 6b depict the variation of frequency characteristics of the UWB-BPF for vertical (h) and 

horizontal (g) separation between the microstrip lines respectively. The variation in vertical separation (h) 

causes the TZs at the higher passband end and in the stopband to vary without affecting the position of 

lower TZ. Also, the horizontal separation (g) controls the position of all three TZs. The optimum values of 
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h and g bring about proper positioning of all three TZs which lead to better passband and stopband 

characteristics. The attenuation level of stopband can be adjusted by tuning the values of central and end 

sections of the CPW, y1 and y2, respectively, as depicted in Fig. 6a and 6b. The optimized dimension of the 

UWB-BPF is provided in Table I. 

 

Fig. 4 Comparative frequency characteristics for variable impedance of CPW. 

     

(a)                                                                    (b) 

Fig. 5 Variable transmission characteristics for (a) h (b) g. 
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(a)                                                                                     (b) 

Fig. 6 Variable frequency characteristics for (a) variable y1 (b) variable y2. 

Table I 

Optimized dimension of the proposed UWB-BPF. 

Parameters L W G l1 l2 y1 y2 h 

Dimension 

(mm) 

14.6 9.2 4.75 5.83 3.185 0.98 3.28 1.34 

Parameters q g s p t w k --- 

Dimension 

(mm) 

2.5 1.2 0.4 1 0.15 0.76 3.115 --- 

 

3.  EXPERIMENTAL VERIFICATION 

To verify the predicted performance, the structure is fabricated and its response measured using Agilent 

Vector Network Analyzer N5230A. Fig. 7a shows that the passband measured extends from 3 to 10.9 GHz 

with insertion loss less than 1.4 dB and return loss greater than 15 dB. Stopband observed is deep with 

attenuation greater than 19 dB and wide till 16 GHz. From Fig. 7b, the measured group delay is observed to 

vary between 0.21 to 0.36 ns in the passband indicating good linearity. The variations in simulated and 

measured data is possibly due to loss in two SMA connectors and finite substrate size. The data measured is 

in reasonable agreement with the simulated response and also accords with the FCC defined UWB mask for 

indoor wireless communication. The designed filter is less than one guided wavelength at central UWB 

frequency (6.85 GHz) which depicts is compact nature. The proposed structure is compared with other 
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recent broadside coupled UWB filters in Table II, from which it can be seen that the proposed structure is 

compact compared to rest [6-12]. Also, it meets the requisite FCC specified UWB spectrum limitation with 

appreciable frequency characteristics.  

                                                                                                                                                                                      

 

(a) 

      

(b) 

Fig. 7 Comparative measured and simulated frequency characteristics. (a) S parameters. (b) Group delay. 
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Table II 

Comparison of this work with other known structures 

Ref. Passband 

(GHz) 

Stopband (GHz) / 

Attenuation (dB) 

IL (dB) / 

RL (dB) 

Size 

(mm ×mm) 

[6] NA 13 / 18 < 1 / > 9 > 26.9×16 

[7] 3.1-10.6 20 / 15 < 0.5 / > 15 12×18 

[8] NA 12 / 20 < 0.5 / > 13 23.98×4.96 

[9] 3.1-10.6 15.5 / 15 < 1.8 / > 10 > 34×12 

[10] 2.9-10.95 12.5 / 19 < 0.68 / > 14 14.8×7.3 

[11] 2.7-10.6 12.5 / 19 < 0.41 / > 16 14.8×9.6 

[12] 3.07-10.51 30 / 19 < 1 / > 17 27×27 

This 

work 

3-10.9 16 / 19 < 1.4 / > 15 14.6×9.2 

Ref : References; IL : Insertion loss; RL : Return loss; NA : Not available 

4.  CONCLUSION 

The manuscript proposes a novel and compact UWB filter based on the broadside coupled hybrid 

microstrip/CPW transition. The short circuited MMR in ground is excited to equally space its resonant 

modes within the UWB passband and the broadside coupling of microstrip/CPW transition is optimized to 

generate a good UWB response. The presence of dual TZs at the passband edges improve the filter 

selectivity whereas a third TZ widens and suppresses the stopband. As such, an UWB-BPF with good 

frequency characteristics having improved insertion loss/ return loss (<0.26 dB/>15 dB) and flat group 

delay is achieved. Also, the proposed structure has an overall length of 14.6 mm, which is less than the 

guided wavelength at central UWB frequency. 
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