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A grid-computing platform facilitates 

geocomputational workflow composition 

to process big geosciences data while fully 

using idle resources to accelerate processing 

speed. An experiment with aerosol optical 

depth retrieval from satellite data shows a 

25 percent improvement in runtime over 

a single high-performance computer.  

 
 
 

 
 

 

 

 

 

 

geoscientists have assembled 

massive amounts of digital infor- 

mation with spatial attributes, 

which—when combined with the 

extreme complexity of open geo- 

spatial problems—has motivated 

geocomputation. Geocomputation 

is a discipline that exploits compu- 

tational advances to solve a variety 

of problems in integrating and ana- 

lyzing Earth system data. Geocom- 

putational workflows, particularly 

those in the retrieval of quantita- 

tive remote-sensing data, consist of 

several subworkflows that contain 

data dependencies and are both data 

and computing intensive.
2,3

 

Grid computing, already an 

attractive environment for devel- 

Technological advancements and their global 

dissemination are often predicated on the inte- gration of 

traditionally separate  fields,  such  as geoscience and 

computer science, to obtain fresh approaches for solving 

complex  problems,  such as efficiently processing data 

about a highly integrated Earth system,  which  

comprises  subsystems  that cover interlinked aspects of 

the Earth’s hydrosphere, atmo- sphere, and geological 

composition.
1 

Geographers and 

oping and running large-scale applications in domains 

other than geoscience, is a potential solution for pro- 

cessing these workflows, which are characterized by 

volumes of spatiotemporal data. The grid environment 

provides standardized access to a pool of heteroge- 

neous and distributed resources, creating the illusion of 

a powerful computer that can break down the data- 

processing bottleneck characteristic of large-scale 

remote-sensing applications. 

 

 

 

 

 

 

 

 

 

 

 



 

Despite grid computing’s potential 

use in these applications, little work has 

focused on adapting it to this context. To 

address that need, we developed the 

Remote Sensing Information Service 

Grid Node (RSSN)—a high-throughput 

geocomputational grid-computing 

environment based on the HTCondor 

(formerly Condor; http://research.cs 

.wisc.edu/htcondor/description.html) 

system—which increases an individual 

computer’s processing power by 

› accelerating and facilitating the 

retrieval of aerosol optical depth 

(AOD) data (which measures the 

extent to which atmospheric par- 

ticles extinguish solar radiation) 

through a GUI that lets users 

compose, submit, and execute 

workflows; 

› fully exploiting idle computing 

resources; and 

› using workflow-optimized  

    scheduling and execution.

retrieval from satellite data 

and could be a promising 

solution for other prob- lems 

related to high-throughput 

geo- computation, such as 

retrieving the temperature 

of land surfaces and cal- 

culating the albedo (surface 

reflectivity measure) and 

leaf-area index. 

COMPUTING IN THE 
GRID ENVIRONMENT 
Geocomputational workflow in the grid 

environment has many challenges. The 

main one is that these workflows, par- 

ticularly those in quantitative remote- 

sensing applications, typically require 

data with varying time steps and resolu- 

tion. For example, the same application 

might require a 10-year AOD dataset at 

1-km resolution from the Moderate Res- 

olution Imaging Spectrometer (MODIS) 

satellite sensor’s data—29 terabytes 

This challenging mix of data and 

computational intensity is at  the  root of 

other issues, such as model organiza- 

tion, accelerating distributed process- 

ing, workflow-related problems, and 

resource scheduling. Progress in solv- 

ing all these issues is apparent, but open 

problems remain. 

Model organization 

Efficiently and automatically organiz- 

ing and executing numerous prepro- 

cessing and inverse models is essential 

to handling the mix of computational 

intensity and big data within an applica- 

tion. To enable the calculation of myriad 

geophysical parameters including the 

aerosol content for each observation— 

oxygen, carbon dioxide, particle mat- 

ter, and so on—the MODIS Adaptive 

Processing System generates nearly 2.5 

 

 
To validate RSSN’s feasibility, we 

retrieved a year’s worth of AOD  data  to 

evaluate the workflow  composition, 

workflow task-execution performance, 

and time-series dataset generation for 

AOD data retrieval and 

 

THE GRID PROVIDES ACCESS TO 

HETEROGENEOUS AND DISTRIBUTED 

RESOURCES TO BREAK DOWN THE DATA- 

PROCESSING BOTTLENECK. 

processing. We chose AOD retrieval 

because it is both a computing- and data- 

intensive application. 

We also compared RSSN’s per- 

formance with that of a single high- 

performance computer, which scien- 

tists typically use daily in the retrieval of 

remote-sensing image data. Our results 

show that overall runtimes decreased 25 

percent over runtimes with the high-

performance computer. These results 

imply that RSSN can sig- nificantly 

facilitate and accelerate AOD 

(Tbytes) of original data—as  well  as a 

30-year AOD dataset at 0.1-degree 

resolution from the National Oceanic 

and Atmospheric Administration’s 

(NOAA’s) Advanced Very High Resolu- 

tion  Radiometer  (AVHRR) data—100 

Tbytes of original data.
4 

Not only does 

the volume differ between datasets, 

but each dataset involves disparate 

processing time. Thus, efficient data 

management must not only address 

throughput but also select the appro- 

priate computing mode. 

Tbytes of land, atmospheric, and oce- 

anic geophysical parameters  daily  on a 

combination of supercomputers and 

commodity Intel Pentium processors.
5

 

Accelerating data acquisition 

and distribution 

Complexities associated with the com- 

bination of data volume and variety 

and computational intensity can sig- 

nificantly delay data acquisition and 

distribution. Several research groups 

have proposed solutions that use grid 

http://research.cs/


  

 
  
 
 
 

 

computing to mitigate these delays. 

Taries.net, for example, is a model that 

uses a distributed system built on grid 

computing’s basic principles to process 

images from remote-sensing 

observations.
6

 

The GiSHEO platform (on-demand 

grid services for higher education and 

training in Earth observation) uses grid 

and Web services technologies to 

process remote-sensing data for train- 

ing quantitative data–retrieval mod- 

through an infrastructure that relies on 

both grid and cloud computing. 

HTCondor is open source soft-  ware 

developed by the Center for High 

Throughput Computing at the Univer- 

sity of Wisconsin–Madison to support 

high-throughput computing on large 

collections of computing resources with 

distributed ownership. One research 

group used HTCondor to support the 

validation of a data-placement strat- egy 

in applications with big data and 

and computational workflows,
10 

which 

proved effective in rapidly processing, 

distributing, and sharing massive num- 

bers of remote-sensing images.
11

 

Another approach to solving delays 

in remote-sensing data acquisition and 

distribution is the grid-enabled paral- lel 

algorithm of geometric correction 

(GPGC), which computes an irregular 

local output area. The area allows the 

system to change the parallel method’s 

frequent and fine-grained communica- 

tion mode to a delayed but concentrated 

communication-exchange mode.
12  

By 

enabling geometric correction and min- 

SCIENTIFIC WORKFLOW TECHNOLOGY 

ENABLES THE COMPOSITION AND 

EXECUTION OF COMPLEX ANALYSIS ON 

DISTRIBUTED RESOURCES. 

imizing communication or synchroniza- 

tionduring time-consuming resampling, 

GPGC effectively supports ChinaGrid, a 

project sponsored by the China Min- 

istry of Education to provide high- 

performance services in a grid comput- 

ing environment. 

els for Earth observation.
7 

GiSHEO 

consists of a processing-services com- 

ponent, which comprises the machine 

interface (visible as a  Web  service) and  

workload  management  system, as well 

as data-management, workflow- engine, 

user-interface, and e-learning 

components. 

Another effort to accelerate data 

distribution is the Namibia SensorWeb 

Pilot Project, an international multi- 

disciplinary initiative to create a test- 

bed for evaluating and prototyping key 

technologies suchas SensorWebs, grids, 

and computational clouds, to enable the 

rapid data product acquisition and dis- 

tribution to support flood monitoring.
8

 

The system provides access to real- time 

data about rainfall estimates and 

forecasts of flood potentials, and can 

rapidly generate flood maps. Computa- 

tional and storage services are  enabled 

intensive computation, such Montage, 

which generates science-grade mosaics 

of the sky.
9 

The goal is to demonstrate 

that, by combining  the  functionality of 

the data-replication service for data 

placement and the Pegasus system for 

workflow management, data-intensive 

workflows can execute faster with asyn- 

chronous data placement than with on- 

demand data staging by the workflow- 

management system. Pegasus relies on 

HTCondor’s DAGMan workflow engine 

to launch tasks and maintain intertask 

dependencies. 

Another effort used HTCondor to 

establish a system for processing Earth 

observation images from remote sen- 

sors that integrated components  such as 

the Virtual Data Toolkit and the Globus 

Toolkit. Integration enabled structural 

biology researchers to securely share 

large volumes of data 

Streamlining scientific workflow 

Not all applications require an expert 

understanding of remote-sensing data, 

and demand is growing for the ability 

to immediately retrieve simple and 

easily understood information from 

remotely sensed data that has already 

undergone complex processing and 

analysis. 

To meet this demand, researchers 

have attempted to apply workflow com- 

position and management technology in 

a grid environment. Scientific work- 

flow technology has become essential in 

many applications, enabling the 

composition and execution of complex 

analysis on distributed resources. 

Grid computing with workflow tech- 

nology has four main advantages:
13

 

› it provides a composition func- 

tion for grid applications; 
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› it uses local resources, thereby 

increasing throughput and reduc- 

ing implementation cost; 

› it provides users with special- 

purpose processing and task solv- 

ing across multiple management 

areas; and 

› it promotes interorganizational 

cooperation. 

 
The technology life cycle includes 

workflow composition and represen- 

tation, the creation of  data  models, the 

mapping of modeling concepts 

 
 

 
 

FIGURE 1. RSSN’s three-layer architecture. The layers ensure that remote-sensing infor- 

mation is communicated within components in the simplest form and as rapidly as possible. 

The network and grid protocols are middleware services to support a common set of appli- 

cations in a distributed network environment. 
 

 

into an executable representation, and 

execution-model creation. Although 

many business workflow–management 

systems exist, they lack features and 

characteristics that are essential in sci- 

entific applications. Special dynamic 

workflow management for quantita- tive 

remote sensing is still nascent. 

Efficient resource scheduling 

Scheduling is a key issue in applications 

with big data and high computational 

demands. Most grid scheduling algo- 

rithms are based on heuristic schedul- 

ing, which usually takes computing- 

capability  parameters—the   number 

of CPU cores and CPU clock speed, for 

example—as the workload vector. Data 

transfer is largely ignored. With addi- 

tional considerations such as workflow 

model, scheduling criteria and pro- 

cess, and resource and task model, grid 

scheduling becomes even more chal- 

lenging and complicated. 

In   documenting   a   study   of   the 

relationship   between  asynchronous 

data placement and scheduling,
14 

the 

authors suggested that combining data 

scheduling and computation is an effec- 

tive solution for performance problems 

in data-intensive grid computing. 

Another group that studied data 

placement and scheduling in a grid 

environment, proposed placing data 

before computation execution. They 

also  proposed  a  method  to combine 

data placement  and workflow manage- 

ment,
9 

but their method applies only to 

the lightweight data replicator service 

and workflow mechanism in Pegasus 

(http://pegasus.isi.edu). 

A dedicated data scheduler, Stork,
15

 

considers data placement as the highest- 

priority operation, efficiently queu- 

ing, scheduling, and monitoring data- 

transmission services. Experiments 

show that Stork enhanced the data- 

transmission service’s efficiency and 

fault tolerance and reduced the depen- 

dence on user interaction in a complex 

data-transmission application. One dis- 

advantage, however, is that Stork does 

not support the Windows OS. 

RSSN: HIGH THROUGHPUT 
AND EFFICIENT SCHEDULING 
RSSN aims to address the specific 

problems of applying grid computing 

solely to acquire and distribute remote- 

sensing data, such as the need for faster 

throughput and more efficient schedul- 

ing that uses idle computer resources for 

data-intensive computing applications. 

We developed RSSN using HTCondor 

running on a Windows system. RSSN’s 

computing nodes are commodity PCs 

used in daily scientific work. 

Architecture and task processing 

Figure 1 shows the RSSN architecture. 

At the bottom is the grid  infrastruc-  

ture layer, which includes the software 

and hardware entities. The remote- 

sensing grid components layer includes 

task and resource monitors, the task 

scheduler,  resource  discovery,  and  

data transmission—all to support the 

remote-sensing application layer at the 

top. The application layer packages the 

lower-layer functions and supports the 

sharing and servicing of remote-sens- 

ing information. The  grid  middleware 

is HTCondor, which serves as the local 

resources manager to construct RSSN. 

We designed RSSN so that compo- 

nents within each layer can share char- 

acteristics and thus can build on any 

lower-layer capabilities and behaviors. 

Figure 2 shows the task and process- 

ing flow in RSSN: 

› Users compose workflows 

through the grid workflow 

Remote-sensing application layer 

Network and grid protocols 
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FIGURE 2. Task and processing flow in RSSN. Through the GUI (above upper dashed line), 

users compose workflows and submit them for execution. Scheduling is handled by the 

grid-task dispatcher, data-transfer engine, task-scheduling manager, and resource moni- 

tor. The workflow execution system feeds into the grid infrastructure layer, which powers its 

functions. 
 

 
 

 

FIGURE 3. Workflow composition in RSSN. The user has composed a workflow for AOD 

retrieval through the GUI by dragging icons from a list displayed to the left of the composition 

area. The icons represent data type, data and processing models, and corresponding algo- 

rithms. RSSN converts the graphical workflow to an XML file, which it uses to communicate 

with the webserver about the users’ workflow information. 

composer GUI, selecting and 

defining models and data types. 

› Users submit the composed 

workflows and RSSN’s workflow 

parsing service extracts task, data 

parameters, and depen- dency 

information on the basis of the 

model base and image-data 

metadatabase. 

› RSSN generates executable 

workflow by parsing results and 

executable model programs. The 

workflow-scheduling engine 

determines task scheduling and 

binds the task with resources. 

› The grid task dispatcher and data 

transfer components dispatch 

tasks and remote-sensing image 

data to grid-computing resources. 

 
Workflow composition 

RSSN’s GUI facilitates the composition 

of remote-sensing workflows by allow- 

ing users to fully employ CPU resources 

that typically remain idle on scientific 

computers for daily work.
16 

The main 

aspects of workflow composition are 

data structure, model management, the 

actual composition, and its parsing. 

 
Workflow composition and parsing. 

RSSN uses the Apache Tomcat (http:// 

tomcat.apache.org) webserver, and a 

Java-programmed Web application. Fig- 

ure 3 shows the GUI, which is display- 

ing an AOD retrieval workflow. 

Although the workflow composer 

runs on the client computer, RSSN 

generates a socket  connection,  which it 

uses to communicate the workflow, 

converted to an XML workflow descrip- 

tion file, to the webserver. The workflow 

parse component analyzes the XML file 

to obtain task information, parame- 

ters, and dependencies and generates 

 
 

 

 

 

 
  

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 



   

executable programs according with 

HTCondor rules. Once the task monitor 

receives the XML file, the parsing com- 

ponent submits the analysis results to the 

HTCondor pool. 

Data structure and model manage- 

ment. At present, RSSN processes ras- 

ter data and uses the Oracle relational 

database to manage it, storing image 

data in the file directory and managing 

the data path and other metadata infor- 

mation in the database. RSSN uses the 

directed acyclic graph data structure, 

which includes two lists.
16 

The nodes 

list saves the remote-sensing algo- 

rithm’s quantitative information, such 

as the source data’s spatial resolution 

and latitude and longitude ranges. The 

nodes list also includes user-specified 

parameters that guide the tasks’ par- 

allelization. The relationship list notes 

 

 

 
FIGURE 4. Workflow scheduling and execution mechanism extended from HTCondor. 

Elements in the dashed box are specific to RSSN. 
 

 

dependencies among algorithms. 

The Oracle relational database man- 

ager manages model and algorithm 

metadata and information such as  the 

executable algorithms path—all of 

which are registered in the data- base. 

Database tables are divided into 

model  tables  and  relevant algorithm 

tables,  which  include  the Algorithm_ 

Info, Algorithm_Semantics, Algorithm_ 
Inputs, and Algorithm_Outputs tables. 

 

 

Workflow scheduling 

and execution 

Figure 4 shows RSSN’s workflow sched- 

uling and execution mechanism, which 

is an extension of HTCondor’s approach. 

RSSN uses HTCondor’s Classified Adver- 

tisements (ClassAds) mechanism to 

match machines and tasks. 

 
Subtask    creation    and   matching. 

Workflow  scheduling  starts  when the 

global scheduler accesses data nodes to 

request the data list. It then analyzes 

the workflow script and data list and 

divides the entire user task into sub- 

task packages. Each subtask package is 

described by ClassAds; HTCondor uses 

the description to match tasks with 

available machines. During remote- 

sensing data transmission, which can 

occur at any time, RSSN records the 

network bandwidth between comput- 

ing nodes and the data server, as well 

as the task execution success rate, idle 

time, and other aspects of computing 

node status. It then summarizes the 

recorded information and registers it as 

additional attribute data in HTCondor’s 

task scheduling configuration file, in 

essence expanding ClassAds attributes. 

The RSSN task manager submits the 

subtask packages to the HTCondor pool. 

If there is a match, the task manager 

sends the task packages to the matched 

machine for execution. Once the exe- 

cuting machine receives the task pack- 

ages, the RSSN task manager starts the 

local task scheduler to process the task 

package. During the local scheduler’s 

working cycles, the RSSN task manager 

monitors the nodes’ workloads and 

other status aspects while periodically 

checking the job and machine lists for 

potential new matches. 

The cycle-scheduling time span 

should be based on the expected data- 

transfer time. For example, in our AOD 

retrieval experiment, we found that the 

average file size of a subtask package 

is about 200  Mbytes—about a 20-

second data-transfer—so sched- uling 

time should not be less than 20 seconds. 

 
Subtask scheduling. When the 

local  scheduler  receives  the   sub- task 

packages, it queues them as 
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first-come-first-served and generates 

two job lists: one for each package’s data 

transmission task and one for the com- 

puting task. 

In general, there is no dependency 

between input data to the subtask pack- 

to the user. The local task manager can 

reschedule the failed task package. 

Parallel scheduling and execution 

Remote-sensing application work- 

flows generally have subworkflows 

computing error. When the task exceeds 

the threshold, the RSSN task manager 

will reschedule the corre- sponding 

subtasks. 

CASE STUDY: AOD RETRIEVAL 
AOD is a significant parameter in 

remote-sensing data because it reflects 

aerosol optic properties, which provide 

TO IMPROVE CPU AND BANDWIDTH USE, 

CURRENT-PACKAGE DATA TRANSMISSION 

OCCURS SYNCHRONOUSLY WITH 

PREVIOUS-PACKAGE TASK EXECUTION. 

insights into many scientific concerns, 

such as aerosol radiative forcing (the 

difference in sunlight absorbed and 

energy released back into the atmo- 

sphere), cloud microphysics, and atmo- 

spheric correction of satellite images. 

AOD retrieval over a long operational 

period involves big data and compli- 

ages and the intermediate results from 

each computational step. Thus, while the 

computing task in the previous sub- task 

package is running, the RSSN task 

manager schedules data transmission for 

the current package synchronously. The 

result is improved CPU and net- work 

bandwidth use and a shorter over- all 

task-execution time. 

 
Submitting results. As soon as the 

subtask running on the computing node 

completes, the RSSN task man- ager 

sends the result to the machine that 

submitted the workflow composi- tion. 

The task monitor running on the user’s 

machine collects the subtask package 

information; the result might need to be 

organized together auto- matically if 

necessary. 

 
Rescheduling failed tasks. The local 

scheduler also monitors the entire 

scheduling and execution process. If 

any part of the process fails, the sched- 

uler will record the package number 

and error message, discard the corrupt 

intermediate data, and send the log file 

that could be scheduled and executed in 

parallel in a coarse-grained pat- tern. 

RSSN implements this approach by 

adding an agent layer between the 

webservers and computing pool. The 

workflow-parsing component ana- lyzes 

XML files and generates execut- able 

programs for each subworkflow, which 

it submits to agents—comput- ers that 

handle subworkflows in the HTCondor 

pool. The agents gather the submitted 

subworkflow tasks after tasks they 

complete. 

The main idea is to collapse the pre- 

processing stage and reduce the over- 

head from the I/O of one submission 

machine by adding agents that work in 

parallel as submission machines. 

Fault-tolerance mechanism 

At present, RSSN supports fault toler- 

ance by relying on HTCondor’s middle- 

ware, which provides a process check- 

point and a mechanism to migrate 

failed processes by assigning a unique 

global ID for each computing task, and 

by setting a time threshold for task 

suspension because of an unexpected 

cated processing, so retrieving data 

with high precision and resolution 

remains difficult and time-consuming. 

Retrieving AOD from a satellite, such 

as MODIS, eliminatestheneedto prepro- 

cess data, but requires organizing many 

workflows. To date, research in AOD 

retrieval has focused more on exploring 

algorithms and less on exploring how to 

organize and reuse geocomputational 

workflows in a way that would acceler- 

ate computing and fully use available 

computing resources. 

To examine how RSSN supports 

workflow organization, we retrieved a 

year of MODIS satellite AOD data from 

over China and evaluated how RSSN 

facilitated workflow organization from 

three perspectives: workflow composi- 

tion, task-execution performance and 

time-series dataset generation. 

Workflow composition 

We used the Synergic Retrieval of Aero- 

sol Property MODIS (SRAP-MODIS) 

algorithm
17 

to retrieve AOD data and 

RSSN’s GUI to compose the workflow 

shown in Figure 3. We selected models, 
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defined the data time and data type, 

chose supporting algorithms, and 

added dependencies between models. 

We saved the workflow as an XML 

file and submitted it to the webserver 

for parsing and execution in the 

HTCondor computing pool. 

Execution performance 

We used data from January 2008 

(while the satellite was over China), 

which we acquired from the National 

Aeronautics and Space 

Administration’s Distributed Active 

Archive Center, to produce AOD at 1-

km resolution. We processed the data 

on a single computer, on a personal 

high-performance computer (PHPC), 

and on RSSN. Figure 5 shows the results 

for each day. 

The single PC took from 43.5 to 

62.5 hours to process daily AOD data, 

with an average time of 50 hours. The 

PHPC with no modification to the pro- 

grams provided by scientific research- 

ers took from 25.9 to 38.2 hours, with 

an average of 33 hours. RSSN with 

optimizing scheduling and execu- tion 

took only 4.3 to 7.6 hours, with an 

average of 6.4 hours. 

We were also interested in testing 

performance with a coarse-grained pat- 

tern of parallel subworkflows, so we 

selected several sample days and per- 

formed the improved AOD retrieval pat- 

tern. Figure 6 shows the results, which 

isolate three stages: preprocessing, cre- 

ating the image-data mosaic and par- 

titioning it, and inverting the data. For 

the four samples of daily AOD retrieval, 

the preprocessing stage with coarse- 

grained parallel subworkflows (left bars) 

reduces the original runtime (right bars) 

by 20.81, 39.74, 51.54, and 59.41 percent. 

The   mosaic   and   partition  stages 

also took  less  time  with a 42.27, 40.14, 

 

 
 
 

FIGURE 5. Time to process the Synergic Retrieval of Aerosol Property (SRAP)-MODIS 

algorithm in different computing environments during January 2008. The single PC is a 

computer with an Intel Core i5-3450 CPU running at 3.1 GHz with four cores and 4 Gbytes 

of memory. PHPC represents the Sugon PHPC200, a personal high-performance computer 

equipped with two dual-route Intel 5600 multicore computing modules. 
 

 

 
 
 
 

12.00 

 
10.00 

 

 

8.00 
 

6.00 

 
4.00 

 
2.00 

 
0.00 

02-01-2012 05-31-2012 08-15-2012 08-25-2012 

 

FIGURE 6. Sample results of AOD retrieval with (left bars in each pair) and without (right 

bars in each pair) a coarse-grained pattern of subworkflows running in parallel. The length 

of all three stages—preprocessing, creating the mosaic and partitioning the data, and invert- 

ing the data to solve the equations—is the total runtime in each case, which is consistently 

and often dramatically lower with parallel execution. 
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TABLE 1. Average monthly runtime, data volume, and task number for 

AOD retrieval data from September 2011 to August 2012. 

 
Month 

 
Preprocessing runtime (hrs) 

Mosaic, partitioning, and 
inversion runtime (hrs) 

 
Total runtime (hrs) 

 
Volume (Gbytes) 

 
Number of tasks 

9-2011 3.78 1.67 5.45 518 47.67 

10-2011 3.64 2.61 6.25 526 46.29 

11-2011 3.32 4.23 7.55 426 38.93 

12-2011 3.72 2.92 6.64 388 35.03 

01-2012 3.50 2.50 6.00 409 36.96 

02-2012 4.18 2.46 6.64 454 43.72 

03-2012 4.35 3.57 7.92 530 47.84 

04-2012 4.07 3.51 7.58 520 47.70 

05-2012 4.09 3.29 7.38 548 48.39 

06-2012 4.40 3.98 8.38 552 50.64 

07-2012 4.64 2.68 7.32 553 49.00 

08-2012 4.31 1.85 6.16 542 47.48 

 

34.17, and 23.81 percent improvement 

over the original runtime. The retrieval 

stages show no apparent improve- 

ments. The significant reductions in  the 

preprocessing and mosaic and par- tition 

stages resulted in a severe drop in total 

runtime. 

Dataset generation and analysis 

We used RSSN along with the SRAP- 

MODIS algorithm to retrieve a year  

of AOD data. Table 1 gives the aver- 

age monthly  preprocessing  run- 

time, retrieval runtime, total run- 

time, data volume, and task number. 

Figure 7 shows results for one AOD 

parameter, and Figure 8 shows the 

runtime of daily AOD retrieval. In 

keeping with the chosen retrieval 

workflow, task execution takes place 

in two parallel stages: 

› The RSSN task manager submits 

preprocessing tasks, such as cut- 

ting, resizing, and geometric to 

nodes in the HTCondor pool. Each 

computing node uses the same 

program to process its designated 

image data. 

› The machine that submitted the 

task gathers the results, gener- 

ates new retrieval tasks, and sub- 

mits them to the HTCondor pool. 

 
As Figure 8 shows, preprocessing 

runtime is relatively stable, from 1.65 to 

7.81 hours, with an average of 4.00 

hours. Runtime for the retrieval stage is 

from 0.59 to 18.39 hours, with an aver- 

age of 2.95 hours. The input retrieval 

data volume is fixed, and runtime two 

depends primarily on the number of 

valid pixels, which can vary widely. For 

example, the valid pixel percentage on 

31 March 2012, was  39.49  percent, 

whereas on 21 October 2011 it was 16.58 

percent. The runtime of model SRAP_ 

AOD  Retrieval for  these  two dates  is 

5.19 and 1.47 hours, respectively. The 

convergence of iterative processing 

becomes a retrieval bottleneck. 

 

rid computing is emerging as a 

common production environ- 

ment in scientific research, but 

work is needed to reap benefits for geo- 

computational applications that involve 

the retrieval data from remote sensors. 

RSSN is a step toward accelerating data 

acquisition and distribution and facili- 

tating workflow organization. We plan to 

enhance RSSN by designing and 

implementing an algorithm to schedule 

data-intensive workflows and optimize 

data storage and management. 
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FIGURE 7. A sample AOD retrieval result. Images such as these are typical in AOD data, 

which is why daily retrieval can take many hours to process. This image is in response to the 

request to retrieve an image for a single parameter, the AOD at 0.55 μm channel for the 

AQUA MODIS sensor. 
 

 

 
 

 

 

FIGURE 8. Runtime of AOD retrieval from RSSN running SRAP-MODIS algorithm. Runtime 

1 represents the time to preprocess submitted tasks; runtime 2 reflects the gathering of 

results and generation of new retrieval tasks, which is done in parallel with runtime 1; and 

total runtime is the time between the user’s request submission and the end of the entire 

retrieval process. 
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