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Abstract

Information and communication technologies have been playing a crucial role in

improving the efficiency and effectiveness of learning and teaching in higher ed-

ucation. Two decades ago, research studies were focused on how to use artificial

intelligence techniques to imitate teachers or tutors in delivering learning ses-

sions. Machine learning techniques have been applied in several research studies

to construct a student model in the context of intelligent tutoring systems. How-

ever, the usage of intelligent tutoring systems has been very limited in higher

education as most educational institutions are in favour of using virtual learn-

ing environments (VLEs). VLEs are computer-based systems that support all

aspects of teaching and learning from provision of course materials to managing

coursework. In this research study, the emphasis is on the assessment aspect of

VLEs.

A literature review revealed that existing computer-based formative assess-

ments have never utilised unsupervised machine learning to improve their feed-

back mechanisms. Machine learning techniques have been applied to construct

student models, which is represented as categories of knowledge levels such as

beginning, intermediate and advanced. The student model does not specify what

concepts are understood, the gap of understanding and misconceptions.

Previously, a snap-drift modal learning neural network has been applied to

improve the feedback mechanisms of computer-based formative assessments. This



study investigated the application of snap-drift modal learning neural network

for analysing student responses to a set of multiple choice questions to identify

student groups. This research study builds on this previous study and its aim is

to improve the effectiveness of the application of snap-drift modal learning neural

network in modelling student responses to a set of multiple choice questions and

to extend its application in modelling student responses gathered from object-

oriented programming exercises.

A novel method was proposed and evaluated using trials that improves the

effectiveness of snap-drift modal learning neural network in identifying useful

student group profiles, representing them to facilitate generation of diagnostic

feedback and assigning an appropriate diagnostic feedback automatically based

on a given student response. Based on the insight gained into the use of this

novel method, we extend it to identify useful student group profiles that represent

different programming abilities for writing an object-oriented class. The purpose

of identifying student group profiles is to facilitate construction of diagnostic

feedback that improves the development of basic object-oriented programming

abilities.

Overall, the main objectives of this research project were addressed success-

fully. New insights are gained into the application of unsupervised learning in

general and snap-drift modal learning in particular. The proposed methods are

capable of improving the feedback mechanisms of existing computer-based for-

mative assessment tools. The improved computer-based formative assessments

could have a huge impact on students in improving conceptual understanding of

topics and development of basic object-oriented programming abilities.
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Glossary

Curse of dimension : Refers to the fact that algorithms are simply harder to

design in high dimensions.

Euclidean distance : A straight line distance between two points and is equal

to the root of square difference between coordinates of the two points.

Hamming distance : A number of bits which differ between two binary strings.

Iris data set : A popular data set in machine learning which contains 3 classes

of 50 instances each, where each class refers to a type of iris plant.

Intermediate states : States in a state transition diagram which are between

the start and the end states.

Learning rate : Defines by how much weight vectors are changed during ma-

chine learning.

Machine Learning : The science of getting computers to act without being

explicitly programmed.

Regular expression : A special text string for describing a search pattern.

Scalar index of performance : Scalar feedback signal that indicates how well

an agent is doing in the context of reinforcement learning.

State transition diagram : Technique to define a machine that has a number

of states, which can change from one state to another state when it receives an
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Chapter 1

Introduction

Information and communication technologies have been playing a crucial role

in improving the efficiency and effectiveness of learning and teaching in higher

education. Two decades ago, research studies were focused on how to use artificial

intelligence techniques to imitate teachers or tutors in delivering learning sessions.

Machine learning techniques have been applied in several research studies to

construct a student model in the context of intelligent tutoring systems [30; 44;

59; 68]. However, the usage of intelligent tutoring systems have been very limited

in higher educations as most educational institutions are in favour of using virtual

learning environments (VLEs), which provide a set of software tools to support

learning and teaching. Examples of VLEs are Moodle, WebCT and Blackboard.

According to the survey conducted by Universities and Colleges Information

Associations (Ucisa), 34% of all higher education institutions in the UK used

Blackboard in 2001 and the usage increased to 60% by 2012 [66]. The survey also

indicated that ”Blackboard is the most used enterprise or institutional VLE, but

Moodle has increased in usage as an enterprise solution and remains the most
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commonly used VLE platform when departmental/school implementations are

also considered”. The main focus of VLEs is to support and facilitate teaching

and learning, whereas intelligent tutoring systems aim to emulate teachers or

tutors in delivering learning lessons. Previous intelligent tutoring systems were

focused only on acquiring well defined procedural skills [57]. They did not address

development of conceptual understanding.

Several computer-based assessments, which can be deployed as part of VLEs

or independently, have been proposed that support different assessment types

such as multiple choice questions [31; 55; 67], short-free-text response[35; 61; 62]

and problem solving exercises [11; 26; 48; 64]. A literature review on the feedback

mechanisms of existing computer-based formative assessments revealed that they

only provide item-based feedback mechanism, which is a feedback tied to individ-

ual question or feature. Even though machine learning techniques were applied

to construct student models as part of intelligent tutoring systems, the student

model has never been used to facilitate construction of diagnostic feedback that

improve student learning experiences in the context of formative assessments.

Since the student model represents knowledge levels as categories such as begin-

ner, intermediate and advanced, it is not suitable for facilitating generation of

diagnostic feedback.

A snap-drift modal learning neural network have been applied to improve the

feedback mechanism of computer-based formative assessments [4; 53]. These pre-

vious research studies investigated the application of snap-drift modal learning

neural network for analysing student responses to multiple choice questions. The

purpose of the analysis was to identify student groups that facilitate generation

of diagnostic feedback. This research builds on these previous research studies in

2



order to improve the effectiveness of the application of snap-drift modal learning

neural networks for diagnostic feedback based on multiple choice based student

responses and extend its application to programming exercise-based student re-

sponses.

1.1 Aims and Objectives

The first aim of this research project is to improve the effectiveness of the previous

application of snap-drift modal learning neural networks for diagnostic feedback

in the context of VLEs. To achieve this aim, the following objectives are defined:

1. To analyse the learning behaviour of the snap-drift modal learning neural

networks.

2. To propose a method for representing outputs of the trained snap-drift

modal learning neural networks that facilitate generation of diagnostic feed-

back.

3. To propose criteria for assessing the effectiveness of student groups repre-

senting the different categories of understanding distinctly and facilitating

generation of diagnostic feedback.

4. To evaluate the effectiveness of snap-drift modal learning neural networks

in identifying useful student groups that can map to the different under-

standing levels of a particular topic.

5. To evaluate the impact of diagnostic feedback generated based on profiled

student groups on improving learning performance of students.
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There are many forms of assessment where student responses can be captured.

The most popular assessment type is multiple choice questions(MCQs), which can

be designed with a diagnostic end in mind in order to find out whether specific

areas of a given subject are adequately known, or in order to detect miscon-

ceptions [17]. However, MCQs have limitations in assessing student’s ability to

apply techniques and solve problems. Problem solving exercise is another form of

assessment where student responses can be captured, which can assess students’

ability to apply techniques or to solve problems.

The second aim of this research project is to extend the application of snap-

drift modal learning neural network for modelling student responses to object-

oriented programming exercises. Based on the insight gained from the result of

the first aim, the following objectives are defined:

1. To explore the different approaches for teaching and learning object-oriented

programming languages.

2. To propose a method for representing a student response to object-oriented

programming exercises in order to make it suitable to analyse using snap-

drift modal learning neural networks.

3. To evaluate the effectiveness of snap-drift modal learning neural networks

in identifying useful student groups that can map to the different object-

oriented programming abilities of a particular programming exercise.

4. To evaluate the impact of diagnostic feedback generated based on profiled

student groups on improving acquisition of basic object-oriented program-

ming abilities.

4



1.2 Scope and Significance of Study

VLEs are computer-based systems that support all aspects of teaching and learn-

ing from provision of course materials to managing coursework. Most VLEs pro-

vide four software tools, which are content management and sharing, assessment

management, collaboration and communication tools. The emphasis in this re-

search is on the formative assessment aspect of VLEs, whose purpose is to provide

feedback to students in order to enhance their learning.

This research contributes to knowledge on advancing the application of un-

supervised machine learning techniques in general and snap-drift modal learning

neural computing in particular for improving the feedback mechanism of forma-

tive assessments. Neural computing techniques have been applied successfully

in various domains of application. In this project a new application domain,

which is modelling observed student responses to multiple choice questions and

Java programming exercises for facilitating construction of diagnostic feedback,

is investigated.

Furthermore, the outcome of this research will have a significant impact on

improving the learning experience of students by facilitating conceptual under-

standing of topics and development of object-oriented programming abilities.

1.3 Research Approach and Methods

There are two approaches to design and develop intelligent systems. The first

approach is rule-based expert system, which is a knowledge based system that

contains both declarative and procedural knowledge to emulate the reasoning

5



processes of human experts in a particular domain [45]. The second approach is

machine learning such as neural networks, Bayesian networks and decision trees.

In this research, the focus is on neural networks, which are computational

models that use ideas inspired from how human brains work. The fundamental

difference between neural network systems and expert systems is the way knowl-

edge is acquired. The source of knowledge in the case of expert systems is a

domain expert, an individual selected for expertise in a given field. Knowledge

is acquired in neural networks from previous examples, which are represented as

training data. One of the drawbacks of rule-based expert systems, when they are

applied to model student behaviours, is that they require eliciting the relevant

domain and pedagogical knowledge from experts, a process that is often hard

and time consuming [5]. The knowledge acquired from domain experts can typi-

cally recognize and interpret only expected student behaviors, and are unable to

handle unanticipated ones.

Neural networks not only learn from experience, they can also generalise that

means a trained neural network can produce reasonable outputs from inputs not

encountered during its learning process [29]. Neural networks are able to derive

meaning from complicated and/or imprecise data and to extract patterns that

are too complex to be noticed by other computational techniques [25]. These

characteristics make neural networks a powerful method to model human behavior

and a useful technique to create user models for hypermedia applications [25].

Data collection is very important for training neural networks. Ideally, data

should be gathered from every member of the population you are interested in.

In this research, the population is the set of all students who are registered for

a module whose topic is to be assessed. However, only students who register for
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the module offered by London Metropolitan University are considered due to time

and resource limitations. Both paper-based and web-based assessment sessions

are used to collect student responses. To ensure the reliability of the collected

data, the assessment sessions are carried out in an environment where students

are not allowed to copy each other and get help from others.

1.4 Structure of the Thesis

The remainder of the thesis is organised as follows. Chapter Two provides a lit-

erature review on student modelling, computer-based formative assessments and

neural computing. Chapter Three presents analysis of the previous application of

snap-drift modal learning neural networks for diagnostic feedback in the context

of virtual learning environments and how it is improved and evaluated. Chapter

Four explores how snap-drift modal learning neural networks could be applied for

modelling student responses to object-oriented programming exercises. Chapter

Five presents analysis and evaluation of the proposed methods for identifying stu-

dent group profiles that facilitates generation of diagnostic feedback to improve

development of basic object-oriented programming abilities. Finally, conclusion

and recommendations for future research are described in Chapter Six.
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Chapter 2

Literature review

This chapter presents first an overview of neural computing. It introduces neural

computing in general and focuses on unsupervised learning techniques. Secondly,

it presents different student modeling techniques in the context of Intelligent

Tutoring System (ITS). Thirdly, a brief review on computer-based formative as-

sessment is described. The review focuses on how feedback process of formative

assessments is supported or automated using ICT for three different assessment

tasks: multiple choice questions (MCQs), short free text responses and problem

solving exercises. For formative computer-based assessments, marking or scoring

is less important, as their purpose is to improve student learning via feedback.

That is why the focus is on feedback process not on automated marking.

2.1 Overview of Neural Computing

Neural computing is a computational model that uses ideas inspired from how

human brains work. Neural network is a network of neurons which is found
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in brains. Artificial neurons are crude approximations of the neurons found in

brains. They can be implemented as a hardware or a software. Artificial neural

networks (ANNs) are networks of artificial neurons. From a practical point of

view, ANNs are just a parallel computational system consisting of many simple

processing elements connected together in a specific way in order to perform a

particular task [15]. In the functional level, ANNs resemble the brain in two

aspects [29]. Knowledge is acquired by the network through a learning process

and inter-neuron connection strengths known as synaptic weights are used to

store the knowledge.

Neurons can be modelled by a set of three basic elements: [29]

1. A set of synapses or connecting links

2. An adder for summing the input signals, weighted by the respective synaptic

strengths of the neuron.

3. An activation function for limiting the amplitude of the output of a neuron.

Mathematically, the neuron model is described by a pair of equations:

uk =
m∑
j=1

wkjxjyk = ϕ(uk + bk) (2.1)

Where xj are the input signals; wkj are respective synaptic weights of neuron

k; uk is the linear combiner output due to the input signals ; bk is the bias; ϕ(.)

is the activation function; and yk is the output signal of the neuron.

There are three fundamentally different types of neural network architectures

[29]. The first one is single-layer feed-forward where an input layer of source nodes

project directly into an output layer of neurons. The second type is multilayer
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feed-forward network, which consists of one or more hidden layers between an

input layer of source nodes and an output layer of neurons. The third type is

recurrent networks that contains a feed-forward single layered or multi-layered

networks with at least one feedback loop.

Unlike expert systems which incorporate a knowledge base, neural networks

do not have such a collection of information. They need to be trained for a given

problem or situation so that the weights will then contain the required knowl-

edge. Neural network learn by adapting the strengths/weights of the connections

between neurons so that the final output activations are correct. The training

data used by neural network to acquire knowledge can be labelled or unlabelled

[29]. In labelled training examples, each example representing an input signal

is paired with a corresponding desired response. On the other hand, unlabelled

examples consist of different realizations of the input signal all by itself. Labelled

examples may be expensive to collect, as they require the availability of a teacher

to provide a desired response for each labelled example. In contrast, unlabelled

examples are usually abundant as there is no need for supervision.

Neural networks can learn from training experiences using three different ap-

proaches: supervised, unsupervised and reinforcement learning [29]. Supervised

learning relies on the availability of a training sample of labelled examples, with

each example consisting of an input signal and the corresponding desired response.

On the other hand, unsupervised learning relies solely on unlabelled examples,

consisting of a set of input signals. In reinforcement learning input-output map-

ping is performed through the continued interaction of a learning system with its

environment so as to minimise a scalar index of performance. Recently, a hybrid

learning known as semi-supervised is emerging, which employs a training sample
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that consists of labelled and unlabelled examples.

Single layer feed-forward neural networks can not deal with non-linearly sep-

arable problems. These type of problems can only be dealt by adding at least

one hidden layer between the input and output layer. Multi-layered neural net-

works are trained using a weight update rule known as back-propagation [29]. It

is a supervised learning technique that includes two passes, which are forward

and backward. The forward pass propagates input data through the network to

provide outputs at the output layer. In the backward pass, error values are prop-

agated in reverse direction through the network to determine how the weights are

to be changed during training.

The back-propagation algorithm can be summarised as follows:

• Repeat until the network converges.

– For each input data.

1. Perform a forward pass to find the actual output.

2. Obtain an error values by comparing the actual and target output.

3. Perform a backward pass of the error values.

4. Use the backward pass to determine weight changes.

5. Update weights.

Supervised learned ANNs can be applied to solve regression and classification

problems. It has been applied successfully in several domains of applications such

as financial modelling, time series prediction, computer games, control systems

and pattern recognition [15]. For example, they can be applied in the area of

financial modelling to predict stocks, shares and currency exchange rates, and in

the pattern recognition area for speech and hand-writing recognitions.
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There are several practical challenges of applying supervised learning ANNs to

solve regression and classification problems [15]. The first challenge is choosing

the optimal number of hidden layers and number of units within each hidden

layer. The best number of hidden units depends on many factors such as the

number of training patterns, the number of input and output units, the amount

of noise in the training data, the complexity of the function or classification to be

learned, the type of hidden unit activation function and the training algorithm.

Too few hidden units will generally leave high training and generalisation

errors due to under-fitting where as too many hidden units result in low training

errors, but will make the training very slow and will result in poor generalisation

due to over-fitting. The sensible strategy for choosing an optimal number of

hidden units is to try a range of numbers of hidden units and choose the network

that performs best.

In principle, raw input data can be used directly to train neural networks,

however, it will produce poor results if the raw input data is not transformed into

some new representation [15]. Choosing an appropriate pre-processing technique

is another challenge for many practical applications. The simplest pre-processing

technique is a form of linear transformation of the input data and more complex

pre-processing involves reduction of dimensionality of input data.

Finally, once the topology and methods of pre-processing are chosen, the chal-

lenge is choosing the right learning rate. It is not easy to choose an appropriate

learning rate because of two opposing facts. If a learning rate is too small, the

network will take too long to find the minimum error value. On the other hand,

if it is too large, the weight update will over-shoot the error minimum and the

weights will oscillate or even diverge. Generally one should try a range of different
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values between 0.1 and 0.0001. It is not necessary to keep the learning rate fixed

throughout the learning process. Sometimes it is also good to choose a learning

rate that varies.

As mentioned in previous paragraphs, it is not easy to determine the optimal

neural networks. Therefore, we need to evaluate the performance of different

configuration of neural networks in order to determine the optimal neural net-

works. The question is how can we evaluate the performance of neural networks.

A portion of a training data set can be used to optimise neural network training

procedure [15]. The data set withheld from the network training is called the

validation data set.

We can use a validation data set to choose the best neural network. Firstly,

we need to split the available data into training and validation sets. Secondly, we

train various neural networks using the training set. Thirdly, we test each one on

the validation set and finally, we choose the neural network which performs best

on the validation data set. Since the availability of a training data set is usually

limited, using part of it as a validation set is not practical. An alternative is to

use a k-fold cross-validation.

The procedure for performing k-fold cross-validation is as follows [15]:

1. Divide randomly the set of training data into k distinct subsets.

2. Train the network using k-1 subsets.

3. Test the network on the remaining subset.

4. The average performance on the k omitted subsets is the estimate of the

generalisation performance.
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2.2 Unsupervised Learning

In unsupervised learning, neural networks are able to learn from observing data

without being told to associate the observations to given desired responses and

without even given any hint about the goodness of a given response [51]. Un-

supervised learning is also applied in machine learning and artificial intelligence.

Generally, we apply unsupervised learning to get new explanation or representa-

tion of observation data.

There are two main applications of unsupervised learned neural networks. The

first application is pre-processing of raw input data to extract useful and appro-

priate features. This task is very important before classification and regression

are performed. It is also called dimensionality reduction or feature extraction.

With reduced set of input variables the input-output mapping done for function

approximation or classification becomes simpler and less training samples are re-

quired. The second application is clustering or grouping of unlabelled training

patterns based on competitive learning.

Competitive learning is the most popular unsupervised learning technique. It

is described by the following rules [15]:

1. The neurons in the network are all the same and they respond differently

to a given set of input patterns.

2. A specific limit is imposed on the strength of each neuron in the network.

A typical example is normalising each weight vector.

3. The neurons compete with each other in accordance with a prescribed rule

for the right to respond to a given subset of inputs; consequently only one
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output neuron is active at a time.

4. The neuron that wins the competition is called a winner-takes-all neuron.

5. The individual neurons of the network assume the role of feature detectors

for different classes of input patterns.

Self-organising map and snap-drift modal learning networks are examples of

unsupervised neural networks for grouping or clustering unlabelled input data.

They are described in detail in the following sections.

2.2.1 Self-Organising Maps

Self-organising maps(SOMs) are unsupervised trained neural networks where

their output neurons organise themselves based on competitive learning. The

main purpose of a SOM is to transform an incoming signal pattern of arbitrary

dimension into a one or two dimensional discrete map, and to perform this trans-

formation adaptively in a topologically ordered fashion [38]. Kohonen network is

a type of SOM which has a feed-forward structure with a single computational

layer arranged in rows and columns [38]. Each neuron is fully connected to all the

source nodes in the input layer. The architecture of Kohonen network is depicted

in figure 2.1.

The algorithm for training SOMs has four major components [29]:

1. Initialising the synaptic weights in the network by assigning them small

values picked randomly.

2. Competition: for each input pattern, the neurons in the network compute

their respective values of a discriminant function such as Euclidean distance
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Figure 2.1: Topology of SOMs [38]

from input pattern. This discriminant function provides the basis for com-

petition among the neurons. The particular neuron with the largest value

of discriminant function is declared winner of the competition.

3. Cooperation: the winning neuron determines the spatial location of a topo-

logical neighbourhood of excited neurons, thereby providing the basis for

cooperation among such neighbouring neurons.

4. Weight adaptation: excited neurons increase their individual values of the

discriminant function in relation to the input pattern through suitable ad-

justments applied to their synaptic weights. The adjustments made are

such that the response of the winning neuron to the subsequent application

of similar input pattern is enhanced.

The detail of the algorithm for training SOMs is summarised as follows [29]:

1. Initialization: choose random values for the initial weight vectors Wj(0).
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2. Sampling: draw a sample x from the input space with a certain probability.

3. Similarity matching: find the best matching (winning) neuron i(x) at time

step n using the minimum distance criterion.

i(x) = argminj ‖x(n)− wj‖ (2.2)

4. Updating: adjusting the synaptic weight vectors of all excited neurons using

the update formula.

wj(n+ 1) = wj(n) + η(n)hj,i(x)(n)(x(n)− wj(n)) (2.3)

Where: η(n) is the learning rate parameter and hj,i(x)(n) is the neighbour-

hood function centred around the winning neuron i(x).

5. Continuation: continue with step 2 until no noticeable changes in the feature

map are observed.

Even though an implementation of the above algorithm for training SOMs

is straight forward, there are some practical challenges when we apply SOMs to

perform unsupervised learning tasks. For most of them, there are hints recom-

mended based on previous experiments [38]. To initialise the weight vectors of

output neurons, there are two options. The first one is to assign each weight vec-

tor with a small random number and the other option is to initialise the weight

vectors by a randomly selected input patterns. Usually a very large number of

iterations are required to have a good output result. It is recommended that the

number of iterations should be at least 500 times the number of output neurons.
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The learning time can be divided into two stages, which are ordering and fine-

tuning. During the first 1000 iterations, the output neurons are ordered and the

remaining iterations are required for fine tuning the output map. The learning

rate should be initialised close to one and allowed to decrease linearly or expo-

nentially during the ordering phase and it should be very small of the order of

0.01 during the fine tuning phase.

In addition to the above challenges, determining the size of the neighbour-

hood of the winning neuron output and specifying how to update each weight

vector of neighbour neuron are also other challenges. The simplest way is to

choose a rectangular or hexagonal shape neighbourhood centred at the winning

neuron and specifying the width of the neighbourhood by a distance between the

winning node and the furthest neighbour neuron in the output space. Once the

neighbourhood is determined, only the weight vectors of all neurons inside the

neighbourhood are updated. It is recommended that a Gaussian neighbourhood

function should be considered to ensure that neighbour neurons spatially close to

the winner neuron are adapted more strongly than neighbour neurons located fur-

ther away. Initially during the ordering phase, it is recommended that the radius

of the neighbourhood to be more than half the diameter of the output map and

should decrease linearly until it reaches one unit. During the fine-tuning phase,

the radius of the neighbourhood should be fixed to one unit to include only the

nearest neighbour neurons.

A Gaussian function is defined as follows.

hcj(t) = h0e
−ri−rc2/2σ2(t) (2.4)
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Where h0 is the maximum height of the Gaussian function; ri−rc denotes the

distance between winning neuron c and neighbour neuron i within the output grid

and σ is a time varying parameter that specifies the width of the neighbourhood.

SOMs have been applied successfully in a wide range of applications. Gen-

erally, we can categorise all applications into three, which are clustering, visu-

alization and abstraction method [38]. One of the main applications of SOMs

is text or document organisation, which enables users to explore, search and fil-

ter a huge amount of information [20; 23; 37; 41; 46]. For example, SOMs have

been successfully applied to organise documents gathered from Usenet discussions

[37; 41],manual pages of C++ class library [46] and document archive compris-

ing articles from a daily Austrian newspaper [23]. SOMs can also be applied

for analysing bank customers by identifying groups of customers based on their

banking behaviours [32].

One of the limitations of SOMs applied for clustering purposes is the fact

that output maps do not show cluster boundaries [46]. Many techniques such

as U-matrix display, cluster connections and automatic colouring of output map

have been proposed to show cluster boundaries [46]. The other limitation of

SOMs with a single two-dimensional output map is their inability to detect the

hierarchical structure inherent in document collections. Two methods are devel-

oped to address this limitation [23]. These are hierarchical feature map and the

growing hierarchical self-organising map (GHSOM). In both methods, a layered

architecture that consists of independent SOMs within each layer is used to visu-

alise hierarchical data structure. However, they differ in the way they specify the

number of layers and the size of the maps within each layer. In the hierarchical

feature map, the number of layers and the size of the maps within each layer
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are specified in advance, however, the structure of the hierarchy is determined

dynamically to resemble the structure of the input data in the case of the growing

hierarchical self-organising map method.

Since SOMs are not effective for pattern classification, vector quantisation

technique is incorporated with SOMs to produce a supervised version, which is

called learning vector quantization (LVQ) [38]. LVQ starts from a trained SOM

with input vectors x and weight vectors wj and uses the classification labels of the

inputs to find the best classification label for each wj. LVQ has been applied suc-

cessfully in many real life problems. According to [38], LVQ has performed better

than Bayes classifier and K-nearest neighbour methods for speech recognition.

The LVQ uses the following algorithm to move wj appropriately [38]:

1. If the input x and the associated Voronoi/ weight vector wi(x) (the weight of

the winning output node i(x) ) have the same class label, then move them

closer together by

∆wi(x)(t) = α(t)(x− wi(x)(t)) (2.5)

2. If the input x and associated Voronoi/ weight vector wi(x) have different

class labels, then move them apart by

∆wi(x)(t) = −α(t)(x− wi(x)(t)) (2.6)

3. Voronoi/ weight vectors wj corresponding to other input regions are left

unchanged with

∆wj(t) = 0 (2.7)
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α(t) is a learning rate and its value is between 0 and 1. It is recommended

that its value should be 0.01 or 0.02 initially and let it decrease until it is close

to 0 during the final iterations [38]. The reason for starting with a very small

learning rate is the fact that the learning vector quantisation is a fine-tuning stage

initialised by a trained SOM [38].

2.2.2 Modal Learning Neural networks

Modal learning neural network combines several modes of learning within a single

neural network or module in order to achieve learning results that no single mode

could achieve through exploitation of the complementary nature of each mode

[53]. It is different from hybrid or modular neural networks in which the different

learning modes are applied at different modules and/or at separate times. Snap-

drift neural network(SDNN) and adaptive function neural network are examples

of modal learning neural networks. In adaptive function neural networks, both

weight vectors and shape of activation functions are updated simultaneously [36].

SDNN is a simple modal learning method, which swaps periodically between

snap and drift learning modes. SDNN was first conceived as a learning algorithm

as an attempt to overcome the limitations of adaptive resonance theory(ART)

learning in non-stationary environments where self-organization needs to take

account of periodic or occasional performance feedback [42]. Snap is a logical

intersection learning while drift is a learning vector quantisation. They provide

complementary features. Snap captures common elements of group of patterns

represented by the minimum values on each input pattern and it contributes

to rapid convergence whereas drift captures the average values of the group of
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patterns.

The architecture of SDNN consists of three layers as shown in figure 2.2. They

are an input layer, a distributed d layer for feature extraction and a selection s

layer for feature classification. The distributed d layer groups the input patterns

according to their features using snap-drift training algorithm. The D most

activated(winning) nodes out of the d layer whose weight vectors best match the

current input pattern are used as the input data to the selection s layer. In the s

layer, a quality assurance threshold is applied. If the net input of the most active

s node is above the threshold, that s node is accepted as the winner and defines

the category of the input pattern; otherwise a new uncommitted output node is

recruited as the winner.

Figure 2.2: Architecture of SDNN

The weight vectors of the D most activated(winning) nodes and the winner

of the s layer are updated according to the following equations.
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Snap− drift = α(Snap) + (1− α)(drift) (2.8)

The above equation defines how the snap and drift learning modes are com-

bined in SDNNs. In successive learning epochs, the learning is toggled between

snap and drift learning modes. When α is one, a snap learning is invoked and α

is set to zero to invoke drift learning mode. The above weight update equation

is further elaborated in the following equation.

w
(new)
ji = α(I

⋂
w

(old)
ji ) + (1− α)(w

(old)
ji + β(I − w(old)

ji )) (2.9)

Where wji is a weight vector of either d or s layers, I is a binary input vector,

and β is the drift learning rate. After each weight update, the weight vectors are

normalized to a unit length.

The objective of the snap learning mode is to find the minimum between

the binary input vector and the weight vector of the winning node whereas the

objective of the drift learning mode is to minimise the total squared distance

between the winning nodes and their closest input patterns.

The mathematical formulation of the objective function of the snap-drift learn-

ing algorithm is as follows.

Min((I,W ) + ‖I − w‖) (2.10)

Snap-drift learning algorithm has been applied as reinforcement, classifier and

unsupervised version to solve various real life problems successfully. For instance,

the unsupervised snap-drift has been used in feature discovery and clustering of
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speech waveforms from non-stammering and stammering speakers [42], and for

classifying user requests in an active computer network simulation environment

where the system was able to discover alternative solutions in response to varying

performance requirements [24].

2.3 Student Modeling

Intelligent tutoring system is defined as any system which is capable of emulating

an instructor’s behavior in all aspects relating to supporting students as they

acquire knowledge [40]. The key feature of ITS is their ability to provide a

user-adapted presentation of the teaching material which is accomplished using

artificial intelligence techniques to represent the pedagogical decisions and the

information regarding each student.

Most intelligent tutoring systems have four common major components: knowl-

edge domain, student model, teaching strategies and user interface [50]. Knowl-

edge domain stores learning materials that the students are required to study

for a topic or curriculum being taught. Student model stores information that

is specific to each individual learner and enables the system to identify differ-

ent users. The teaching strategies component refers to instructional techniques

for teaching. For example, the component decides when to present a new topic,

how to provide recommendations and guidance and which topic to present. User

interface component decides how the system interacts with a user.

Student model is an essential component of an intelligent e-learning environ-

ment that enables personalized and adaptive learning. It can contain different

kinds of information such as student plans, solution paths, student performance,
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preferences, interests, knowledge level, problem solving skills and constraints that

the student has violated [28]. The student model in intelligent tutoring systems

can be used for different purposes: to determine if the student is ready to continue

with the next curriculum topic; to generate explanations according to the student

knowledge; to generate problems according to the student knowledge level; and to

generate appropriate teaching strategy according to the student knowledge and

learning style [28].

There are three approaches to construct student models [27]. The first ap-

proach uses a specially prepared task-model pairings. The second approach con-

structs a student model by mapping behaviour to predefined set of bugs. The

third approach infers a student model from observed behaviour. The first two

approaches depend heavily on catalogues of mal-rules, which is a simple pertur-

bation of some correct rules collected through an extensive protocol analysis of

the domain. In the third approach, the idea is to use a smaller amount of ini-

tial knowledge to infer a student model and it is possible by applying machine

learning techniques. An emphasis is given to the third approach which applies

machine learning techniques. Several machine learning approaches that model

students’ knowledge status, students’ learning style and cognitive style of stu-

dents are described in the following sections.

2.3.1 Knowledge Status

A hybrid algorithm based on fuzzy-ART2 neural network and Hidden Markov

model was applied in order to categorise students’ knowledge status into six lev-

els: excellent, very good, good, fair, weak and very weak based on five parameters
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collected while students interact with an e-learning system [30]. The five param-

eters are number of correct answers, number of incorrect answers, time spent to

solve a question, time spent reading or interacting with a specific concept and

number of attempts to answer a question. The purpose of the student model

is to identify whether a student is novice or advanced and choose an appropri-

ate instruction type. The technique has not been evaluated in real educational

situations.

A Bayesian network approach to model the skill levels of a student on a

learning object was proposed in [44]. The skill levels are categorised into novice,

beginner, intermediate, advanced and expert. Students are provided with quizzes

on the learning object and the following data are then collected: the number of

correctly answered questions, number of incorrectly answered questions, and time

taken in answering each question. The modeling result is used by other systems

in the learning environment for adaptive selection and presentation of learning

material for individualised learning.

A supervised Kohonen network with a hexagonal lattice structure was pro-

posed to classify the knowledge level of a student into 3 categories: beginner, in-

termediate and advanced [68]. Two student profiles are used to build the student

model. They are the implicit and explicit techniques. Explicit data is informa-

tion about a student which cane be recorded using a questionnaire or registration

form. Implicit approach is an alternative of the first approach that analyses the

student navigation behavior while using the system. Students usually do not re-

alise that every movement and activities have been captured and recorded in a

log file or can be stored in the system database. There are 4 attributes identi-

fied to represent the possible student features. The attributes are learning time,
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number of backtracking, number of getting help and assessment score. The Ko-

honen network was trained using a simulated data since real student data was

not available. The developed student model can be used in intelligent tutoring

systems to adapt the learning sequences to match with students’ knowledge level.

A neuro-fuzzy approach was also proposed to model students’ behavior that

defines knowledge level, mistakes, misconceptions, learning speed, attention and

memory limitations [59]. The inputs of the system are students’ responses from

a set of questions and exercises, the time spent to read a given theory and find

correct answers, the number of attempts to find correct answers and the number

of times needed to review a given theory. In addition to these input parameters,

another parameter, which is expected mean value estimated by human expert is

also used. The student model can be used for deciding appropriate teaching strat-

egy. The output of the system is categories for each characteristic: knowledge

level, mistakes, misconceptions, learning speed, attention and memory limita-

tions. For instance, for the learning speed, the possible values are slow, rather

slow, normal, almost fast and fast. The technique was evaluated using a popula-

tion of 300 simulated student cases to compare its performance with the decisions

of five teachers. The result of the experiment revealed that the overall average

classification was 95 percent.

2.3.2 Learning Style

A learning style is defined as an educational condition in which a student is most

likely to learn [60]. There are seven types of learning style: visual, aural, verbal,

physical, logical, social,and solitary [2]. Intelligent tutoring systems have been
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applied machine learning techniques to predict the learning style of a student in

order to choose an appropriate teaching method. A dynamic Bayesian network

technique was proposed to produce a student model that can be used to filter and

sort learning objects according to the students’ learning style and preferences [16].

First an initial model is constructed using the index of learning style questionnaire

proposed by Felder and Soloman. The model is then refined by applying dynamic

bayesian network technique while the student interacts to choose learning objects.

The technique has not been evaluated using either simulated or real students.

A student model based on decision tree and Bayesian Markov chain was pro-

posed in [43]. The decision tree was used to classify students into three learning

types: challenging, reinforcement, and regular during the beginning of a tutoring

session based on students’ responses to a few learning related questions. The de-

cision tree was trained with past data labelled manually by teachers. Clustering

technique of Bayesian Markov chain was used to model student behaviour into

three learning types using data collected as the students interact with the system.

The quality of the two models was compared and it was found that the model

generated using the clustering approach represent a more distinct set of student

learning styles and more homogeneous groups.

2.3.3 Cognitive Style

Cognitive styles are defined as the manner in which students process information

[56]. They are different from learning styles, which determine how a student

interacts with or responds to new information. A student modeling approach was

proposed to identify automatically the cognitive style of students based on their
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learning patterns [19]. A k-means and decision tree techniques were applied. The

k-means was used to identify similar student learning patterns which was defined

by eight attributes: the total number of pages each student browsed, the total

number of visited pages, the total number of times each navigational tool was

used and the number of repeated visits the students made. The decision tree was

used to produce rules that determine the relationship between student learning

patterns and cognitive styles.

2.4 Computer-Based Formative Assessments

Assessment is a process to measure the knowledge, understanding, abilities or

skills of an individual [54]. We can classify assessments into two main types

depending on their purpose [14; 18]. Formative or assessment for learning is an

assessment whose purpose is to provide feedback to students in order to enhance

their learning. The second type of assessment is summative and its purpose is to

provide a mark or grade that measures the performance of students.

Formative assessment is one of the most crucial processes that enhances the

effectiveness of learning experiences [12]. Students can benefit from doing self-

assessments to test their understanding by trying out things and receiving feed-

back [12]. Instructors, on the other hand, can identify specific student misun-

derstandings, provide feedback to students to help them correct their errors, and

identify and implement instructional correctives [18]. Moreover, instructors can

use the result of the assessment to monitor the performance of individual students

so that they can identify students who need more help.

Feedback is the most essential part of formative assessment as the sole purpose

29



of performing formative assessment is to provide feedback based on students’

responses observed from assessments [7]. Feedback is defined as an information

communicated to a learner that is intended to modify the learner’s thinking or

behaviour for the purpose of improving learning [58]. Feedback is concerned

with current performances, that is why a new concept known as feed forward is

introduced to deal with future performances [1]. Feed forward focuses on how

students improve on their follow up assignments. A formative assessment with

no feedback has no effect on improving student learning experience. It is also

true that a formative assessment with feedback does not necessarily improve

student learning performance [10]. For example, if answers are included as part

of feedback, the effect of feedback on student learning will be negative [10; 13].

The quality of feedback determines the effectiveness of formative assessment [10].

Several research studies have been conducted to find out what characteristics

of feedback actually improve student learning. Most researchers agree that for

feedback to be effective, it should be non-evaluative, supportive, timely and spe-

cific and should include the comparison of actual performance with an established

standard of performance [58]. Researchers have also reported that the content of

effective feedback should contain both verification and elaboration [58]. Verifica-

tion indicates whether student’s work is correct or not, while elaboration is an

information that provides details of how to improve an answer [58]. The elabo-

ration aspect of feedback can be more specific and directive when it addresses a

topic, a response or a particular error. It can also be more general and facilitative

when it provides worked examples or gives gentle guidance.

For a formative assessment to be useful it should be performed on a reg-

ular basis [7] and tutors should provide both timely and informative feedback
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[14]. However, due to large numbers of students and practical constraints such

as time and workload pressure, it is often difficult and time consuming for tutors

to conduct a continuous formative assessment and provide timely and informa-

tive feedback [14]. That is why computer-based assessments were introduced to

increase the efficiency and effectiveness of assessments.

Computer-based assessment or e-assessment is the use of information and

communication technology (ICT) to support an assessment process [69]. ICT

can be used to support a wide range of assessment activities such as designing

or setting up an assessment, delivering an assessment, gathering and analysing

student responses, marking and giving feedback to students. E-assessment has

an advantage over traditional paper-based assessment due to the capabilities of

ICT [21]. One of the characteristics of ICT, which makes e-assessments effective

in gathering student responses and delivering feedback to students quickly, is

speed. The second characteristic of ICT is storage capacity that is its ability

to store large amount of questions, student responses and pre-defined feedback.

The third characteristic is the capabilities of ICT to analyse student responses,

automate feedback process and adapt assessments to meet different student needs.

The fourth characteristic is communication, which enables students to access and

perform an assessment task anytime and anywhere and to collaborate with peer

students from different locations to work on group assessment tasks. Finally, ICT

enables design of interactive assessment tasks using different media formats such

as texts, audio, images and videos.

Computer-based assessments can be categorized into three : those which are

based closely on existing paper-based assessments; those that use new formats

including multimedia, constructed response, automatic item generation and au-
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tomatic scoring; and those that use complex simulations, artificial intelligence,

statistical techniques and cognitive science [52]. We can also classify computer-

based assessments into summative and formative depending on their purpose

similar to how traditional paper-based assessments are classified.

Formative computer-based assessment is a set of processes involving ICT in

order to gather evidence about learner’s state of understanding relative to de-

sirable goals so that individuals are enabled to take actions which bring about

changes in learners’ skills, knowledge and understanding, or in teachers’ peda-

gogical practice [21]. Instructors can use the evidence about learner’s state of

understanding relative to desirable goals to correct their instructional strategies

and generate feedback to improve student learning. Feedback is the most im-

portant component of formative e-assessment as it is for formative paper-based

assessments for the same reason mentioned previously.

A brief review of computer-based formative assessments is presented in the

following sections. The review focuses on how feedback process of formative as-

sessments is supported or automated using ICT for three different assessment

tasks, which are multiple choice questions (MCQs), short free text responses and

problem solving exercises. For formative computer-based assessments, marking

or scoring is less important, as their purpose is to improve student learning via

feedback. That is why the focus is on feedback process not on automating mark-

ing.
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2.4.1 Multiple Choice Questions

A multiple choice question (MCQ) is a question in which students are asked to

select one alternative from a given list of alternatives in response to a question

stem [17]. MCQs are comprised of four parts, which are stem, options, key, and

distractors [47]. Stem is the text of the question. Options are the choices provided

after the stem. Key is the correct answer in the list of options where as distractors

are the incorrect answers in the list of options.

MCQs are the most used assessment type in higher education institutions due

to its suitability in environments with a large number of students and reduced

resources [49]. One of the most important features of MCQs is the fact that

they can be easily marked and the score can be both accurate and objective [17].

Another important characteristic of MCQs is its capability to assess the different

cognitive levels. For example, a question may simply challenge a student’s ability

to recall facts, while another may test a student’s ability to understand a concept,

principle or procedure; or, at a higher level, a question may test a student’s ability

to evaluate given information [17]. Furthermore, MCQs can be designed with

a diagnostic end in mind, in order to find out whether specific areas of a given

subject are adequately known or understood, or in order to detect misconceptions

[17].

Several formative computer-based assessment tools exist that support MCQs

assessment task. Most of them do not provide feedback other than automated

score results. Only tools that attempt to provide elaborated feedback are consid-

ered. They are described in the following sections.
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2.4.1.1 GAM-WATA

GAM-WATA is a multiple choice question web-based quiz-game-like formative

assessment tool [67]. Its main function is to help teachers administer web-based

formative assessment and interact with students in order to improve student-

learning effectiveness and encourage students to perform self-assessment sponta-

neously. This tool implements three strategies, which are repeat the test, correct

answers are not given and all pass and then reward. Students are allowed to re-

peat a test until all question items are answered correctly. Every time a student

tries a test, correct answers are not given, instead an item question is removed

from the test if the student answers it correctly three times in succession. A

student gets a reward when he/she answers all questions correctly three times in

a row.

The tool provides two kinds of feedback to students. The first one consists of

an immediate on-line hint given to students while they are taking a test. This

feedback is optional and can be triggered by students when they feel an item

question is difficult. To reduce the difficulty of the question, students can choose

either to eliminate one of the incorrect options or to get information about how

their peers answer the question. A teacher provides the second type of feedback

when students send their questions by email.

The tool was evaluated and compared against a web-based formative assess-

ment and paper-and-pencil based test in an elementary school environment [67].

It was concluded that the students in the GAM-WATA group participate more

actively in web-based formative assessment than students in the normal web-

based formative assessment group and GAM-WATA improves learning effective-
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ness more than the other two approaches. It was argued that the challenge and

game mechanism included in the GAM-WATA tool promote the motivation of

students to actively participate in web-based formative assessment and suggested

that more effective strategies should be incorporated in web-based formative as-

sessment to construct a successful e-Learning environment.

One of the limitations of the tool was the fact that the feedback provided by

the tool is not as direct and resourceful as the reference information provided by

teachers to facilitate student learning in a traditional learning environment [67].

It was recommended that techniques of intelligent tutoring should be integrated

into the tool to provide feedback with high informativeness.

2.4.1.2 Question-mark Perception and Hot Potatoes

Hot Potatoes is a commercial web-based software tool that enables the creation

of interactive MCQs, short answer, jumbled sentence, cross-word, matching and

gap-fill exercises [31]. The tool provides useful and targeted feedback based on

students’ response. The feedback is written when MCQs are prepared. Specific

feedback is written for each distractor of a given question and additional feedback

for a correct option. The feedback for a correct answer is required to help students

understand why the answer is correct.

Question-mark Perception is also a commercial web-based software tool that

enables educators or trainers to author, schedule, deliver and report surveys,

quizzes and exams [55]. It can be used for formative, diagnostic and summative

purposes. The item level feedback provided for MCQs is similar to the one pro-

vided by the Hot Potatoes tool. In addition to item level feedback, Question-mark

Perception provides topic and assessment level feedback. Item level feedback
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provides a specific diagnosis that correct misconceptions related to a particular

question [55]. The disadvantage of too much item level feedback according to the

developers of Question-mark Perception tool is that it can encourage students to

get the question right instead of understanding it. That is why Question-mark

Perception offers topic level feedback based on aggregated scores of items within

a specific topic or sub-topic.

The topic level feedback provides two types of feedback; one for an aggregated

score below fifty percent and another for aggregated score above fifty percent. The

content of the topic level feedback is not specific and elaborated as shown in figure

2.3. It informs students whether they pass or not. If they fail, students are asked

to re-read relevant chapters. Considering the content of the topic level feedback,

it is difficult to agree with the developers of Question-mark Perception who argue

that the topic level feedback can diagnose knowledge and skill deficiencies, cor-

rect misconceptions and prescribe a learning event that would help participants

improve their learning performance.

Figure 2.3: Topic level feedback from Questionmark Perception tool[55]
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2.4.2 Short-free-text Responses

Short-free-text response questions require students to construct responses freely

in natural language without the need to select from options of answers. Short-free-

text responses are usually a few phrases or three to four sentences [33]. Current

marking algorithms can not handle long student responses, as a result short-

free-text responses are restricted to no more than 20 words [33; 34]. Moreover,

the current tools have difficulty in marking student responses that include both

aspects of correct and incorrect responses [34].

Most computer-based assessment tools that support short-free-text responses

assessment tasks focus on automating marking rather than on providing feedback

for formative purposes. The widely used software tools for automating marking

of short-free-text responses are C-rater developed by Educational Testing Service

and auto-marking tool based on information extraction and machine learning

techniques developed at the University of Cambridge [61; 62]. They provide

feedback that includes either score result or the correct answer when students’

response is incorrect or incomplete.

Basically, there are two methods of marking free-text responses automatically.

These are knowledge based systems or machine learning techniques [35; 62]. The

knowledge based systems are more accurate and require less training data than

machine learning techniques. However, writing patterns for knowledge based

systems are very tedious work and they require expertise in both domain of

examination and computational linguistics.

In the knowledge based systems, experts in the domain of assessment tasks

who are instructors or tutors list possible correct answers per question from their
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experience or past student responses. The next challenge is to represent the

possible correct answers as a pattern that could store all the variable information

using predefined grammar. Patterns are written usually by hand and contain

recurring head words or phrases which are annotated using part-of-speech tags

such as noun phrases and verb groups. To mark a new student response, firstly,

it has to be processed using natural language processing technique and then

represented as a pattern in the same way as the correct answers are represented.

Secondly, the pattern for the new student response is matched with the pattern

of the model answer and a marking rule is applied to calculate a score. Most of

the time simple marking rule that specifies pass or fail criterion is used. In this

rule, a full mark is given if there is exact match between the new student response

and model answer patterns, otherwise zero mark is given. Other marking rules

that award scores between zero and full marks can be used for partial patterns

match.

Supervised machine learning approaches such as decision tree learning and

Bayesian learning were applied to automatically classify short-free-text responses

to facilitate automated marking [62]. Previous student responses are used as

training and testing data sets. Since supervised learning is applied, the first

task is to label manually each previous student response a score ranging from

zero to full-marks by a domain expert. For a machine learning algorithm to

process student responses, they have to be represented as a set of attributes

where words of a student response are considered as attributes. When all the

words of a student response are considered as attributes, it is called non-annotated

data. Alternatively, only parts of a student response that are relevant could be

considered as attributes, in which case it is known as annotated data. Once the
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past student responses are represented as a set of attributes and then labelled, a

machine learning technique can be applied to build an abstract model to represent

the training data which could be used to predict the score of a new student

response.

Even though most developed computer-based systems focus on automated

marking of short-free-text response questions, there are a few assessment tools

that concentrate on both automated marking and immediate delivery of formative

feedback. A tool developed by intelligent assessment technologies (IAT), which

has been deployed by the UK Open University, is an example of such assessment

tools [35]. It was developed based on natural language processing techniques and

information extraction techniques, and provides an authoring tool that can be

used by a question author with no skill in natural language processing [35]. The

authoring tool allows question authors to focus on writing model answers for a

question and the keywords for each model answer by hiding the complexities of

natural language processing [35]. The tool also provides a marking engine that

performs a match between student responses and predefined model answers.

The tool provides instantaneous feedback in three stages where students are

allowed to attempt three times only before they can receive the model answer for

a particular question [35]. The system also provides other predefined feedback

associated with possible incorrect responses specified by a question author. If

a student response is incorrect then it is matched with the predefined possible

incorrect responses and a predefined feedback is provided when there is a match

with one of the possible incorrect responses, otherwise, the student is provided

with feedback that informs that his/her response appears to be incorrect or in-

complete.
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If we look at figure 2.4 that demonstrates the three feedback stages, at the

first attempt the tool provides feedback that says your answer appears to be

incorrect or incomplete in some way. The tool does not give specific feedback

that addresses the incorrect response since the response could not match with

the possible predefined incorrect responses. The reason why there is no match is

the fact that the question author could not anticipate student responses similar

to what given in the first attempt. This is one of the weaknesses of the tool.

Fortunately, during the second attempt, the tool provides predefined feedback

that matches one of the possible predefined incorrect responses. Finally, the

student responds correctly for the third attempt and receives feedback that verifies

that the answer is correct and contains also a model answer.

2.4.3 Problem Solving Exercises

2.4.3.1 Retina

Retina is a tool that helps instructors and students by observing student’s pro-

gramming activities [48]. The tool can record the compilation attempts, compi-

lation errors and run time errors. It enables students to review their past actions,

see how they relate to other students and get suggestions on how to avoid com-

mon errors encountered in the previous assignments and recommendations about

how to go forward.

It also allows instructors to understand more about what their students are

doing. The instructor can analyse the individual performance to detect which

students need more tutor support and by analysing the overall performance of

the class which topic needs more explanation can be identified.
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Figure 2.4: Three stage feedback extracted from [35]

The Retina tool adopts two approaches of data analysis. The first approach

applies statistical methods to provide summary for the students and instructors

and give suggestions to students. The second approach uses rule-based expert

system to provide appropriate, immediate and real time recommendations to

students while they are doing their programming activity for a particular assign-

ment.

The rule-based expert system consists of three rules:

1. If the rate of errors per compilation is higher than normal of a student,

recommend that the student attempts to work in smaller intervals or address

compilation errors that are at the top of the list, which may be causing other
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errors to appear.

2. If the amount of time spent by a student on an assignment is more than

twice the suggested time, recommend that the student is spending too much

time on it and should seek the assistance of a member of the teaching staff

for help.

3. If the same error occurs on the same line on more than four consecutive

compilation attempts, explain that error in simple terms and recommend a

possible way to fix it.

The tool was evaluated to determine if the potential aims of enhancing teach-

ing and student learning experience were achieved. Programming activities of

48 students taking a first year course were collected by Retina to conduct the

evaluation process. However, only the responses of the instructors of the course

were assessed. According to the instructors’ experience, the Retina helps them

to improve their interaction with the students and increase the quality of the

lectures.

Whether the recommendation feature of the Retina tool facilitates the im-

provement of student performance was not evaluated. This could have been done

from the records of the student programming activities held by the Retina tool.

We can check if the number of compilation and run time errors and the time

spent per compilation attempt gradually decreases as more recommendations are

given to the student.

The recommendation feature has applied intelligent data analysis technique

using a rule-based knowledge base even though it is a simple knowledge base con-

sisting of three rules. The recommendation is immediate and real time, however,
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it provides solutions to each compilation and run time errors.

2.4.3.2 BLASTOFF

BLASTOFF is an individualized interactive formative assessment, which is de-

signed to help instructors to create easily individualized drill-and-practice ques-

tions that provides students with interactive feedback to basic accounting prob-

lems [11]. The tool is implemented as a spreadsheet template file that contains

accounting problems and their corresponding answers and feedback designed by

an instructor. It eliminates the burden on instructors to mark and provide feed-

back on individual questions. Individual questions are created automatically from

a template question by choosing a combination of options randomly to reduce stu-

dent temptation to take inappropriate short-cuts.

Students can receive two types of individualised feedback. The first type

of feedback suggests hints to help students start working on a question. The

hints have two parts, which are general advice for students that refer them to

useful learning resources and the final numerical answers. The second type of

feedback is offered to students when they finish attempting a question and it

provides a general feedback and assessment of answers. The general feedback

contains information for students to refer them to upcoming relevant tests, good

spreadsheet practices, or simply other learning resources that the student might

use to extend their learning beyond the current concepts being reinforced.

Assessment of answers tells a student whether the attempted answer is correct

or not and provides feedback for incorrect answers covering a variety of likely

errors. According to the author, the tool has limitations. It does not identify the

specific error a student has made for a particular incorrect answer, as a result
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customized feedback is not possible. Instead, general feedback that includes a

variety of likely errors is offered to students. Even though the tool has been

applied in accounting problem exercises, it can be applied to promote learning of

other rule-based procedures and concepts.

2.4.3.3 ProtoAPOGEE

ProtoAPOGEE is a prototype for automated project grading and instant feed-

back system in teaching web-based computing for upper division level students,

where advanced issues such as atomicity of database access, thread safety, relia-

bility, robustness and security are a major concern [26]. This tool can evaluate

graphical user interface (GUI) programs, unlike previous assessment tools that

can only work with text mode programs, based on open-source web application

testing tools such as Ruby. However, it cannot check how the solution is imple-

mented that is its quality and style. The tool checks only whether the functional

requirements are met by inducing test cases for each requirement.

ProtoAPOGEE comprises three main modules. The first one is a project

specification tool that allows instructors to specify the background information,

requirements, grading policy, and test cases for evaluating requirements. The

second module is an automatic grading, which drives an Internet browser at the

background and evaluates a submitted student project using stored test scripts.

The last module deals with grade report, which includes an itemized grading

summary on all requirements pre-set by an instructor, step-by-step animation

playback of the evaluation of each requirement and informative textual feedback.

ProtoAPOGEE provides feedback information at two levels. These are sum-

mary information of a project that includes grade received by a student and
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detailed feedback for each requirement and their corresponding test cases. The

detailed feedback has two major sources of information, which are detailed analy-

sis of each failed test case and their corresponding hints and guidance information.

The hints and guidance information are configured by an instructor or automati-

cally by the tool for each failed test case. The tool can not diagnose why the test

case of a particular student fails, as a result it is impossible to give individual-

ized feedback to guide him in correcting his errors or misconceptions. The tool

provides general hint or guidance information for each failed test case, which is

the same for all students who make the same failed test case.

2.4.3.4 Environment for Learning to Program

Environment for learning to program (ELP) is an on-line, active, collaborative

and constructive web environment to support novice programmers in teaching

Java, C# and C [64]. The tool supports fill-in the gap programming exercises

where an exercise consists of a program with some missing lines of code, which

are required to be completed by a student. The gaps usually contain helpful hints

describing the missing code.

It does not provide feedback to compilation errors; instead it customizes the

compilation error messages in an attempt to reduce the complexity of writing

programs. The most important feature of the tool is the program analysis frame-

work that can analyse students’ fill-in the gap programming exercises and pro-

vides feedback on the quality and correctness of their solution. The framework

can perform static and dynamic analysis.

Static analysis is the process of analysing source code without executing it for

evaluating the quality of students’ programs. It is conducted in two stages, which
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are software engineering metrics and structural similarity analysis. The software

engineering metrics analysis is performed based on the software complexity metric

and good programming practice guidelines. It contains eight functions: program

statistics, cyclomatic complexity, unused parameters, redundant logic expression,

unused variables, magic numbers, access modifiers and switch statements. Once

the software engineering metrics analysis is done, the structural similarity analysis

refines its results to compare the structure of the student solution with model

solutions in order to identify similarities and differences.

Dynamic analysis involves execution of students’ solution through a set of

test data to estimate correctness and detect at which gap errors occur using

black box and white box tests. Black box testing is carried out by executing

students’ programs through a set of test data and capturing gap outputs to be

sent back to the server to check correctness of the output. The main purpose

of the white box testing is to discover any possible logic errors, which are not

revealed in the black box testing, or to detect gaps that have logic errors, which

lead to incorrect outputs. White box testing inserts a student’s gap solutions,

one at a time into an automated test framework to compare the outputs of each

gap with the outputs produced by the corresponding gap solution.

The tool only works for fairly simple introductory programs and for well-

formed gaps such as a statement, block of statements, a method or a complete

class. Two evaluations were conducted to discover whether the system makes

learning to program easier. The first evaluation was for a laboratory-based intro-

ductory Java class in which thirty students participated at the end of week 5 of

their course. According to the feedback from the participant the students enjoyed

using ELP and agreed that the system makes compiling and writing computer
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programs so much easier with the gap type exercises and customised compilation

error messages.

2.4.3.5 CourseMarker

CourseMarker is a software tool that supports the automated assessment of Java-

based course works [63]. This tool is developed based on previously well known

computer-based tool known as Ceilidh. Ceilidh is the first computer-based assess-

ment tool that supports the full life-cycle of assessment of programming course-

work [8]. The main component of the CourseMarker is its marking system which

uses software metrics for program functionality, complexity, efficiency, style, test

data coverage and programming skill in order to automatically mark program-

ming coursework and to provide instant feedback.

The marking system includes generic marking schemes, which can be cus-

tomized for a particular programming exercise. The marking system is comprised

of two types of tools, which are dynamic and static tools. The dynamic tool exe-

cutes the compiled student solutions against a set of test data in order to assess

whether they conform to predefined specifications of an exercise to be marked.

This tool provides predefined feedback such as excellent, very good, good, fair,

and average and poor based on marking result range values. This type of feed-

back is not useful for students to identify their programming errors and improve

their solution.

The static tool checks the source codes of student solutions to assess how

well the source codes are written. This tool consists of different tools such as

topography and feature tools, which check the different aspects of the quality of

a source code. The topography tool checks the readability and maintainability of
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a source code by measuring source code layout, indentation, choice and length of

identifiers and usage of comments [63]. Based on the result of the measurement,

the topography tool provides a mark and appropriate feedback. The feedback

mechanism of the topography tool enables an exercise author to identify mark-

ing result ranges and then write an appropriate feedback for each mark range

value. For example, if we consider a topography measure that counts the average

length of identifiers (AIDL), a list of possible mark ranges and their corresponding

feedback depicted in figure 2.5 could be generated by an exercise author.

Figure 2.5: Feedback given by topography tool extracted [63]

The feature tool examines student’s solution for the presence or absence of

certain keywords that are specific to a particular exercise [63]. For example, the

tool can be configured to check the occurrence of language specific features such

as the use of switch statements, correct declaration of methods and variables and

use of loops. The feedback mechanism of the feature tool allows exercise authors

to write feedback for each specified feature that should be provided to students.

The first feedback is written if the feature is present while the second is written

if the feature is not found. The feedback that can be provided to students is

obviously limited by the fact that the only available information is whether a

particular feature is present or not. The feedback, as it is illustrated in figure

2.6, could not be more than informing students about the presence or absence of

48



a feature.

Figure 2.6: Feedback given by feature tool extracted from [63]

2.4.4 Summary

Several computer-based formative assessments have been described in the above

sections. We can characterise computer-based formative assessments by the type

of the assessment they support and how feedback process is supported. Some of

the most common types of assessment are multiple choice questions, short-free-

text answers, fill-in the gap exercise and problem solving exercises.

The various assessment types are appropriate to assess different learning ob-

jectives and they pose different challenges when we attempt to automate their

assessment processes. The multiple choice questions, for example, can assess ef-

fectively low level learning objectives such as student’s ability in remembering

and understanding concepts of a given topic. It is the most suitable assessment

type for automatic scoring.

There are three types of feedback. The simplest form of feedback is to inform

a student whether his/her response is correct or not and to tell the student the
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correct answer if the response is not correct. The feedback is usually tied to each

individual question item in the case of multiple choice questions and short-free-

text responses assessment forms. In the case of a problem solving exercise such

as programming, the feedback is tied to each test case or feature extracted from

static analysis of a source code submitted as part of a response to a programming

exercise.

The second type of feedback does not tell the correct answer if a student

responds incorrectly. Instead, students are encouraged to attempt again. This

form of feedback can be done in two ways. Firstly, students are told that their

response is not correct and are encouraged to attempt again until they answer

it correctly. Secondly, students are told why each response is not correct and

a hint or guide on how to improve his/her response on the following attempt is

provided. The challenge for this form of feedback is to list all possible incorrect

responses. As it is mentioned in previous sections, experts on domain knowledge

and past student responses are used to extract possible incorrect responses. Once

possible incorrect responses are listed, appropriate feedback for each of them can

be constructed.

The last form of feedback is a feedback not tied to individual question or fea-

ture. It is sometimes called topic level feedback to differentiate it from item level

feedback, which is a feedback tied to individual question or feature. Topic level

feedback has been used for multiple choice questions in [55]. The feedback is con-

structed based on the aggregate score of all multiple choice questions related to a

particular topic or sub-topic. The feedback informs students to re-read relevant

teaching material if the aggregate score is below fifty percent, which is the same for

all failed students. Currently, as the literature review reveals, topic level feedback
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has never been used for short free-text responses and problem solving exercises

assessment forms. In this research, application of unsupervised learning tech-

niques is investigated for developing effective topic level feedback that improves

student learning based on responses observed from multiple choice questions and

problem-solving exercise assessment tasks. Multiple choice questions can be used

to improve understanding of a topic or subtopic whereas programming exercises

can be used to develop programming ability for beginners.
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Chapter 3

Unsupervised Multiple

Choice-based Student Modelling

This chapter describes the proposed novel method for identifying student group

profiles based on student responses to a set of multiple choice questions for the

purpose of constructing diagnostic feedback using snap-drift modal learning neu-

ral network.

Firstly, we define the learning task that needs to be performed by the snap-

drift learning modal learning networks. Once the learning task is defined, a snap-

drift learning algorithm is implemented and then training data sets are prepared

using two real assessment tasks.

Secondly, a method for representing identified student groups is proposed;

analysis of the learning behaviour of the snap-drift modal learning neural networks

is described; criteria for determining the usefulness of student group profiles are

defined; and student group profiles are identified using the implemented snap-drift

modal learning neural networks based on the insight gained into the learning
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behaviour and the defined criteria. Once a set of represented student group

profiles are identified for the two assessment tasks, the construction of diagnostic

feedback for each student group is explained.

Thirdly, how assessment sessions are conducted to gather student responses

and the analysis of the gathered student responses are described. The objectives

of the analysis are firstly to test if student responses are assigned to their ap-

propriate student groups. Secondly, to assess if student group profiles facilitate

the process of identifying gaps of understanding and misconceptions. Thirdly, to

assess the impact of diagnostic feedback on student learning performance.

Finally, a summary of the main points of the chapter is presented.

3.1 Learning Task

There are different forms of assessment, which can be used to gather student

responses. Multiple choice questions (MCQs) is an assessment type that has been

introduced in higher education due to its suitability in current higher education

environments with a large number of students and reduced resources [49] and it

can be used to assess different cognitive levels. In addition to this, MCQs can

be designed with a diagnostic end in mind, in order to find out whether specific

areas of a given subject are adequately known or understood, or in order to detect

misconceptions [17].

It is not difficult to generate a feedback tied to an individual question. In this

case, feedback can be constructed for each option of a given question. However,

this type of feedback is not effective to assess the ability of students to understand

a topic or sub-topic using only one question. We can only assess student’s ability
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to recall a particular fact using one question, but we obviously need more than

one question to assess student’s ability to understand a particular topic. This

implies that we should consider different combinations of responses to a set of

multiple choice questions to construct effective feedback. For example, if we con-

sider five multiple choice questions with five options (A,B,C,D,E), the possible

number of combinations of responses can be calculated as follows:

1. Two-combinations of responses:

=
5!

2!3!
∗ 52 (3.1)

2. Three-combinations of responses:

=
5!

3!2!
∗ 53 (3.2)

3. Four-combinations of responses:

=
5!

4!1!
∗ 54 (3.3)

4. Five-combinations of responses:

= 55 (3.4)

The total possible number of combinations of responses based on the above

formula is 7750. The total possible number of combinations of responses increases

exponentially as the number of multiple choice questions increases. Therefore, it

is not feasible to construct a feedback for each combination of responses. Even

though each student is unique, there exists only a limited number of different

ways of understanding and range of misconceptions of a topic [3]. Hence, we only

need to identify the different groups which are characterised by similar gaps of

understanding, level of understanding and/or common misconceptions and assign

a student response to an appropriate group automatically.

One possible solution is to analyse manually a collection of responses of stu-

dents by a human expert in order to categorize the responses into groups of
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similar knowledge or understanding levels. Once the groups are identified then

each group can be analyzed to characterise its understanding or knowledge level.

This solution is very time consuming and it is not practically possible for a large

number of student responses.

Another approach is to use neural networks, which are able to derive mean-

ing from complicated and/or imprecise data and to extract patterns that are too

complex to be noticed by many other computational techniques [25]. These char-

acteristics make neural networks a powerful method to model human behavior

and a useful technique to create user models for hypermedia applications [25]. A

neural computing technique, which is snap-drift modal learning neural network

is applied to identify the different groups which are characterised by similar gaps

of understanding, level of understanding and/or common misconceptions and to

assign a given student response to an appropriate group automatically.

The input patterns for the learning task are a set of student responses gathered

from assessment sessions. An input pattern (input vector), which is a sequence

of responses, is defined mathematically as follows:

X = {x1, x2, x3, ...xn} (3.5)

Where n is the number of multiple choice questions and

xi ∈ {a, b, c, d, e} (3.6)
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3.2 Snap-Drift Modal Learning Neural Network

Snap-Drift modal learning neural network (SDNN) is unsupervised learning sys-

tem that combines two learning modes, which are snap and drift. It is described

in detail in chapter two. The focus in this section is to describe how it was im-

plemented in order to perform the specified learning task. The main component

of the snap-drift modal learning neural network is the snap-drift learning agent

that represents the topology, group allocation map and learning algorithms of

snap and drift. Its inputs are learning parameters and training data. It performs

learning for a given epoch and returns a group allocation map that contains the

index of all training patterns and their corresponding winning nodes of s layer.

The algorithm of the snap-drift learning agent is described using a pseudo-code

as follows:

1. Get learning parameters ( d, s, D ,β1,β2 and quality assurance threshold)

2. Get training data.

3. Get current epoch.

4. Create an empty group allocation that maps patterns to winning nodes.

5. Create d and s layers based on the learning parameters and dimension of training pat-

terns.

6. Set an appropriate value of α depending whether the epoch is odd or even.

7. FOR each input pattern of the training data

(a) Find the D winning nodes at d layer with the largest net inputs.

(b) Use equation 2.9 to update the weight vectors of the D winning nodes.

(c) Normalise the updated weight vectors.

(d) Set the output of the D winning nodes at d layer to 1 and the output of the

remaining nodes to 0.

(e) Consider the outputs of the nodes in the d layer as input patterns to the s layer.
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(f) Find a node at the s layer with the largest net input.

(g) IF net input of the node with the largest net input is greater than the quality

assurance threshold THEN

i. Use equation 2.9 to update the weight vector of the winning node and set

the winning node as committed.

ii. Normalise the weight vector of the winning node.

iii. Add the current input pattern and the winning node to the group allocation

map.

(h) ELSE

i. Select uncommitted node from the nodes of the s layer.

ii. Use equation 2.9 to update its weight vector and set it as committed.

iii. Normalise the weight vector of the selected node.

iv. Add the current input pattern and the selected node to the group allocation

map.

(i) END IF

8. END FOR

9. Return group allocation map

The complete algorithm for the snap-drift modal learning neural network is

described using flowchart in figure 3.1.

The Snap-Drift modal learning neural network is implemented in Java. To

test whether the learning algorithm is implemented correctly and assess its per-

formance in classifying linearly inseparable patterns, iris data set was used. Iris

data set contains 3 classes of 50 instances each, where each class refers to a type

of iris plant [65]. The first class is linearly separable from the other two classes,

while the second class is not linearly separable from the third class.

The data set is labelled, that means, each pattern is labelled as class one,

class two, or class three. The implemented snap-drift learning algorithm is un-

supervised; hence, the iris training data set is treated as unlabeled data set by
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Figure 3.1: Flow chart of Snap-drift modal neural network algorithm
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removing class label of all training patterns. However, the class label of each

pattern is used to estimate the performance of the implemented SDNN learning

algorithm.

We run the implemented SDNN ten times using different combinations of

three learning parameters, which are the number of nodes in d layer, the number

of selected features or winning nodes (D) and quality assurance threshold. The

learning rates were fixed to 0.1 and 0.2 based on previous empirical values, and

the number of nodes in s layer was set to 100 so that enough uncommitted nodes

are available to allocate to matched training patterns. The weight vectors of

the distributed module are initialized by assigning them to a randomly selected

training pattern whereas the weight vectors of the selection module are initialized

to one based on previous application of SDNN in [53]. The learning stops when

the convergence percentage is 95 or when a maximum epoch of 2000 is reached.

Convergence happens when each training pattern is mapped to the same winning

node for more than two consecutive iterations.

The result of the experiment showed that the minimum and maximum num-

ber of groups identified by the implemented SDNN were 2 and 9 respectively. In

all runs, training patterns that belong to the first class were not mixed with the

training patterns of the second and third classes. This demonstrates that SDNN

learning algorithm was implemented correctly and was capable of classifying lin-

early separable data. Training patterns of the second class were also separated

from the training patterns of the third class with a small number of patterns

mixed from both classes in all other groups that do not contain training patterns

from the first class. The average performance for classifying the non-linearly

separable classes, which are the second and third classes, was above 95 percent.
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3.3 Data Preparation

Two assessment tasks were chosen to gather student responses. The first assess-

ment task was selected from Introduction to Data Analysis module, which is a

core module for first year students at London Metropolitan University. 501 stu-

dent responses were captured and saved from a web learn where students were

allowed to practice multiple choice questions. Five related multiple choice ques-

tions that can assess the ability of students in understanding probability topic

were only considered. The multiple choice questions are attached in Appendix A.

The second assessment task was selected from Introduction to Programming

module, which is also a core module for first year students at London Metropolitan

University. The assessment task was a set of five multiple choice questions on the

topic of constructors in the context of object-oriented programming. A paper-

based assessment session was undertaken by students who were registered for the

module and 115 student responses were captured. The multiple choice questions

are attached in Appendix B.

In both assessment tasks, the session was carried out in an environment where

students were not allowed to copy each other and get help from others. Captured

student responses have to be processed and saved as text file with predefined

format where each student attempt is represented by a sequence of characters.

The number of characters corresponds to the number of multiple choice questions.

The distribution of the student responses captured from the first and second

assessment tasks are shown in figure 3.2 and 3.3 respectively.

A sequence of characters that represent a student attempt is transformed into

a binary vector using a coding of information well known in the field of infor-
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Figure 3.2: A bar chart of the distribution of student responses captured from
assessment task one

Figure 3.3: A bar chart of the distribution of student responses captured from
assessment task two
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mation theory. Based on this coding scheme, each student answer (character) is

represented by a binary number with a number of digits equal to the number of

options of a multiple choice question. The position of 1 is changed to represent

all possible answers. For example, to represent a sequence of answers with four

options, we use four digits binary numbers: 0001, 0010, 0100, 1000 to represent

A,B,C,D respectively. According to this representation scheme, the represen-

tation of three student responses to a set of three MCQs with four options are

shown as follows:

Table 3.1: A coding example for three responses to a set of three MCQs with
four options

Response Binary code

AAB 000100010010

AAC 000100010100

AAD 000100011000

The euclidean distance between response one and two is 1.41 and is the same

as the euclidean distance between response one and three. On the other hand, the

hamming distance between response one and two is 2 which is also the same as the

hamming distance between response one and three. As a result, the representation

scheme managed to retain the similarity information between the three responses

when they are mapped to binary vectors, which makes it appropriate to represent

a sequence of characters as a binary vector.
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3.4 Student Group Profiles

The output of the Snap-drift learning agent consists of a group allocation map, a

set of winning nodes of s layer and two matrices of weight vectors corresponding

to the distributed and selection modules. The set of winning nodes represent the

different student groups while the two matrices of weight vectors can be used

to identify the appropriate student group of a new student response. The group

allocation map contains information about the allocation of each training pattern

to its appropriate student group.

As mentioned previously, the purpose of identifying student groups is to help

tutors in revealing gaps of understanding and misconceptions so that they can

write an appropriate diagnostic feedback that improves student learning perfor-

mance. Therefore, it is necessary to represent the group allocation map in a

format that facilitates achieving this purpose. The proposed method to con-

struct student group profile based on the group allocation map is described using

a pseudo-code as follows.

1. Set group profile threshold that determines the most likely answer

2. Get group allocation map from the Snap-Drift learning agent.

3. Create an empty matrix for each student group.

4. Set the row and column of each matrix to the number of multiple choice questions and

the number of options respectively.

5. Compute the value of each element (xij) of all matrices as the percentage of student

responses for question i who answered option j based on the group allocation map.

6. FOR each matrix

(a) FOR each row

i. Find the column index with the highest percentage.
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ii. IF the highest percentage is greater than the threshold THEN

Replace the row with an appropriate character (1 = A, 2 = B, 3 = C, 4 =

D, 5 = E) corresponding to the column index

iii. ELSE

Replace the row with an asterisk (*).

iv. ENDIF

(b) ENDFOR

7. ENDFOR

8. Return matrices

The implemented Snap-Drift modal learning neural network could output dif-

ferent set of student group profiles based on the values of the learning parameters.

To get insight into the relationship among the learning parameters and how they

affect the output, several combinations of the learning parameters were tested

using iris data set and the training patterns prepared in the previous section. A

graphical user interface was integrated with the implemented snap-drift modal

learning neural network to assist the testing. As shown in figure 3.4, the graphical

user interface comprises four components: training data panel, SDNN parame-

ters panel, control granularity of student groups panel, training panel and output

visualisation panel. The output visualisation panel component is integrated with

MATLAB.

Based on the observation of the tests, the number of nodes in d layer com-

bined with its number of simultaneously active nodes ( D) and quality assurance

threshold (hurdle) determine the number and nature of groups. Generally, in-

creasing the number of features ( D) in d layer decreases the number of groups.

For a given number of features, increasing the quality assurance threshold tends

to increase the number of groups. The quality assurance threshold can be used
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Figure 3.4: Screen shot of Graphical user interface of SDNN tool

to fine tune the nature of the identified groups. The influence of the threshold

starts after a certain value which is correlated to the number of features in d

layer. When its value is greater than a certain value, it becomes hard to identify

groups due to slow convergence speed and lack of available uncommitted nodes

in s layer. The learning rates for d and s layers influence the convergence speed.

The recommended values of the learning rates for d and s layers are 0.1 and 0.2

respectively. Convergence is not guaranteed. If there is no convergence, the triv-

ial solution is to re-start the training process or increase the quality assurance

threshold by a small amount.

Generally, too many student groups require too much tutors’ time in writing

feedback whereas a very small number of student groups could be less effective

as the feedback tends to be too generic. Therefore, it is very important to de-
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termine an appropriate number of student groups in order to construct effective

diagnostic feedback. As long as the training data set is large and representative

of the potential patterns, the implemented SDNN is capable of converging to an

appropriate number of student groups. However, the implemented SDNN might

find a small or large number of student groups because of less representative and

inadequate training patterns. In this case, we can adjust the value of D, d and

quality assurance threshold to decrease or increase the identified student groups.

Based on the method described in the above, a student group is represented

by a sequence of most likely responses for each multiple choice question. The

method specifies a threshold for determining the most likely responses. Its value

should be between 70 and 80. A value below 70 decreases the number of student

responses assigned to their appropriate student group, whereas a value above

80 decreases the probability of finding most likely sequence of responses. Even

though the group profile threshold is set between 70 and 80, there might be a

mix of responses to a particular question. This case happens when percentages

of student responses for a given question is evenly distributed over all possible

options.

If a student group is represented by a sequence of asterisk (*), which means

a mix of responses for all multiple choice questions, it is not a useful student

group since it doesn’t reveal any gaps of understanding and misconceptions of

a particular topic. The question is what should be the nature or pattern of the

student group profile in order to be useful. Since one multiple choice question

can’t assess any concept or aspect of a given topic, a student group profile of only

one most likely response can’t be used in revealing any gaps of understanding

and misconceptions of a given topic. Therefore, a student group profile should
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be represented by at least two most likely responses in order to be useful. That

is why it is important to define the characteristics of each student group and

the number of student groups as criteria for assessing the usefulness of a set of

student group profiles for effective diagnostic feedback.

Once the criteria for assessing the usefulness of a set of student group profiles

was defined, the implemented SDNN integrated with a graphical user interface

was applied to the two training data sets prepared in the previous section. Using

the defined criteria and the insight gained into the relationship among the learning

parameters, two sets of student group profiles were developed corresponding to the

two assessment tasks described in the previous section. The two sets of student

group profiles are shown in figure 3.5 and figure 3.6. The learning parameters

used were 2000 maximum epochs and 0.1 and 0.2 learning rates and 100 number

of s nodes, which is large enough for allocating uncommitted nodes and identify

up to 100 student groups.

Figure 3.5: Student group profiles for the first assessment task

If the learning parameters are changed, the identified student group profiles

will change slightly. The change might result in more student group profiles or

less student group profiles. The increase in the number of student group profiles

is because of the break-up of a student group profile into two or more. The
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Figure 3.6: Student group profiles for the second assessment task

decrease in the number of student group profiles is due to the aggregation of two

or more student group profiles into one. The criteria for assessing usefulness of

a set of student group profiles will guide a tutor in identifying a set of student

group profiles which dont consume much time in writing diagnostic feedback and

which provide specific diagnostic feedback.

3.5 Diagnostic Feedback Construction

Feedback is the most essential part of formative assessments as the sole purpose

of performing formative assessment is to provide feedback based on students’ re-

sponses observed from assessments [7]. Feedback can be defined as an information

communicated to a learner that is intended to modify the learner’s thinking or

behaviour for the purpose of improving learning [58]. A formative assessment

68



without feedback has no effect on improving student learning experience and a

formative assessment with feedback does not necessarily improve student learning

performance [10]. For example, if answers are included as part of feedback, the

effect of feedback on student learning will be negative [10; 13]. The quality of

feedback determines the effectiveness of formative assessment [10].

Several research studies have been conducted to find out what characteris-

tics of feedback actually improve student learning. Most researchers agree that

for feedback to be effective, it should be non-evaluative, supportive, timely and

specific and should include the comparison of actual performance with some es-

tablished standard of performance [58]. Researchers have also reported that the

content of effective feedback should contain both verification and elaboration [58].

Verification indicates whether student’s work is correct or not. Elaboration is an

information that provides details of how to improve an answer [58]. The Elabo-

ration aspect of feedback can be more specific and directive when it addresses a

topic, a response or a particular error. It can also be more general and facilitative

when it provides worked examples or gives gentle guidance.

A diagnostic feedback is generated based on the analysis of student responses

that addresses gaps of understanding and misconceptions[4; 53]. It should con-

firm the gaps of understanding or misconceptions and provide details on how to

close the gaps of understanding and correct misconceptions without specifying

which questions are correct or not. To support construction of diagnostic feed-

back, student responses are represented by student group profiles as described in

the previous section. Instead of writing for each student response, a diagnostic

feedback is constructed per student group profile.

A combination of student responses, which can be extracted from a set of
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student group profiles, reveals which concepts are already understood and/or

which are misunderstood. This information helps tutors in writing the verification

part of a diagnostic feedback. Learning outcomes of a particular topic, which

specify what students should be able to do at the end of a teaching session, define

a set of related concepts for the topic and their level of understanding. Tutors can

use this information to write the elaboration part of a diagnostic feedback that

details how students close gaps of understanding and correct misconceptions.

If you consider the first student group profile from the set of student group

profiles for the first assessment task shown in figure 3.5, most students respond

option B for question 1, option A for question 3 and option E for question 4.

By looking at this combination of responses, learning outcomes of the assessment

task and the multiple choice questions, we can understand that the students have

difficulty in rounding calculated probability values and choosing a right event

type, however, they have understood the concept of probability and conditional

probability. The second and fifth asterisk (*) indicate that there are no most likely

responses for question 2 and 5 respectively. Generic feedback that addresses all

incorrect options of both questions can be included. The diagnostic feedback

for the remaining student group profiles were constructed based on the same

procedure described for the first student group profile. The diagnostic feedback

constructed for both assessment tasks are shown below.

Table 3.2 shows the diagnostic feedback for the first student group of the first

assessment group. It is constructed based on the student group profile in figure

3.5.
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Table 3.2: Diagnostic feedback for the first student group of the first assessment

task

You have understood the concept of probability and conditional probability. However,

pay attention to appropriate rounding of calculated probability values and also make

sure that the right event is considered. For instance, adult does not mean only male

or female, it includes both male and female.

If the probability that A occurs given the event B has occurred ( P (A/B)) is equal

to the probability that A occurs (P (A)), then A and B are said to be independent

or unrelated. For example, if we throw a coin and get a head, this outcome will not

affect the outcome of a second throw, as a result these events are independent.

Table 3.3 shows the diagnostic feedback for the second student group of the

first assessment group. It is constructed based on the student group profile in

figure 3.5.

Table 3.3: Diagnostic feedback for the second student group of the first assessment

task

You have understood the concept of basic probability, you need only to make sure

that appropriate rounding of calculated probability values is chosen.

The concept of conditional probability is not understood well. Conditional probability

is not calculated the same way as probability without condition. The probability that

A occurs given the event B has occurred (P (A/B)) is equal to the probability that

both A and B (P (AandB)) divided by probability of B ( P (B)). So, when conditional

probabilities are calculated use the total of the condition ( total of event B) in the

denominator rather than the overall total.

If the probability that A occurs given the event B has occurred ( P (A/B)) is equal to

the probability that A occurs (P (A)), then event A and B are said to be independent

or unrelated. For example, if we throw a coin and get a head, this outcome will not

affect the outcome of a second throw, as a result these events are independent.

Table 3.4 shows the diagnostic feedback for the third student group of the

first assessment group. It is constructed based on the student group profile in
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Table 3.4: Diagnostic feedback for the third student group of the first assessment

task

Probability of A is calculated by dividing the number of A events by the total number

of events. When probabilities are calculated make sure that appropriate rounding of

calculated values is chosen.

The conditional probability is not understood well. Conditional probability is not

calculated the same way as probability without condition. The probability that A

occurs given the event B has occurred (P (A/B)) is not equal to the probability that

B occurs given the event A has occurred (P (B/A)). Pay attention to the question to

identify the event condition.

If the probability that A occurs given the event B has occurred ( P (A/B)) is equal to

the probability that A occurs (P (A)), then event A and B are said to be independent

or unrelated. For example, if we throw a coin and get a head, this outcome will not

affect the outcome of a second throw, as a result these events are independent.

figure 3.5.

Table 3.5: Diagnostic feedback for the fourth student group of the first assessment

task

You have understood the concept of basic probability, however, the conditional prob-

ability is not understood well. Conditional probability is not calculated the same way

as probability without condition. The probability that A occurs given the event B has

occurred (P (A/B)) is not equal to the probability that B occurs given the event A

has occurred (P (B/A)). Pay attention to the question to identify the event condition.

If the probability that A occurs given the event B has occurred ( P (A/B)) is equal to

the probability that A occurs (P (A)), then event A and B are said to be independent

or unrelated. For example, if we throw a coin and get a head, this outcome will not

affect the outcome of a second throw, as a result these events are independent.

Table 3.5 shows the diagnostic feedback for the fourth student group of the

first assessment group. It is constructed based on the student group profile in

figure 3.5.

72



Table 3.6: Diagnostic feedback for the fifth student group of the first assessment

task

You have understood the conditional probabilities very well. However, you make some

errors regarding the basic probability. Probability of A is calculated by dividing the

number of A events by the total number of events. When probabilities are calculated

make sure that appropriate rounding of calculated values is chosen and the overall

total is calculated correctly.

If the probability that A occurs given the event B has occurred ( P (A/B)) is equal to

the probability that A occurs (P (A)), then event A and B are said to be independent

or unrelated. For example, if we throw a coin and get a head, this outcome will not

affect the outcome of a second throw, as a result these events are independent.

Table 3.6 shows the diagnostic feedback for the fifth student group of the first

assessment group. It is constructed based on the student group profile in figure

3.5.

Table 3.7: Diagnostic feedback for the first student group of the second assessment

task

A constructor is a special method that is called when you create class instances

(objects). It is not like any other instance methods since it does not return or change

value of fields.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

The header of constructors is similar to method headers, however, the name of a

constructor is the same as its class name and no return type is specified explicitly.

Table 3.7 shows the diagnostic feedback for the first student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.
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Table 3.8: Diagnostic feedback for the second student group of the second assess-

ment task

A constructor is a special method that is called when you create objects. It is not

like any other instance methods since it does not return or change value of fields.

Once you create an object using a constructor, you can store it in a variable that

refers objects. Before you use any variable it has to be declared first. For example,

to declare a variable named temp that refers objects of type String, you write the

following statement: public String temp;

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

The header of constructors is similar to method headers, however, the name of a

constructor is the same as its class name and no return type is specified explicitly.

Table 3.8 shows the diagnostic feedback for the second student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.
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Table 3.9: Diagnostic feedback for the third student group of the second assess-

ment task

A constructor is a special method that is called when you create class instances

(objects). It is not like any other instance methods since it does not return or change

value of fields.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

The header of constructors is similar to method headers, however, the name of a

constructor is the same as its class name and no return type is specified explicitly.

The header includes access modifier (public), name of the constructor and optional

list of parameters. The constructor header is different from class declaration, which

includes access modifier (public), class key word and name of class. For example to

declare a class called Square, you write ”public class Square”

Table 3.9 shows the diagnostic feedback for the third student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.

Table 3.10: Diagnostic feedback for the fourth student group of the second as-

sessment task

You have understood the concept of constructors. However, you need to know how

to write the header of a constructor and how to call a constructor to create objects.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

The header of constructors is similar to method headers, however, the name of a

constructor is the same as its class name and no return type is specified explicitly.

The header includes access modifier (public), name of the constructor and optional

list of parameters.
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Table 3.10 shows the diagnostic feedback for the fourth student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.

Table 3.11: Diagnostic feedback for the fifth student group of the second assess-

ment task

A constructor is a special method to create class instances (objects). It is not like

any other instance methods since it does not return or change value of fields.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using constructors, the default values are not supplied as

parameters.

The header for constructors is similar to method headers, however, the name of a

constructor is the same as its class name. The header includes access modifier (public),

name of the constructor and optional list of parameters.

Table 3.11 shows the diagnostic feedback for the fifth student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.

Table 3.12: Diagnostic feedback for the sixth student group of the second assess-

ment task

A constructor is a special method to create class instances (objects). It is not like any

other instance methods since it does not return or change value of fields. No return

type is specified explicitly for a constructor.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

Table 3.12 shows the diagnostic feedback for the sixth student group of the
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second assessment group. It is constructed based on the student group profile in

figure 3.6.

Table 3.13: Diagnostic feedback for the seventh student group of the second

assessment task

A constructor is a special method to create class instances (objects). It is not like

any other instance methods since it does not return or change value of fields.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

The header of constructors is similar to method headers, however, the name of a

constructor is the same as its class name and no return type is specified explicitly.

Even if constructors do not return values, there is no need to add void before a

constructor name.

Table 3.13 shows the diagnostic feedback for the seventh student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.

Table 3.14: Diagnostic feedback for the eighth student group of the second as-

sessment task

A constructor is a special method to create objects. It is not like any other instance

methods since it does not return or change value of fields. Once you create an object

using a constructor, you can store it in a variable that refers objects. Before you use

any variable it has to be declared first. For example, to declare a variable named

temp that refers objects of type String, you write the following statement: public

String temp;

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.
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Table 3.14 shows the diagnostic feedback for the eighth student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.

Table 3.15: Diagnostic feedback for the ninth student group of the second assess-

ment task

A constructor is a special method to create class instances (objects). It is not like

any other instance methods since it does not return or change value of fields.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

The header of constructors is similar to method headers, however, the name of a

constructor is the same as its class name and no return type is specified explicitly.

Even if constructors do not return values, there is no need to add void before a

constructor name.

Table 3.15 shows the diagnostic feedback for the ninth student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.
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Table 3.16: Diagnostic feedback for the tenth student group of the second assess-

ment task

You have understood the concept of constructors, but you need to understand the

difference between creating objects and declaring variables that refer objects. Once

you create an object using a constructor, you can store it in a variable that refers

objects. Before you use any variable it has to be declared first. For example, to declare

a variable named temp that refers objects of type String, you write the following

statement: public String temp;

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

Table 3.16 shows the diagnostic feedback for the tenth student group of the

second assessment group. It is constructed based on the student group profile in

figure 3.6.

Table 3.17: Diagnostic feedback for the eleventh student group of the second

assessment task

A constructor is a special method to create class instances (objects). It is not like

any other instance methods since it does not return or change value of fields.

Constructors are used to initialise the fields of objects to user input values. They can

also set the value of a field which is not specified as parameter to its default value.

When you create objects using a constructor, the default values are not supplied as

parameters.

The header of constructors is similar to method headers, however, the name of a

constructor is the same as its class name and no return type is specified explicitly.

Even if constructors do not return values, there is no need to add void before a

constructor name.

Table 3.17 shows the diagnostic feedback for the eleventh student group of

the second assessment group. It is constructed based on the student group profile
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in figure 3.6.

3.6 Assessment Sessions

A web-based formative assessment tool was designed and implemented to con-

duct assessment sessions so that students are able to undertake assessment tasks

based on multiple choice questions, receive a diagnostic feedback based on their

responses instantly, attempt multiple times and record information about the ses-

sion. The tool integrates five components, which are the implemented snap-drift

modal learning neural network, assessment tasks based on multiple choice ques-

tions, diagnostic feedback, assessment session manager and a relational database.

The tool was implemented using web technologies (XHTML, CSS, Java script and

AJAX), Java technologies (JSP and Servlet), MySql relational database server

and Hibernate for mapping relational tables to Java objects.

The implemented snap-drift modal learning neural network first identifies

groups which are then represented as student group profiles during training phase

and it is able also to assign a student group profile for a new student response.

The relational database component stores assessment tasks, constructed diagnos-

tic feedback and information about assessment session such as student responses,

attempts, duration between attempts, time and date of sessions. The assessment

session manager manages the whole assessment process, which includes displaying

an assessment task, capturing student responses, getting the appropriate diagnos-

tic feedback and delivering it to a student, and recording all relevant information

about a session.
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Table 3.18: A sample of data recorded from the first trial
Student

Number

Response Attempt

Number

Duration

in Min

Winning

Node

Group

Number

1

BEAEA 1 16.6 3 1

BEAEA 2 1.4 3 1

BEEDA 3 1.86 23 5

BEAEA 4 1.17 3 1

BEADA 5 0.76 3 1

2
CCECC 1 15.6 11 3

CBAEB 2 1.3 3 1

3 BEBBC 1 8.6 9 2

4
BADAB 1 7.7 12 4

BAAEB 2 16.0 3 1

5 BBEDA 1 4.6 23 5

6 BEBBB 1 11.0 9 2

7

BEBBA 1 4.7 9 2

BEAEA 2 16.6 3 1

BEAEA 3 16.6 3 1

8 BEAEA 1 16.6 3 1

9

BEAEA 1 16.6 3 1

BEAEA 2 16.6 3 1

BEAEA 3 16.6 3 1

BEAEA 4 16.6 3 1

Two trials were conducted using the developed web-based formative assess-

ment tool during workshops. During trials, students were not allowed to copy

from each other. A different cohort of students, who didn’t participate during a

training phase, were chosen to participate in the trials. All selected students were

registered for Introduction to Data Analysis module for the first trial and Intro-

duction to Programming module for the second trial. Before the trials, they were

exposed to the selected topics of the modules. Forty nine students participated

during the first trial and twenty five students during the second trial. Samples of

the gathered data from the two trials are shown in tables 3.18 and 3.19.
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Table 3.19: A sample of data recorded from the second trial
Student

Number

Response Attempt

Number

Duration

in Min

Winning

Node

Group

Number

1

ACBCB 1 2.0 2 3

BADBA 2 3.4 5 6

CABDA 3 1.0 1 2

2
BCBCD 1 4.0 3 4

BCABC 2 3.4 3 12

3

BCAAA 1 1.9 3 4

BCABD 2 1.4 3 4

BCABB 3 0.3 3 4

BCABC 4 0.9 3 12

4
CCADA 1 2.7 9 10

CCACB 2 1.3 9 10

5
BCABB 1 2.8 3 4

BCABC 2 0.1 3 12

6 ACAAB 1 3.0 10 11

7

CCABB 1 4.7 9 10

CCABA 2 1.9 9 10

BCABA 3 1.1 3 4

BCABC 4 1.2 3 12

8

CAADA 1 1.0 9 10

ABBAC 2 1.0 0 1

DCBBB 3 0.5 2 3

BCCAC 4 0.2 7 8

BCCCC 5 0.2 3 4

BCCCB 6 0.4 3 4

9

CCABA 1 3.2 9 10

CCABB 2 0.8 9 10

BCABC 3 0.4 3 12
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3.7 Results and Discussion

To assess whether each student response is assigned to an appropriate student

group profile, all student responses and their corresponding student group profile

were extracted from the database recorded using the web-based formative assess-

ment tool during the two trials. The extracted student responses are shown in

figure 3.7 and figure 3.8 from the first and second trials respectively.

Fifteen unique student responses were assigned to student group profile one

from the first trial. By comparing the student group profile of student group one

with the assigned student responses, six responses matched perfectly with the

group profile pattern. For the remaining responses, there are only two matches

out of the three for seven responses and one match for two responses.

The remaining student group profiles were compared from both trials with

their respective assigned student responses and the student responses that are

partially matched were examined if they could be assigned to any other existing

student group profiles. The result showed that none of them could be assigned

to any other student group profiles. This implies that the trained snap-drift

neural network has managed to assign those partially matched responses to the

closest student group as much as possible. The percentage of perfectly matched

student responses could be improved by increasing the number of student group

profiles and selecting student group profiles with no more than three most likely

responses.

To assess the effectiveness of the diagnostic feedback in improving learning

performance of students, data extracted from the database recorded using the

web-based formative assessment were analysed. The data set includes the se-
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Figure 3.7: Unique student responses extracted and sorted according to their
corresponding student group profile for the first trial
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Figure 3.8: Unique student responses extracted and sorted according to their
corresponding student group profile for the second trial
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quence of attempts per each student, the assigned student group profile and their

corresponding diagnostic feedback for each attempt and duration between consec-

utive attempts. A state transition diagram was used to visualise the interaction

among the student responses, student group profiles and diagnostic feedback.

Figure 3.9 and 3.10 show the possible transition of students for the first trial

and second trial respectively. The different student group profiles are identified

as states. The state of a student is determined by his/her current responses and a

diagnostic feedback is considered as an event that can trigger transition from one

student group profile to another. The transition of states is represented by an

arrow. A student group profile is characterised by a group number and average

score. The starting state of a student is determined by the first response and can

be at the final state if he/she answers all questions correctly.

Figure 3.9: Visualising the possible transition of students from one student group
profile to another using transition state diagram for the first trial

86



From the above state transition diagram shown in figure 3.9, we can under-

stand that all student group profiles can be a starting point and students were

changing states within the five intermediate states. However, there is no link be-

tween the intermediate states and the final state and there is no clear pattern that

shows a learning path to reach the final state. Possible reasons for this might be

difficulty of the questions or little effort in reading diagnostic feedback as it was

revealed from the information about the duration between consecutive attempts.

Figure 3.10: Visualising the possible transition of students from one student group
profile to another using transition state diagram for the second trial

There are different starting points in the above state transition diagram shown

in figure 3.10, which demonstrates that students were at different group states

with different gaps of understanding and misconceptions when they start the

assessment session. During the assessment session, some students managed to

reach the final state and they followed a pattern to reach the final state. The state

transition diagram revealed that students have to reach group states 6, 4, and 10
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before they move to the final state. Most students start from low performance

( low average score) group states and move toward the high performance group

states and finally reach the final state. This indicates that the diagnostic feedback

has a positive impact on improving the learning performance of students.

If the assessment is repeated, the student grouping does not change. The

student grouping was determined during the training phase. However, the state

transition diagram might change since it depends on the current level of stu-

dents’ understanding and how they react to the diagnostic feedback. When the

same students repeat the assessment, we will see a different state transition di-

agram since most students will improve their learning experience from the first

assessment

3.8 Summary

Based on previous research studies that investigate the application of snap-drift

modal learning neural networks in analysing student responses to a set of multiple

choice questions, an interactive software tool was developed. The tool implements

a snap-drift modal learning neural network integrated with visualisation feature

of MATLAB. The implemented snap-drift modal learning neural network was

tested using iris data set. The result demonstrated that it was implemented

correctly and was capable of classifying linearly separable data. The average

performance for classifying non-linearly separable classes, which are the second

and third classes, was above 95 percent. The developed software tool is capable of

analysing the behaviour of snap-drift learning algorithm and the effect of learning

parameters on the identified student groups.

88



The proposed method details an algorithm for profiling outputs of snap-drift

modal learning neural networks, a criteria for assessing usefulness of student group

profiles in revealing gaps of understanding and misconceptions of a particular

topic, and a guideline for supporting tutors in writing diagnostic feedback based

on profiled student groups.

The method was applied to two real assessment tasks designed for two topics

selected from Introduction to Data Analysis and Introduction to Programming

modules in order to gather student responses and identify two sets of student

group profiles. Two trials were also conducted using a developed web-based

formative assessment tool during workshops to evaluate the effectiveness of the

proposed method. Forty nine students participated during the first trial and

twenty five students during the second trial. Analysis of gathered student re-

sponses showed that all of them were assigned to their appropriate student group

profiles and the percentage of perfectly matched student responses could be im-

proved by increasing the number of student group profiles and selecting student

group profiles with no more than three most likely responses. The analysis of

gathered student responses also showed that the diagnostic feedback constructed

based on the identified student group profiles has a positive impact on improving

the learning performance of students.

The insight gained into the application of snap-drift modal learning neural

network for modelling student responses based on multiple choice questions will be

applied for extending its application in modelling student responses gathered from

programming exercises and development of an intelligent web-based formative

assessment for facilitating conceptual understanding of topics.
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Chapter 4

Unsupervised Modelling of

Object-oriented Programming

Exercise Responses

As described in chapter three, a snap-drift modal learning neural network was

applied successfully in identifying student group profiles based on responses gath-

ered from multiple choice questions. The student group profiles represent differ-

ent categories of understandings of a given topic or sub topic. The main research

question addressed in this chapter is how to extend the application of snap-drift

to model student responses gathered from programming exercises.

Even though multiple choice questions could be used in principle to assess

students ability to recall knowledge, understand concepts, and apply knowledge

and understanding in order to solve real life problems, it is not effective to assess

programming ability of students. A free response assessment method such as

programming exercise is necessary for students to write programs to demonstrate
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their understanding of programming concepts and programming abilities. The

purpose of modelling student responses to programming exercises is for identi-

fying student group profiles that facilitate generation of diagnostic feedback to

improve development of basic object-oriented programming abilities for novice

programmers. The focus is on designing and coding object-oriented program-

ming abilities. Requirement analysis and testing programming abilities are not

considered as the emphasis is to develop basic object-oriented programming abil-

ities for novice programmers.

In this chapter object-oriented programming approach is introduced first. Sec-

ondly, a method for extracting features to represent student responses to program-

ming exercises is described. Thirdly, a method for parsing the defined features

based on the defined features is described. Fourthly, how a snap-drift modal learn-

ing neural network can be applied to identify student group profiles that represent

different levels of basic object-oriented programming abilities, is explained. Fifth,

identifying and developing student group profiles and then generating diagnostic

feedback are described. Finally, a summary is presented.

4.1 Object-oriented Programming Approach

Programming is the most important skill to acquire for computer science students.

That is why in most higher education programming modules are compulsory

for any first year student enrolled to study Computer Science. Before adopting

object-oriented programming approach to teach first year studying Computer

Science, most universities were teaching procedural languages such as Pascal,

Basic, Fortran and C. Procedural languages are languages in which the basic
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unit of abstraction is a procedure or an algorithm and there is a clear distinction

between an algorithm and the data it operates on [22]. Object-orientation is an

approach to systems development where computer programs are organised using

objects. The fundamental difference between this approach and the procedural

approach is that data is encapsulated with the functions that act upon it [9].

The teaching approach for procedural languages is a bottom-up approach,

which starts with the basics or fundamentals of programming and then slowly

builds knowledge and programming skill over time. In this approach, students

are taught first the concept of variables, how control structures such as if and loop

statements work, the details of parameter passing and finally how to implement

algorithms and data structures to solve programming problems [22]. The problem

with this bottom-up approach is that the main issues of problem solving, design

and software engineering are overlooked [22]. That is why object-oriented pro-

gramming was adopted since it supports top-down teaching approach. The other

obvious reason was because of the popularity and application of object-oriented

programming languages such as Java and C++ in several industries.

In top-down teaching approach, which is also known as object first, initially

students use the object world by interacting with sample programs that are pro-

vided to illustrate specific object-oriented programming features [22; 39]. Once

students are familiar with objects, they can start learning how an object is imple-

mented using a specific programming language such as Java or C++ and then,

they can be taught how to modify and extend an existing implemented object

to suit the needs of a particular program. Finally, they are taught how to define

their own objects and implement them. The details of the programming world,

in particular, the algorithmic details of object-oriented programming languages
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are revealed slowly and only as needed to illustrate the principles of objects [22].

In addition to this, the algorithmic constructs such as assignment, loops, condi-

tional statements should be introduced as they are important to manipulate and

support objects [22].

The most important object-oriented concepts are class, instance, generalisa-

tion and specialisation, encapsulation, information hiding, message passing and

polymorphism. Students need to have a sound grasp of these basic concepts before

they can apply object-oriented technique to solve programming problems. A brief

description of these important concepts is presented below based on [6; 22; 39].

An object is a concept, abstraction or thing with known boundaries and mean-

ing for the problem at hand. A class is a concept that describes a set of objects

that are specified in the same way. All objects of a given class share a common

specification for their features, their semantics and the constraints upon them.

In Java programming a class acts as a kind of template from which individual

objects are constructed when they are needed. A single object is known as an

instance and every object is an instance of some class.

Encapsulation is the placing of data within an object together with the op-

erations that apply to that data, which is the main principle of object-oriented

programming approach. The data is stored within the object’s attributes and

the processes are the object’s operations and each has a specific signature. An

operation’s signature defines the structure and content that a message must have

in order to act as a valid call. A signature consists of the name of the opera-

tion together with any parameters that the operation needs in order to run it.

Encapsulation makes sure that data should only be accessed and altered by oper-

ations of the same object. Information hiding states that no object or subsystem

93



should expose the details of its implementation to other objects or subsystems.

Information hiding makes the internal details of an object inaccessible to other

objects. Both encapsulation and information hiding compliments to each other

and in order to work, objects must exchange messages.

Some operations are specifically written to give access to the data encapsu-

lated within an object. For one object to use the operations of another, it must

send a message. Essentially, an object only needs to know its own data and its

own operations. However, many processes are complex and require collaboration

between objects. The knowledge of some objects must therefore include knowing

how to request services from other objects. For another object to access an ob-

ject’s data, it must send a message. When an object receives a message it can tell

whether the message is relevant to it. If the message includes a valid signature

to one of its operations, the object can respond.

The main use of generalisation in an object-oriented approach is to describe

similarity relationships among objects. Inheritance is the mechanism for im-

plementing generalisation and specialisation in an object-oriented programming

language. When two classes are related by the mechanism of inheritance, the

more general class is called a superclass in relation to the other and the more

specialised is called its subclass. A subclass inherits all the characteristics of its

superclass and a subclass definition always includes at least one detail not derived

from its superclass. In most object-oriented approaches, all classes have a single

parent. In some programming languages such as C++, multiple inheritance is

also allowed, which means a subclass is a member of more than one hierarchy and

inherits from its superclasses in each hierarchy. Overriding means an inherited

feature is redefined specific to a subclass.
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An advanced object-oriented concept is polymorphism, which refers to the

possibility of identical messages being sent to objects of different classes, each of

which responds to the message in a different way. It encourages decoupling of

subsystems.

4.2 Features to Represent Object-oriented Pro-

gramming Exercises

In the case of multiple choice questions based assessment tasks, first a topic

is selected and then a set of multiple choice questions are designed to assess

students ability to understand concepts of the selected topic. A programming

exercise is set up to assess student’s demonstration of programming concepts and

programming abilities. Programming abilities include requirements gathering,

designing, coding, testing and deployment. As mentioned earlier, the purpose of

modelling student responses to object-oriented programming exercise is to develop

basic object-oriented programming abilities for novice programmers. That is why

design and coding programming abilities are only considered to be demonstrated

in programming exercises.

According to the recommended teaching approach for object-oriented pro-

gramming as described in the previous section, students need to write a class

that represents or models a real world object, concept or idea using a specific

object-oriented programming language either Java or C++ after they initially

interact with objects and understand and manipulate existing class implementa-

tions. One of the object-oriented programming abilities is to write a class that
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represents or models a real world object, concept or idea.

4.2.1 Learning Outcomes

To set up a programming exercise that assess object-oriented programming abil-

ities of writing a class, we need to define first appropriate learning outcomes.

Defining learning outcomes helps in deciding the scope of the programming exer-

cise, to measure student’s achievement level, and generate appropriate feedback.

The expected solution to an object-oriented programming exercise is a set of

designed and implemented Java or C++ classes. However, for a simple object-

oriented programming exercise, which is suitable for beginners, only a design and

implementation of one Java or C++ class is enough to solve the problem. The

detail of the learning outcomes or objectives to assess student’s programming

abilities to write a Java class is described below. It includes three components:

1. Object-oriented programming concepts: Students should understand concepts of objects

and classes. They should also understand the following concepts: fields, constructors,

parameters, data types, access modifiers, return type, variable assignment, accessor and

mutator methods and behaviour methods. Finally, students should understand encap-

sulation and information hiding principles and how to apply them.

2. Object-oriented design abilities: Students should be able to design a simple Java classes

based on information given in a problem description, which includes the following design

abilities:

(a) Identifying required fields and specifying their data types based on information

given in a problem description.

(b) Identifying fields initialised to parameter values and fields initialised to default

values and specifying data type of each parameter.

(c) Identifying which fields need to be accessed (get methods) and/or changed (set

methods).

(d) Understanding the purpose of each behaviour method and specifying their require-

ment based on information given in a problem description and designing an algo-

rithm for each behaviour method. This include identifying the data type of the
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required parameters and return type, which fields are updated and/or accessed,

specifying local variables and writing instruction steps using logic structures such

as conditional statements, case statements and loop statements.

3. Object-oriented implementation or coding abilities: Students should be able to imple-

ment simple class definitions properly using Java programming language, which includes

the following implementation or coding abilities:

(a) Declaring fields properly which requires specifying proper field names, access mod-

ifiers, and data types.

(b) Implementing constructors which involve writing constructor headers properly,

declaring appropriate parameters and writing proper variable assignment state-

ments to assign fields to parameter or default values.

(c) Implementing get and set methods properly. Writing get and set methods include

two activities. The first step is to specify proper method names, access modifiers,

return type and parameter list. Once this step is done, students need to write ’get’

and ’set’ method headers, return statements and variable assignment statements.

(d) Implementing the algorithms of each behaviour method specified in the design

step. Implementing simple behaviour methods involve different activities. These

are declaring local variables, writing variable assignment statements and return

statements and using logic structures (if/else, for/while, switch).

4.2.2 Representative Programming Exercise

Once the learning outcomes or objectives are defined, we can set up a program-

ming exercise by first choosing the objects we want to represent and then describe

their structure and behaviours. An example of an object-oriented programming

exercise is presented in table 4.1. The objective of the exercise is to write a Java

class to represent bank account objects. A model solution for the representative

object-oriented programming exercise is also shown in appendix C.

A typical student response to the above programming exercise and other re-

lated programming exercises is comprised of five main components: declaration

of fields, a constructor, get methods, set methods and methods that implement
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Table 4.1: Representative programming exercise

Write a class to represent a property for rent from a local letting agent. The class will

store the address of the property, the monthly rent, whether the property is occupied

or not and the tenants name.

The class should have a constructor that will enable all the attributes to be initially

set when an instance of the class is created. The constructor requires you to supply, as

parameters, the address and the initial monthly rent. For any new property, occupied

is set to false and the tenants name is set to an empty string.

There should be methods for returning the values of the address, the monthly rent

and the tenants name.

You are required to write a method that sets the monthly rent to a new value. The

method accepts the new monthly rent as a parameter.

There should be a method for adding a tenant to a property. The method accepts a

new tenants name as a parameter. If the property is not occupied, the tenants name

is updated with the parameter input to the method and the occupied status of the

property is changed to true.

The final method should display all the attributes of a particular property, suitably

annotated.

behaviours of objects. In the following paragraphs, features are defined to model

student responses to any object-oriented programming exercise whose objective

is to write a Java class to represent related objects. The features are categorised

into five groups based on the structure of a typical Java class.

The features are defined in such a way that they meet the following criteria

optimally. The first criterion is related to training performance of the snap-drift

modal learning neural network whose input are student responses represented as

a set of defined features. To avoid curse of dimension, the number of features and

the possible values for each feature should be as small as possible. The second

criterion is the effectiveness of the defined features in supporting the generation of

diagnostic feedback that improves student’s basic object-oriented programming

abilities. The more the number of features and the more specific are the pos-
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sible values of each feature, the better support for the generation of diagnostic

feedback. The third criterion is the ease of configuring a parsing method that

captures the defined features from a student response and convert them into a

training pattern, which is represented as a binary vector. Generic features are

easier to parse with minimum changes than specific features.

Writing a class properly requires knowledge, understanding and problem solv-

ing skills. First, students should understand the concepts of objects and classes.

They need to understand that objects represent or model real life things or con-

cepts and are comprised of fields and methods. In contrast, classes describe what

related objects have in common in terms of fields and methods. Once a class

is defined, it can be used to create objects. Secondly, students should have the

ability to understand problem description and map the description into struc-

ture of a class. Thirdly, they should understand concepts of fields, methods and

constructors. Finally, they should have object-oriented programming abilities of

writing classes, declaring fields and implementing methods and constructors.

4.2.3 Correctness of Fields

To understand the concept of fields or attributes of a class, students should know

that a class defines related objects in terms of its fields and methods, the different

data types, what each data type can represent, the role of fields in a class, and the

relationship of fields with methods and constructors. In addition to understand-

ing the concept of field, identifying fields from problem description and assigning

appropriate data type for each identified field is very important. Programming

abilities concerning fields include declaring fields properly and specifying the cor-
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rect access modifier.

Based on the above description of related concepts of field, we can extract the

following features: presence of fields, data types of fields, and access modifiers

of fields. Presence of fields captures whether the required number of fields are

declared or not based on the description of the programming exercise. There are

three possible values for this feature. The first one is when all fields are present.

The second possible value is when all fields are missing. The third possible value

is when one or more fields are missing. It does not specify which fields are missing

and the exact number of missed fields in order to simplify the parsing method

and reduce the number of possible values.

Data types of fields capture the correctness of data types of declared fields

based on the description of the programming exercise. The first possible value

is when data types of all declared fields are correct. The second possible value

is when the data type of one or more fields are declared properly. These two

possible values are applicable when one or more fields are present. Therefore, to

address a situation when all fields are missing, a third possible value, which is all

fields are missing, is also included.

Access modifiers of fields captures whether fields are declared with correct

access modifiers. Based on Java syntax rules, there are three possible access

modifiers: public, protected and private. The concepts of encapsulation and

information hiding are applied by specifying private access modifiers for fields

of a class so that it can not be accessed directly by objects of other classes.

Declaring fields as public or protected is not appropriate. Based on these facts,

the following possible values are specified: all public or protected, one or more

fields declared as public or protected, and all private.
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The defined features and their corresponding possible values related to the

correctness of fields are presented in table 4.2.

Table 4.2: Features related to correctness of fields
Feature Name Possible Values Representation

Presence of fields

All fields are missing 001

One or more fields are missing 010

All fields are present 100

Data types All fields are missing 001

of fields Data type of one or more fields are not

declared properly

010

Data type of all fields are declared prop-

erly

100

Access modifiers All fields are missing 0001

of fields All fields are declared as public or pro-

tected

0010

One or more fields are declared as pub-

lic or protected

0100

All fields are declared as private 1000

4.2.4 Correctness of a Constructor

To write a constructor properly, first students need to understand the concept of

constructors. Understanding the concept of constructors involves understanding

the difference between classes and objects, understanding the concept of fields,

knowing the purpose of constructors within a class, and knowing the difference

between constructors and instance methods.

In addition to understanding the concept of a constructor, students need to

define the requirements of constructors from problem descriptions that include

identifying fields which need to be initialised when an object is created. Program-

ming abilities regarding constructors involve writing the header of a constructor

properly, specifying the correct data types of all parameters and assigning pa-
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rameters to their corresponding fields.

Based on the concept of constructors and its relevant programming abilities,

three features are defined related to the correctness of a constructor. They are

access modifier of a constructor, return type of a constructor and initialisation of

fields. The defined features and their corresponding possible values are presented

in table 4.3.

Table 4.3: Features related to correctness of a constructor
Feature Name Possible Values Representation

Access modifier A constructor is missing 001

of a constructor Private 010

Public 100

Return type of A constructor is missing 001

a constructor Void or any data type return type 010

No return type 100

Initialisation A constructor is missing 0001

of fields All fields are not initialized at all or ini-

tialisation either from parameters or to

default values are not done properly

0010

One or more fields are not initialized at

all or initialisation either from param-

eters or to default values are not done

properly

0100

All fields are properly initialised either

from parameters or to default values

1000

4.2.5 Correctness of Methods

Writing methods of a class properly requires understanding of different related

concepts. These are concepts of classes, fields, and parameters. Once students

understand these concepts, they need to know what a method is and its purpose

within a class. They also need to have the ability to specify the requirements of

methods of a particular class based on a given problem description. These include

102



two activities. Firstly, you need to choose appropriate method name, return type,

access modifier and parameters for each method. The second activity is to specify

the purpose or task of each method using a set of instructions.

Programming abilities regarding methods are writing properly a method header

and implementing a specified set of instructions using programming constructs

such as sequence, selection, iteration, variable declaration, and variable assign-

ments.

A class defines similar objects in terms of fields and methods. Methods imple-

ment behaviours of an object. A class also includes other methods for accessing

and changing its fields. These methods are very important as fields can not

be accessed and updated directly because of recommended principles of object-

oriented programming approach particularly encapsulation and information hide.

Methods which return information about the state of an object are called acces-

sor methods or get methods whereas methods that change the state of an object

are called mutator methods or set methods [6]. The features defined to capture

correctness of get and set methods are presented in table 4.4 and 4.5 respectively.
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Table 4.4: Features related to correctness of get methods
Feature Name Possible Values Representation

Presence of All get methods are missing or incom-

plete

001

get methods One or more get methods are missing

or incomplete

010

All get methods are present 100

Access modifier All get methods are missing or incom-

plete

0001

of All private 0010

get methods One or more get methods are private 0100

All public 1000

Parameters of All get methods are missing or incom-

plete

0001

get methods All get methods have one or more pa-

rameters

0010

One or more get methods have one or

more parameters

0100

All get methods do not have parameters 1000

Return type All get methods are missing or incom-

plete

0001

of All get methods have no return types

or void

0010

get methods One or more get methods have appro-

priate return types

0100

All get methods have appropriate re-

turn types

1000

Return All get methods are missing or incom-

plete

0001

statement All get methods have no return state-

ment or in appropriate returned field

name

0010

of One or more get methods have appro-

priate return statements

0100

get methods All get methods have appropriate re-

turn statements

1000
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Table 4.5: Features related to correctness of set methods
Feature Name Possible Values Representation

Presence of All set methods are missing or incomplete 001

set methods One or more set methods are missing or in-

complete

010

All set methods are present 100

Access modifier All set methods are missing or incomplete 0001

of set methods All private 0010

One or more set methods are private 0100

All public 1000

Parameters All set methods are missing or incomplete 0001

of set methods All set methods have zero or more than one

parameter

0010

One or more set methods have one parameter 0100

All set methods have one parameter 1000

Return type All set methods are missing or incomplete 0001

of set methods All set methods have return types other than

void

0010

One or more set methods have appropriate re-

turn void return types

0100

All set methods have appropriate void return

types

1000

Variable All set methods are missing or incomplete 0001

assignment In all set methods, parameter values are not

properly assigned to their corresponding fields

0010

of set methods In one or more set methods, parameter values

are properly assigned to their corresponding

fields

0100

In all set methods, parameter values are prop-

erly assigned to their corresponding fields

1000

Methods implement behaviour of objects which could be simple or complex

depending on the nature of the behaviour. Any object can have one or more

methods. Methods that implement behaviours have to be declared properly and

the body of methods implement the logic of the behaviours. Most methods change

the state of objects which means they update certain fields and they also might
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access certain fields. Methods also communicate with other methods to get ser-

vice. Based on the concept of behaviour methods, we defined generic features

that are applicable for any method that implements a behaviour of objects. The

defined features are shown in table 4.6.

Table 4.6: Features related to correctness of behaviour methods
Feature Name Possible Values Representation

Access modifier All behaviour methods are missing or

incomplete

0001

of All private 0010

behaviour One or more behavior methods are pub-

lic

0100

methods All public 1000

Parameters of The behaviour methods is missing or in-

complete

0001

behaviour One or more parameters are missing or

unnecessary parameters are defined

0010

method Data type of one or more parameters

are not as required

0100

Appropriate parameters are defined 1000

Return type The behaviour method is missing or in-

complete

001

of Return type is not as required 010

behaviour Appropriate return type 100

method

Status of The behaviour method is missing or in-

complete

001

updated fields One or more required fields are updated

properly

010

All required fields are updated properly 100

Presence of The behaviour method is missing or in-

complete

001

if One or more required if statements are

missing or not defined properly

010

statements All required if statements are defined

properly

0100
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4.3 Parsing Method

Once the features to represent student responses to an object-oriented program-

ming exercise are defined, the challenge is to parse any student response text into

a binary vector based on the defined features. The parsing method has to cap-

ture each feature correctly and assign an appropriate feature value for all possible

student responses. As explained in the previous section, the features are defined

in such away that the parsing method can be applied to different programming

exercises with minimum changes. The proposed parsing method is described in

the following paragraphs.

The parsing method has three input types. The first input is a student re-

sponse text. The second input is a set of defined features with their possible values

and their corresponding representations. The third input is a specification of an

object-oriented programming exercise. The specification is done manually by a

tutor who designs the object-oriented programming exercise. Since the defined

features are not generic, the parsing method needs information about a particular

programming exercise in order to capture and score correctly the possible value

of each defined feature.

Even though the purpose of the programming exercises is similar, which is

to write an object-oriented class that represents similar objects based on the

description of the programming exercise, they differ from each other in terms

of the number of fields, the data type of each field, whether each field has a

default value or being initialised from a constructor, whether each field requires

an accessor method or not, and whether each field requires a mutator method or

not. In addition to this, programming exercises differ from each other, in terms
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of the number of operation methods required to implement the behaviour of the

represented objects and the algorithms of each operation method. The details of

the algorithm of each operation method differ on how they update fields, which

fields they access, and if they use if statements. The use of while or for loops and

local variables are not considered as the focus is on simple classes with simple

methods for beginners.

4.3.1 Extracting Main Components

As mentioned in the above, the first input of the parsing method is a student

response text to an object-oriented programming exercise. The first step of the

parsing method is pre-processing the response text, which is a Java source code,

to remove comments, trailing spaces, and unnecessary texts. Once this pre-

processing step is done, the next step is to extract the main components or break

the source code into five main components: fields, constructors, get methods, set

methods, and behaviour/operation methods.

These five components are extracted from the source code using a regular

expression technique. A regular expression technique enables to represent simi-

lar sequence of characters using special symbols. Many programming languages

including Java, which is the chosen implementing language, have added regular

expression capabilities. The challenge, for example in the case of extracting the

field declarations, is to write a search pattern that describes all possible field

declarations and should not also include constructor and method declarations as

they are similar to a field declaration. The algorithm for extracting the main

components using a pseudo-code is described as follows:

1. Set the file path of a student response source code.
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2. Transform source code into character sequences.

3. Define a search pattern to represent all possible Java comments:

"\\s*/\\*.*|\\s*\\*.*|\\s*//.*|\\s*\\*/"

4. Remove characters that match the search pattern.

5. Retrieve the class name using a search pattern:

"\\b[Pp]ublic\\b\\s+\\b[Cc]lass\\b\\s+\\w+"

6. Store the class name to a variable.

7. Define a search pattern to represent all possible Java field declarations:

"\\b([Pp]ublic|[Pp]rivate|[Pp]rotected)\\b\\s+\\w+\\s+\\w+\\s*;"

8. Search the character sequences using the defined pattern to retrieve all field declarations.

9. Define a search pattern to represent all possible Java constructor declaration and body

of a constructor:

"\\b([Pp]ublic|[Pp]rivate|[Pp]rotected)\\b\\s+\\b" + class name

+ "\\b\\s*\\(.*\\)\\s*\\{(\\s*.+=.+|;)*\\s*\\}"

10. Search the character sequences using the defined pattern to retrieve all constructors.

11. Define a search pattern to represent all possible method declarations and method body

of get methods:

"\\b([Pp]ublic|[Pp]rivate|[Pp]rotected)\\b.+\\(.*\\)\\s+\\

{(\\s*return\\s*.*|;){1}\\s*\\}";"

12. Search the character sequences using the defined pattern and retrieve all get methods.

13. Define a search pattern to represent all possible method declarations and method body

of set methods:

"\\b([Pp]ublic|[Pp]rivate|[Pp]rotected)\\b\\s*void.+\\

(.*\\)\\s+\\{(\\s*.+=.+|;){1}\\s*\\}"

14. Search the character sequences using the defined pattern and retrieve all set methods.

15. Define a search pattern to represent all possible behaviour/operation method declarations

and method body :

"\\b([Pp]ublic|[Pp]rivate|[Pp]rotected)\\b.+\\(.*\\)"

16. Search the character sequences using the defined pattern and retrieve all behaviour meth-

ods.
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17. Output a collection of field declarations, a collection of constructors, a collection of get

methods, a collection of set methods, and a collection of behaviour methods.

4.3.2 Capture and Score Feature Values

Once the five main components are extracted, the next steps are to capture and

score the correct values of all defined features based on the outputs of the above

algorithm. In the following sections, how each defined feature is captured and

scored will be described. The defined features are organised based on the five

main components of a student response text, that is why they are described in

the following five sections.

4.3.2.1 Correctness of Fields

Three features are defined to check the correctness of fields: presence of fields,

data types of fields and access modifiers of fields. To capture and score the

appropriate values of these features for a given student response text, the pars-

ing method first scans each extracted field declaration in order to determine

the number of field declarations with Char, String, Numeric and Boolean data

types. It also determines the number of field declarations with Private and Pub-

lic/Protected access modifiers. Secondly, the parsing method compares the in-

formation about the field declarations with the programming specification, in

order to determine the correct feature values of the three features related to the

correctness of fields.
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4.3.2.2 Correctness of a Constructor

The three features which are defined to check the correctness of constructors are

access modifier of a constructor, return type of a constructor and initialisation

of fields. Student responses are not expected to have more than one constructor

as they are required to write a simple Java class. The algorithm to capture and

score the correct feature values of these three features related to the correctness

of a constructor is described using pseudo-code as follows:

1. Get extracted constructor.

2. Define a search pattern to find the access modifier:

"\\b([Pp]ublic|[Pp]rotected)\\b"

3. Record the matched access modifier.

4. Define a search pattern to find the return type:

"\\b(void|String|string|char|int|double|float|boolean)\\b.+\\("

5. Record the matched return type.

6. Extract parameter list and record it.

7. Extract and record field names from the field declarations.

8. Extract assignment statements defined within the constructor:

"\\s*" + field name + "\\s*=.*"

9. Record the extracted assignment statements.

10. Check each extracted assignment statement whether each field name is initialised prop-

erly to one of the parameter or to a default value.

11. Score the appropriate feature values using the recorded information and syntax rules of

Java programming to declare and write a constructor.
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4.3.2.3 Correctness of Get Methods

Five features are defined to check the correctness of get methods. These features

are presence of get methods, access modifiers of get methods, parameters of get

methods, return type of get methods, and return statements of get methods. The

algorithm to capture and score the correct values of these features is described

using pseudo-code as follows:

1. Get extracted get methods.

2. Define a search pattern to find the access modifier of each get method:

"\\b([Pp]ublic|[Pp]rotected)\\b" or

"\\b[Pp]rivate\\b"

3. Record the number of private and public access modifiers.

4. Define a search pattern to find the return type of each get method:

"\\b(String|string|char|int|double|float|boolean)\\b.+\\(" or

"\\b[Vv]oid\\b.+\\"

5. Record the number of get methods with a numeric,char, string or char return types.

6. Record the number of get methods with void return types.

7. Record the number of missed or incomplete get methods based on the specification of

the programming exercise.

8. Extract parameter list of each get method and record them.

9. Record the number of get methods with no parameters and with one or more parameters.

10. Extract and record field names from the field declarations.

11. Extract return statements defined within each get method:

"(return|Return)(\\s*)" + field name

12. Record the extracted return statements.

13. Check each extracted return statement whether one of the declared field names is re-

turned properly or not.

14. Record the number of get methods with no return statements.
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15. Record the number of get methods with appropriate return statements.

16. Score the appropriate feature values using the recorded information and syntax rules of

Java programming to declare and write a get method.

4.3.2.4 Correctness of Set Methods

Five features are defined to check the correctness of set methods. These features

are presence of set methods, access modifiers of set methods, parameters of set

methods, return type of set methods, and variable assignments of set methods.

The algorithm to capture and score the correct values of these features is described

using pseudo-code as follows:

1. Get extracted set methods.

2. Define a search pattern to find the access modifier of each set method:

"\\b([Pp]ublic|[Pp]rotected)\\b" or

"\\b[Pp]rivate\\b"

3. Record the number of private and public access modifiers.

4. Define a search pattern to find the return type of each set method:

"\\b(String|string|char|int|double|float|boolean)\\b.+\\(" or

"\\b[Vv]oid\\b.+\\"

5. Record the number of set methods with a numeric,char, string or char return types.

6. Record the number of set methods with void return types.

7. Record the number of missed or incomplete set methods based on the specification of

the programming exercise.

8. Extract parameter list of each set method and record them.

9. Record the number of set methods with one parameter.

10. Record the number of set methods with no parameter or more than one parameter.

11. Extract and record field names from the field declarations.
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12. Extract variable statements defined within each set method:

"\\s*" + field name + "\\s*=.+"

13. Record the extracted variable statements.

14. Check each extracted variable statement whether parameter values are properly assigned

to their corresponding fields.

15. Record the number of set methods with appropriate variable statements.

16. Score the appropriate feature values using the recorded information and syntax rules of

Java programming to declare and write a set method.

4.3.2.5 Correctness of a Behaviour Method

The correctness of a behaviour method is checked using six features, which are

access modifier of a behaviour method, parameters of a behaviour method, return

type of a behaviour method, status of updated fields of a behaviour method, status

of accessed fields of a behaviour method, and presence of IF statements. The

last three features are optional since they are not applicable to any behaviour

method. As mentioned earlier, the specification of the programming exercise

under consideration holds the information whether these features are applicable

and other details such as which fields or updated or accessed. The algorithm to

capture and score the correct values of these features is described using pseudo-

code as follows:

1. Get extracted behaviour methods.

2. For each behaviour method do:

(a) Define a search pattern to find the access modifier of the current behaviour method:

"\\b([Pp]ublic|[Pp]rotected)\\b" or

"\\b[Pp]rivate\\b"

(b) Record the matched access modifier.
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(c) Define a search pattern to find the return type of the current behaviour method:

"\\b(String|string|char|int|double|float|boolean)\\b.+\\(" or

"\\b[Vv]oid\\b.+\\"

(d) Record the matched return type.

(e) Extract parameter list of the current behaviour method.

(f) Compute the number of Char parameter types.

(g) Compute the number of String parameter types.

(h) Compute the number of Numeric parameter types.

(i) Compute the number of Boolean parameter types.

(j) If the current behaviour method has updated fields THEN

i. Check if each required field is updated properly.

ii. Record the number of fields updated properly.

(k) If the current behaviour method has accessed fields THEN

i. Check if each required field is accessed properly.

ii. Record the number of fields accessed properly.

(l) If the current behaviour method has if statements THEN

i. Check if each required IF statement is defined properly.

ii. Record the number of IF statements defined properly.

3. END FOR EACH

4. Score the appropriate feature values using the recorded information, specification of the

programming exercise, and syntax rules of Java programming to declare and write a

behaviour/operation method.

4.4 Develop Student Group Profiles

In the previous sections, features have been defined to represent student responses

to an object-oriented programming exercise. Furthermore, a parsing method is

proposed to extract, code and transform the defined features into binary vector

from a student response text. The focus of this section is to explain how a snap-

drift modal learning neural network can be applied to identify student group
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profiles that represent different basic object-oriented programming abilities based

on the defined features and on the proposed parsing method. The purpose of

identifying student group profiles is to construct diagnostic feedback appropriate

for each student group that improves basic object-oriented programming abilities.

4.4.1 Training Data Set

The representative programming exercise described in section 4.2.2 is used to

gather student responses in order to prepare a training data set. All students

registered for Introduction to Java programming module were invited to under-

take a formative assessment. A web-based formative assessment tool was designed

and developed to conduct an assessment session. The software tool enables to

set up a programming exercise, manage, and store them. In addition to this,

the tool includes a front end user interface to display the programming exercise

description and provide an empty text area for students to write their programing

solution.

Students weren’t allowed to copy from each other during a trial. Once a

student submits the attempted solution, the student response is stored in a single

file named using student’s user name. Seventy two students participated in the

trial, however only 59 student responses were considered as training patterns due

to quality issues. The screen shot of the front end of the web-based formative

assessment tool is attached in appendix D.
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4.4.2 Snap-drift Modal Learning Neural Network

In chapter three, a snap-drift modal learning neural network was designed and

implemented using Java programming language. The developed tool includes

also an interactive user interface to choose learning parameters and display the

identified student group profiles. As mentioned in chapter three, the software tool

supports the application of snap-drift modal learning neural networks to identify

student group profiles based on student responses to multiple choice questions.

To be able to identify student group profiles based on student responses to

an object-oriented programming exercise, the software tool needs to be extended

by designing and developing a data structure to define and manage the proposed

features and programming specification described in the previous sections. In ad-

dition to this, the proposed parsing method was also implemented and integrated

with the software tool. A screen shot of the extended software tool is depicted in

figure 4.1.

As shown in the training data panel of the user interface depicted in figure

4.1, the training patterns are binary vectors, which are the output of the parsing

method that captures and transforms student response texts. In the output panel,

identified student group profiles are displayed. The rows of the table represent

the defined features, whereas each column specifies the most likely value of for

each student group. The profiling method proposed and applied in chapter three

is extended to profile the identified student groups.

To identify useful student group profiles that facilitate effective diagnostic

feedback, different combinations of the learning parameters were searched using

the interactive user interface that allows to change each learning parameter easily.
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Figure 4.1: Screen shot of Graphical user interface of SDNN tool

The criteria for assessing usefulness of a particular set of student group profiles

was adopted from chapter three. The two defined criteria are the characteristic

of each student group and the number of student groups. In addition to these

two criteria, a third criterion was defined, which is the number of asterisk (*)

in each row of the table that displays the identified student group profiles. The

usefulness of a set of student group profiles increases as the number of rows with

all column values of asterisk (*) decreases.

The student group profiles depicted in figure 4.2 was identified using the

learning parameters shown in table 4.7.
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Figure 4.2: Student group profiles. The column header (n-m) specifies winning
node (n) and number of student responses (m)

Table 4.7: Snap-drift modal learning neural network learning parameters

Learning Pa-

rameter

Value Learning Pa-

rameter

Value

Maximum epoch 5000 Minimum epoch 1000

Convergence

percentage

95 Group profile

threshold

75

d 25 D 10

s 20 Threshold 2.5

4.5 Summary

The main objective of this chapter is investigating the application of a snap-

drift modal learning neural network to model student responses gathered from
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programming exercise. The purpose of modelling student responses to an object-

oriented programming exercise is identifying student group profiles that represent

different programming abilities of writing an object-oriented class.

Firstly, a brief literature review on object-oriented programming approach

was conducted. Based on the review, most Universities are adopting object-

oriented programming approach to teach first year studying Computer Science.

The main reason for adopting object-oriented programming approach is the fact

that it supports top-down teaching approach, which is the recommended teaching

approach. The other reason is the popularity and application of object-oriented

programming languages in several industries.

The main difference between procedural languages such as Pascal, Basic, and

C and object-oriented programming approach is the relationship between an al-

gorithm and the data it operates on. In the case of procedural languages there is

a clear distinction between an algorithm and the data it operates on. However, in

the case of object-oriented programming approach the data is encapsulated with

the functions that act upon it.

They also differ in their teaching approaches. Procedural languages apply a

bottom-up approach, which starts with the basics or fundamental of program-

ming and then slowly builds knowledge and programming skill over time. How-

ever, object-oriented programming supports top-down teaching approach, which

is also known as object first. Students initially interact with sample programs

to familiarise with specific object-oriented programming features, then they can

start learning how an object is implemented, modified or extended using a specific

programming language such as Java or C++.

Secondly, features were defined to represent object-oriented programming ex-
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ercises. To define features, first what object-oriented concepts and what program-

ming abilities to assess were specified. The next step was to set up a representative

programming exercise and define criteria.

The first criterion is related to training performance of the snap-drift modal

learning neural network whose input are student responses represented as a set of

defined features. The second criterion is the effectiveness of the defined features

in supporting the generation of diagnostic feedback that improves student’s basic

object-oriented programming abilities. The third criterion is the ease of configur-

ing a parsing method that captures the defined features from a student response

and convert them into a training pattern, which is represented as a binary vector.

The features were defined in such a way that they meet the three defined criteria.

Once the features to represent student responses to an object-oriented pro-

gramming exercise are defined, a parsing method was proposed to parse any

student response text into a binary vector. The parsing method has to capture

each feature correctly and assign an appropriate feature value for all possible

student responses. The parsing method has three input types. The first input

is a student response text. The second input is a set of defined features with

their possible values and their corresponding representations. The third input is

a specification of an object-oriented programming exercise.

Thirdly, snap-drift modal learning neural network was applied to identify stu-

dent group profiles that represent different basic object-oriented programming

abilities based on the defined features and on the proposed parsing method. The

purpose of identifying student group profiles is to construct diagnostic feedback

appropriate for each student group that improves basic object-oriented program-

ming abilities. First training data were gathered based on the representative
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programing exercise by conducting assessment sessions. Seventy two students

participated in the trial, however only 59 student responses were considered as

training patterns due to quality issues.

Once a training data set was prepared, the snap-drift modal learning neural

network tool that was developed in the previous chapter, was extended in order to

be able to identify student group profiles based on student responses to an object-

oriented programming exercise. It was extended by designing and developing a

data structure to define and manage the proposed features and programming

specification described in the previous sections. In addition to this, the proposed

parsing method was also implemented and integrated with the software tool.

Finally, useful student group profiles were identified that facilitate effective

diagnostic feedback. Different combinations of the learning parameters were

searched using an interactive graphical user interface in order to find useful stu-

dent group profiles. The criteria for assessing usefulness of a particular set of

student group profiles was adopted from chapter three. The two defined criteria

are the characteristic of each student group and the number of student groups.

In addition to these two criteria, a third criterion was defined, which is the num-

ber of asterisk (*) in each row of the table that displays the identified student

group profiles. Based on the defined criteria, seven student group profiles were

identified that clearly represent different object-oriented programming abilities.
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Chapter 5

Evaluation of Student Group

Profiles

In the previous chapter, the application of a snap-drift modal learning neural

network was extended to model student responses gathered from programming

exercise. The purpose of modelling student responses to an object-oriented pro-

gramming exercise is to identify student group profiles that represent different

programming abilities of writing an object-oriented class.

The main purpose of this chapter is to evaluate the proposed method for iden-

tifying student group profiles that facilitates generation of diagnostic feedback to

improve development of basic object-oriented programming abilities. First, a di-

agnostic feedback was constructed for each identified student group. Secondly,

trials were conducted to gather student responses. Thirdly, data was prepared by

extracting raw data captured by a web-based formative assessment tool. Fourthly,

a qualitative analysis of individual cases was performed. Fifthly, the assessment

of whether the constructed diagnostic feedback improves the overall learning per-
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formance was undertaken. Finally, further improvements on the identified weak-

nesses of the method are proposed.

5.1 Construct Diagnostic Feedback

A procedure was proposed in chapter three to construct diagnostic feedback based

on identified student group profiles. To construct diagnostic feedback for the

identified student group profiles, the learning outcomes described in section 4.2.1

and the patterns in each student group profile are analysed.

Table 5.1: Diagnostic feedback for student group one

Your solution is not complete. A complete Java class should contain three main

components: fields,a constructor and methods.

Your solution includes only fields. First of all, make sure all required fields are declared

and choose the right data type from the possible types (String, char, int, boolean).

Once all required fields are defined, they need to be initialised properly using a con-

structor.

A constructor is a special method whose name is the same as its class name and

doesn’t have a return type.

In addition to fields and a constructor, you need to write all required methods: get

methods, set methods and methods that implement behaviours of property objects.

Read the problem description carefully to identify which fields need get and set meth-

ods and what operations can be done to property objects.

The patterns in each student group profile is used to identify the current

levels of object-oriented programming abilities and the learning outcomes is used

to define the expected level of object-oriented programming abilities. Once the

current levels and gaps of object-oriented programming abilities are identified

for each student group profile, a diagnostic feedback is constructed that closes
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the gaps and improves the object-oriented programming abilities. The set of

constructed diagnostic feedback for each student group profile shown in figure

4.2 are shown in tables 5.1 to 5.7.

Table 5.1 shows the diagnostic feedback for the first student group. Students

who belong to this group have very low levels of programming abilities. They

seem to understand the concept of fields, however they don’t know how to write

fields properly.

Table 5.2: Diagnostic feedback for student group two

Your solution is not complete. A complete Java class should contain three main

components: fields, a constructor and methods.

You have declared the required fields properly. Once all required fields are defined,

they need to be initialised properly using a constructor. A constructor is a special

method whose name is the same as its class name and doesn’t have a return type.

In addition to fields and a constructor, you need to write all required methods: get

methods, set methods and methods that implement behaviours of property objects.

Read the problem description carefully to identify which fields need get and set meth-

ods and what operations can be done to property objects.

Table 5.2 shows the diagnostic feedback for the second student group. Stu-

dents who belong to this group have low levels of programming abilities, which

is slightly better than students who belong to the first group. They understand

the concepts of fields and know how to write fields properly.
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Table 5.3: Diagnostic feedback for student group three

You have done well in defining the fields properly and including a constructor. How-

ever, your solution is not complete. First of all, make sure that all fields are initialised

properly using a constructor.

All required methods for retrieving and changing values of fields and implementing

behaviours of property objects are missing or incomplete. A get method returns the

value of one of the objects field. It contains a return statement and does not require

a parameter. Set methods have void return type and one formal parameter. They

have only one variable assignment statement.

Read carefully the problem description in order to identify all required behaviours of

property objects. Once they are identified, specify clearly how they are implemented

using methods. Usually methods update fields to change state of objects. It is im-

portant to identify which fields need to be updated. Assignment statements are used

to update values of fields.

Field name = new value;

Table 5.3 shows the diagnostic feedback for the third student group. Students

who belong to this group understand the concepts of fields and know how to write

fields properly. They also understand the concept of constructors and know how

to write constructors. They don’t know how to initialise fields properly using a

constructor, and how to design and implement methods.
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Table 5.4: Diagnostic feedback for student group four

You have done well in defining the fields properly and initialising them using a con-

structor.

However, your solution is not complete. All required methods that implement be-

haviours of property objects are missing or incomplete.

Read carefully the problem description in order to identify all required behaviours of

property objects. Once they are identified, specify clearly how they are implemented

using methods.

Usually methods access values of fields or update them to change state of objects. It

is important to identify which fields need to be accessed or updated.

Assignment statements are used to update values of fields.

Field name = new value;

This an example of an assignment statement, the new value to be assigned is on the

right hand side.

To access a value of a field use its field name without a quotation.

System.out.println( balance);

In this Java statement, a field(variable) named balance is accessed to be displayed.

Table 5.4 shows the diagnostic feedback for the fourth student group. Stu-

dents who belong to this group understand the concepts of fields and know how to

write fields properly. They also understand the concept of constructors, know how

to write constructors, and initialise fields properly using a constructor. However,

they don’t know how to design and implement methods.
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Table 5.5: Diagnostic feedback for student group five

Overall your solution includes the three main components of a class: fields, a con-

structor and methods.

However, there are minor errors in your solution. First of all, make sure all fields are

initialised properly using a constructor.

Read carefully the problem description in order to specify clearly what happens when

a method is executed. Usually methods access values of fields or update them to

change state of objects.

It is important to identify which fields need to be accessed or updated. Assignment

statements are used to update values of fields.

fieldname = newvalue;

This an example of an assignment statement, the new value to be assigned is on the

right hand side.

To access a value of a field use its field name without a quotation.

System.out.println( balance);

In this Java statement, a field(variable) named balance is accessed to be displayed.

Table 5.5 shows the diagnostic feedback for the fifth student group. Students

who belong to this group understand the concepts of fields, constructors and

methods. They also know how to write a simple class with minor errors.

Table 5.6: Diagnostic feedback for student group six

Overall your solution includes the three main components of a class: fields, a con-

structor and methods.

However, you need to check carefully the implementation of your methods and check

whether all required get and set methods are included.

Read carefully the problem description in order to specify clearly what happens when

a method is executed. Are the statements executed in sequence or do you need

conditional statements. Try to write the algorithm of a method using pseudo-code

before you start implementing it using Java.

Table 5.6 shows the diagnostic feedback for the sixth student group. Students
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who belong to this group understand the concepts of fields, constructors and

methods. They also know how to write a class. They lack the programming

ability of designing and implementing correct algorithms of methods based on

the problem description.

Table 5.7: Diagnostic feedback for student group seven

Well done.

All components of the property class are implemented correctly.

All fields are declared properly and initialised correctly using a constructor.

All get and set methods are implemented correctly.

All specified behaviours of property objects are implemented correctly using add

tenant and display methods.

You could improve the programming style of your Java class: proper names of fields

and methods, adding comment description to every method and having proper spaces

and indentations.

Unfortunately this web based system doesn’t have compiling and testing features. If

you want to compile and test your program please use BlueJ.

Table 5.7 shows the diagnostic feedback for the seventh student group. Stu-

dents who belong to this group understand the concepts of fields, constructors

and methods. They also know how to write a class properly.

5.2 Assessment Session

To gather student responses to an object-oriented programming exercise, assess-

ment sessions were conducted. A web-based formative assessment tool was de-

signed and implemented to conduct assessment sessions so that students are able

to undertake assessment tasks based on programming exercises, receive a diag-

nostic feedback based on their responses instantly, attempt multiple times and
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record information about the session.

The web-based software tool integrates five components, which are the im-

plemented snap-drift modal learning neural network, assessment tasks based on

programming exercises, diagnostic feedback, assessment session manager and a

relational database. The tool was implemented using web technologies (XHTML,

CSS, Java script and AJAX), Java technologies (JSP and Servlet), MySql rela-

tional database server and Hibernate for mapping relational tables to Java ob-

jects.

A trial was conducted using the developed web-based formative assessment

tool. During the trial, students were not allowed to copy from each other. A

different cohort of students, who didn’t participate during a training phase, were

chosen to take part in the trial. All participated students were registered for the

Introduction to Programming module offered to first year students enrolled for

Computer Science course at London Metropolitan University. Thirty five students

participated during the first trial.

5.3 Data Preparation

During the trial, raw data was captured by the web-based formative software

tool for each student that undertakes the assessment session. Data preparation

activities were required before conducting analysis and evaluation to make it

suitable and to clean the data by removing missing, unreadable or incomplete

student responses.

The raw data were stored in text based files and contain the student response

source code for each attempt. In addition to this, the raw data contain informa-
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tion about all attempts per each student. The information reveals the attempt

number, the duration, and the assigned winning node. The assigned winning

node for each attempt is used to determine a student group profile. Knowing the

student group profile of a student attempt is important as it reveals the diagnostic

feedback for the student attempt.

The first step includes downloading generated files and then checking manually

the quality for missing, unreadable files or incomplete data. The second step was

to link student source codes into their corresponding attempt number and assign

a group number for each attempt based on the assigned winning node. Finally,

we scored the value of each defined feature for all attempts using automated and

manual marking. The automated marking was done based on the proposed and

developed parsing method.

Out of the thirty five student participants, only twenty five students were

considered because of quality issues. The distribution of the number of attempts

for the twenty five students is depicted in figure 5.1. The minimum and maximum

number of attempts are 1 and 11 respectively. The average number of attempts

is 4.16.

5.4 Qualitative Analysis of Individual Cases

Based on the data prepared in the previous section, a qualitative analysis of

individual cases was conducted. The objective of the analysis is evaluation of

the performance of the parsing method and assessment of the effectiveness of the

constructed diagnostic feedback.

In the following sections, the analysis of fifteen participants out of the twenty
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Figure 5.1: The distribution of the number of student attempts

five students is described. Only students who had attempted more than two were

considered.

Student number 2 as shown in table 5.8 attempted eleven times. The stu-

dent remained in the same state or group, which indicates levels of programming

abilities, for the first eight attempts and then transferred into another state in

the ninth attempt and remained in that state for the following three attempts.

Table 5.8: The sequence of attempts for student number 2
Attempt No. Group Number Attempt No. Group Number

1 1 7 1

2 1 8 1

3 1 9 2

4 1 10 2

5 1 11 2

6 1

The initial levels of programming abilities for student number 2 were low as
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the first attempt showed which includes only a partial declaration of fields and

a constructor. During the course of the eleven attempts, the student improved

his/her levels of programming abilities as he/she transferred into a different state,

which is student group two.

The analysis of the Java source codes for each student attempt showed that

student number 2 improved his/her understanding of set and get methods and

programming abilities in writing a header of constructor and set methods.

As mentioned earlier, student number 2 remained in the same state for eight

attempts. The student received a diagnostic feedback for student group one

during these eight attempts. As shown in table 5.1, the diagnostic feedback was

appropriate to improve his/her levels of programming abilities. However, it took

him/her eight attempts to transfer into another student group. The comparison

between the automated and manual marking showed that the parsing method

could not capture incomplete constructor and set methods. This could be one

possible reason why student number 1 remained in the same state for the first

eight attempts.

Table 5.9: The sequence of attempts for student number 4
Attempt No. Group Number Attempt No. Group Number

1 1 5 2

2 2 6 3

3 2 7 3

4 2 8 3

Student number 4 as shown in table 5.9 attempted eight times. After the

first attempt the student transferred into another state, which is student group

two. Finally, the student transferred into student group three after four attempts

and remained in student group three state for the following three attempts.

133



The initial levels of programming abilities for student number 4 were very

low as the first attempt showed which includes only an incomplete declaration of

fields and incorrect codes for writing set and get methods. During the course of

the eight attempts, the student improved his/her levels of programming abilities

as he/she transferred into a different state, which is student group two and then

into student group three.

The analysis of the Java source codes for each student attempt showed that

student number 4 improved his/her understanding of set and get methods and

programming abilities in writing a constructor, get methods and set methods.

This indicates that the diagnostic feedback received by the student had a positive

impact in improving his/her programming abilities.

Table 5.10: The sequence of attempts for student number 5 and 7
Attempt No. Group Number

1 1

2 1

3 1

4 3

5 3

Student number 5 and 7 as shown in table 5.10 attempted five times. The

students remained in the same state or group, which indicates levels of program-

ming abilities, for the first three attempts and then transferred into a higher state

in the fourth attempt and remained in that state in the final attempt.

The initial levels of programming abilities for student number 5 and 7 were

very low as shown in their first attempts. The first attempt of student number

5 included only an incomplete declaration of fields and a constructor. The first

attempt of student number 7 included only a proper declaration of fields but not
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all required fields were identified. During the course of the five attempts, both

students improved their levels of programming abilities as they transferred into

a different state, which is student group three.

The analysis of the Java source codes for each student attempt showed that

student number 5 improved his/her understanding of fields and constructors and

programming abilities in writing fields and constructors. The same analysis for

student number 7 showed that he/she improved understanding of constructors

and programming abilities in writing constructors.

As mentioned earlier, student number 5 and 7 remained in the same state for

the first three attempts. Both students received a diagnostic feedback for student

group one during these three attempts. As shown in table 5.1, the diagnostic

feedback was appropriate to improve their levels of programming abilities. As the

source codes of the second and third attempts for both students showed, Both

students improved slightly their programming abilities during these attempts.

The reason for remaining in the same state was due to the fact that the improve-

ments were not adequate enough to transfer the student into a higher state. Both

students managed to transfer into a higher state at the fourth attempt, which

indicated the importance of the received diagnostic feedback.

Table 5.11: The sequence of attempts for student number 8
Attempt No. Group Number

1 4

2 4

3 4

4 4

5 4

Student number 8 as shown in table 5.11 attempted five times. The stu-

135



dent remained in the same state or group, which indicates levels of programming

abilities, for all five attempts.

The initial levels of programming abilities for student number 8 were very

good as shown in the first attempt. It includes a complete declaration of fields,

a constructor, get and set methods and behaviour methods. Based on this infor-

mation, the student should be assigned to student group six instead of student

group four.

Comparison of automated and manual marking showed that the parsing method

could not capture the get methods and behaviour methods correctly, which ex-

plains why the student was not assigned to an appropriate student group and why

the student did not receive appropriate or useful diagnostic feedback as shown in

table 5.4.

Table 5.12: The sequence of attempts for student number 9
Attempt No. Group Number

1 3

2 3

3 3

4 4

5 6

Student number 9 as shown in table 5.12 attempted five times. The student

remained in the same state, which is student group three, during the first three

attempts. In the fourth attempt, the student transferred into another state, which

is student group four. Finally, the student transferred into student group six in

the last attempt.

The initial levels of programming abilities for student number 9 were good

as the first attempt showed which includes all required components of a class:

136



fields, a constructor, get and set methods and behaviour methods. Based on this

information, the student should be assigned to student group six instead of stu-

dent group three. The comparison between the automated and manual marking

showed that the parsing method could not capture all implemented methods as

the method names were different from what the parsing method expected. That

is why the the first three attempts were assigned to student group three instead

of student group six.

The analysis of the Java source codes for each student attempt showed that

student have tried to modify the source code particularly names of the imple-

mented methods. That is why the student transferred into student group four

in his/her fourth attempt and then transferred into student group six in the last

attempt.

Table 5.13: The sequence of attempts for student number 10
Attempt No. Group Number Attempt No. Group Number

1 3 5 4

2 3 6 4

3 3 7 6

4 3 8 6

Based on the comparison of the initial levels of programming abilities during

the first attempt and the levels at the last attempt, student number 10 did not

improve, particularly in identifying required all get methods, initialising properly

all fields using a constructor, and specifying appropriate parameters of behaviour

methods. The diagnostic feedback given during the first three attempts as shown

in table 5.3 and the other feedback given in the fourth attempt as shown in table

5.4 were not useful. The most likely reason was as explained earlier due to the

inaccurate scoring of the defined features by the parsing method which results in

137



the assignment of wrong student group.

Student number 10 attempted eight times. The student remained in the same

state, which is student group two, during the first four attempts. The student

transferred into student group four in the fifth attempt and then transferred into

student group six in the seventh attempt and remained in that state until the

last attempt.

The initial levels of programming abilities for student number 10 were fair

as shown in the first attempt. It includes a correct declaration of all required

fields, a constructor and all required get methods. During the course of the eight

attempts, the student improved his/her levels of programming abilities as they

transferred into higher states, first into the student group four after fifth attempt

and then into the student group six after the seventh attempt.

The analysis of the Java source codes for each student attempt showed that

student number 10 improved his/her understanding of set methods and behaviour

methods and programming abilities in writing set methods and behaviour meth-

ods. The gradual improvements of student number 10 indicated the appropriate-

ness or usefulness of the diagnostic feedback given at each attempt.

Table 5.14: The sequence of attempts for student number 11 and 13
Attempt No. Group Number

1 1

2 1

3 1

4 1

Student number 11 and 13 as shown in table 5.14 attempted four times. The

students remained in the same state or group, which indicates levels of program-

ming abilities, during all attempts.
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The initial levels of programming abilities for student number 11 and 13 were

very low as shown in their first attempts, which include only an incomplete dec-

laration of fields. During the course of the four attempts, both students did not

improve their levels of programming abilities even though an appropriate or useful

diagnostic feedback was provided as shown in table 5.1.

Table 5.15: The sequence of attempts for student number 15
Attempt No. Group Number Attempt No. Group Number

1 2 5 4

2 2 6 4

3 2 7 4

4 2 8 4

Student number 15 as shown in table 5.15 attempted eight times. The student

remained in the same state, which is student group two, during the first four

attempts. In the fifth attempt, the student transferred into another state, which

is student group four and remained in that state until the last attempt.

The initial levels of programming abilities for student number 15 were fair as

the first attempt showed which includes proper declaration of all required fields,

a constructor, get methods and set methods with minor syntax errors. Based on

this information, the student should be assigned to student group four instead of

student group two. The comparison between the automated and manual marking

showed that the parsing method could not capture the implemented constructor

because of unexpected naming of the constructor that differs from the class name.

That is why the the first four attempts were assigned to student group two instead

of student group four.

Based on the comparison of the initial levels of programming abilities during

the first attempt and the levels at the last attempt, student number 15 showed
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small improvement, particularly in initialising fields using a constructor and syn-

tax rules for writing a constructor, writing get methods, and writing set methods.

Even though the diagnostic feedback given during the first four attempts as shown

in table 5.2 were not useful because of inaccurate scoring of features by the pars-

ing method, an appropriate or useful diagnostic feedback was given during the

last four attempts. However, the student could not transfer into a higher state

as the improvements were not enough.

Table 5.16: The sequence of attempts for student number 16
Attempt No. Group Number

1 3

2 3

3 4

4 4

Student number 16 as shown in table 5.16 attempted four times. The stu-

dents remained in the same state or group, which indicates levels of programming

abilities, for the first two attempts and then transferred into a higher state in the

third attempt and remained in that state in the final attempt.

The initial levels of programming abilities for student number 16 were fair as

shown in the first attempt, which includes a complete declaration of fields and

constructor, initialisation of fields by a constructor, and set methods. During the

course of the four attempts, the student improved his/her levels of programming

abilities as they transferred into a higher state, which is student group four.

The analysis of the Java source codes for each student attempt showed that

the student improved his/her understanding of get methods and programming

abilities in writing get methods. This improvements are not as expected consid-

ering the diagnostic feedback as shown in table 5.4 given during the third and
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fourth attempts.

Table 5.17: The sequence of attempts for student number 19
Attempt No. Group Number Attempt No. Group Number

1 2 5 2

2 2 6 2

3 2 7 4

4 2

Student number 19 as shown in table 5.17 attempted seven times. The

student remained in the same state, which is student group two, during the first

six attempts. In the last attempt, the student transferred into another state,

which is student group four.

The initial levels of programming abilities of student number 19 were fair as

the first attempt showed which includes proper declaration of all required fields,

a constructor, get methods and set methods with minor syntax errors. Based on

this information, the student should be assigned to student group four instead of

student group two. The comparison between the automated and manual marking

showed that the parsing method could not capture the implemented constructor

because of unexpected naming of the constructor that differs from the class name.

That is why the the first six attempts were assigned to student group two instead

of student group four.

Based on the comparison of the initial levels of programming abilities during

the first attempt and the levels at the last attempt, student number 19 showed

small improvement, particularly in initialising fields using a constructor and syn-

tax rules for writing a constructor, writing get methods, and writing set methods.

The most likely reason why student number 19 did not improve as expected dur-

ing the course of the seven attempts is due to the fact that the diagnostic feedback
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given during the first six attempts as shown in table 5.2 were not useful because

of inaccurate scoring of features by the parsing method.

Table 5.18: The sequence of attempts for student number 20
Attempt No. Group Number Attempt No. Group Number

1 2 4 2

2 2 5 2

3 2 6 6

Student number 20 attempted six times as shown in table 5.18. The student

remained in the same state, which is student group two, during the first five

attempts. The student transferred into student group six in the last attempt.

The initial levels of programming abilities for student number 20 were fair as

shown in the first attempt. It includes a correct declaration of all required fields,

a partial declaration of a constructor and all required set methods.

The analysis of the Java source codes for each student attempt showed that

student number 20 improved his/her understanding of get methods and behaviour

methods and programming abilities in writing get methods and behaviour meth-

ods. The gradual improvements of student number 20 during the course of the six

attempts indicated the appropriateness or usefulness of the diagnostic feedback

given at each attempt.

Table 5.19: The sequence of attempts for student number 23
Attempt No. Group Number Attempt No. Group Number

1 3 5 4

2 3 6 4

3 3 7 4

4 3 8 7

Student number 23 attempted eight times. The student remained in the same
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state, which is student group three, during the first four attempts. The student

transferred into student group four in the fifth attempt and remained in that state

for the next three attempts. Finally, the student group transferred into student

group seven in the last attempt.

The initial levels of programming abilities for student number 23 were fair

as shown in the first attempt. It includes a correct declaration of all required

fields, a constructor with proper field initialisation and some of the required get

methods. During the course of the eight attempts, the student improved his/her

levels of programming abilities as they transferred into higher states, first into

the student group four after fifth attempt and then into the student group seven

in the last attempt.

The analysis of the Java source codes for each student attempt showed that

student number 23 improved his/her understanding of set methods and behaviour

methods and programming abilities in writing set methods and behaviour meth-

ods. The steady improvements of student number 23 indicated the appropriate-

ness or usefulness of the diagnostic feedback given at each attempt.

Table 5.20: The sequence of attempts for student number 24
Attempt No. Group Number

1 2

2 2

3 3

4 4

Student number 24 as shown in table 5.20 attempted four times. The student

transferred into student group two for the first attempt and remained in that state

in the second attempt. The student transferred into student group three in the

third attempt and then transferred into student group four in the last attempt.
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The initial levels of programming abilities for student number 24 were fair as

shown in their first attempts. The first attempt of student number 24 includes

a correct declaration of some of the required fields, incomplete declaration of a

constructor and get methods. During the course of the four attempts, student

number 24 improved his/her levels of programming abilities as he/she transferred

into a higher state , which is student group three in third attempt and then into

student group four in last attempt.

The analysis of the Java source codes for each student attempt showed that

student number 24 improved his/her understanding of fields and constructors

and programming abilities in writing constructors and set methods. These im-

provements indicated the positive impact of the diagnostic feedback given at each

attempt.

5.5 State Transition Diagram

In the previous section, the sequences of attempts of each student were analysed

using qualitative methodology. To assess the overall impact of the diagnostic

feedback and reveal if there are any patterns on how students improve their

object-oriented programming abilities, a state transition diagram was used that

visualises the overall student interaction with the diagnostic feedback after each

attempt. This technique had been also applied in chapter three.

The seven identified student group profiles were assigned a group number

based on the levels of the programming abilities. The overall scores of the defined

features based on the pattern of each student group profile were used to estimate

the levels of programming abilities of each student group profile. Group one was
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assigned to the lowest score whereas group seven was assigned to the highest

score. Each student attempt is assigned an appropriate student group profile,

which is treated as a state in the transition state diagram.

Figure 5.2: The state transition diagram of the overall sequence of student groups

As shown in figure 5.2, the overall impact of the diagnostic feedback was

positive in improving the programming abilities of students as most transitions are

forward from low levels of programming abilities to higher levels of programming

abilities. The loop transitions shown in group 1, group 2, group 3, group 4, and

group 6 indicated that some students could not transfer into a higher state after

an attempt, instead they remained in the same state in the following one or more

attempts.

There is some sort of pattern on how students improve their levels of object-

oriented programming abilities. As the the state transition diagram reveals, most

students don’t necessarily need intermediate states to progress into higher states.

The state transition diagram revealed also the absence of any transition to

or from group five. This indicated that there are no students who were assigned
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to student group five. Based on the pattern of the student group five and the

diagnostic feedback given to this student group, the difference between student

group five and six is in the detail how the three main components of a class, which

are fields, a constructor, and methods are implemented. It was also noticed in

the previous section that the parsing method could not score correctly some of

the defined features in some circumstances. These could be the possible reason

why the student group five has no link in the state transition diagram.

5.6 Improvement of the Parsing Method

The comparison between automated and manual marking of the defined features

conducted for all student attempts revealed that the proposed parsing method

could not score correctly some of the defined features in some circumstances. In

the following paragraphs, the proposed improvements of the parsing method are

described.

The parsing method recognised only field declaration which ends with semi

colon using the following pattern:

[Pp]ublic or [Pp]rivate or [Pp]rotected (data type) ( field names) ;

The semi colon was added to the pattern to define field declaration to differen-

tiate method declarations from field declarations. The pattern could be improved

by allowing semi colon as an optional and ignoring any identified method declara-

tions using a filter that detects any set of parameters enclosed within parenthesis.

Once the field declarations are recognised correctly, identifying the correct data
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type was not an issue for the automated marking of features related to correctness

of fields except for the feature of field presence.

Constructors with void or any data type return types were not captured cor-

rectly using the current pattern, which only recognises declaration of constructors

with the same name as the class name and no return type. The current pattern

could be improved to include constructor declarations with return types using

the following pattern:

[Pp]ublic or [Pp]rivate or [Pp]rotected (optional word for return type) class

name (optional parameters) assignment statements;

The other issue with the current pattern was that class names with lower

case were not recognised. This could be resolved by ignoring case sensitiveness

between class name and constructor name.

The current pattern can only recognise set method declarations with void re-

turn type and only one assignment statement. Set methods with return types

other than void were not identified using the current pattern. If set method dec-

larations with return types other than void are included into the current pattern,

they will be identified also as behaviour methods with only one assignment state-

ment. To resolve this issue a filter should be added that checks the status of

the assignment statement to make sure that one of the field names from the field

declarations is on the left side of the assignment statement.

The limitation of the current pattern for capturing implemented behaviour

methods is that it identifies only method implementations with specific names,

which are specified when a programming exercise is set up. If a student chooses
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a different name for a behaviour method that does not match one of the specified

method names, the current pattern can not recognise it as the right behaviour

method.

One of the solutions to improve the limitation of the current pattern that

captures behavior methods is to capture all behaviour methods and mark against

all possible method names and choose the best match. The other alternative

is to specifically instruct students to name the behaviour methods according to

recommended names as part of the description of a programming exercise.

5.7 Summary

The method proposed for identifying student group profiles based on student

responses to an object-oriented programming exercise was evaluated based on

data gathered from a trial. Before conducting a trial, first a diagnostic feedback

was constructed for each identified student group. Secondly, a web-based forma-

tive assessment tool was designed and developed that integrates the constructed

diagnostic feedback with the identified student group profiles.

To construct diagnostic feedback for the identified student group profiles, the

learning outcomes described in the previous chapter and the patterns in each stu-

dent group profile were analysed. The patterns in each student group profile is

used to identify the current levels of object-oriented programming abilities and the

learning outcomes is used to define the expected level of object-oriented program-

ming abilities. Once the current levels and gaps of object-oriented programming

abilities are identified for each student group profile, a diagnostic feedback is

constructed that closes the gaps and improves the object-oriented programming
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abilities.

A trial was conducted using the developed web-based formative assessment

tool and thirty five students participated during the trial. The trial produced

raw data and it was processed to make it suitable and improve its quality before

conducting analysis and evaluation. The data preparation process generated three

data sets. The first data set is a set of Java source codes for all attempts of twenty

five student participants. The second data set is a sequence of attempts with their

corresponding number, duration, assigned group number and Java file name for

each of the twenty five student participants. The third data set is a score of

each defined features for all student attempts using both automated and manual

marking. The automated marking was done based on the proposed and developed

parsing method.

Once the required data sets were prepared, the distribution of the number

of attempts for the twenty five students was visualised using a bar chart. The

bar chart indicated that 10 students attempted less than three times while 15

students attempted more than two times. The minimum and maximum number

of attempts are 1 and 11 respectively. On average a student attempts 4.4 times.

Individual qualitative analysis was conducted for the 15 students who at-

tempted more than two times. The purposes of the analysis were first to assess the

effectiveness of the constructed diagnostic feedback in improving object-oriented

programming abilities of students. Secondly, to measure the correctness of the

proposed parsing method in capturing and scoring the defined features and how

they affect the appropriateness and usefulness of a diagnostic feedback.

We applied the following analysis procedure for each of the selected student

participant. First the sequence of attempts and their corresponding assigned
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student group were analysed to describe the state or student group transitions

of a student during the course of the assessment session. Secondly, the Java

source code of all attempts of a student were analysed to identify the initial levels

of programming abilities and to find out how the student progresses until the

last attempt. Thirdly, the diagnostic feedback assigned to each student attempt

were analysed to determine whether they were useful or appropriate. Finally, we

analysed the comparison between the automated and manual marking of features

for each student attempt to measure the correctness of the proposed parsing

method in capturing and scoring features in order to assess their impact on the

usefulness or appropriateness of the assigned student group or its corresponding

diagnostic feedback.

From the individual qualitative analysis of the 15 student participant stu-

dents, three categories of students were identified. The first group, which in-

cludes student number 2,8,9,15,and 19, showed slight improvements of levels of

programming abilities due to the inaccurate capturing and scoring of features by

the parsing method. The second group, which includes student number 11 and

13, did not show any improvements of levels of programming abilities due to poor

previous knowledge and understanding of object-oriented programming. The fi-

nal third group, which includes student number 4,5,7,10,16,20,23,and 24, showed

gradual improvements of levels of programming abilities due to the usefulness and

appropriateness of the diagnostic feedback they received during the assessment

session.

To assess the overall impact of the diagnostic feedback and reveal if there

are any patterns on how students improve their object-oriented programming

abilities, a state transition diagram was used that visualises the overall student
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interaction with the diagnostic feedback after each attempt. The state transition

diagram showed that the overall impact of the diagnostic feedback was positive in

improving the programming abilities of students as most transitions are forward

from low levels of programming abilities to higher levels of programming abilities.

The state transition diagram also revealed how students improve their levels of

object-oriented programming abilities.

Finally, improvements for the proposed parsing method were suggested based

on the analysis of the comparisons between automated and manual marking of

the Java source codes of all attempts.

151



Chapter 6

Conclusion and
Recommendations

6.1 Conclusion

The main aim of this research is to investigate the application of unsupervised

learning, which is snap-drift modal learning neural network, in modelling student

responses to multiple choice questions and object-oriented programming exer-

cises. The purpose of student modelling is to identify student group profiles that

support tutors in generating diagnostic feedback that can facilitate conceptual

understanding of topics and development of basic object-oriented programming

abilities. To achieve this aim, three research objectives were addressed.

Firstly, to conduct a literature review on the feedback mechanisms of currently

existing computer-based formative assessments and application of machine learn-

ing in the context of virtual learning environments. Secondly, to improve the

effectiveness of the previous application of snap-drift modal learning neural net-

work in generating intelligent diagnostic feedback that can facilitate conceptual

understanding of topics. Thirdly, to extend the application of snap-drift modal
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learning neural network in generating intelligent diagnostic feedback that can

facilitate development of basic object-oriented programming abilities.

A survey of existing computer-based formative assessments was conducted.

The survey covered all types of assessment tasks such as multiple choice questions,

short free text answers, and problem solving exercises. Secondly, the feedback

mechanisms of all gathered computer-based formative assessments were analysed.

The result showed that there are three types of feedback mechanisms. The other

aspect of the literature review was to assess the application of machine learning in

the context of virtual learning environments. Based on the result of both aspects

of the literature review, it can be concluded that existing computer-based forma-

tive assessments have never utilised unsupervised machine learning to improve

their feedback mechanisms. Machine learning techniques have been applied to

construct student models, which are represented as categories of knowledge levels

such as beginning, intermediate and advanced. The constructed student mod-

els don’t specify what concepts are understood, the gap of understanding and

misconceptions.

A method was proposed that improves the effectiveness of snap-drift modal

learning neural network in identifying useful student group profiles and support-

ing tutors without the knowledge of machine learning in generating diagnostic

feedback that improves conceptual understanding of students. The method was

evaluated by conducting trials using two real assessment tasks. First student

responses were gathered to identify student group profiles, which is the training

stage of the snap-drift modal learning neural network. Once the training stage

is finished, further trials were conducted to gather student responses for testing

stage. Analysis of the gathered student responses from the two trials showed that
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all of them were assigned to their appropriate student group profiles and the per-

centage of perfectly matched student responses could be improved by increasing

the number of student group profiles and selecting student group profiles with

no more than three most likely responses. The analysis of gathered student re-

sponses using state transition diagram also showed that the diagnostic feedback

constructed based on the identified student group profiles has a positive impact

on improving the learning performance of students.

During the second phase of the research, the proposed novel method was ex-

tended in order to identify useful student group profiles that represent different

programming abilities of writing an object-oriented class. The purpose of identi-

fying student group profiles was to facilitate construction of diagnostic feedback

that improves the development of basic object-oriented programming abilities.

The extended method was also evaluated by conducting trials to gather student

responses to an object-oriented programming exercise using individual qualitative

analysis and state transition diagram techniques.

The result of the individual qualitative analysis of 15 students, who attempted

more than two times, revealed three categories of students. The first group showed

slight improvements of levels of programming abilities due to the inaccurate cap-

turing and scoring of features by the parsing method. The second group did not

show any improvements of levels of programming abilities due to poor previous

knowledge and understanding of object-oriented programming. The final third

group showed gradual improvements of levels of programming abilities due to the

usefulness and appropriateness of the diagnostic feedback they received during

the assessment session.

The state transition diagram showed that the overall impact of the diagnos-
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tic feedback was positive in improving the programming abilities of students as

most transitions are forward from low levels of programming abilities to higher

levels of programming abilities. Even though, no clear pattern on how students

improve their levels of object-oriented programming abilities was revealed from

the state transition diagram, it obviously revealed that students do not necessar-

ily need intermediate states to progress into higher states. The state transition

diagram revealed also the absence of any transition to or from group five. Fi-

nally, improvements for the proposed parsing method were suggested based on

the analysis of the comparisons between automated and manual marking of the

Java source codes of all attempts.

6.2 Knowledge Contribution and Limitations

Overall the main objectives of this research project were addressed successfully. In

addition to enhancing the insights gained into an application of snap-drift modal

learning neural network in new application domains, it was also demonstrated

how existing web-based formative assessments could be improved by integrating

identified student group profiles and constructed diagnostic feedback to enhance

conceptual understanding of topics and development of basic-object oriented pro-

gramming abilities. These improved web-based formative assessments will have

a significant impact on improving student learning experience and supporting

tutors. Tutors will not need the knowledge of unsupervised machine learning

technique to identify student group profiles that facilitate generation of diagnos-

tic feedback. In addition to this, tutors can understand how students learn topics

or develop basic object-oriented programming abilities by visualising the sequence
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of student attempts and their assigned student group using state transition dia-

gram.

There were limitations of the research project, which could improve the re-

sult of the research. Since training data are the main source of knowledge for

unsupervised learning techniques in general and snap-drift modal learning neural

network in particular, increasing the size and coverage of gathered student re-

sponses would have enhanced the outcome of the research. The available training

data sets were limited as the research project considered only students enrolled

at London Metropolitan University. The number of trials conducted were also

limited due to the fact that two trials have to be conducted at different academic

years so that different cohort of students can be participated during training

and testing. Finally, the accuracy of the training patterns gathered from object-

oriented programming exercises were influenced by the capability of the parsing

method, which applied a rule based technique.

6.3 Recommendations for Future Research

Based on the conclusion, the following are recommended for future research:

1. To explore alternative representation techniques that minimise the dimen-

sion of training patterns. Representing training patterns gathered from

programming exercises as set of binary vectors is not efficient as it increases

the dimension of the training pattern. For example, the dimension of train-

ing patterns gathered from an object-oriented programming exercise repre-

sented by 24 defined features is around 80.
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2. To extend the defined features that represent student responses to an object-

oriented programming exercise in order to enable it to represent student

responses to advanced object-oriented programming exercises that assess

student’s programming abilities in writing complex classes using advanced

object-oriented programming concepts such as inheritance and polymor-

phism.

3. To investigate if it is possible to capture features from student responses

with out the use of parsing methods.

4. To conduct more trials in order to evaluate the effectiveness of the proposed

methods for topics from different subject areas and different object-oriented

programming languages such as C++ or C#.

5. To improve and evaluate the developed web-based formative assessment.

6. To extend the research on applying snap-drift modal learning neural net-

work to other forms of assessment tasks such as free-text response, problem

solving and essay writing.
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Appendix A

A set of five multiple choice questions regarding probability concept
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Appendix B

A set of five multiple choice questions regarding a concept from object oriented

programming
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Appendix C

A model answer to an object-oriented programming exercise
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Appendix D

A screen shot of a web-based formative assessment
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