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Abstract. We develop practical tests for the global asymptotic stability of interior fixed
points for discrete-time competitive population models. Our method constitutes the ex-
tension to maps of the Split Lyapunov method developed for differential equations. We
give ecologically-motivated sufficient conditions for global stability of an interior fixed
point of a map of Kolmogorov form. We introduce the concept of a principal reproduc-
tive mode, which is linked to a normal at the interior fixed point of a hypersurface of
vanishing weighted-average growth. Our method is applied to establish new global stabil-
ity results for 3-species competitive systems of May-Leonard type, where previously only
parameter values for local stability was known.
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1. Introduction

[Note This paper was published in Journal of Difference Equations and Applications,
Volume 23 (2017), pp. ?–? (doi:10.1080/10236198.2017.1333116). Published online in
May 2017]

Here we describe a general test for global stability of a coexistence state that can be suc-
cessfully applied to a wide range of discrete-time competitive population models, and we
apply the test to some standard models, including some whose global stability properties
are unresolved.

Thus, let us assume that the model has N interacting species with population densities
xi ≥ 0 for i ∈ IN := {1, 2, . . . , N} and write x = (x1, . . . , xN )T (a column vector). We set
C = RN+ for the nonnegative first orthant, where R+ = [0,∞). We use the natural numbers

N = {0, 1, . . .} for the model time units. Let f = (f1, . . . , fN )T : C → RN be bounded and
continuous in each component. Then the Kolmogorov model that we consider is

(1) xi(t+ 1) = Ti(x(t)) = xi(t)fi(x(t)), i ∈ IN , t ∈ N.
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For each initial state x ∈ C, equation (1) generates a forward orbit O+(x) = {x(t)}t∈N
with x(t) denoting the population state reached from the initial state x(0) = x after t time
steps.

As with many studies of the global dynamics of population models, our approach is based
upon a Lyapunov function. In fact, the Lyapunov function that we choose has been pre-
viously used as an entropic asymmetric distance function in continuous-time population
models [11, 31], and also as an average Lyapunov function in the study of permanence
of population models [10, 12, 13]. Our method extends the average Lyapunov function
approach, a technique which is usually applied only over a finite time interval, and extends
it over all forward time to extract long term properties of a permanent system.

The framework that we use is as follows. The model (1) is assumed to be competitive

(see definition 1.5) and to have a unique interior fixed point: p ∈ C̊ = (0,∞)N . Let v

be a given positive vector and V (X) =
∏N
i=1X

vi
i with X = (X1, . . . , XN )T ; this is the

Lyapunov function we employ that has also been widely used as an average Lyapunov
function [10, 12, 13] for showing permanence. The vector v is similar to that identified
as Reproductive Value in classic Leslie matrix models (e.g. [3, 29]) in that it is a left
eigenvector associated with the dominant eigenvalue of an irreducible nonnegative matrix.
Then for x(0) = x, and x(t) = T t(x) ∈ O+(x),

V (x(t)) = ψ(t, x)V (x),

where ψ(t, x) = exp
(
vT
∑t−1

k=0 ln(f(x(k)))
)

. (Here ln(x1, . . . , xn) = (ln(x1), . . . , lnxn)T

for x ∈ C̊). Notice that ψ(t, x) is nondecreasing along the forward orbit O+(x) when the
sum

(2) Φ(t, x) =
t−1∑
k=0

vT ln(f(x(k)))

is nondecreasing. Thus a necessary and sufficient condition for V to be nondecreasing
(i.e. a Lyapunov function) along O+(x) is that vT ln(f(x(t))) ≥ 0 for each t ∈ N. An
important feature of the expression Φ(t, x), is the weighting in the sum by the vector v,
and an ecologically-motivated choice of v is the key to the method’s success, as we explain
later.

The key property that our models satisfy is:

Property 1: Given any x ∈ C̊ and O+(x) = {x(t)}t∈N there exists a t′ (which

may depend on x) such that vT ln(f(x(t))) ≥ 0 for all t ≥ t′.

Property 1 states that an interior orbit eventually enters a certain region of phase space
where the Lyapunov function V then is nondecreasing, and Lyapunov theory of LaSalle
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applies [21]. A significant part of this paper is developing sufficient conditions for Property
1 above to hold. To this end we introduce

Definition 1.1. The vector α = D[p]−1v will be named the principal reproductive mode.

Definition 1.2. With v = D[p]α, the function ϕ(X) = αTD[p] ln f(X) appearing in Prop-
erty 1 will be named the principal component of the reproductive rate.

(Here and elsewhere D[x] is the diagonal matrix with diagonal elements x1, . . . , xn.) The
principal component of the reproductive rate is a scalar that provides a measure of the com-
ponent of the per-capita growth of the whole population in the direction of the dominant
mode α.

From a practical point of view, our results express the following principle:

For a bounded population model with unique coexistence state p, if the
principal component of the reproductive rate is eventually positive, the
population converges to p.

A summary of the geometry of our method is shown in figure 1.
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Figure 1. A summary of our method. All trajectories eventually end up
in the shaded region D+ where the principal reproductive rate component is
positive, and then converge to the coexistence fixed point p. The surface of
zero principal reproductive rate (the boundary of D+ in C) has an outward
normal at p that points along the vector α, the principal reproductive mode.

As practical demonstrations, we apply our methods to establish global stability in the case
of 3 species for two well-known competitive models, namely the Leslie-Gower model and
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the Ricker model. These take the form

x′i = Ti(x) =
bxi

1 + (Ax)i
(i = 1, 2, 3) (Leslie-Gower)

x′i = Ti(x) = xi exp(r(1− (Ax)i)) (i = 1, 2, 3) (Ricker)

where xi, x
′
i are the current and next generation population densities of species i respec-

tively, r, b > 0 constants, A is a positive 3× 3 matrix

A =

 1 α β
β 1 α
α β 1

 ,

and α, β > 0 reflect the strength of competition.

Note that for the Leslie-Gower model, the map T is injective on the first orthant. However,
the Ricker map is not injective on the first orthant, but it is on the forward invariant
compact set TC.

For these Leslie-Gower and Ricker we establish:

Theorem 1.3 ((Global stability for the 3-species May-Leonard Leslie-Gower model)).
Suppose that b > 1, 0 < α+ β < 2 and either

b
(
4α2 + 4β2 − 4α− 4β − αβ + 1

)
< 3

(
α2 + β2 − α− β − αβ + 1

)
,

or
3b(1− 2α− 2β + 3αβ) ≥ 5(1− α− β) + 7αβ − α2 − β2.

Then the Leslie-Gower model has a unique fixed point that is globally asymptotically stable
in the interior of the first orthant.

Theorem 1.4 ((Global stability for the 3-species Ricker model)).

Suppose that r ∈ (0, 1), α+ β < 2 and either

3r(1 + α2 + β2 − α− β − αβ) < (2− α− β)(1 + α+ β),

or
r(5− α2 − β2 − 5(α+ β) + 7αβ) ≥ (2− α− β)(1 + α+ β).

Then the Ricker model has a unique fixed point that is globally asymptotically stable in the
interior of the first orthant.

Local asymptotic stability of interior fixed points in these models (indeed their N−species
versions) were studied by Roeger in a series of papers [22, 23, 24] and recently global
stability of the N−species periodic Leslie-Gower model was studied [26] using contraction
mapping techniques (see also the planar Ricker in [28]). An advantage of our approach
is that it yields a detailed description of parameter values sufficient for global stability.
A disadvantage over [26] is that our method cannot directly deal with periodic orbits.
However, it might be possible to overcome this shortcoming by working with powers of the
map T .
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Global stability results were obtained by Smith for planar competitive maps [30] by ex-
ploiting the monotonicity of these maps with respect to a non-standard orthant ordering.
The planar Leslie-Gower model and Ricker model (for some parameter values) fit into
this framework. Since there does not appear to be a suitable ordering to render 3-species
discrete-time competitive models monotone, it seems likely that a similar approach will not
lend itself to general discrete-time competitive models and alternatives need to be found.
In a little-cited 1977 paper, Fisher and Goh [4] present a Lyapnuov function approach to
global stability of discrete-time population models. Here we develop a similar approach,
but with a different Lyapunov function.

Geometrical approaches to (1) have been developed by Franke and Yakubu in a series of
papers [5, 7, 8], and also by Kon in [19]. Although focussing on exclusion principles in [5]
Franke and Yakubu study global attractors of 2-species discrete-time competitive models.
In a similar, but distinct geometrical approach, Kon also studied permanence and mutual
exclusion principles in discrete-time competitive population models [18, 19, 20], and in
[19] Kon presents a geometrically-derived exclusion principle based upon the convexity or
concavity of the per-capita growth rate functions.

Recently Sacker [26] used dynamical reduction to demonstrate global stability in a multi-
species periodic Leslie-Gower model. Theorem 3.5 in [26] confirms that in the autonomous
case, the Leslie-Gower model with sufficiently weak competition (to ensure that the map-
ping that he constructs is a contraction) globally attracts the interior of the first or-
thant. Other models, including those of Ricker type are also considered in an earlier
paper [28].

The main objective of this paper is to link the geometrical flavour of the work of Franke,
Yakube, Kon and others, with the method of the Split Lyapunov function for continuous-
time Kolmogorov systems developed by E. C. Zeeman and M. L. Zeeman in [32], Hou and
Baigent [1, 14, 15].

1.1. Notation and standing assumptions. Let X be a metric space and T : X → X be
continuous. If T is also continuously differentiable, we denote by DT its derivative. For a
given x ∈ X one typically studies the sequence O+(x) := {T t(x) : t ∈ N} (N = {0, 1, 2, . . .})
which is referred to as the forward orbit of T through x. A setA ⊂ X is forward T−invariant
if T (A) ⊆ A and T−invariant if T (A) = A. The set of fixed points of T is Fix(T ) = {x ∈
X : T (x) = x}. For a given set W ⊂ X , let ω(W) :=

⋂∞
n=0

(⋃∞
k=n T

k(W)
)

denote

the omega limit set of W. When O+(x) has compact closure in X , ω(x) = ω({x}) is a
nonempty, compact and invariant set. We call an invariant set A ⊂ X an attractor if there
exists an open U ⊃ A for which ω(U) = A. By an absorbing set we mean a set B ⊂ RN
such that for any bounded set Θ ⊂ RN there is a tΘ ∈ N such that T tΘ ⊂ B for all t ≥ tΘ.
T is called dissipative if it has a compact absorbing set B.

Let D ⊂ RN . Recall the following partial ordering for vectors u ∈ RN : (a) u ≤ v if ui ≤ vi
for i ∈ IN , (b) u < v if u ≤ v but u 6= v, and (c) u � v if v − u ∈ C̊. Similar orderings
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are used for matrices, so that, for example, for a given matrix A, A > 0 means that each
element of A is nonnegative, and at least one element is positive.

Definition 1.5. A map T : D → RN is competitive (strongly competitive) if T (x) <
T (y)⇒ x < (�)y for each x, y ∈ D.

A sufficient condition for T to be strongly competitive on a set D is that DT−1(x)� 0 for
x ∈ D.

Here we only study stability of coexistence states. The stability of boundary fixed points
have been studied in [6, 7, 8, 9, 18, 19, 20, 25].

2. Forward invariance of sets under maps

In discrete-time systems, even if the map S maps all boundary points into B̊, then some
points in B̊ may be mapped outside of B, and then B is not forward invariant.

To obtain forward invariance based upon movement of boundary points, which is typically
much more practical to implement, we can appeal to the recent result of Sacker [27] which
shows that openness of the map is what is missing:

Theorem 2.1 ((Sacker)). Let D ⊂ RN be a bounded subset and S : D → RN be continuous.

Suppose that S : D̊ → RN is an open map and S(∂D) ⊂ D. If DC = RN \D has no bounded
components then S(D) ⊂ D.

(A map is open if it maps open sets to open sets). When S is continuously differentiable,

a sufficient condition for S to be an open map is that it is a local homeomorphism on D̊,
which is the case when detDS does not vanish on D̊.

Note that the openness condition can be restrictive. Our next result removes this restric-
tion and the boundedness requirement of D, but at the same time has its own restrictive
condition that the set D̊ is connected.

Theorem 2.2. Let D ⊂ RN with D̊ a connected set and D̊ = D. Let S : D → RN be
continuous. Assume that there is a p0 ∈ D̊ such that S(p0) ∈ D̊ and no interior points of
D are mapped to the boundary of D under S:

(3) ∀x ∈ ∂D, {y ∈ D̊ : S(y) = x} = ∅.

Then S(D) ⊂ D and S(D̊) ⊂ D̊.

Proof. Suppose S(D) 6⊂ D. Then there is a q ∈ D such that S(q) 6∈ D. If q 6∈ D̊, by D̊ = D
and the continuity of S, we can always choose a point q′ ∈ D̊ such that both ‖q′ − q‖
and ‖S(q′) − S(q)‖ are sufficiently small so that S(q′) 6∈ D. Without loss of generality,

we assume that q ∈ D̊ with S(q) 6∈ D. Since D̊ is connected, there is a continuous curve
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c ⊂ D̊ connecting p0 to q. Since S(p0) ∈ D̊ but S(q) 6∈ D, by continuity of c and S there is

r ∈ c ⊂ D̊ such that S(r) ∈ ∂D. This contradicts (3). Therefore, we must have S(D) ⊂ D.

As S(D̊) ⊂ S(D) ⊂ D, if S(D̊) 6⊂ D̊ then there is y ∈ D̊ such that x = S(y) ∈ ∂D so

S−1(x) ∩ D̊ 6= ∅, a contradiction to (3). Hence, we also have S(D̊) ⊂ D̊. �

Both Theorem 2.1 and Theorem 2.2 will play a part in the results developed below.

3. Global attraction of interior fixed points

The following lemma, a version of LaSalle’s invariance theorem [21], provides a test for
global convergence to an interior fixed point p. It does not require the results of section 2
for application. It is possible to use Theorem 6.3 of [21] directly for the following result;
however, some preparation is necessary to allow for the application of Theorem 6.3 (the
problem lies with the boundary ∂C), and we believe a more direct proof by modifying
proofs of Theorem 6.3 is more natural.

Lemma 3.1. For system (1) with f continuous, assume that the following conditions hold.

(i) There is a compact set K ⊂ C such that

∀x(0) = x ∈ C̊, ∃t1 ≥ 0, ∀t ≥ t1, x(t) ∈ K.

(ii) There is a v ∈ C̊ such that ∀x ∈ K with x(0) = x, either

(4) ∀t ∈ N, ϕ(x(t)) = vT ln f(x(t)) ≥ 0

or

(5) ∀t ∈ N, ϕ(x(t)) = vT ln f(x(t)) ≤ 0,

and {X ∈ ∂C : ϕ(X) ≤ 0} contains no invariant set.

Then for each x ∈ C̊, there is a constant c > 0 such that

ω(x) ⊆ K ∩ ϕ−1(0) ∩ V −1(c).

In addition, if T has an interior fixed point p, and X ∈ K∩ (ϕ−1(0) \ {p}) implies T (X) 6∈
ϕ−1(0) \ {p}, then p is globally attracting.

Proof. Since K is absorbing we need only consider initial points x ∈ K. Define V (X) =∏N
i=1X

vi
i , ψ(X) = V (f(X)). Take x ∈ C̊ ∩ K and write x(t) = T t(x), Vt = V (x(t)) and

ψt = ψ(x(t)). We have V0 = V (x(0)) = V (x), ψ0 = ψ(x(0)) = ψ(x) and Vt+1 = ψtVt and

Vt = exp
(∑t−1

k=0 ϕ(xk)
)
V0. Suppose (4) holds. Then Vt is monotone nondecreasing with

t and bounded by (i). Therefore, limt→∞ Vt = c for some c > 0. Let y ∈ ω(x) so that
xtk → y as k →∞ for some sequence tk →∞ as k →∞. Since limk→∞ Vtk = c, continuity
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of V shows that V (y) = c. This shows that ω(x) ⊂ V −1(c). Now let O+(y) be the forward
orbit through y. Since ω(x) is invariant, c = V (y(t + 1)) = ψ(y(t))V (y(t)) = ψ(y(t))c,
so that since c > 0, ψ(y(t)) = 1 for each t ∈ N. This shows that y ∈ ϕ−1(0) and hence
ω(x) ⊂ ϕ−1(0). Thus ω(x) ⊂ ϕ−1(0) ∩ V −1(c).

Alternatively suppose (5) holds. Now Vt is monotone nonincreasing in t so there is a c ≥ 0
such that limt→∞ Vt = c and so ω(x) ⊂ V −1(c). If c = 0, then by the definition of V ,
V −1(c) = ∂C so ω(x) ⊂ ∂C and ψ(y) ≤ 1, i.e. ϕ(y) ≤ 0 for all y ∈ ω(x). This leads
to ω(x) ⊂ {x ∈ ∂C : ϕ(x) ≤ 0}, a contradiction to condition (ii) as ω(x) is invariant.
Therefore, we must have c > 0. Then by the same reasoning as before, we have ω(x) ⊂
K ∩ ϕ−1(0) ∩ V −1(c).

Now suppose y ∈ K∩(ϕ−1(0)\{p}) implies T (y) 6∈ ϕ−1(0)\{p}. Assume ω(x) 6= {p} and let
y ∈ ω(x)\{p}. Then, as ω(x) ⊂ ϕ−1(0)∩V −1(c) ⊂ ϕ−1(0), we have y ∈ K∩ (ϕ−1(0)\{p})
so T (y) 6∈ ϕ−1(0) \ {p}. On the other hand, however, the invariance of ω(x) ensures that
T (y) ∈ ω(x) ⊂ ϕ−1(0). Thus, we must have T (y) = p. This shows that ω(x) = T (ω(x)) =
{p}, a contradiction to our supposition. Therefore, ω(x) = {p}. �

4. Split-Lyapunov stability of interior fixed points

From now we make some additional assumptions regarding the map T :

(1) Assumption A1 The system (1) is dissipative with compact absorbing set K ⊂ C;

(2) Assumption A2 f : C → C̊ is a continuously differentiable competitive map on a
neighbourhood of K;

(3) Assumption A3 There is a unique interior fixed point p of T and DT (p)−1 � 0.

Up to now, and in particular for lemma 3.1, we have not specified how the vector v that is
used to construct the Lyapunov function V is to be chosen. Now we turn to the discrete-
time version of the Split Lyapunov method introduced for competitive Lotka-Volterra dif-
ferential equations in [32] and developed further for general Lotka-Volterra systems in
[1, 14] and for general Kolmogorov differential equations in [15].

In the following, we will repeatedly use the following sets.

D+ = {X ∈ C : ϕ(X) > 0},
D− = {X ∈ C : ϕ(X) < 0},(6)

D0 = {X ∈ C : ϕ(X) = 0}.

Recall the last condition ensuring convergence in the statement of lemma 3.1, namely: If
T (D0\{p}) ⊂ D̊+ then ϕ(T (X)) ≥ 0 for X ∈ ϕ−1(0)∩C with equality only if X = p. Hence

ϕ◦T is minimised on ϕ−1(0)∩C at x = p ∈ C̊ which implies that there is a κ ∈ R such that
κ∇ϕ(p) +∇ϕ(p)DT (p) = 0. ϕ defines a hypersurface D0 near p we have ∇ϕ(p) 6= 0 and
hence∇ϕ(p) is a left eigenvector of DT (p) with eigenvalue −κ. But DT (p) = I+D[p]Df(p)
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so that −(1 + κ)∇ϕ(p) = ∇ϕ(p)D[p]Df(p). Comparison with ∇ϕ(p) = vTDf(p) suggests
taking v = D[p]∇ϕ(p). Setting α = ∇ϕ(p) gives v = D[p]α.

When DT (p)−1 � 0, which is the case for strongly competitive maps T , and also one
of our assumptions (assumption 3), it is guaranteed by the Frobenius-Perron theorem for
positive matrices that v � 0.

For the choice v = D[p]α we define V, ψ, ϕ as above. The aim is to apply forward invariance
theorems with D = D+ to establish that D+ is forward invariant. First, for Sacker’s

theorem, we require (i) D to be bounded and T to be an open map on D̊+. This will

be so if T is an injective map of D̊+ onto T D̊+. Next (ii) the set C \ D+, i.e. D−, must
have no bounded components. Finally, perhaps the most difficult part, we must show
that (iii) T (∂D+) ⊂ D+. If (i)-(iii) hold true then by theorem 2.1 the set D+ is forward
invariant.

Theorem 4.1. Under the assumptions A1-A3 for system (1), let p be the unique interior
fixed point of T and α a positive left eigenvector of DT (p). Define the function ϕ : C → R by
ϕ(X) := αTD[p] ln f(X) and the sets D+,D−,D0 via (6). Suppose that (i) D+ is bounded

and T is a local homeomorphism on D̊+, (ii) D− has no bounded components in C, (iii)
T (D0 ∪ (D+ ∩ ∂C)) ⊂ D+, and (iv) T has no invariant set in ∂C ∩ D−.

Then for each x ∈ C̊, ω(x) ⊆ D0 ∩ V −1(c) for some c > 0.

Moreover, if T (D0 \ {p}) ⊂ D̊+ then ω(x) = {p} for all x ∈ C̊.

Proof. Conditions (i) to (iii) show that D+ is forward invariant by Sacker’s theorem 2.1.

By existence of the absorbing set K we need only consider x ∈ C̊∩K. Given any x ∈ C̊ ∩K,
there are two possibilities: (a) x(t) = T t(x) 6∈ D+ for any t ∈ N or (b) x(τ + t) ∈ D+ for
some τ ∈ N and all t ∈ N.

In case (b) we immediately have ϕ(x(τ + t)) ≥ 0 for t ∈ N. Thus by lemma 3.1 ω(x) ⊂
D0 ∩ V −1(c). In case (a) we have ϕ(x(t)) < 0 for all t ∈ N, i.e. x(t) ∈ D− for all t ∈ N. By

lemma 3.1, ω(x) ⊂ D0 ∩ V −1(c). Finally, if T (D0 \ {p}) ⊂ D̊+, then since ω(x) ⊆ D0 is an
invariant set and T (D0 \ {p}) ∩D0 = ∅, we must have ω(x) = {p}. �

Next, we obtain an alternative version of theorem 4.1 that does not rely on openness of the
mapping T , but instead relies upon connectness of invariant sets via theorem 2.2.

Theorem 4.2. Under the assumptions A1-A3 for system (1), let p be the unique interior
fixed point of T and α a positive left eigenvector of DT (p). Define the function ϕ : C → R
by ϕ(X) := αTD[p] ln f(X), the sets D+,D−,D0 via (6), and Ω = C̊ ∩ D+. Suppose that
(i) Ω is connected, (ii) T (Ω) ∩Ω 6= ∅, (iii) for each X ∈ D0, {y ∈ Ω : T (y) = X} = ∅, and
(iv) T has no invariant set in ∂C ∩ D−.

Then for each x ∈ C̊, ω(x) ⊆ D0 ∩ V −1(c) for some c > 0.
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Moreover, if T (D0 \ {p}) ⊂ D̊+ then ω(x) = {p} for all x ∈ C̊.

Proof. By conditions (i)–(iii) and theorem 2.2, Ω = D+ is forward invariant. The rest of
the proof is similar to that of theorem 4.1. �

The condition (iii) in theorem 4.1 can often be difficult to verify and it is useful to have an
alternative approach that replaces this condition with one which is geometrically simpler
and easier to verify.

The conditions of the following theorem that uses a tangent hyperplane approximation are
sometimes easier to verify (as demonstrated in Example 5.1). We recall that a function g
from a convex subset of RN to R is said to be convex if for any x 6= y and t ∈ (0, 1) we
have g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y).

Theorem 4.3. Under the assumptions A1-A3 for system (1), let p be the unique interior
fixed point of T and α a positive left eigenvector of DT (p), and assume the function ϕ(X) =
αTD[p] ln f(X) is convex and D− defined by (6) is unbounded. Let h(X) = αT(X − p) and
H− = {X ∈ C : h(X) ≤ 0}. Then if (a) T (H−) ⊂ H− and (b) h(T (X)) < h(X) for all

X ∈ C \ {p} with h(X) ≥ 0, the fixed point p globally attracts C̊.

Proof. We first claim that ω(x) ⊂ H− for all x ∈ C. For x ∈ H− this is immediate by
(a). For x ∈ C \ H−, we have h(x) > 0 so from (b) h(T (x)) < h(x). If there is an integer
m > 0 such that h(Tm(x)) ≤ 0, then Tm(x) ∈ H− and the positive invariance of H−
implies that T k(x) ∈ H− for all k ≥ m so ω(x) ⊂ H−. Otherwise, we have h(Tm(x)) > 0
for all m > 0 so that h(Tm(x)) is decreasing by (b). In this case there is a c ≥ 0 such
that limm→∞ h(Tm(x)) = c, i.e. ω(x) ⊂ h−1(c). If c > 0 then for any y ∈ ω(x), we have
h(y) = c > 0 so h(T (y)) < h(y) = c. But the invariance of ω(x) implies that T (y) ∈ ω(x)
so h(T (y)) = h(ω(x)) = c, a contradiction. Therefore, c = 0 so ω(x) ⊂ h−1(0) ⊂ H−.

Next, we show that ω(x) = {p} for all x ∈ C̊. Suppose x ∈ C̊ and ω(x) \ {p} 6= ∅. Taking
y ∈ ω(x) \ {p} ⊂ H−, we have h(y) ≤ 0 so either h(y) < 0 or h(T (y)) < h(y) = 0. As
both y and T (y) are in ω(x), we can always find an integer m > 0 such that Tm(x) is close
enough to y or T (y) so that h(Tm(x)) ≤ 0, i.e. Tm(x) ∈ H−. By the positive invariance
of H− we have T k(x) ∈ H− for all k ≥ m. Since the function ϕ(x) is convex, the set
D− = D− ∪ D0 as defined through (6) is also convex. As C ∩ h−1(0) is tangent to D0 at
p, D \ {p} must be completely on one side of C ∩ h−1(0). Since H− is bounded but D− is
unbounded, we must have h(x) > 0 for all x ∈ D− \ {p}. Therefore, x ∈ H− \ {p} implies
x ∈ D+, i.e. H− \ {p} ⊂ D+. Then, from lemma 3.1, we obtain ω(x) ⊂ H− ∩ D0 = {p}, a

contradiction to the supposition ω(x) 6= {p}. Hence, ω(x) = {p} for all x ∈ C̊. �

Based on theorem 4.1, theorem 4.2 or theorem 4.3, we are now in a position to deal with
the global asymptotic stability of p, i.e. ω(x) = {p} for all x ∈ C̊ and

∀ε > 0, ∃δ > 0, ∀X ∈ Bδ(p) ∩ C̊, ∀t ≥ 1, T t(X) ∈ Bε(p).
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(Here Br(p) is the open ball centred at p with a radius r > 0.)

Figure 2. An illustration of the asymptotic stability argument in Theorem
4.4 of the interior fixed point p.

Theorem 4.4 (Split Lyapunov Stability). Assume that p is globally attracting by theorem

4.1, theorem 4.2 or theorem 4.3. Then p is globally asymptotically stable relative to C̊ if
one of the following conditions is met:

(a) Each eigenvalue µ of DT (p) satisfies |µ| < 1.

(b) Under the conditions of theorem 4.1 or theorem 4.2, there exist ρ > 0 and an integer
τ > 0 such that T τBρ(p) ⊆ D+ ∪ D0.

(c) Under the conditions of theorem 4.3, there exist ρ > 0 and an integer τ > 0 such
that T τBρ(p) ⊆ K, where K is the absorbing set of assumption A3.

Proof. Under condition (a), p is locally stable. Then the conclusion follows from this and
the global attraction of p.
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Now suppose condition (b) holds. We need only show the local stability of p. Restricted to

a small open ball centred at p, D0 and V −1(`)∩ C̊ for any ` > 0 close to V (p) are (N − 1)-
dimensional surfaces (see Figure 2). From the proof of theorem 4.1 or theorem 4.2 we know

that D+ ∩ C̊ is forward invariant. Thus, x ∈ D+ ∩ C̊ implies x(t) = T t(x) ∈ D+ ∩ C̊ for all
t ∈ N so that Vt+1(x) = ψtVt(x) ≥ Vt(x), Vt(x) tends to V (p) = `∗ monotonically (since

x(t) → p) as t → ∞. If x ∈ D+ ∩ C̊ but x 6= p, the condition T (D0 \ {p}) ⊂ D+ implies

that Vt(x) strictly increases to `∗ as t → ∞. This shows that D0 ∩ V −1(`∗) ∩ C̊ = {p}.
Moreover, for any ` ∈ (0, `∗) close enough to `∗, the two surfaces D0 and V −1(`) intersect

with each other near p so that the closed set A` = {X ∈ C̊ : ϕ(X) ≥ 0, V (X) ≥ `} is
forward invariant. Now for any given ε > 0, we can choose ` ∈ (0, `∗) close enough to
`∗ so that A` ⊂ Bε(p) (see Figure 2). Then, by (ii) and continuity of T , we can choose
δ ∈ (0,min{ρ, ε}) sufficiently small such that

∀t ∈ Iτ , T tBδ(p) ⊂ Bε(p); T τBδ(p) ⊂ A`.

Hence, by forward invariance of A`, we have T tBδ(p) ⊂ Bε(p) for all t = 1, 2, . . . so p is
stable.

Suppose (c) holds. Then, since (K ∩ C̊) ⊂ (D+ ∪ {p}) and T (K) ⊂ K, the above reasoning
under (b) is still valid after the replacement of D+ by K. �

4.1. Ultra-bounded population models. Some models of Kolmogorov form satisfy

(7) Tk(x) = xkfk(x)→ 0 for each k as |x|1 →∞ in C.

(Here |x|1 :=
∑N

i=1 |xi|).

Definition 4.5. We will call a map T : C → C satisfying (7) ultra-bounded.

Let ∆N denote the (N − 1)−dimensional unit probability simplex. Using simplex coor-
dinates R = |x|1 and uk = xk/R we have that Tk(R, u) = Rukfk(Ru) → 0 as R → ∞.
For each u ∈ ∆N , the parameterised curve γu = {T (R, u) : R ∈ [0,∞)} is a bounded and
closed curve in C. The set TC =

⋃
u∈∆ γu is, by construction, a compact absorbing set for

C. The boundary ∂TC of TC in C is the envelope of all the curves γu as u varies over ∆
and for X ∈ ∂TC we have detDT (X) = 0. The map T is 1-1 restricted to TC.

An example of an ultra-bounded model is the Ricker model Tk(x) = xk exp(rk(1− (Ax)k)
where ri > 0 and the matrix A ≥ 0.

Thus we have the following result for ultra-bounded models.

Corollary 1. Under the assumptions A1-A3 for system (1), let p be the unique interior
fixed point of T and α a positive left eigenvector of DT (p). Define the function ϕ : C → R
by ϕ(X) = αTD[p] ln f(X) and the sets D+,D0 as in (6). Then p is globally asymptotically
stable if one of the following conditions holds:

(i) TC ⊂ D+ ∪ {p}.
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(ii) D̊+ ∪ {p} ⊂ TC is absorbing for C̊.

Proof. For either (i) or (ii) the conclusion follows directly from theorem 4.4. �

5. Examples

For the two examples presented here local asymptotic stability of interior fixed points
in these models (indeed their N−species versions) were studied by Roeger in a series of
papers [22, 23, 24]. As far as we are aware, these global stability results obtained here are
new.

Example 5.1 (3-species May-Leonard Leslie-Gower model)

Here

(8) Ti(x) =
bxi

1 + (Ax)i
, i = 1, 2, 3, A =

 1 α β
β 1 α
α β 1

 , b, α, β > 0.

This is a strongly competitive map on C̊.

Note that for b < 1, the map T is a contraction with O as the unique fixed point. Thus we
will assume b > 1 in what follows.

The map T has an unique interior fixed point at p = µ11, µ = (b−1)/σ where σ = 1+α+β.

We will prove global asymptotic stability of p in C̊ (theorem 1.3 stated in section 1) via
theorem 4.3. We recall that in theorem 4.3, we do not need to find how points on the curved
hypersurface D0 move under the map T , which may often be a complex calculation, but
rather we only need consider the movement under T of points on certain hyperplanes.

From the definition of T we obtain

DT (x) = diag[
b

1 + (Ax)1
,

b

1 + (Ax)2
,

b

1 + (Ax)3
]

−diag[
bx1

(1 + (Ax)1)2
,

bx2

(1 + (Ax)2)2
,

bx3

(1 + (Ax)3)2
]A.

It is known (for example, in [17]) that T is injective on C and that (8) has a carrying
simplex, but its geometry is not known.

DT (p) has eigenvalues

λ1 =
1

b
, λ2,3 =

2b(α+ β + 1) + (b− 1)(α+ β − 2)

2b(α+ β + 1)
±
√

3(b− 1)|α− β|
2b(α+ β + 1)

i.

Then |λ2,3|2 < 1 if and only if (1− b−1)[(α−β)2 + (1−α)(1−β)] < (α+β+ 1)(2−α−β).
Under the conditions b > 1, α ≤ 1, β ≤ 1 with α+ β < 2, we have

(α− β)2 + (1− α)(1− β)− (α+ β + 1)(2− α− β) = 2α(α− 1) + 2β(β − 1) + αβ − 1 < 0.
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Thus, p is asymptotically stable when b > 1, α ≤ 1, β ≤ 1 with α + β < 2. For larger
values of α, β, p is stable provided that b > 1 is large enough.

It remains to show by theorem 4.3 that p attracts C̊.

The matrix DT (p) has a left eigenvector αT = (1, 1, 1) with associated eigenvalue 1/b. The
function ϕ(x) = αTD[p] ln f(x) is

ϕ(x) =
(b− 1)

α+ β + 1
[3 ln b− ln(1 + (Ax)1)− ln(1 + (Ax)2)− ln(1 + (Ax)3)].

ϕ(x) is convex, since it is the composition of orientation-preserving linear map and a
convex map. Since ϕ(x) < 0 for ‖x‖1 large enough, D− is unbounded. Define the function
φθ(x) = θ−‖x‖1 for each θ ≥ θ0 = 3(b− 1)/(α+β+ 1). Then Πθ = φ−1

θ (0) defines a plane

with normal (1, 1, 1)T passing through the point ( θ3 ,
θ
3 ,

θ
3)T. We aim to show that for each

θ ≥ θ0, φθ(T (x)) > 0 for all x ∈ Πθ ∩ C \ {p}. To this end we find the extrema of

φθ(T (x)) = θ −
3∑
i=1

bxi
1 + (Ax)i

on x ∈ Πθ ∩ C. We need only show that for each θ ≥ θ0, φθ(T (x)) > 0, except x = p when
θ = θ0 (under the conditions of theorem 1.3). But note that if for some θ1 > 0 and x ∈ C
we have φθ1(T (x)) ≥ 0, then θ2 > θ1 implies φθ2(T (x)) > φθ1(T (x)) ≥ 0. Hence we need
only actually concern ourselves with the case θ = θ0. From now on we drop the θ subscript
on the understanding that θ = θ0.

We now show that if φ(T (x)) > 0 for x ∈ ∂(Πθ∩C) then φ(T (x)) ≥ 0 for all x ∈ Πθ∩C with
equality only for x = p. Indeed, the set Πθ ∩ C consists of line segments passing through p
with two ends in ∂(Πθ ∩ C). Pick any such line segment with two points q1, q2 ∈ ∂(Πθ ∩ C)
such that the line segment is given by x(s) = sq1 + (1 − s)q2 ∈ Πθ ∩ C for s ∈ [0, 1] and
x(s∗) = p for some s∗ ∈ (0, 1). We need only show that φ(T (x(s))) > 0 for s ∈ [0, 1]
with s 6= s∗. To this end, we note that φ(T (x(s))) vanishes if and only if h(s) = H(x(s))
vanishes where

H(x) = θ

3∏
i=1

(1 + (Ax)i)− bx1(1 + (Ax2)(1 + (Ax)3)

−bx2(1 + (Ax)1)(1 + (Ax)3)− bx3(1 + (Ax)1)(1 + (Ax)2).

h(s) is a polynomial of degree at most three in s ∈ [0, 1]. Note that h(s∗) = θb3−b3‖p‖1 = 0,
and

h′(s∗) = (θ − 2p1)b2(1, 1, 1)A(q1 − q2)− b3(1, 1, 1)(q1 − q2)

= [b2p1(α+ β + 1)− b3](‖q1‖1 − ‖q2‖1) = 0.

Moreover, since by hypothesis φ(T (x)) > 0 for x ∈ ∂Πθ∩C, we have h(0) > 0 and h(1) > 0.
h is a cubic satisfying h(0) > 0, h(1) > 0, h(s∗) = 0 and h′(s∗) = 0 for some s∗ ∈ (0, 1).
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Thus s = s∗ is a repeated root of h, and h(s) > 0 for s ∈ [0, 1] with s 6= s∗. This shows
that if φ◦T is positive on the boundary ∂(Πθ ∩C) then it is positive on Πθ ∩C \{p}, which
means that we need only consider φ ◦ T on the boundary ∂(Πθ ∩ C).

Now consider the new function

Ψθ(u) = θ − bθu1

Cu1 +Au2 +Bu3
− bθu2

Bu1 + Cu2 +Au3
− bθu3

Au1 +Bu2 + Cu3

on u ∈ ∆3 := {x ∈ C : ‖x‖1 = 1}, where C = θ + 1, A = θα + 1, B = θβ + 1. Note that
Ψθ(u) ≥ 0 on ∆3 if and only if φθ(T (x)) ≥ 0 for x ∈ Πθ ∩ C.

The next step is to find conditions for which Ψ(u) > 0 for u ∈ ∂∆3.

For example, when u3 = 0 we have

Ψ(u1, u2, 0) = θ − bθu1

Cu1 +Au2
− bθu2

Bu1 + Cu2
.

At the vertex u = (1, 0, 0)T, Ψ(u) = θ − bθ
C > 0 if b < C. Similarly when u = (0, 1, 0)T,

Ψ(u) = θ− bθ
C > 0 when b < C. Thus b < C is a necessary condition for Ψ(u) > 0 on ∂∆3.

On a boundary line u3 = 0 when u2 > 0, we may introduce X = u1/u2 and consider the
function

p(X) = 1− bX

CX +A
− b

BX + C
.

Then p(X) > 0 for all X ≥ 0 if and only if Ψ(u1, u2, 0) > 0 for u1 = 1− u2 ∈ [0, 1].

Lemma 5.1. For a1, a2, a3, b1, b2, b4, c1 > 0,

(9) c1 −
a1X

a2X + a3
− b1
b2X + b3

> 0, ∀X ≥ 0,

when a1 ≤ a2c1, b1 < b3c1 and either (i) or (ii) below holds:

(i) (c1a2b3 + c1a3b2 − a1b3 − b1a2)2 < 4a3b2(c1a2 − a1)(c1b3 − b1),

(ii) a2b1 + a1b3 − a3b2c1 − a2b3c1 ≤ 0.

Proof. The expression on the left hand side of (9) can be written as

X2(a2b2c1 − a1b2) +X(a3b2c1 + a2b3c1 − a2b1 − a1b3) + a3b3c1 − a3b1
(a2X + a3)(b2X + b3)

.

This is positive when

X2(a2b2c1 − a1b2) +X(a3b2c1 + a2b3c1 − a2b1 − a1b3) + a3b3c1 − a3b1 > 0.

From the cases X = 0 and X > 0 large we require a1 ≤ a2c1 and b1 < b3c1. If (ii) holds
then the coefficients of X and X2 are nonnegative so the inequality holds for X ≥ 0. Under
(i) the polynomial has a positive minimum value. �
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Applying lemma 5.1 to the function p with a1 = b, a2 = C, a3 = A, b1 = b, b2 = B,
b3 = C, c1 = 1, we require b < C and either 0 < 4AB(C − b)2 − (C2 + AB − 2bC)2 =
(C2 −AB)(AB − (C − 2b)2) = (C2 −AB)(4b(C − b)− (C2 −AB)) or 2bC −C2 −AB ≤ 0
for Ψ > 0 on the boundary line u3 = 0 of ∆3. The same conditions are needed on the other
boundary lines. Note that 2bC − AB − C2 < C2 − AB since b < C. Thus, C2 − AB ≤ 0
implies 2bC −AB − C2 < 0. In summary, we have

Lemma 5.2. The function φ(T (x)) > 0 on the boundary of Πθ ∩ C if and only if C > b
and at least one of the following inequalities holds:

(C2 −AB)(AB − (C − 2b)2) > 0,(10)

2bC − C2 −AB ≤ 0.(11)

First consider the condition C > b. This translates to 1 + θ0 > b. Thus 3(b−1)
1+α+β > b − 1

which requires

α+ β < 2.

Now

C2 −AB = θ0 ((2− α− β) + (1− αβ)θ0)) ,

AB − (C − 2b)2 = (b− 1)(α+ β + 1)−2[3
(
α2 + β2 − α− β − αβ + 1

)
−b
(
4α2 + 4β2 − 4α− 4β − αβ + 1

)
],

2bC − C2 −AB = −(b− 1)(α+ β + 1)−2[3b(1− 2α− 2β + 3αβ)

−5(1− α− β) + α2 + β2 − 7αβ].

Thus when α+ β < 2 we have αβ < 1 and so C2 > AB. Hence when α+ β < 2 and

b
(
4α2 + 4β2 − 4α− 4β − αβ + 1

)
< 3

(
α2 + β2 − α− β − αβ + 1

)
inequality (10) of lemma 5.2 is satisfied. Similarly when α+ β < 2 and

3b(1− 2α− 2β + 3αβ) ≥ 5(1− α− β) + 7αβ − α2 − β2

inequality (11) of lemma 5.2 is satisfied.

This establishes theorem 1.3 given in section 1. Figure 3 (a) illustrates the region in (b, α, β)
space satisfying the conditions of theorem 1.3 where the interior fixed point of Leslie-Gower
model (8) is globally asymptotically stable. Figure 3 (b) shows the corresponding region
where the interior point is (locally) asymptotically stable.

Example 5.2 (3-species May-Leonard Ricker model)

The Competitive Ricker Model is an analogue of the continuous time May-Leonard system
for the Ricker model. The model has been studied by Hofbauer, Hutson and Jansen [13]
in the context of permanence, and also by Roeger in terms of local asymptotic stability,
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(a) (b)

Figure 3. (a) Region in (b, α, β) space satisfying the conditions of theo-
rem 1.3 where the interior fixed point of Leslie-Gower model (8) is globally
asymptotically stable. (b) Region where the interior fixed point of Leslie-
Gower model (8) is locally asymptotically stable.

limit cycles and heteroclinic cycles [22]. The map is defined by

(12) Ti(x) = xi exp r(1− (Ax)i), i ∈ I3, A =

 1 α β
β 1 α
α β 1

 .

There is a unique interior fixed point p that satisfies Ap = 11 = (1, 1, 1)T, i.e. p = 1
1+α+β11,

if (α, β) 6= (1, 1). It is clear that all orbits are bounded. Indeed the Ricker map is an
ultra-bounded map.

We easily compute (see, for example, [23])

DT (x) = diag[er−r(Ax)1 , er−r(Ax)2 , er−r(Ax)3 ](I − rD[x]A).

At x = p we have

DT (p) = I − r diag(p)A = I − r

1 + α+ β
A.

Let λ be an eigenvalue of A. It is easy to see that A has a positive eigenvector αT = (1, 1, 1)
and the corresponding eigenvalue is λ = 1 + α + β. Hence DT (p) has a positive (left)
eigenvector αT = (1, 1, 1) associated with eigenvalue µ = 1 − r. As shown in [23], p is
asymptotically stable when

0 < r < max

{
2, <

(α+ β + 1)

α2 + β2 − α− β − αβ + 1

}
.
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Clearly, detDT (x) = 0 if and only if det(I−D[rx]A) = 0. If the matrix norm ‖D[rx]A‖∞ <
1 then det(I −D[rx]A) 6= 0 and DT (x)−1 � 0, so that T is strongly competitive. Indeed
in ‖x‖1 < 1/r we have ‖D[rx]A‖∞ < 1 provided that α, β < 1. This shows that T (x) is
strongly competitive and injective on {x ∈ C : 0 ≤ ‖x‖1 < 1/r} when α, β < 1.

The function ϕ(x) = αTD[p] ln f(x) becomes ϕ(x) = r
α+β+1

∑3
j=1(1−(Ax)j) = rαTA(p−x)

α+β+1 =

r(θ0 − ‖x‖1) where θ0 = 3(1 + α + β)−1. For simplicity, we drop the factor r from the
expression of ϕ without loss of generality. Then the sets D+, D0, D− are defined by ϕ > 0,
ϕ = 0, ϕ < 0 respectively. Clearly, the set D− is unbounded. The set D0 is a plane with
normal direction (1, 1, 1) passing through the interior fixed point p = 1

1+α+β11.

That T has no invariant set in ∂C ∩ D− follows from the analysis of the two-dimensional
Ricker model [2, 30].

Our task is now to derive conditions for ϕ(T (x)) > 0 for all x ∈ D0 \ {p}. From ϕ(x) =
θ0 − x1 − x2 − x3 we have

ϕ(T (x)) = θ0 − x1e
r−r(Ax)1 − x2e

r−r(Ax)2 − x3e
r−r(Ax)3

= θ0 −
x1

e−r+r(Ax)1
− x2

e−r+r(Ax)2
− x3

e−r+r(Ax)3

≥ θ0 −
x1

1− r + r(Ax)1
− x2

1− r + r(Ax)2
− x3

1− r + r(Ax)3
.

Set %(x) = θ0 −
∑3

i=1
xi

1−r+r(Ax)i
. Then ϕ(T (x)) > 0 if we can show that %(x) > 0 for

x ∈ D0 \ {p}. Note that by introducing b = 1, C = rθ0 + 1 − r, A = αrθ0 + 1 − r and
B = βrθ0 + 1 − r, we may reduce % in u coordinates to the form of Ψ in the previous
example.

To apply lemma 5.2 to %, we need to translate the conditions of inequalities (10) and (11)
in terms of r, α, β. The inequality C > b translates to rθ0 + 1 − r > 1 which simplifies to
α + β < 2 as in the previous example. Similarly we find that it is always the case that
C2 > AB and so that in addition to α + β < 2 we need either AB − (C − 2)2 > 0 or

AB − 2C + C2 ≥ 0. But AB − (C − 2)2 =
r(2−(α+β)2+α+β−3r(α2−α(β+1)+(β−1)β+1))

(α+β+1)2
and

AB − 2C +C2 =
r(r(−α2−α(5−7β)−β(β+5)+5)−(α+β+1)(2−α−β))

(α+β+1)2
. Hence we conclude that the

Ricker model has a globally attracting interior fixed point when either

3r(1 + α2 + β2 − α− β − αβ) < (2− α− β)(1 + α+ β)

or

r(5− α2 − β2 − 5(α+ β) + 7αβ) ≥ (2− α− β)(1 + α+ β).

This completes the proof of Thorem 1.4.

Figure 4 (a) shows the regions in (r, α, β)−space where global asymptotic stability for the
Ricker model is obtained. Figure 4 (b) shows the corresponding region where the interior
point is (locally) asymptotically stable.
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(a) (b)

Figure 4. (a) Region in (r, α, β) space satisfying the conditions of theo-
rem 1.4 where the Ricker model (12) is globally asymptotically stable. (b)
Region where the Ricker model (12) is asymptotically stable. Note that in
(a) the r ranges [0, 1] whereas in (b) it ranges [0, 2].

6. Conclusions

Here we have described methods for identifying global asymptotic stability of interior fixed
points of discrete-time population models and demonstrated their utility to derive new
global stability results for 3 species competitive Leslie-Gower and Ricker models. We
have attempted to elucidate our method in terms of ecological concepts, and in particular
have introduced the idea of a principal reproductive mode, which is similar to Fisher’s
reproductive value, but not bound to age-structured models. We have also introduced the
notion of the principal component of reproductive rate which measures the net reproductive
growth using the principal reproductive mode. The eventual positiveness of the principal
component of reproductive rate is diagnostic of global convergence to a steady coexistence
state.

We have provided basic theorems for testing global attraction and stability of an interior
fixed point in the first orthant, which is a generalisation of the split Lyapunov method
from continuous dynamical systems to discrete systems. Our theory has been applied to
3-species Leslie-Gower and Ricker models to provide new results concerning the regions of
parameter space where the interior fixed point is globally asymptotically stable, and where
previously only local stability was known. In a recent paper [16] the authors provide a
partial phase portrait classification of the 3-species Leslie-Gower model using index theory
on the carrying simplex (a codimension-1 invariant manifold that attracts all points in
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the nonnegative cone bar the origin). Although we havenot made a full comparison of
this method with ours, we note that our method does not require the identification of a
carrying simplex.
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