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1. On pages 3 and 19 the definitions of J-decomposable representation are given;
these
Definitions are not the same.

We removed our “definition” – statement on page 3.

2. The Theorem 3.3 can be stated as follows. Let _ be a representation in M⊕N⊕K,
where M and M⊕N are invariant. Let we have orthogonal sums M = M1⊕M2 and N =
N1⊕N2, and let M1⊕N1 and M2⊕N2 be invariant. Then there exist decompositions K =
K1⊕K2 with M1⊕N1⊕K1 and M2⊕N2⊕K2 invariant.
This version of the Theorem 3.3 is very transparent and there is no need to use
"cohomological mashinery"in stating (and in proving) this Theorem.

We renamed this Theorem into Proposition.
Before it, according to your comment, we mention that if ξ_{12} = 0 and  ξ_{21} = 0,
then the result follows immediately. We also write there that we need to consider a
more complicated case when these cocycles are non-zero coboundaries, for using
further in the proofs of Corollary 4.3 and Theorem 6.4. Therefore we leave
“cohomological” language in the proposition.
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We also simplified its proof.

3. In Theorem 6.1. we deal actually with commutative groups. So it is reasonable to
restrict
(in stating and in the Proof of Theorem) with commutative groups.

According to your comments, we changed the statement of the theorem and prove it
for commutative groups. In a Remark after the theorem we write that the result also
holds for a wider class of groups.
We also simplified the proof of the theorem.

Edward Kissin and Victor Shulman
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Representations of nilpotent groups on spaces
with indefinite metric.

Edward Kissin and Victor S. Shulman

Abstract. The paper studies the structure of J-unitary representations
of connected nilpotent groups on Πk-spaces, that is, the representations
on a Hilbert space preserving a quadratic form ”with a finite number
of negative squares”. Apart from some comparatively simple cases, such
representations can be realized as double extensions of finite-dimensional
representations by unitary ones. So their study is based on some special
cohomological technique. We concentrate mostly on the problems of the
decomposition of these representations and the classification of ”non-
decomposable” ones.

1. Introduction

Irreducible unitary representations of connected nilpotent groups were stud-
ied in works of Dixmier, Lenglends, Guichardet, Pukanski, Kirillov and other
mathematicians. For Lie groups Kirillov [Kir] developed the famous method
of orbits relating structure of irreducible representations with symplectic ge-
ometry. The study of general unitary representations is simplified by the fact
that they uniquely decompose in direct integrals of the unitary ones.

The situation is more complicated for non-unitary representations. Though
all irreducible finite-dimensional representations are still one-dimensional and
correspond to characters of the group, but the general finite-dimensional rep-
resentations do not decompose in the sums of irreducible ones. Thus it is natu-
ral to take non-decomposable (but not necessarily irreducible) representations
as building blocks – by the Krull-Schmidt theorem, the decomposition of an
arbitrary finite-dimensional representation in the sum of non-decomposable
ones is unique up to isomorphism. Unfortunately the classification of non-
decomposable finite-dimensional representations is a ”wild” problem even for
a simple commutative group G = R2.

An intermediate, or mixed situation – the combination of finite-dimensional
and unitary representations – naturally arises when one considers J-unitary
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2 Edward Kissin and Victor S. Shulman

representations on spaces with indefinite scalar products. Let H be a complex
Hilbert space with an indefinite sesquilinear form [·, ·] and let

[x, y] = (Jx, y) for all x, y ∈ H

and some connecting operator J∗ = J ∈ B(H) with bounded inverse. The
initial scalar product plays an auxiliary role and can be changed if necessary
by an equivalent one in such a way that J is an involution: J2 = 1H . Such
scalar products are called J-admissible; it is convenient to fix one of them
and to use it in topological constructions. It should be noted that the symbol
J plays two roles in the theory: it denotes a concrete connecting involution
and indicates that some term is used in ”indefinite” sense (e.g. a J-unitary
operator — an operator preserving the form [·, ·]).

If J is a connecting involution then (1H −J)/2 is an orthoprojection on
a subspace H−, so that

H = H− ⊕H+, [x, x] < 0 for x ∈ H−, [x, x] > 0 for x ∈ H+,

and J =

(
−1H− 0

0 1H+

)
.

Set k± = dim(H±) and k = min(k±). The value of k is the same for all
J-admissible scalar products; if k < ∞, H is called a Pontryagin space or
Πk-space. We assume that k = k− = dimH− ≤ dimH

+
. A subspace K

is neutral if [x, x] = 0, positive if [x, x] > 0 and negative if [x, x] < 0 for
0 6= x ∈ K.

A representation π of a topological group G on H is irreducible if it has
no closed invariant subspaces, weakly continuous if (π(g)x, y) is continuous
on G for x, y ∈ H. It is J-unitary if

[π(g)x, π(g)y] = [x, y] for all x, y ∈ H and all g ∈ G,
i.e., Jπ(g)∗J = π(g−1). (1.1)

J-unitary representations of locally compact groups were investigated
by Araki [A], Ismagilov [Is1, Is2, Is3], Kissin and Shulman [KS], Naimark
[N1, N2], Naimark and Ismagilov [NI], Sakai [Sa] and others. They were
also considered in relation to the study of various problems in the quantum
theory ([DT], [MPS], [Sc], [Sc1], [St], [SW]). It is well known that bounded
representations of amenable groups are similar to unitary ones. Recently it
was shown in [OST] that bounded J-unitary representations of all groups on
Πk-spaces are similar to unitary representations.

J-unitary representations naturally fall into two classes: non-singular
and singular representations. A representation is non-singular if it has no
neutral invariant subspaces; otherwise it is singular . Non-singular represen-
tations decompose in the J-orthogonal sum of a finite number of irreducible
components and a unitary representation (see [Is]); in general, the irreducible
components are not similar to unitary representations.

Naimark [N1] studied J-unitary representations of connected solvable
groups on Πk-spaces.
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Theorem 1.1. [N1] Let G be a connected, locally compact solvable group and
let π be a weakly continuous J-unitary representations on Πk-space H. Then

(i) π has a k-dimensional non-positive invariant subspace.
(ii) If π is non-singular then it is bounded, similar to a unitary representa-

tion and

H = N [+]P, where N,P are invariant subspaces,

N is negative, dim(N) = k, and P is positive. The representations π|N
and π|P are similar to unitary representations.

Later Sakai [Sa] extended this result to amenable groups. Unlike non-
singular representations, singular representations of solvable groups can be
unbounded and, therefore, not similar to unitary representations. Thus the
”decomposition” they admit is not the decomposition into irreducible compo-
nents. Rather they ”decompose” into non-Π-decomposable representations.

Definition 1.2. A representation π on a Πk-space H is Π-decomposable if
H = H1[+]H2, where H1 and H2 are invariant and not positive. Otherwise,
π is called non-Π-decomposable.

The underlying space of a non-Π-decomposable representation may have
a decomposition H = H1[+]H2, where H1 and H2 are invariant, but one of
them must be positive.

This paper is a continuation of [KS1] that studied cohomology of nilpo-
tent groups, normal cocycles and the extensions of representations generated
by cocycles of these groups. In Section 2 we review some of its results.

In Section 3 we provide further information about geometry of Πk-spaces
([AI], [B], [KS]) which is different from geometry of Hilbert spaces and often
counter-intuitive. We consider some general properties of J-unitary represen-
tations and show that singular representations can be constructed as double
extensions ee(λ,U, ξ, γ), where λ is a representation on a finite-dimensional
space, U is a non-singular representations and ξ and γ are some cohomolog-
ical data. We also obtain some useful criteria of Π-decomposability of the
representations ee(λ,U, ξ, γ).

In Section 4 the results of Section 3 are refined for the case of nilpotent
groups. In Section 5 we partially describe the structure of finite-dimensional
J-unitary representations of connected nilpotent groups G. First we con-
sider important classes {πk,m} and {πχ,χ∗} of these representations, where
k,m ∈ N and χ are non-unitary characters on G. It is shown that each finite-
dimensional J-unitary representation of G decomposes in the J-orthogonal
sum of the representations πk,m, πχ,χ∗ and one-dimensional unitary repre-
sentations. Even for small k and m, the structure of πk,m-representations
can be very complicated. Using some results of [KS1] about neutral cocycles
of nilpotent groups, we get a description of representations π1,m. It allows
us in Corollary 5.4 to describe transparently these representations for the
groups Tn of all n × n real upper triangular matrices with identity on the
main diagonal.
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Although each π1,m representation is non-Π-decomposable, it can be
J-decomposable, i.e., it can decompose in the J-orthogonal sum of two repre-
sentations. In Theorem 5.9 we give some necessary and sufficient conditions
for them to be non-J-decomposable. Similar results are obtained for the rep-
resentations πχ,χ∗ .

A singular representation π of a nilpotent group G is called primary
if, for some maximal invariant neutral subspace L of π, π|

L
has only one

eigen-character, i.e., a character χ of G such that π(g)x = χ(g)x for some
0 6= x ∈ L and all g ∈ G. The representations πk,m and πχ,χ∗ are examples
of primary representations.

In Section 6 we show that all non-Π-decomposable representations of
commutative groups are primary. On the other hand, we prove that if char-
acters of G are not separated in the dual space of G (e.g., G = T3 is the
Heisenberg group of all 3 × 3 real upper triangular matrices g = (gij) with
gii = 1), then G has a non-Π-decomposable representation which is not pri-
mary.

We say that a maximal neutral invariant subspace L splits a singular
representation π on H if there is an invariant subspace K, dimK <∞, such
that L ⊂ K and H = K[+]K [⊥], where K [⊥] is the J-orthogonal complement
of K. In Section 7 we show that L always either splits or approximately splits
π, i.e., there are invariant subspaces {Hm}∞m=1 such that L ⊂ Hm+1 ⊂ Hm,

dimHm =∞, H = Hm[+]H [⊥]
m and dim(∩mHm) <∞.

The subspaces H
[⊥]
m increase, the representations π|

H
[⊥]
m

are similar to unitary

ones and the invariant subspace N = ∩mHm (the ”nucleus”) is degenerate,
finite-dimensional and contains L. Thus the representations π|

Hn
are ”in-

finitely close” to π|N and the representations π|
H

[⊥]
m

give an ”approximate

decomposition” of π.

We are very grateful to the referee for many helpful suggestions.

2. Cohomology of groups with coefficients in bimodules.

We first recall some cohomological notions in a version convenient for our
study. For Banach spaces L and H, let B(H, L) be the space of all bounded
operators from H to L and B(H) = B(H,H). Let λ and U be representations
of a topological group G on L and H respectively. Let Cn be the space of all
continuous functions from Gn to B(H, L). Define the map d1

λ,U
: C1 → C2 by

d1
λ,U (ξ)(g, h) = λ(g)ξ(h)− ξ(gh) + ξ(g)U(h) for ξ ∈ C1. (2.1)

The space Z1(λ,U) = ker d1
λ,U

of (λ,U)-cocycles consists of all functions

ξ: G→ B(H, L) satisfying

ξ(gh) = λ(g)ξ(h) + ξ(g)U(h) for all g, h ∈ G. (2.2)
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The space B1(λ,U) of (λ,U)-coboundaries consists of all functions ξ: G →
B(H, L) satisfying

ξ(g) = λ(g)X −XU(g), for all g ∈ G and some X ∈ B(H, L). (2.3)

Then B1(λ,U) ⊆ Z1(λ,U) and H1(λ,U) = Z1(λ,U)/B1(λ,U) is the 1st
cohomology group of G with coefficients in (λ,U)-bimodule B(H, L).

Let H1, H2 be Hilbert spaces. For a map u: G→ B(H1, H2), define the
map u]: G→ B(H2, H1) by:

u](g) = u(g−1)∗. (2.4)

If u is a (π1, π2)-cocycle (coboundary), where πi are representations on Hi,

then u] is a (π]2, π
]
1)-cocycle (coboundary); if H1 = H2 and u is a representa-

tion then u] is also representation.

A (λ,U)-cocycle ξ is called neutral if the function −ξ(g)ξ](h) from G×G
to B(L) is the (λ, λ])-coboundary of some function γ (called a prechain of ξ)
from G to B(L):

d1

λ,λ]
(γ)(g, h)

(2.1)
= λ(g)γ(h)− γ(gh) + γ(g)λ](h) = −ξ(g)ξ](h). (2.5)

The map γ is determined up to a cocycle. Neutral cocycles were introduced
by Ismagilov [Is3] and systematically studied in [KS1]. They and their gen-
eralizations play an important role in what follows.

For a subgroup H of G, let [G,H] be the minimal closed subgroup of
G containing all commutators [g, h] = ghg−1h−1, g ∈ G, h ∈ H. Set G[1] =
[G,G], G[2] = [G,G[1]],..., G[n] = [G,G[n−1]]; G is nilpotent if G[n] = {e} for
some n.

Consider the following example. If L = C, λ(g) ≡ 1 and U(g) ≡ 1H are
trivial representations of G, then a (λ,U)-cocycle can be identified with a
continuous map α: G→ H, satisfying

α(gh) = α(g) + α(h) for g, h ∈ G. (2.6)

Proposition 2.1. ([KS1]) Let G be a connected locally compact group and let
a continuous map α : G → H satisfy (2.6). Then there are n := n

G
∈ N, a

normal subgroup G0 of G, G[1] ⊆ G0 ⊆ ker(α), an isomorphism θ : G/G0 →
Rn and a linear map β : Rn → H such that

α(g) = β(ω(g)) = β(x1, ..., xn) = x1u1 + ...+ xnun

for some u1, ..., un ∈ H, where ω : G→ Rn is the composition of the canonical
homomorphism G→ G/G0 with θ, so that ω(g) = (x1, ..., xn) ∈ Rn.

The following result obtained in [KS1] is important for the rest of the
paper.

Theorem 2.2. Let λ and U be representations of a nilpotent group G. If
Sp(λ(h)) ∩ Sp(U(h)) = ∅ for some h ∈ G, then H1(λ,U) = H1(U, λ) = 0.
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A complex-valued function χ on G is a character if χ(gh) = χ(g)χ(h)
for all g, h ∈ G. Then

χ∗(g) = χ(g−1) = χ(g)−1 for g ∈ G, is a character. (2.7)

If χ = χ∗, i.e., |χ(g)| = 1 for g ∈ G, χ is called unitary.
If dimL = n and G is nilpotent and connected then, by Lie-Kolchin

Theorem, λ has upper triangular form in some basis in L with characters
{χi}ni=1 on the diagonal (they may repeat). The set of these characters (each
taken only once) is denoted by sign(λ). It coincides with the set of all eigen-
functionals so does not depend on the choice of a basis.

If sign(λ) consists of one character χ, we say that λ is monothetic, or a
χ-representation.

Corollary 2.3. (Corollary 2.18 [KS1].) Each finite-dimensional representation
λ on L of a connected nilpotent group uniquely decomposes in the direct sum
of monothetic representations:

λ =
∑

χ∈sign(λ)

uλχ and L =
∑

χ∈sign(λ)

uLχ, (2.8)

where each λχ = λ|
Lχ

is an χ-representation.

Simple examples show that Corollary 2.3 does not extend to solvable
groups.

We say that a representation U of G on H and a character χ of G are

1) eigen-disjoint if

Hχ = {x ∈ H : U(g)x = χ(g)x for all g ∈ G} = {0};

2) spectrally disjoint if χ(h) /∈ Sp(U(h)) for some h ∈ G;
3) sectionally spectrally disjoint if, with respect to some decomposition

H = H1 ⊕ ...⊕ Hn, U has an upper triangular form such that χ is spectrally
disjoint with each diagonal block Ui.

A set Ω of characters ofG and a representation U ofG are eigen-disjoint ,
spectrally disjoint , sectionally spectrally disjoint , if this is true for U and each
χ ∈ Ω.

Combining Theorem 2.2 and Corollary 2.3 yields

Corollary 2.4. ([KS1]) Let λ, U be representations of a connected nilpotent
group and let λ be finite-dimensional. If sign(λ) and U are sectionally spec-
trally disjoint then H1(λ,U) = H1(U, λ) = 0.

We will later need the following result.

Lemma 2.5. ([KS1]) Let χ and {χi}ri=1 be continuous characters on a con-
nected group G.

(i) If χ(g) ∈ {χi(g)}ri=1 for each g ∈ G, then χ coincides with one of the
characters χ1, ..., χr.
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(ii) Let U = χ1
H

be a representation of a connected locally compact group
G on H and λ be a χ-representation of G on L, dimL < ∞. For any
(λ,U)-cocycle ξ, the codimension of the space ∩

g∈G ker ξ(g) in H does
not exceed n

G
dimL (see Proposition 2.1).

3. J-unitary representations of groups on Πk-spaces

First, we provide some additional information about geometry of Πk-spaces
([AI], [B], [KS]). LetH = H−⊕H+ be a Πk-space with a connecting involution

J =

(
−1

H−
0

0 1
H+

)
, so that [x, y] = (Jx, y) for all x, y ∈ H, and k =

min(k±), where k± = dim(H±). We assume that k = k− = dimH− ≤
dimH+. All subspaces of H we consider will be closed.

Let K be a subspace of H. The J-orthogonal complement of K is defined
by

K [⊥] = {y ∈ H: [x, y] = 0 for all x ∈ K}.
Subspaces K and M of H are J-orthogonal if [x, y] = 0 for x ∈ K and y ∈M.
We write H = K[+]M if H is also the direct sum of K and M. Then there
is a J-admissible scalar product on H with respect to which K and M are
orthogonal and we write H = K[⊕]M. In particular, H = H−[⊕]H+.

Subspaces L and M are skew-related if for each x ∈ L, there is y ∈ M
such that [x, y] 6= 0 and vice versa. In this case dimL = dimM . A subspace
L is neutral if and only if L ⊆ L[⊥]; it is non-degenerate if L ∩ L[⊥] = {0}.

For example, if

H = Ce
1
⊕ Ce

2
, J =

(
−1 0
0 1

)
and [x, y] = (Jx, y) for x, y ∈ H,

then H is a Π1-space. For α ∈ C, the vector xα = αe
1
⊕ e

2
is negative if

1 < |α| , positive if 1 > |α| and H = Cxα[+]Cxα−1 . If |α| = 1 then Cxα is
neutral and (Cxα)[⊥] = Cxα.

A projection p in B(H) is J-orthogonal if the following equivalent con-
ditions hold

Jp∗ = pJ ⇐⇒ H = pH[+](1− p)H ⇐⇒ [px, y] = [x, py] (3.1)

for x, y ∈ H. The following facts are well known (see, for example, [KS]).

Proposition 3.1. Let H be a Πk-space. For any subspace K of H,

(K [⊥])[⊥] = K,

K is non-degenerate⇐⇒ K ∩K [⊥] = {0} ⇐⇒ H = K[+]K [⊥]. (3.2)

If K is a non-positive (e.g. neutral or negative) subspace of H then
dimK ≤ k.

If K is non-degenerate, then it is a Πn-space and K [⊥] is a Πm-space,

n− +m− = k− and n+ +m+ = k+. (3.3)
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We consider now J-unitary representations π of topological groups on
Πk-spaces (see (1.1)). As usual, J-unitary representations π and ρ on H and
K are similar if ρ = SπS−1 for S ∈ B(H,K). They are J-equivalent if also
[Sx, Sy]

K
= [x, y]

H
and J-antiequivalent if [Sx, Sy]

K
= −[x, y]

H
for x, y ∈ H.

Recall that π is singular if it has a non-zero invariant neutral subspace.
We say that π is completely singular (or generic [KS]) if it has an invariant
neutral subspace of dimension k (equivalently all maximal invariant neutral
subspaces are k-dimensional).

Remark 3.2. Let π be a J-unitary representation on a Πk-spaceH = H−[⊕]H+,
k± = dim(H±).

(i) If S ∈ B(H) has a bounded inverse, H is also a Πk-space with respect
to the indefinite metric [x, y]1 = [S−1x, S−1y]. The representation ρ =
SπS−1 on (H, [·, ·]1) is J-unitary and J-equivalent to π.

(ii) Suppose that k+ < k−, so that k = k+. Then H is also a Πk-space with
metric [·, ·]1 = −[·, ·] and H = H ′−[⊕]H ′+, where H ′− = H+, H

′
+ = H−

and k = k+ = dimH ′−. The representation π on (H, [·, ·]1) is J-unitary
and J-antiequivalent to π on (H, [·, ·]). �

We focus our attention on the study of singular representations π. Let
L be a maximal neutral π-invariant subspace of H. Then dimL ≤ k, L[⊥] is
invariant and contains L. Set H = L[⊥]�L andM = JL. ThenH = L⊕H⊕M,
H is non-degenerate and invariant for J ; M is neutral and skew-related to L.

By Corollary 3.4 [KS], (H, [·, ·]) is a Πn-space, n = k − dim(L), with
a connecting operator I = J |

H
. As L and M are skew-related, identifying

M with L via the map τ : M → L, (x, τ(y)) = [x, y], we can write that
H = L⊕ H⊕ L,

π(g) =

 λ(g) ξ(g) γ(g)
0 U(g) η(g)
0 0 µ(g)

 and J =

 0 0 1L
0 I 0
1L 0 0

 (3.4)

where λ = π|
L

and U, µ are representations of G on H and L, respectively.
As π is J-unitary, we have from (1.1) that π(g−1) = Jπ(g)∗J. Hence

(see (2.4))

µ = λ], η = Iξ], γ] = γ and U(g−1) = IU(g)∗I, (3.5)

where u](g) = u∗(g−1) for g ∈ G. Thus U is J-unitary with connecting
operator I. It is non-singular, as L is a maximal neutral invariant subspaces
in H. As π is a representation, the maps ξ and γ satisfy

ξ(gh) = λ(g)ξ(h) + ξ(g)U(h),

γ(gh) = λ(g)γ(h) + ξ(g)Iξ](h) + γ(g)λ](h). (3.6)

In other words, ξ is a cocycle and

d1

λ,λ]
(γ)(g, h) = −ξ(g)Iξ](h). (3.7)

We often write L for L⊕{0}⊕ {0}, M for {0}⊕ {0}⊕L, η for Iξ] and µ for
λ].
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If π is completely singular then H is a Hilbert space with scalar product
[x, y] and U is a unitary representation. In this case I = 1

H
, so that (3.7)

implies that cocycle ξ is neutral (see (2.5)) and γ is its prechain. Conversely,
starting with a unitary representation U on a Hilbert space H, a representa-
tion λ on an n-dimensional Hilbert space L, a neutral cocycle ξ ∈ B1(λ,U)
and a prechain γ of ξ, one can define a completely singular representation π
on a Πn-space H = L ⊕ H ⊕ L via the construction in (3.4). All completely
singular representations can be obtained in this way.

To catch the general case, we will slightly extend our approach. Now
U must be a non-singular representation on a Πm-space H with connecting
operator I. We say that a cocycle ξ ∈ B1(λ,U) is I-neutral, if there is a map
γ: G→ B(L,L) such that (3.7) holds. Starting with λ,U, ξ and γ, we define
a representation π of G on the Πm+n-space H = L⊕H⊕ L with connecting
operator J as in (3.4). We denote π by ee(λ,U, ξ, γ) and call it a double
extension of a non-singular representation U by λ defined by ξ. It follows
from the previous considerations that any singular J-unitary representation
on a Πk-space is J-unitary equivalent to a representation of this form.

Now we will find some conditions for the double extension π = ee(λ,U, ξ, γ)
to be Π-decomposable.

Let L = L1 u L2 and H = H1[+]H2, where Li are λ-invariant and Hi
are U -invariant subspaces. Let p be a projection on L1 along L2. Then p
commutes with λ. Set M1 = p∗M and M2 = (1M − p∗)M. As p∗ commutes
with λ], Mi are λ]-invariant subspaces and M = M1 uM2. If x ∈ L2 and
y ∈M1 then y = p∗y and, by (3.4), [x, y] = (x, p∗y) = (px, y) = 0. Thus M1 is
J-orthogonal to L2. Similarly, M2 is J-orthogonal to L1, M1 is skew-related
to L1 and M2 is skew-related to L2.

Thus H = (L1uL2)[⊕](H1[+]H2)⊕ (M1uM2) and with respect to this
decomposition

π =



λ1 0 ξ11 ξ12 γ11 γ12

0 λ2 ξ21 ξ22 γ21 γ22

0 0 U1 0 η11 η12

0 0 0 U2 η21 η22

0 0 0 0 λ]1 0

0 0 0 0 0 λ]2

 , (3.8)

where λi = π|Li , Ui = U |Hi , λ
]
i = λ]|Mi

.

If ξ12 = ξ21 = 0 then η12 = η21 = 0 as η = I(ξ)]. If also γ21 = 0
then H1 = (L1[+]H1) uM1 is π-invariant and non-degenerate. Thus H =

H1[+]H
[⊥]
1 , H

[⊥]
1 is π-invariant and L2 ⊂ H

[⊥]
1 . We extend this now to the

case when ξ12 + ξ21 is a coboundary to use it in the proof of Corollary 4.3.
Its inverse (Theorem 3.4) gives some sufficient condition for ξ12 + ξ21 to be a
coboundary and will be used to prove Theorem 6.5.

Note that the I-orthogonal projection q on H1 along H2 commutes with
U.
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Proposition 3.3. Let π = ee(λ,U, ξ, γ) have form (3.8). Let

ξ12 + ξ21 be a (λ,U)-coboundary and H1(λ2, λ
]
1) = 0. (3.9)

Then H = H1[+]H2 is the J-orthogonal sum of invariant subspaces, H1 =
(L1[+]H′1) uM ′1, where H′1 = {−T1x u x: x ∈ H1} for some T1 ∈ B(H1, L2)
and M ′1 is skew-related to L1, and L2 ⊂ Hi.

Proof. As ξ12 + ξ21 is a (λ,U)-coboundary, ξ12 + ξ21 = λX − XU for some
X ∈ B(H,L). Then ξ21 = (1L − p)(λX − XU)q = λ2T1 − T1U1 for T1 =
(1L − p)Xq ∈ B(H1, L2). Similarly, ξ12 = λ1T2 − T2U2 for T2 = pX(1H − q).
Thus ξ21 and ξ12 are coboundaries.

Set H′i = {−Tix u x: x ∈ Hi}, i = 1, 2. Then Li u H′i are π-invariant.
For example, for i = 1,

π(g)(−T1xu x) = ξ11(g)xu (−λ2(g)T1xu ξ21(g)x)u U1(g)x

= ξ11(g)xu (−T1U1(g)xu U1(g)x) ∈ L1 u H′1.

Consider a new J-admissible scalar product on H such that L is orthog-
onal to H′ = H′1[+]H′2. Then

H = (L1 u L2)[⊕](H′1[+]H′2)⊕ (M1 uM2).

With respect to this decomposition

π =



λ1 0 ξ′11 0 γ′11 γ′12

0 λ2 0 ξ′22 γ′21 γ′22

0 0 U ′1 0 η′11 η′12

0 0 0 U ′2 η′21 η′22

0 0 0 0 λ]1 0

0 0 0 0 0 λ]2

 where η′ =

(
η′11 η′12

η′21 η′22

)
= I ′(ξ′)]

and I ′ = J |H′ . By (3.1), the I ′-orthogonal projection q′ on H′1 along H′2
satisfies I ′(q′)∗ = q′I ′. Hence

η′21(g) = (1H − q′)η(g)p∗ = (1H − q′)I ′(ξ′)](g)p∗

= I ′(1H − (q′)∗)ξ′(g−1)∗p∗

= I ′(pξ′(g−1)(1H − q′))∗ = I ′ξ′12(g−1) = 0.

Thus γ′21 is a (λ2, λ
]
1)-cocycle. By (3.9), it is a coboundary: γ′21 = λ2S − Sλ]1

for some S ∈ B(M1, L2).

The space M
′

1 = {−Szuz: z ∈M1} is skew-related to L1 and π(g)M ′1 ⊆
L1 u H′1 uM

′
1, as

π(g)(−Sz u z) = γ′11(g)z u (−λ2(g)Sz + γ′21(g)z)u η′11(g)z u λ]1(g)z

= γ′11(g)z u η′11(g)z u (−Sλ]1(g)z u λ]1(g)z)

belongs to L1 u H′1 uM
′

1. Hence the subspace H1 = (L1[+]H′1) uM ′1 is π-
invariant. As the subspace (L1[+]H′1)uM1 is non-degenerate (see (3.2)) and
J-orthogonal to L2, the subspace H1 is also non-degenerate and J-orthogonal
to L2. Hence, by (3.2), H = H1[+]H2 and L2 ⊂ H2. �
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Our next result is a partial inverse of Proposition 3.3. We will use it later
to prove that some special representations are non-Π-decomposable. Recall
that a finite-dimensional representation is semisimple if it is a direct sum of
irreducible representations.

Theorem 3.4. Let λ be semisimple and not irreducible. If π = ee(λ,U, ξ, γ) is
Π-decomposable then

σ := pξ(1H − q) + (1L − p)ξq is a (λ,U)-coboundary, (3.10)

for some projections p and q = q] commuting with λ and U, respectively. If
p = 0 then q maps H on a subspace which is not positive; if p = 1L then
1H − q maps H on a subspace which is not positive.

In particular, if π is completely singular then p 6= 0,1L in (3.10).

Proof. Let P be a J-orthogonal projection such that the decompositionH
(3.1)
=

PH[+](1H − P )H is a Π-decomposition of H. It commutes with π and has
form P = (pij)

3
i,j=1 with respect to the decomposition H = L ⊕ H⊕L (we

may assume that p11 6= 0; otherwise replace P by 1H − P ). Hence

p31λ(g) = µ(g)p31 and p31ξ(g) = µ(g)p32 − p32U(g) for g ∈ G.

Assume firstly that p
31
6= 0. As λ is semisimple and not irreducible,

1L =
∑n
i=1 ri, n > 1, where ri are projections commuting with λ and λ|

Li

are irreducible, Li = riL. As µ(g) = λ(g−1)∗, the projections r∗i commute
with µ and µ|

Mi
are irreducible, Mi = r∗i L. Clearly, there are i, j such that

0 6= r∗i p31
rj ∈ B(L,M). Set t = r∗i p31

. As r∗i commutes with µ,

tλ(g) = µ(g)t and tξ(g) = µ(g)r∗i p32
− r∗i p32

U(g) for g ∈ G. (3.11)

We claim that there is an operator s: M → L such that sµ(g) = λ(g)s
and st 6= 0. Indeed, the restriction t′ = t|

Lj
considered as operator from Lj

to Mi is non-zero and satisfies, by (3.11), the condition t′λ(g)z = µ(g)t′z for
z ∈ Lj . As λ|

Lj
and µ|

Mi
are irreducible, t′ is invertible by the Shur Lemma.

Denote by s′ : Mi → Lj the inverse of t′ and extend s′ to s: M → L by setting
s = s′r∗i . Then sty = st′y = s′r∗i t

′y = s′t′y = y for y ∈ Lj . In particular,
st 6= 0.

Let us show that λ(g)s = sµ(g). For y ∈ L, we have x := r∗i y ∈Mi and
z := s′x ∈ Lj , so that

λ(g)sy = λ(g)s′x = s′t′λ(g)z = s′µ(g)t′z = s′µ(g)t′s′x

= s′µ(g)r∗i y = s′r∗i µ(g)y = sµ(g)y.

Thus stλ(g) = sµ(g)t = λ(g)st, so that st belongs the commutant λ(G)
′

of
λ(G) and, by (3.11),

stξ(g) = sµ(g)r∗i p32
− sr∗i p32

U(g) = λ(g)T − TU(g), where T = sr∗i p32
.

We have proved that the set S of all operators w ∈ λ(G)
′
, for which the

map g 7→ wξ(g) is a coboundary, is non-zero. The algebra λ(G)
′

is semisimple,
since it is isomorphic to the direct sum of full matrix algebras by the Schur
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Lemma. As S is a left ideal in λ(G)
′
, it contains a non-zero projection r (see

[H, Lemma 1.3.1]). If r 6= 1
L
, take p = r and q = 0 in (3.10); if r = 1

L
then

all ri belong to S and we may set p = r1 and q = 0.
Now let p

31
= 0. Then the condition P 2 = P implies p

32
p

21
= 0. As

P is J-orthogonal (P = JP ∗J), it follows that p
32

= p∗
21
I. So p∗

21
Ip

21
=

p
32
p

21
= 0 and the subspace F = p

21
L of H is neutral, since [p

21
x, p

21
y] =

(Jp
21
x, p

21
y) = (p∗

21
Ip

21
x, y) = 0 for x, y ∈ L. Moreover, F is invariant under

U . Indeed, as p31 = 0 and P commutes with π, we have from (3.4) that
U(g)p21x = p21λ(g)x ∈ p21L for x ∈ L. As U is non-singular, p21L = {0}.
Thus p

21
= 0, so that p

32
= p∗

21
I = 0.

Set p = p
11

and q = p
22
. Since P is a projection, p and q are projections

and q = Iq∗I = q], as P = JP ∗J. As Pπ(g) = π(g)P, the projections p and q
commute with λ and U, respectively, and pξ(g)− ξ(g)q = λ(g)p

12
− p

12
U(g).

Hence pξ(g)(1H − q) is a (λ,U)-coboundary, since

pξ(g)(1H − q) = (pξ(g)− ξ(g)q)(1H − q)
= λ(g)p12(1H − q)− p12(1H − q)U(g).

Similarly, (1L−p)ξ(g)q is a (λ,U)-coboundary. Thus σ is a (λ,U)-coboundary.
In particular, if p = p

11
= 0 then p

33
= p∗

11
= 0 and the projection P

maps H into L⊕H. Since [x+ y, x+ y] = [y, y] for all x ∈ L, y ∈ H, and PH
cannot be a positive subspace of H, we have that the subspace qH = p

22
H is

not positive.
If p = 1L then p33 = 1L and the projection 1H −P maps H into L⊕H.

Repeating the above argument, we obtain that 1H− q maps H on a subspace
which is not positive.

If π is completely singular then H is positive. Hence the cases p = 0,1L
are not possible. �

4. Decomposition of J-unitary representations of nilpotent
groups

From now on G is a connected, locally compact nilpotent group. As the
structure of non-singular representations of nilpotent groups is described in
Theorem 1.1, we restrict our study to singular representations on Πk-spaces,
that is, double extensions π = ee(λ,U, ξ, γ) on L ⊕ H ⊕ M, λ = π|

L
and

dimL <∞. Since λ] is a representations on L and we identify L and M, we
have from (2.8) that

L =
∑

χ∈sign(λ)

uLχ and M =
∑

ω∈sign(λ])

uMω, (4.1)

where Lχ are λ-invariant and Mω are λ]-invariant. For χ ∈ sign(λ), let pχ be
the projection on Lχ along the sum of all other Lχ′ .

Let Ω1,Ω2 be sets of characters on G. We write

Ω1 $ Ω2 if Ω1 ∪ Ω∗1 = Ω2 ∪ Ω∗2, where Ω∗ = {χ∗: χ ∈ Ω}. (4.2)
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The representation π may have several maximal neutral invariant subspaces
L. The following lemma describes the dependance of sign(λ) and sign(λ]) on
the choice of L.

Lemma 4.1. (i) sign(λ]) = sign(λ)∗ and Mχ∗ = p∗χM for χ ∈ sign(λ).

(ii) Mχ∗ and Lχ are skew-related and Mχ∗ is J-orthogonal to all Lχ′ , χ
′ 6= χ.

(iii) Let L, L′ be maximal neutral invariant subspaces of π, λ = π|L and
λ′ = π|L′ . Then dimL = dimL′ and sign(λ) $ sign(λ′), so that they
have the same unitary characters.

Proof. (i) As pχ commute with λ, p∗χ commute with λ]. Thus the subspace

p∗χM ≈ p∗χL is invariant for λ]. Set nχ = dimLχ. Then (λ(g)−χ(g)1L)nχpχ =
0 for all g ∈ G. Hence

(λ](g)− χ](g)1L)nχp∗χ = p∗χ(λ](g)− χ](g)1L)nχ

= ((λ(g−1)− χ(g−1)1L)nχpχ)∗ = 0.

Thus sign(λ]) = {χ∗: χ ∈ sign(λ)} = sign(λ)∗ and Mχ∗ = p∗χM for each χ ∈
sign(λ).

(ii) Let 0 6= x ∈ Lχ. Then x = pχx. Set y = p∗χx and consider it as
an element of M. Then y ∈ Mχ∗ and [x, y] = (x, Jy) = (x, y), where y is
considered as an element of L. Hence [x, y] = (x, y) = (x, p∗χx) = (pχx, x) =
(x, x) 6= 0. In the same way we show that, for each 0 6= z ∈ Mχ∗ , there is
u ∈ Lχ such that [u, z] 6= 0. Thus Mχ∗ and Lχ are skew-related. Similarly,
Mχ∗ is J-orthogonal to Lω, ω 6= χ, as pωpχ = 0.

(iii) It follows from Corollary 1.12(ii) [KS] that dimL = dimL′. If L ∩
L′ = {0} then L and L′ are skew-related. As in (i) and (ii), we have sign(λ′) =
sign(λ)∗ and each subspace Lχ is skew-related to L′χ∗ and J-orthogonal to
all L′χ′ , χ

′ 6= χ∗.

If K = L∩L′ 6= {0}, then π generates a quotient J-unitary representa-

tion ρ on the Πn-space K [⊥]/K, n < k (see [KS]). The subspaces L̂ = L/K

and L̂′ = L′/K of K [⊥]/K are maximal neutral subspaces invariant for ρ and

L̂ ∩ L̂′ = {0}. As above, sign(ρ
L̂′

) = {χ∗: χ ∈ sign(ρ
L̂

)}. As sign(λ) =

sign(π
K

)∪ sign(ρ
L̂

) and sign(λ′) = sign(π
K

)∪ sign(ρ
L̂′

), we conclude the

proof. �

If χ ∈ sign(λ) is non-unitary, χ∗ may belong to sign(λ′) while χ does
not. Indeed, let H = Ce

1
⊕ Ce

2
,

J =

(
0 1
1 0

)
, [x, y] = (Jx, y) and π(t) =

(
et 0
0 e−t

)
for t ∈ R. Then π is a J-unitary representation of R on a Π1-space H,
L = Ce1 and M = Ce2 are skew-related maximal neutral invariant subspaces,
χ(t) = et is a non-unitary character on R, sign(π|

L
) = χ and sign(π|

M
) = χ∗.

When G is nilpotent the non-singular part U of a singular representation
π can be described more precisely. If π is completely singular then H is a
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positive subspace and U is unitary. In the following proposition we consider
the case that π is not completely singular.

Proposition 4.2. (i) The representation U on H in (3.4) is similar to a unitary
representation, and H uniquely decomposes in the J-orthogonal sum H =
N [+]P, where N is a negative and P is a positive U -invariant subspaces.

(ii) The projection q on N along P is J-orthogonal, I = 1H − 2q is an
isometry in the scalar product 〈u, v〉 = [Iu, v], for u, v ∈ H, and H = N 〈+〉P.

(iii) U is unitary in 〈·, ·〉 . If p is the orthoprojection in 〈·, ·〉 on a U -
invariant space K in H, then p is J-orthogonal (Ip∗I = p), commutes with q
and K = (K ∩N) 〈+〉 (K ∩ P ).

Proof. As U is non-singular, (i) follows from Theorem 1.1 and (ii) from Propo-
sition 3.1.

(iii) As U is J-unitary and commutes with q, it is unitary in 〈·, ·〉 , since

〈U(g)u, v〉 = [IU(g)u, v] = [U(g)Iu, v] = [Iu, U(g)v] = 〈u, U(g)v〉
for u, v ∈ H. As dimN <∞ and UN is unitary, N = Nχ1

⊕...⊕Nχn , each Nχ
k

is U -invariant and dimNχ
k

= 1. As U is non-singular, sign(UN ) and UP are
eigen-disjoint. Hence UN and UP have no non-zero intertwining operators.
Indeed, if WUN = UPW for W ∈ B(N,P ), then (UP (g) − χ

k
(g)1)Wx =

W (UN (g) − χ
k
(g)1)x = 0 for x ∈ Nχ

k
. Hence Wx = 0, as UP has no χ

k
-

eigenvectors. Thus W = 0.
Let p have form p = (pij) with respect to the decomposition H =

N 〈+〉P . As p and U commute, U |
N
p

12
= p

12
U |

P
. By the above, p

12
= 0. As

p∗ = p, we have p
21

= 0. Thus p commutes with q and with I = 1H − 2q.
Hence Ip∗I = p and K = (K ∩N) 〈+〉 (K ∩ P ). �

We now obtain an important corollary of Proposition 3.3. For Ω ⊆
sign(λ), set LΩ =

∑
χ∈ΩuLχ.

Corollary 4.3. Let π = ee(λ,U, ξ, γ) be a representation on H = L[⊕]H⊕M.
Suppose that

1) H = H1 u H2 where H1, H2 are U -invariant;
2) sign(λ) = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = Ω∗1 ∩ Ω2 = ∅;
3) Ω1 is sectionally spectrally disjoint with U |H2

, Ω2 is sectionally spec-
trally disjoint with U |H1

.
Then H = H1[+]H2, where Hi = (LΩi [+]H′i)uMi are invariant subspaces,

LΩi are maximal neutral invariant subspaces of Hi and dimMi = dimLΩi

for i = 1, 2. Moreover, H′i = {−Tixu x: x ∈ Hi} for some bounded operators
Ti ∈ B(Hi, LΩj ), i 6= j, so that dimH′i = dimHi.

If Ω1 = sign(λ) then H1 = LuH1 uM1, H2 = {−Txu x : x ∈ H2} for
some T ∈ B(H2, L), and the representation π|

H2
is non-singular.

If H2 = H then H1 = LΩ1
uM1, where M1 is skew-related to LΩ1

, and
LΩ2

is a maximal neutral invariant subspace of H2.

Proof. As U is non-singular, H = H1[+]H
[⊥]
1 and H

[⊥]
1 is U -invariant. As

H = H1 u H2, H
[⊥]
1 = {Tx + x: x ∈ H2} for a T ∈ B(H2,H1), and TUH2

=
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UH1
T. The operator S = T + 1H2

from H2 to H
[⊥]
1 has bounded inverse

and SUH2
= U

H
[⊥]
1
S. Hence Sp(U

H
[⊥]
1

(g)) = Sp(UH2
(g)) for g ∈ G. As Ω1 is

sectionally spectrally disjoint with UH2
, it is sectionally spectrally disjoint

with U
H

[⊥]
1
.

The projection p on LΩ1
along LΩ2

commutes with λ. The projection

q on H1 along H
[⊥]
1 is J-orthogonal and commutes with U. Set λi = λ|LΩi

.

Since Ω1 and U2 = U |
H

[⊥]
1

are sectionally spectrally disjoint, and since Ω2

and U1 = U |H1
are sectionally spectrally disjoint, H1(λ1, U2) = H1(λ2, U1) =

0 by Corollary 2.4. Hence the (λ2, U1)-cocycle ξ21 = (1L − p)ξq and the
(λ1, U2)-cocycle ξ12 = pξ(1H − q) are coboundaries. As sign(λi) = Ωi, we

have sign(λ]1) = Ω∗1 by Lemma 4.1. As Ω∗1∩Ω2 = ∅, it follows from Corollary

2.4 that H1(λ2, λ
]
1) = 0. The rest follows from Proposition 3.3. �

As above, let L be a maximal neutral invariant subspace of a represen-
tation π = ee(λ,U, ξ, γ) in (3.4) on H = L[⊕]H⊕M , where H is a Πn-space,
n < k, and M (M ≈ L) is skew-related to L. For χ ∈ sign(λ), consider the
χ-eigenspace Hχ of U

Hχ = {x ∈ H: U(g)x = χ(g)x for all g ∈ G}. (4.3)

By Proposition 4.2, U is non-degenerate and similar to a unitary representation.
Hence if Hχ 6= {0} then χ is unitary and Hχ is positive or negative; otherwise
it has a neutral U -invariant subspace. Set

usign(λ) = {χ = χ∗ ∈ sign(λ) : Hχ 6= {0}}. (4.4)

All subspaces Hχ, χ ∈ usign(λ), are mutually J-orthogonal. Hence there
is a U -invariant subspace H0 ⊆ H such that each χ ∈ sign(λ) is eigen-disjoint
with U |H0 . Thus H = L[⊕]H⊕M ,

H = HΩ[+]H0, HΩ =
∑

χ∈usign(λ)

[+]Hχ and L =
∑

χ∈sign(λ)

uLχ. (4.5)

Lemma 4.4. The representation π on H has χ-eigenspaces Eχ, χ ∈ usign(λ),
such that

1) E =
∑
χ∈usign(λ)[+]Eχ is a non-degenerate subspace and π|E is non-

singular,
2) H = K[+]E where K is π-invariant and decomposition (4.5) has form

K = L[⊕]K⊕M ′, where K = KΩ[+]H0,

KΩ =
∑

χ∈usign(λ)

[+]Kχ and dimKχ ≤ nG dimLχ for all χ. (4.6)

Proof. Set V = U |HΩ . Then L[⊕]HΩ is invariant and π|L[⊕]HΩ =

(
λ ξ
0 V

)
,

where ξ = (ξωχ)ω∈sign(λ),χ∈usign(λ) is a (λ, V )-cocycle and ξωχ ∈ B(Hχ, Lω).
As λ and V are block-diagonal, each ξωχ is a (λω, V |Hχ)-cocycle. By Corollary
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2.4, H1(λω, V |Hχ) = 0 if ω 6= χ. Hence, by (2.3), ξωχ(g) = λω(g)Tωχ −
TωχUHχ(g) for some operators Tωχ ∈ B(Hχ, Lω). For χ ∈ usign(λ), set

Tχ =
∑

ω∈sign(λ),χ6=ω

Tωχ and Lχ = {−Tχy u y: y ∈ Hχ} ⊂ Lu Hχ.

Since each Hχ is positive or negative, each Lχ is positive or negative.
Set also Lχ = {0} for χ ∈ sign(λ)\usign(λ). Then the spaces Lχ u Lχ are
invariant, dimLχ = dimHχ,

L[+]
∑

χ∈usign(λ)

[+]Hχ =
∑

χ∈sign(λ)

[+](Lχ u L
χ

),

π|LχuL
χ =

(
λχ ξχ
0 χ1L

χ

)
if χ ∈ usign(λ).

Set Eχ = ∩
g∈G ker ξχ(g) ⊆ Lχ for χ ∈ usign(λ). Then Eχ is a χ-

eigenspace of π and Lχ = Kχ[+]Eχ for some Kχ ⊆ Lχ. By Lemma 2.5,
dimKχ ≤ n

G
dimLχ. Thus we have

H =
(
L[+]KΩ[+]H0[+]E

)
⊕M,

where KΩ =
∑

χ∈usign(λ)

[+]Kχ and E =
∑

χ∈usign(λ)

[+]Eχ.

As Lχ are positive or negative, Eχ are positive or negative. Thus E is
non-degenerate. By Proposition 3.1,H = K[+]E, K = E[⊥] and L[+]KΩ[+]H0 ⊆
K. As K is non-degenerate, there is a scalar product on K and a subspace
M ′ skew-related to L such that

K =
(
L[⊕]KΩ[+]H0

)
⊕M ′ and dimM ′ = dimM = dimL

which completes the proof. �

Corollary 4.5. Let sign(λ) = Ω1∪Ω2, (Ω1∪Ω∗1)∩Ω2 = ∅. If Ω1 is sectionally
spectrally disjoint with U |H0 in (4.5), then

H = H1[+]H2, where H1, H2 are invariant subspaces,

LΩi =
∑
ω∈Ωi

uLω are maximal neutral invariant subspaces in Hi (4.7)

and dimH1 <∞.

Proof. By Lemma 4.4, H = K[+]E, L ⊂ K, E is the J-orthogonal sum of
eigenspaces of π and K has decomposition (4.6). Set Φ = usign(λ) (see (4.4)),
R1 = ⊕

χ∈Ω1∩Φ
Kχ and R2 = H0 ⊕ (⊕

χ∈Ω2∩Φ
Kχ). Each χ ∈ Ω1 is sectionally

spectrally disjoint with all U |Kω = ω1Kω , ω ∈ Ω2 ∩ Φ, and with U |H0 . Thus
Ω1 and U |R2

are sectionally spectrally disjoint. Similarly, Ω2 and U |R1
are

sectionally spectrally disjoint.
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By Corollary 4.3, K = K1[+]K2, where Ki, i = 1, 2, are invariant
subspaces, LΩi are maximal neutral invariant subspaces in Ki and

K1 = (LΩ1
[+]H)⊕M1,

L
[⊥]
Ω1
∩K1 = LΩ1

[+]H, M1 is skew-related to LΩ1
,

H = {−Tx+ x: x ∈ R1}, for some operator T ∈ B(R1, LΩ2).

Then dimM1 = dimLΩ1 . By (4.6),

dimH = dimR1 =
∑
χ∈Ω1

dimKχ ≤ n
G

∑
χ∈Ω1

dimLχ <∞.

Thus dimK1 <∞. Set H1 = K1, H2 = K2[+]E. �

Let N be a maximal negative invariant subspace. Then dimN ≤ k and
H = N [+]N [⊥]. If πN [⊥] is Π-decomposable then N [⊥] = H1[+]H2, where
H1, H2 are invariant subspaces. By Proposition 3.1, they are Πn1- and Πn2-
spaces, 0 < max(n1, n2) < k. Continuing this and using (3.3), we get

Lemma 4.6. Let π be a J-unitary representation on a Πk-space H and N be
a maximal negative invariant subspace. Then either

either H = N [+]P, where dimN = k and P is positive,

or H = N [+]H1[+]...[+]Hn, (4.8)

where all Hi are invariant Πki-spaces, ki > 0, π|Hi are non-Π-decomposable.

Note that for some summands in (4.8) the inequality ki− ≤ ki+ can
fail. As π|N is similar to unitary, it decomposes into a finite sum of one-
dimensional unitary representations.

Consider now some particular cases of Corollary 4.5. Let π be a non-Π-
decomposable representation of G on H and χ ∈ sign(λ). Set Ω1 = {χ, χ∗}∩
sign(λ) and Ω2 = sign(λ)�Ω1.

Let χ be non-unitary. As U |H0 is similar to a unitary representation,
it is spectrally disjoint with Ω1. Since usign(λ) in (4.4) consists of unitary
characters, Ω1∩ usign(λ) = ∅. As π is non-Π-decomposable, it follows from
Corollary 4.5 and its proof that sign(λ) = Ω1 ⊆ {χ, χ∗}, that L = LΩ1,

H1 = L⊕M, where L and M are skew-related, and H2 is positive.
Let χ be unitary and dimH <∞. Since G is nilpotent and U is similar

to a unitary representation, H0 =
∑n
i=1⊕Hωi is a finite sum of ωi-eigenspaces

of U. As χ is eigen-disjoint with U |H0 , they are spectrally disjoint. If Ω2 6= ∅,
then π is Π-decomposable by Corollary 4.5. Thus sign(λ) = {χ}.

Combining all this, we have the following summary of the results of this
subsection.

Theorem 4.7. Each J-unitary representation of a connected nilpotent group
G on a Πk-space decomposes in a finite sum of summands of the following
types:

1) a representation on a positive subspace similar to a unitary one;
2) a unitary representation on a one-dimensional negative space;
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3) a finite-dimensional non-Π-decomposable representation with sign(λ) =
{χ} for a unitary χ;

4) a finite-dimensional non-Π-decomposable representation on L⊕M, where
L is neutral, invariant and skew-related to M, and sign(λ) ⊆ {χ, χ∗}
for a non-unitary χ;

5) a non-Π-decomposable representation ee(λ,U, ξ, γ) such that sign(λ) con-
sists of unitary characters and U = UΩ⊕U0, where UΩ acts on a space
HΩ with dimHΩ ≤ nG dimL and sign(UΩ) ⊆ sign(λ), and where U0 acts
on a space H0 with dimH0 =∞ and is eigen-disjoint but not spectrally
disjoint with each χ ∈ sign(λ).

More information about cases 3) and 4) will be obtained in the further
sections.

5. Finite-dimensional representations on Πk-spaces

In this section we consider some important classes of finite-dimensional J-
unitary representations of connected, locally compact nilpotent groups and
prove that each finite-dimensional J-unitary representation of such a group
is the direct sum of these representations.

5.1. Representations πk,m.

Let dimL = k ∈ N and dimH = m ∈ N ∪ {0}. Let λ be a χe-representation
of G on L, where χe is the identity character on G, and let U(g) = 1H be
a trivial representation of G on H. We say that π = ee(λ,U, ξ, γ) in (3.4) is
πk,m representation.

The following lemma allows us to consider πk,m-representations only for
m ≤ knG.

Lemma 5.1. Let dimH > kn
G
. Then H = K[⊕]P, where K and P are π-

invariant subspaces, P is positive, K = L⊕K⊕L, K ⊆ H and dimK ≤ kn
G

.

Proof. Set P = ∩
g∈G ker ξ(g) and K = H 	 P. By (3.4), P is π-invariant,

positive, J-orthogonal to K = L ⊕ K ⊕ L. Then H = K[⊕]P and K is
π-invariant. By Lemma 2.5, dimK ≤ kn

G
. �

The structure of πk,m-representations depends on the structure of λ,
ξ and γ. Since non-unitary finite-dimensional representations do not admit
reasonable classification even for commutative groups, one cannot hope for a
constructive description of the class πk,m in general. However, such a descrip-
tion is possible, though quite complicated in a very special and important case
of π1,m-representations on Π1-spaces.
Representations π1,m.. Let L = Ce and dimH = m ≤ n

G
. Then H = L ⊕

H⊕ L is a Π1-space. Let λ = λ] = ι be the trivial representation of G on L:
ι(g) ≡ 1L. Then

π1,m(g) =

 1L ξ(g) γ(g)
0 1H ξ](g)
0 0 1L

 for g ∈ G, (5.1)
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where ξ is a neutral (ι, U)-cocycle, ξ(g) ∈M1,m(C) and γ is a prechain of ξ:

ξ(gh) = ξ(h) + ξ(g), γ(gh) = γ(h) + ξ(g)ξ](h) + γ(g), γ(g)∗ = γ(g−1)

for g, h ∈ G. The description of neutral (ι, U)-cocycles and their prechains
was obtained in [KS1]. Here we will summarize the results obtained there.

Let n = n
G

and ω: G → Rn be the composition of the canonical ho-
momorphism G→ G/G0 with an isomorphism G/G0 → Rn (see Proposition
2.1), so that ω(g) ∈ Rn is a column.

For x ∈ H, y ∈ L, a rank one operator x ⊗ y acts from H to L by the
formula

(x⊗ y)z = (z, x)
H
y for z ∈ H, (5.2)

where (·, ·)
H

is the scalar product on H. Then, for x, v ∈ H, y, u ∈ L, A ∈ B(L)
and B ∈ B(H)

(x⊗ y)∗ = y ⊗ x, (x⊗ y)(u⊗ v) = (v, x)(u⊗ y),

A(x⊗ y) = x⊗Ay, (x⊗ y)B = B∗x⊗ y. (5.3)

Recall that G[1] is the closed subgroup of G generated by all commuta-
tors [g, h] = ghg−1h−1 where g, h ∈ G, and G[2] is the closed subgroup of G
generated by all [g, h], where g ∈ G, h ∈ G[1].

Theorem 5.2. ([KS1]) (i) Each (ι, U)-cocycle has form ξ(g) = Aω(g)⊗e, where
A is an m × n matrix. It is neutral if and only if there exists a continuous
real-valued function ε on G satisfying

ε(gh) = ε(g) + ε(h)− Im(A∗Aω(g), ω(h))
H

for g, h ∈ G. (5.4)

Let (·, ·)Rn be the scalar product in Rn. For each ζ ∈ Rn, the corresponding
prechain γ

ζ
has form

γ
ζ
(g) = φ

ζ
(g)1

L
, where

φ
ζ
(g) = −‖Aω(g)‖2 /2 + i(ζ, ω(g))Rn + iε(g). (5.5)

The representation π1,m = ee(ι, U, ξ, γ) on H has form (5.1) with ξ](g) =
ξ(g−1)∗ = −e⊗Aω(g).

(ii) If the n × n matrix A∗A has real entries then the (ι, U)-cocycle
ξ = Aω ⊗ e is neutral and the functions φ

ζ
(g) have form (5.5) with ε = 0.

If G[2] = G[1] (for example, G is commutative) then a cocycle ξ = Aω ⊗ e is
neutral if and only if the matrix A∗A has real entries.

To formulate conditions of neutrality of the (ι, U)-cocycle ξ = Aω ⊗ e
in general, that is, when G[2] 6= G[1], we need some additional notation.

Let E = G/G[2] and Z = E[1]. Then H := E/Z 6= {0}, as G[2] 6= G[1].
Let p: G→ E and q: E → H be the quotient maps. By Proposition 2.1, there
are continuous epimorphisms ω

H
: H → Rl and ω

Z
: Z → Rk for l := n

H
, k :=

nZ ∈ N. It was proved in Corollary 4.5 [KS1] that there exist
1) a Borel locally bounded right inverse ρ: H → E of the map q:

q(ρ(h)) = h for h ∈ H;
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2) real-valued n × n (n = n
G

) matrices T1, ..., Tk such that, for all
h, h′ ∈ H,

ω
Z

(h � h′) = (u1, ..., uk) ∈ Rk, where h � h′ = ρ(hh′)−1ρ(h)ρ(h′) ∈ Z,
ui = (TiωH (h), ω

H
(h′))

Rl

and (·, ·)
Rl

is the scalar product on Rl. Let n = n
G
. For an m× n matrix A,

consider an n× n matrix S = A∗A = (sij).

Theorem 5.3. ([KS1, Theorem 4.7]) A (ι, U)-cocycle ξ(g) = (Aω(g)) ⊗ e is
neutral if and only if

Im(S) = (Im sij) =
1

2

k∑
j=1

σj(Tj − T ∗j ) for some σ = (σ1, ..., σk) ∈ Rk.

Let (·, ·)
Rk

be the scalar product on Rk. The function ε on G satisfying (5.4)
has form

ε(g) = (σ, ωZ(ρ(hg)
−1p(g)))

Rk
− 1

2
(σ, ωZ(hg � hg))Rk

,

where hg = q(p(g)) ∈ H and g ∈ G.

The above construction is more transparent for the nilpotent group Tk
of all k×k real upper triangular matrices g = (gij) with identity on the main
diagonal. Then g = (ĝ1, ..., ĝk−1), where ĝi = (g

1,1+i
, ..., g

k−i,k) ∈ Rk−i are

the diagonals of g. We have (see Proposition 2.1) n
G

= k− 1, G[1] = {g ∈ G:
ĝ1 = 0},

G[2] = {g ∈ G: ĝ1 = ĝ2 = 0},

E = G/G[2] ∼= {g ∈ G : ĝi = 0 for i ≥ 3},

H ∼= G/G[1] ∼= Rk−1, Z ∼= G[1]/G[2] ∼= Rk−2,

ω(g) = ĝ1 and nZ = k − 2.

For ĝ1 = (g12 , .., g(k−1),k
) ∈ Rk−1, set

ĝ1 � ĝ1 = (g12g23 , g23g34 , ..., g(k−2),(k−1)
g

(k−1),k
) ∈ Rk−2 ∼= Z.

If h = (h1, ..., hk−1) ∈ H ∼= Rk−1, we have ρ(h) = (ĝ1, 0, ..., 0) ∈ E with
ĝ1 = h. Hence

h � h = ρ(h+ h)−1ρ(h)2 = (h+ h, 0, ..., 0)−1(h, 0, ..., 0)2

= (0, h� h, 0, ..., 0) mod G[2].

We have p(g) = (ĝ1, ĝ2, 0, ..., 0) ∈ E, so that hg = q(p(g)) = ĝ1 ∈ H and
ωZ(hg � hg) = ĝ1 � ĝ1 ∈ Rk−2. Continuing these calculations and applying
Theorems 5.2 and 5.3, we obtain

Corollary 5.4. Let ι(g) = 1L and U(g) = 1H for all g ∈ Tk, where L = Ce and
H = Cm, m ≤ k − 1. For a matrix A ∈ Mm×(k−1)(C), let S := A∗A = (sij)
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and σ = (σ1, ..., σk−2) ∈ Rk−2 with σi = 2si,i+1. Then each (ι, U)-cocycle has
form ξ(g) = Aĝ1 ⊗ e. It is neutral if and only if

Im sij = 0, when |i− j| > 1. (5.6)

If (5.6) holds then, for each ζ ∈ Rk−1, the prechain γ
ζ

has form

γ
ζ
(g) = φ

ζ
(g)1L, where

φ
ζ
(g) = −‖Aĝ1‖2 /2 + i(ζ, ĝ1)

Rk−1
+ i(σ, ĝ2 −

1

2
ĝ1 � ĝ1)

Rk−2
. (5.7)

The corresponding representation π1,m = ee(ι, I, ξ, γζ) of Tk on H = L⊕H⊕L
has form

π1,m(g) =

 1 Aĝ1 ⊗ e φζ(g)1L
0 1H −e⊗Aĝ1

0 0 1

 (see (5.2)).

We shall now consider two particular cases: k = 3 and k = 4.

Example 5.5. (i) For k = 3,

T3 =

g =

1 x z
0 1 y
0 0 1

 : x, y, z ∈ R

 (5.8)

is the real Heisenberg group. Then m = 0, 1, 2, σ = (σ1) and ζ ∈ R2. If m 6= 0
then A∗A is a 2 × 2 matrix and condition (5.6) holds automatically. Thus

(ι, I)-cocycles ξ(g) = A

(
x
y

)
⊗ e are neutral for all m× 2 matrices A.

If m = 0 then A = 0 and σ1 = 0.

If m = 1 then A = (a11, a12) and σ1 = 2s12 = 2 Im(a12a11).

If m = 2 then A =

(
a11 a12

a21 a22

)
and σ1 = 2s12 = 2 Im(a12a11 +

a22a21).

Thus Corollary 5.4 gives a complete description of all π1,m representa-
tions of the group T3.

(ii) For the group T4, 0 ≤ m ≤ 3, A is an m × 3 matrix, S := A∗A =
(sij), σ = (2s12, 2s23), ĝ1 = (g12, g23, g34) and ζ ∈ R3. By (5.6), the cocycle
ξ(g) = Aĝ1 ⊗ e is neutral if s13 ∈ R.

If m = 0 then A = 0 and σ = (0, 0).

If m = 1 then A = (a11, a12, a13), s13 = a11a13 ∈ R, σ1 = 2 Im a12a11

and σ2 = 2 Im a13a12.

Similarly, we can consider cases m = 2, 3 and obtain a full list of repre-
sentations π1,m of T4.
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Representations πk,0.. Let m = 0. Then H = L⊕ L with dimL = k,

J =

(
0 1L
1L 0

)
, πk,0(g) =

(
λ(g) γ(g)

0 λ](g)

)
,

γ(gh) = λ(g)γ(h) + γ(g)λ](h) (5.9)

and γ(g)∗ = γ(g−1). Then γ is a (λ, λ])-cocycle andH is a 2k-dimensional Πk-
space.

If γ ≡ 0, (5.9) trivially holds. For γ 6= 0, consider a particular case when
λ(g) ≡ 1L. Then

γ(g) = γ(g−1)∗, γ(e) = 0 and γ(gh) = γ(g) + γ(h) for g, h ∈ G.

It follows from Proposition 2.1 that there is a linear map δ from RnG into
the space of k × k symmetric matrices such that γ(g) = iδ(ω(g)), where ω
is the canonical homomorphism from G onto G/G0 ≈ RnG . Thus πk,0(g) =(

1L iδ(ω(g))
0 1L

)
is a J-unitary representation of G.

For λ 6= 1L, we consider the following example. Let G = R and dimL =
2. For t ∈ R, let

λ(t) =

(
1 t
0 1

)
, λ](t) = λ(−t)∗ =

(
1 0
−t 1

)
,

γ(t) = it

(
t2/3 t/2
t/2 1

)
λ](t).

Then γ satisfies (5.9) and πk,0(t) =

(
λ(t) γ(t)

0 λ](t)

)
is a J-unitary represen-

tation of G.

5.2. Representations πχ,χ∗ .

For a non-unitary character χ, let λ be a χ-representation of G on L, dimL =
k, and λ](g) = λ(g−1)∗. Then H = L ⊕ M (M ∼ L) is a Πk-space with
[x, y] = (Jx, y), where

J =

(
0 1L
1L 0

)
and πχ,χ∗(g) =

(
λ(g) 0

0 λ](g)

)
(5.10)

is a J-unitary representation.

For example, the character χ(t) = et on R is non-unitary and πχ,χ∗(t) =(
et 0
0 e−t

)
is a J-unitary representation of R on a 2-dimensional Π1-space.

For the real Heisenberg group T3 (see (5.8)), let λ(g) ≡ g be its identity
representation on L, dimL = 3. For α, β ∈ R, χ(g) = eαx+βy is a non-
unitary character on T3. Its representation πχ,χ∗ on a Π3-space L ⊕ L has

form πχ,χ∗(g) =

(
χ(g)g 0

0 χ(g−1)(g−1)∗

)
for g ∈ T3.
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5.3. Decomposition of finite-dimensional representations

We will now show the universality of constructions introduced above.

Theorem 5.6. Let G be a connected locally compact nilpotent group. Each
finite-dimensional J-unitary representation of G on a Πk-space H is the J-
orthogonal sum of unitary representations on one-dimensional positive and
negative subspaces and

1) representations χπk,m, or J-antiequivalent to χπk,m for unitary charac-
ters χ of G;

2) representations πχ,χ∗ for non-unitary characters χ of G.

Proof. By Lemma 4.6 and Theorem 4.7, we only need to consider two types
of finite-dimensional non-Π-decomposable representations π on a Πk-space
H:

a) sign(λ) = {χ} for a unitary χ;
b) H = L⊕M and sign(π|L) ⊆ {χ, χ∗} for a non-unitary χ.
Case a). In decomposition (4.8) of a representation into non-Π-decomposable

components it may happen that ki = ki+ < ki− for some invariant Πki -spaces
Hi. As in Remark 3.2, Hi is a Πpi-space in the new metric [·, ·]1 = −[·, ·]
with pi = ki, pi = pi− < pi+ and the representation π|Hi on (Hi, [·, ·]1) is
J-antiequivalent to π|Hi on (Hi, [·, ·]). Thus we can only consider the case
k− ≤ k+

As dimH < ∞, we can also assume that π has no invariant subspaces
K such that π|K is non-singular, since then, by Theorem 1.1, π|K is a sum of
representations on a negative and positive invariant subspaces. As sign(λ) =
{χ}, we have from (4.5) that

H = L[⊕]H⊕M , L = Lχ, H = Hχ[+]H0

and the character χ is eigen-disjoint with U |H0 . As G is nilpotent, U |H0

is a finite sum of one-dimensional representations. Since χ is eigen-disjoint
with U |H0 , they are spectrally disjoint. If H0 6= {0}, we have from Corollary
4.3 that H = H1[+]H2 and the representation π|H2

is non-degenerate. This
contradiction shows that H0 = {0}.

If Hχ = {0} then H = L ⊕M, L is skew-related to M , so π is a πk,0
representation (see (5.9)).

Let Hχ 6= {0}. Then H = L[⊕]Hχ ⊕M. Note that Hχ can be either
negative or positive. If Hχ is a negative subspace then k+ = dimL < k− =
dimL+ dimHχ which contradicts our assumption. Hence Hχ is positive and
dimL = k+ = k. As π has no positive invariant subspaces, m = dimHχ ≤
knG by Lemma 5.1. Thus π = χπ′, where π′ is a πk,m representation.

Case b). By (3.4), (3.5) and Lemma 4.1, sign(π) = sign(π|L)∪ sign(π|]L) =
{χ, χ∗}. By Corollary 2.3, H = Lχ u Lχ∗ where Lχ, Lχ∗ are π-invariant and
λ := π|Lχ is a χ-representation.

Let us show that the subspaces Lχ, Lχ∗ are neutral. Indeed, as L
[⊥]
χ is

π-invariant, K = Lχ ∩ L[⊥]
χ is neutral and π-invariant. If K 6= Lχ then (see

[KS]) Rχ = Lχ/K is a Πn-space and the quotient representation λ̂ on Rχ is
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J-unitary. By (3.4), Rχ = l⊕h⊕m, where l is a maximal neutral invariant sub-

space of Rχ. Since λ is a χ-representation, λ̂ is also a χ-representation. Hence

λ̂|l and the representation ρ that λ̂ generates on m are χ-representations.

However, as ρ = (λ̂|l)] by (3.5), ρ is a χ∗-representation. Thus χ = χ∗, so χ
is unitary. This contradiction shows that K = Lχ is neutral. Similarly Lχ∗ is
neutral.

As H is non-degenerate, Lχ, Lχ∗ are skew-related subspaces. Hence they
are maximal neutral and dimLχ = dimLχ∗ . Identifying Lχ∗ with Lχ, we have
that, with respect to the decomposition H = Lχ u Lχ, π has the same form
as πχ,χ∗ in (5.10). �

Theorem 5.6 implies that all non-Π-decomposable finite-dimensional
representations are either one-dimensional, or of type πk,m, or of type πχ,χ? .
However, it does not mean that all representations of type πk,m or πχ,χ? are
non-Π-decomposable.

It is also interesting to study the following stronger notion of non-
decomposability.

Definition 5.7. A J-unitary representation on H is J-decomposable if there
exists a decomposition H = H1[+]H2, where H1 and H2 are invariant subspaces.
Otherwise, it is non-J-decomposable.

We will see later that representations on infinite-dimensional spaces
cannot be non-J-decomposable. For finite-dimensional representations non-
Π- and non-J-decomposability are closely related: if π is non-Π-decomposable
then, choosing the maximal positive invariant subspace P, we have that H =
K[+]P where π|K is non-J-decomposable. For πχ,χ∗ -representations they are
equivalent.

Proposition 5.8. Set π = πχ,χ∗ . The following conditions are equivalent.
(i) L does not decompose into a direct sum of invariant subspaces.
(ii) The representation π is non-Π-decomposable.
(iii) The representation π is non-J-decomposable.

Proof. (ii) =⇒ (i). Assume that L = L1 u L2 and L1, L2 be π-invariant.
Denote by p the projection on L1 along L2 ⊕ M. As L1 and L2 ⊕ M are
π-invariant, πp = pπ. Then p] = Jp∗J is also a projection, as J2 = 1H ,
[p]x, y] = [x, py] for x, y ∈ H, and p] commutes with π, since

π(g)p]
(1.1)
= Jπ(g−1)∗Jp] = J(pπ(g−1))∗J

= J(π(g−1)p)∗J
(1.1)
= p]π(g).

Thus the subspace M1 := p]H is π-invariant. For x ∈ H and y ∈ M,[
p]x, y

]
= [x, py] = 0, as pM = {0}. As M is a maximal neutral subspace,

p]x ∈ M. Hence M1 ⊆ M . If u ∈ L1 then [x, u] 6= 0 for some x ∈ H. Thus
p]x ∈M1 and [p]x, u] = [x, pu] = [x, u] 6= 0. Similarly, if v ∈M1 then [z, y] 6=
0 for some z ∈ L1. Thus L1 and M1 are skew-related, and K = L1 ⊕M1 is
a non-degenerate π-invariant subspace. By (3.2), H = K[+]K [⊥] and K [⊥] is
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π-invariant. For x ∈ L2, y ∈M1, we have [x, y] = [x, p]y] = [px, y] = 0. Thus
L2 ⊂ K [⊥] and π is Π-decomposable.

(iii) =⇒ (ii) is evident.

(i) =⇒ (iii) Assume that H = K[+]K [⊥] and both subspaces are π-
invariant. As sign(π) = {χ, χ∗}, we have from Corollary 2.3 that K =
KχuKχ∗ and K [⊥] = TχuTχ∗ , where Kχ,Kχ∗ , Tχ, Tχ∗ are π-invariant sub-
spaces. It is easy to see that Kχ, Tχ ∈ L and Kχ∗ , Tχ∗ ∈ M . As H =

K[+]K [⊥], we have KχuTχ = L. If Kχ = 0 then K ⊂ M and the decom-

position H = K[+]K [⊥] does not hold (Proposition 3.1). Thus Kχ 6= {0}.
Similarly, Tχ 6= {0} which contradicts (i). �

For πk,m-representations, the problem is more difficult as it needs an
analysis of general finite-dimensional representations on L. Below we get
a criteria of non-J-decomposability for the case k = 1, where the non-Π-
decomposability is evident.

We saw earlier that each representation π1,m has form (5.1) with ξ(g) =
Aω(g)⊗ e (see Theorem 5.2), where ω: G→ RnG is the standard homomor-
phism, A is a m × n

G
matrix satisfying the conditions of Theorem 5.3 and

γ(g) = φ(g)1L, where the function φ is given in (5.5).

Theorem 5.9. A representation π := π1,m is non-J-decomposable if and only
if kerA∗ = {0}.

Proof. Note first that kerA∗ = {0} if and only if the cocycle ξ(g) = Aω(g)⊗e
satisfies the condition ∩g∈G ker ξ(g) = {0}. Indeed, ker ξ(g) is the orthog-
onal complement of Aω(g) by (5.2). As ω is surjective, we conclude that
∩g∈G ker ξ(g) is the orthogonal complement of the image of A.

Now if kerA∗ 6= {0} then K = ∩g∈G ker ξ(g) 6= {0} is a non-degenerate
invariant subspace. Thus π is J-decomposable. Conversely, let ∩g∈G ker ξ(g) =
{0}. Then

ξ(g)x = 0, for all g ∈ G and some x ∈ H, implies x = 0. (5.11)

If π is J-decomposable then, as H = L⊕H⊕M, there is a J-orthogonal
projection p = (pi,j)

3
i,j=1 6= 0,1H commuting with π. Then pπ(g) ≡ π(g)p

implies p31ξ(g) ≡ 0 and ξ(g)p21 +φ(g)p31 ≡ 0. Since dimL = 1, p11, p13, p31,
p33 are numbers. As ξ(g) 6≡ 0, we have p31 = 0. Thus ξ(g)p21 ≡ 0. By (5.11),
ξ(g)p21e ≡ 0 =⇒ p21 = 0. As p is J-orthogonal, p = Jp∗J by (3.1). Then
p11 = p33 and p32 = 0. Since p2 = p, either p33 = 0, or p33 = 1. If p33 = 0
then p11 = p33 = 0. Hence pπ(g) = π(g)p for all g ∈ G, so that ξ(g)p22 = 0.
By (5.11), p22 = 0. Thus p3 = 0, a contradiction.

If p33 = 1 then p11 = 1. As pπ = πp, we have ξ(g)(1H − p22) = 0
for g ∈ G. By (5.11), p22 = 1H. Thus, as p2 = p, we have 2p12 = p12 and
2p23 = p23. Hence p12 = p23 = 0. Then p2 = p implies 2p13 = p13. Hence
p13 = 0, so that p = 1H , a contradiction. Thus π is non-J-decomposable. �

Remark 5.10. The condition kerA∗ = 0 can be rewritten in the following
way: ∩g∈G ker ξ(g) = {0}. This condition is necessary for a representation
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πk,m with arbitrary k ≥ 1 to be non-J-decomposable. What conditions guar-
antee that a πk,m-representation is non-Π- or non-J-decomposable?

6. Primary and completely singular representations.

It follows from Theorem 5.6 that singular finite-dimensional non-Π-decomposable
representations of connected nilpotent groups on Πk-spaces possess two fea-
tures that deserve consideration in the general context. They are 1) com-
pletely singular, i.e., dimL = k; 2) primary, i.e., the restriction λ = π|L to
a maximal neutral invariant subspace is monothetic: sign(λ) consists of one
character.

Our aim here is to understand to which groups and to which rep-
resentations these properties extend. Firstly, it should be noted that each
bounded singular non-Π-decomposable representation π of any group G on
a Πk-space H is completely singular. Indeed, π is similar to a unitary rep-
resentation ([OST]), so that H = N [+]P, where N,P are invariant, N is
negative, dimN = k, and P is positive. As π is non-Π-decomposable, π|

N
is

irreducible. Hence, if L is a neutral invariant subspace then L = {x + Tx:
x ∈ N}, where T ∈ B(N,P ), πT |

N
= Tπ|

N
and [x, x] + [Tx, Tx] = 0. Thus

dimL = dimN = k.

In particular, continuous representations of compact groups are bounded.
So they are completely singular by above. If π is bounded and G is nilpotent
then dimL = dimN = 1, as π|

N
is irreducible. Thus π is also primary.

On the other hand, if G is not nilpotent, it may have an unbounded
finite-dimensional singular non-Π-decomposable representation which is not
completely singular. Consider the group

G = QU(2) =

{
g =

(
a b

b a

)
: a, b ∈ C, |a|2 − |b|2 = 1

}
and I =

(
−1 0
0 1

)
.

The space K = Ce⊕ Ce with indefinite metric [x, y] = (Ix, y) is a Π1-space.
The representation ρ of G on K given by ρ(g)x = gx for g ∈ G, x ∈ K, is
irreducible and J-unitary, as Ig∗I = g−1.

Consider the group G̃ = G × K × R with operation (g, x, t)(h, y, s) =
(gh, y+h∗x, t+ s+ Im(h∗x, Iy)) for g, h ∈ G, x, y ∈ K, t, s ∈ R. Let L = Cu.
Then H = L⊕K ⊕ L is a Π2-space with [ξ, η] = (Jξ, η), where

J =

 0 0 1
L

0 I 0
1
L

0 0

 and

π(g, x, t) =

1
L

x⊗ e
(
− 1

2 (Ix, x) + it
)

(e⊗ e)
0 g −e⊗ gIx
0 0 1

L
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is a J-unitary representation of G̃ on H. The subspaces L, L⊕K are the only
non-trivial invariant subspaces. As L is a maximal neutral invariant subspace
and dimL = 1, π is not completely singular.

Theorem 6.1. Each connected locally compact, commutative group G such
that G/G[1] is not compact has a singular non-Π-decomposable representation
which is not completely singular.

Proof. As G/G[1] is not compact, it follows from Theorem 26 [M] that G
has a normal subgroup G0 containing G[1] such that G/G0 ≈ Rn for some
n 6= 0. Setting kerπ = G0, we only have to show that the commutative groups
G = Rn have representations which are not completely singular.

Let H = Ce1 ⊕ Ce2 ⊕ Ce3, H = L2(G, dm) and H = H ⊕ H. Let (see
(5.2),(5.3))

J = I ⊕ 1H, where I = e1 ⊗ e3 − e2 ⊗ e2 + e3 ⊗ e1 =

0 0 1
0 −1 0
1 0 0

 .

Consider the indefinite form [x, y] = (Jx, y) on H. Then H− = C(e1 − e3)⊕
Ce2 and H+ = C(e1 + e3)⊕H are negative and positive subspaces of H and
H = H−[⊕]H+. Thus H is a Π2-space.

Let ϕ be a non-zero additive map from G = Rn onto R: ϕ(g + h) =
ϕ(g) + ϕ(h) for g, h ∈ Rn (for example, ϕ(g) = (g, u)Rn for some u ∈ Rn).
Then the map

g ∈ G→ σ(g) =

1 ϕ(g) ϕ(g)2

2
0 1 ϕ(g)
0 0 1


is a representation of G on H. Let U be the regular representation of G on
H. Then

g ∈ G→ π(g) = σ(g)⊕ U(g)

is a representation of G on H. Moreover, π is J-unitary, as (see (1.1)),

Jπ(g)∗J = Iσ(g)∗I ⊕ U(g)∗ = σ(−g)⊕ U(−g) = π(−g).

Let C(x+y) be an eigenspace of π, where x ∈ H and y ∈ H. Then Cy is
an eigenspace of U. As U has no eigenspaces, y = 0 and Cx is an eigenspace
of σ. It is easy to see that only Ce1 is an eigenspace of σ and, therefore, of π.

If π is Π-decomposable then H = H1[+]H2, where Hi are invariant
Π1-subspaces. By Theorem 1.1, both summands have eigenspaces, a contra-
diction. Thus π is non-Π-decomposable.

It remains to show that π is not completely singular, i.e., it does not
have a two-dimensional neutral invariant subspace. Suppose, to the contrary,
that N is such a subspace. As G is connected and commutative, N has a
basis (f1, f2) such that

π(g)f1 = λ(g)f1 and π(g)f2 = ν(g)f1 + µ(g)f2 for g ∈ Rn.
As only Ce1 is an eigenspace of π, we can assume that f1 = e1 and (changing
if necessary f2 by f2 − λf1 with an appropiate λ) f2 = βe2 ⊕ γe3 ⊕ y ∈ N .
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As N is neutral, 0 = [e1, f2] = (Je1, f2) = (e3, f2) = γ. Thus f2 = βe2 ⊕ y
and, for g ∈ G,

π(g)f2 = σ(g)βe2 ⊕ U(g)y = βϕ(g)e1 ⊕ βe2 ⊕ U(g)y.

Since π(g)f2 = ν(g)e1 +µ(g)(βe2⊕ y), we get that U(g)y = µ(g)y. As U has
no eigenspaces, y = 0. Thus f2 = βe2 ∈ N and β 6= 0. Since f2 is not neutral
but negative, we have a contradiction. �

Remark 6.2. Theorem 6.1 extends to all connected locally compact groups G
with non-compact G/G[1] (for example, to the Heisenberg group), since, by
Theorem 26 [M], G has a normal subgroup G0 such that G/G0 ≈ Rn.

We turn now to the question, for which nilpotent groups all non-decomposable
singular representations are primary. Our first aim is to show that this is true
for commutative groups.

Theorem 6.3. Let G be a commutative connected, locally compact group.
Each singular non-Π-decomposable representation π of G on a Πk-space H
is primary.

Proof. Denote by G∗ the group of all unitary characters of G. As in (4.5),
let H = L[⊕]H⊕L, where L =

∑
χ∈sign(λ) Lχ is a maximal neutral invariant

subspace and λ = π|
L
. Since π is non-Π-decomposable, it follows from Corol-

lary 4.5 that it suffices to prove our result in the case when sign(λ) has no
non-unitary characters, i.e., sign(λ) ⊂ G∗.

Let χ ∈ sign(λ). As the representation U on H is similar to a unitary
representation,

H =

∫ ⊕
G∗

HωdP (ω) and U(g) =

∫ ⊕
G∗
ω(g)dP (ω) for g ∈ G,

where P is a spectral measure on G∗. Set Ω1 = {χ} and Ω2 = sign(λ) \ {χ}.
By Lemma 2.5, there is h ∈ G such that χ(h) /∈ {φ(h)}φ∈Ω2

.

Set ε = 1
3 min{|χ(h)− φ(h)|: φ ∈ Ω2} and consider the sets

V = {ω ∈ G∗: |χ(h)− ω(h)| < ε} and

G∗ \ V = {ω ∈ G∗: |χ(h)− ω(h)| ≥ ε} (6.1)

in G∗. Then Ω2 ⊂ G∗ \ V. The subspaces

H1 =

∫ ⊕
V

HωdP (ω) and H2 =

∫ ⊕
G∗\V

HωdP (ω)

are invariant for U, H = H1 ⊕ H2 and

χ(h)
(6.1)

/∈ Sp(U(h)|H2) = {ω(h)}ω∈G∗\V and

φ(h)
(6.1)

/∈ Sp(U(h)|H1
) = {ω(h)}ω∈V ,

for each φ ∈ Ω2. Thus Ω1, U |H2
are spectrally disjoint, and Ω2, U |H1

are
spectrally disjoint.
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Applying Corollary 4.3, we have that H = H1[+]H2 is the sum of in-
variant subspaces, Lχ is a maximal neutral invariant subspace of H1 and
LΩ2 =

∑
ω∈Ω2

uLω is a maximal neutral invariant subspace of H2. As π is

non-Π-decomposable, Ω2 = ∅. Thus sign(λ) = {χ}. �

For a unitary representation π of a group G, denote by E(π) the set of all
matrix elements of π: the functions g 7→ (π(g)x, x), where x ∈ H. For unitary
equivalent representations π and ρ, E(π) = E(ρ). The dual object of G is the

set Ĝ of all unitary equivalence classes π̂ of irreducible unitary representations
of G, supplied with the topology of uniform convergence of matrix elements:

π̂ belongs to the closure of M ⊂ Ĝ if each element of E(π̂) can be uniformly
approximated on compacts by matrix elements of representations in M . This
topology is usually non-Hausdorff, but there is a large class of groups for

which Ĝ is a T0-space, i.e., the intersection of all neighborhoods of each point
contains only this point. This class contains all groups of type I [D1, 4.4.1]
and, in particular, all connected nilpotent locally compact groups (see [Kir]).

Each unitary character χ of G, identified with the equivalence class of

one-dimensional representations χ̂ι, is contained in Ĝ. The open sets

WK,ε(χ) = {π̂ ∈ Ĝ: |ϕ(g)− χ(g)| < ε for all g ∈ K
and some ϕ ∈ E(π)}, (6.2)

where K ⊂ G are compacts and ε > 0, form a base of neighbourhoods

for χ. Characters χ and ω are separated in Ĝ if they have non-intersecting

neighbourhoods in Ĝ. Note that they are separated if and only if the trivial

character χe and the character χω are separated in Ĝ.

As an example, we consider the dual space of the real Heisenberg group
G = T3 (see (5.8)). It is known (see [ShZ]) that the unitary characters χ of
G and the corresponding one-dimensional unitary representations ιχ on Cu
have form

χα,β(g(x, y, z)) = ei(αx+βy), for α, β ∈ R, and ιχα,β (g)u = χα,β(g)u.

In particular χ0,0 = χe, and ιχ0,0
= ι, the trivial representation.

Infinite-dimensional unitary irreducible representations ofG act on L2(R)
by the formula

Uσ(g(x, y, z))f(t) = eiσ(z+ty)f(t+ x), for f ∈ L2(R), (6.3)

where 0 6= σ ∈ R.

Proposition 6.4. Every two characters of G = T3 (see (5.8)) cannot be sepa-

rated in Ĝ.

Proof. It suffices to prove the proposition for χ0,0 and each character χ.
Consider the increasing sequence of compacts Km = {g = g(x, y, z): |x| +
|y|+ |z| ≤ m}. As G = ∪mKm, the sets WKm,ε(χ0,0) (see (6.2)) form a base
of neighbourhoods of χ0,0.
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Consider the set of representations {Uσn : σn = n−6, n ∈ N}. Define fn
in L2(R) by fn(t) = n−2 for t ∈ [0, n4], and fn(t) = 0 for t /∈ [0, n4]. Then
‖fn‖ = 1 and, for g = g(x, y, z),

|(Uσn(g)fn, fn)− 1| ≤ ‖Uσn(g)fn − fn‖

≤
∥∥∥(ei(z+ty)/n6

− 1
)
fn(t+ x)

∥∥∥+ ‖fn(t+ x)− fn(t)‖

= n−2

(∫ n4−x

−x

∣∣∣ei(z+ty)/n6

− 1
∣∣∣2 dt)1/2

+ n−2

∣∣∣∣∣
∫ 0

−x
dt+

∫ n4

n4−x
dt

∣∣∣∣∣
1/2

≤ max
−x≤t≤n4−x

∣∣∣ei(z+ty)/n6

− 1
∣∣∣+ n−2(2 |x|)1/2

≤ (|y|+ (2 |x|)1/2)n−2.

Hence the matrix elements (Uσn(g)fn, fn) uniformly tend to 1 on each Km.
This means that each neighbourhood WKm,ε(χ0,0) of χ0,0 contains represen-
tation Uσn for all n starting for some N.

On the other hand, it should be noted that if Uσ ∈ WK,ε(χ0,0) then
Uσ ∈WK,ε(χ) for each character χ = χα,β . To see this, note that the unitary
operator V = Vα,β,σ on L2(R) that acts by

(V f)(t) = eiα(t− βσ )f

(
t− β

σ

)
for f ∈ L2(R),

satisfies V χ(g)Uσ(g) = Uσ(g)V for all g ∈ G. Hence

|(Uσ(g)V f, V f)− χ(g)| = |(Uσ(g)f, f)− 1|
for 0 6= σ ∈ R, f ∈ L2(R) and g ∈ G. Thus if Uσn ∈ WKm,ε(χ0,0) then
Uσn ∈WKm,ε(χ), so that χ0,0 and χ cannot be separated. �

We shall show now that if G has unitary characters not separated in Ĝ,
then it has a non-Π-decomposable Πk-representation which is not primary.

Theorem 6.5. Let G be a connected locally compact nilpotent group. Suppose

that G has unitary characters not separated in Ĝ. Then there is a finite-
dimensional representation λ of G on L, a unitary representation U on H and
a neutral (λ,U)-cocycle ξ such that the double extension π = ee(λ,U, ξ, γ) is
a non-Π-decomposable representation on H = L⊕ H⊕ L and not primary.

Proof. We mentioned above that if two unitary characters are not separated

in Ĝ, there is a unitary character χ which is not separated in Ĝ from the
trivial character χe. Define a unitary representation λ on the 2-dimensional
Hilbert space L = Ce1 ⊕ Ce2 by

λ(g) = e1 ⊗ e1 + χ(g)(e2 ⊗ e2) (see (5.2)). (6.4)

As χ is unitary, λ](g)
(2.4)
= λ(g−1)∗

(2.7)
= λ(g) for g ∈ G.
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Since connected locally compact groups are σ-compact, choose compacts
{e} ∈ K1 ⊂ K2 ⊂ ... such that G = ∪∞n=1Kn. As χe, χ are not separated in

Ĝ, WKn,2−n(χe) ∩WKn,2−n(χ) 6= ∅ (see (6.2)). This means that there are
irreducible unitary representations πn of G on Hn and un, vn ∈ Hn such that,
for g ∈ Kn,

|(πn(g)un, un)− 1| < 2−n and |(πn(g)vn, vn)− χ(g)| < 2−n. (6.5)

As e ∈ Kn, |‖un‖2 − 1| < 2−n and |‖vn‖2 − 1| < 2−n. Changing un,vn
if necessary, we may assume that ‖un‖ = ‖vn‖ = 1. Since Ĝ is a T0-space,
the representations πn can be chosen pairwise non-equivalent. As each πn is
irreducible, it either coincides with ι, or χι, or it has no χe- and χ-eigenspaces.
It follows from (6.5) that, starting from some n, πn can not coincide with
ι, or χι. Thus, without any loss of generality, we assume that χe and χ are
eigen-disjoint with all πn.

Set H = ⊕Hn, U = ⊕∞n=1πn,

un(g) = un − πn(g)∗un and vn(g) = χ(g)vn − πn(g)∗vn. (6.6)

Set also u(g) = ⊕∞n=1un(g) and v(g) = ⊕∞n=1vn(g) for g ∈ G. Then

‖un(g)‖2 = 2 Re(1− (un, πn(g)un))
(6.5)

≤ 2−(n−1) (6.7)

and ‖u(g)‖2
(6.7)

≤
∞∑
k=1

2−(k−1) <∞, so that u(g) ∈ H for g ∈ K.

Similarly, v(g) ∈ H. As

un(gh) = un(h) + πn(h)∗un(g) and vn(gh) = χ(g)vn(h) + πn(h)∗vn(g),

we have, for g, h ∈ G,

u(gh) = u(h) + U(h)∗u(g), v(gh) = χ(g)v(h) + U(h)∗v(g). (6.8)

Let us define maps ξ: G→ B(H, L) and γ: G→ B(L) by

ξ(g) = u(g)⊗ e1 + v(g)⊗ e2 ∈ B(H, L),

γ(g) = −
∞∑
n=1

((un, un(g))(e1 ⊗ e1) + (un(g−1), vn)(e1 ⊗ e2)

+ (vn, un(g))(e2 ⊗ e1) + (vn, vn(g))(e2 ⊗ e2)). (6.9)

The series converges uniformly on compacts because of condition (6.7). Then
ξ is a (λ,U)-cocycle by (6.8), ξ](g) = ξ(g−1)∗ = e1 ⊗ u(g−1) + e2 ⊗ v(g−1)
and

−ξ(g)ξ](h) = a11(e1 ⊗ e1) + a12(e1 ⊗ e2) + a21(e2 ⊗ e1) + a22(e2 ⊗ e2),
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where

a11 =

∞∑
n=1

(un, un(gh)− un(h)− un(g)),

a12 =

∞∑
n=1

(un(h−1g−1)− χ(g)un(h−1)− un(g−1), vn),

a21 =

∞∑
n=1

(vn, un(gh)− un(h)− χ(h)un(g)),

a22 =

∞∑
n=1

(vn, vn(gh)− χ(g)vn(h)− χ(h)vn(g)).

By direct calculations we obtain, using (5.3), that

(dλ,λγ)(g, h) = λ(g)γ(h)− γ(gh) + γ(g)λ(h) = −ξ(g)ξ](h).

In other words, ξ is a neutral (λ,U)-cocycle and γ is its prechain (see (2.5)).
Set H = L ⊕ H ⊕ L and π = ee(λ,U, ξ, γ). Then H is a Π2-space and

sign(λ) = {χe, χ}, so that π is not primary. We have to show that π is non-Π-
decomposable. Suppose that it is Π-decomposable. By Theorem 3.4, there is
a projection p 6= 0,1L commuting with λ and a projection q = q∗ commuting
with U such that η = ξ − pξq − (1L − p)ξ(1H − q) is a (λ,U)-coboundary:
η(g) = λ(g)S − SU(g) for some S ∈ B(H, L) and all g ∈ G. Then

pη(g)(1H − q) = λ(g)T − TU(g), where T = pS(1H − q). (6.10)

As p commutes with λ, either p = e1⊗e1, or p = e2⊗e2. Let p = e1⊗e1.
Then, by (5.3), T = (e1 ⊗ e1)S(1H − q) = x⊗ e1 for some x ∈ H. Hence, by
(6.9) and (6.10),

pη(g)(1H − q) = p(ξ − pξq − (1L − p)ξ(1H − q))(1H − q)
= pξ(g)(1H − q) = (1H − q)u(g)⊗ e1

(6.10)
= λ(g)T − TU(g)

(5.3)
= (1H − U(g)∗)x⊗ e1.

Thus (1H − q)u(g) = (1H −U(g)∗)x. As q commutes with U and all πn
are pairwise non-equivalent, q is the projection on a subspace ⊕

n∈EHn for
some E ⊆ N. Let x = ⊕∞n=1xn, xn ∈ Hn. Then

(1Hn − πn(g)∗)un
(6.6)
= un(g) = (1Hn − πn(g)∗)xn

for n /∈ E and all g ∈ G. As χe is eigen-disjoint with all πn, we have un = xn
for n /∈ E. Taking into account that ‖un‖ = 1 and ‖x‖2 =

∑
‖xn‖2 <∞, we

conclude that the set N \ E is finite.
Similarly,

(1L − p)η(g)q = (1L − p)ξ(g)q = qv(g)⊗ e2 = (χ2(g)− U(g)∗)z ⊗ e2,

for some z = ⊕∞n=1zn ∈ H, zn ∈ Hn, so that qv(g) = (χ2(g) − U(g)∗)z. Re-
peating the above argument, we get that vn = zn for n ∈ E. As ‖vn‖ = 1 and
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‖z‖2 =
∑
‖zn‖2 < ∞, we conclude that the set E is finite, a contradiction.

Thus π is non-Π-decomposable. �

7. Splitting and approximate splitting of singular
representations

While non-singular J-unitary representations of nilpotent groups are similar
to unitary representations (Theorem 1.1), singular representations have much
more complicated structure. Although some of them decompose into sums of
finite-dimensional representations (their structure was described in Corollary
5.6) and representations similar to unitary, this situation is comparatively
rare.

In this section we will show that all singular representations admit an
”approximate” decomposition of this kind. We will start by introducing some
terminology.

Definition 7.1. We say that a maximal neutral invariant subspace L of a
representation π on H

(i) splits π if H = K[+]K [⊥], where K is invariant, dimK < ∞ and
L ⊂ K;

(ii) approximately splits π, if it does not split π, but there are non-degenerate
invariant subspaces {Hm}∞m=1 of H such that L ⊂ Hm+1 $ Hm, dimHm =
∞ and dim(∩mHm) <∞.

We will show that, for arbitrary J-unitary representation π of a con-
nected nilpotent group G, each maximal neutral invariant subspace L either
splits or approximately splits π. Moreover, this does not depend on the choice
of L.

Note that, in representations π considered in Theorem 6.1, maximal
neutral subspaces split π, while in Theorem 6.5 maximal neutral subspaces
approximately split π.

Let π be a J-unitary representation on a Πk-space H and (see (4.5))

H = L⊕ H⊕M, H = HΩ[+]H0, λ = π|
L
, (7.1)

and sign(λ) is eigen-disjoint with U |H0 . It was proved in Proposition 3.3 [KS1]
that

H0 = ⊕Nn=1Hn, where N ≤ ∞, (7.2)

Hn are U -invariant subspaces such that each U |Hn and sign(λ) are spectrally
disjoint.

Proposition 7.2. If U |H0 is not sectionally spectrally disjoint with some χ ∈
sign(λ), then H0 = ⊕∞n=1Hn and there are non-degenerate invariant subspaces
{Hm}∞m=1 such that dimHm =∞,

L ⊂ Hm+1 $ Hm, L⊕ HΩ = L[⊥] ∩ (∩mHm)

and π|
H

[⊥]
m

are non-singular.
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Proof. If N < ∞ in (7.2) then each ω ∈ sign(λ) is sectionally spectrally
disjoint with U |H0 . As χ is not sectionally spectrally disjoint with U |H0 , we
have N =∞. Thus H0 = ⊕∞n=1Hn.

We prove the rest of the theorem by induction. In (7.1) set

Hk = HΩ ⊕ (⊕∞n=kHn) for all k ≥ 1.

For k = 1, H1 = H and H1 := H = L ⊕ H1 ⊕M1 for M1 = M. Assume
that there are subspaces Mk, k = 2, ...m, skew-related to L such that Hk =
L ⊕ Hk u Mk are π-invariant, non-degenerate and Hm $ Hm−1 $ ... $
H1. Then Hm = L ⊕ (Hm+1 ⊕ Hm) uMk and Hm+1, Hm are U -invariant
subspaces. Set πm = π|Hm . As sign(λ) and U |Hm are spectrally disjoint,
Corollary 4.3 implies that there is Mm+1 ⊂ Hm skew-related to L such that
Hm+1 = (L ⊕ Hm+1) uMm+1 is a non-degenerate, πm-invariant subspace.
Hence Hm+1 is π-invariant, dimHm+1 =∞ and Hm+1 $ Hm. By induction,
there is a decreasing chain {Hm}∞m=1 of invariant non-degenerate subspaces
containing L.

As L[⊥] = L ⊕ H, we have L[⊥] ∩Hm = L ⊕Hm. As ∩mHm = HΩ, we
have

L[⊥] ∩ (∩mHm) = ∩m(L[⊥] ∩Hm) = ∩m(L⊕Hm) = L⊕ HΩ.

As all spaces H
[⊥]
m above have no neutral invariant subspaces, π|

H
[⊥]
m

are

non-singular. �

Theorem 7.3. (i) If sign(λ) and U |H0 are sectionally spectrally disjoint then
L splits π.

(ii) The following conditions are equivalent:
1) L splits π;
2) H = M [+]P, where M and P are invariant subspaces, dimM <

∞ and P is positive;
3) each non-degenerate invariant subspace R of H has a decomposi-

tion R = MR[+]PR, where MR and PR are invariant subspaces, dimMR <∞
and PR is positive;

4) π has a minimal non-degenerate invariant subspace containing
L.

(iii) If L splits π then each maximal neutral invariant subspace splits π.

Proof. (i) Setting Ω1 = sign(λ) and K = H1 in Corollary 4.5, we get that L
splits π.

(ii) 1) =⇒ 4) is evident.
4) =⇒ 1). Let K be a minimal non-degenerate invariant subspace con-

taining L. As in (7.1), K = L⊕ (KΩ[+]K0)⊕M. Assume that dimK =∞. If
sign(λ) is sectionally spectrally disjoint with U |K0 then, by (i), L splits π|K :
there is a non-degenerate invariant subspace K1 of K such that dimK1 <∞
and L ⊂ K1 – a contradiction. Thus U |K0 is not sectionally spectrally disjoint
with some χ ∈ sign(λ). By Proposition 7.2, there are non-degenerate invari-
ant subspaces {Km}∞m=1 of K containing L. This contradicts the assumtion
that K is minimal. Thus dimK <∞.
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1) =⇒ 2). If L splits π, H = K[+]K [⊥], dimK < ∞ and L ⊂ K.
Thus K [⊥] has no neutral invariant subspaces, so π|K[⊥] is non-singular. By
Theorem 1.1, K [⊥] = N [+]P, P is a positive and N is a negative invariant
spaces, dimN <∞. Set M = K[+]N. Then dimM <∞ and H = M [+]P.

2) =⇒ 1). Let H = M [+]P. As M and P are π-invariant, the projection
q on P along M commutes with π. As dimL <∞, the subspace R = qL of P
is invariant, dimR ≤ dimL and L ⊆M [+]R. Then K := M [+]R is invariant,
non-degenerate, dim(K) <∞ and L ⊂ K. Thus H = K[+]K [⊥], so L splits
π.

2) =⇒ 3) Let H = M [+]P. If R is a non-degenerate invariant subspace
then PR = R ∩ P is invariant, positive and has finite codimension in R, as
codim(P ) <∞. By (3.2), R = MR[+]PR, MR is invariant and dimMR <∞.
3) =⇒ 2) is evident.

(iii) Let L split π. By (ii), H = M [+]P, M,P are invariant, dimM <∞
and P is positive. Let L′ be a maximal neutral invariant subspace. As in 2)
=⇒ 1), we get that H = K[+]Q, where K,Q are invariant, dimK < ∞,
L′ ⊂ K and Q is positive. Thus L′ splits π. �

If L splits π then H = K[+]K [⊥], dimK < ∞ and π|
K

decomposes
in a finite J-orthogonal sum of one-dimensional unitary representations and
of representations χπk,m, πχ,χ∗ (Theorem 5.6). The representation π|

K[⊥]
is

non-singular and similar to a unitary representation.

Theorem 7.4. Let L be a maximal neutral invariant subspace of a singular
representation π on H.

(i) L either splits π or approximately splits π.
(ii) L approximately splits π if and only if H does not have a decomposition

H = M [+]P, where M, P are invariant subspaces, dimM < ∞ and P
is positive.

(iii) If L approximately splits π, all maximal neutral invariant subspaces ap-
proximately split π.

Proof. (i) By Lemma 4.4, H = K[+]E, where E is a sum of eigenspaces of π
and

K = L⊕ K⊕M, where K = KΩ ⊕ K0 and dimKΩ <∞,
is a non-degenerate invariant space. If L does not split π, it does not split π|K .
Hence we have from Theorem 7.3 that sign(λ) has a character which is not
sectionally spectrally disjoint with U |K0 . Then, by Proposition 7.2, there are
non-degenerate invariant subspaces {Km}∞m=1 in K such that L ⊂ Km+1 $
Km, for all m,

L⊕ KΩ = L[⊥] ∩ (∩mKm) and L[⊥] = L⊕ K

is the J-orthogonal complement of L in K. As dim(L ⊕ KΩ) < ∞ and
codim(L[⊥]) = dimM < ∞, we have that dim(∩mKm) < ∞. Setting Hm =
Km, we get that L approximately splits π.

(ii) follows from (i) and from part (ii) 2) of Theorem 7.3.
(iii) follows from (i) and from part (iii) of Theorem 7.3. �
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If L approximately splits π then H = Hm[+]H
[⊥]
m for m ∈ N, and

the representations π|
H

[⊥]
m

are similar to unitary representations. The spaces

Hm decrease and the invariant subspace N = ∩mHm (the ”nucleus”) is
degenerate, finite-dimensional and contains L. Thus the representations π|Hn
are ”infinitely close” to π|N and we have an ”approximately decomposition”
of π: the representations π|

H
[⊥]
m

”almost approximate” π.

Since singular representations π, as a rule, do not decompose into irre-
ducible components, this is the closest we can get to the decomposition of
π.

If π is non-Π-decomposable then all H
[⊥]
m are positive subspaces.
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