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Abstract  
Hyperlipidemia is defined by abnormally elevated levels of one or more lipids such as cholesterol 

or triglycerides in the bloodstream. It also involves elevated levels of lipoproteins especially LDL-

cholesterol and this is the most common form of dyslipidemia. Hyperlipidemia is the result of 

complex interactions between environmental and genetic factors. Hyperlipidemia is the main cause 

of congestive heart diseases in adulthood. It is also the main cause of atherosclerosis which is the 

pathophysiological cause of vascular diseases such as angina pectoris, myocardial infarction, and 

stroke.  It occurs due to disorders in lipid metabolism including elevation in cholesterol, low density 

lipoprotein, or triglyceride, or due to low levels of high density lipoprotein. Lifestyle is the main 

factor in prevention of hyperlipidemia. If lifestyle is not beneficial in the treatment or prevention of 

hyperlipidemia, drug therapy is required. Statins, fibrates, nicotinic acid bile acid sequestrants, and 

ezetimibe are approved drugs for the treatment of hyperlipidemia. Because of the tolerability 

problems, side effects, and low effectiveness of some of these drugs, discovery of new drugs is 

explored and investigated. Herbal products are not well explored as an alternative treatment for the 

treatment of hyperlipidemia. Ilex latifolia is a traditional Chinese medicine which has been used for 

decades for the treatment of hyperlipidemia and for weight loss. Prunella vulgaris, Rheum 

palmatum, and Panax notoginseng have been also used in traditional Chinese medicine. Very little 

work has been published about the effect of  Ilex latifolia on hyperlipidemia. In this research project, 

Ilex latifolia  hypolipidemic effect was compared to several herbs effects by assaying the effect of 

the extracts on pancreatic lipase. Ilex latifolia was the most active, and the other parts of the 

project focused on its effect on  HMG-CoA reductase expression, and on LDL receptor expression 

in HepG2  and AML-12 hepatocytes. Ilex latifolia  effect on mitochondrial metabolism, and glucose 

uptake was assayed in HepG2 and AML-12 hepatocytes. 

Chapter I is an introduction to hyperlipidemia, its types, causes, and treatment. A review of the 

literature relating to Ilex latifolia and other herbs and herbal compounds is given. 

Chapter II describes the assay of extracts from several herbs, and herbal compounds, for their 

inhibitory effect on pancreatic lipase, using orlistat as a positive control. It also shows that HPLC is 
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more sensitive and accurate than a spectrophotometric assay of lipase. Ilex latifolia showed the 

most inhibition activity on pancreatic lipase compared to other herbs. 

Chapter III describes the fractionation of Ilex latifolia and pancreatic lipase inhibition activity of each 

fraction.     

Chapter IV describes the effect of Ilex latifolia extract on HMG-CoA reductase expression in 

HepG2 cells and the effect of Ilex latifolia extract on LDL receptors expression in HepG2 and AML-

12 cells. 

 

Chapter V describes the effect of Ilex latifolia extracts on cell growth, mitochondrial toxicity, and 

glucose uptake in HepG2 and AML-12 cells. It also describes the effect of Ilex latifolia extract on 

ATP production in HepG2 cells. 

 

This study has demonstrated for the first time that Ilex latifolia can play a role in the treatment of 

hyperlipidemia through pancreatic lipase inhibition.  Effects on HMG-CoA reductase inhibition and 

mitochondrial inhibition were not marked, but under some circumstances glucose uptake can be 

significantly affected. It remains to be seen, using animal studies and other cell culture models, 

whether inhibition of pancreatic lipase can wholly account for the hypolipidemic activity of Ilex 

latifolia, or whether other mechanisms may be involved.    
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Abbreviations and symbols 
 

<      Less than 

>      Greater than 

ºC     Degrees Celsius 

v/v     Volume per volume 

λ(max)    Maximum wavelength  

µg      Microgram 

µM   Micromolar 

ABTS               2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) 

Asp   Aspargine 

ATP    Adenosine triphosphate 

BSA       Bovine serum albumin 

C     Control  

CHD   Congestive heart disease 

CL    Control samples lysed with buffer containing leupeptin 

cm    Centimeter 

CMC               Critical micelle concentration 

CN   Control samples lysed with buffer containing np-40 

CQA   Caffeoylquinic acids 

D-FCS   Dialysed foetal calf serum 
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DMEM   Dulbecco’s modified eagle medium 

DMF                Dimethylformamide 

DMSO   Dimethyl sulphoxide 

DPPH             2,2-diphenyl-1-picrylhydrazyl 

DTT   Dithiothreitol 

ECACC           The European Collection of Authenticated Cell Cultures 

ECL   Enhanced chemiluminescence 

EDTA    Ethylenediaminetetraacetic acid 

EGTA   Ethylene glycol tetraacetic acid 

ELISA             Enzyme-linked immunosorbent assay 

ER                  Endoplasmic reticulum 

F              Fraction  

FCCP       Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 

FCS      Foetal calf serum 

FDA    US food and drug administration 

HDL   High density lipoprotein 

His     Histidine 

HMBC             Heteronuclear Multiple Bond Correlation 

HMGCR 3-Hydroxy-3-methylglutaryl CoA reductase 

HPLC     High performance liquid chromatography 

Hr             Hour 
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HSQC            Heteronuclear Single Quantum Coherence 

I.D    Internal diameter 

IL   Ilex latifolia 

IMS   Industrial methylated spirit 

ITS    Insulin, Transferrin, Sodium selenite 

kDa     Kilo dalton 

LCAT   Lecithin cholesterol acyl transferase 

LC-MS    Liquid chromatography-mass spectroscopy 

LDL   Low density lipoprotein 

LDL-C   Low density lipoprotein-cholesterol 

LDLR   Low density lipoprotein receptor 

mA   Milliampere 

Min         Minutes 

mL   Milliliter 

mM     Millimolar 

MTP   Microsomal triglycerides transfer protein 

MTT          3-(4,5 dimethylthiazol-2-yl)-2,5, diphenyltetrazolium bromide 

MVL    Mevalonolactone 

NADP+  Nicotinamide adenine diphosphate oxidised form 

NADPH  Nicotinamide adenine diphosphate reduced form 

nm      Nanometer 
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NP    Nonidet-P 

OPI                 Oxidative phosphorylation inhibition 

OXPHOS   Oxidative phosphorylation 

PBS       Phosphate buffer saline 

Pcsk9              Proprotein convertase subtilisin/kexin type 9 

PMSF             Phenylmethylsulfonyl floride 

PV   Prunella vulgaris 

PX   Panax notogensing 

Q     Quercetin 

Ripa                 Radioimmunoprecipitation assay 

RP   Rheum palmatum 

S   Simvastatin 

SDS       Sodium dodecyl sulphate 

Ser    Serine 

SL    Cells treated with simvastatin and lysed with a buffer containing leupeptin 

SN   Cells treated with simvastatin and lysed with a buffer containing np-40 

TEMED           Tetramethylethylenediamine 

TGFα         Transforming growth factor alpha 

THL   Tetrahydrolipstatin 

TTB                 Towbin transfer buffer 

VLDL   Very low density lipoprotein 
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1 Chapter I: Introduction 

1.1 Introduction 

1.1.1 Hyperlipidemia 

Hyperlipidemia is defined by abnormally elevated levels of one or more lipids such as 

cholesterol or triglycerides in the bloodstream. It also involves elevated levels of lipoproteins 

especially LDL-cholesterol and this is the most common forms of dyslipidemia which 

comprises a triad of decreased levels of high density lipoprotein (HDL), increased  levels of 

low density lipoprotein (LDL), and elevated levels of triglycerides (Musunuru 2010). 

Hyperlipidemia is the result of complex interactions between environmental and genetic 

factors (Haffner, 1999). Hyperlipidemia is the main cause of congestive heart diseases in 

adulthood. It is also the main cause of atherosclerosis which is the pathophysiological cause 

of vascular diseases such as angina pectoris, myocardial infarction, and stroke (Klag et al., 

1993).  It occurs due to disorders in lipid metabolism including elevation in cholesterol, low 

density lipoprotein, or triglyceride, or due to low levels of high density lipoprotein 

(Laskarzewski et al., 1982). Hyperlipidemia is a medical condition associated with a high rate 

of morbidity and early mortality (Vanitallie, 1985). 

Hyperlipidemia is divided into primary and secondary hyperlipidemia (Fredrickson et al., 

1967). Primary hyperlipidemias have a genetic basis and four types have been identified, 

which are familial hypercholesterolemia, familial combined hyperlipidemia, familial defective 

apoprotein B, and familial hyper triglyceridaemia. 

 Familial hypercholesterolemia occurs due to mutations in the low density lipoprotein lipase 

receptor, and to a lesser extent, rare mutations in proprotein convertase subtilisin/kexin type 

9 (PCSK9) gene and in the lipoprotein B (Apo B)(Leigh et al., 2008). Familial 

hypercholesterolemia is an autosomal co-dominant disorder characterised by elevated levels 

of LDL-C and a predisposition to coronary artery diseases (Soutar and Naoumova, 2007). 
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Familial hypercholesterolemia occurs 1 in 500 in the US, Canada, and Europe (Eisenberg et 

al., 1984).  

Familial combined hyperlipidemia occurs in 1-2 % of the general adult population (Grundy et 

al., 1987) and is the most common genetic lipid disorder,  accounting for at least 20% of  

coronary events in males under the age of 60 (Zambon et al., 2006). Identifying the genetic 

defects underlying familial combined hyperlipidemia are still a challenge despite its familial 

nature. Recent data (Minicocci et al., 2015) suggest a more complex mode of inheritance 

although familial combined hyperlipidemia was originally described as an autosomal 

dominant disorder (Goldstein et al., 1973). LDL could be acceptable, borderline, or high but 

triglycerides levels are high (Cortner et al., 1990). 

Familial defective Apolipoprotein B occurs due to base substitution in the Apo-B gene that 

reduces the ability of LDL-C to bind to LDL-C receptors. Moderate to severe 

hypercholesterolemia occurs in familial defective Apo-B (Cefalu et al., 2001). 

Hypertriglyceridemia can be classified as primary or secondary. Primary hypertriglyceridemia 

is caused by genetic defects in triglyceride synthesis and metabolism. Secondary 

triglyceridemia may be due to diabetes, obesity, metabolic syndrome , and medications such 

as anti-psychotics and estrogens (Expert Panel on Integrated Guidelines for Cardiovascular 

et al., 2011).  

Familial hypertriglyceridemia is mainly expressed in adulthood and obesity is the main 

outcome. Triglycerides are moderately elevated (100-200mg/dL) in youths and become 

extremely elevated later in life. 

 Secondary hyperlipidemia occurs as a consequence of various conditions including 

obstructive liver disease, various hepatopoeitic diseases, chronic renal failure, myxedema, 

pancreatitis, and drugs like estrogens, corticosteroids, and retinoids (Chait and Brunzell, 

1990).  
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1.1.2 Cholesterol 

Cholesterol is a fat-like substance which is not only an essential component of cells’ 

cytoplasmic membrane system but is also important for the synthesis of sterols, bile acids, 

and vitamin D.  

 

Figure ‎1-1: Structure of cholesterol (Song et al., 2014) 

Lipoproteins are the carriers of cholesterol travelling in the blood. Cholesterol is synthesized 

via the mevalonate pathway (Figure 1-2) (Hanukoglu, 1992).  
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Figure ‎1-2: Cholesterol synthesis via the mevalonate pathway (Buhaescu and Izzedine, 2007).  

1.1.3 Lipoproteins 

Cholesterol, triglycerides, and phospholipids are the main components of the blood lipids. 

They flow through the blood vessels as mixtures or complexes known as lipoproteins. 

Chylomicrons, low density lipoprotein, very low density lipoprotein and high density 

lipoprotein are the principal plasma lipoproteins. All these complexes contain a protein 

component known as an apo-lipoprotein, or apo-protein. 

1.1.3.1 Low density lipoprotein 

Low density lipoprotein contains up to 60 -70% of the total serum cholesterol. Apoprotein B 

(apo-100) is the only apo-lipoprotein present in LDL. LDL is identified by the National 

Cholesterol Education Program of the USA (NCEP) as the primary target for cholesterol 

lowering therapy because it is the major atherogenic lipoprotein. The optimal LDL cholesterol 
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concentration is < 100 mg/dL. LDL cholesterol levels above 100mg/dL are potentially 

atherogenic, and are graded as follows: 100-129 mg/dL is near optimal to above optimal; 

130-159 mg/dL is borderline high; 160-189 mg/dL and >190 mg/dL are high and very high 

respectively (Expert Panel on Detection et al., 2001).  Clinical trials validated the focus on 

LDL by showing that LDL lowering therapy is efficient for reducing CHD risk (Baigent et al., 

2005). Low levels of LDL cholesterol are not harmful (Brown and Goldstein, 1986). Animals 

with low levels of LDL (80mg/dL) do not have atherosclerosis. Newborn infants have an LDL 

cholesterol concentration of 30 mg/dL. This indicates that such low levels are safe. Similarly 

longevity has been documented in people because they have low levels of LDL throughout 

life, due to familial hypobetalipoproteinemia (Glueck et al., 1976).  

Several large clinical trials, including the Framingham Heart Study (Wilson et al., 1980), the 

Multiple Risk Factor Intervention Trial (Stamler et al., 1986), and the lipid research clinics 

trial (Expert Panel on Detection et al., 2001) assessed the relationship between LDL 

cholesterol levels and the rate of onset of CHD, and provide compelling evidence that 

elevated LDL cholesterol plays a role in the development of acute coronary syndromes. 

1.1.3.2 High density lipoprotein 

HDL is regarded as “good” cholesterol and contains 20-30% of the total serum cholesterol. 

HDL contains two apo-lipoproteins Apo-AI and Apo-AII. The incidence of CHD is inversely 

related to HDL levels and high levels of HDL can protect against the development of 

atherosclerosis. Some studies indicate that low levels of HDL reflect the presence of other 

atherogenic factors. According to some epidemiological studies, low levels of HDL 

cholesterol are linked to increased CHD morbidity and mortality (Wilson et al., 1998). When 

HDL levels are decreased by 1%, CHD risk is increased by 2-3% (Gordon et al., 1989). In 

fact, prospective studies proved HDL to be the key lipid risk factor correlated with CHD risk 

(Wilson et al., 1998). The main role that HDL plays is to collect excess cholesterol from the 

peripheral tissues, such as lipid-laden foam cells, and transport it to the liver for excretion in 

the bile (Brewer, 2004, Singh, 2007). In addition to reverse cholesterol transport, HDL shows 
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various activities such as antioxidant, anti-coagulation, anti-inflammatory, and vascular 

endothelial function improving effects. These effects may be involved in the prevention of 

atherosclerosis progression (Assmann and Gotto, 2004, Ansell et al., 2006). Researches on 

laboratory animals show a direct relation while researches on genetically modified animals 

show that high levels of HDL protect against atherogenesis (Rubin et al., 1991). HDL 

cholesterol levels could be low due to several factors including elevated triglycerides, 

overweight and obesity, physical inactivity, cigarette smoking, very high carbohydrate intake, 

type 2 diabetes, certain drugs including beta-blockers, anabolic steroids, and genetic factors 

(Stone, 1994). 

1.1.3.3 Very low density lipoprotein 

Although VLDL are triglyceride-rich lipo-proteins, VLDL contain 10-15% of the total serum 

cholesterol. Apo-B100, Apo-Cs(I,II,III), and Apo-E are the major Apo-lipoproteins of VLDL. 

VLDL are LDL precursors are produced by the liver.  VLDL remnants are formed by the 

hydrolysis of VLDL triglycerides by lipoprotein lipase present on the surface of cells of 

tissues that oxidise or store free fatty acids. This allows the delivery of free fatty acids to the 

heart,  skeletal muscles and adipose tissues (Hodis, 1999). VLDL remnants are rich in 

cholesterol esters and particularly appear to promote atherosclerosis similarly to LDL 

(Gibbons et al., 2004). 

1.1.3.4 Chylomicrons 

Chylomicrons are the fourth class of lipoproteins. They are triglyceride-rich lipoproteins 

formed in the intestine from dietary fat and they appear in the blood after a fat enriched meal. 

Apo-B48, Apo Cs (I,II,III), and Apo-E are the main apo-lipoproteins present in the 

chylomicrons. Like VLDL, chylomicron remnants are formed due to hydrolysis of triglycerides 

by lipoprotein lipase, allowing the delivery of free fatty acids to muscles and adipose tissues 

(Devaraj et al., 1998).  The partially degraded chylomicrons have some atherogenic potential 

(Hussain, 2000). 
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Table ‎1-1: Classification of normal and abnormal levels of lipids (Expert Panel on Detection et 

al., 2001) 

Lipid Level mg/dL Classification 

Total cholesterol < 200 Desirable 

200-239 Borderline high 

≥ 240 High 

LDL-cholesterol <100 Optimal 

100-129 Near optimal/above optimal 

130-159 Borderline high 

160-189 High 

≥ 190 Very high 

HDL-cholesterol <40 Low 

≥60 High 

Triglycerides  < 150 Normal 

150-199 Borderline high 

200-249 High 

≥ 500 Very high 

 

1.1.3.5 Transport of lipoproteins 

Lipoproteins are transported in the body through endogenous and exogenous pathways, 

illustrated in Figure 1-3. Exogenous transportation is from ingested food to intestine and to 

peripheral cells and liver. Cholesterol and triglycerides which are products of fat digestion 

from the gut are packaged with the intestinal Apo-B48 to form nascent chylomicrons. 

Microsomal triglyceride transfer protein (MTP) mediates the former process (Olofsson et al., 

2000). Cholesterol esters, Apo-C, and Apo-E from HDL are required by nascent 

chylomicrons to form chylomicrons in the circulation. Lipoprotein lipase located on the 

luminal surface of vascular endothelium of skeletal muscles and adipose tissue breaks down 

the triglyceride component of chylomicrons into free fatty acids and monoglycerides to 

convert chylomicrons to chylomicron remnants. The remnants are rich in cholesterol and are 

taken up by the liver via LDL receptor-like protein receptors or Apo-E receptors (Cooper, 

1997). This process ends with dietary cholesterol reaching the liver. 

Endogenous transport occurs in two directions. In the first direction, endogenous transport 

occurs from the liver to peripheral tissues via the Apo-B100 lipoprotein system. In the liver 

complexes of triglycerides and Apo-B100 are formed by the action of microsomal triglyceride 
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transfer protein (Olofsson et al., 2000) to synthesize and secrete nascent VLDL. Nascent 

VLDL which is rich in triglycerides serve as an efficient acceptor of cholesteryl esters from 

HDL. Cholesteryl ester transfer protein mediates this transfer and leads to the formation of 

mature VLDL (Barter et al., 2003). Lipoprotein lipase hydrolyses VLDL triglycerides to free 

fatty acids and monoglycerides converting VLDL to smaller lipoproteins called intermediate 

density lipoproteins (IDL) and to further smaller cholesteryl esters rich LDL. As a result, LDL 

supplies tissues with cholesterol. Thus the liver serves as the major site for both cholesterol 

synthesis and LDL catabolism. 

In the second direction, endogenous transport occurs from the peripheral tissues to liver via 

the Apo-A1 lipo-protein system. Apo-lipoprotein phospholipids complexes synthesize 

nascent HDL particles in the plasma, the intestine, and the liver. The peripheral tissues and 

the liver transfer unesterified cholesterol to nascent HDL by the membrane protein ATP-

binding cassette protein A1 (Attie et al., 2001). Unesterified cholesterol is esterified by 

lecithin-cholesterol acyl transferase which is present on the HDL to form cholesteryl esters. 

Triglycerides present in VLDL and chylomicrons are transferred to nascent HDL to form 

mature HDL which is taken by hepatocytes via the scavenger receptor class BI (Krieger, 

2001). Reverse cholesterol transport is the process by which excess cholesterol is 

transferred from the tissues back to the liver via HDL. 
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Figure ‎1-3: Endogenous and exogenous transport of lipoproteins (Daniels et al., 2009). 

 

1.1.4 Triglycerides 

Triglycerides are one of the blood lipid components and are present in the VLDL and the 

chylomicrons. A relationship between high levels of serum triglycerides and incidence of 

CHD has been reported in some epidemiological studies (Austin et al., 1998). Serum 

triglycerides are elevated due to several factors (Stone, 1994) including overweight and 

obesity, physical inactivity, cigarette smoking, excess alcohol intake, very high carbohydrate 

diets, diseases such as type 2 diabetes, chronic renal failure, or nephritic syndrome, certain 

drugs such as corticosteroids, protease inhibitors, beta-blockers, and estrogens, and genetic 

factors. 
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Figure ‎1-4: Structure of triglycerides (Lopez-Lopez et al., 2001) 

 

1.1.5 Enzymes modulating lipoproteins 

The metabolism of lipids ingested in the form of dietary fats is initiated in the intestine by the 

activity of intestinal enzymes. Around the body other key enzymes involved in the 

metabolism of lipoproteins and their contents, and in formation of remnants such as 

chylomicron remnants (Subramanian et al., 2003) are described below. 

Lipoprotein lipase: is expressed on the surface of heart, skeletal muscle and white and 

brown adipose tissues. It is also located on the endothelial lining of arteries and capillaries 

and catalyzes the hydrolysis of lipids on lipoprotein particles such as chylomicrons and VLDL 

and turns them into smaller remnants that are rapidly cleared from the blood stream via the 

action of LDL-receptors (Olivercrona and Bengtsson-Olivecrona, 1987).  The fatty acids 

released from the chylomicrons and VLDL are taken up by the tissues for energy metabolism 

or for storage. 

Hepatic triglyceride lipase: is one of the hepatic endothelial cell enzymes and can hydrolyse 

triglycerides and probably phospholipids in VLDL remnants leading to efficient uptake of 

these particles and generation of LDL (Jin et al., 2002). It is also involved in the reverse 

cholesterol transport by mediating the conversion of triglycerides rich HDL to glyceride poor 

HDL resulting in the release of phospholipids, glycerol, and fatty acids which can be taken by 

the liver (Hill and McQueen, 1997).  
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Lecithin cholesterol acyl transferase (LCAT): is synthesized in the liver and secreted into 

plasma where it catalyzes, on the surface of HDLs and LDLs, the transfer of fatty acids from 

the C-2 position of the glycerol of phosphatidylcholine (lecithin), to the C-3 hydroxyl of 

cholesterol resulting in the formation of cholesteryl esters and lysolecithin. LCAT has a 

higher affinity for HDLs than LDLs, and the cholesterol esters move to the core of HDL 

making HDL particles able to acquire more cholesterol from other lipoproteins and cell 

membranes. LCAT is activated by Apo-A1 present on the surface of HDLs and ApoB on the 

surface of LDLs (Peelman et al., 2000).  

Cholesterol ester transfer protein: transfers HDL cholesterol esters to VLDLs and LDLs. As a 

result, the excess cellular cholesterol is returned to the liver through the LDL receptor 

pathway as well as the HDL receptor pathway (Brewer, 2004). 

Microsomal triglyceride protein: transfers triglycerides, cholesteryl esters, and phosphatidyl 

choline between membranes and lipoproteins (Olofsson et al., 1999). 

Acyl CoA transferase: is bound to endoplasmic reticulum and catalyzes the formation of 

cholesteryl esters from cholesterol in a wide variety of cells. As a result, cholesteryl esters 

are stored as cytoplasmic storage droplets or in lipoprotein secreting cells (Chang et al., 

1993).  

Pancreatic lipase: also called triacylglycerol hydrolase, it is the principal lipolytic enzyme 

synthesized and secreted by the pancreas. It plays a key role in the efficient digestion of 

triglycerides. It catalyzes the removal of α and αˈ fatty acids of dietary triglycerides resulting 

in the formation of β-mono-glycerides and long-chain saturated and polyunsaturated fatty 

acids  (Shi and Burn, 2004). 

HMG-CoA reductase: is the rate-limiting enzyme of cholesterol biosynthesis (Brown and 

Goldstein, 1980), and is a 97 kDa transmembrane glycoprotein that resides in the 

endoplasmic reticulum of animal cells (Chin et al., 1982, Chin et al., 1984, Liscum et al., 

1983). HMG-CoA reductase catalyzes the biosynthesis of isoprenoids, producing farnesyl 
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and geranylgeranyl pyrophosphates which are intermediates for the production of cholesterol 

and dolichol (Elson et al., 1999). HMG-CoA reductase catalyzes the reaction HMG-CoA + 

2NADPH + 2H+ leading to mevalonic acid + 2NADP+ + CoASH. Inhibition of HMG-CoA 

reductase results in reduction of serum cholesterol. This is correlated with reductions in 

atherosclerosis and coronary heart diseases (Oates et al., 1988), and is a major therapeutic 

strategy in the treatment of heart disease. 

1.1.6 Treatment of hyperlipidemia 

Hyperlipidemia is a common risk factor  for cardiovascular diseases which is the leading 

cause of mortality in the United States where 53.4% of the United States adults having 

abnormal cholesterol values and 32% having elevated levels of low density lipoprotein lipase 

cholesterol (Roger et al., 2011). US, UK, and Canada guidelines agree that therapeutic 

lifestyle changes are the main factor in hyperlipidemia management, and that LDL-

cholesterol should be the primary target of therapy (Grundy et al., 2004, Robson, 2008, 

Genest et al., 2009). 

1.1.6.1 Lifestyle and non-pharmacologic treatment 

Dietary advice plays an important role in normalizing abnormal serum lipids in those who are 

at high risk of cardiovascular disease. Reductions in serum cholesterol levels of 3-6% are 

expected with diet. An early meta-analysis of 27 trials indicated that lipid levels are also 

improved by replacement of saturated fats with unsaturated fats (Mensink and Katan, 1992). 

Physical activity with associated weight loss plays an important role in controlling mixed 

dyslipidaemia because physical activity raises HDL-cholesterol levels and reduces very low 

density lipoprotein (VLDL)  (Grundy et al., 2002, Lichtenstein et al., 2006). Dietary changes 

should include a reduction of intake of dietary cholesterol to < 200mg/day, addition of 

approximately 2 grams of plant sterols/stanols each day, and incorporation of 10  to 125 

g/day of viscous fibres into the diet (Lipsy, 2003). 
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1.1.6.2 Drug treatment  

If therapeutic lifestyle changes fail to achieve the goal after 3 months, it is recommended that 

drug therapy is added to the lifestyle modifications because lifestyle may insufficiently 

address LDL-C lowering which is the primary target of therapy (Grundy et al., 2002, Grundy 

et al., 2004). Other targets for hyperlipidemia treatment include low levels of HDL cholesterol 

and elevated levels of triglycerides, both of which are independent predictors of 

cardiovascular disease (Gordon et al., 1989, Bansal et al., 2007, Sarwar et al

Statins (Figure 1-5): Development of statins, which are derived from fungi and later became 

purely synthetic molecules, is one of the major advances in the management of 

hyperlipidemia (Endo, 1992). Statins are inhibitors of HMG-CoA reductase (Table 1-2), 

which is the rate-limiting enzyme in cholesterol biosynthesis. Inhibition of HMG-CoA 

reductase leads to a decrease in intrahepatic cholesterol concentration to which the liver 

responds by inducing its LDL receptors leading to an increase in LDL-catabolism (Endo et al., 

1976). Triglyceride serum levels are also reduced by statins because increased LDL 

receptor activity leads to removal of triglyceride rich LDL and VLDL (Table 1-3) (Expert 

Panel on Detection et al., 2001). Statins should be used for the treatment of women with a 

history of congestive heart diseases. Women respond to statins differently than men. 

Primary and secondary trials show that cholesterol lowering drugs reduce the risk of 

cardiovascular disease events in men. Secondary prevention trials in women with 

established cardiovascular disease also show a reduction in risk. Some investigators 

nevertheless argue that women without cardiovascular disease should not be given 

cholesterol lowering drugs because of insufficient evidence from primary prevention trials in 

women. They speculate that women with and without cardiovascular disease respond 

differently to the drugs; if true, women may not respond to treatment even when they have 

the same level of risk as men who do benefit (Grundy, 2007). Lipid lowering therapy in 

women can reduce the risk of coronary events in secondary but not primary prevention 

(Walsh and Pignone, 2004). 
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Statins can cause myopathy, which if not recognized and the drugs are continued, can lead 

to rhabdomyolysis which is defined as the breakdown of muscle tissue that leads to the 

release of muscle fiber contents into the blood, myoglobinuria which is defined as the 

presence of myoglobin in the urine, and acute renal necrosis which  is an inflammatory 

condition that primarily affects the renal tubules of the kidneys (Pierce et al., 1990). Statins 

also have some drug-drug interactions especially involving the cytochrome p-450 drug 

metabolism system which  is a family of isozymes responsible for the biotransformation of 

most foreign substances including 70 to 80 % of all drugs (Gruer et al., 1999). 

 

Figure ‎1-5: Structures of the statins where the dotted line shows the HMG-CoA like moiety 

which binds to the HMG-CoA-binding portion of the enzyme active domain (Schachter, 2005)  
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Bile acid sequestrants: Bile acid sequestrants are anion exchange resins binding the bile 

acids in the intestinal lumen (Table 1-2). This effect prevents the reabsorption of the bile 

acids in the terminal ileum and their circulation back to the liver (Carlson, 2005). The 

reduction in bile acid levels induces the liver to produce bile acids from cholesterol which 

leads to depletion of intrahepatic cholesterol and increased expression of LDL receptors 

(Table 1-3) (Carlson, 2004). However, usage of bile acid sequestrants is hindered by 

inconvenient dosing and unpleasant side effects such as gastro-intestinal disorders like 

constipation (Guay, 2002). They also bind non-specifically with anions and interfere with the 

absorption of drugs such as statins, fibrates, corticosteroids, diuretics, and non-steroidal 

anti-inflammatory drugs (Insua et al., 2002). 

 Nicotinic acids: Nicotinic acid inhibits lipolysis in adipose tissue resulting in low levels of 

plasma free fatty acids which are the precursors of hepatic and plasma triglycerides 

transported in VLDL, and as a result decreases triglyceride rich VLDL and cholesterol rich-

LDL (Table 1-3) (Law et al., 2003). Nicotinic acid causes unpleasant side effects of flushing 

which hinders people from taking it (Gruer et al., 1999). 

 Fibric acid derivatives (fibrates): Fibrates activate peroxisome proliferator-activated 

receptors (Schoonjans et al., 1996), which are transcription factors that control expression of 

metabolic genes (Table 1-2).  Fibrates reduce triglycerides by reducing expression of Apo 

CIII which serves as an inhibitor of lipolytic processing and receptor mediated clearance. 

This results in the increase of lipoprotein lipase synthesis and enhanced clearance of 

triglyceride rich lipoproteins. Fibrates also increase HDL by the stimulation of Apo-AI and 

Apo-AII expression (Eisenberg et al., 1984). Fibrates decrease LDL-cholesterol  levels by 

only 10% (Table 1-3) (Law et al., 2003). Fibrates can lead to the formation of cholesterol 

gallstones (Palmer, 1987). 

Ezetimibe: Ezetimibe was approved by the World Health Organization (WHO) in 2002 for the 

treatment of primary hypercholesterolemia and homozygous sitosterolemia (Patel et al., 

2003). Ezetimibe binds to cholesterol and blocks its dietary and biliary cholesterol absorption 
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from the gut. This results in reduced hepatic cholesterol levels, thus inducing LDL receptor 

expression (Dujovne et al., 2002). 

Combination therapy: Some drugs can be combined with statins for the treatment of mixed 

hyperlipidemia. The advantage of such combinations is the usage of low doses of each drug 

to minimise the risk of side effects. Combining a drug with different mechanism of action 

than statins will reduce the levels of LDL-C by additional 10 % while doubling the statin dose 

with achieve only 6 % additional reduction (Lipsy, 2003). 

Combinations of statin with fibrates (Vega et al., 2003), ezetimibe (McKenney et al., 2006b), 

or nicotinic acid (McKenney et al., 2007) provides an enhanced lipid control in patients  with 

mixed dyslipidaemia where both  LDL-C and triglycerides were reduced. A triple combination 

of ezetimibe, simvastatin, and nicotinic acid could be used to reduce LDL-C (Guyton et al., 

2008). While combination therapy is recommended in mixed dyslipidaemia, there may be 

tolerability concerns (Davidson et al., 2007). 

In case of fibrate and statin combination, there are concerns about the risk of myopathy 

which is a result of both drugs monotherapy (Rosenson, 2004). The most common 

combination used is statin plus bile acid resins. This combination showed a 50% reduction in 

LDL-C. This effect could be achieved with high statin dose. The gastrointestinal tract side 

effects and multiple daily dosage of resins limited this combination usage (Lipsy, 2003). 

A statin is not always included in combined therapy. Nicotinic acids and bile acid resins have 

been used before statins were developed. The side effects of these drugs required to reduce 

the dose but the effectiveness was less compared to the higher dose (McKenney, 2000). 

Although not frequently used, the combination of nicotinic acid and fibrates could be useful in 

patients with high levels of triglycerides (Rubins et al., 1999). 
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Table ‎1-2: Summary of the drugs used in the treatment of hyperlipidemia (Lipsy, 2003) 

Drug Mechanism of action Target 

Statins HMGCR inhibitors Low LDL-C levels and 
low triglycerides 

Bile acid sequestrants Bind to bile acids in the 
intestinal lumen 

Low cholesterol levels 

Nicotinic acid Inhibits lipolysis in 
adipose tissues 

Low levels of 
triglycerides and LDL-
cholesterol 

Fibrates Activate Peroxisome 
proliferator-activated 
receptors 

Low LDL-cholesterol, 
high HDL cholesterol,  

Ezetimibe  Binds to cholesterol Low LDL-cholesterol 
 

Table ‎1-3: Effect of each class of antihyperlipidemic drugs on lipids (Miller, 2009) 

Medication  LDL-cholesterol HDL-cholesterol Triglycerides  

Statins ↓27-50% ↑5-10 % ↓10-25% 

Bile acid 
sequestrants 

↓15-30% ↑3-5% ↓0-20% 

Nicotinic acid ↓5-25% ↑10-25% ↓20-50% 

Fibrates Variable effect ↑10-25% ↓20-50% 

Ezetimibe  ↓18-20 % ↑3-5 % ↓         5  

 

Tetrahydrolipstatin (THL Figure 1-6): It is the hydrogenated form of lipstatin, and is a 

pancreatic lipase inhibitor that blocks fat absorption selectively and has antihyperlipidemic  

activity (Hochuli et al., 1987). The anti-pancreatic lipase activity of THL is due to its binding 

with Ser-152 which is a part of the His-Asp-Ser catalytic triad in the active site of pancreatic 

lipase.  

  

Figure ‎1-6: Structure of THL (Hanessian et al., 1993) 

 

THL has side effects such as oily spotting, liquid stools, faecal urgency, flatulence and 

abdominal cramping (Chaput et al., 2007), decreased vitamin D absorption, and myopathy 
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(Harp, 1998). Some patients suffered from severe liver injuries due to use of 

tetrahydrolipstatin, as reported by the US food and drug administration (Douglas et al., 2013).  

1.1.6.3 Traditional foods and herbal therapy 

Despite the efficacy of statins and other lipid reducing agents, the issues of tolerability, 

untoward side effects, and safety remain a concern with many agents, particularly when 

administered at high doses or in combinations. This problem restricts use when patients 

cannot tolerate statins or when statin up-titration is limited due to safety concerns. In these 

cases, treatment is limited to agents such as bile acid sequestrants, nicotinic acid, or other 

less effective therapies. The natural products potential for the treatment of hyperlipidemia is 

not well explored and could be as an alternative strategy for the development of safe and 

effective drugs for the treatment of hyperlipidemia (Birari and Bhutani, 2007). 

1.1.6.3.1 Polyphenols 

A wealth of information indicates numerous bioactive components from nature are potentially 

useful in hyperlipidemia treatment. A good example of such are the polyphenols (Verger, 

1997). Naturally occurring phytochemicals are an exciting opportunity for the discovery of 

new anti-hyperlipidaemic agents. Some of those natural products have a pancreatic lipase 

inhibitor effect. Many researches focused on polyphenols from teas and herbal sources 

(Birari and Bhutani, 2007),  but there are studies showing that polyphenols from fruit sources 

can also have a pancreatic lipase inhibition effect (Moreno et al., 2003). Many polyphenols 

such as flavones, flavonols, tannins and chalcones are active against pancreatic lipase. 

Luteolin inhibited pancreatic lipase at IC50 76.5 + 7.51 µg/mL (Yamamoto et al., 2000). 3-

Methylethergalangin and mangiferin flavonoids obtained from rhizomes of Alpinia officinarum 

(Shin et al., 2003) and from fruit of Mangifera indica (Moreno et al., 2003), inhibited 

pancreatic lipase, as did hesperidin from the peel of Citrus unshiu (Ono et al., 2006). 

Quercetin exhibited a pancreatic lipase inhibition effect with an IC50 of 40 µM (Zheng et al., 

2010). Emblica officinalis is reported to have a hypolipidemic effect. Flavonoids from Emblica 

officinalis showed a significant decrease in the HMG-CoA reductase activity in the liver of 
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animals at a dose of 10 mg/kg body weight per day (Hofbauer, 2002). Flavonoids from 

Ananas comosus were found to inhibit HMG-CoA reductase (Xie et al., 2005a). 

1.1.6.3.2 Prunella vulgaris 

The dry spikes of a perennial herbaceous species Prunella vulgaris (Figure 1-7), a member 

of the family Lamiacae, which is also called a “self heal” or “heal all”, have been used. 

Europeans and Chinese have been using Prunella vulgaris as a traditional remedy for 

thousands of years (Pinkas et al., 1994). Its activity in the treatment of sore throat, fever, and 

wounds  and its anti-inflammatory, anti-bacterial, and anti-viral activity (Chiu et al., 2004) 

increased the commercial demand for it. Recently it is reported that P.vulgaris extracts have 

anti-hyperglycemic effects (Jie et al., 2007). Prunella vulgaris is rich in triterpenoids such as 

oleanolic acid and ursolic acid. It is also rich in flavonoids such as quercetin, rutin, and 

emodin, and luteolin. In addition to the triterpenoids and flavonoids, it contains steroids, 

coumarins, organic acids, saccharides, and volatile oils. 

  

Figure ‎1-7: Dried spikes of Prunella vulgaris  (Psotova et al., 2003)  

 

1.1.6.3.3 Ilex latifolia  

Kudingcha is a bitter tea that has been used for long time in China. According to Chinese 

medicine it is known to refresh the mentalities, clear blood toxins, and disperse wind-heat. It 

has also been utilised to help in digestion and alleviating the adverse effects of alcohol. It 

has been used for the treatment of rhinitis, cold, itching eyes, conjunctional congestions, and 

headache (Li, 2011, Li et al., 2011). Many herbs which have similarities in flavour, 
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appearance, and traditional usage in China are named kudingcha (He et al., 2003). The 

most common plants in Chinese markets are divided into two groups. The first group is 

called large leaved kudingcha and it includes species Ilex latifolia and Ilex kudingcha C.J. 

Tseng. The other group is called the small leaved kudingcha and it contains the species 

Ligustrum robustum. The large leaved kudingcha are considered the original kudingcha 

species and have obvious lipid metabolism, hepatoprotective, anti-tumour, anti-inflammatory, 

and antioxidant activities (Wu et al., 2008, Nishimura et al., 1999a, Nishimura et al., 1999b, 

Woo et al., 2001). For the last few decades kudingcha has been used as a dietetic beverage 

and is gaining popularity with names like clearing heat tea, beauty slimming tea, and 

longevity tea. 

1.1.6.3.3.1 Secondary metabolites of large leaved kudingcha 

Phenolic acids, essential oils, flavonoids, and triterpenoids were isolated and characterized 

from large leaved kudingcha. Polyphenols and triterpenoids were considered the most 

important and abundant metabolites because they have various bioactivities (Feng, 1998). 

1.1.6.3.3.1.1 Triterpenoids 

Kudinlactones α, β, and δ with a lactone ring at the position of C20 and C28 are considered 

to be the most characteristic chemicals in kudingcha species. While β-kudinlactone was the 

main triterpenoid present in Ilex latifolia, α and δ kudinlactones were not present. Ilex latifolia 

also contains oleanane-type and lupane-type triterpenoids and their glycosides (Li et al., 

2012). 

1.1.6.3.3.1.2 Phenolic acids 

Phenolic acids with anti-oxidant activities have been discovered recently. Polyphenols and 

their derivatives are the main types of phenolic acids found in large leaved kudingcha 

(Thuong et al., 2009, Liu et al., 2009). 
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1.1.6.3.3.1.3 Flavonoids 

Quercetin, rutin, and kaempferol were the main flavones isolated from the large leaved 

kudingcha (Li et al., 2013). 

1.1.6.3.3.1.4 Essential oils and other secondary metabolites 

Gas chromatography coupled to mass spectroscopy (GC-MS) was used to the study the 

essential oils alcohol, aldehyde, ketone, ether, fatty acids, and fatty acid esters (He et al., 

2003, Wu et al., 2008, Xiong B, 2003). Polysaccharides and phytosterols were also isolated 

and identified (Zou , 2011, Wang , 2008).  

1.1.6.3.3.2 Biological activities of kudingcha 

Regular usage of kudingcha as a herbal tea has a positive role in the cure and prevention of 

diabetes, pharyngitis, cardiovascular diseases, cerebrovascular diseases, especially the 

troublesome conditions related to atherosclerosis, hypertension, dizziness, insomnia, 

palpitations, and chest tightness caused by vascular diseases (Zhang, 1994). Lipid 

metabolism is the most important activity (Li et al., 2011). 

1.1.6.3.3.2.1 Lipid metabolism activity 

Acyl CoA cholesteryl acyl transferase (ACAT) catalyses the intracellular esterification of 

cholesterol in various tissues. Inhibitors of ACAT could be new types of medicines to treat 

obesity and atherosclerosis. Ilekudinol C and Ulmoidol isolated from kudingcha showed 

potent inhibition in an ACAT assay (Nishimura et al., 1999a). Kudinoside A and ilekudinoside 

P had inhibitory activity on the formation of foam cells and reduced intracellular triglycerides 

and cholesterol content (Zheng et al., 2009). 

1.1.6.3.3.2.2 Protection of vascular system 

Many ilex species have been used in Chinese medicine for the treatment of coronary heart 

diseases. Their action was considered due to their coronary vasodilative effect. An aqueous 

extract of Ilex latifolia increased contractility and decreased the frequency of contraction in 

an isolated rat heart perfusion system. The extract inhibited Na+/K+ ATPase activity in rat 
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heart sarcolemma, as well as in the purified porcine cerebral cortex enzyme. It also inhibited  

Ca2+ dependent ATPase at a similar dose (Woo et al., 2001). 

1.1.6.3.3.2.3 Hypoglycemic effect 

Ilex latifolia extract showed inhibition of hyperglycemia in the epinephrine hyperglycemia rat 

model. Ilex latifolia has a potential as a hypoglycemic drug because the blood sugar levels of 

rats given a low or high dose of Ilex latifolia extract were significantly reduced compared to 

the control (Qu, 1999). 

1.1.6.3.3.2.4 Antioxidant activity 

Antioxidant activities of polyphenols and flavonoids of kudingcha and Ilex latifolia were 

assessed by DPPH, ABTST, and OH-free radical scavenging assays. Ilex kudingcha was 

found to contain higher polyphenol content and to have more anti-oxidant activity than Ilex 

latifolia (Zhang, 2010). 

1.1.6.3.3.2.5 Anti-microbial activity 

Ilex latifolia showed inhibition of the growth of Pneumococcus, Acillus diphthera, 

Staphylococcus aureus, Pseudomonas aeruginosa and E.coli. It also improved the survival 

rate of mice infected by E.coli, B. dysenteriae, Pneumobacillus, and Streptococcus B (Jiang,  

2001). 

1.1.6.3.3.2.6 Anti-viral activity 

An aqueous extract of Ilex latifolia was found to have a beneficial effect on humoral and 

cellular immunity. Ilex latifolia is able to enhance and adjust the immune function of an 

organism as indicated by its ability to enhance phagocyte function of macrophages in the 

mouse abdominal cavity and increase the number of plaque-forming cells (Dong Y, 2001). 

1.1.6.3.3.2.7 Antitumour activity 

The anti-tumour activity of Ilex latifolia was assessed in vitro by an MTT assay. The inhibition 

rate against SGC-7901 human gastric cancer cells was found to be 62.4% (IC50 42.86 

mg/mL), while the inhibition rate against NCI-H460 human lung cancer cells was 93.33%. 
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These results suggested a basis for the development of new anti-tumour medicines from Ilex 

latifolia (Chen, 2007). 

1.1.6.3.3.2.8 Protective activity in neuronal cells 

Ilex latifolia has been used in Chinese medicine for the treatment of headache and 

inflammatory diseases. Ilex latifolia at 10-100 µg/mL inhibited elevation of intracellular 

calcium, glutamate-induced neuronal death, generation of reactive oxygen species, and 

decrease of anti-apoptotic  protein, BcL-2 in cultured rat cortical neurons (Kim et al., 2012). 

1.1.6.3.3.2.9 Toxicity 

Kudingcha has been consumed as a tea with little or no acute toxicity. Ilex latifolia acute and 

long term toxicity was studied in rats using aqueous extracts. The maximum tolerable dose 

was 168 g/kg indicating that there is no acute toxicity (Xu, 2001). 

1.1.6.3.3.2.10 Clinical usage 

Studies show that drinking Ilex latifolia for two months was sufficient to reduce hypertension 

as well as, or better than, nifedipine (Mou, 2005, Huang, 1997).  

  

Figure ‎1-8: Ilex latifolia Plant (Li et al., 2011) 

1.1.6.3.4 Rheum palmatum  

The dried rhizome and root of Rheum palmatum is one of the most famous and ancient 

herbs in China and has been used for thousands of years. The dried rhizome or root of 
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Rheum palmatum has many effects such as purging heat, promoting blood circulation, and 

removing blood stasis (Chen and Wang, 2009). Rheum palmatum can be used as well for 

the treatment of hyperlipidemia (Zhang et al., 2002), chorinic renal failure (Bi et al., 1982) 

and memory impairment (Tian et al., 1997). Anthraquinones which include rhein, emodin, 

chrysophanol, and physcion, are the main bioactive constituents of Rheum palmatum (Chai 

et al., 1998). 

1.1.6.3.5 Panax notoginseng 

The root of Panax notoginseng (Radix notoginseng) is a well known traditional Chinese 

medicine and it belongs to the Ginseng genus (Dong et al., 2003). Panax notoginseng has 

been used for the treatment of coronary heart diseases and cerebral vascular diseases 

(Chan et al., 2002). It was also effective in the promotion of blood circulation, relief of 

swelling, and alleviation of pain. The root of Panax notoginseng contains flavonoids, 

saponins, and polysaccharides as the main active constituents (Wu et al., 1995, Yang and 

Du, 2002).    

 

Aims of the project 

Hyperlipidemia is defined as an abnormal elevated level of lipids such as cholesterol or 

triglycerides in the blood. It is the main risk factor for congestive heart diseases and 

atherosclerosis which is the pathophysiological cause of vascular diseases such as angina 

pectoris, myocardial infarction, and stroke. Hyperlipidemia is associated with high rates of 

morbidity and early mortality. Lifestyle is the main factor in the prevention of hyperlipidemia. 

If lifestyle is not beneficial, drug therapy is required. Statins, fibrates, nicotinic acid bile acid 

sequestrants, and ezetimibe are approved drugs for the treatment of hyperlipidemia. 

Because of low tolerance, side effects, and low efficacy of some of these drugs, discovery of 

new drugs is being explored and investigated. Herbal products are not well explored as an 

alternative treatment for the treatment of hyperlipidemia. Ilex latifolia is a traditional Chinese 
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medicine which has been used for decades for the treatment of hyperlipidemia and for 

weight loss. This project describes efforts to identify new applications of Chinese herbs, and 

in particular Ilex latifolia, to treat hyperlipidemia. Two experimental approaches for testing 

herbs and extracts were adapted, lipid absorption and cholesterol synthesis. For lipid 

absorption, pancreatic lipase enzyme was the target, and for cholesterol synthesis, the 

target was the enzyme HMG-CoA reductase. 
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2 Chapter II: Pancreatic lipase assay 

2.1 Introduction 

Several potential therapeutic targets for hyperlipidemia have been identified due to the 

progress in unveiling the molecular mechanisms of lipid metabolism (Zhang and Huang, 

2012). The development of molecules that inhibit nutrient digestion and absorption and 

reduce energy intake through gastrointestinal mechanisms, without altering central 

mechanisms, is one of the most important strategies in the treatment of hyperlipidemia 

(Birari and Bhutani, 2007). Hyperlipidemia can be prevented by inhibiting the movement of 

triglycerides from the intestinal lumen by inhibiting triacylglycerol lipases. 

2.1.1 Pancreatic lipase 

Pancreatic lipase is the principal lipolytic enzyme synthesized and released by the pancreas. 

It plays a key role in the efficient digestion of triglycerides. It catalyzes the removal of α and 

α’ fatty acids of dietary triglycerides resulting in the formation of β- monoglycerides and long 

chain saturated and polyunsaturated fatty acids (Mukherjee, 2003, Shi and Burn, 2004, 

Thomson et al., 1997). Pancreatic lipase is responsible for the hydrolysis of 50-60% of 

dietary fats (Figure 2-1). Pancreatic lipase is a target for the treatment of hyperlipidemia 

especially mixed hyperlipidemia or secondary hyperlipidemia where the triglycerides levels 

are high due to obesity or diabetes mellitus type II (Christian et al., 2011, Shah and Wilson, 

2015). Fatty acids and monoglycerides are incorporated in to bile acid micelles. These 

micelles deliver the fatty acids and the monoglycerides to the intestinal microvilli, where 

triglycerides are re-synthesized and incorporated to the chylomicrons which are secreted to 

the intestinal lymph. Inhibition of pancreatic lipase results in malabsorption of triglycerides 

and consequently inhibition of synthesis of triglycerides-rich chylomicrons synthesis 

(Hussain, 2000, Ros, 2000). His-263, Asp-176, and Ser-152 form a catalytic triad in the 

active site of human pancreatic lipase. This triad represents the lipolytic site. Chemical 
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modification of Ser-152 irreversibly inhibits enzymatic activity indicating that Ser-152 is 

essential for the catalytic activity (Winkler et al., 1990). 

Lipases with high affinity for their substrates work at the aqueous/oil interface (Schmid and 

Verger, 1998) forming an activated enzyme-substrate complex. The inhibition effect of bile 

salts on hydrolysis of triglycerides is due to desorption of the pancreatic lipase from its 

emulsified substrate (Granon and Semeriva, 1980, Gargouri et al., 1983, Borgstrom, 1982, 

Luthipeng and Winkler, 1992). Bile salts enhance lipolysis at low concentration either by 

stabilising the enzyme at the interface (Momsen and Brockman, 1976, Luthipeng and 

Winkler, 1992) or by facilitating the dissociation of the long water-insoluble fatty acid chains 

(Desnuelle et al., 1960, Luthipeng and Winkler, 1992). The effect of bile salts on pancreatic 

lipase depends on the concentration of the salts, substrate used, and the presence or 

absence of colipase which in the presence of bile salts is necessary for the binding of the 

enzyme to the substrate.  
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Figure ‎2-1: Role of pancreatic lipase in lipid absorption (Birari and Bhutani, 2007). 

 

2.1.2 Tetrahydrolipstatin (THL) 

THL, the hydrogenated product of the naturally occurring lipstatin, inhibits pancreatic 

lipase and two other lipolytic enzymes secreted into the gastrointestinal tract,the carboxyl 

esterase lipase of the pancreatic juice and the acid lipase of the human gastrointestinal 

tract. Esterastin, isolated from streptomyces, was the first lipase inhibitor to be described 

(Weibel et al., 1987; Kitahara et al., 1987; Umezawa et al., 1978; Hahn et al., 2013). Its 

structure was determined by Umezawa et.al (1978) and it was reported to exhibit a 

strong inhibition of pancreatic esterase. It was followed by the discovery of lipstatin 

(Weibel et al., 1987; Hochuli et al., 1987) and valilactone (Kitahara et al., 1987) (Figure 

2-2). 
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Figure ‎2-2: Structures of esterastin, lipstatin, and valilactone respectively 

The structures of these compounds reveal that they are derived from mycolic acids which 

are hydroxy fatty acids possessing a 2-alkyl substitution (Borgstrom, 1988). The mycolic 

acid moiety of these inhibitors contains hydroxy groups in the 3- and 5- positions where 

the 3- hydroxy group forms a β-lactone ring and the 5-hydroxy group is esterified with N-

formyl-1- leucine for lipstatin. THL (Figure 2-3) reduces intestinal fat absorption through 

inhibition of pancreatic lipase (Ballinger and Peikin, 2002, Drew et al., 2007). THL blocks 

fat absorption selectively and has anti-hyperlipidaemic activity (Hochuli et al., 1987). The 

anti-pancreatic lipase activity of THL is due to its binding with Ser-152 which is a part of 

the Asp-His-Ser triad in the pancreatic lipase structure (Ballinger and Peikin, 2002). 

 

Figure ‎2-3: Structure of tetrahydrolipstatin (Hanessian et al., 1993) 

THL has a low hydrophilicity and distributes in the aqueous/oil system in favour of the lipid 

phase. It is an insoluble non-swelling amphiphile which is surface active (Borgstrom, 1974) 

and forms stable monolayers at the interface. It can also form mixed micelles with bile salts 

and this could result in its presence at the substrate water interface of the lipase substrate. 

THL transfer from oil to aqueous phase increases in the presence of bile salts above their 

CMC (Tiss et al., 2002) reflecting the possibility of solubilisation of THL in the aqueous 

phase by forming mixed micelles with bile salts. The dependence of THL inhibitory effect of 
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pancreatic lipase on the presence of bile salts in the incubation medium could be explained 

by either the formation of THL/bile salts mixed micelles which lead to a better interfacial 

quality improving the lipase adsorption onto these micelles, or by conformational changes of 

pancreatic lipase caused by bile salts. The increased inhibition efficacy of THL in the 

presence of bile salts above their CMC was reported in the case of human pancreatic lipase 

(Luthipeng and Winkler, 1992, Tiss et al., 2009) human gastric lipase (Gargouri et al., 1991, 

Tiss et al., 2009) human lipoprotein lipase (Lookene et al., 1994, Tiss et al., 2009) as well as 

dog and guinea pig lipase (Cudrey et al., 1993, Tiss et al., 2009). This matches with porcine 

pancreatic lipase inhibition studies using diethyl p-nitrophenylphosphate (E600).  E600 in bile 

salts mixed micelles irreversibly inhibited porcine pancreatic lipase while aqueous solution of 

the organo-phosphorous compound does not (Rouard et al., 1978, Tiss et al., 2009). The 

same effect was reported when the compound was not emulsified with gum Arabic 

(Desnuelle et al., 1960, Tiss et al., 2009). It was reported that inhibition of 

Chromobacterium vicosum lipase by THL was only achieved in the presence of 50 % 

isopropanol (Potthoff et al., 1998, Tiss et al., 2009). 

Herbal extracts of Ilex latifolia, Prunella vulgaris, Rheum palmatum and Panax notogensing, 

in addition to herbal compounds including quercetin, emodin, crocin, and hesperidin, will be 

investigated for their pancreatic lipase inhibition activity using spectrophotometric and high 

performance liquid chromatography assays. Orlistat, an approved pancreatic lipase inhibitor 

will be used as a positive control.  

2.2 Experimental methods 

2.2.1 Materials 

p-Nitrophenyllaurate, pancreatic lipase of porcine pancreas type II, DMSO, THL, quercetin, 

emodin, crocin, hesperidin, sodium chloride, taurocholic acid sodium salt, sodium 

dihydrogen phosphate, and 2,4-dinitroaniline  were obtained from Sigma-Aldrich (Gillingham, 

England). Hydrochloric acid and acetonitrile HPLC grade, n-butanol, and Industrial 

methylated spirit (IMS), were obtained from Fisher scientific UK limited (Bishop Meadow 
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road, Loughborough, England). Prunella vulgaris, Rheum palmatum and Panax notogensing 

were bought from Beijing Tong Ren Tang (London,UK) . Ilex latifolia. was a gift from 

Shanghai University of traditional Chinese medicine. Alli was a gift from Professor S.W. 

Annie Bligh (Westminster University). HPLC used was Dionex Ultimate 3000. NMR 

instrument used was Bruker Avance 500. 

2.2.2 Methods 

2.2.2.1 Extraction of orlistat from Alli 

Alli contains orlistat as the active pharmaceutical ingredient. It also contains inactive 

ingredients such as microcrystalline cellulose, sodium starch glycolate, sodium lauryl 

sulphate, povidone, and talc. 0.5 g of alli powder was suspended in 200 mL deionised water. 

The suspension was filtered [Whatman, Whatman international Ltd, Maidstone, England] 

using a Buchner vacuum pump, and the filtrate was discarded. The residue was suspended 

in 20 mL of water and filtered, and the filtrate was discarded. The residue was suspended in 

20 mL of IMS. The solution was filtered and the filtrate was dried by leaving the solution in 

the fume hood. The orlistat powder recovered (0.205 g) was stored at 4 ºC. 

2.2.2.2 Structure elucidation of orlistat using NMR 

Nuclear magnetic resonance (NMR) was used for structure elucidation. 1H, 13C, HMBC, and 

HSQC spectroscopic analysis were carried out in deuterated chloroform (CDCl3). The NMR 

analysis was operated by Mr. John Crowder, NMR technician at London Metropolitan 

University.  Standard orlistat purchased from Sigma Aldrich was used as a reference.   

2.2.2.3 Extraction of Prunella vulgaris, Rheum palmatum, and Ilex latifolia. 

Dried flower spikes of the Prunella vulgaris were ground to a coarse powder. Separate 

aliquots (20 g) were extracted in 200 mL of n-butanol using two different methods. The first 

method was reflux extraction at 120 ºC for 2 hours. The second method was ultrasonic 

extraction at room temperature for 2 hours. The extract was filtered using Buchner vacuum 

apparatus (Buchi vacuum pump V-700). After filtration, the solvent was evaporated at 100 ºC 
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using Buchner vacuum pump (Buchi vacuum pump V-700). The extracts obtained using 

reflux and ultrasonic extraction were  weighed (1.135 and 0.7945 g respectively) and stored 

at 4 ºC. Separate aliquots (30 g) of course powder of Ilex latifolia dried leaves, separate 

aliquots (35 g) of Rheum palmatum, and separate aliquots (35 g) of Panax notoginseng were 

extracted using the same methods. The extracts were weighed and stored at 4 ºC. 

2.2.2.4 Validation of pancreatic lipase inhibition assay by spectrophotometry 

The assay was adapted from previous work (McDougall et al., 2009). Porcine pancreatic 

lipase type II was prepared at 10 mg/mL in ultra-pure water by pipetting up and down for a 

few minutes. After centrifugation at 20000 g for 5 min to remove the undissolved powder, the 

supernatant was used. The assay buffer was 0.1 M Tris-HCl (pH 8.2). The substrate stock 

solution was prepared at 0.9 mg/mL of p-nitrophenyllaurate in 0.007 M sodium acetate (pH 

5.0) containing 1% Triton X-100 (17 mM) which is much higher than the critical micellar 

concentration of Triton X-100 (0.22-0.4 mM) to facilitate the substrate dissolution. The 

solution was heated in boiling water for 1 min to aid dissolution and then cooled to room 

temperature. Tetrahydrolipstatin (THL) solution was prepared at 0.105 mg/mL in DMSO. 

Five samples with a final volume of 1050 µL, containing 150 µL enzyme, 50 µL THL, and 

650, 400, 200, 100, and 0 µL substrate respectively, were prepared. The volume was 

adjusted with 0.1 M Tris-HCl buffer (pH 8.2). Five control samples were prepared without 

THL. All samples were incubated at 37 °C for 2 h. They were then centrifuged at 20,000 g 

for 3 min and read at 405 nm using a Shimadzu UV/Vis spectrophotometer. All the samples 

were assayed in triplicate. 

2.2.2.5 Determination of IC50 of THL by spectrophotometry 

The method was adapted from that described in section 2.2.2.4. THL solution was prepared 

at 2.3 mg/mL in DMSO. Serial two-fold dilutions were done nine times to obtain a range of 

THL concentrations of 2.3 mg/mL to 8.9 µg/mL. Samples containing 400 µL assay buffer, 

150 µL enzyme, 50 µL THL (2.3 mg/mL-8.9 µg/mL) respectively, and 450 µL of substrate 

were prepared. Negative controls were prepared by combining 400 µL assay buffer, 150 µL 
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enzyme, 50 µL DMSO respectively, and 450 µL of substrate.  All the samples were 

incubated at 37 °C for 2 h. They were then centrifuged at 20,000 g for 3 min and read at 405 

nm using a Shimadzu UV/Vis spectrophotometer. All the samples were assayed in triplicate. 

2.2.2.6 Determination of IC50 of quercetin by spectrophotometry 

The method of section 2.2.2.4 was adapted. Instead of THL, quercetin (2-0.7 mg/mL) was 

dissolved in DMSO and used as the inhibitor. All the samples were analysed in triplicate. 

2.2.2.7 Determination of the influence of THL and quercetin on one another by 

spectrophotometry 

The method of section 2.2.2.4 was adapted with some modifications. Briefly, to maintain the 

same concentrations of quercetin and THL used in the previous experiments, 25 µL of 

quercetin (4.5 mg/mL-17.5 µg/mL), and 25 µL of THL (42 µg/mL) were used respectively. All 

the samples were assayed in triplicates. 

2.2.2.8 Pancreatic lipase assay using HPLC 

2.2.2.8.1 Preparation of stock solutions 

Substrate solution was prepared by mixing 10 mL of 0.2 M phosphate buffer (pH 7.4), 2 mL 

of 0.07 M sodium chloride, 2 mL of 0.03 M sodium taurocholate, 0.274 mM 4-

nitrophenyllaurate solution, and 4 mL water. 

2,4-Dinitroaniline was used as an internal standard. It was prepared at 0.15 and 0.2 mg/mL 

in ethanol. A reference standard solution was prepared following the procedure cited by 

Maurich et al. (1991) by combining 100 µL of 0.3 mg/mL p-nitrophenol solution, 1 mL of 0.15 

mg/mL 2,4-dinitroaniline solution, 0.625  mL of 5 M HCl, and 5 mL of 0.2 M phosphate buffer 

( pH 7.4). The solution was made up to 10 mL by adding water. 

2.2.2.8.2 Validation of pancreatic lipase assay using HPLC 

0.0101 g of porcine pancreas lipase type II was dissolved in 5 mL of 0.1 M phosphate buffer 

(pH 7.4) and diluted to 25 µg/mL in 0.1 M phosphate buffer. Six samples of 700 µL final 
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volume were prepared.  600 µL of substrate solution and different volumes of enzyme 

solutions (25, 35, 50, 65, 75, and 100 µL) were added to each sample. The volume was 

made up to 700 µL by adding 0.1 M phosphate buffer (pH 7.4). All the samples were 

incubated at 37 ºC for 30 min. 50 µL of 5 M HCl was added to terminate the reaction  and 50 

µL of 0.2 mg/mL 2,4-dinitroaniline internal standard solution were then added to the samples. 

Samples were centrifuged at 20,000 g for 2 min. The supernatant layer was analysed using 

HPLC at room temperature using a Hichrom ACE 150mm x 4.6 mm I.D. column packed with 

5 µm ACE 18. The flow rate was 1mL/min. The mobile phase was 55:45 (v/v) mixture of 

water and acetonitrile. The peaks of 4-nitrophenol and 2,4-dinitroaniline were detected at 

300 nm where the peaks areas were used to determine the 4-nitrophenol concentration in 

addition to the enzyme activity.  

2.2.2.9 Determination of the calibration curve of p-nitrophenol and limit of detection 

using HPLC 

0.0032 g of p-nitrophenol were dissolved in 10 mL of acetone. p-Nitrophenol solution was 

diluted 2 fold seven times using acetone. Seven samples were prepared by mixing 300 µL of 

0.2 M phosphate buffer (pH 7.4), 100 µL of 0.1 M phosphate buffer (pH 7.4), 60 µL of 0.07 M 

sodium chloride, 60 µL of 0.03 M sodium taurocholate, 60 µL of different p-nitrophenol 

solutions, 50 µL of DMSO, and 120 µL of water. Ten blank samples were prepared using the 

same reagents used in the samples but with 60 µL of acetone instead of p-nitrophenol 

solution.  All the samples were incubated at 37 ºC for 30 min. 50 µL of 5 M HCl and 50 µL of 

ethanol were added to the samples. All the samples were centrifuged at 20,000 g for 2 min. 

The supernatant layer was analysed using HPLC at room temperature using a Hichrom ACE 

150mm x 4.6 mm I.D. column packed with 5 µm ACE 18. The flow rate was 1mL/min. The 

mobile phase was 55:45 (v/v) mixture of water and acetonitrile. The peaks of 4-nitrophenol 

were detected at 300 nm. 
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2.2.2.10 Determination of the IC50 of THL using HPLC 

0.063 g of porcine pancreas lipase type II was dissolved in 2.5 mL of 0.1 M phosphate buffer 

(pH 7.4).  THL (2.8 mg/mL) in DMSO was serially diluted two-fold in DMSO 13 times. All 

samples were prepared by adding 150 µL of enzyme ( Final concentration 4.2 mg/mL), 50 

µL of THL, and 600 µL of substrate solution. A positive control sample was prepared by 

adding 50 µL of DMSO instead of THL. Samples were incubated at 37 ºC for 30 min. 50 µL 

of 5 M HCl and 50 µL of 0.2 mg/mL 2,4-dinitroaniline solution were added to the samples. 

Samples were centrifuged at 20,000 g for 2 min. The supernatant layer was analysed using 

HPLC at room temperature using a Hichrom150mm x 4.6 mm I.D. column packed with 5 µm 

ACE 18. The flow rate was 1mL/min. The mobile phase was 55:45 (v/v) mixture of water and 

acetonitrile. The peaks of 4-nitrophenol and 2,4-dinitroaniline were detected at  312 nm. In 

addition, the enzyme activity was determined by calculating the concentration of 4-

nitrophenol using the peaks areas.  

2.2.2.11 Determination of the IC50 of different compounds using HPLC 

The method described in section 2.2.2.10 was used. Two-fold serial dilutions in DMSO of 

quercetin (2.5 mg/mL), crocin (12.1 mg/mL), emodin (9.5 mg/mL), and hesperidin (12 mg/mL) 

were assayed. Pancreatic lipase final concentration used in this assay was 4200 µg/mL. 

Crocin was also tested with 383 µg/mL of pancreatic lipase.  

2.2.2.12 Determination of the effect of Rheum palmatum, Prunella vulgaris, and Ilex 

latifolia on pancreatic lipase using HPLC 

The method of section 2.2.2.10 was adapted with some modifications. Briefly, porcine 

pancreatic lipase type II was used at 2 mg/mL in 0.1 M phosphate buffer (pH7.4). All the 

extracts were prepared by reflux extraction in n-butanol (section 2.2.2.3). Rheum palmatum 

extract (21.1 mg/mL), Prunella vulgaris extract (21 mg/mL), and Ilex latifolia extract (60.1 

mg/mL) were dissolved in DMSO and spun at 20,000 g for 2 minutes when necessary. The 

supernatant layer was used in the assay. Ilex latifolia extract was incubated with the enzyme 

for 10 min before adding the substrate solution.  
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2.2.2.13 Determination of the pancreatic lipase inhibition effect of Prunella vulgaris 

when combined with THL using HPLC 

The method (2.2.2.8) was adapted with some modifications. Prunella vulgaris was prepared 

at 37.3 mg/mL in DMSO. This sample was diluted two-fold nine times in DMSO. THL 

(0.001mg/mL) was prepared. To maintain the same volume and the same concentrations, 25 

µL of each Prunella vulgaris sample and 25 µL of THL were used in each sample. 

2.2.2.14 Assay of the effect of different concentrations of pancreatic lipase on p-

nitrophenyllaurate 

   2.2 mg of porcine pancreas lipase type II were dissolved in 1 mL of 0.1 M phosphate buffer 

(pH 7.4). Enzyme solution was diluted 5 times two-fold in phosphate buffer. Six samples of 

900 µL final volume were prepared.  Five samples were prepared by adding 150 µL enzyme, 

50 µL DMSO, and 600 µL substrate. All the samples were incubated at 37 ºC for 30 min. 50 

µL of 5 M HCl and 50 µL of 0.2 mg/mL 2,4-dinitroaniline solution were added to the samples. 

All the samples were centrifuged at 20,000 g for 2 min. The supernatant layer was analysed 

using HPLC at room temperature using a Hichrom 150mm x 4.6 mm I.D. column packed 

with 5 µm ACE 18. The flow rate was 1mL/min. The mobile phase was 55:45 (v/v) mixture of 

water and acetonitrile. The peaks of 4-nitrophenol and 2,4-dinitroaniline were detected at 

312 nm. The 4-nitrophenol concentration and the enzyme activity were determined using the 

peak areas. The chart speed was 0.5 cm/min.   

2.2.2.15 Determination of the IC50 of THL using HPLC 

The method was adapted from the previous method (section 2.2.2.12) with some 

modification. The enzyme concentration used in this experiment was 0.2575 mg/mL. THL 

(0.002 mg/mL) was diluted nine times two fold in DMSO. Nine samples were prepared by 

adding 150 µL enzyme, 50 µL THL, and 600 µL of substrate. One positive control was 

prepared by adding 50 µL of DMSO instead of THL. THL was incubated with the sample for 

10 minutes before the addition of the substrate. Samples were incubated at 37 ºC for 30 min. 

50 µL of 5 M HCl and 50 µL of 0.2 mg/mL 2,4-dinitroaniline solution were added to the 
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samples. Samples were centrifuged at 20,000 g for 2 min. The supernatant layer was 

analysed using HPLC at room temperature using a Hichrom 150mm x 4.6 mm I.D. column 

packed with 5 µm ACE 18. The flow rate was 1mL/min. The mobile phase was 55:45 (v/v) 

mixture of water and acetonitrile. The peaks of 4-nitrophenol and 2,4-dinitroaniline  were 

detected at  312 nm. The chart speed was 0.5 cm/min. 

2.2.2.16 Determination of the effect of Rheum palmatum, Prunella vulgaris, Ilex 

latifolia, Panax notoginseng  and quercetin using HPLC 

The method of section 2.2.2.15 was adapted with some modifications. Briefly, porcine 

pancreatic lipase type II was used at 0.2575 mg/mL in 0.1 M phosphate buffer (pH 7.4). 

Extracts were prepared by reflux in n-butanol (section 2.2.2.10). Rheum palmatum extract 

(62.3 mg/mL), Prunella vulgaris extract (52 mg/mL), Ilex latifolia extract (32.1 mg/mL) Panax 

notogensing (44.5 mg/mL) and quercetin (14.4 mg/mL) dissolved in DMSO were used 

instead of THL. Samples were incubated with the enzyme for 10 minutes before the addition 

of the substrate. Samples were centrifuged at 20,000 g for 2 minutes. 

2.3 Data analysis 

All lipase assay data were processed and plotted using Excel, Grafit (Erithacus Software 

Limited) or GraphPad Prism (GraphPad Sotware Inc). The data were analysed using non-

linear fitting. 

2.4 Results  

2.4.1 Extraction of orlistat from Alli 

Alli contains orlistat as the active pharmaceutical ingredient. It also contains non-active 

ingredients such as microcrystalline cellulose, sodium starch glycolate, sodium lauryl 

sulphate, povidone, and talc. Orlistat is soluble in chloroform, methanol, ethanol, DMSO, and 

DMF. Microcrystalline cellulose is insoluble in water, ethanol, ether, and dilute mineral acids. 

Sodium starch glycolate is insoluble in water and most organic solvents, and sparingly 

soluble in ethanol. Sodium lauryl sulphate is soluble in water, but insoluble in ether. 
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Povidone is soluble in water, chloroform, alcohol, chlorinated hydrocarbons, amines and 

nitropariffins. Talc is insoluble in water and ethanol. 

The extraction of Alli powder yielded 0.205 grams which is 85.42 % of the expected yield.   

2.4.2 NMR elucidation of orlistat structure 

The NMR spectrum of the extracted orlistat  was  compared to the standard orlistat and to  

the literature (Eisenreich et al., 2003). 

 

Figure ‎2-4: 
1
H NMR of orlistat extracted from Alli 
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Figure ‎2-5: 
13

C NMR of orlistat extracted from Alli 

 

Figure ‎2-6: 
1
H NMR of standard orlistat 
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Figure ‎2-7: 
13

C NMR of standard orlistat 

 

Figure ‎2-8: Structure of orlistat as determined by NMR. 
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Table ‎2-1: : 
1
H and 

13
C NMR of orlistat. Orlistat extracted from alli capsules was analysed using 

NMR. The spectrum was compared to the spectrum of standard orlistat purchased from Sigma Aldrich 

(O4139) and to literature 

Extracted orlistat from Alli Standard orlistat literature(Eisenreich et al., 
2003) 

Position  Chemical shifts 
ppm 

Position  Chemical shifts 
ppm 

Position  Chemical shifts 
ppm 

d13C d1H d13C d1H d13C d1H 
1’’(C)             

1(C)               

CHO(CH)     

NH                 

3(CH)           

5(CH)           

2(CH)              

2’’(CH)             

3’’(CH2)      

4(CH2)       

4’(CH2)            

6(CH2)            

14(CH2)             

8(CH2)            

9(CH2)             

10(CH2)            

11(CH2)             

12(CH2)              

13(CH2)            

5’(CH)                       

1’(CH2)                                           

3’(CH2)                                          

2’(CH2)                                  

7(CH2)                              

4’’(CH2)                                  

5’’(CH3)                           

15(CH2)                              

6’/7’(CH3)                           

6’’(CH3)                                       

16(CH3) 

171.96 

170.8 

160.66 

 

74.77 

72.74 

57.02 

49.6 

41.54 

38.7 

 

34.05 

31.91 

29.61 

29.53 

29.43 

29.34 

29.31 

28.97 

27.62 

 

26.71 

25.1 

25.1 

24.88 

22.88 

22.69 

22.53 

21.73 

14.14 

 

 

 

8.1 

5.97 

4.29 

5.03 

3.2 

4.68 

1.63,1.52 

2.14,1.99 

 

1.63,1.56 

1.55 

1.56 

1.55 

1.56 

1.56 

1.56 

1.57 

1.54 

1.72 

1.31 

1.3 

1.3 

1.65 

0.94 

1.3 

0.87 

0.96 

0.87 

1’’(C)             

1(C)               

CHO(CH)     

NH                 

3(CH)           

5(CH)           

2(CH)              

2’’(CH)             

3’’(CH2)      

4(CH2)       

4’(CH2)            

6(CH2)            

14(CH2)             

8(CH2)            

9(CH2)             

10(CH2)            

11(CH2)             

12(CH2)              

13(CH2)            

5’(CH)                       

1’(CH2)                                           

3’(CH2)                                          

2’(CH2)                                  

7(CH2)                              

4’’(CH2)                                  

5’’(CH3)                           

15(CH2)                              

6’/7’(CH3)                           

6’’(CH3)                                       

16(CH3)) 

171.95 

170.79 

160.64 

 

74.78 

72.76 

57.03 

49.6 

41.56 

38.7 

 

34.05 

31.91 

29.61 

29.54 

29.43 

29.35 

29.31 

28.97 

27.62 

 

26.71 

25.1 

 

24.88 

22.88 

22.69 

22.52 

21.74 

14.14 

 

 

 

 

8.22 

5.95 

4.29 

5.03 

3.2 

4.68 

1.63,1.53 

2.14,1.99 

 

1.63,1.56 

1.55 

1.56 

1.55 

1.56 

1.57 

1.58 

1.59 

1.53 

 

1.29 

1.29 

1.25 

1.65 

0.96 

1.29 

0.88 

0.96 

0.87 

 

1’’(C)             

1(C)               

CHO(CH)     

NH                 

3(CH)           

5(CH)           

2(CH)              

2’’(CH)             

3’’(CH2)      

4(CH2)       

4’(CH2)            

6(CH2)            

14(CH2)             

8(CH2)            

9(CH2)             

10(CH2)            

11(CH2)             

12(CH2)              

13(CH2)            

5’(CH)                       

1’(CH2)                                           

3’(CH2)                                          

2’(CH2)                                  

7(CH2)                              

4’’(CH2)                                  

5’’(CH3)                           

15(CH2)                              

6’/7’(CH3)                           

6’’(CH3)                                       

16(CH3)3) 

171.85 

170.76 

160.77 

 

74.71 

72.62 

56.91 

49.57 

41.33 

38.59 

38.49 

33.94 

31.81 

29.53 

29.52 

29.45 

29.34 

29.25 

29.22 

27.75 

27.55 

26.95 

26.9 

25.00 

24.78 

22.79 

22.59 

22.48 

21.63 

14.04 

 

 

 

8.18 

5.97 

4.26 

5.00 

3.19 

4.65 

1.63,1.52 

2.14,1.97 

1.14 

1.62,1.56 

1.22 

1.25 

1.25 

1.25 

1.25 

1.25 

1.25 

1.49 

1.77,1.71 

1.28 

1.39,1.28 

1.27 

1.65 

0.94 

1.25 

0.84 

0.94 

0.85 

 

.   

Table 2-1 represents the data obtained by NMR for orlistat extracted from alli and standard 

orlistat. It also includes the data from the literature. The data shows that the orlistat extracted 
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from alli matches with the standard and literature. This orlistat was used as a positive control 

in all the experiments which required orlistat as a positive control. 

2.4.3 Extraction of Prunella vulgaris, Rheum palmatum, and Ilex latifolia, and 

Panax notoginseng 

The herbs were extracted in n-butanol using reflux extraction and ultrasonic extraction.  N-

butanol was chosen to extract the herbs because n-butanol extraction is one of the most 

common methods used for the extraction of organic components that do not dissolve in 

water (Zhao et al., 2010). The yield of the extracted herbs is summarized in table 2-2. 

 

Table ‎2-2: Yield of the herbal extracts using n-butanol. 20 g of herbs coarse powder were 

extracted in n-butanol using two different methods (section 2.2.2.3). Reflux extraction at 120 ºC  

yielded bigger amount of extract compared to ultrasonic extraction at room temperature. 

Herb Method Yield (g) 

Prunella vulgaris Reflux extraction 1.135 

Ultrasonic extraction 0.7945 

Ilex latifolia Reflux extraction 1.367 

Ultrasonic extraction 0.903 

Rheum palmatum Reflux extraction 1.283 

Ultrasonic extraction 0.783 

Panax notoginseng Reflux extraction 1.421 

Ultrasonic extraction 1.05 
 

The results in the table 2-2 show that reflux extraction  of Prunella vulgaris at 120 ºC yielded  

30% more than   than the ultrasonic extraction at room temperature. Reflux extraction also 

yielded 34%, 39%, and 27% more than ultrasonic extraction when used to extract Ilex 

latifolia, Rheum palmatum, and Panax notoginseng.  This could be due to the higher 

temperature used in the reflux extraction.  

2.4.4 Validation of pancreatic lipase assay by spectrophotometry 

p-Nitrophenyllaurate was prepared in different concentrations to validate the method for the 

assay of pancreatic lipase activity. A dose-response curve was obtained (Figure 2-9). It 

showed that the absorbance increased as the substrate concentration increased. The 

enzyme was active in hydrolyzing p-nitrophenyllaurate to p-nitrophenol which has a yellow 
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color and has a maximum absorbance at 405 nm. Control samples containing the same 

amount of substrate with a concentration of THL (0.1 mg/mL) showed that the absorbance 

increased as the substrate concentration increased. THL inhibited pancreatic lipase activity 

because the enzyme activity increased as the THL concentration decreased (Figure 2-9). 

Thus, the assay method was validated to be used for the assay of pancreatic lipase 

inhibition activity of herbal extracts or herbal compounds using THL as a positive control.  

p-nitrophenyl laurate [mg/mL]
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b
s
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Figure ‎2-9: Dose-response curve of pancreatic lipase activity in the presence or absence of 

THL. The assay method used is described in section 2.2.2.4. The data are means of triplicates. 

 

2.4.5 IC50 of THL assayed by spectrophotometry 

THL was prepared at different concentrations and added to samples containing the same 

buffer, enzyme, and substrate concentrations as mentioned before. A dose-response curve 

(Figure 2-10) shows that THL inhibited the enzyme activity with an IC50 of 0.9480± 0.14 

µg/mL. This was less than the IC50 of orlistat (5-10 µg/mL) determined by Zheng et al. (2010) 

where the  inhibitory effect of herbs on porcine pancreatic lipase (1mg/mL) activity on p-

nitrophenyl butyrate was investigated  using a spectrophotometric assay . The enzyme was 

incubated with the tested extracts for 1 h before the addition of the substrate. But this result 

was much less than the IC50 of orlistat ( 0.076 µg/mL) determined by Kim (Kim et al., 2010)  

using an ELISA reader where 1.1 mg/mL of porcine pancreatic lipase were incubated with 

the tested compounds for 15 min at 37 оC before the addition of p-nitrophenyl butyrate as a 
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substrate. The IC50 of orlistat determined using  titrimetric and spectrophotometric assays  

were  25 and 17  µg/mL (Saraphanchotiwitthaya and Sripalakit, 2014). In the titrimetric assay, 

the substrate triolein was incubated with the tested compounds for 30 min at 4 оC before 

adding the enzyme. In the spectrophotometric assay, the porcine pancreatic lipase enzyme 

(3.5 units) was incubated with the tested compounds for 30 min before the addition of p-

nitrophenyl butyrate.   The variation in the IC50 values between different assays could be due 

to the type of the substrate, the type of the enzyme, and the incubation time 
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Figure ‎2-10: Inhibition of porcine pancreatic lipase type II by THL using a colorimetric assay 

The assay method is described in section 2.2.2.3. Data are the means of triplicates. 

 

 

2.4.6 IC50 of quercetin assayed by spectrophotometry 

Quercetin at different concentrations was tested for its inhibitory effect on pancreatic lipase, 

shown in Figure 2-11. The enzyme activity rate decreased as the quercetin concentration 

increased. The IC50 of quercetin was found to be 15.82 ± 1.19 µg/mL. In contrast quercetin 

inhibited the lipase by 27.4% at 25 µg/mL when assayed using the spectrophotometric assay. 

Quercetin was tested at 5, 10, and 25 µg/mL because at concentrations higher than that it 

was showing a rapid increase in the absorbance and it interfered with the results (Zheng et 

al., 2010). Quercetin showed a pancreatic lipase inhibition activity at IC50 of 43.9 µg/mL 

when assayed using a fluorometric assay method (Habtemariam, 2012). 
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Figure ‎2-11: Inhibition of porcine pancreatic lipase type II by quercetin using a colorimetric 

assay. The assay method is described in section 2.2.2.4. Data are the means of triplicate. 

  
 

2.4.7 Interaction of quercetin and THL on lipase assayed by spectrophotometry 

Quercetin in the presence of THL was tested for its pancreatic lipase inhibition effect. 

Quercetin dissolved in DMSO was used as blank. A dose-response (Figure 2-12) curve was 

obtained. Quercetin had a high absorbance when the concentration was 25 µg/mL (abs 

2.644)  or higher where the absorbance at 95 µg/mL  was 2.676. This absorbance interfered 

with the absorbance produced by p-nitrophenol. The graph below (Figure 2-12) shows that 

the absorbance produced by the quercetin is not proportional to the concentration  and then 

the effect is not linear. As a result, the interference can not be cancelled by using quercetin 

as a blank. Thus, the method was not appropriate to assay the effect of herbal extracts on 

pancreatic lipase. 
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Figure ‎2-12: The inhibition effect of quercetin on porcine pancreatic lipase when combined 

with THL was assayed using colorimetric assay method. Quercetin was used as a blank and the 

absorbance was subtracted from the samples absorbance.  Quercetin absorbance was very high at 

high concentrations and this resulted in non reliable  results. All the samples were prepared in 

triplicate. 

2.4.8 P-Nitrophenol calibration curve and the limit of detection using HPLC 

The main target of this chapter is to investigate the anti-pancreatic lipase activity of herbal 

extracts and herbal compounds. Colorimetric assays are commonly used for this type of 

assay. The results obtained by using spectrophotometric assay were not accurate or reliable 

because there was interference from the tested samples with the results. To avoid any 

interference, HPLC was used because HPLC is more sensitive and specific than 

spectrophotometric assay methods. 

p-Nitrophenol was prepared at different concentrations. All the samples were analysed using 

HPLC. A calibration curve (Figure 2-13) was obtained using Excel by plotting the p-

nitrophenol concentration against the area under the curve. This calibration curve was used 

to determine the limit of detection of the method to investigate the sensitivity and the 

accuracy of the method. The limit of detection was 0.03 µg/mL, and the range of detection 

was linear up to the maximum concentration tested, 25 g/mL. This compares favourably 

with the lower limit of detection previously reported for the same technique of 0.75 µg/mL  

(Maurich et al., 1991). The method is sensitive and accurate and could be used for the 

investigation and assay of pancreatic lipase inhibitors.  
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     Figure ‎2-13: Calibration curve of p-nitrophenol using HPLC. 

Samples were prepared and assayed as described in section 2.2.2.9. 

 

 

2.4.9 Validation of pancreatic lipase assay using HPLC 

Pancreatic lipase of porcine pancreas type II was prepared at different concentrations. 

Different samples containing the same substrate concentration were prepared. Enzyme 

solutions with different concentrations were added to each sample. The p-nitrophenol 

released was calculated using an internal reference standard. The p-nitrophenol released 

increased as the amount of the enzyme increased. Consequently, inhibition of the enzyme 

will result in the inhibition of the production of p-nitrophenol and this can be used to 

investigate the effect of herbal extracts on pancreatic lipase using orlistat as a positive 

control.  

  

                    Figure ‎2-14: Dose-response curve of pancreatic lipase against p-nitrophenol 

[method from 2.2.2.8.2] 
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2.4.10 IC50 of THL assayed using HPLC 

THL was added at different concentrations to the samples which contained the same 

substrate and the same enzyme concentration (4.2 mg/mL). A dose-response curve (Figure 

2-15) was obtained. The curve shows that the enzyme activity decreases as the amount of 

THL increases. The IC50 of THL was found to be 0.8921+ 0.0415 µg/mL. 
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Figure ‎2-15: Inhibition of porcine pancreatic lipase type II by THL using HPLC assay 

(section 2.2.2.8).Data are the means of triplicates. 

To check if the method is reproducible and reliable, 2,4-dinitroaniline was used as an internal 

standard. The chromatogram (Fig. 2-16) shows that the peak of p-nitrophenol (tr =3.4 min) 

decreased as the concentration of THL increased, but the peak of 2,4-dinitroaniline (tr =4.44 

min) did not change. This means that the change in the p-nitrophenol is due to the inhibitory 

effect of THL on the pancreatic lipase and not due to sample processing or instrumental 

errors (Figure 2-16). 
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Figure ‎2-16: Chromatogram of 4-nitrophenol in the presence of 2,4-dinitroaniline. The peak 

under the area of 4-nitrophenol changed with the inhibitor concentration while the peak of 2,4-

dinitroaniline, which was used as  an internal standard, was constant (section2.2.2.8). The different 

chromatograms show that 4-nitrophenol concentration was changing  while 2,4 dinitrioaniline was 

constant when THL concentration was changing.    

 

  

2.4.11 IC50 of different compounds assayed using HPLC 

2.4.11.1 IC50 of quercetin assayed using HPLC 

Quercetin was added at different concentrations to samples containing constant amounts of 

enzyme (4200 µg/mL and substrate (0.274 mM) respectively. The enzyme activity was found 

to be the same in all the samples which meant that quercetin has no pancreatic lipase 

inhibitory activity up to a concentration of 100 µg/mL.  
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Figure ‎2-17: Effect of quercetin on porcine pancreatic lipase type II assayed using HPLC assay 

(section 2.2.2.9). Data are the means of triplicates. 

2.4.11.2 IC50 of crocin assayed using HPLC 

Crocin was added at different concentrations to samples containing the same amount of 

enzyme and the same amount of substrate to investigate its effect on pancreatic lipase and 

to determine the IC50. The dose response obtained (Figure 2-18) shows that crocin doesn’t 

have any inhibitory activity and that the enzyme activity is constant in all the samples. Crocin 

has been tested for pancreatic lipase inhibition activity using  spectrophotometric assay 

method  and the IC50 was found to be 28.6 µM (Sheng et al., 2006), which corresponds to 

27.9  µg/mL. The difference between the two assays could be due to different conditions 

used. In the assay used by Sheng et.al., pancreatic lipase 2.43 µg/mL were used and the 

substrate triolein was incubated with crocin (0.1-10000 µg/mL) for 30 min before the addition 

of the enzyme. 
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Figure ‎2-18: Inhibition of porcine pancreatic lipase type II by crocin using HPLC assay (section 

2.2.2.9). Data are the means of triplicates. 

 

2.4.11.3 IC50 of emodin assayed using HPLC 

Emodin was added in different concentrations to samples containing constant substrate 

(0.274 mM) and enzyme (42.91 µg/mL)  concentrations respectively. A dose-response curve 

(Figure 2-19) was obtained. It showed that emodin has no pancreatic lipase inhibition activity 

because the enzyme activity was constant in all the samples. In contrast others have found 

that emodin inhibited pancreatic lipase activity by 12 % at 25 µg/mL (Zheng et al., 2010). 

These results were concluded using a colorimetric assay where the enzyme (1 mg/mL) was 

incubated with the tested compounds for 1 h at 37 оC before the addition of  p-nitrophenyl 

laurate substrate.   



52 
 

Emodin IC50

0 1 2 3
0.050

0.052

0.054

0.056

0.058

0.060

Emodin log10[µg/mL]

E
n

zy
m

e
 a

c
ti

v
it

y
 [

µ
M

/µ
g

/h
r]

 

Figure ‎2-19: Inhibition of porcine pancreatic lipase type II by emodin using HPLC assay 

(section 2.2.2.9). Data are the means of triplicates. 

 

2.4.11.4 IC50 of hesperidin assayed using HPLC 

Hesperidin was added at different concentrations to the samples which contained the same 

enzyme and substrate concentrations respectively. The enzyme activity was the same in all 

the samples. A dose-response curve (Figure 2-20) shows that hesperidin does not have any 

pancreatic lipase inhibition activity. The IC50 of hesperidin is 32 µg/mL  (Birari and Bhutani, 

2007). The method is not mentioned but hesperidin is a polyphenol which means it’s a 

hydrophilic compound and its binding with the pancreatic lipase enzyme is weak. 
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Figure ‎2-20: Inhibition of porcine pancreatic lipase type II by hesperidin using HPLC assay 

(section 2.2.2.9). Data are the means of triplicate. 

 

 

2.4.12 Effect of Rheum palmatum on pancreatic lipase assayed using HPLC 

Rheum palmatum extract was dissolved in DMSO. It was added at different concentrations 

to samples containing the same amounts of enzyme (330 µg/mL) and substrate. The 

enzyme activity was constant in all the samples as shown by the dose-response curve 

obtained (Figure 2-21).  
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Figure ‎2-21: Inhibition of porcine pancreatic lipase type II by Rheum palmatum using HPLC 

assay (section 2.2.2.10). Data are the means of triplicate. 

 

2.4.13 Effect of Prunella vulgaris on pancreatic lipase assayed using HPLC 

Prunella vulgaris extract was dissolved in DMSO. The extract solution was added at different 

concentrations to samples containing the same concentrations of enzyme (300 µg/mL) and 

substrate (0.183 mM). A dose-response curve (Figure 2-22) was obtained. The graph shows 

that the enzyme activity decreased as the concentration of Prunella vulgaris increased, and 

maximal inhibition was achievable. The IC50 of Prunella vulgaris is 71.8 + 0.51 µg/mL. 

Prunella vulgaris has a antihyperglycemic effect in diabetic rats (Jie et al., 2007) and showed 

a pancreatic lipase inhibition activity of > 50% at 25 µg/mL (Zheng et al., 2010). The active 

compounds which are pancreatic lipase inhibitors are to be explored because quercetin and 

other polyphenols which are present in Prunella vulgaris have been shown that they are not 

active.  
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Figure ‎2-22: Inhibition of porcine pancreatic lipase type II by Prunella vulgaris using HPLC 

assay (section 2.2.2.10). Data are the means of triplicate. 

 

2.4.14 Effect of Prunella vulgaris when combined with THL on pancreatic lipase 

assayed using HPLC  

Prunella vulgaris solution was added at different concentrations to samples containing the 

same enzyme (330 µg/mL) and substrate 0.183 mM) concentrations respectively. Other 

samples were prepared by adding the same Prunella vulgaris concentrations to fixed 

concentration of THL (0.027 µg/mL). A control sample was prepared by adding THL but 

DMSO was added instead of Prunella vulgaris. The enzyme activity was higher in the 

samples containing Prunella vulgaris in comparison to the samples containing Prunella 

vulgaris and THL (Figure 2-23). The IC50 of Prunella vulgaris in the absence of THL was 63.7 

+ 0.5 µg/mL. The IC50 of Prunella vulgaris in the presence of THL (0.027 µg/mL) was 

50.2+0.6 µg/mL. THL in the control sample (0.027 µg/mL) inhibited the enzyme activity by 

19.79 %. The IC50  of Prunella vulgaris was 19.75 less when it was combined with THL. The 

change in Prunella vulgaris IC50 was similar to the effect of THL. This means that the 

presence of THL did not improve the activity of Prunella vulgaris. This could be explained as 

Prunella vulgaris and THL could have a competitive effect on pancreatic lipase or it could be 
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due to another mechanism which needs further investigation because the mechanism of 

action of Prunella vulgaris is not known. This could be because they have the same or 

different enzyme receptors. This should be explored in the future after the active compounds 

are isolated.  
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Figure ‎2-23: Inhibition of porcine pancreatic lipase type II by Prunella vulgaris (■)‎ ‎and in the 

presence‎of‎THL‎(●)‎using‎HPLC‎(section‎2.2.2.11).‎Data are the means of triplicates. 

2.4.15 Effect of Ilex latifolia on pancreatic lipase assayed using HPLC 

Ilex latifolia butanol extract was dissolved in DMSO. The extract solution was added at 

different concentrations to samples containing constant enzyme (330 µg/mL) and substrate 

(0.183 mM) concentrations. The enzyme activity decreased as the concentration of Ilex 

latifolia extract increased, although maximal inhibition was not achieved. The IC50 of Ilex 

latifolia was calculated as 1418 + 111 µg/mL. Ilex latifolia is reported to lower cholesterol and 

consequently used for the treatment of hyperlipidemia (Zheng et al., 2009).  
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Figure ‎2-24: Inhibition of porcine pancreatic lipase type II by Ilex latifolia using HPLC assay 

(section 2.2.2.10). Data are the means of triplicates. 

 

2.4.16 Effect of pancreatic lipase different concentrations on p-

nitrophenyllaurate using HPLC 

During the previous experiments, some of the herbal extracts were showing inhibition activity 

at high concentration. When the extract was diluted, the extract had been losing any 

inhibition activity. The analysis of the results led to two conclusions. The first conclusion was 

that the extracts were not active as mentioned before in the previous reports. The second 

conclusion was that the substrate, p-nitrophenyllaurate, was saturated with the enzyme 

especially that it has been used in small concentrations as mentioned in the substrate stock 

solution preparation. This means that the amount of enzyme remaining in the solution after 

the inhibition action occurs is enough to hydrolyze the substrate and give a high 

concentration of the p-nitrophenol. The main aim of this experiment was to dilute the enzyme 

and check if the amount of p-nitrophenol produced was changing with different enzyme 

concentrations. The graph (Figure 2-25) shows that the amount of p-nitrophenol was steady 

at some enzyme concentrations (366 µg/mL, 183 µg/mL, and 91.5 µg/mL, respectively). The 
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amount of p-nitrophenol released started to change at 45.75 µg/mL. As a result, any 

inhibition activity due to any compound or extract on the enzyme will result in a response 

difference. Consequently, all the extracts and quercetin will be assayed for their pancreatic 

lipase inhibition activity. 

 

                      Figure ‎2-25: Dose-response curve of pancreatic lipase and p-nitrophenol 

 

2.4.17 IC50 of THL using HPLC 

THL was added at different concentrations to the samples which contained constant 

substrate and enzyme concentrations. A dose-response curve (Figure 2-26) was 

obtained. The curve shows that the enzyme activity increases as the amount of THL 

decreases. IC50 of THL was found to be 0.0017+ 0.0003 µg/mL. THL is the only clinically 

approved drug as a pancreatic lipase inhibitor with IC50 0.75 µg/mL (Chaput et al., 2007). 

THL interacts with pancreatic lipase and inactivates it by forming of stable covalent 

intermediate (Bitou et al., 1999).  
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Figure ‎2-26: Inhibition of porcine pancreatic lipase type II by THL using HPLC assay (section 

2.2.2.13).The results were analysed and plotted using graphpad prism. Data are the means of 

triplicates 

2.4.18 IC50 of Rheum palmatum using HPLC 

Rheum palmatum butanol extract different concentrations were added to samples containing 

constant enzyme and substrate concentration. The extract showed an inhibition activity 

which decreased as the concentration of the extract decreased. A dose-response curve 

(Figure 2-27)   shows that the enzyme activity increased as the concentration of the extract 

decreased. IC50 of Rheum palmatum was found to be 117.1+ 12.4 µg/mL. Rheum palmatum 

at a concentration of 200 µg/mL inhibited pancreatic lipase by 53.8% (Zheng et al., 2010).  

This assay was carried out using spectrophotometry which appeared to be not suitable  in 

previous experiments especially that all herbal extracts with high concentrations have a high 

absorbance in a wide range of wavelength. 
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Figure ‎2-27: Inhibition of porcine pancreatic lipase type II by Rheum palmatum using HPLC 

assay (section 2.2.2.14).The results were analysed and plotted using graphpad prism. Data are the 

means of triplicate. 

 

2.4.19 IC50 of Prunella vulgaris using HPLC 

 

Prunella vulgaris butanol extract was dissolved in DMSO. The solution was serially diluted in 

two-fold resulting in different concentrations. All the Prunella vulgaris samples were added to 

samples containing constant enzyme and substrate concentrations. A dose-response curve 

(Figure 2-28) was obtained. It shows that the Prunella vulgaris extract inhibited the enzyme 

and the extract activity was increasing as the concentration increases. IC50 of Prunella 

vulgaris was found to be 250.7 ± 27.6 µg/mL. Prunella vulgaris with concentration of 200 

µg/mL inhibited pancreatic lipase by 74.5% (Zheng et al., 2010). The assay of Prunella 

vulgaris extract was done using a spectrophotometer method which as mentioned before is 

not accurate especially that the extracts showed a high absorbance at the specified 

wavelength and this would interfere with the results. The assay was done using 

concentrations less than 50 µg/mL which affects the accuracy of the results. 
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Figure ‎2-28: Inhibition of porcine pancreatic lipase type II by Prunella vulgaris using HPLC 

assay (section 2.2.2.14).The results were analysed and plotted using graphpad prism. Data are the 

means of triplicate. 

  

2.4.20 IC50 of Ilex latifolia using HPLC 

Ilex latifolia. butanol extract different concentrations were added to samples containing 

constant enzyme and substrate concentrations. The extract showed an inhibition activity 

which decreased as the concentration of the extract decreased. A dose-response curve 

(Figure 2-29) was obtained. It shows that the amount of p-nitrophenol released increased as 

the concentration of the extract decreased. The IC50  of Ilex latifolia was found to be 76.10+ 

7.58 µg/mL. The pancreatic lipase activity has not been previously  assayed before for the 

Ilex latifolia. The traditional use for weight loss could be due to inhibition of pancreatic lipase 

or other enzymes. 
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Figure ‎2-29 Inhibition of porcine pancreatic lipase type II by Ilex latifolia using HPLC assay 

(section 2.2.2.14).The results were analysed and plotted using graphpad prism. Data are the means 

of triplicate. 

 

2.4.21 IC50 of Panax notoginseng using HPLC 

Panax notoginseng bark butanol extract was added in different concentrations to samples 

containing constant enzyme and substrate concentrations. The dose-response curve (Figure 

2-30) obtained shows that the enzyme activity increased as the extract concentration 

decreased. IC50 of Panax notoginseng was found to be 431.2+31 µg/mL. Panax notogensing 

reduced cholesterol at a concentration of 40 mg/kg by 30 percent compared to a positive 

control, pravastatin (Joo et al., 2010). Panax notogensing is a promising Chinese herb for 

the treatment of hyperlipidemia because in-vivo studies showed that Panax notogensing 

extracts can reduce blood cholesterol and triglycerides. 
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Figure ‎2-30: Inhibition of porcine pancreatic lipase type II by Panax notogensing using HPLC 

assay (section 2.2.2.14).The results were analysed and plotted using graphpad prism. Data are the 

means of triplicate. 

 

2.4.22 IC50 of quercetin using HPLC 

 

Quercetin was added at different concentrations to samples containing constant amounts of 

enzyme and substrate respectively. The enzyme activity was increasing as the concentration 

of the quercetin decreased (Figure 2-31). IC50 of quercetin was found to be 136.68 + 6.96 

µg/mL. Quercetin is the main compound present in Prunella vulgaris. It inhibited pancreatic 

lipase by 27.4% at a concentration of 25 µg/mL (Zheng et al., 2010). The difference between 

the results in this report and the results of other studies is due to the applied method. The 

results in previous studies were obtained using spectrophotometry which is not very 

accurate especially that quercetin was showing a high absorbance at high concentrations. 

Consequently, low concentrations were used. HPLC which is used in this project is more 

sensitive and accurate and is not affected by the absorbance of the tested compound. 
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Figure ‎2-31:Inhibition of porcine pancreatic lipase type II by quercetin using HPLC assay 

(section 2.2.2.14).The results were analysed and plotted using graphpad prism. Data are the means 

of triplicate. 

 

Table ‎2-3: Summary of the IC50S of herbs and quercetin tested for their pancreatic lipase 

inhibition activity. THL was used as a positive control. 

 Pancreatic lipase 
330 µg/mL 

Pancreatic lipase 
42.91 µg/mL 

Tested sample IC50 (µg/mL) IC50 (µg/mL) 

Rheum palmatum  No activity 117.1 + 12.4 
(µg/mL) 

Prunella vulgaris 71.8 + 0.51 (µg/mL) 250.7 + 27 (µg/mL) 

Ilex latifolia  1418 + 111 (µg/mL) 76.1 + 7.5 (µg/mL) 

Panax notoginseng Not tested 431.2 + 31 (µg/mL) 

Quercetin No activity 136.68 + 6.96 
(µg/mL) 

THL (positive 
control) 

0.8921+ 0.0415 
(µg/mL) 

0.0017 + 0.0003 
(µg/mL) 
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2.5 Discussion 

Dietary fat absorption and cholesterol synthesis are the main factors in the development of 

hyperlipidemia. Pancreatic lipase is an enzyme secreted by the intestine and is responsible 

for the hydrolysis of 50-70% of the dietary fats. Digestion of dietary fats leads to the 

hydrolysis of triglycerides into fatty acids and monoglycerides which are absorbed from the 

intestine in the form of micelles with bile acids. These micelles release the fatty acids and 

monoglycerides to form triglycerides rich chylomicrons. Inhibition of fat absorption by 

inhibition of pancreatic lipase is one of the main factors in the prevention of development of 

hyperlipidemia and consequently in the protection against heart diseases.  

To investigate the pancreatic lipase inhibition activity, 4-nitrophenyl laurate was used as a 

substrate where pancrartic lipase hydrolyses it to produce 4-nitrophenol which has been 

detected using spectrophotometric method because of its reliability and because it is easy to 

perform.  

In this project, pancreatic lipase inhibition activity was investigated using orlistat as a positive 

control. Orlistat decreases the absorption of dietary fats of 30 % in adults leading to an 

improved lipid profile (Ballinger and Peikin, 2002). Orlistat inhibited pancreatic lipase at IC50  

0.9480 µg/mL. This was less than the IC50 of orlistat (5-10 µg/mL)  determined by Zheng 

(Zheng et al., 2010) using spectrophotometric assay. But this result was higher than the IC50 

of orlistat ( 0.076 µg/mL) determined by Kim (Kim et al., 2010) using ELISA reader. The IC50 

of orlistat using titrimetric assay was 0.025 mg/mL (Saraphanchotiwitthaya and Sripalakit, 

2014). The inhibition activity of orlistat was not complete and this could be due to the 

substrate type and concentration, the enzyme concentration, or the retention time.  

The method was used to investigate the inhibition activity of quercetin and then the inhibition 

activity of herbal extracts such as Prunella vulgaris, Ilex latifolia, and Rheum palmatum. It 

was also supposed for the investigation of the inhibition activity of herbal compounds such 

as emodin, crocin, and hesperidin.  
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Quercetin which showed an inhibition activity of 27 % (Zheng et al., 2010) and at IC50 43.9 

µg/mL (Habtemariam, 2012) was used to assay the efficiency of spectrophotometric method 

for the assay of herbal extracts and compounds pancreatic lipase inhibition activity. 

Quercetin showed a high absorbance at the wavelength used and consequently the 

spectrophotometric method was not suitable for the assay of herbal extracts.  

The next step was to develop a more sensitive and accurate method where the interference 

from the herbal compounds can be avoided.  HPLC method is more sensitive technique and 

was used for the determination of the suitable substrate for pancreatic lipase (Maurich et al., 

1991). Orlistat was used as a positive control. Orlistat inhibited pancreatic lipase at IC50 

0.8921 µg/mL. No data about the IC50 of orlistat by HPLC. This IC50 compared to the IC50 

mentioned before show that orlistat is a potent pancreatic lipase inhibitor and the activity was 

more than that obtained by spectrophotometric technique.  

This method was used to assay the pancreatic lipase inhibition activity of Prunella vulgaris. 

Prunella vulgaris has a antihyperglycemic effect in diabetic rats (Jie et al., 2007) and showed 

a pancreatic lipase inhibition activity of > 50% at 25 µg/mL (Zheng et al., 2010). In this 

project Prunella vulgaris inhibited pancreatic lipase at IC50 of 71.8 µg/mL. This method was 

also used to investigate the pancreatic lipase inhibition activity of Rheum palmatum which 

has been used to treat hyperlipidemia in diabetic rats (Xie et al., 2005b). Rheum palmatum 

inhibited pancreatic lipase of more than 50% at 25 µg/mL (Zheng et al., 2010). In this project, 

Rheum palmatum did not show any pancreatic lipase inhibition activity. Ilex latifolia which 

has been used in traditional Chinese medicine because it has an  inhibitory activity on the 

formation of foam cells and reduced intracellular triglycerides and cholesterol content (Zheng 

et al., 2009), was assayed for its pancreatic lipase inhibition activity using HPLC technique. 

Ilex latifolia showed a minimal pancreatic lipase inhibition activity at IC50 of 1418 + 111 

µg/mL. The same method was used to investigate the pancreatic lipase activity of selected 

compounds such as crocin which inhibited pancreatic lipase at 2.7 mg/mL (Lee et al., 2005) 

using titrimetric method. Crocin did not show any inhibition activity using HPLC. Hesperidin 
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which inhibited pancreatic lipase at IC50 of  32 µg/mL (Birari and Bhutani, 2007) and emodin 

which inhibited pancreatic lipase activity of 12 % at 25 µg/mL (Zheng et al., 2010) were 

investigated and they did not show any inhibition activity.  

One of the disadvantages of this method is that the inhibition activity of the compounds was 

changing very quickly when going from high to lower concentration. The main concern was 

that the enzyme concentration is too high and even after inhibition, the remaining active 

enzyme is enough to hydrolyze the substrate.  

The next step was to find an optimal concentration. The concentration of the enzyme was 

determined from the log phase because at certain concentrations, the enzyme had a static 

effect although the concentration was increasing. The concentration was determined as 

mentioned in the methods and the previously tested compounds were investigated again. 

Orlistat was still showing high inhibition activity at 0.0017 + 0.0003 µg/mL. Prunella vulgaris, 

Rheum palmatum, Ilex latifolia, and Panax notoginseng showed inhibition activity at  250.7, 

117.1, 76.10, and 431.2 µg/mL respectively. Quercetin was tested and it showed inhibition 

activity at 136.68 µg/mL. 

In conclusion, herbal products could be an alternative treatment for hyperlipidemia resulting 

from high levels of triglycerides because these herbal products can inhibit pancreatic lipase 

which is the main enzyme in hydrolyzing dietary fats. Detection of the inhibitory activity of 

these herbs and their active compounds depend on the sensitivity and the accuracy of the 

technique used. HPLC was more efficient in the assay of pancreatic lipase inhibition activity 

of herbal compounds than spectrophotometric assay. Even HPLC assay is affected by 

different factors such as the concentration and type of the substrate, the type and strength or 

concentration of the enzyme, and the retention time.
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3 Chapter III: Effect of Ilex latifolia fractions on pancreatic lipase 

activity 

3.1 Introduction 

3.1.1 Ilex latifolia  

The dried leaves of Ilex latifolia, a herb known as ku-ding-cha in China, has been used as an 

adjuvant treatment of headache, cold, diabetes and hypertension (Benchao, 1999). It has 

been also used as a beverage tea to refresh the mind, improve eye sight, quench thirst, and 

remove phlegm for 2000 years. The most common kudingcha used in China are from two 

genera in different families, genus Ligustrum in the family Oleacceae, and the genus Ilex in 

the family Aquifoliaceae (Zhu et al., 2009).  Phytochemical studies revealed that Ilex latifolia 

contains bioactive compounds such as triterpenes and triterpenoid saponins (Huang et al., 

2001, Wang et al., 2012) which have anti-depressant, antitumor, and antiviral activities 

(Pemminati S., 2011, Kiplimo et al., 2011, Fujiwara et al., 2011). Triterpenoid saponins are 

responsible for the potential activity of Ilex latifolia on lipid metabolism (Zheng et al., 2009). It 

also contains caffeoylquinic acids (Negishi et al., 2004) which  have anti-inflammatory, anti-

oxidant, and antiviral activities (Deng et al., 2011, Li et al., 2005).  

Ilex latifolia and Ilex kudingcha are the main components of the large leaved kudingcha 

(Feng, 1998, Zhu et al., 2009). The main experiments on isolation of pure and active 

compounds from Ilex latifolia and large leaved kudingcha were limited to the characterisation 

of flavonols such as rutin quercetin, and kaempferol, common triterpenes such as ursolic 

acid and oleanolic acid, and mono-and dicaffeoylquinic acids. These compounds do not 

represent the real activity of the herb (Fan et al., 2013).  

Ilex latifolia was fractionated using HPLC and the collected fractions were assayed for their 

pancreatic lipase inhibition activity. 



69 
 

3.2 Experimental methods 

3.2.1 Materials 

p-Nitrophenyl laurate, pancreatic lipase of porcine pancreas type II, DMSO, THL, sodium 

chloride, taurocholic acid sodium salt, sodium dihydrogen phosphate, and 2,4-dinitroaniline 

were obtained from Sigma-Aldrich (Gillingham, England). Hydrochloric acid, analytical grade 

formic acid, acetonitrile HPLC grade, and Millipore filters (0.45 µm) were obtained from 

Fisher Scientific UK limited (Loughborough, England). All the experiments were done using 

Ilex latifolia butanol extract prepared as described in Chapter II, section 2.3.3. The HPLC 

apparatus used was a Dionex Ultimate 3000. The NMR instrument used was a Bruker 

Avance 500. The freeze drier used was Heto Powerdry PL 3000. 

3.2.2 Methods 

3.2.2.1 Separation and collection of fractions of Ilex latifolia  

3.2.2.1.1 Separation into four fractions 

23 mg of Ilex latifolia butanol extract were dissolved in 1 mL of butanol. The solution was 

filtered using a 0.45 µm Millipore filter. The constituents of the filtrate were separated using 

HPLC at room temperature using a 250mm x 8 mm I.D. column packed with 5 µm C18. The 

flow rate was 2 mL/min. The mobile phase was 0.5 % formic acid (A) in water and 

acetonitrile (B). Elution was performed with 2 % B for 2 min, 2-8 % B up to 8 min, 10-30 % B 

up to 10 min, 30% B for 3 min, 30%-50 % B up to 27 min, 50%-70% B up to 8 min, 70%-2% 

B up to 2 min, and 2% B for 6 min. The peaks were detected at 260 nm. The chromatogram 

was divided into four fractions. Fraction 1 was collected from 0 to 22 min, fraction 2 from 22 

to 31 min, fraction 3 from 31 to 40 min, and fraction 4 from 40 to 66 min. The method was 

repeated several times. Each Fraction contained 200 mL of the eluate. The organic solvent 

was diluted using Buchner vacuum pump and then the aqueous solvent was evaporated 

using freeze drying. The fractions were weighed and stored at 4 ºC.   
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3.2.2.1.2 Separation into eight fractions 

The method was adapted from 3.2.2.1.1. 60 mg of Ilex latifolia butanol extract were 

dissolved in 1 mL of n-butanol. The solution was filtered using 0.45 µm Millipore filter. The 

flow rate was 2 mL/min. The mobile phase was 0.5 % formic acid (A) in water and 

acetonitrile (B). Elution was performed with 2 % B for 2 min, 2-8 % B up to 8 min, 8-35 % B 

up to 20 min, 35-80 % B up to 30 min, 80% B for 5 min, 80%-2% B up to 2 min, 2% B for 8 

min. The detection wavelength was 260 nm. The chart speed was 0.5 cm/min. The 

chromatogram was divided into eight fractions. Fraction 1 (14.5-17 min), fraction 2 (17-18.8 

min), fraction 3 (20.5-22.5 min), fraction 4 (22.5-23.5 min), fraction 5 (23.5-25.5 min), fraction 

6 (25.5-28 min), fraction 7 (29.3-30.5 min), fraction 8 (36-39 min). The acetonitrile was 

evaporated using a vacuum pump (Buchi vacuum pump V-700). The aqueous solvent was 

removed using freeze drying. The dried materials were weighed and stored at 4 ºC.  All the 

fractions were dissolved in 1 mL of DMSO. 

3.2.2.1.3 Separation into 10 fractions 

The method was adapted from 3.2.2.1.1. 65 mg Ilex latifolia butanol extract were dissolved 

in 1 mL of n-butanol. The solution was filtered using 0.45 µm Millipore filter.  The flow rate 

was 2.5 mL/min. The mobile phase was a 0.5% formic acid (A) in water and acetonitrile (B). 

The mobile phase was 90 % A to 10% B for 2 min, 70 % (A) and 30 % (B) for 13 min, 40 % 

(A) and 60 % (B) for 10 min, 90 % A to 10% B for 2 min, and 90 % A to 10% B for 7 min to 

equilibrate the column. The detection wavelength was 260 nm. Ten fractions (F1-F10) were 

collected. Each fraction was around 45 mL. The acetonitrile was removed from the collected 

fractions using Buchner vacuum pump. The aqueous solvent was freeze dried. The dry 

material in the tubes was weighed for F5-F10 after drying. F1-F4 did not contain any material 

after drying. 

3.2.2.2 Assay of pancreatic lipase inhibition activity of the Ilex latifolia fractions 

The method (2.2.2.12) was adapted with some modifications. Briefly, pancreatic lipase of 

porcine pancreas type 2 was made up to 0.2575 mg/mL in 0.1 M phosphate buffer (pH 7.4). 
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Fraction 1 (3.75 mg/mL in 200 µL of DMSO) , fraction  2 (1.25 mg/mL in  200 µL of  DMSO), 

fraction 3 (1.9 mg/mL in 400 µL of  DMSO), and fraction  4 (5.75 mg/mL in  200 µL of  

DMSO) (section 3.2.2.1.1) were used instead of THL. All the fractions were serially diluted 

two-fold four times in DMSO. All the samples were incubated with the enzyme for 10 minutes 

before the addition of the substrate. The fractions collected in methods (3.2.2.1.2 and 

3.2.2.1.3) were assayed for pancreatic lipase inhibition activity using the same method. 

3.2.2.3 Nuclear magnetic resonance of collected fractions 

Ten fractions were collected as single peaks (section 3.2.2.1.3). Fractions 5 to 10 showed 

pancreatic lipase inhibition activity. Nuclear magnetic resonance was used for structure 

elucidation. 1H and 13C NMR were carried out in deuterated DMSO. The NMR instrument 

was operated by Mr. John Crowder, NMR technician at London Metropolitan University.  

3.3 Results  

3.3.1 Four fractions collected from Ilex latifolia  

In order to determine the active components, the butanol extract of Ilex latifolia was 

fractionated using preparative HPLC and the chromatogram is shown in Figure 3-1. Four 

fractions were collected (section 3.2.2.1.1), dried and weighed. The amounts obtained are 

summarized in Table 3-1.  

Table ‎3-1: Yields of four fractions of the butanol extract obtained by HPLC (section 

3.2.2.1.1) 

Fraction Elution time 
(min) 

Yield (mg) 

1 0 - 22 1.5 

2 22 – 31 0.5 

3 31 – 40 3.8 

4 40 - 66 2.3 

 

Each fraction contains a number of peaks, indicating that further separation is required to 

resolve individual peaks. 
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Figure ‎3-1: Chromatogram of separation of components of butanolic extract of Ilex latifolia by 

HPLC (section 3.2.2.1.1). 

3.3.2 Effect of the four fractions on pancreatic lipase activity 

The four fractions were assessed for potential inhibitory activity of pancreatic lipase, using a 

variant of the method described in 2.2.2.15. The results for fraction1 (3.5 mg/mL), which was 

serially diluted two fold in DMSO, are shown in Figure 3-2. A clear inhibition of pancreatic 

lipase was achieved, with IC50 = 6.25 +1.66 µg/mL. 
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Figure ‎3-2: Inhibition of porcine pancreatic lipase type II by fraction 1 (section 3.2.2.1.1) 

assessed using HPLC assay (section 3.2.2.2). The results were analysed and plotted using 

GraphPad Prism. Data are the means of triplicates. 

Fraction 2 (1.25 mg/mL) was serially diluted two-fold five times using DMSO. The pancreatic 

lipase inhibition assay showed that the enzyme activity was increasing as the concentration 

of the fraction decreased. The IC50 was found to be ~ 12.25 +2.6 µg/mL.   
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Figure ‎3-3: Inhibition of porcine pancreatic lipase type II by fraction 2 (section 3.2.2.1.1) using 

HPLC assay (section 3.2.2.2).The results were analysed and plotted using graphpad prism. Data are 

the means of triplicate. 

Fraction 3 (1.9 mg/mL) was serially diluted 2 folds in DMSO. The enzyme inhibition activity 

was assayed and the result was that the enzyme activity increased as the concentration of 

the fraction decreased. The IC50 was found to be 50.1 + 7.678 µg/mL.  
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Figure ‎3-4: Inhibition of porcine pancreatic lipase type II by fraction 3 (section 3.2.2.1.1) using 

HPLC assay (section 3.2.2.2). The results were analysed and plotted using graphpad prism. Data 

are the means of triplicate. 

Fraction 4 (5.75 mg/mL) was serially diluted 2 folds in DMSO. The enzyme inhibition activity 

was assayed and the result was that the enzyme activity increased as the concentration of 

the fraction decreased. The IC50 was found to be 52.34 + 3.34 µg/mL. 

Fraction 4 inhibition activity

0 1 2 3 4
0

5

10

Fraction 4 log10[g/mL]

E
n

z
y
m

e
 a

c
ti

v
it

y
 [

µ
M

/µ
g

/h
r]

 

Figure ‎3-5: Inhibition of porcine pancreatic lipase type II by fraction 4 (section 3.2.2.1.1) using 

HPLC assay (section 3.2.2.2). The results were analysed and plotted using GraphPad prism. Data 

are the means of triplicates. 
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3.3.3 Eight fractions collected from Ilex latifolia  

In an attempt to fractionate further the components of the butanol extract a second HPLC 

separation was attempted using a slightly higher final concentration of acetonitrile, 80%, 

compared with the first fractionation which used up to 70% acetonitrile. The chromatogram is 

shown in Figure 3-6. Eight fractions were collected, dried and weighed (Table 3-2).   

 

Figure ‎3-6: Chromatogram of separation of components of butanolic extract of Ilex latifolia by 

HPLC (section 3.2.2.1.2) 

 

Table ‎3-2: A summary of the amount obtained in each fraction collected (section 3.2.2.1.2) 

Fraction Elution time 
(min) 

Yield (mg) 

1 14.5 - 17 0.14 

2 17 – 18.8 0.75 

3 20.5 – 22.5 1.94 

4 22.5 – 23.5 No yield 

5 23.5 – 25.5 0.5 

6 25.5 - 28 0.97 

7 29.3 – 30.5 No yield 

8 36 - 39 2.3 
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3.3.4 Inhibitory action of the eight fractions on pancreatic lipase 

The eight fractions were assessed for inhibitory activity towards pancreatic lipase. A 

preliminary assessment was carried out of the eight fractions at concentrations as follows: 

fraction 1 (0.14 mg/mL), fraction 2 (0.75 mg/mL), fraction 3 (1.94 mg/mL), and fraction 4, 

fraction 5 (0.5 mg/mL), fraction 6 (0.97 mg/mL), fraction 7, and fraction 8 (2.3 mg/mL) in 1 m 

L of DMSO. The data, shown in Table 3-3, indicate that all fractions were active, and 

inhibited at least about 50%, and the most active fractions were fractions 2, 6, and 8. The 

IC50 of these fractions were determined by assaying two-fold serially diluted fractions.  

                     Table ‎3-3: Representative data showing inhibitory activity of Ilex latifolia fractions 

Fraction  Conc.[mg/mL] 
AUC 

p-Nitrophenol [µg/mL] 

F1 0.14 14.068 14.4 

F2 0.75 10.635 10.86 

F3 1.94 14.953 15.32 

F4 _ 15.869 16.27 

F5 0.5 15.275 15.65 

F6 0.97 10.53 10.76 

F7 _ 9.333 9.52 

F8 2.3 7.83 8 

THL 0.01 0.841 0.76 

Control DMSO 30.451 31.31 
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The IC50 of fraction 2 was measured at 187.2 + 14.2 µg/mL (Figure 3-7), IC50 of fraction 6 

was 86.2 + 12.7 µg/mL (Figure 3-8) and for fraction 8 was 12.7 + 2.6 µg/mL (Figure 3-9). 

 

 

 
Figure ‎3-7: Inhibition of porcine pancreatic lipase type II by fraction 2 using HPLC assay 

(section 3.2.2.2).The results were analysed and plotted using GraphPad Prism. Data are the means 

of triplicate. 

 

 

Figure ‎3-8: Inhibition of porcine pancreatic lipase type II by fraction 6 using HPLC assay 

(section 3.2.2.2). The results were analysed and plotted using GraphPad Prism. Data are the 

means of triplicates. 
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Figure ‎3-9: Inhibition of porcine pancreatic lipase type II by fraction 8 using HPLC assay 

(section 2.2.2.8). The results were analysed and plotted using GraphPad Prism. Data are the 

means of triplicate. 

                          
 

3.3.5  10 fractions collected from Ilex latifolia  

A further attempt to separate and isolate components was carried out using a maximum 

proportion of acetonitrile of 60%, shown in Figure 3-10. Ten fractions were collected, dried 

and weighed (Table 3-4).  

 

Figure ‎3-10: Chromatogram of Ilex latifolia separation using HPLC. The peaks collected are 

labelled by their retention time. 
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Table ‎3-4: A summary of the amount obtained in each fraction collected (section 3.2.2.1.3) 

 

Fraction Yield (mg) 

F1 Negligible 

F2 Negligible 

F3 Negligible 

F4 Negligible 

F5 4.7 

F6 20 

F7 1.2 

F8 4.7 

F9 3.4 

F10 1.1 

 

 

Although more than 45 mL were collected for every fraction, fractions 1 to 4 did not yield any 

solid material.  

 

3.3.6 Pancreatic lipase inhibition activity of the 10 fractions 

 Fractions 5 to 10 were assayed for inhibitory activity towards pancreatic lipase.  A 

preliminary set of data are shown in Table 3-5.  Fractions 5 to 7 didn’t show any activity, 

fraction 8 showed a little inhibition activity and fractions 9 and 10 inhibited the enzyme by 

almost 50 %. 

Table ‎3-5: A summary of the pancreatic lipase inhibition activities of the ten fractions 

Tested Sample 
(mg/mL) 

 
Enzyme activity 

[µM/µg/hr] 

F5 (0.35) 12.71 

F6 (1.5) 13.1 

F7 (0.09) 13.24 

F8 (0.35) 9.40 

F9 (0.25) 6.06 

F10 (0.08) 5.98 

THL (1.05*10-4) 0.11 

Control 10.5 
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3.3.7 NMR analysis of collected fractions from Ilex latifolia  

The pancreatic lipase inhibition activities of the isolated fractions showed that fraction 10 

was the most potent with 43.04 % inhibition activity while the second potent was fraction 9 

which showed inhibition activity of 42.6 % compared to the control.  

The NMR spectra obtained for fractions 5 to 10 were not helpful in structure characterization 

of the collected compounds because the 13C spectra did not show clear chemical shifts. 1H 

NMR showed chemical shifts of the protons but without the 13C data this was not enough 

information to deduce the expected structure of the isolated compounds. 

 

(A) 
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Figure ‎3-11: 
1
H NMR of fraction 10. The spectrum was divided into (A) which shows the peaks 

detected from 0 to 4 ppm while (B) shows the spectrum from 4 to 7 ppm.  

 

 

 

 

 

(B) 
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Figure ‎3-12:  
13

C NMR of fraction 10 

The spectra shown for fraction 10 show that the carbon NMR did not give enough 

information to characterize the structure  Ilex latifolia leaves have been reported to be rich in 

triterpene saponins where  nine ilekudinosides (k-s) were isolated and characterized . A 

single peak was detected at 39.29 and it could be the solvent peak where DMSO was used 

as a solvent. Another 2 peaks were detected at 99.91 and 103.7. The peak detected at 

103.7 is similar to the anomeric carbon detected in L-rhamnose (102.0)  in the terminal sugar 

of the triterpene saponins.    1H NMR showed some signals which can help in the elucidation 

of the structure. The proton NMR showed five singlets for  tertiary methyls  at δ 0.75, 0.85, 

1.04, 1.24, 1.5. It also showed two doublets at δ 4.68 (1H) and 5.76 (1H) .  A singlet 

appeared at 3.36 and an aromatic doublet was detected at 6.98 (1H). These data are 

characteristic for triterpene saponins.   
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Figure ‎3-13: Structure of ilekudinoside k, a triterpene saponin isolated from Ilex latifolia (Tang 

et al., 2005). The structure shows the methyls detected as singlets.  

 

(A) 
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Figure ‎3-14:  
1
H NMR of fraction 9.  To magnify the peaks detected, the spectrum was divided into A 

and B. Spectrum (A)  shows the peaks from 0 to 4 ppm while spectrum  (B) shows the peaks from 4 to 

7 ppm.  

 

 

 

 

(B) 
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Figure ‎3-15:  
13

C NMR of fraction 9 

The spectra of fraction  9 are similar to that of fraction 10 with differences in the chemical 

shifts. 1H showed some signals which can help in the elucidation of the structure. The proton 

NMR showed five singlets of tertiary methyls at δ 0.75, 0.84, 1.06, 1.24, and 1.26. It also 

showed one doublet at δ 5.73 (1H). A singlet appeared at 3.36 (1H) and an aromatic doublet 

was detected at 6.98 (1H).  This shows that fraction 9 could be a triterpene saponin but the 

sugar moiety could be different between the two fractions. These signals are similar to the 

signals detected in fraction 10. Fraction 10 H-NMR showed two doublets at 6.42(1H) and 

6.61(1H) respectively, and a singlet at 6.56 (1H). These three signals were not detected in 

fraction 9. A doublet detected at 4.68 in fraction 10 was detected as a singlet in fraction 9.  

Two carbons were detected in fraction 9 at 107.2 and 117.42. The carbon at 107.2 could be  

the anomeric carbon (107.4) of L-arabinose at the 3-O-sugar position or the terminal carbon 
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( 106.4) of glucose  in the triterpene saponins. If the anomeric carbon is 107.2, then the 

anomeric proton could be at 5.31.   

Triterpene saponins inhibit Acyl CoA Cholesteryl Acyl Transferase (ACAT) which catalyzes 

the intracellular esterification of cholesterol in various tissues. This leads to the formation of 

foam-cell phenotype, a typical feature of early atherosclerotic lesions (Cignarella et al., 

2005).  Triterpene saponins can inhibit the formation of these foam cells through the 

inhibition of ACAT  and may serve as a new medication  for the treatment of atherosclerosis 

and obesity  (Nishimura, 1999) . 

3.4 Discussion 

 Fractions of the butanol extract of Ilex latifolia showed pancreatic lipase inhibition activity 

when compared to THL which is an approved pancreatic lipase inhibitor. The Ilex latifolia 

butanol extract was a crude extract which means that it contained a mixture of compounds. 

One or more compound could be responsible to the pancreatic lipase inhibition activity. The 

aim of the work described in this chapter was to try to separate components of the Ilex 

latifolia extract using HPLC and to isolate pure compounds and check their activities. The 

first step was to collect a group of peaks in each fraction and check the pancreatic lipase 

inhibition activity. Four fractions were collected and the pancreatic lipase assay showed that 

fractions 1,2,3, and 4 inhibited pancreatic lipase and the IC50 were found to be 6.25 + 1.66, 

12.25 + 2.6, 50.1 + 7.678, and 52.34  + 3.4 µg/mL respectively. Fraction 1 was the most 

active but the other fractions showed inhibitory activity as well. Fraction 1 was 48.97 % more 

active than fraction 2 and around 88 % more active than fractions 3 and 4. 

The next step was to do further separation of the crude extract by changing the mobile 

phase concentrations and the flow rate so better separation could be achieved,  and more 

peaks could be detected and isolated. At this stage, 2 peaks were collected in each fraction 

and the pancreatic lipase inhibition activity was assayed. Only fractions 2, 6, and 8 showed a 

clear inhibition activity and the IC50s were 187.2 + 14.2, 86.2 + 12.7, and 12.7 + 2.6 µg/mL 
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respectively. Comparing these data to the effects of fractions 1 (section 3.3.2) shows that 

fractions 1 was 93.5, 86.4, and 50.9  % more active than fractions 2, 6, and 8 respectively 

( section 3.3.4). Fraction 3 (section 3.3.2) was 73 %   and 41.8 %, more active than fractions 

2 and 6 respectively (section 3.3.4), but it was 74.65% less active than fraction 8 (section 

3.3.4). Fraction 4 (section 3.3.2) was 72.04 % and 39.28 % more active than fractions 2 and 

6 respectively (section 3.3.4) but it was only 75.73% less active than fraction 8 (section 

3.3.4).  Comparing the inhibition activities of the fractions collected in section 3.3.3, fraction 2 

was 53.95 % and 99.99 %  less active than fractions 6 and 8 respectively. Fraction 6 was 

85.26 % less active than fraction 8.  The third step was to collect single peaks and isolate 

pure compounds. 10 peaks were collected and after assaying the activity on pancreatic 

lipase, only fractions 9 and 10 showed inhibition activity by 50% (Table 3-5). As appears 

from the data, the fractions were more active when they contained a mixture of compounds 

but when the peaks were separated and less compounds were collected, the inhibitory 

activity decreased. Fractions  9 and 10 (section 3.3.6) showed pancreatic lipase  inhibition 

activity at 250 and 80 µg/mL respectively. This can lead to a conclusion that Ilex latifolia has 

a pancreatic lipase inhibition activity but the activity could be due to the effect of more than 

one compound. This was clear because the IC50 of fractions 1-4 (section 3.3.2) were much 

lower that the IC50 of the other fractions collected.    

The separation was done three times and each time the solvent conditions and sometimes 

the flow rate were changed. Increasing the ratio of the organic solvent resulted in better 

separation and in reducing the separation time. Consequently, the compounds in the extract 

had more affinity to the stationary phase which means they needed lower mobile phase 

polarity to be eluted from the column and to be separated. The yield was low and the NMR 

detection could not be done to characterize the isolated compound. H-NMR showed that the 

compounds isolated could be triterpene saponins because the peaks detected are similar to 

the proton NMR of ilekudinosides which were isolated from Ilex latifolia. Large amounts of 

the herb should be extracted using different solvent systems in order to extract several 
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compounds. Solvent partitioning using two solvents with different polarities can be used to 

separate compounds with different polarities. This could result in better separation and 

isolation.  

Table ‎3-6: A table summarizing the IC50  of different fractions collected from Ilex latifolia 

butanol extract ( Sections 3.3.2 and 3.3.4 respectively.  

Fraction IC50 (µg/mL) 

1 (Section 3.3.2) 6.25 + 1.66 

2 (Section 3.3.2) 12.25 + 2.6 

3 (Section 3.3.2) 50.1 + 7.678 

4 (Section 3.3.2) 52.34 + 1.66 

2 (Section 3.3.4) 187.2 + 14.2 

6 (Section 3.3.4) 86.2 + 12.7 

8 (Section 3.3.4) 12.7 + 2.6 
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4 Chapter IV: Investigation of the effect of Ilex latifolia on 

cholesterol by assaying its effect on the expression of HMG-

CoA reductase and LDL-receptor 

4.1 Introduction  

         As mentioned before, the aim of this project is to investigate the efficacy of herbal products 

for the treatment of hyperlipidemia, focusing on two types of target. The first one is dietary 

fat absorption linked to the action of pancreatic lipase. The second is cholesterol 

biosynthesis and metabolism in the liver. From the work described in Chapter 3, Ilex 

latifolia showed the highest inhibitory effect, out of several herbs tested, on pancreatic 

lipase compared to orlistat. It was therefore decided to investigate the effect of Ilex latifolia 

on the expression of HMG-CoA reductase which is the rate limiting enzyme in cholesterol 

synthesis, and on the expression of LDL-receptors which play important role in the removal 

of LDL-cholesterol from the circulation by the liver. Inhibiting HMG-CoA reductase and 

increasing uptake of LDL-cholesterol by expressing LDL-receptors is one of the targets for 

treatment of hyperlipidemia. 

4.1.1 HMG-CoA reductase  

HMG-CoA reductase, the rate limiting enzyme of cholesterol biosynthesis (Brown and 

Goldstein, 1980), is a 97 kDa transmembrane glycoprotein that resides in the endoplasmic 

reticulum of animal cells (Chin et al., 1982, Chin et al., 1984, Liscum et al., 1983). HMG-CoA 

reductase catalyzes the biosynthesis of isoprenoids, producing farnesyl and geranylgeranyl 

pyrophosphates which are  intermediates for the production of products such as cholesterol 

and dolichol (Elson et al., 1999). HMG-CoA reductase catalyzes the reaction HMG-CoA + 

2NADPH + 2H+  leading to mevalonic acid + 2NADP+ + COASH. Inhibition of HMG-CoA 

reductase results in reduction of serum cholesterol. This is correlated with reductions in 

atherosclerosis and coronary heart diseases (Oates et al., 1988).  An enzymatically active 

62 kDa fragment can be released from endoplasmic reticulum membrane vesicles by 

cleavage with a Ca2+-activated endogenous protease. This 62 kDa fragment  is membrane 

bound and can be reduced to a 53 kDa fragment with a leupeptin sensitive exogenous 
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protease without loss of enzymatic activity (Faust et al., 1982). These findings suggest that 

the active site of the reductase is contained within a water soluble 53 kDa domain that is 

exposed to protease and thus must be projected onto the cytoplasm. This domain is 

presumably contiguous with a hydrophobic domain that fixes the reductase to the ER 

membrane. The less prominent bands at 62 and 52 kDa are proteolytic fragments that are 

produced during solubilisation of the cells. After treatment with Ca2+-activated protease, 97 

kDa was reduced to 53 kDa which remained in the supernatant after centrifugation. 

 

                           

Figure ‎4-1: Domain structure of HMG CoA reductase. (A) HMG CoA reductase consists of two 

distinct domains: a hydrophobic N-terminal domain with eight membrane-spanning segments that 

plays a key role in sterol-accelerated degradation of the enzyme, and a hydrophilic C-terminal domain 

that directs enzymatic activity. (B) Amino acid sequence and topology of the membrane domain of 

HMG CoA reductase (Jo and DeBose-Boyd, 2010).  
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Development of statins, which are derived from fungi and later became purely synthetic 

molecules, is one of the major advances in the management of hyperlipidemia (Endo, 1992). 

Statins competitively inhibit HMG-CoA reductase enzyme which leads to a decrease in 

intrahepatic cholesterol concentration to which the liver responds by inducing expression of 

its LDL receptors, leading to increase in LDL uptake and catabolism (Endo et al., 1976). 

Several clinical trials have demonstrated that statins are efficient in reducing LDL-cholesterol 

by 24% to 60% in patients suffering from hypercholesterolemia, and in lowering triglycerides 

by 10% to 29% (Knopp, 1999) because  the LDL and VLDL taken up by LDL receptors  are 

rich in triglycerides (2001, Expert Panel on Detection et al., 2001). Statins are also efficient 

in increasing HDL-cholesterol by 12 % (Maron et al., 2000). Consequently, statins can 

reduce the incidence of congestive heart diseases including stroke, and myocardial 

infarction, and total mortality (Packard et al., 1998). Despite the efficacy of statins in the 

treatment of hyperlipidemia, and protection against coronary heart diseases, some patients 

experienced tolerability problems and side effects. The most prevalent and important side 

effects associated with the statin therapy are muscle symptoms such as pain, soreness, 

weakness, and/or cramps or muscle signs such as creatine kinase elevation.  These side 

effects are fortunately rare (Thompson et al., 2006). Clinical trials on patients treated with 

statin or placebo found that myopathy occurs in 5 per 100,000 patients while rhabdomyolysis 

occurs in 1.6 per 100,000 patients (Law and Rudnicka, 2006). All statins roughly have the 

same risk of drug-related muscle toxicity which can be rarely severe, or rarely progressing to 

a life threatening situation (Kasiske et al., 2006, Thompson et al., 2006). The highest 

frequency of rhabdomyolysis is associated with simvastatin at 80 mg or less per day. The 

lowest frequency is associated with fluvastatin and pravastatin which are the weakest 

inhibitors of HMG-CoA reductase. Muscle damage and rhabdomyolysis have been reported 

with pravastatin and rosuvastatin which are hydrophilic (Bays, 2006, Law and Rudnicka, 

2006). Statins can also lead to asymptomatic elevations in alanine aminotransferase and 

aspartate aminotransferase liver enzymes > 3 times the upper limit of normal. These 
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elevations were seen in < 1% of patients receiving initial and intermediate doses and in 2-

3% of patients receiving 80 mg or more per day (Cohen et al., 2006). Withdrawal of the 

statin or reduction of the dose results in the return of the enzyme levels to normal without 

any adverse consequences (McKenney et al., 2006a). 

Statins can  also cause myoglobinuria, and acute renal necrosis (Pierce et al., 1990). Statins 

also have some drug-drug interactions especially with the cytochrome P-450 drug 

metabolism system (Gruer et al., 1999). 

All statins have a rigid hydrophobic group linked to an HMG moiety (Endo and Hasumi, 

1989). Investigation of the binding modes of statins to HMG-CoA reductase  suggest that the 

statin’s cyclic group mimics the nicotinamide group of the NADP(H) and thus uses the 

binding pockets of the HMG and nicotinamide binding sites (Istvan et al., 2000).   

4.1.2 LDL Receptor 

The discovery of low density lipoprotein receptor and the understanding of its mode of action 

in the body and the cells resulted in an understanding of the mechanisms that control levels 

of low density lipoprotein (LDL), which is the main carrier of cholesterol in the human body. 

Human and animal cells can synthesize hormones, bile acids, and membranes, obtaining 

the required cholesterol through two mechanisms. The first mechanism is by activating 

HMG-CoA reductase. The second mechanism is by is by endocytosis of LDL, which is 

mediated by the LDL receptor (Goldstein and Brown, 1977). Most cells, such as fibroblasts, 

under the usual circumstances of tissue culture, obtain the required cholesterol by relying on 

LDL uptake via LDL receptors and by maintaining low levels of HMG-CoA reductase. In 

contrast, cells with defective LDL receptors, such as those from people with homozygous 

familial hypercholesterolemia, must express high amounts of HMG-CoA reductase to 

synthesize the required cholesterol because they have a genetic defect in the LDL receptor 

and consequently they cannot rely on LDL as a source of cholesterol. In cultured cells, 

HMG-CoA reductase and the LDL receptor levels are affected by the cholesterol 

concentration in the culture medium and by the cells’ requirements of cholesterol. When the 
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cells need cholesterol, production of both HMG-CoA reductase and LDL receptors increase, 

but when cellular cholesterol levels rise, the synthesis of HMG-CoA reductase and LDL 

receptors is suppressed. The same effect has been observed in the livers of several animal 

species. Therefore, the body modulates the availability of cholesterol to the tissues through a 

complex homeostatic network which operates at both the cellular level and within the plasma 

compartment. Cholesterol is both synthesized in the cells and taken in with food intake. The 

liver is the principal site to maintain cholesterol homeostasis (Dietschy et al., 1993) through 

different mechanisms including biosynthesis via HMG-CoA reductase activity, LDL-receptors 

uptake, lipoproteins release in the blood stream, storage by esterification, degradation, and 

conversion to bile acids (Weber et al., 2004).   If this balance is not preserved, 

hypercholesterolemia can result, which will eventually lead to atherosclerosis and heart 

disease (Goldstein and Brown, 1977). Therefore, treatment of hyperlipidemia helps to 

maintain this balance by retaining the liver homeostatic function. 

The LDL receptor is synthesized in the endoplasmic reticulum as a precursor with an 

apparent molecular weight of 120 kDa, which increases to 160 kDa after lengthening due to 

O-linked glycosylation (Schneider et al., 1982). The changing in the molecular weight could 

affect the mobility of the protein in the SDS-gel electrophoresis and consequently affect the 

detection of LDL-receptors by Western Blotting.  

The removal of LDL-cholesterol from the circulation increases as the expression of LDL-

cholesterol receptors increase (Goldstein and Brown, 2009). LDL-receptors are another 

target for hyperlipidemia treatment because compounds which are capable of up-regulating 

LDL-receptors can be used as anti-hyperlipidemic drugs. 

4.1.3 HepG2 and AML-12 cells 

An adequate model of human hepatocytes is required to investigate the expression of HMG-

CoA reductase and hence cholesterol biosynthesis and metabolism as well as LDL- receptor 

regulation. 
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HepG2, a liver cell line derived from a human hepatoblastoma, is considered a reasonable 

model of the human liver which is the primary location for the synthesis of cholesterol 

(Mensink and Katan, 1992). HepG2 cells have been used for a long time by many 

investigators as a model system for human hepatocytes to study various aspects of 

cholesterol biosynthesis and metabolism, and LDL-receptor expression (Kraft et al., 1992, 

Molowa and Cimis, 1989, Tam et al., 1991). Primary cultures of mammalian cells have been 

used for the investigation of mechanisms of cell growth, differentiation, tumorigenesis and as 

vectors for gene therapy. Data derived using these may be difficult to reproduce because 

hepatocytes are short-lived, rapidly lose their specific characters, and are unstable to 

replicate in culture. The cells remain non-proliferative although culture differentiation can be 

maintained with specialised media and substrata or by co-culture with nonparenchymal cells 

(Guguen-Guillouzo, 1992, Isom, 1992, Reid, 1986). Hepatocellular tumors have been used 

to produce hepatocyte lines which express some tissue-specific markers. Viral oncogenesis 

has also been used to produce well differentiated cell lines from hepatocytes. These cell 

lines have been useful but full transformation or transformation with repeated passaging has 

been the main drawback because liver cells immortalized with simian virus 40 T antigen can 

express xenobiotic drug-metabolising enzymes (Pfeifer et al., 1993). In this case, the viral 

antigen can form a complex with the products of the tumor suppressing genes (Decaprio et 

al., 1988). Transforming growth factor (TGFα) is a polypeptide that regulates normal growth 

in epithelial cells and its overproduction is correlated with malignant transformation in cells 

possessing epidermal growth factor receptors (Derynck, 1988, Salomon et al., 1990, 

Kaufmann et al., 1992). TGFα is expressed in liver and it increases in liver during liver 

regeneration after hepatectomy. Two hepatocyte lines (AML-12 and AML-14) which are non-

tumorigenic and possess a large complement of differentiated traits were established from 

liver of TGFα transgenic mice. In AML-12 cells liver specific genes and TGFα have been 

maintained in culture. They can be up-regulated by passaging the cells in serum free 

medium. AML-12 cells are adherent epithelial cells. The mechanisms used by AML-12 cells 
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 to regulate liver specific genes are unknown but are likely to involve transcriptional/post-

transcriptional events responsive to intracellular contacts, growth rate, and serum 

compartments, as observed in other hepatocytes (Wu et al., 1994, Isom, 1992, Derman et al., 

1981). AML-12 cells have been used to investigate the expression of LDL-receptors in cell 

cultures. They have been used to investigate the effect of fenofibrates (Huang et al., 2008) 

and pcsk9 secretion (Miranda et al., 2015) on LDL-receptors expression. 

 

Ilex latifolia was the most potent inhibitor of pancreatic lipase when compared to other herbs 

and orlistat. The effect of Ilex latifolia on cholesterol biosynthesis and metabolism was 

investigated by checking its effect on HMG-CoA reductase enzyme activity and expression 

and consequently, the effect on LDL-receptor expression by using HepG2 and AML-12 cells 

as models for liver hepatocytes. Simvastatin, an approved HMG-CoA reductase inhibitor was 

used as a positive control.  

4.2 Experimental methods 

4.2.1 Materials  

Anti-mouse IgG HRP ( β-actin secondary antibody), bovine serum albumin (BSA), 

Dulbecco’s modified eagle medium ( DMEM), foetal calf serum (FCS), human HMG-CoA 

reductase, sodium dodecyl sulphate (SDS), phosphate buffer saline (PBS),  simvastatin, 

protease inhibitor cocktail, tween-20, coumaric acid, luminol, hydrogen peroxide 3%, insulin, 

transferrin, sodium selenite, nicotinamide adenine diphosphate sodium salt, CoA, potassium 

dihydrogen phosphate, nicotinamide adenine diphosphate reduced salt, HMG-CoA, 

mevalonolactone (MVL), sodium chloride (NaCl), magnesium chloride (MgCl2), manganese 

chloride (MnCl2), EGTA, DTT, leupeptin hemisulphate, phenylmethylsulfonyl fluoride (PMSF), 

2% Zwittergent 3-14, potassium chloride (KCl), Nonidet P-40 and, dimethyl sulfoxide 

(DMSO), and Bradford reagent   were purchased from Sigma-Aldrich (Gillingham, England). 

Ilex latifolia was a gift from Shanghai University of traditional Chinese medicine.  β-actin (C4) 

mouse monoclonal IgG ( β-actin primary antibody), HMG-CoA reductase (H-300) polyclonal 
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rabbit IgG (HMG-CoA reductase primary antibody), goat anti-rabbit IgG ( HMG-CoA 

reductase secondary antibody), donkey  anti-rabbit IgG ( LDL-R secondary antibody),  RIPA 

buffer and Western blotting luminol reagent were bought from Santa Cruz Biotechnology, 

INC. (Dallas, USA). Anti-LDLR primary antibody (EP1553Y) was purchased from Novus 

Biologicals inc. (Abingdon, UK). Glycine, Millipore microfilter tubes (0.22 µm) were 

purchased from Merck Millipore (Hertfordshire, UK). HPLC grade methanol, formic acid, and 

HPLC grade acetonitrile were purchased from Fisher Scientific (Loughborough, UK). 

Precision Plus Protein-xtra dual standards marker were purchased from Bio-Rad 

Laboratories (Hertfordshire, UK). All the experiments were done using Ilex latifolia butanol 

extract (chapter II, section 2.3.3). 

 

4.2.2 Methods 

4.2.2.1 Assay of HMG-CoA reductase using HPLC 

Determination of the calibration curve of NADP and CoA. 

NADP and CoA stock solutions were serially diluted two-fold five times. Six samples were 

prepared by adding 910 µL activity buffer, 5 µL water, and 60 µL of each CoA samples 

respectively. All the samples were incubated at 37 °C for 5 min. 20 µL of different NADP 

samples were added. 10 µL of 5 M HCl were added. All the samples were analyzed using 

HPLC at room temperature using a 150mm x 4.6 mm I.D. column (Hichrom. Ltd)  packed 

with 5 µm particle size ACE 18. The mobile phase was 55:45 100 mM potassium dihydrogen 

phosphate (A) and methanol (B). The elution was 10%–30% B up to 10 min, 30%-60% B for 

2 min, 60% B for 2 min, 60%-10% B up to 1 min, and 10% B for 5 min at flow rate of 1 

ml/min, UV/VIS detector set at 260 nm. The compartment temperature was 26 °C. 

4.2.2.2 Assay of HMG-CoA reductase using LC-MS 

4.2.2.2.1 HepG2 cell culture 

HepG2 cells were seeded at 6 x 105 cells/mL in a 96 well plate. After attachment the medium 

was aspirated, and the cells were incubated with DMEM/ 1% BSA. For direct inhibition assay, 

the cells were incubated with the medium for 5 hrs and the medium was aspirated and the 
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cells were kept at – 80 ºC. For assaying the induction or repression of the enzyme, the cells 

were incubated with simvastatin at 20, 10, 5, 2.5, and 1.25 µM respectively for 18 hrs. The 

medium was aspirated and the cells were washed twice with 150 µL DMEM. The cells were 

incubated with DMEM for 15 mins at 37 ºC. The cells were then washed three times with 150 

µL of PBS/1% BSA. The buffer was aspirated and the cells were frozen at -80 ºC. 

4.2.2.2.2 HMG-CoA Reductase assay 

In the direct inhibition assay, the cells were lysed by six freeze and thaw cycles using liquid 

nitrogen and a warm water bath. 25 µL buffer A (50 mM K2HPO4, 1 mM EDTA, and 5 mM 

DTT, pH 7.5) were added and the samples were incubated at for 25 min at 37 ºC. 10 µL of 

buffer B (125 mM K2HPO4, and 12.5 mM DTT, pH 7.5) were added. 5 µL of simvastatin (0.3, 

0.15, 0.075, 0.0358, 0.017 mM) were added.  For induction or repression assay, 5 µL of 

water were added. 10 µL of substrate solution (15 m M NADPH, 0.4 m M HMG-CoA ) were 

added to both sets. The samples were incubated at 37 ºC for 70 mins with gentle shaking. 

10 µL of 6 M HCl were added to stop the reaction. The plates were incubated at 37 ºC for 40 

min to produce mevalonolactone (MVL). Control samples were prepared by adding DMSO 

instead of simvastatin. The calibration curve for MVL was prepared by adding different 

concentrations of mevalonolactone instead of the reaction mixture. All the samples were 

filtered using 0.22 µm Millipore microfilter tubes. The samples were frozen at -80 ºC for LC-

MS assay. All the samples were prepared in triplicates. 

4.2.2.2.3 Determination of the limit of detection of mevalonolactone 

1.75 mg of MVL were dissolved in 1 mL of water and serially diluted two-fold five times. The 

solution was analysed using HPLC at room temperature using a 50mm x 2 mm I.D. column 

packed with 2 µm particle size ACE 18. The flow rate was 0.25 mL/min. The mobile phase 

was 0.1 % formic acid (A) in water and acetonitrile (B). Elution was performed with 2 % B for 

0.5 min, 2-15 % B up to 3.5 min, 15-50 % B up to 5.7 min, 50-98 % B up to 6.0 min, 98% B 

for 5.1 min.   
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4.2.2.2.4 Determination of effect of Ilex latifolia on HMG-CoA Reductase expression 

by Western blotting 

4.2.2.2.4.1 HepG2 cell culture 

HepG2 cells were routinely grown in two 75 cm2 flasks using DMEM/10 % FCS. When the 

flasks became fully confluent, the medium was replaced with DMEM/ 1% BSA and the cells 

were incubated at 37 ºC for 24 hrs.  The medium was removed and the cells were treated 

with DMEM/1 % BSA containing 40 µM simvastatin. One flask was treated with DMEM/ 1% 

BSA containing DMSO as vehicle control, at 0.95 % (v/v). To assay the effect of different 

concentrations of simvastatin on HMG-CoA reductase expression, HepG2 cells were treated 

with 200, 100, 50, and 25 µM of simvastatin respectively.  All the cells were incubated at 37 

ºC for 24 hrs. After incubation, the medium was removed and the cells were washed with 

EDTA-PBS containing trypsin. After detachment, 5 mL of full medium were used to collect 

the cells in a 15 mL tube. The cells were spun at 800 rpm for 5 minutes at 4ºC. The cells 

were washed with PBS and spun as in the previous step. The cells were transferred in one 

mL of PBS to an eppendorf tube. The cells were spun at 12,000 rpm for 10 seconds. The 

supernatant layer was removed and the cells were lysed for 5 minutes in ice using 100 µL 

RIPA buffer (50 mM Tris, 150 mM NaCl, 1.0% (v/v) NP-40, 0.5% (w/v) deoxycholate, 0.1% 

(w/v) SDS). The same method was repeated to check the effect of different lysing buffers by 

growing the cells in four flasks. Two flasks were treated with DMSO as a negative vehicle 

control and two flasks were treated with 100 µM simvastatin. One control (Lane CN) and one 

100 µM simvastatin treated cells (Lane SN) were lysed using buffer containing 50 mM 

potassium di-hydrogen phosphate, 25 mM EDTA, 5 mM DTT, 0.2 M KCl, and 0.2 % NP-40. 

One pair of control (Lane CL) and 100 µM simvastatin treated cells (Lane SL) were lysed 

using buffer containing 0.15 M NaCl, 50 mM Tris, 0.5 mM MnCl2, 0.5 mM MgCl2, 5 mM 

EGTA, 10 mM DTT, 0.1 mM leupeptin hemisulphate, 0.2 mM PMSF, and 2% Zwittergent 3-

14 at pH 7.4. 
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4.2.2.2.4.2 Determination of the protein content of cell lysates 

Two 75 cm2 flasks were seeded with HepG2 cells. The cells were grown using DMEM/10 % 

FCS. When the flasks became fully confluent, the medium was removed and the cells were 

grown using MEM/1% BSA for 24 hrs. The medium was removed and the cells in one flask 

were treated with 100 µM simvastatin. The other flask was treated with DMSO and used as 

a control. After 24 hrs, the medium was removed and the cells were lysed in 500 µL of buffer 

containing 50 mM potassium di-hydrogen phosphate, 25 mM EDTA, 5 mM DTT, 0.2 M KCl, 

and 0.2 % NP-40. The cell lysates were assayed for protein content using Bradford reagent. 

BSA in the range 0.1625 TO 2.6 mg/mL was used as a standard. A 96 well plate was used. 

5 µL of each lysate and 5 µL of BSA standard solutions were added to the plate. 250 µL of 

the Bradford reagent were added to each sample. All the samples were prepared in 

triplicates. The plate was shaken for 10 minutes and the absorbance at 595 nm measured. 

 

4.2.2.2.4.3 SDS-PAGE gel electrophoresis and Western blotting 

For denaturing gel electrophoresis, a very clean and dry glass plate, an aluminium backing 

plate and two spacers (0.75 mm) were assembled into a vertical slab gel and placed into a 

gel caster carefully to prevent leaks.   Water was added to test for leaks. The running gel 

solution (RGS) was prepared by combining 2.5 mL of 40% acrylamide monomer solution, 

2.5 mL of 4x running gel buffer (1.5 M Tris-HCl, pH 8.8), 0.1 mL of 10% SDS, 0.2 mL of 10% 

(w/v) ammonium perodoxisulphate (APS) in H2O, and 0.02 mL of TEMED. The volume was 

adjusted to 10 mL with H2O.  APS, and TEMED were added last. A volume of RGS was 

pipetted into the vertical gel caster to a level that left 1 cm to the teeth of the comb. A volume 

of water saturated with n-butanol solution was added on the top of the running gel to prevent 

the possible reaction between the gel solution and the atmospheric oxygen. The RGS 

polymerised within 30 min at room temperature. 

After the running gel had polymerised, the n-butanol was removed by pouring from the gel 

onto absorbent paper. The 4% stacking gel solution (SGS) prepared by combining 0.5 mL of 
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40% acrylamide monomer solution, 0.625 mL of 8 x stacking gel buffer (1.0 M Tris-HCl, pH 

6.8), 0.05 mL of 10% SDS, 0.1 mL of 10% APS, and 0.01 mL of TEMED. The volume was 

adjusted to 5 mL with H2O.  APS, and TEMED were added at last. Then a comb was 

inserted and the SGS was pipetted into the space at the top of the aluminium plate. The gel 

was left for 20 min to polymerise. 

 
25 µL of each sample were added to 25 µL of 2 X SDS- PAGE sample buffer (125 mM Tris, 

4% SDS, 20% glycerol) which was prepared by combining 12.5 mL of 8x stacking buffer, 10 

mL glycerol, 10 mL 20% SDS, and 2.5 mL of 0.1% (w/v) bromophenol blue in H2O. β-

mercaptoethanol was added to 20% (v/v). The mixture was heated at 95 °C for 5 min to 

denature the proteins. The samples were cooled on ice before loading. The gel unit (glass 

and aluminium plates and spacers in the cassette) was placed into the electrophoresis tank 

containing running buffer.  Buffer was poured into the cassette chamber until it covered the 

edge of the aluminium plate. The comb was slowly removed from the stacking gel. After the 

samples were cold, 50 µL of each sample were loaded in the gel. 30 µL (0.5 µg/µL protein) 

of human HMG-CoA reductase active domain (Sigma Aldrich, CS1090) was used as a 

positive control. 10 µL of Precision Plus Protein-xtra dual standards marker were loaded 

(Bio-Rad, US, 161-0377). 

The stacking gel was run at 22 mA, constant current (power supply, POWER PAC 300, 

BioRad). When the samples migrated into the running gel the current was increased to 

26mA. 

The run was complete when the dye arrived at the bottom of the running gel. The run was 

left for 10 min after the dye arrived at the end of the gel to have better separation of the 

target bands.  The power supply was turned off, the leads were disconnected and the safety 

lid  was removed. The gel unit was released from the upper buffer chamber. 

After electrophoresis the cassette was removed and the gel unit released.  The spacers 

were taken out and the glass plate removed. The aluminium plate and the gel (still united) 

were submerged in Towbin Transfer Buffer (TTB, 3.03 g Tris-base, 14.41g glycine, 10 mL 10% 
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SDS, up to 800 m L with H2O, 200 m L methanol) for 5 – 10 min. Then the stacking gel was 

removed and the running gel was separated from the glass plate. The proteins were 

transferred to a nitrocellulose membrane using wet-transfer blotting apparatus at 12 mA. 

Four pieces of blotter paper (Whatman, 3MM), the same size as the sponges for the blot, 

were cut. One piece of nitrocellulose membrane (manufacturer) also was cut just bigger than 

the size of the running gel. All the papers, the sponges and the membrane were wetted with 

TTB. The order for the transfer cassette (“sandwich”) was a grey side of the cassette, 

sponge, two pieces of blotter paper, membrane, running gel, two pieces of blotter paper, 

sponge, black side of the cassette. The transfer cassette was assembled under TTB to 

minimise trapping air bubbles. The cassette was closed and it was inserted into the transfer 

apparatus with the grey side with the positive pole (anode). The tank of the transfer 

apparatus was filled with TTB. The leads of the transfer apparatus were connected to the 

power supply and proteins transferred overnight at room temperature with a constant voltage 

of 12 mA.  After wet transfer blotting, the membrane and the marker proteins were labelled 

using a marker pen. The membrane was washed soaked in TBS (100 m M Tris-HCl, 0.9% 

NaCl, p H 7.5) for 5 minutes to remove loose acrylamide.   

The membrane was cut at 50 kDa to two pieces. Both membranes were blocked for one 

hour using 5% (w/v) skimmed-milk powder in washing buffer (0.2% (v/v) Tween-20 in TBS). 

The blocking buffer was removed and the membranes were washed with washing buffer 

three times for five minutes. The membrane containing proteins with molecular weights more 

than 50 kDa was incubated with anti-HMG-CoA Reductase antibody solution (1:200) (Santa 

Cruz Biotechnology, US, sc-33827) with constant shaking at 4 ºC for 24 hrs. The primary 

antibody was removed and the membrane was washed three times for 5 minutes. The 

membrane was treated with goat anti-rabbit secondary antibody solution (Santa Cruz 

Biotechnology, sc-2004; 1:1000 dilution) for 1 hr with constant shaking at room temperature. 

The second membrane was incubated with β-actin antibody solution (1:500) (Santa Cruz 

Biotechnology, US, sc-47778), with constant shaking at 4 ºC for 24 hr. The primary antibody 
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was removed and the membrane was washed three times for 5 minutes. The membrane 

was incubated with goat anti-mouse secondary antibody solution (1:1000 dilution; Sigma 

Aldrich, UK, A 4416) for 1 hour with constant shaking at room temperature. The secondary 

antibodies were removed and the membranes were washed three times for 5 minutes. The 

membranes were incubated with Western blotting luminol reagent (Santa Cruz 

Biotechnology, sc2048) in darkness for two minutes. Other membranes were incubated with 

ECL solution prepared in the laboratory by mixing  equal volumes of solutions A and B. 

Solution A was prepared by mixing 9 mL of deionised water, 1 mL of 1 M Tris-HCl (pH 8.5), 

45 µL of 90mM coumaric acid in DMSO, and 100 µL of 250 mM luminol in DMSO. Solution B 

was prepared by adding 9 mL of deionised water, 1 mL of 1 M Tris-HCl (pH 8.5), and 6 µL of 

30% hydrogen peroxide. The treatment with chemiluminescent substrate was done two 

times. The signals were recorded using chemiDoc-IT imaging system.  

The same Western blotting method was used to assess the effect of different concentrations 

of simvastatin, Ilex latifolia, 0.2% NP-40 lysing buffer, and buffer containing leupeptin on 

HMG-CoA reductase expression and detection, described below.  AML-12 lysates (section 

4.2.2.3.1) were probed for HMG-CoA reductase using the same method mentioned in this 

section. 

 

4.2.2.2.4.4 Reprobing Western blot membranes 

As an alternative to probing separate pieces of membrane independently, the membrane 

was stripped, after the detection of the HMG-CoA reductase protein, for re-probing. The 

membrane was placed in fresh stripping buffer (15 g glycine, 1 g SDS, and 10 mL Tween 20 

to 1L of water, pH 2.2) for 10 min. The buffer was discarded and the membrane was washed 

with PBS two times for 10 min. The PBS was discarded and the membrane was washed with 

TBST (1% Tween-20 in TBS) two times for 5 min. After that the membrane was blocked for 1 

hour using 5 % (w/v) skimmed-milk powder in washing buffer. The blocking buffer was 
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removed and the membrane was washed three times for 5 minutes. β-Actin was detected as 

mentioned before (section 4.2.2.2.4.3).  

 

4.2.2.3 Determination of LDLR expression by Western blotting 

4.2.2.3.1 AML-12 cell culture 

AML-12 cells were maintained in three 75 cm2 flasks with full DMEM-Ham F12 (1:1) medium 

containing 0.005 mg/mL insulin, 0.005 mg/mL transferrin, 5 ng/mL selenium, and 40 ng/mL 

dexamethasone, supplemented with 10 % FCS. Once the cells were confluent, the medium 

was replaced with new medium. One flask was treated with DMSO (< 1%) as a negative 

vehicle control.  The other two flasks were treated with 100 µM simvastatin and 100 µg/mL 

Ilex latifolia butanol extract respectively. 

The medium was removed, and the cells were washed with 5 mL EDTA-PBS with trypsin. 

The cells were incubated at 37 ºC for 5 min. After the cells detached, 5 mL of full medium 

were added and the cells were collected in a 15 mL centrifuge tube. The tube was spun at 

800 rpm at 4 ºC for 5 min to collect the cells as a pellet. The medium was removed and the 

cells were washed with 5 mL ice-cold PBS. The cells were collected as a pellet as 

mentioned in the previous step. The PBS was removed and 1 mL of ice-cold PBS was 

added to transfer the cells into an Eppendorf tube. The cells were centrifuged for 10 sec at 

5000 rpm.  The PBS was removed and 100 µL of Triton-X 100 lysing buffer solution (10 mM 

Tris, pH 7.4, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 10% glycerol, 0.1% 

SDS, 0.5% deoxycholate) were added. The cells were kept in ice for 30 mins. The tube was 

spun at 12,000 rpm for 5 min at 4 ºC. The supernatant layer was removed and stored at -20 

ºC. 

4.2.2.3.2 SDS-PAGE electrophoresis and Western blotting 

The method was adapted from section (4.2.2.2.4.3) with some modifications. The running 

gel solution (RGS 7%) was prepared by combining 1.87 mL of 40% acrylamide monomer 

solution, 2.5 mL of 4x running gel buffer, 0.1 mL of 10% SDS, 0.2 mL of 10% APS, and 0.02 
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mL of TEMED. The volume was adjusted to 10 mL with H2O.  The membrane was incubated 

with Anti-LDLR primary antibody (1:200) (EP1553Y, Novus Europe, Abingdon, UK) with 

constant shaking at 4 ºC for 24 hrs. The membrane was treated with donkey anti-rabbit IgG 

secondary antibody (1:500; Santa Cruz Biotechnology, US, sc-33827) for one hour. LDL-

receptors were detected in lysates of HepG2 cells (section 4.2.2.2.4.1) by loading the 

samples in the same gel used for AML-12 cells lysates. LDL-receptors in HepG2 and AML-

12 cell lysates were also assayed using LDLR (C-20) primary antibody (Santa Cruz 

Biotechnology sc-11824). 

 

4.2.2.3.3 Reprobing Western blot membranes 

As an alternative to probing separate pieces of membrane independently, the membrane 

was stripped, after the detection of the LDLR protein, for re-probing. The method was 

adapted from section (4.2.2.2.4.4). 

4.3 Data assay 

Use of imaging software in the UVI doc and of Image J for analysis of blot bands. 

4.4 Results  

The first experiments to assess the effect of Ilex latifolia on cholesterol metabolism were 

attempts to measure HMG-CoA reductase activity in lysates of HepG2 cells that had been 

treated with extracts of Ilex latifolia, and with simvastatin as a positive control. HPLC or MS 

methods were attempted to assay substrates or products of the enzyme reaction.  
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4.4.1 Assay of effect of Ilex latifolia on HMG-CoA reductase activity using 

HPLC  

NADP and CoA are the products of the reaction of the enzyme with the substrates NADPH 

and HMG-CoA, respectively.  Methods to measure these two products by HPLC were 

established, as described above, and calibration curves of CoA and NADP are shown in 

Figures 4-2 and 4-3 respectively.   

 

Figure ‎4-2: Calibration curve of CoA using HPLC (section 4.2.2.1.1). Data are the means ± SD of 

triplicate samples.  
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Figure ‎4-3: Calibration curve of NADP using HPLC (section 4.2.2.1.1). Data are the means ± SD 

of triplicate samples.  

4.4.2 Assay of the effect of Ilex latifolia on HMG-CoA reductase activity using 

LC-MS 

LC-MS is an accurate and sensitive analytical method. This technique can detect nano-

grams of the analyte and was chosen to assay HMG-CoA reductase activity through 

detection of mevalonolactone which is the product of the reaction of the enzyme with the 

substrates, NADPH and HMG-CoA (as described in the methods (section 4.2.2.2.2). The 

enzyme is present in the HepG2 lysates. To ensure that LC-MS can detect mevalonolactone, 

HPLC was used to determine the minimum detectable amount of mevalonolactone because 

HPLC can detect micrograms but the work done here was on cells and the amount of 

mevalonolactone produced was expected to be in nanograms or less.  
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Figure ‎4-4: Calibration curve of mevalonolactone detected using HPLC (section 

4.2.2.2.3). The results are the means ±SD of triplicate samples. The AUC was almost zero at 

concentrations less than 0.25 mg/mL  and this means that the limit of detection is very high 

and the method is not reliable.  

The results of HPLC showed that liquid chromatography has limitations as a method to 

detect mevalonolactone. One of these is the lack of precision when estimating peak areas, 

due to the interference from the absorbance of the mobile phase at the wavelength used, 

200nm. The λmax of mevalonolactone is 200 nm and this resulted in interference from the 

mobile phase, which contained formic acid, in the form of trough just prior to the peak of 

mevalonolactone.  An example is shown in Figure 4-5. Although the peak is clear, it is not 

easy to discern where the peak starts, and hence estimates of the AUC will not be as 

precise as when the peak is on a level background of absorbance. 
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Figure ‎4-5: Chromatogram of mevalonolactone using HPLC (section 4.2.2.2.3). Mevalonolactone 

was detected at 2.687. The negative peak at 2.25 could be due to formic acid and consequently the 

solvent peak. 

The other conclusion is that the liquid chromatography detected mevalonolactone at 

microgram amounts (Fig. 4-4) which means that if mevalonolactone is present only in 

nanograms in the samples which are cells lysates, mevalonolactone cannot be detected by 

HPLC quantitatively. To address this issue an attempt was made to use LC-MS to detect 

mevalonolactone. Samples were prepared as described in the methods (section 4.2.2.2.2), 

and the assay using LC-MS was planned but the main problem was that the technique was 

not available because the LC-MS machine had not been working. The only possibility had 

been to assay the samples using MS manually but this does not yield the necessary 

quantitative data since manual MS can yield qualitative results only. 
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4.4.3 Expression of HMG-CoA reductase by Western blotting 

            Detection of the effect of Ilex latifolia on the HMG-CoA reductase activity by detecting NADP, 

CoA, and mevalonolactone which are the products of the reaction of HMG-CoA reductase 

with the substrates, HMG-CoA and NADPH, was not possible for the reasons mentioned 

before (sections 4.4.1 and 4.4.2). The third type of assay method was to detect the effect of 

Ilex latifolia on HMG-CoA reductase protein expression, especially because hepatocytes 

counteract  HMG-CoA reductase inhibition by overexpression of HMG-CoA reductase 

(Gerber et al., 2004), in a feedback control loop. 

4.4.3.1 Protein content of cell lysates 

In order to normalise measurements as much as possible the protein content of HepG2 cell 

lysates was assayed so that equal amounts of protein could be compared. HepG2 cells were 

treated with 100 µM simvastatin. Cells treated with DMSO (<1 %) and were used as vehicle 

control. The cells were lysed in 500 µL of buffer containing 50 mM potassium dihydrogen 

phosphate, 25 mM EDTA, 5 mM DTT, 0.2 M KCl, and 0.2 % NP-40. The protein content was 

assayed using the Bradford reagent. BSA (3.25 to 50 µg/mL) was used as a standard. PBS 

was used as blank. Lysing buffer was assayed for any interference in the protein assay 

(section 4.2.2.2.4.2).  Protein contents of the lysates were determined using the BSA 

standard curve (Figure 4-6).  
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Figure ‎4-6: Standard graph of BSA using Bradford reagent assay (section 4.2.2.2.4.2). The 

results are the means of triplicate samples. 

 

The standard graph (Figure 4-6) was used to measure the protein content of the cells lysates 

by using the absorbance measured using the Bradford reagent assay. 

  

Table ‎4-1: Protein concentrations of cell lysates using BSA standard graph 

Sample Concentration (µg/mL) Absorbance 

Cells treated with 
simvastatin 

49.1 
1 

Control  19.8 0.3 
 

The concentrations (Table 4-1) show that the protein content in the cells treated with 

simvastatin is 2.5 times the protein content of the control cells. Sample volumes for Western 

blotting were adjusted to achieve equal loading of protein.  

 

4.4.3.2 Validation of the primary antibody 

Western blotting was used to detect HMG-CoA reductase expression in HepG2 cells and to 

detect the effect of Ilex latifolia on HMG-CoA reductase expression compared to simvastatin. 
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33827), human HMG-CoA reductase active domain (Sigma Aldrich, CS-1090) was used as a 

positive control.  

  

                                          

Figure ‎4-7: Immunoblot to detect HMG-CoA reductase in HepG2 cells.  Lysates of HepG2 cells 
were analysed which had been treated with 40 µM simvastatin (lane S) or DMSO vehicle control 
(Lane C). HMG-CoA reductase active domain (Sigma-Aldrich) (lane PC) was used as a positive 
control to confirm the specificity of the primary anti-body activity. HMG-CoA reductase and beta-actin 
proteins were separated by SDS-PAGE and transferred to nitrocellulose membrane. The membrane 
was cut to two pieces at 50 kDa and HMG-CoA reductase and β-actin were probed in parallel before 
detection using a chemiluminescent substrate. PrecisionPlus protein dual xtra standards marker 
(BioRad) was used as a reference (section 4.2.2.2.4.2). Four bands at 97, 80, 72, and 54 kDa were 
detected in HepG2 lysates.  

HepG2 cells were treated with simvastatin (40 µM) (Figure 4-7, lane S) to detect the effect of 

HMG-CoA reductase inhibition on protein expression. Other cells were treated with DMSO 

(< 1 %) and used as control (Figure 4-7, lane C). Human HMG-CoA reductase active domain 

was used as a positive control (Figure 4-7, lane PC) to insure that the primary antibody used 

was suitable for the assay. After SDS-PAGE gel electrophoresis, the proteins were 

transferred to nitrocellulose membrane. HMG-CoA reductase proteins were probed using 

anti-HMG-CoA reductase primary antibody H-300 (Santa Cruz Biotechnology, US, sc 33827), 

which is a rabbit polyclonal IgG that reacts with an epitope corresponding to amino acids 

589-888 mapping at the C-terminus of HMG-CoA reductase of human origin. It is 

recommended for detection of HMGCR of mouse, rat and human origin by Western blotting, 

immunoprecipitation, immunofluorescence and ELISA. It is also reactive with additional 

species, including equine, canine, bovine and avian. H-300 was used for the detection of 

HMG-CoA reductase in mouse (Scheving et al., 2014). 

Loading control proteins are commonly used as internal standards to accurately measure 

protein levels in a sample. These controls are usually derived from ubiquitously expressed 

housekeeping genes and they have been widely used due to their consistent level of 

97→ 
80  → 
72   → 
54  → 

←100 kDa 

←75 

←50 

←37 

  C                      S         PC              
HMG-CoA reductase→ 

Beta-actin 42→ 
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expression across a wide range of samples. The most frequently used loading controls in 

biochemical research are actin and tubulin (Suzuki et al., 2011, Wishart et al., 2008, 

Mutsaers et al., 2011). Actins are an essential component of the cytoskeleton, with critical 

roles in cellular processes including gene expression, cell division, and cell migration. There 

are six isoforms of actins in vertebrates (Rubenstein, 1990) where four of these isoforms are 

expressed in smooth (αsm and ɣsm) and in striated (αsk and αca) muscle cells. The two 

cytoplasmic β-actin and ɣ-actin isoforms are ubiquitously expressed (Bunnell et al., 2011). 

Beta-actin, at 42kDa, was used as a loading and blotting control in this study (Fig. 4-7). 

The image was analysed using Image J. Lysate of control HepG2 cells (Fig. 4-7 Lane C)  

showed four HMG-CoA reductase bands which were estimated to have molecular weights 

97, 80, 72 and 54 kDa respectively. The positive control lane showed bands which means 

that the primary anti-body used was active. Because the positive control was used at 0.5 

µg/mL, The bands are appearing thick and very strong. 

 

 

                                                      

Figure ‎4-8: Estimation of HMG-CoA reductase protein expression by transforming the 

bands from Fig. 4-7 into peaks using image J. Lane C is the control (DMSO <1%).  Lane S 

corresponds to the cells treated with simvastatin (40 µM). The intensities of the bands of 

HMGCR will be estimated by measuring the peak areas and by comparing these intensities to 

the beta-actin intensities. 
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Table ‎4-2: Estimation of the intensities of the detected bands (Figures 4-7,4-8) for HMG-CoA 

reductase proteins in     lanes S and C. The intensities of the bands in lane C were normalized to 

1.0. The intensities of the bands in lane S were calculated as a ratio to the bands in C. The 

normalized intensities were calculated as a ratio to the beta-actin normalized intensity in lane S. 

 Lane 

C S 

HMG-CoA reductase 97 
kDa 

Intensity  877 566 

Normalized 
intensity 

1.0 0.64 

HMG-CoA reductase 80 
kDa 

Intensity  1966 1033 

Normalized 
intensity 

1.0 0.53 

HMG-CoA reductase 72 
kDa 

Intensity  1589 3095 

Normalized 
intensity 

1.0 1.95 

HMG-CoA reductase 54 
kDa 

Intensity  1409 4855 

Normalized 
intensity 

1.0 3.45 

Beta-actin 42 kDa 

Intensity  6055 17365 

Normalized 
intensity 

1.0 2.87 

Ratio of HMG-CoA reductase 97 kDa / 
beta-actin 

1.0 0.223 

Ratio of HMG-CoA reductase 80 kDa / 
beta-actin 

1.0 0.185 

Ratio of HMG-CoA reductase 72 kDa / 
beta-actin 

1.0 0.68 

Ratio of HMG-CoA reductase 54 kDa 
/beta-actin 

1.0 1.2 

 

The results and the image show that HMG-CoA reductase can be detected using  HMG-CoA 

reductase (H-300) polyclonal rabbit IgG. It also shows that simvastatin can be used as a 

positive control as it stimulated the expression of HMG-CoA reductase. The bands (Figure 4-

7)  were transformed into peaks where the intensity of each peak was determined  using 

ImageJ (Table 4-2). The intensity of each peak was normalized to the intensity of the beta-

actin intensity. Table 4-2 shows that the intensities of the bands detected at 97, 80, 72, kDa 

were higher than those detected in the simvastatin sample.  The intensity of the band 

detected at 54 kDa was 20 % higher than the intensity of the band detected in the control 

sample. If the 54 kDa fragment is the soluble fragment which represents the whole enzyme 

protein, this means that simvastatin stimulates the HMG-CoA reductase expression. 



114 
 

As an alternative to separate probing of two pieces of membrane independently, after 

detection of HMGCR, the membrane was stripped using a stripping buffer and β-actin was 

detected (section 4.2.2.2.4.4)  

 

                

 

 

 

 

 

 

Lanes C and S showed two HMGCR bands which were estimated to have molecular weights 

72 and 54 kDa respectively. The beta-actin was detected at 42 kDa  (Figure 4-9). 
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Figure ‎4-9:  Immunoblot of proteins from lysates of HepG2 cells which had been treated 

with 40 µM simvastatin (lane S) or DMSO vehicle control (Lane C). HMG-CoA reductase 

active domain (Sigma-Aldrich) (lane PC) was used as a positive control to confirm the specificity of 

the primary anti-body activity. HMG-CoA reductase and beta-actin proteins were analysed by 

SDS-PAGE and transferred to nitrocellulose membrane before detection using a 

chemiluminescent substrate. Precision plus protein dual xtra standards marker (BioRad) was used 

as a reference (section 4.2.2.2.4.4). Two bands at 72 and 54 kDa were detected.  

72 kDa → 

54kDa  → 
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 Table ‎4-3: The intensities of HMG-CoA reductase 54 and 72 kDa bands (Figure 4-10) as 
calculated by Image J.  Lane C was used as a reference for lanes S. 
 

 Lane 

C S 

HMG-CoA reductase 72 
kDa 

Intensity  5202 7263 

Normalized 
intensity 

1.0 1.4 

HMG-CoA reductase 54 
kDa 

Intensity  938 2720 

Normalized 
intensity 

1.0 2.9 

Beta-actin 42 kDa 

Intensity  12946 8023 

Normalized 
intensity 

1.0 0.62 

Ratio of HMG-CoA reductase 72 kDa / 
beta-actin 

1.0 2.26 

Ratio of HMG-CoA reductase 54 kDa 
/beta-actin 

1.0 4.7 

         
 
 
 
 

 

 

 

 

Figure ‎4-10: Estimation of HMG-

CoA reductase protein 

expression by transforming the 

bands into peaks      using 

image J. Lane C is the control 

(DMSO <1%).  Lane S 

corresponds to the cells treated 

with simvastatin (40 µM). 

 

 

 

Figure ‎4-11: Estimation of the 

expression of beta-actin by 

transforming the bands into peaks      

using image J. Lane C is the control 

(DMSO <1%).  Lane S corresponds 

to the cells treated with simvastatin 

(40 µM). 
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Table ‎4-4: The intensities of the peaks from figure 4-10  as calculated by Image J.  The 

intensities of HMG-CoA reductase  54 and 72  kDa bands were combined. Lane C is used as a 

reference for lanes S.  

 Lane 

C S 

HMG-CoA reductase 72 
kDa 

Intensity  5202 7263 

HMG-CoA reductase 54 
kDa 

Intensity  938 2720 

Combined HMG-CoA 
reductase 54 and 72 kDa 

Intensity  6140 9983 

Normalized 
intensity 

1.0 1.62 

Beta-actin 42 kDa Intensity  12946 8023 

Normalized 
intensity 

1.0 0.62 

Ratio of HMG-CoA reductase  / beta-actin 1.0 2.61 

 

The intensities of the HMGCR and beta-actin bands were estimated by using Image J 

software to analyse a cross-section of the bands of the blot. Plots of the cross-sections are 

shown in figures 4-10 and 4-11.  The areas under the peaks were estimated and are given in 

Table 4-3.  The intensities of the bands from the control sample in lane C were normalised to 

1. The intensities of the bands in lane S were normalised as a ratio to the corresponding 

bands in lane C. HMG-CoA reductase bands intensities were calculated as a ratio to the 

beta-actin to correct for any variation in the protein content of the cells lysates. The data 

show that simvastatin stimulated the expression of HMGCR in HepG2 cells 2.6 to 4.7 times 

compared to levels of HMG-CoA reductase in control cells.  These data indicate that the 

HepG2 cells can be used to assess inhibitors of HMG-CoA reductase through modulation of 

the regulatory loop that controls level of enzyme protein.  The Western blotting technique 

detected truncated forms of HMG-CoA reductase, but, under the conditions used for cell 

lysis, the full length form of HMG-CoA reductase, which has a molecular weight of 97 kDa, 

was not visible. Despite this, the response of the HepG2 cells to simvastatin was as 

expected, namely an up-regulation of HMG-CoA reductase expression and it was decided to 
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continue to use HepG2 cells to assess effects of extracts of Ilex latifolia in comparison to 

simvastatin. 

4.4.3.3 Effect of different concentrations of simvastatin and Ilex latifolia on HMG-CoA 

reductase expression 

 

                                

 

 

 

 

To further confirm the effect of simvastatin on HMG-CoA reductase expression, the cells 

were treated with different concentrations of simvastatin. HepG2 cells were grown in six 75 

cm2 flasks. One flask was treated with DMSO (<1% v/v) as a negative vehicle control. The 

other flasks were treated with 200, 100, 50, 25 µM simvastatin, and 100 µg/mL ilex latifolia 

extract respectively. All the flasks were lysed using RIPA buffer containing protease inhibitor 

cocktail (Sigma Aldrich, P8340). RIPA buffer dissolves all the cellular membranes and 

release all the cellular fluids including the nuclear DNA which rendered the lysates very 

viscous and this resulted in difficulties in measuring the protein contents of the cell lysates 

and in loading of the denatured samples onto the running gel. To avoid the setbacks of RIPA 

buffer, one control (Lane CN) and one 100 µM simvastatin treated cells (Lane SN) were 

lysed using buffer containing 50 mM potassium dihydrogen phosphate, 25 mM EDTA, 5 mM 

DTT,  0.2 M KCl, and 0.2 % NP-40 with protease inhibitor cocktail (Sigma Aldrich, P8340) 

72→ 

 54→ 

 
44→ 
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 C       S1      S2        S3       S4                   IL       CN     SN 
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Beta-actin 

 

HMG-CoA reductase 

Figure ‎4-11:  Immunoblot of proteins from lysates of HepG2 cells. Lane C is the control 

sample. Lanes S1, S2, S3, and S4 are the lysates of cells treated with 200, 100, 50, and 25 µM 

simvastatin respectively. Lane IL is the lysate of cells treated with 100 µg/m L of Ilex latifolia. 

Lanes CN and SN are the lysates of the control and cells treated with 100  µM simvastatin 

respectively. The cells were lysed using 0.2 % NP—40 lysing buffer.  



118 
 

(Figure 4-12). The SDS-PAGE electrophoresis and the Western blotting were done as 

mentioned before (section 4.2.2.2.4.3). All the lanes showed the two HMG-CoA reductase 

bands detected previously, 72 and 54 kDa respectively, and samples in lanes S1 and S2 

showed an additional band at 44 kDa. The beta-actin was detected at 42 kDa (Figure 4-12). 

 

                                            

Figure ‎4-12: Estimation of HMG-CoA reductase protein expression by transforming the bands 

from Fig. 4-11 into peaks using image J. Lane C is the control (DMSO <1%).  Lanes S1, S2, S3 

and S4 correspond to the cells treated with 200, 100, 50, and 25 µM simvastatin respectively. Lane IL 

corresponds to the cells treated with 100 µg/mL Ilex latifolia.  Lanes CN and SN correspond to cells 

lysed with buffer containing 0.2% NP-40.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         HMG-CoA reductase             Beta-actin 42 kDa  

Lane C 

Lane S1 

Lane S2 

Lane S3 

Lane S4 

Lane IL 
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Lane S1 

Lane S2 
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Lane S4 
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Table ‎4-5: The intensities of the peaks (Figure 4-12) as calculated by Image J. Lane S1 is used 
as a reference for lanes C, S2, S3, S4 , and IL. Lane CN is used as a reference for lane SN. 
 

 Lane 

C S1 S2 S3 S4 IL CN SN 

HMG-CoA 
reductase 
72 kDa 

Intensity  3906 4310 5353 3050 5231 6188 3324 2157 

Normalized 
intensity 

0.90 1.0 1.24 0.7 1.21 1.44 1 0.65 

HMG-CoA 
reductase 
54 kDa 

Intensity  0 2249 1707 706 98.3
1 

568 0 200 

Normalized 
intensity 

0 1.0 0.76 0.31 0.04
3 

0. 25 0 1.0 

Beta-actin 
42 kDa 

Intensity  1963 2630 8932 5657 4846 13008 4111 2107 

Normalized 
intensity 

0.75 1.0 3.4 2.15 1.84 4.94 1.0 0.51 

Ratio of HMG-CoA 
reductase 72 kDa / beta-
actin 

1.20 1.0 0.36 0.32 0.66 0.29 1.0 1.27 

Ratio of HMG-CoA 
reductase 54 kDa /beta-
actin 

0 1.0 0.22 0.14 0.02 0.05 0 1.0 

 
Table ‎4-6: The intensities of the peaks (Figure 4-12) as calculated by Image J.  The intensities of 
HMG-CoA reductase 54 and 72 kDa were combined. Lane C is used as a reference for lanes S1, S2, 
S3, S4, and IL. Lane CN is used as a reference for lane SN.  

 Lane 

C S1 S2 S3 S4 IL CN SN 

HMG-CoA 
reductase 
72 kDa 

Intensity   3906 4310 5353 3050 5231 6188 3324 2157 

HMG-CoA 
reductase 
54 kDa 

Intensity  0 2249 1707 706 98.31 568 0 200 

Combined 
HMG-CoA 
reductase 
54 and 72 
kDa 

Intensity  3906 6569 7060 3756 5329 6757 3324 2357 

Normalized 
intensity 

1.0 1.68 1.8 0.96 1.36 1.73 1.0 0.70 

Beta-actin 
42 kDa 

Intensity   1963 2630 8932 5657 4846 1300
8 

4111 2107 

Normalized 
intensity 

1.0 1.34 4.55 2.88 2.47 6.63 1.0 0.51 

Ratio of HMG-CoA 
reductase /  beta-actin 

1.0 1.25 0.4 0.33 0.55 0.26 1.0 1.4 
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Simvastatin, at the highest concentration used, 200 µM, stimulated the expression of HMG-

CoA reductase in HepG2 cells by 25 % (Figure 4-12, Lane S1) compared with the control 

cells (Figure 4-12, Lane C) but it did not  show any stimulation at lower concentrations 

(Figure 4-12, Lanes S2 to S4), instead having an inhibitory effect of 45% to 65%. Similarly 

the extract of Ilex also inhibited HMG-CoA reductase expression, by about 70% (Figure 4-12, 

Lane IL). In a separate pair of samples, cells were extracted with a milder lysis buffer 

compared with RIPA buffer.  Simvastatin used at 100 µM was found to stimulate the 

expression of the HMG-CoA reductase (Figure 4-12, Lane SN), 40 % compared with the 

control (Figure 4-12, Lane CN).  

Taken together these data indicate that higher concentrations can induce measurable, but 

variable increases in HMGCR expression, as assessed by detection of partially degraded 

forms of HMGCR. Ilex latifolia did not stimulate HMG-CoA reductase expression but on the 

contrary it inhibited HMG-CoA reductase expression. The mechanism by which this 

happened could be explored in future work by using different cell lines such as UT-1 cells, a 

line of Chinese hamster ovary cells that have been used for the determination of HMG-CoA 

reductase structure (Goldstein and Brown, 1984) or JJN-3 human myeloma cell lines 

(Roelofs et al., 2007) and by investigating the effect of Ilex latifolia on the gene which 

expresses HMG-CoA reductase protein. The effect of Ilex latifolia on HMG-CoA reductase 

expression could be assayed in-vivo by assaying HMG-CoA reductase levels in  liver 

homogenates such as rats livers (Bergstrom et al., 1997).  
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4.4.3.4 Effect of leupeptin on the pattern of HMG-CoA reductase forms 

 

  
 

  

Figure ‎4-13:  Immunoblot to detect HMG-CoA reductase in lysates of HepG2 cells prepared 

with leupeptin.  Ilex latifolia, 

or DMSO which was used as vehicle control (Lane CL) . Cells were lysed using with 0.15 M NaCl, 50 

mM Tris-base, 0.5 mM MnCl2, 0.5 mM MgCl2, 5 mM EGTA, 10 mM DTT, 0.1 mM leupeptin 

hemisulphate, 0.2 mM PMSF, and 2% Zwittergent 3-14 at p H 7.4. HMG-CoA reductase and beta-

actin proteins were separated by SDS-PAGE and transferred to nitrocellulose membrane before 

detection using chemiluminescent. Precision plus protein dual xtra standards marker (BioRad) was 

used as a reference. 

 

The molecular weight of HMG-CoA reductase is 97 kDa according to the amino acid 

sequence as deduced from the sequence of a full length of cDNA (Liscum et al., 1983). A 

doublet of 94-97 kDa was observed in autoradiographs of Western blots of HepG2 cell 

microsomal membranes probed with polyclonal anti-HMG-CoA reductase IgG (Parker et al., 

1993). A Ca2+-dependent protease in cell extracts is known to cleave the 97 kDa reductase 

to an active 62 kDa form that remains membrane bound (Chin et al., 1982). Further cleavage 

by a leupeptin-sensitive protease releases a soluble 50 to 55 kDa fragment that also retains 

full enzymatic activity. Because it was difficult, or impossible, to detect the full length 

HMGCR by Western blotting of cell lysates prepared using commonly used lysis buffers, the 

leupeptin-sensitive protease may be active and may cleave the full length form of HMGCR.  

To detect if the leupeptin-sensitive protease has an effect on the detection of HMG-CoA 

reductase using Western blotting, one sample of control cells and one sample of cells 

treated with 100 µM simvastatin were lysed using buffer containing 0.15 M NaCl, 50 mM Tris, 

0.5 mM MnCl2, 0.5 mM MgCl2, 5 mM EGTA, 10 mM DTT, 0.1 mM leupeptin hemisulphate, 

72 kDa→ 

←50 kDa 

←75 kDa 

←100 kDa 

 CL        SL     IL 

Beta-actin 

 

 HMG-CoA reductase→ 

54 kDa→ 

42 kDa→ 
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0.2 mM PMSF, and 2% Zwittergent 3-14 at pH 7.4. The presence of EGTA in the buffer 

would chelate free Ca2+ and leupeptin would inhibit the leupeptin-sensitive protease. SDS-

PAGE electrophoresis and Western blotting were done as mentioned before. Lanes CL and 

SL in Figure 4-14 show two HMG-CoA reductase bands of 72 and 54 kDa respectively, as 

detected in previous extracts, but no band of full length HMGCR. The beta-actin was 

detected at 42 kDa (Figure 4-15). 

 

 

 

 

 

 

 

 

 

Lane CL 

 
Lane SL 

 

Figure ‎4-14: Estimation of HMG-

CoA reductase protein expression 

by transforming the bands (Figure 

4-13) into peaks      using image J. 

Lane CL is the control (DMSO <1%).  

Lane SL  corresponds to the cells 

treated with simvastatin.  

 

 

 

Figure ‎4-15: Estimation of 

Beta-actin protein expression 

by transforming the bands 

into peaks      using image J. 

Lane CL is the control (DMSO 

<1%).  Lane SL corresponds to 

the cells treated with simvastatin. 

 

 

         HMG-CoA reductase                                            Beta-actin 42 kDa 

Lane CL 

Lane SL 
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Lane IL 

Lane CL 
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Table ‎4-7: The intensities of the bands (Figures 4-14, 4-15) as calculated by Image J.  Lane SL is 

used as a reference for CL and IL.  

 Lane 

CL SL IL 

HMG-CoA reductase                                            

72 kDa 

Intensity  1655 8333 829 

Normalized 

intensity 

0.171 1.0 0.099 

HMG-CoA reductase                                            

54 kDa 

Intensity  0 1797 0 

Normalized 

intensity 

0 1.0 0 

Beta-actin 42 kDa Intensity  12580 11593 10240 

Normalized 

intensity 

1.05 1.0 0.883 

Ratio of HMG-CoA reductase                                            

72 kDa/ beta-actin 

0.163 1 0.112 

Ratio of HMG-CoA reductase                                            

54 kDa/beta-actin 

0 1 0 

 

Table ‎4-8: The intensities of the bands (figures 4-14,4-15) as calculated by Image J.  The 

intensities of HMG-CoA reductase 54 and 72 kDa were combined. Lane CL is used as a reference. 

 
Lane 

CL SL IL 

HMG-CoA reductase                                            
72 kDa 

Intensity  1655 8333 
829 

HMG-CoA reductase                                            
54 kDa 

Intensity  0 1797 
0 

Combined HMG-CoA 
reductase                                            
54 and 72 kDa 

Intensity  1655 10130 829 

Normalized 
intensity 

1.0 6.12 
0.5 

Beta-actin 42 kDa 
Intensity  12580 11593 10240 

Normalized 
intensity 

1.0 0.92 
0.814 

Ratio of HMG-CoA reductase                                         

/ beta-actin 
1.0 6.65 

0.614 
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Analysis of the intensities of the HMG-CoA reductase and beta-actin bands revealed a 

marked 7.5 fold stimulation of expression of HMG-CoA reductase by simvastatin, with both 

74 kDa and 54 kDa bands up-regulated (Figures 4-15, 4-16). In this experiment, simvastatin 

still stimulated the expression of the HMGCR but the 74 kDa was the main band while the 

intensity of the 54 kDa band was very low in both CL and SL. This could be due to the 

inhibition of the leupeptin-sensitve enzyme and consequently the inhibition of the cleavage 

of the enzyme from 74 kDa to 54 kDa.  

Using RIPA buffer, the membranes were solubilised and this resulted in the release of both 

bands in to the supernatant layer after centrifugation. Because both fragments contain the 

active site, the primary antibody used reacted with both bands. If the soluble 54 kDa band 

represents the intact 97 kDa band, this means that the simvastatin stimulated the HMGCR 

expression but the Ilex latifolia inhibited HMG-CoA reductase expression compared to the 

control cells (Table 4-8).  If the 72 kDa is released due to the effect of the endogenous Ca+2 

activated protease on the intact protein or due to thawing and freezing (Ness et al., 1981) 

and the 54 kDa released due to the effect of the leupeptin sensitive protease, this means 

that the two fragments together represent the intact protein. The intensities of both 

fragments can be combined to model the effect of simvastatin and Ilex latifolia on HMGCR 

expression. Simvastatin stimulated the HMGCR expression but the Ilex latifolia extract 

inhibited the HMGCR expression compared to the control cells treated with DMSO. This 

hypothesis was checked by using leupeptin in the lysing buffer to inhibit the leupeptin 

sensitive protease. The ratio of 54/72 kDa forms was 0.22 while the ratio of 54/72 kDa was 

0.4 when the cells were lysed using RIPA buffer with protease inhibitor cocktail. 

The same method applied to detect HMG-CoA reductase expression, was used to detect the 

effect of Ilex latifolia extracts on HMG-CoA reductase expression in AML-12 cells.  
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    Figure ‎4-16: Assay of HMG-CoA reductase expression in AML-12 cells.  

Although beta-actin was detected in AML-12 cells lysates, HMG-CoA reductase was not 

detected at all. The method used was the same method used for the detection of HMG-CoA 

reductase in HepG2 cells where the bands were detected at 54 and 72 kDa (section 4.4.3.2).  

The antibody detects mouse forms of HMG-CoA reductase and should have worked for 

AML-12 cells.  The results suggest that expression of HMG-CoA reductase is very low in 

AML-12 cells, or the protein is very unstable. 

4.4.3.5 LDLR expression in AML-12 cells using Western blotting 

 
HepG2 cells were initially used to detect the expression of LDL-receptors but no bands were 

detected (data not shown).  Since AML-12 cells have been used for the detection of LDL-

receptors (Miranda et al., 2015), they were used here to detect the expression of LDLR and 

to assay the effect of Ilex latifolia on LDLR expression.  

 

 

 

 

 

 

 

 

HMG-CoA 
reductase  → 

 

Beta-actin→ 
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AML-12 cells were maintained in three 75 cm2 flasks with full medium supplemented with 10 % 

FBS. Once the cells were confluent, the medium was replaced with new medium. One flask 

was treated with DMSO (< 1%) as a negative vehicle control (Lane C).   The other two flasks 

were treated with 100 µM simvastatin (Lane S) and 100 µg/mL Ilex latifolia butanol extract 

(Lane IL) respectively. The cells were lysed using triton x-100 buffer as mentioned in section 

4.2.2.3.  After SDS-PAGE gel electrophoresis, the proteins were transferred to nitrocellulose 

membrane. LDLR proteins were probed using LDLR primary antibody . Beta-actin, which is a 

house-keeping protein, was detected using beta-actin primary antibody. Lanes S and IL 

showed LDLR bands at 138 kDa, but no LDLR was detected in the control cell extract. The 

beta-actin was detected at 42 kDa (Figure 4-19) at approximately equal intensity in all three 

 

 

 

 

← 250 kDa 

← 150 kDa 

← 100 kDa 

← 75 kDa 

← 50 kDa 

← 37  

Beta-actin 

42 kDa →      

LDLR 

138 kDa →   

Lane C                                      Lane C 

 

 

 

 

Lane S                                     Lane S 

 

 

Lane IL                                         Lane IL 

C        S       IL 

   LDLR 138 kDa                    Beta-actin 42 kDa 

Figure ‎4-18:  Immunoblot of proteins from lysate 

of AML-12 cells which had been treated with 100 

µM simvastatin (Lane S), 100µg/mL Ilex latifolia 

extract (Lane IL), or DMSO which was used as a 

simvastatin vehicle (Lane C). Cells were lysed using 

Triton-X-100 buffer.  LDLR and beta-actin proteins 

were separated by SDS-PAGE followed by transfer to 

nitrocellulose membrane and detection using 

chemiluminescence. Precision plus protein dual xtra 

standards marker  (BioRad) was used as a reference . 

Figure ‎4-17: Plots of LDLR and beta-

actin band intensities (Figure 4-18) 

using Image J. Lane CL is the 

control (DMSO <1%).  Lane SL 

corresponds to the cells treated with 

simvastatin while lane IL corresponds 

to the cells treated with Ilex latifolia.  
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extracts. At 100 kDa there appear strong bands. These bands could be LDLR protein or they 

could be artefacts especially that they appeared after the adjustment of the image brightness. 

The 38 kDa band appeared without any adjustment but after adjustment of the brightness, it 

was more clear.   

Table ‎4-9: The intensities of the bands (Figure 4-17) as determined using Image J.  Lane S is 
used as a reference for lanes C, and IL. 

 

 Lane  

C S IL 

LDLR 138 kDa Intensity  0 6065 325 

Normalized intensity  0 1.000 0.054 

Beta-actin 42 
kDa 

Intensity 26800 24214 24226 

Normalized intensity 1.107 1.000 1.005 

Ratio of LDLR/beta-actin 0 1.000 0.054 
    

Due to the lack of LDLR signal it was not possible to calculate changes in LDLR expression 

relative to the control. Instead the intensities of the LDLR and beta-actin were quantified 

using Image J. (Figure 4-18) and the band of LDLR from the cells treated with simvastatin 

(Lane S) was used as a reference for lanes C and IL. The intensities of the bands in lane S 

were normalized to 1. The intensities of the bands in lanes C and IL were calculated as a 

ratio to the bands in lane S. (Table 4-9) LDLR bands intensities were calculated as a ratio to 

the beta-actin bands to cancel any variation in the results due to the amount of protein 

loaded in the gel. The data show that LDLR expression was considerably enhanced, by 

about 20 times, in cells treated with simvastatin compared with cells treated with Ilex latifolia.  
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←150 

←100 

←75 

←50 

138→ 

55→ 

123→

→ 
 133.4→ 

116→ 

C        S             IL 

                 

Figure ‎4-19:  Immunoblot to detect 

LDLR in lysates of AML-12 cells which 

had been treated with 100 µM 

simvastatin (Lane S),  100 µg/mL ilex 

latifolia extract (Lane IL), or  DMSO 

which was used as a simvastatin 

vehicle ( Lane C) . All the flasks were 

lysed using triton-x100 buffer.  LDLR and 

beta-actin proteins were separated by 

SDS-PAGE and transferred to 

nitrocellulose membrane before detection 

using chemiluminescence. Precision plus 

protein dual xtra standards marker 

(BioRad) was used as a reference. 

 

 

 LDLR 

Beta-actin 

42 kDa →    
   

LDLR  Beta-actin 42 kDa 

Lane S 

Lane IL 

Lane C 

Lane S 

Lane IL 

Figure ‎4-20: Plots of LDLR and beta-actin 

bands (Figure 4-19) using image j. Lane CL is 

the control (DMSO <1%).  Lane SL corresponds 

to the cells treated with simvastatin). 
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Table ‎4-10: The intensities of the bands (Figures 4-19, 4-20) as calculated by Image J.  Lane S is 
used as a reference for lanes C, and IL for bands with 138, 116, and 55 kDa molecular weight . Lane 
IL is used as a reference for lane S with 116 kDa molecular weight.  
  

 Lane 

C S IL 

LDLR 138 
kDa 

Intensity  0 497 0 

Normalized intensity  0 1.0 0 

LDLR 123 
kDa 

Intensity  0 0 440 

Normalized intensity 0 0 1.0 

LDLR 116 
kDa 

Intensity  0 830 409 

Normalized intensity 0 1.0 0.49 

LDLR 55 kDa Intensity  0 196.7 0 

Normalized intensity 0 1.0 0.0 

Beta-actin 42 
kDa 

Intensity  3259 13070 22626 

Normalized intensity 0.25 1.0 1.73 

Ratio LDLR 138 kDa/ Beta-actin 0 1.0 0 

Ratio LDLR 123 kDa/ Beta-actin 0 0 1.0 

Ratio LDLR 116 kDa/ Beta-actin 0 1.0 0.28 

Ratio LDLR 55 kDa/ Beta-actin 0 1.0 0 

 

LDLR were also detected in HepG2 and AML-12 cells using LDLR (C-20) antibody (Santa 

Cruz Biotechnology sc-11824). No bands were detected for LDLR in HepG2 or AML-12 cells. 

This antibody was used to detect the LDLR before the antibody purchased from Novus 

Biological was used. It did not detect the bands but because LDLR was detected in AML-12 

cells, the search for another antibody was the second step. 

                         

                         

Figure ‎4-21: Immunoblot to detect LDLR in lysates of AML-12 and HepG2 cells using Santa 

Cruz primary antibody. LDLR and beta-actin proteins were analysed by SDS-PAGE and transferred 

to nitrocellulose membrane before detection using chemiluminescence. Precision plus protein dual 

xtra standards marker (BioRad) was used as a reference. 

 LDLR→ CL     SL       IL          CN      SN        C      S     IL 

Beta-actin→ 

42 kDa 
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The blot, shown in Figure 4-21, shows that although beta-actin was detected in most of the 

loaded samples, no bands were detected for LDLR. This indicates that the primary antibody 

used in the previous experiments (EP1553Y from Novus Biologicals, Abingdon, UK) is more 

sensitive for detection of LDLR in AML-12 cells. 

4.5 Conclusion 

A major effort was made to try to detect effects of Ilex latifolia extract on cholesterol 

metabolism in hepatocyte model cell lines.  The first phase was to focus on enzymic assay 

of  HMG-CoA reductase, as the rate-limiting enzyme in cholesterol synthesis. HMG-CoA 

reductase catalyzes the reaction HMG-CoA + 2NADPH + 2H+ leading to mevalonic acid + 

2NADP+ + COASH. NADP+ has a yellow colour and consequently cannot be measured 

using colorimetric methods. The enzyme is unstable for prolonged periods at assay 

temperatures and the colour of the product is not stable as well, so that the readings should 

be done within seconds to 5 minutes as mentioned by the supplier (Sigma Aldrich, SC 1090). 

This method is complicated and not reliable. The second method was to detect the reaction 

products CoA and NADP using HPLC. However, HPLC was found not to be suitable method 

to assay HMGCR activity because the assay was done on a very small scale and HPLC is 

not sensitive to small changes in concentrations which could be in nanogram amounts.  

The third method was to detect mevalonolactone using LC-MS which is more sensitive than 

HPLC. LC was required to separate the peak of mevalonolactone, and MS was to be used 

as a detector. For this reason, the minimum detected concentration of mevalonolactone was 

determined using HPLC but this method was not reliable because mevalonolactone was 

detected in microgram amounts only and the wavelength used was 200 nm and this resulted 

in interference from the mobile phase which contained formic acid.  

Considering all the disadvantages of these methods, the samples were prepared for assay 

by LC-MS but unfortunately the assay could not be done because the instrument became 

unavailable.  
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Consequently, in the second phase, Western blotting was used to detect expression of 

HMG-CoA reductase. The inhibitory effects of Ilex latifolia and simvastatin, which is an 

approved HMG-CoA reductase inhibitor, would be manifested as an increase in HMG-CoA 

reductase protein expression. HepG2 cells were initially used to do the assay. HMG-CoA 

reductase as a full length protein has a 97 kDa molecular weight. After gel electrophoresis 

and Western blotting, the enzyme was detected at 72 and 54 kDa, but no full length bands 

were ever detected. Nevertheless it was possible in two experiments (Figs. 4-9 and 4-13) to 

show that simvastatin stimulated the expression of the enzyme to varying amounts, 

depending on how the extracts were prepared, but Ilex latifolia did not show any effect 

compared to the control.   However it was difficult to reproduce the results in a consistent 

way, and other experiments showed a down-regulation of HMG-CoA reductase bands after 

treatment with simvastatin (Figs. 4-17, 4-11, 4-13).  The levels of expression of HMG-CoA 

reductase in HepG2 cells are not very high and it was hoped that AML-12 mouse liver cells 

would have higher levels of detectable protein. This turned out not to be the case (Fig. 4-12) 

and no HMG-CoA reductase could be detected.   The variable patterns could be due to the 

poor stability of the enzyme. The enzyme is sensitive to the endogenous Ca2+ activated 

enzymes which break it to a 62 kDa fragment which remains membrane bound. This 62 kDa 

fragment is sensitive to leupeptin sensitive enzyme which breaks it down to 52-56 kDa 

soluble fragment. The enzyme is not stable under freezing and thawing conditions which 

could have the same effect as the enzymes mentioned before. The 72 kDa fragment 

detected in HepG2 cells could be similar the 62 kDa fragment detected in other cells. To 

inhibit the leupetin sensitive protease, RIPA buffer was replaced by a lysing buffer containing 

leupeptin. The result was that the 72 kDa band was more intense than the previous assays 

but there was no indication that Ilex latifolia induced HMGCR expression compared to 

simvastatin (Figure 4-14). In order to make the assay reliable it is necessary to establish 

conditions in which consistent results are obtained. Although attempts were made to 

optimise conditions e.g by using different lysis buffers and protease inhibitors, the process of 

optimisation was very time consuming and not productive. It seems likely that the enzyme is 
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turned over especially quickly in the liver and not highly expressed (discussed in Liscum et al. 

1983), which means a hepatocyte model is difficult to use. The early studies on HMG-CoA 

reductase by Brown and Goldstein were based on a variety of non-liver cell lines e.g. Chin et 

al. (1982) used Chinese hamster ovary cells, in which levels of full-length HMG-CoA 

reductase were easily detectable. Although the liver is a key organ for control of cholesterol 

in the body, other tissues employ the same homeostatic mechanisms (Brown and Goldstein 

1980).  Future assessment of modulators of HMG-CoA reductase could be tried using a 

more robust cell culture model such as Chinese hamster ovary cells. 

Inhibition of HMG-CoA reductase induces expression of LDL receptors, and in the third 

phase of the investigation LDLR expression was assayed using AML-12 cells, which are 

known to express measurable levels of LDLR. The effect of Ilex latifolia extract was 

compared to simvastatin. Simvastatin stimulated LDLR expression as shown by detection of 

a band at 138 kDa (Fig. 4-19) but Ilex latifolia did not have any effect on the expression of 

LDLR band at 138 kDa, although small amounts of other bands were detected. Taken 

together, and although the data are fragmentary, the results indicate that the butanol extract 

of Ilex latifolia has little effect on pathways of cellular cholesterol metabolism.
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5 Chapter V: Assessment of Ilex latifolia extracts on hepatocyte 

glucose metabolism 

5.1 Introduction 

5.1.1 Glucose uptake 

Accelerated atherosclerosis and congestive heart diseases are usually associated with 

diabetes (Steiner, 1985). The majority of people with type 2 diabetes die of atherosclerosis 

and congestive heart disease because diabetic people are at greater risk of developing 

cardiovascular disease (Rudermann NB, 1990), although the mechanism relating diabetes to 

atherosclerosis is not well understood. Stimulation of glucose uptake and metabolism could 

help in reducing the risk of hyperlipidemia. Another concern is that if oxidative 

phosphorylation is affected, there may be potential for toxicity. This chapter describes an 

assessment of the effect of Ilex latifolia extract on glucose uptake and metabolism in AML-12  

and HepG2 cells, as models of hepatocytes, and  investigates the possibility that oxidative 

phosphorylation could be mildly inhibited.   

5.1.2 Mitochondrial toxicity 

In most mammalian cells, mitochondria produce >90  of the cell’s energy in the form of 

adenosine triphosphate (ATP), required for survival. Agents that inhibit or undermine  

mitochondrial function will result in less cell viability, and according to the severity, result in 

tissue or organ injury and toxicity (Masubuchi et al., 2006). Liver, cardiovascular system, 

skeletal muscles, nervous system, and kidneys could be injured by different drugs in this 

way.  Due to safety concerns, 38 of the new  drugs approved by the US Food and Drug 

administration (FDA) were withdrawn from the market because they have had hepato- and 

cardiotoxicities (Shah, 2006). Failure to detect the adverse reactions of these drugs, 

although it only represents a small percentage (2-3 %) of the total, results in human suffering, 

reduces trust in the pharmaceutical industry and leads to financial losses (Shah, 2006). 

Toxicity is missed and could not be revealed by even a large phase III trial because it rarely 

occurs. If 0.1 % of patients experience side effects of a drug, this means more than 10,000 
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patients should be exposed before the probability of the event occurring becomes realistic. 

The relation between mitochondrial impairment due to drug exposure and etiology of various 

organ toxicities has been acknowledged recently. Some drugs such as troglitazone, 

cerivastatin, and tolcapone have been withdrawn from the market because they caused 

organ toxicities related to mitochondrial dysfunction (Ong et al., 2007). Tumour derived 

immortalized cell lines are mainly used in the cell-based assays used in drug discovery and 

development because they can be grown in a reproducible and controlled way.  However, 

unlike normal cells they can metabolically grow under hypoxic and acidic conditions, and 

they produce all the required energy from glycolysis rather than depending on mitochondrial 

oxidative phosphorylation (OXPHOS) (Rodriguez-Enriquez et al., 2001). HepG2 cells are not 

affected by mitochondrial toxicants due to the high glycolytic capacity, which is typical of 

cancer cells. When HepG2 cells are grown in galactose medium instead of glucose medium, 

they will increase the respiration rates to maintain ATP levels because galactose has to be 

converted to glucose inside the cell, which has an energy cost, before entering glycolysis 

(Warburg et al., 1967). Using galactose as a metabolic fuel means that cells can no longer 

generate most of the ATP requirement through glycolysis. Oxidation of galactose to pyruvate 

via glycolysis will force the HepG2 cells to use the mitochondrial OXPHOS to generate 

sufficient ATP for survival because the galactose oxidation to pyruvate yields no net ATP 

(Rossignol et al., 2004). The effect of different concentrations of Ilex latifolia extract on 

growth of HepG2 cells in glucose compared with galactose was investigated by using the 

MTT assay. Further work was done to investigate the effect of Ilex latifolia extract on the 

ATP levels in HepG2 cells. The toxicity of Ilex latifolia was assessed by replacing galactose 

for glucose in the medium to investigate its effect on the mitochondrial function of HepG2 

cells. AML-12 cells are non-tumorigenic cells. They are a hepatocyte cell line derived from 

transforming growth factor-alpha (TGF-α) transgenic mice (Wu et al., 1994), and do not have 

the tumour phenotype of energy metabolism. AML-12 cells are more sensitive than HepG2 

cells to mitogenic toxins. For example when AML-12 cells were treated with the mitogenic 

toxin pentachlorophenol (PCP), the LD50 was 16.2 + 2.0 µg/mL compared with an LD50 of 
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23.4 + 9.7 µg/mL in HepG2 cells (Dorsey et al., 2004). The effect of Ilex latifolia extract on 

AML-12 cell growth was investigated using the MTT assay. The effect of Ilex latifolia on the 

mitochondrial function of AML-12 was assayed when the cells were grown in medium 

containing glucose and when galactose was replaced for glucose. FCCP, an approved 

mitochondrial toxicant, was used as a positive control.  The effect of Ilex latifolia on glucose 

uptake in HepG2 and AML-12 cells was investigated and the glucose consumption was 

normalized to the cell growth. In the case of AML-12 cells, the effect of the presence of 

insulin in the medium was also investigated. 

5.2 Experimental methods 

5.2.1 Materials  

HepG2 cells were purchased from ECACC (Salisbury, UK). Dulbecco’s modified Eagle’s 

medium (DMEM), DMEM glucose deprived medium, glucose, galactose, 3-(4,5 

dimethylthiazol-2-yl)-2,5, diphenyltetrazolium bromide (MTT), carbonyl cyanide4-

(trifluoromethoxy) phenylhydrazone (FCCP), L-glutamine and DMSO were purchased from 

Sigma-Aldrich (Gillingham, UK). Sterile 24 well plates were purchased from Fisher Scientific 

(Loughborough, UK). Trypsin was purchased from Gibco (Paisley, UK). Dialysed foetal calf 

serum (FCS) was purchased from First Link UK limited (Wolverhampton, UK). All the 

experiments were done using Ilex latifolia butanol extract (Chapter II, section 2.3.3). 

5.2.2 Assessment of Ilex latifolia on HepG2 cell growth 

The HepG2 cells were seeded at 1.3 x 104 cells per ml of DMEM/ 10 % FCS in a 24 well 

plate. After the cells were almost fully confluent, the medium was changed and the cells 

were treated with DMSO (<1%) as a negative, vehicle, control, and with Ilex latifolia butanol 

extract. Ilex latifolia extract (17 mg/mL) was diluted two-fold five times in DMSO. The assay 

was done in triplicate.  Cell growth and cell toxicity was assessed using an MTT assay. After 

overnight treatment of cells, 300 µL of the medium was removed. 50 µL of MTT solution (5 

mg/ml in PBS) was added to each well. The solutions in the wells were mixed by gentle 

swirling and the cells were incubated at 37 ºC for 3.5 hours. After incubation the medium 
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mixed with MTT was removed and 500 µL of DMSO were added to lyse the cells and 

dissolve the purple crystals that develop by reduction of the MTT to formazan, by pipetting 

up and down several times. The plates were covered with aluminium foil to protect the 

solution from light followed by shaking on an orbital shaker for 15 mins. After 15 minutes of 

shaking, the absorbance was read at 590 nm corrected for light scattering at 620 nm using a 

FLUOstar Omega plate reader (BMG Labtech, Aylesbury, UK). 

5.2.3 Assay of mitochondrial toxicity of Ilex latifolia on HepG2 cell 

HepG2 cells were grown at 1.3 x 105 cells/mL in two 24 well plates. After full confluency, the 

medium was changed to 10 mM glucose and 10 mM galactose medium in each plate 

respectively. The first columns (wells A1-A4) were treated with 5 µL of 93 mg/mL Ilex latifolia 

solution. The second columns (wells B1-B4) were treated with 5µL 46.5 mg/mL of Ilex 

latifolia solution. The third columns (wells C1-C4) were treated with 5 µL 32.25 mg/mL of Ilex 

latifolia solution. The fourth columns (wells D1-D4) were treated with 5 µL of 16.125 mg/mL 

of Ilex latifolia. The fifth columns (wells E1-E4) were treated with 5 µL of DMSO (<1%) as a 

vehicle, negative control. The sixth columns (wells F1-F4) were treated with 5 µL of 10 mM 

FCCP as a positive control. The treatment was applied to cells grown in glucose and 

galactose respectively. All the treated cells were incubated overnight at 37 ºC with 5 % CO2 

supply. The following day cell survival was assessed by an MTT assay as described in 

section 5.2.2. 

5.2.4 Assay of ATP levels in HepG2 cells 

5.2.4.1 Treatment of cells 

HepG2 cells were seeded in a 6 well plate at 2.3 x104 cells per mL. After growing to full 

confluence, the cells were treated overnight with Ilex latifolia butanol extract at 920, 460, 230, 

and 115 µg/mL respectively. DMSO was used as vehicle, negative control. One well was left 

without any treatment to investigate if DMSO will have any effect on cell viability and 

consequently on ATP levels. After incubation overnight, the cells were lysed with boiling 

water by pipetting up and down several times (Yang et al., 2002). The lysed cells were 
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transferred to an Eppendorf tube and centrifuged at 17226 g for 5 minutes. The supernatant 

layer was separated. 

5.2.4.2 Determination of the protein content of cell lysates using Bradford reagent 

Bovine serum albumin was prepared at 3.5 mg/mL in PBS. BSA was diluted two-fold five 

times. To a 96 well plate, 5 µL of the BSA standard solutions, or 5 µL of the cells lysates, 

were added. Boiled water was used as a blank. 250 µL of the Bradford reagent were added 

to each well. The plate was shaken on an orbital shaker for 15 seconds and left for 15 mins. 

After shaking the absorbance was measured 595 nm using a FLUOstar Omega plate reader 

(BMG Labtech, Aylesbury, UK).  

5.2.4.3 Assay of ATP levels in the cell lysates 

ATP levels in the cells lysates were assayed using an ATP assay kit purchased from Abcam 

(Cambridge,UK, cat. No ab83355).  ATP standards were prepared as a 10 mM stock 

solution, which was further diluted to 1 mM and lower concentrations as indicated in Table 5-

1. 

Table ‎5-1: Serial dilutions of 1mM standard ATP 

Final [ATP] in well ATP 1mM 
Standard‎(μL) 

Assay 
Buffer‎(μL) 

Total 
Volume‎(μL) 

0mM = 0 nmol/well 0 150 150 

0.04mM =  
2 nmol/well 

6 144 150 

0.08mM =  
4 nmol/well 

12 138 150 

0.12mM =  
6 nmol/well 

18 132 150 

0.16mM =  
8 nmol/well 

24 126 150 

0.2mM =  
10 nmol/well 

30 120 150 
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ATP assay reaction mixture was prepared by adding 1100 μL of ATP assay buffer 

and 50 μL of ATP probe, ATP converter, and ATP developer mix respectively. These 

solutions were provided in the assay kit and did not have contents listed. To the 

wells, 50 μL of reaction mixture were added. 50 μL of each standard solution or cell 

lysate were added and incubated at room temperature for 30 mins protected from 

light. After incubation, the absorbance was measured 570 nm corrected for light 

scattering at 620 nm using a FLUOstar Omega plate reader (BMG Labtech, 

Aylesbury, UK). 

5.2.5 Effect of Ilex latifolia extract on glucose uptake by HepG2 cells 

In preliminary experiments, a time course of glucose consumption was established with a 

view to selecting an appropriate time point for assessing the effect of treatments. HepG2 

cells were seeded in a 24 well plate and 5 µL of Ilex latifolia butanol extract at 10, 3, 1, 0.3, 

and, 0.1 mg/mL were added respectively. The medium glucose was checked with a 

glucometer (Codefree blood glucose monitoring apparatus made by SD Biosensor Inc, 

Korea, purchased from Home Health UK, Watford, Herts) and found to be 10.8 mM glucose. 

The glucose content of the wells was measured for 3 days using the glucometer. The assay 

was done in quadruple, and the experiment was repeated. To examine the effect of 

treatments a 24-hour period was chosen. HepG2 cells were grown till confluency. The 

medium was changed to DMEM containing 11 mM glucose. 5 µL of 1.0, 0.3, 0.1, 0.03 and 

0.01 mg/mL Ilex latifolia extract were added to each set of cells. They were incubated for 24 

hrs and the glucose in the medium was measured using the glucometer. DMSO was used as 

vehicle negative control. An MTT assay was done to determine the cell quantity. 
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5.2.6 The effect of Ilex latifolia extracts on glucose metabolism on mouse liver 

AML-12 cells 

5.2.6.1 AML-12 cell treatment 

AML-12 cells were grown in DMEM-Ham F12 (1:1) medium containing 0.005 mg/mL insulin, 

0.005 mg/mL transferrin, 5 ng/mL selenium, and 40 ng/mL dexamethasone, supplemented 

with 10 % FCS at 1.3 x 105 cells/mL in four 24 well plate. After full confluency, the medium in 

two plates was changed to 10 mM glucose with and without insulin respectively. The 

medium in the other two plates was changed to 10 mM galactose with and without insulin 

respectively. The first columns (wells A1-A4) were treated with 5 µL of 100 mg/mL Ilex 

latifolia extract. The second columns (wells B1-B4) were treated with 5µL 50 mg/mL of Ilex 

latifolia extract. The third columns (wells C1-C4) were treated with 5 µL 25 mg/mL of Ilex 

latifolia extract. The fourth columns (wells D1-D4) were treated with 5 µL 12.5 mg/mL of Ilex 

latifolia extract. The fifth columns (wells E1-E4) were treated with 5 µL of DMSO (<1%) as a 

vehicle negative control. The sixth columns (wells F1-F4) were treated with 5 µL of 10 mM 

FCCP as a positive control. The treatment was done to cells grown in glucose and galactose 

respectively. All the treated cells were incubated overnight at 37 ºC with 5 % CO2 supply. An 

MTT assay was performed as described in section 5.2.2. 

5.2.6.2 Glucose uptake 

AML-12 cells were grown in a 24 well plate until confluent. The medium was changed to 

DMEM/Ham F-12 (1:1) containing 11.3 mM glucose, ITS, and dexamethasone. 5 µL of 10, 3, 

1, 0.3, and, 0.1 mg/mL Ilex latifolia extract were added to each set of cells. DMSO was used 

as vehicle negative control. They were incubated for 24 hrs. Glucose was measured for 4 

consecutive days using the glucometer. The same method was repeated by treating the cells 

with 5 µL of 1, 0.3, 0.1, 0.03 and 0.01 mg/mL Ilex latifolia extract using insulin and insulin 

free medium. Glucose was measured using the glucometer for three consecutive days and 

an MTT assay was done to determine the cell quantity, on the third day. The assay was 

done in quadruple. 
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5.2.7 Data analysis 

GraphPad Prism  was used to model the data. One-way and two-way ANOVA were used to 

compare the means of controls with treatments. 

5.3 Results  

5.3.1 Investigation of the mitochondrial toxicity of Ilex latifolia on HepG2 cells 

HepG2 cells were seeded about 1.3x10
5

 cells/ mL in normal full DMEM and left to grow 

overnight.  The medium was changed next day to lab-prepared DMEM / dialysed FCS / 1 

mM pyruvate / 4 mM glutamine and 10 mM glucose or galactose. The cells were treated with 

10 mM FCCP as a positive control and with DMSO as a negative vehicle control or I. latifolia 

extract in two-fold serial dilutions. All the treatments were done in quadruplicate. Cells were 

treated overnight and an MTT assay was done.  The aim of the assay was to compare the 

effect of the treatments in cells grown in glucose with cells grown in galactose, shown in 

Figure 5-1. 
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Figure ‎5-1: Assessment of effect of Ilex on HepG2 mitochondrial function.  Data are the mean + 

SD pooled from four independent MTT assays of HepG2 cells grown in glucose , or galactose .  Cells 

were treated with extract of Ilex latifolia at the concentrations indicated or with the mitochondrial 

inhibitor FCCP.  
*
p< 0.05, 

**
p<0.01, and 

***
p<0.001 compared to glucose containing medium. 

∆∆ 
p<0.01 

and 
∆∆∆

 p<0.001
 
compared to control untreated cells as determined by 2-way ANOVA followed by 

Bonferroni posttests. Ilex latifolia has a greater inhibitory effect on HepG2 growth when the cells are 

grown in glucose compared with galactose, although the cells in galactose are aerobically poised, as 

shown by the inhibition of growth by FCCP. 

The graph above (Figure 5-1) shows the effects of Ilex latifolia extract compared to FCCP 

and DMSO on cells grown in DMEM-glucose or galactose medium. The data are normalized 

to controls to make comparison easier, but it is important to note that cells grow twice as 

much in glucose compared with galactose (data not shown). The difference in rates may be 

because the rate of ATP production is lower with galactose. In order to grow, cancer cells 

need a good supply of ATP from glycolysis, so the rate of glucose utilization in the glycolytic 

pathway is higher than normal. If galactose is the only fuel, it must first be converted to 

glucose, via the Leloir pathway, and the rate through this pathway may not be as high as the 

capacity of glycolysis.  The FCCP is an approved mitochondrial toxicant and was used to 

confirm that the mitochondria of HepG2 cells are metabolically active in galactose, but less 

so in glucose. The effect of FCCP on the cells grown in galactose medium is very high (90.4 % 

growth inhibition) compared to the effect on the cells grown in the glucose medium (33 % 

*** 

 

** 

 
* 

 
∆∆∆ 

 

∆∆∆ 

 

∆∆ 
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growth inhibition), and confirms that the HepG2 cells grown in galactose are aerobically 

poised. Ilex latifolia inhibited the growth of cells grown in both media, but the effect of the Ilex 

latifolia extracts on the cells grown in glucose medium was higher than the effect on the cells 

grown in galactose medium. Ilex latifolia at 112.875 µg/mL had the same effect on HepG2 

cells growth in glucose and galactose containing media. At 225.75 µg/mL Ilex latifolia 

inhibited the growth of HepG2 cells by 11 % (P <0.001) when the cells were grown in 

glucose containing medium. When galactose was replaced for glucose, Ilex latifolia did not 

show any effect. At 451.5 µg/mL, Ilex latifolia inhibited HepG2 cells growth by 30.8 % in 

glucose (P<0.001) compared to the control, but it only inhibited HepG2 cells growth by 14.4 % 

in galactose (P>0.05). Ilex latifolia inhibited HepG2 cells growth in glucose 16% more than in 

galactose (P<0.05). Ilex latifolia at 903 µg/mL inhibited HepG2 cells growth by 52% 

(P<0.001) in glucose while in galactose the inhibition effect was 27.2% (P<0.01) at 903 

µg/mL compared to the control. Ilex latifolia inhibition effect in glucose was 24.8 % more 

than in galactose (P<0.001). Cells growing in glucose are more sensitive to Ilex latifolia than 

cells growing in galactose, but the glucose cells grow at twice the rate.  It is possible that Ilex 

latifolia can affect the rate of glycolysis. This effect, compared to the effect of FCCP, shows 

that the Ilex latifolia toxicity on HepG2 cells is not due to mitochondrial toxicity but it could be 

due to another reason which needs to be investigated in the future. 

5.3.2 Assessment of the effect of Ilex extract on cellular ATP  

Lysates from cells treated with Ilex latifolia at different concentrations, with DMSO as vehicle 

negative control, or without any treatment, were assayed for their protein content, to 

normalise ATP measurements with respect to cell mass. Bovine serum albumin (BSA) was 

used as a standard. The absorbance was measured at 595 nm. A standard calibration curve 

for BSA was obtained, shown in Figure 5-2.  Using the calibration curve (Figure 5-2), the 

protein content of different cell lysates was calculated. All the protein contents are 

summarized in Table 5-2. 
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Figure ‎5-2: Standard curve of BSA for the Bradford protein assay. The assay was done in 

triplicate.  

                             Table ‎5-2: Protein content of cells lysates using Bradford assay  

Sample 
Ilex latifolia  

[µg/mL] 
Absorbance 

Protein 
[µg/mL] 

S1 920 0.136 18.88 

S2 460 0.165 22.92 

S3 230 0.197 27.36 

S4 115 0.206 28.61 

S5 DMSO<1% 0.224 31.11 

S6 
Control (no 
treatment) 

0.204 28.33 

The results in Table 5-2 reflect the data obtained from the MTT assays described in section 

5.3.1, with reduced protein content, compared with controls, in cells treated with the higher 

concentrations of extract.   
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The ATP content of the cell extracts was determined using the calibration curve of standards 

shown in Figure 5-3.  

 

                         Figure ‎5-3: Standard curve of ATP. Data are means of duplicates. 

The ATP content of lysates from cells treated with Ilex latifolia or DMSO, and lysates of cells 

without any treatment are given in Table 5-3. The standard calibration curve was used to 

determine the ATP level in the cells lysates. The ratio of ATP to the total protein content was 

determined, and is shown in Table 5-3. 

 

Table ‎5-3: ATP content of lysates of cells treated with different concentrations of Ilex 

latifolia  

 
Sample 

 
Ilex latifolia 

[µg/mL] 

 
Absorbance 

 
Protein 
[µg/mL] 

 
ATP(µM) 

 
ATP 

[µg/mL] 

 
ATP / 

protein(%) 

S1 920 0.136 18.88 7.32 3.71 19.7 

S2 460 0.165 22.92 16.52 8.38 36.6 

S3 230 0.197 27.36 21.86 11.00 40.2 

S4 115 0.206 28.61 19.18 9.73 34.0 

S5 DMSO<1% 0.224 31.11 18.80 9.53 30.6 

S6 
Control (no 
treatment) 

0.204 28.33 23.25 11.8 41.6 

  

y = 5.6527x 
R² = 0.8033 
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Figure ‎5-4: Effect of Ilex latifolia on ATP levels in HepG2 cells grown in medium containing 

glucose. Data are the mean + SD of duplicate assays of ATP in HepG2 cells treated with Ilex latifolia 

at different concentrations. 
*
P<0.05 compared to 115.1 µg/mL as determined by one-way ANOVA 

followed by Bonferroni post-hoc tests.  

 

The graph (Figure 5-4) shows the effect of different concentration of Ilex latifolia on ATP 

levels in HepG2 cells compared to control untreated cells. The results are the means of 

duplicates. To avoid the effect of the herb on the cells’ viability, ATP levels were calculated 

as a ratio to the total protein of each cell lysate. Ilex latifolia at 920 µg/mL inhibited the 

production of ATP by 35% compared with control (P>0.05). This effect is not significant as 

calculated by one-way ANOVA. On the other hand, Ilex at 920 µg/mL inhibited ATP 

production by 42% when compared to the effect at 115.1 µg/mL (P<0.05). It was interesting 

to investigate the effect of Ilex on ATP production in HepG2 cell when galactose is replaced 

for glucose especially that HepG2 cells were more sensitive to Ilex at 903 µg/mL in glucose 

than galactose. 

 

* 



146 
 

5.3.3 Effect of Ilex latifolia glucose consumption by HepG2 cells 

The effect of Ilex latifolia on glucose consumption was investigated by growing the cells in 24 

well plates in full medium till confluency. After 90% confluency, the medium was changed to 

a glucose free medium to which glucose was added at 11.3 mM. The cells were incubated 

overnight and the glucose was measured using a Codefree blood glucose monitoring 

apparatus for three consecutive days.  The results (Figure 5-5) show that the Ilex latifolia 

had little stimulation effect on glucose consumption at low concentrations (3 and 1 µg/mL), 

but it did not have any effect at higher concentrations compared to DMSO which was used 

as vehicle negative control. The main drawback of this method is that the glucose uptake is 

measured without considering the cells’ densities in the wells, which will affect the glucose 

uptake. It was not expected that HepG2 cell growth would be much affected by the 

concentrations of Ilex latifolia extract used in these experiments compared with earlier 

experiments, shown in Figure 5-1, which used a range of 112 to 903 µg/mL. 
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Figure ‎5-5: Effect of Ilex latifolia on glucose consumption by HepG2 cells. Data are the mean 

+SD of 4 assays of glucose consumption in HepG2 cells treated with Ilex latifolia and compared to 

control untreated cells. The assay was done for three consecutive days by measuring the glucose 

taken by the cells per day.  
**
P<0.01 and 

***
P<0.001 compared to the control untreated cells in each 

day as determined by two-way ANOVA followed by Bonferroni post-hoc tests. 

         

Ilex latifolia at 100 µg/mL inhibited glucose consumption in the three day assays (P<0.01 for 

days 1 and 2 and P<0.001 for day 3). The other concentrations (Figure 5-5) showed a little 

bit of stimulation of the glucose consumption especially 1, 3, and 10 µg/mL but the effect 

was not significant (P >0.05). To take into account the effect of the cell number on glucose 

consumption, an MTT assay was carried out at the end of the treatment period and the 

results were normalised by calculating the glucose uptake relative to cell amount.  

*** 
** 

** 
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Figure ‎5-6: Effect of Ilex latifolia on glucose consumption by HepG2 cells. Data are the mean 

+SD of 4 assays of glucose consumption normalized to cell growth  in HepG2 cells treated with Ilex 

latifolia at indicated concentrations and compared to control untreated cells. 
**
P<0.01 compared to the 

control untreated cells, and 
∆
P<0.05, 

∆∆
P<0.01, and 

∆∆∆
P<0.001 compared to 10 µg/mL as determined 

by one-way ANOVA followed by Bonferroni post-hoc tests.  

The assay of the effect of low concentrations of Ilex latifolia (Figure 5-6) on glucose 

consumption normalized to cell growth  in HepG2 cells showed that Ilex latifolia at 0.1, and 

0.3 µg/mL stimulated glucose consumption but the effect was not significant (P>0.05) as 

determined using one-way ANOVA. 1, 3, and 10 µg/mL inhibited glucose consumption in 

HepG2 cells. While the effect in the 1 and 3 µg/mL was not significant (P>0.05), the effect of 

10 µg/mL was significant (P<0.01). The mechanism of action of Ilex latifolia in stimulating or 

inhibiting glucose consumption needs to be explored. 

 

5.3.4 Assessment of mitochondrial toxicity of Ilex latifolia extracts on AML-12 

cells 

Cells are metabolically active in the presence of galactose because they use the oxidative 

phosphorylation pathway in mitochondria to produce ATP. Cancer cells often have an 

abnormally large capacity to produce ATP by glycolysis and are less reliant on mitochondrial 

** 

∆ 

∆∆ 
∆∆∆ 
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respiration to produce ATP. AML-12 cells are mouse liver cells that are not derived from a 

cancer, unlike HepG2, and should have a more limited capacity to produce ATP by 

glycolysis only. In addition AML-12 cells should be more sensitive to treatments that affect 

mitochondrial activity than HepG2 cells. AML-12 cells grown in the presence of glucose or 

galactose were treated with extracts of Ilex latifolia or with FCCP and DMSO and assayed 

for cell growth. Insulin is normally added to the growth medium for AML-12 cells and cells 

grown in AML-12-glucose or galactose medium in the presence or absence of insulin were 

compared. 

                       Effect of medium on AML-12 cells  growth
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Figure ‎5-7: Effect of medium on AML-12 cell growth. The data are from MTT assays of cell growth 

and are the mean+SD of 4 different assays of the effect of glucose or galactose in the presence or 

absence of insulin. All the columns are compared to each other using one-way ANOVA followed by 

Bonferroni post-hoc tests. 
*
P<0.05 compared to galactose ins-.  

Before the assay of the effect of Ilex latifolia on AML-12 cell growth, it was important to 

investigate if replacing glucose with galactose in the presence or absence of insulin has any 

effect on the cell growth. Figure 5-7 shows that there was a significant difference was 

between cells grown in glucose without insulin and galactose without insulin (P<0.05), with a 

* 
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slower growth in galactose by about 20%. In the presence of insulin there was no difference 

between glucose and galactose, and insulin added to the medium made no difference.   

The first experiment was to check the effect of Ilex latifolia on AML-12 cells growth when 

glucose was replaced for galactose in the presence of insulin.  
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Figure ‎5-8: Effect of Ilex latifolia on AML-12 cells mitochondrial function. Data are the mean 

+SD from four independent MTT assays of AML-12 grown in glucose or galactose in the presence of 

insulin. Cells were treated with Ilex latifolia at the indicated concentrations or with the mitochondrial 

inhibitor FCCP. 
***

P<0.001 compared to the control untreated cells in each medium respectively, and 
∆∆

P< 0.01 and 
∆∆∆

P<0.001 compared to the effect of the same concentration when glucose is replaced 

to galactose as determined by two-way ANOVA followed by Bonferroni post-hoc tests.  

The first analysis was to check the effect of Ilex latifolia on the cell growth when the cells are 

grown in galactose with insulin compared to the control untreated cells. Ilex latifolia at 125, 

250, 500, and 1000 µg/mL inhibited AML-12 cell growth by 47 % (P< 0.001), 77.5% (P< 

0.001), 82% (P<0.001), and 68.7% (P< 0.001) respectively. The second analysis was to 

check the effect of Ilex latifolia when the cells are grown in a medium containing glucose and 

insulin. While the 125  µg/mL did not show any inhibition effect, 250, 500, and 1000 µg/mL 

*** 

*** 

*** 

*** *** 
*** *** 

∆∆∆ 

∆∆ 
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inhibited AML-12 cells growth by 51% (P<0.001), 79.5% (P< 0.001), and 73% (P< 0.001) 

respectively.  The third step was to compare the effect of Ilex latifolia on the cells when 

grown in galactose to the effect of Ilex on the cells when grown in glucose.  The only 

significant effects were at 125 µg/mL where Ilex latifolia inhibited the cell growth in galactose 

by 60% (P<0.001) compared to the Ilex latifolia inhibition effect on cells growth in glucose, at 

250 µg/mL where the inhibition effect of Ilex latifolia was 26.5% (P<0.01) more in the 

galactose medium compared to the glucose medium.  These effects can be compared to the 

effect of FCCP which inhibited cell growth by 95% and 96% in glucose and galactose 

respectively. This shows that AML-12 cells are aerobically poised when grown in glucose or 

in galactose, and the different effects of Ilex latifolia on cells grown in glucose and galactose 

must be due to a mechanism which is not mitochondrial toxicity.  
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Figure ‎5-9: Effect of Ilex latifolia on AML-12‎cells’‎mitochondrial‎ function.‎Data are the mean 

+SD from four independent MTT assays of AML-12 growth in glucose or galactose in the absence of 

insulin. Cells were treated with Ilex latifolia at the indicated concentrations or with the mitochondrial 

inhibitor FCCP. 
***

P<0.001 compared to the control untreated cells in each medium respectively,  and 
∆∆∆

P< 0.001 compared to the effect of the same concentration when glucose is replaced to galactose 

as determined by two-way ANOVA followed by Bonferroni post-hoc tests. 

The next experiment was to check if changing glucose to galactose in the insulin depleted 

medium can result in any changes in the cells’ growth and in the effect of Ilex latifolia.  Ilex 

*** *** 
*** 

*** *** 

∆∆∆ 
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latifolia at 125 µg/mL inhibited AML-12 cells growth by 7.7 % (P>0.05) in the medium 

containing glucose but did not show any effect in galactose containing medium. Ilex latifolia 

at 250, 500, and 1000 µg/mL inhibited the growth of AML-12 cells by 83.3% (P<0.001), 80% 

(P<0.001), and 68% (P<0.001) respectively when the cells were grown in galactose. 

Similarly Ilex latifolia at 250, 500, and 1000 µg/mL inhibited AML-12 cell growth by 87% 

(P<0.001), 86% (P< 0.001), and 76% (P<0.001) respectively when the cells were grown in 

glucose. By comparing the effect of Ilex latifolia on the cells when grown in galactose to the 

effect of Ilex latifolia on the cells when grown in glucose, the only significant effect was at 

125 µg/mL where Ilex latifolia inhibited the cell growth in glucose by 32% (P<0.001) 

compared to the Ilex latifolia inhibition effect on cells growth in galactose. In the absence of 

insulin, AML-12 cells behaved similarly in glucose or galactose containing medium and this 

can be confirmed by the inhibition effect of FCCP which was 95.3% and 92.2% in galactose 

and glucose respectively. 

To confirm that the change in the cells’ behavior is due to the replacing of glucose with 

galactose and not because of the insulin, the effect of Ilex latifolia was checked in the cells 

grown in glucose containing medium in the presence or absence of insulin. 

.FCCP is an approved mitochondrial toxicant and was used to assess how much the 

mitochondria of AML-12 cells are metabolically active in galactose, compared with glucose. 

The effect of FCCP on AML-12 cells (Figure 5-9) grown in galactose containing medium  

(94.3% growth inhibition) is slightly higher than the effect on the cells grown in the  medium 

containing glucose (87% growth inhibition ), but this pattern is different compared with 

HepG2 cells (Figure 5-1) which were inhibited 90% in galactose but only 33% when grown in 

glucose. These data show that AML-12 cells are aerobically poised when growing in glucose 

or in galactose, whereas HepG2 cells are only aerobically poised when grown in galactose.  
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Figure ‎5-10: Effect of Ilex latifolia on AML-12 cells mitochondrial function. Data are the mean 

+SD from four independent MTT assay of AML-12 grown in glucose in the presence or absence of 

insulin. Cells were treated with Ilex latifolia at the indicated concentrations or with the mitochondrial 

inhibitor FCCP. P
∆∆∆

 < 0.001 compared to the effect of the same concentration when insulin was 

removed from the medium as determined by two-way ANOVA followed by Bonferroni post-hoc tests. 

 

By  comparing the effect of Ilex latifolia on the cells when grown in glucose in the presence 

or absence of insulin,  the only significant effect was at 250 µg/mL where Ilex latifolia 

inhibited the cell growth in glucose without insulin by 36% (P<0.001) compared to the Ilex 

inhibition effect on cells growth in glucose with insulin (Figure 5-10). In the presence of 

glucose, AML-12 cells behaved similarly with or without insulin and this can be confirmed by 

the inhibition effect of FCCP which was 95% and 92.2% in galactose and glucose 

respectively.  

A similar analysis for cells grown in galactose is shown in Figure 5-11. Ilex latifolia at 125 

µg/mL inhibited the cell growth in galactose with insulin by 57% (P<0.001) compared to its 

effect on cell growth in galactose without insulin. At other concentrations of Ilex latifolia, in 

the presence of galactose, AML-12 cells behaved similarly with or without insulin.  The 

inhibition 

∆∆∆ 
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Figure ‎5-11: Effect of Ilex latifolia on AML-12 cells mitochondrial function. Data are the mean 

+SD from four independent MTT assay of AML-12 grown in galactose in the presence or absence of 

insulin. Cells were treated with Ilex latifolia at the indicated concentrations or with the mitochondrial 

inhibitor FCCP. 
∆∆∆

P< 0.001 compared to the effect of the same concentration when insulin was 

removed from the medium as determined by two-way ANOVA followed by Bonferroni post-hoc tests. 

 

effect of FCCP was 95% and 92.2% with and without insulin respectively. Comparing the 

data in Figures 5-10 and 5-11 insulin seems to have a small, but opposing effect in which it 

opposes inhibition of growth by Ilex latifolia when cells are grown in glucose but enhances 

the inhibitory effect Ilex latifolia when cells are grown in galactose.  Cells are equally 

aerobically poised when grown in glucose or galactose, suggesting that the effect be linked 

to the Leloir pathway of galactose metabolism that feeds into the glycolytic pathway.   

 

5.3.5 Glucose uptake effect of Ilex latifolia on AML-12 cells 

Ilex latifolia inhibits AML-12 growth at high concentrations. The effect of Ilex latifolia on 

glucose uptake was investigated by growing the cells in 24 wells plate in full medium till 

confluency. AML-12 cells were grown in insulin depleted medium to investigate the effect of 

insulin on cells response and glucose uptake. After 90% confluency, the medium was 

changed to a glucose depleted medium and glucose was added at 11.8 mM. The cells were 

∆∆∆ 
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incubated overnight and the glucose was measured using a Codefree blood glucose 

monitoring apparatus for 4 consecutive days.   
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Figure ‎5-12: Effect of Ilex latifolia on glucose consumption by AML-12 cells. Data are the mean 

+SD of 4 assays of glucose consumption in AML-12 cells treated with Ilex latifolia at the indicated 

concentrations and compared to control untreated cells. The assay was done for 4 consecutive days 

by measuring the glucose taken by the cells per day.  
**
P<0.01 and 

***
P<0.001 compared to the control 

untreated cells in each day as determined by two-way ANOVA followed by Bonferroni post-hoc tests.   

 

The results (Figure 5-12) show that the Ilex latifolia did not stimulate glucose uptake at low 

concentrations (10, 3 and 1 µg/mL) compared to DMSO (P >0.05) which was used as 

negative control vehicle. At higher concentrations glucose consumption was inhibited or was 

apparently negative, suggesting stimulation of gluconeogenesis. These changes were 

significantly different from controls - at 30 µg/mL Ilex induced an apparent negative glucose 

consumption by 140% (P<0.001) at day one, and at 100 µg/mL by 543% (P<0.001) at day 

one and by 171% (***P<0.001) at day four compared to the control untreated cells. These 

measurements indicate that glucose could have been released by the cells, possibly through 

gluconeogenesis at these higher concentrations of Ilex latifolia. The main drawback of this 

*** *** * 
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method is that the glucose uptake is measured without considering the cells densities in the 

wells and then the effect on glucose uptake.  

To take into account the effect of the cell density on the results, an MTT assay was done 

and the results were normalised by calculating the glucose uptake relative to cell growth.  

 

 

Figure ‎5-13: Effect of Ilex latifolia on glucose consumption by AML-12 cells. Data are the mean 

+SD of 4 assays of glucose consumption normalized to cell growth in AML-12 cells grown in glucose 

containing medium in the presence and absence of insulin  and  treated with Ilex latifolia for 2 days at 

the indicated concentrations and compared to control untreated cells. 
**
P<0.01 and 

***
P<0.001 

compared to the control untreated cells, and 
∆
P<0.05 and 

∆∆
P<0.01 compared to the effect of the 

same concentration after changing the medium as determined by two-way ANOVA followed by 

Bonferroni post-hoc tests.   

 

 

Ilex latifolia inhibited glucose consumption in AML-12 cells grown in insulin containing 

medium at 3 µg/mL (P<0.01) by 38.3% and at 10 µg/mL (P<0.001) by 51.8% respectively 

when compared to the untreated control cells. It did not have any significant effect when the 

cells were grown in insulin depleted medium (P >0.05). The effect of insulin on Ilex latifolia 

induced changes in glucose consumption can be seen at 3 µg/mL of Ilex latifolia when 
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glucose consumption was 41.9% (P<0.01) less in the cells grown in the presence of insulin 

compared to glucose consumption in cells grown without insulin. At 10 µg/mL, glucose 

consumption was 44.2% (P<0.05) less in cells grown with insulin compared to cells grown 

without insulin. From the data mentioned above, Ilex latifolia inhibits glucose consumption in 

AML-12 cells in a manner that is dependent on insulin.  

 A one-way ANOVA was done to check the significance of the effects of Ilex latifolia followed 

by Bonferroni post-hoc tests to compare each pair of results. The statistical analysis was 

done for the assays done in the presence or absence of insulin. 
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Figure ‎5-14: Effect of Ilex latifolia on glucose consumption by AML-12 cells. Data are the mean 

+SD of 4 assays of glucose consumption normalized to cell growth in AML-12 cells grown in glucose 

containing medium in the presence of insulin  and  treated with Ilex latifolia at the indicated 

concentrations and compared to control untreated cells. 
∆
P<0.05 compared to the effect of 1 µg/mL as 

determined by one-way ANOVA followed by Bonferroni post-hoc tests. 

 

Ilex latifolia at 10 µg/mL inhibited glucose consumption in AML-12 cells in the presence of 

insulin compared to all the other concentrations. The only significant effect was that Ilex 

latifolia at 10 µg/mL inhibited glucose consumption by 55.9% (P<0.05) compared to the 1 

µg/mL as determined by one-way ANOVA followed by Bonferroni post-hoc tests. 

∆ 
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Figure ‎5-15: Effect of Ilex latifolia on glucose consumption by AML-12 cells. Data are the mean 

+SD of 4 assays of glucose consumption normalized to cell growth in AML-12 cells grown in glucose 

containing medium in the absence of insulin  and  treated with Ilex latifolia at the indicated 

concentrations and compared to control untreated cells. 
∆
P<0.05 compared to the effect of 3 µg/mL as 

determined by one-way ANOVA followed by Bonferroni post-hoc tests. 

Ilex latifolia at 10 µg/mL again inhibited glucose consumption in AML-12 cells in the absence 

of insulin, but by a small amount, 15%, compared to the control, 0.1 and 0.3 µg/mL. The only 

significant effect was that Ilex latifolia at 10 µg/mL inhibited glucose consumption by 18.7% 

(P< 0.05) compared to the 3 µg/mL as determined by one-way ANOVA followed by 

Bonferroni post-hoc tests. 

 

 

5.4 Discussion 

The majority of diabetic people with type 2 diabetes are at high risk of dying from heart 

diseases because diabetes is associated with accelerated atherosclerosis and congestive 

heart diseases (Steiner, 1985, Rudermann NB, 1990). Agents which can stimulate glucose 

consumption and metabolism can help in the treatment of hyperlipidemia but potential 

toxicity due to inhibition of oxidative phosphorylation is a concern.  Mammalian cells 

∆ 
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produce >90% of the required energy in the form of ATP. Agents which inhibit mitochondrial 

function can result in organ toxicity and failure (Masubuchi et al., 2006). Carbonylcyanide p-

triflouromethoxyphenylhydrazine (FCCP), is an approved mitochondrial toxicant and has 

been widely used in experimental research (Park et al., 2002, To et al., 2010). HepG2 cells 

like most cancer cells depend mainly on glycolysis rather than mitochondrial oxidative 

phosphorylation (OXPHOS) to produce energy.  

To investigate if Ilex latifolia has any toxic effect on hepatocytes, HepG2 cell viability was 

tested in glucose and galactose because in galactose containing medium, cells depend 

mainly on OXPHOS as a source of energy. FCCP was used as a positive control. All the 

assay results were analyzed using two-way ANOVA and only significant results are 

mentioned. Cell viability was tested using MTT assay. FCCP inhibited HepG2 growth by 33% 

in glucose but it inhibited the growth by 90.4% in galactose. This confirms that the cells in 

the galactose depend mainly on mitochondria OXPHOS for generation of ATP while in 

glucose they depend mainly on glycolysis. When the cells were treated with Ilex latifolia , 

high concentrations at 451.5 and 903 µg/mL inhibited the growth of HepG2 cells in glucose 

by 30.8 % (P<0.001) and 52% (P<0.001) respectively while in galactose the inhibition effect 

of the same concentrations was 14.4% (P>0.05) and 27.2% (P<0.01) respectively. This 

means that the inhibitory effect of Ilex latifolia was higher in glucose, and this means that Ilex 

latifolia could interfere with the glycolysis process of HepG2 cells. The lower inhibitory effect 

of galactose may be linked to the slower rate of growth of HepG2 cells in galactose 

compared with glucose, about 50% slower. The glycolytic pathway is active in the cells 

grown in galactose, but not as much as the cells grown in glucose.  The Ilex latifolia could 

also be affecting glycolysis in the galactose cells. 

To check if Ilex latifolia has an effect on the mitochondrial function and consequently on ATP 

production, the ATP production was measured and to take into account that Ilex latifolia 

inhibited cells growth at high concentrations, the amount of ATP was normalized to the 

protein content of the cell lysates. Ilex latifolia at 920 µg/mL inhibited ATP production in 
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HepG2 cells by 42% (P<0.05) compared to 115.1 µg/mL and it also showed a reduction in 

ATP production compared to the control but the effect was not significant as determined by 

one-way ANOVA followed by Bonferroni post-hoc tests. Inhibition of the growth in the 

glucose containing medium raised the possibility that Ilex latifolia could interfere with the 

glucose consumption by the cells. When the glucose consumption was analyzed by treating 

the cells with Ilex latifolia, glucose consumption was inhibited at 100 µg/mL (P<0.001) but at 

lower concentrations, Ilex latifolia stimulated glucose consumption but the effect was not 

significant (P>0.05). To minimize the effect of Ilex latifolia on cells growth and consequently 

on the results, glucose consumption was normalized to cell growth after treating the cells 

with 0.1, 0.3, 1, 3, and 10  µg/mL respectively. Ilex latifolia at 10 µg/mL inhibited glucose 

consumption (P<0.01) compared to the control. It also inhibited glucose consumption 

compared to 0.1 µg/mL (P<0.001), 0.3 µg/mL (P<0.01), and 1 µg/mL (P<0.05).  

HepG2 cells are tumorigenic cells which depend mainly on glycolysis for ATP production, 

and it was of interest to use another cell line AML-12, which is non-tumorigenic and depends 

mainly on mitochondrial function as a source of energy, to assay the effect of Ilex latifolia on 

the mitochondrial function. 

Insulin is included in the culture medium for AML-12 cells which suggests it is an essential 

factor for AML-12 cell growth. It was interesting to assay the effect of insulin on Ilex latifolia 

activity on the cells.  FCCP was used to assess the aerobic state of AML-12 cells, and 

strongly inhibited cell growth, by more than 90%, regardless of the presence or absence of 

insulin or whether the medium contained glucose or galactose. This confirms that AML-12 

cells depend mainly on OXPHOS for ATP generation. AML-12 cells were more sensitive to 

inhibition by Ilex latifolia than HepG2 cells, with almost complete inhibition of growth at 250 

µg/mL or higher, in the absence of insulin, in either glucose or galactose. In the presence of 

insulin Ilex latifolia at 125 µg/mL inhibited cell growth in galactose by 60% (P<0.001) 

compared to the Ilex latifolia inhibition effect on cells growth in glucose, and at 250 µg/mL 
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where the inhibition effect of Ilex latifolia was 26.5% (P<0.01) more in the galactose medium 

compared to the glucose medium.  

To further investigate the effect of insulin on cell growth and sensitivity to Ilex, the cells were 

grown in glucose but the only variable was insulin. The only significant effect was at 250 

µg/mL where Ilex latifolia inhibited the cell growth in glucose without insulin by 36% 

(P<0.001) compared to the Ilex latifolia inhibition effect on cell growth in glucose with insulin. 

This means that the cells were more resistant to the Ilex latifolia treatment in the presence of 

insulin. In contrast galactose cells were more sensitive to Ilex latifolia in the presence of 

insulin. AML-12 cells were sensitive to125 µg/mL of Ilex latifolia which inhibited the cell 

growth in galactose with insulin by 57% (P<0.001) compared to its effect on cells growth in 

galactose without insulin. 

The next step was to check if Ilex latifolia has an effect on the glucose uptake by AML-12 

cells. A glucose consumption assay was done by treating the cells with Ilex latifolia for 4 

consecutive days and the glucose consumption was measured. Ilex latifolia 30 µg/mL 

inhibited glucose consumption by 140% (P<0.001) in day one. 100 µg/mL of Ilex altifolia 

inhibited glucose consumption by 543% (P< 0.001) in day one and by 171% (P<0.001) in 

day four compared to the control untreated cells. To avoid the effect of Ilex latifolia on cells 

growth and consequently on glucose consumption data, and to check the effect of insulin on 

glucose consumption by AML-12 cells,  glucose consumption was measured in the presence 

or absence of insulin and  was normalized to the cells growth by using MTT assay. Ilex 

latifolia inhibited glucose consumption in AML-12 cells grown in insulin containing medium at 

3 µg/mL by 38.28% (P<0.01) and at 10 µg/mL by 51.8% (P<0.001) respectively when 

compared to the untreated control cells. It did not have any significant effect when the cells 

were grown in glucose depleted medium (P>0.05). By comparing the effect of Ilex latifolia on 

glucose consumption by the cells when insulin was removed from the medium, at 3 µg/mL of 

Ilex latifolia, glucose consumption was  41.9% (P<0.01) less in the cells grown in the 

presence of insulin compared to glucose consumption in cells grown without insulin. At 10 
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µg/mL, glucose consumption was 44.2% (P<0.05) less in cells grown with insulin compared 

to cells grown without insulin. Ilex latifolia inhibits glucose consumption in AML-12 cells but 

the mechanism of action and the role of insulin in this effect should be explored. 

Overall the data show that at higher concentrations, greater than 100 µg/mL, Ilex latifolia 

inhibits cell growth, but in a manner that is not linked to mitochondrial toxicity or a partial 

inhibition or uncoupling of oxidative phosphorylation.  At lower concentrations, up to 100 

µg/mL, Ilex latifolia can inhibit glucose consumption.  Both responses are affected by the 

presence of insulin.  The significance of these responses to lipid metabolism requires further 

investigation, especially looking at processes such as gluconeogenesis and fatty acid 

metabolism, both affected by insulin.
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6 Chapter VI: Discussion 

Dietary fat absorption and cholesterol synthesis are the main factors in the development of 

hyperlipidemia. Pancreatic lipase is an enzyme secreted by the intestine and is responsible 

for the hydrolysis of 50-70% of the dietary fats. Digestion of dietary fats leads to the 

hydrolysis of triglycerides into fatty acids and monoglycerides which are absorbed from the 

intestine in the form of micelles with bile acids. These micelles release the fatty acids and 

monoglycerides to form triglyceride rich chylomicrons. Inhibition of fat absorption by 

inhibition of pancreatic lipase is one of the main factors in the prevention of development of 

hyperlipidemia and consequently in the protection against heart diseases.  

HMG-CoA reductase is the rate-limiting enzyme in cholesterol synthesis. HMG-CoA 

reductase catalyses the reaction HMG-CoA + 2NADPH + 2H+ leading to mevalonic acid + 

2NADP+ + COASH. Inhibition of HMGCR stimulates the cells to produce more enzyme in 

order to produce the required cholesterol.  

The majority of diabetic people with type 2 diabetes are at high risk of dying from heart 

diseases because diabetes is associated with accelerated atherosclerosis and congestive 

heart diseases (Steiner, 1985, Rudermann NB, 1990). Agents which can stimulate glucose 

consumption and metabolism can help in the treatment of hyperlipidemia but potential 

toxicity due to oxidative phosphorylation inhibition is a concern.  Mammalian cells 

produce >90 % of the required energy in the form of ATP. Agents which inhibit mitochondrial 

function can result in organ toxicity and failure (Masubuchi et al., 2006). Herbs such as 

Prunella vulgaris, Ilex latifolia, Rheum palmatum, and Panax notoginseng have been used in 

the Chinese traditional medicine for the treatment of hyperlidaemia. Some herbal 

compounds such as quercetin, crocin, emodin, and hesperidin showed pancreatic lipase 

inhibition activities.  

In this project, the aim was to identify hypolipidemic components of these herbs, and in the 

first phase to check if these compounds have inhibitory activities to pancreatic lipase, 

comparing with the activity of orlistat, the only pancreatic lipase inhibitor in clinical use. A 
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colorimetric assay of pancreatic lipase was used initially and indicated that orlistat inhibited 

pancreatic lipase with an IC50  of 2.6 µg/mL. The data obtained are summarised as follows: 

 The IC50 of Orlistat was 0.9480 µg/mL.  

 The herbal extracts produced a high absorbance which overlapped the absorbance 

produced due to p-nitrophenol. 

 Consequently, colorimetric methods were not suitable for this assay and another 

assay method was required. 

The next assay method tried was using HPLC. The HPLC method is a more sensitive 

technique and has been used to determine a suitable substrate for pancreatic lipase 

(Maurich et al., 1991). Throughout the work described in the thesis Orlistat was used as a 

positive control for inhibition of pancreatic lipase and the data from the work in this thesis 

showed that: 

 Orlistat inhibited pancreatic lipase with an IC50 of 0.8921 µg/mL (Chapter 2, section 

2.3.1). This value is in the middle of the range of published values.  

 Prunella vulgaris showed pancreatic lipase inhibition activity with an IC50 of 71.8 

µg/mL.   

 Rheum palmatum, which has been used to treat hyperlipidemia in diabetic rats (Xie 

et al., 2005b), did not show any pancreatic lipase inhibition activity when assayed by 

HPLC. In contrast an apparent inhibition of pancreatic lipase by more than 50% at 

25 µg/mL was measured using the spectrophotometric assay, confirming an 

observation by Zheng et al. (Zheng et al., 2010).  

 Ilex latifolia showed a pancreatic lipase inhibition activity at IC50 of 1418 µg/mL.  

 Crocin, hesperidin, and emodin did not inhibit pancreatic lipase when assayed by 

HPLC. In contrast crocin has been reported to inhibit pancreatic lipase at  2.7 mg/mL 

(Lee et al., 2005) assayed using a titrimetric method, hesperidin inhibited pancreatic 

lipase at IC50 of  32 µg/mL as mentioned by Birari (Birari and Bhutani, 2007) and 
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emodin inhibited pancreatic lipase by 12 % at 25 µg/mL as mentioned by Zheng 

(Zheng et al., 2010) respectively.  

The variability in the published values of IC50 could reflect the different amounts of 

enzyme used in different labs in the assay. One concern in the present work was 

that the enzyme concentration was too high so that even in the presence of inhibitor 

there is enough active enzyme to hydrolyze the substrate.  

The next step was to find an optimal concentration of the enzyme. The concentration was 

determined as mentioned in the methods (section 2.3.16) and the previously tested 

compounds were investigated again.  

 Orlistat was still showing high inhibition activity at 0.0017 µg/mL (Chapter II, section 

2.3.17).  

 Ilex latifolia had the highest inhibition activity at  IC50 76.10 µg/mL.  

 Prunella vulgaris, Rheum palmatum, and Panax notogensing showed pancreatic 

lipase inhibition activity at IC50 250.7, 117.1, and 431.2 µg/mL respectively.  

 Quercetin showed inhibition activity at 136.68 µg/mL.  

The difference in activities between orlistat and the herbal extracts could result from the fact 

that the herbal activities were tested using crude extracts which contain lots of compounds 

and pigments and this means that the active compounds are actually present in small 

concentrations. Another reason for low activity is the quality of the herbs which could be 

affected by different factors such as storage, and shipment.  

 The last set of data mentioned showed that Ilex latifolia had the highest pancreatic lipase 

inhibition activity. Ilex latifolia showed pancreatic lipase inhibition activity when compared to 

THL which is an approved pancreatic lipase inhibitor. The Ilex latifolia butanol extract was a 

crude extract which means that it contained a mixture of compounds. One or more 

compounds could be responsible for the pancreatic lipase inhibition activity.  
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The aim of the work described in Chapter III was to try to fractionate the Ilex latifolia extract 

using HPLC and to isolate pure compounds and check their activities.  

In one separation procedure 10 peaks were collected and after assaying the activity on 

pancreatic lipase, only two fractions showed inhibition activity, of about 50% (Chapter III, 

section 3.3.6). One major constraint was that not enough material of each fraction was 

collected due to the limited amount of the herb that was available.  

The next part of the work was to assess the effect of Ilex latifolia on other metabolic 

pathways that affect lipid metabolism, and HMG-CoA reductase was chosen as a target in 

view of the success of statins in controlling blood lipids, through inhibition of HMG-CoA 

reductase.  

The first approach was to use an HMG-CoA reductase assay kit (Sigma-Aldrich CS1090) to 

assess inhibitory activity of Ilex latifolia extracts in comparison with simvastatin. The principle 

of the assay is to measure oxidation of NADPH to NADP+ at 340 nm using a 

spectrophotometric assay method. The oxidation of NADPH to NADP+ was not clear and 

could not be detected. The enzyme activity should be measured within 5 minutes and this 

proved to be unreliable because the assay was done at a large scale of samples. The third 

concern was that Ilex latifolia extract could interfere with the absorbance produced by 

NADP+ especially that spectrophotometric assay method proved to be unsuitable when used 

for the detection of the inhibition effect of herbal extracts on pancreatic lipase as mentioned 

in chapter II.   

The second method attempted was to detect CoA and NADP using HPLC. The result was 

that HPLC is not a suitable method to assay HMG-CoA reductase activity because the assay 

was done on a very small scale and HPLC is not sensitive to small changes in 

concentrations which could be in nanogram amounts. 

The third method tried was to detect mevalonolactone using LC-MS which is more sensitive 

and accurate than HPLC. LC would be required because the assay needs to be quantitative 
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and the MS was used as a detector. The samples were prepared for assay using LC-MS but 

unfortunately the assay could not be done because the instrument was not available.  

As an alternative to enzyme assays, an HMG-CoA reductase expression assay by Western 

blotting was chosen to investigate the inhibition effect of Ilex latifolia extract on HMG-CoA 

reductase using simvastatin, which is an approved HMG-CoA reductase inhibitor, as a 

positive control. HepG2 cells were used for the assay. HMG-CoA reductase has a molecular 

weight of 97 kDa but after gel electrophoresis and Western blotting of HepG2 extracts, the 

enzyme could only be detected as 72 and 54 kDa forms (Chapter IV, section 4.4.3.2). The 

results were as follows: 

 In some experiments simvastatin stimulated the expression of the enzyme, detected 

as 72 kDa and 54 kDa fragments; in others simvastatin had the opposite effect. 

 Ilex latifolia mainly showed a very small, or no, effects compared to the control 

(Chapter IV, section 4.4.3.3), but in one experiment Iex latifolia inhibited the 

expression of the enzyme in HepG2 cells (Table 4-6). 

To avoid the effect of leupetin sensitive enzyme, RIPA buffer was replaced by a lysing 

buffer containing leupeptin. The result was that the 72 kDa band was more intense than 

the previous assays but the Ilex latifolia was still not inhibiting the HMGCR and 

consequently not stimulating the HMG-CoA reductase expression compared to 

simvastatin (Chapter IV, section 4.4.3.4).  

These variable and inconsistent findings could be due to the instability of the enzyme. 

The enzyme is sensitive to the endogenous Ca2+-activated enzymes which break it to a 

62 kDa fragment which remains membrane bound. This 62 kDa fragment is sensitive to 

a leupeptin sensitive protease which breaks it down to a 52-56 kDa soluble fragment 

(Parker et al., 1993). Even though steps were taken to control proteolytic activity, it was 

never possible to detect the full length protein. The HepG2 cells do not express very high 

levels of HMG-CoA reductase and the protein is especially unstable in this cell line.  
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Future work in this area may be more successful if another cell line, such as Chinese 

hamster ovary cells, is used. 

 

The next target was expression of LDLR, using AML-12 cells, which have been used for the 

detection of LDLR expression. Ilex latifolia extract effect was compared to simvastatin. 

Simvastatin stimulated LDLR expression as shown by detection of a band at 138 kDa  but 

Ilex latifolia did not have any effect on the expression of LDLR (Chapter IV, section 4.4.3.5). 

In another approach it was investigated if Ilex latifolia has any mildly toxic effect on 

hepatocytes when they were oxidatively poised by culturing in galactose instead of glucose.  

HepG2 cell viability was tested in glucose compared with galactose because in galactose 

containing medium, cells depend mainly on OXPHOS as a source of energy. FCCP was 

used as a positive control, to show that cells growing in galactose were more sensitive to 

FCCP and therefore were using OXPHOS more to generate ATP, compared with cells 

growing in glucose, which generate most of their ATP by glycolysis.  

All the assay results were analyzed using two-way ANOVA and only significant results are 

mentioned. Cell viability was tested using the MTT assay.  

 Ilex latifolia at relatively high concentrations of 451.5 and 903 µg/mL growth of 

HepG2 cells in glucose was inhibited by 30.8% (P<0.001) and 52% (P<0.001) 

respectively while in galactose the inhibition effect of the same concentrations was 

14.4% (P>0.05) and 27.2% (P<0.01) respectively. There was no inhibition of growth 

at lower concentrations of Ilex latifolia. 

 FCCP inhibited HepG2 growth by 33% in glucose but it inhibited the growth by 90.4% 

in galactose (Chapter V, section 5.3.1).  

This confirms that the cells in the galactose medium  depend mainly on mitochondria 

OXPHOS while in glucose they depend mainly on glycolysis. This means that although Ilex 

latifolia inhibited HepG2 cells growth in galactose, it was very modest and is unlikely to be 
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due to mitochondrial toxicity. Interestingly the inhibition effect in glucose was higher and this 

means that Ilex latifolia could interfere with the glycolysis process of HepG2 cells.  

To investigate further the metabolic effects of Ilex latifolia, ATP production was measured.  

 Ilex latifolia at 920 µg/mL there was a reduction in ATP production in HepG2 cells 

compared to the control but the effect was not significant.  

 In the cells treated with 920 g/mL Ilex latifolia ATP production was lower by 42% 

(P< 0.05) compared to ATP levels in cells treated with Ilex latifolia at 115.1 µg/mL as 

determined by one-way ANOVA followed by Bonferroni post-hoc tests (Chapter V, 

section 5.3.2).  

Inhibition of the growth in the glucose containing medium raised the possibility that Ilex 

latifolia could interfere with the glucose consumption by the cells. When the glucose 

consumption was analyzed by treating the cells with Ilex latifolia, glucose consumption was 

normalized to cell growth after treating the cells with 0.1, 0.3, 1, 3, and 10 µg/mL 

respectively. 

 Ilex latifolia at 10 µg/mL inhibited glucose consumption by 50.5% (P<0.01) 

compared to the control. 

  It also inhibited glucose consumption by 58.7% compared to 0.1 µg/mL (P<0.001), 

57.3% compared to 0.3 µg/mL (P<0.01), and by 48.6% 1 µg/mL (P<0.05) (Chapter V, 

section 5.3.3).  

HepG2 cells are tumorigenic cells which depend mainly on glycolysis for production of ATP. 

Another liver cell line AML-12, which is non-tumorigenic and depends mainly on 

mitochondrial function as a source of energy was used to assay the effect of Ilex latifolia on 

the mitochondrial function. 

Insulin is an essential factor in the AML-12 cells growth medium, and it was interesting to 

assay the effect of insulin on Ilex latifolia activity on the cells. 
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Ilex latifolia toxicity was assayed using the MTT assay and FCCP was used as a positive 

control. The first step was to check if AML-12 cells behave differently when galactose was 

replaced for glucose in the presence of insulin.  

 FCCP inhibited AML-12 cell growth by 95% and 96% in glucose and galactose 

respectively. This confirms that AML-12 cells depend mainly on OXPHOS reaction to 

generate ATP and that is why they were sensitive to FCCP in both media.   

 The only significant effects of Ilex latifolia were at 125 µg/mL where Ilex latifolia 

inhibited the cells growth in galactose by 60% (P<0.001) compared to the Ilex latifolia 

inhibition effect on cells growth in glucose, and at 250 µg/mL where the inhibition 

effect of Ilex latifolia was 26.5% (P<0.01) more in the galactose medium compared to 

the glucose medium.  

The FCCP data show that AML-12 cells mainly utilize mitochondria for ATP generation 

regardless of whether glucose or galactose is used as metabolic fuel.  The greater inhibition 

of cells by Ilex latifolia when grown in galactose cannot be explained by a mitochondrial 

effect and may relate to an effect on galactose entry into glycolysis, involving enzymes of the 

Leloir pathway. Inhibition when glucose was the fuel could suggest an effect on flux through 

the glycolytic pathway, and this links to the inhibition of HepG2 cell growth, albeit at much 

higher concentrations of Ilex latifolia, when cells are grown in glucose, but not when in 

galactose. 

The data discussed so far are when the cells were grown in glucose and galactose but in the 

absence of insulin. Ilex latifolia had the same effect on the cell viability in both media where 

FCCP inhibited the cells growth by 95.3% in galactose and by 92% in glucose respectively. 

To further investigate the effect of insulin on cells growth and sensitivity to Ilex latifolia, the 

cells were grown in glucose but the only variable was insulin.  
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 The only significant effect was at 250 µg/mL where Ilex latifolia inhibited the cells 

growth in glucose without insulin by 36% (P<0.001) compared to the Ilex latifolia 

inhibition effect on cells growth in glucose with insulin.  

 While in the case of galactose without insulin, AML-12 cells were sensitive to125 

µg/mL of Ilex latifolia which inhibited the cells growth in galactose with insulin by 57% 

(P<0.001) compared to its effect on cells growth in galactose without insulin (Chapter 

V, section 5.3.4).  

Although the effect here is opposite to the one where glucose without insulin was used but 

this confirms that insulin is an essential factor in the growth medium of AML-12 cells but the 

mechanism of action needs to be explored. 

The next step was to check if Ilex latifolia has an effect on the glucose uptake by AML-12 

cells. 

 To take into account the possible effect of Ilex latifolia on cells growth and consequently on 

glucose consumption data, and to check the effect of insulin on glucose consumption by 

AML-12 cells,  glucose consumption was measured in the presence or absence of insulin 

and  was normalized to the cell growth by using MTT assay.  

 Ilex latifolia inhibited glucose consumption in AML-12 cells grown in insulin containing 

medium at 3 µg/mL by 38.3% (P<0.01) and at 10 µg/mL by 51.8% (P<0.001) 

respectively when compared to the untreated control cells. It did not have any 

significant effect when the cells were grown in insulin depleted medium (P>0.05).  

 By comparing the effect of Ilex latifolia on glucose consumption by the cells when 

insulin was removed from the medium, at 3 µg/mL of Ilex latifolia, glucose 

consumption was 41.9 % (P<0.01) less in the cells grown in the presence of insulin 

compared to glucose consumption in cells grown without insulin.  

 At 10 µg/mL, glucose consumption was 44.2% (P<0.05) less in cells grown with 

insulin compared to cells grown without insulin (Chapter V, section 5.3.5).  
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 Ilex latifolia inhibits glucose consumption in AML-12 cells at relatively low 

concentrations, and this could potentially be linked to anti-lipid activity. More direct 

assessments of energy metabolism are needed to explore the association. 

 

In this project, the search for new agents for the treatment of hyperlipidemia was the main 

target. This aim was done through targeting key steps in lipid metabolism. The first approach 

was to find inhibitors of the absorption of the dietary fats by inhibiting pancreatic lipase. Ilex 

latifolia had the most inhibitory activity out of the herbs tried, compared to orlistat which is an 

approved pancreatic lipase inhibitor. The next approach was to check if Ilex latifolia has an 

inhibition effect on HMGCR which is the rate limiting enzyme in cholesterol synthesis in the 

liver, and consequently on the expression of LDL-receptors which take the LDL-cholesterol 

from the circulation. Ilex latifolia did not show any clear effect on HMGCR or LDLR 

expression. Other enzymes that play important roles in lipoproteins metabolism are 

lipoprotein lipase (Ylaherttuala et al., 1991), hepatic lipase (Jin et al., 2002), lecithin 

cholesteryl acyl transferase (Barter et al., 2003) and cholesteryl ester transfer protein 

(Drayna et al., 1987), and these could the focus of further work to find the mechanism of 

action of Ilex latifolia.  

In addition the work in this project has identified subtle effects of Ilex latifolia on glucose 

metabolism, perhaps involving modulation of glycolytic flux, that also suggest a path for 

further work
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