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Abstract

The final objective of the present work is the accurate prediction of the dynamic
stiffness behaviour of complex rubber parts using finite element simulation tools. For
this purpose, it becomes necessary to perform a complex rubber compound material
characterisation and modelling work; this needs two important previous steps.
These steps are detailed in the present document together with a theoretical review

of viscoelastic visco-elasto-plastic models for elastomers.

Firstly, a new characterisation method is proposed to determine the degree of cure
of rubber parts. It is known that the degree of cure of rubbers bears heavily on their
mechanical properties. This method consists of the correlation of swelling results to

rheometer data achieving a good agreement.

Secondly, the influence of the strain rate used in static characterisation tests is
studied. In this step, a new characterisation method is proposed. The latter
characterisation method will be used to fit extended hyperelastic models in Finite
Element Analysis (FEA) software like ANSYS. The proposed method improves the
correlation of experimental data to simulation results obtained by the use of standard
methods.

Finally, the overlay method proposed by Austrell concerning frequency dependence
of the dynamic modulus and loss angle that is known to increase more with
frequency for small amplitudes than for large amplitudes is developed. The original
version of the overlay method yields no difference in frequency dependence with
respect to different load amplitudes. However, if the element in the viscoelastic layer
of the finite element model are given different stiffness and loss properties
depending on the loading amplitude level, frequency dependence is shown to be
more accurate compared to experiments. The commercial finite element program
Ansys is used to model an industrial metal rubber part using two layers of elements.
One layer is a hyper viscoelastic layer and the other layer uses an elasto-plastic
model with a multi-linear kinematic hardening rule. The model, being intended for
stationary cyclic loading, shows good agreement with measurements on the

harmonically loaded industrial rubber part.
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CHAPTER 1 LITERATURE REVIEW

Sarrera

Historikoki produktu berriak diseinatu behar direnean piezen prototikoak eraiki
eta entseiatuz beren funtzioa beteko dutela bermatu izan ohi da, kontrako
kasuan prototipoak berreraiki eta berriz balidazio prozesu guztia martxan
jarriz. “Froga-akats” sistema hau oso garestia izanik ANSYS, ABAQUS,
NASTRAN en gisako element finituen softwareak sortu ziren pieza fisikoak
eraiki orduko nolakoa izango litzakeen beren portaera aurre ikusteko. Software
hauek pieza birtuala modelizatu, materialeen propietateak asignatu eta karga

konkretu batzuen aurrean piezaren portaera aurreikusteko gai dira.

Kautxuen munduan enpresa bakoitzak bere materialeen formulazio
konkretuak erabili ohi ditu eta formula horiek “sekretuak” izan ohi dira. Guzti
honek esan nahi duena zera da, milaka formulazio aurkitu ditzakegula
aplikazio eta eraldatzaile bakoitzaren arabera eta material estandarizatu gutxi
daudela merkatuan. Gainera, kautxuen propietate mekanikoak aldakorrak dira
bulkanizazio gradu, tenperatura, entseiatzen erabilitako karga eta entseiu
motaren garrantzi handia dutelarik. Guzti hau kontutan izanik, kautxuzko
piezen propietate mekanikoak aurreikusi nahi baldin baditugu, kautxu hori nola
karakterizatu behar den argi eduki behar da. Zer propietate simulatu nahi den

argi dugunean, materialea horren arabera karakterizatu beharko da.

Esan bezala, kautxuaren bulkanizazio graduak eta bulkanizazio tenperaturak
propietate mekanikoen gain zerikusi haundia dute. Hauetaz gain, kautxua ez
lineala izanik, aztertzen gauden deformazio-maila ere kontutan hartu
beharrekoa da. Ez linealtasun hori “karbono beltza” edo “negro de carbono”
karga erreforzantea kautxuaren formulazioan gehitzean areagotu egiten da.
Historikoki karga erreforzante hauek dituzten kautxuak materialeen modelu
biskoelastikoekin modelizatu izan ohi dira baina arazoak egon dira karga

erreforzante ugari duten kautxuen propietateak simulatu nahi izan direnean.
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Tesi honen helburu nagusia aurretik aipaturiko arazoak sahiestea da:

(1) Lehen =zatiak kautxu berdinarekin egindako pieza desberdinen
bulkanizazioa neurtu edo alderatzeko metodo berri bat aurkezten du [1,2]

(ikusi Annex I-A eta Annex I-B).

(2) Bigarren zatiak materialeen egokitzapenerako karakterizazio metodo berri
bat aurkezten du, non metodo honek modelo matematiko estatikoak simulazio

ez estatikoak egiten erabiltzea ahalbidetzen duen.

(3) Tesiaren azken zatiak kautxusko piezen zurruntasun dinamiko eta
amortiguazio ahalmena simulatzeko metodo berri bat aurkezten du, non

amplitude eta frekuentzi desberdinak aztertzen direlarik [3] (ikusi Annex Il1).

Introduction

The use of calculation codes, based on the finite element method in the design
phase of new industrial products, has fundamental results when reducing the
costs as opposed to manufacturing physical prototypes and utilising “trial and
error” tests. The general use of software like NASTRAN, ABAQUS or ANSYS
permits: the modelling of the part or the assembly under study, the input of the
material mechanical properties; the solving of loading conditions and the

visualisation and evaluation of the obtained results.

Due to the special mechanical properties of elastomers, there are several
possibilities to perform different compounds to solve rubber parts
requirements. Because of that wide range of possibilities, each rubber
manufacturer uses their own rubber mixtures. Therefore, it is not very common
to find standard rubber compounds. In addition, the mechanical properties of
rubber compounds change with degree of cure, temperature, load conditions,
testing type and so on. Hence, to characterise correctly the mechanical
behaviour of the studied rubber compound, all these factors must be taken into

account.

When using finite element software it is really important to feed the material
properties correctly. The first step of any simulation is the mechanical

characterisation of the material. The material type studied is rubber. This
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characterisation must be in accordance with the simulation that will be
performed. To achieve this objective, the degree of cure of the testing sample
used to characterise the mechanical properties of the studied rubbers and the
rubber part to be simulated must be as similar as possible. In addition, the
strain ranges need to be in accordance with both characterisation and

simulations.

The filler content has a noticeable influence in dynamic properties of
elastomers. Dynamic stiffness and loss angle of elastomers increases with
higher filler content. Fillers can also introduce a nonlinear dynamic behaviour
shown as an amplitude dependence of the dynamic stiffness and loss angle.
Although it is a bit inappropriate, the linear viscoelastic stiffness and loss
measures are used also for the nonlinear dynamics of filled rubbers. In this
thesis, storage G’ and loss modulus G” are used to characterise the cyclic
dynamic behaviour of a particular rubber used to validate the proposed
modelling method. While unfilled rubber can be properly modelled by purely
viscoelastic models, filled rubbers, show a pronounced amplitude dependence
of the storage and a loss modulus for filled and highly filled natural rubber as
it is explained in later sections. The frequency dependence shows a steeper
slope for smaller amplitudes than for larger amplitudes in both storage and loss
modulus. The original version of the overlay method proposed by Austrell
cannot capture the mentioned slope variance that depends on amplitude. In a
wide frequency range, as shown here, it is important to be able to model this
behaviour. In this thesis it is shown how different dynamic stiffness and loss
values in the elements of the viscoelastic mesh in the overlay can solve the

problem.

To reach the objective of this thesis, the experimental work is divided in three
chapters:

(1) The first relates the degree of cure of different rubber components by
means of swelling [1,2] (see Annex I-A and Annex I-B). The correlated
components should be manufactured by different methods. For that purpose it
is proposed a material characterisation method.
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(2) The second part proposes a novel conditioning method applicable in quasi-
static characterisations when mechanical properties should be influenced by

the strain rate.

(3) The last part of the thesis proposes a new procedure to predict the dynamic
stiffness and damping on rubber material parts when an elastomer is tested in
a defined frequency/amplitude ranges [3] (see Annex llI).

The second and the third parts includes mechanical tests as a finite element

analysis and experimental correlations.

Note that the materials used in both experimental works are different for the
convenience. First, in CHAPTER 2, the proposed swelling method is validated
for materials references CK-NR-1 and CK-EPDM-1. Second, in CHAPTER 3
the static characterisations and posterior fitting and simulations are performed
with the material called CKR. Lastly, the dynamic properties of NR1, NR2 and
CKR are characterised to be used in the research developed in CHAPTER 4.

Eventually, five materials are used in total.
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Aim of the thesis

The aim of the thesis is double:

1. First, to propose two new experimental procedures to get appropriate
data for fitting hyperelastic and visco-elastoplastic models used to predict
either quasi-static or dynamic stiffness or rubber-made units ( a new
methodology to determine the degree of cure and a new material conditioning
approach):

> Deqgree of cure:

When the same rubber formulation is used to manufacture different
geometries, it is really important to obtain the best possible degree of cure. To
obtain the same degree of cure in different geometries where the thicknesses,
the used moulds and the cure times are different for each type of rubber part,
requires a rigorous control of various parameters. Consequently, as the
specimens used in laboratory tests to characterise the mechanical properties
of the material (rubber compound) and the rubber parts manufactured for
industrial purposes are different geometries and are manufactured in different
moulds, the first step consists in a several swelling tests to control degree of

cure of each type of pieces.

The objective of the present step (CHAPTER 2) is to develop a very simple
and effective method to evaluate/measure the degree of cure or the state of
cure. The expression “state of cure of a vulcanizate” means the degree to
which a property of the vulcanizate has approached the maximum attainable
value as a result of change in time or temperature of cure. It is rather directly
related to the degree of crosslinking, but this latter never reaches a maximum;
it increases with time. To achieve this objective, a new method is developed.
It consists of swelling measurements in solvents. ODR measurements and

tensile tests are also done to correlate its results to the swelling values.

> Material Conditioning method

The objective is to improve the extended material conditioning methods

applied in the static characterisation of rubbers when used in FEA software.
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By the use of the presented conditioning method, the classic hyperelastic

models can be used for non-static simulations.

In the materials fitting to these hyperelastic models, some experimental data
are required. For this type of materials some parameters, such as the degree
of cure or the testing method of the characterisation samples, have a
noticeable influence. It is impossible to take all the variables into the
hyperelastic material model. So, there are short cuts to solve their influence.
One way to solve these factors is to have an influence on the material
characterisation tests, testing them at determined strain-rates and cycling
them before the recording of the valid data curve. The last factor is known as
the Mullis effect, which consists of the relaxation of the elastic stiffness of the
tested rubber part after each load cycle. In some tests the Mullins effect is not

eliminated completely.

This CHAPTER 3 focuses on the experimental investigation, the curve fitting
representation and the numerical simulation of filled elastomers in non-static
tests. The aim of the CHAPTER 3 is to propose a new characterisation
procedure to feed available hyperelastic material models in standard Finite
Element software (FEA). Yeoh’s 3" order constitutive model is used to validate

the proposed method in Ansys sofware.

2. Second, to propose a new methodology to take into account the
observed frequency and strain dependency in filled rubbers when predicting
the dynamic stiffness using finite element codes. In order to predict the
dynamic properties of any industrial rubber part, a Multilinear with equivalent

Viscoelastic approach model (MLVE model) is developed.

> Dynamic stiffness

This behaviour is not so studied as the quasi-static field. It is extensive used
way to characterise this behaviour is the use of visco-elastic, visco-
hyperelastic, visco-elastoplastic mathematical material models. These types
of models are based on linear and nonlinear spring-dashpot systems built in

parallel and series combinations.
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The work performed in CHAPTER 4 addresses the methods to model
dynamically loaded rubber components. Different systems use rubber isolators
for dynamic vibroacoustical improvement; so there is a great need to
understand their properties and properly predict the dynamic stiffness of this

type of parts.

The aim of this step is, therefore, to develop rubbers dynamic properties
prediction method on the modelling of rubber isolators in the 0-500Hz
frequency range, taking into account both the frequency and the amplitude
dependent properties of the material. It is the intention of such a study to
propose a modelling procedure that could provide accurate prediction of
dynamic stiffness of rubber parts and that could be implemented in commercial

finite element method software.

In summary, this thesis develops a method to generate correct material input
data in ANSYS to obtain a reasonable correlation level when simulating non-
static and dynamic tests. For this purpose, the objective is to use the most
practical material models, in order to establish a reliable simulation method in

an industrial oriented environment.
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The literature review remarks the main areas revised in the literature. For
convenience, the literature review has been divided in four main parts: the first
one recounts the basic concepts of elasticity and hyperelasticity. The aim of
this first chapter is to clarify the basic concepts for better understanding of all
chapters of the thesis. The second part deals with static modelling of
elastomers; the third one refers to the dynamic behaviour of rubber

compounds and the last part describes the dynamic modelling of elastomers.

1.1 Literature review. Part 1. From elasticity to hyperelasticity:

Basic concepts
1.1.1 Rubber: Basics concepts

Although elastomers can be made of any of a wide variety of different organic
substances, all of them are polymers consisting of very long molecular chains.
Natural and synthetic rubbers known as elastomers are amorphous polymers
to which several ingredients are added, creating a rubber compound. The
important process of vulcanization (heating and chemical reaction) converts
the plastic raw elastomeric material into a material of solid and elastic

consistency where these materials become rubber.

Vulcanization is a chemical process by which the long molecular chains are
linked together, forming a stable and more solid molecular structure. The
cross-linking is obtained using activators, curing agents (sulphur or peroxides)
and accelerators. The vulcanization process starts when the mixture is heated
up to the cure activation temperature (120-200°C) depending on the mentioned
mixture formulation. Their viscoelastic nature gives them elasticity and also the
ability to dissipate energy. Their strength is high, especially under conditions

of shear and compression.

After being properly compounded and moulded into an engineered product,
the material at some point will be subject to an external force. When a solid
body is deformed, an internal reactive force called stress, acting across a unit
area, tends to resist this deformation. Rubber is unique in being soft, highly

extensible and highly elastic having an additional ability to dissipate energy [4].
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The final properties of the vulcanized rubber depend mainly on the choice of
the rubber, the mixture composition, the production process, and the product
design. Depending on the type and amount of additives and the degree of
vulcanization, rubber vulcanizates can provide different properties with respect

to hardness, elasticity or tensile strength.
The mission of additives is to:

a) Change the characteristics of the vulcanized rubber (e.a. fillers to increase

hardness).
b) Facilitate the product manufacturing (e.a. plasticizers)
¢) Reduce the cost of the mixture (e.a. certain degrees of carbon black).

A standard formula should be something as shown in the following Table 1.1:

ADITIVE Phr
Elastomer 100
Filler (s) 0to 100
Plasticizer (s) 0to 50
Sulfur Oto 25
Zn0O 5
Stearic acid 2
Accelerator (s) 1to 10
Peroxide 6
Coagent 2

Anti Oz 2

Anti O3 2

Wax 2
Others 2
Processing aids 2

Table 1.1: General formulation. The intention of this table is to show that rubber
formulations are complex and can be composed by a lot of ingredients. Phr indicates

parts per hundred of rubber.
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Rubbers, in both dry and latex forms, are grouped and symbolized on the basis
of the chemical composition of the polymer chain in the following manner [5]:

M Rubbers having a saturated carbon chain of thepolymethylene type rubbers

have carbon and nitrogen in the polymer chain

N No rubber has so far been symbolized in the “N“ group.
O Rubbers having carbon and oxygen in the polymer chain
Q Rubbers having silicon and oxygen in the polymer chain

R Rubbers having an unsaturated carbon chain, e.g. natural rubber and

synthetic rubbers derived at least partly from conjugated dienes

T Rubbers having carbon, oxygen and sulfur in the polymer chain

U Rubbers having carbon, oxygen and nitrogen in the polymer chain
Z Rubbers having phosphorus and nitrogen in the polymer chain

Table 1.2 shows mostly used rubbers and the classification in their
corresponding group. Table 1.3 shows the summary of material properties of

different rubbers and the behaviour of each rubber type.

To carry out this work two rubber types are selected. The first part of the
experimental work which deals with the determination of the degree of cure of
rubber compounds is performed with peroxide cured EPDM and a sulfur cured
NR rubbers. In the second part which is about the dynamic properties of rubber
it is considered that the most suitable rubber is NR, both because of its

excellent elastic behaviour and its ability to dissipate energy.
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R Group M Group
Rubber Symbol Rubber Symbol
Acrylate-butadiene ABR |Copolymer of ethyl acrylate ACM
Butadiene BR Copolymer of ethyl acrylate and ethylene AEM
Chloroprene CR Copolymer of ethyl acrylate and acrylonitrile ANM
Epoxidized natural rubber ENR |Chloropolyethylene CM
Hydrogenated NBR HNBR |Chlorosulfonylpolyethylene CSM
Isobutene-isoprene IR Terpolymer of ethylene, propylene and diene EPDM
Isoprene IR Ethylene-propylene copolymer EPM
a-methylstyrene-butadiene MSBR |Ethylene-vinyl acetate copolymer EVM
Acrylonitrile-butadiene NBR  |Copolymer of tetrafluoroethylene and propylene FEPM
Acrylonitrile-isoprene NIR Perfluoro rubber FFKM
Natural rubber NR Fluoro rubber FKM
Vinylpyridine-butadiene PBR Polyisobutene IM
Vinylpyridine-styrene- PSBR |Fully hydrogenated acrylonitrile-butadiene copolymer NBM
Styrene-butadiene SBR Q Group
Styrene-isoprene-butadiene  |SIBR Rubber Symbol
O Group Silicone rubber having methyl and fluorine substituent FMQ
Rubber Symbol | Silicone rubber having methyl, vinyl and fluorine FVYMQ
Polychloromethyloxirane Cco Silicone rubber having only methyl substituent groups MQ
Epichlorohydrin copolymer  |ECO  |[Silicone rubber having methyl and phenyl substituent PMQ
Polypropilene oxide GPO  [Silicone rubber having methyl, vinyl and phenyl PVMQ
U Group Silicone rubber having methyl and vinyl substituent VMQ
Rubber Symbol
Polyester urethane AU
Polyether urethane EU

Table 1.2: Mostly used rubbers and their classification in groups [5]

]
e K& & Foe S Lt Q‘?O‘bvi‘"“é@&‘o@ Y\%&Q
Tensile strength without fillers H ]| 1 OIA|C R
Tensile strength with fillers BEBEBEADE DR EE L
Strain at break B ] B BE
Loss by abrasion (with fillers) ] ] A i 0
Tear & A BE B0 g|E A E|
Rebound elasticity =] H 7 A :
Cold flexibility CEEETZAZL Dl i ZEl 2
Heat resistance 7 B HEEEREN B
Ozone and weathering resistance|[7} |77 BB HE NN NN E R
Oil resistance OOFD = - E R D EE B
Fuel resistance On®@oc a2 E BEROO9Z0an
Alcali resistance B e E ) E ENm = il |
Acid resistance el 1 AEE M ZlZ) 7]
Fire resistance Do0oRoDE BB B0CDYO00n
Dielectric characteristics HEE B LD iz i | |1Z)|4
Gas permeability A BEENOZE B A
Compresion set -402C ] oz ] o] | )]
+20°C CEIE]E i [= Zll=] s =]
+1259C [ ][l =] =) [ a1 N ]
Excelent W B F] 7 1A [ Insuficient

Table 1.3: Types of rubber and their properties [6]
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1.1.2 Hyperelasticity of Rubber

One of the most notable properties of hyperelastic materials is their capability
to be extended or elongated hundreds per cent of their initial length without
plastic deformations. Then, it implies that these materials are able to recover
their initial configuration when the sample is unloaded. Another elastomers

property is their low elastic modulus E (=0.5-10 MPa).

Under small deformations elastomers are linearly elastic solids. Thus this type
of materials fulfils Hooke’s law. Hooke's law of elasticity is an approximation
where the extension of a spring is in direct proportion with the load added to it
as long as this load does not exceed the elastic limit. Materials for which
Hooke's law is a useful approximation are known as linear-elastic or "Hookean"
materials (Eq. 1.1 and Eq. 1.2). It can be modelled as a spring (Figure 1.1).

The elastic spring can be expressed as,
F=K.o Eqg. 1.1

c=Ees—>E=0l¢ Eq. 1.2

o A

v

Figure 1.1: Linear elastic spring.

where o and ¢ represents the tensile stress and strain respectively. Young’s
modulus E is a fundamental measure of the K material stiffness. The higher its
value is, the more resistant the material has to be stretched. The tensile stress

o is defined in terms of force per unit area.
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For the three dimensional cases, Hooke’s law must be generalised [7]. In this
type of cases, any point of a loaded body could be modelled as a cube (Figure
1.2), which is deformed in three principal directions. This cube is in a load

balance; so in the opposite face to the applied load, there is a reaction.

Jf_» _ T _I_ _|_ J

/

Figure 1.2: Superposition method representation

F

X, ¥,z

XY,z =
Ax,y,z

o Eq. 1.3

The Generalised Hooke’s law is applicable only for isotropic materials; the
strain for each direction is calculated as follows:

&, = é[ax —V(O'y + o, )] Eg.1.4
&y = é[ay —V(O'Z +0o, )] Eqg. 1.5
g, = é[az —V(O'X +o, )] Eq. 1.6

Instead of elongating or compressing a sample, it may be subject to various
shearing or twisting motions. The ratio of the shear stress r to the shear strain
7y defines the shear modulus G which is extended to define elastomers
hyperelasticity constitutive models (ESED functions) discussed later instead of
the young modulus E. The relation between both strain states —uniaxial and

shear- shown in Eq. 1.8 is developed in Annex II-A.

Page 13



Eq. 1.7

G= 200 Eq. 1.8

When the material is considered incompressible the Poisson’s ratio v [7] is
close to 0.5; so from the previous Eq. 1.8, itis assumed that the young modulus
is three times the shear modulus. Most materials have Poisson’s ratio values
greater than 0 and smaller than 0.5. Referring to the elastomer materials, this

ratio is close to 0.5 because of its incompressibility (Eq. 1.13). Then,
E=3G Eg. 1.9

In addition, the Bulk compression modulus k, about 2000MPa, is very high and

the low shear modulus G, about 0.2-5 MPa, gives its low compressibility

property.

The Bulk modulus k is a material constant which defines the material
resistance to volume change when subject to compression loading. The

demonstration of where is the bulk modulus is in Annex II-B.

E

K= —
) Eq. 1.10

For convenience, the positive volumetric strain is defined as a decrease in

volume.

From Eq. 1.8 and Eg. 1.10, the other material constants, such as Young

modulus E, shear modulus G and Poisson’s ratio v can be obtained as follows:

E=3k(l-2v) Eq. 1.11
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E =2G(1+v) Eq. 1.12

v =(3k — 2G) /(6k + 2G) Eg. 1.13

Each material property can be determined from the above equations as long
as two of them are known. The Poisson’s ratio vis difficult to measure, hence
it is better to characterise the other two parameters (E and G). Peng et al [8]

showed a method to determine the bulk modulus.

The Young modulus E is always positive therefore 1—2v > 0 must be positive,
consequentlyv <0.5. In addition, the Poisson’s ratio range goes from

0<v<0.5_ When this ratio takes the extreme value of v=0,5 then k = cowhich

implies that &y = 0, so the volume doesn’t change. This is one of the classical

assumptions in the hyperelastic calculations.

Usually the ESED function studied in later sections uses a material
compressibility constant d. This is found from the initial slope (k, small strain
bulk modulus) of collected pressure vs. volume data as explained for example
by Charlton and Yang [9]:

d=2/k Eq. 1.14

Gent [10]: This linear behaviour can be assumed in some rubber calculations
because in many cases, they are low loaded. However, the Hooke’s law
proportionality does not hold for all elastic bodies; there are materials and
bodies whose behaviour is elastic although this elasticity is nonlinear (Figure
1.3:).
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Figure 1.3: Rubber compounds nonlinear elasticity

To improve the Hooke’s law, another definition arises that considers the
reversibility of nonlinear elastic deformations. As the body deforms, it stores
internal energy due to the strain or deformation: it is called the strain energy
W. The reversibility of elastic deformations and the independence of the path
(previous deformation histories) of elastic bodies lead us to assume the
existence of a strain energy potential for the elastic body, from which the
stresses can be derived. In case of elastomeric materials, the stress tensor is
derived from strain energy density functions (ESED) based on thermodynamic
laws Oden [11].

The materials that fulfil Eq. 1.15 named Green elastic constitutive law are
known as hyperelastic materials. Therefore, a hyperelastic material is one
whose strain energy at any time is given by a function of the Cauchy-Green

deformation tensor.
O =5 Eg. 1.15

So, the stress tensor may be obtained by derivation of the next equation,

W(z) = "oyde, Eq. 1.16
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The strain energy per unit volume in the reference configuration W and its
dependence on the strain measure are the subject of this section. A general

assumption is that W depends on all the components of the strain measure,

giving
W =W(B) Eq. 1.17

The mathematical ESED Models used to characterise the quasi-static
behaviour of hyperelastic materials are defined by stretches A instead of

uniaxial strains ¢.

When a complex three dimensional part is tested, the strain state of the
deformed geometry is composed by a combination of principal and shear
strains. Hence, the following definitions are focused to solve these three
dimensional complexities using for it the principal elongations A1, A2, A3 by the

large elastic deformations.

In order to determine the straining of the body and consequently the [B] matrix

(the left Cauchy Green tensor), we need to know how the distance between
neighbouring particles in the reference configuration is affected by the
deformation. This can be achieved by considering the length changes of an
infinitesimal material line element. This line element is obtained by the

following differential

OX;
dx; = ydxj Eq. 1.18

where X referees to the particle reference configuration or position and x is the

current location.

The explicit matrix expression of the above equation is:
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_8x1 X, 0% ]
dx, aaxl %Xz %Xs dX,
dx, b =| Dz Do P gy Eq. 1.19
] oX, X, X, ||
X3 OXy OX;  OXq Xs
|oX, OX, X, |

which can be expressed in compact matrix notation as

dx = FdX Eqg. 1.20
The matrix [F] is:

=% Eq.1.21
i~ ax g+

The ESED function is a function of the left Cauchy-Green deformation tensor,
[B]=[FIF] Eq. 1.22

Being [F] the deformation tensor that relates the undeformed and deformed

configurations; so W =W (g,,&,,&,), W =W (4,,4,,4;) and W =W([B]).

This ESED function can be expressed as W =W(4,,4,,4,,n,,n,,n;) by the

principal stretches and the principal directions. This expression can be

simplified in W =W(4,,4,,,) for isotropic materials. Finding the roots of the
characteristic polynomial of[B] we obtain the principal stretches. However, in

the same way, it is easier to find the roots using the strain invariants instead of

using the principal stretches:
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wW=w(l,1,,1,) Eq. 1.23

I, =tr([B]) = A2+ A2+ A2 Eq. 1.24
1, :%[trz([B])—tr([B]Z)] =222+ 2222+ A% Eq. 1.25
I, =det([B]) = 124242 Eq. 1.26

If the material is considered to be incompressible at this time, the samples
initial volume and the final volume must be equal (see Figure 1.4); therefore

the third invariant can be simplified as follows:

Lio
3
Lz, = -
F-F-=—--- -1
Lo 1 L2g 1/

Figure 1.4: Representation of the undeformed (in blue) and deformed (in red) shapes

of a testing bar.

Vi =Vo:>L1L2L3=LioLzoLeojiiizlz/ll/lzﬂazl Eq. 1.27
Lo Lao Lao
I, =det([B]) = A2A%42=(1,4,4,)" =1 =1, 50 |, =1 Eq. 1.28

Then, the previous Eq. 1.23 can be simplified in the next expression,
w=w(l,,1,) Eq. 1.29

As the third principal stretch can be expressed as,
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Ay = Eqg. 1.30

the invariants I and |2 yield in,

1

L=+ +——

=4+ 4 PRTR Eq. 1.31
1 1

L, =44 +—+—

2 ﬂ'l 2 222 212 Eq132

The constitutive law for a hyperelastic, isotropic and incompressible material
is derived by the use of an energy principle Malvern [12], Beatty [13]. The

constitutive law is given by:
oW oW oW 1.1
t(=2/| —+1,— ||B]-——|B
[t] Hﬁll + 1a|2j[ ] . ]} ple] Eq. 1.33

where [@] is the 3X3 unitary matrix.

Where [t] is the Cauchy stress tensor(true stress or force per deformed area)
and p is the pressure defined as

1
p= §(t11 +1,, +1s3) Eq. 1.34

So the deviator stress could be written as,

[s]=t]- ple] Eq. 1.35

The general constitutive laws are derived from the above equation by

eliminating the pressure stress.
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The only part of the stress that causes strain in an incompressible body is the
deviatory part because the volume does not change.

In the case of the deformation without shear, the left Cauchy-Green

deformation tensor can be expressed as:

2 0 0
[B]=[FIF] =|0 2 o Eq. 1.36
0 0 A
20 0
[Bf =0 4 0 Eq. 1.37
o o A
=2 g 20 (27 2+ 22— 28 )+ p Fq. 138
al, al,
=2 g a2 1 22 e 22 )2 - 23)+ Eq. 1.39
al, al,
oW oW
t3:28—|/1§+28T((ﬂf R+ -2 )+ p Eq. 1.40
1 2

t, = Principal Cauchy Stress in i direction

A, = Principal stretch in i direction
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1.1.3 Finite element analysis (FEA) or Finite element method (FEM)
1.1.3.1 Introduction

The Finite Element Analysis (FEA) is a computer simulation technique used in
engineering analysis. It consists in a numerical method for solving problems of
engineering and mathematical physics. The FEA method is useful for problems
with complicated geometries, loadings, and material properties where
analytical solutions cannot be obtained. It was first developed in 1943 by
Richard Courant, who utilized the Ritz method of numerical analysis and
minimization of variational calculus to obtain approximate solutions to vibration
systems. Later, Turner et al [14] established a broader definition of numerical
analysis. The paper centres on the "stiffness and deflection of complex

structures".

FEA is used for the determination of stresses and displacements in mechanical
objects and systems. However, it is also routinely used in the analysis of many
other types of problems, including those in heat transfer, fluid dynamics and
electromagnetism. FEA is able to handle complex systems that defy closed-
form analytical solutions. The object or system being investigated is
represented by a geometrically similar model consisting of multiple, linked,
simplified representations of discrete regions. Equations of equilibrium, in
conjunction with applicable physical considerations such as compatibility and
constitutive relations, are applied to each element, and a system of
simultaneous equations is constructed. The system of equations is solved for
unknown values using the techniques of linear algebra or nonlinear numerical
schemes, as appropriate. While being an approximate method, the accuracy
of the FEA method can be improved by refining the mesh in the model using

more elements and nodes.

In this section, a general description of the basic theory behind finite element
analysis will be followed by a discussion on element types commonly available
for application. The generic procedure for applying finite elements will also be
summarised in terms of geometry definition and mesh creation, material

properties, boundary and loads conditions, and interpretation of results.
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1.1.3.2 Structural Finite Element Analysis. Theoretical Basis.

Geometry can be idealised as being composed of many small, discrete pieces
called finite elements. The problem can now be characterised by large

numbers of simultaneous equations.

y

A& E

Figure 1.5: Example of a finite element model in 2D [15].

When a load is applied to the structure, all of the elements must deform in a
fashion that guarantees equilibrium of forces between the elements. In

addition, the deformation of the modelled structure must remain compatible.

Displacement function.—

Characterises the displacements within an element as a function of space. The
choice of displacement function affects the accuracy of the element in
approximating actual displacements, strain, and stress behaviour over the
volume of the element. Since strains are first derivatives of displacements, a
linear displacement function leads to the approximation of constant strains and
stresses within the element. Similarly, a quadratic displacement function
simulates linear stress and strain fields within an element. For the three-node
triangular elements shown in Figure 1.5, with the x axis lying along one edge
of the triangle, and with displacements (Ui, Vi) in two coordinate directions (X,y)
at each node (i), a total of six nodal displacements (degrees of freedom) can
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be defined in terms of the deformation field for the element. This requires
functions with a total of six coefficients:

u=a-+bx+cy Eq. 1.41

v=d+ex+ fy Eq.1.42

where a, b, ¢, d, e, and f are unknown constants.
Element displacements in terms of nodal displacements.

Using the previous Eg. 1.41 and Eq. 1.42 to evaluate the displacement at each
node (i),

U =a Eq. 1.43
U, =a+bX, Eq. 1.44
U, =a+bX, +cvY, Eq. 1.45

where Xj, Xk and Yk define known coordinate locations. A similar set of
eguations can be written to define the coefficients d, e, and f in terms of the
nodal y displacements. Using matrix manipulation it is possible to represent

the u and v displacements within an element in terms of nodal displacements

as
Ui
Vij
u(xy) .
=|NkV] +=[NJio L
{V(X,y)} [ ]<U1k [NJis} Eq. 1.46
Vk
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where [N] is the shape function matrix and {5} is the vector of nodal

displacements.

Strains as a function of nodal displacements.—

The two dimensional definitions of strain in terms of displacement are:

g =N Eq. 1.47
OX

& _8_u Eq. 1.48
ou ov

Eq. 1.47 and Eqg. 1.49 are used to calculate the strains within the element in

terms of its nodal displacements. Using matrix notation again, the above
relationships can be expressed as

le}=1¢,  =[Blis} Eq. 1.50

where [B] is a matrix that can be defined in terms of derivatives of the shape
function elements.

Stresses in terms of strains.—

In order to relate stresses to strains, a material constitutive model is necessary.

For simple linear elasticity, the plane stress constitutive relations are

o, = 1 E > (gx +v5y) Eqg. 1.51

Page 25



o =—(e, +ve,) Eq. 1.52

Eq. 1.53

where E is the elastic modulus and v is the Poisson’s ratio. Using matrix

notation,
o, £,
o, (=[D}e, r=[D]BJs} Eq. 1.54
TXV 7xy

where [D] is the material matrix formed using Eg. 1.52 and Eqg. 1.53.

Nodal forces in terms of displacements.—

A load is transmitted from one finite element to another through forces at the
node points of the elements, which can be represented as{F}. These nodal

forces in the two coordinate directions are related to the nodal displacements
through a set of element equilibrium equations. These equilibrium equations
can be defined by equating the external work accomplished by the nodal forces

when subjected to an arbitrary set of virtual nodal displacements, d{5}, to that

of the internal energy stored in the element’s volume as its stress is subjected

to the virtual strain field, resulting from the same nodal displacements.

This relationship can be expressed as:

({5} {F}= [dfe} {olavol Eq. 1.55

Vol

Since the virtual strains can be related to the virtual nodal displacements as
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d{s}=[BJd{s} Eq. 1.56

the element equilibrium takes the form of

(@{o)) {F}=dlo} [[B] [DIBJs)avol Eq. 1.57

Vol

The relationship between the nodal forces {F} and the nodal displacements

{8} can be written as,
{F}=[KL{5} Eq. 1.58
where [KL is the element stiffness matrix defined as

[K].= [[8] [D]BJvol Eq. 1.59

Vol

1.1.3.3 Types of Finite Elements

Elements can be categorised as one, two and three-dimensional solid

elements and beam, plate and shell elements.

The complexity of the analysis, the amount of engineering and computer time
increase significantly when moving from 1-D to 2-D and 3-D analysis. Many
real part geometries and loadings are certainly 3-D in nature. When 2-D and
1-D elements are used, assumptions must be made relative to the distribution

of stress and strain in the other directions.

One-dimensional elements.—

Bar or truss elements are simple, one-dimensional elements. Their length is

calculated from the nodal positions defining the bar ends. The cross-sectional
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area is defined by the modeller. These elements are simple spring elements
and have very limited use in plastic part modelling.

Two-dimensional elements.—

Include plane stress, plane strain and axisymmetric elements. The plane
stress assumption (that stress in the thickness direction is zero) is used when
the component’s deformation is independent of the dimension perpendicular
to the plane of description and its thickness in that direction is small (thin snap
fits). The plane strain assumption (that strain in the thickness direction is zero)

Is used when the component is thick relative to the planar dimensions.

In the axisymmetric elements, the stresses, strains, and loads do not vary in
the circumferential direction. These elements are often quite useful because

they account for fully 3-D behaviour.

Three-dimensional elements.—

3-D elements are typically either tetrahedrons or hexahedrons. One of the
most common is the rectangular hexahedron with eight nodes, one at each
corner. Such elements will be used when precise studies of local stress

distributions around geometric details like notches are needed.

In this thesis, 2-D and 3-D elements will be evaluated for simple and complex

geometries.

Shell elements.—

All the nodes describing the geometry of these elements are at the midsurface
of the component. The thickness of the element is usually specified as either

a nodal or an element parameter.

The degrees of freedom associated with the nodes of these elements now

include rotations as well as translations.

In this thesis, shell elements will not be evaluated.
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{a) Truss element {b} Beam element
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{c} Plane stress, plane strain, and axisymmetric slaments
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(&) Thin plate elements (T} Thin shell elements

Figure 1.6: Basic element types found in FEA software.
1.1.3.4 Finite Element Analysis Procedure.

The study of a component or a system of different parts (an assembly) requires
in any finite element based software three main steps which consist of pre-

processing, solving and post-processing.

Pre-processing.—

The pre-processing step is related to the preparation of the geometry and
mesh. In some cases no geometry is available since the mesh is directly
imported from another FEA code. When the geometry is modelled, it can be
imported from CAD software or can be directly created in the finite element
programme. In both cases, the general aim of the geometrical modelling is to
obtain the simplest representation of the part (eliminating small details that will

not affect the overall response) in order to make the meshing process easier.

Meshing consists of dividing the geometry into elements that are connected to
one another at the nodal points. The meshing of the part is automatic in most
of the codes and the user has to specify the element type and the mesh size
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to be used. Selecting coarser meshes results in a faster solution time but limits

the accuracy of the analysis.

This step also comprises the specification of material properties, which can be
complicated depending on the materials to be studied and the complexity of

the analysis.
Solution.—

The solution phase is related to the specification of the boundary conditions
and loads that are imposed to the component or system of components and

the solving of the problem.

The boundary conditions can be in the form of restrictions of degrees of
freedom (DOF) in the X, Y, Z directions, or in the form of contact regions in

between different areas of the same part or between different parts.

The load type varies with the analysis type but in general structural problems,
forces, displacements, pressures, temperatures, velocities or accelerations

are applied.

Post-processing.—

The post-processing phase is related to the visualization of the results in a
graphical form. Deformed shapes, stresses, strains, reaction results and
graphs can be plotted between other quantities and the output should be
compared with admissible parameters in our design. An adequate post-
process should evaluate critically the validity of the obtained results, for
example, in a static analysis the applied forces and the obtained reaction

results.

Evaluating the obtained results, design modification or optimization works can

be carried out.
1.1.3.5 Ansys Parametric Design Language (APDL)

Commercial finite element method software as Ansys or Abaqus have

implemented algorithms to perform finite element analysis (FEA). This type of

Page 30



software displays a friendly environment for users. In addition, this type of
software gives the choice to include several options as calculations, material
models, macros, and so on by parametric programming languages or

subroutines.

APDL stands for ANSYS Parametric Design Language [16], a scripting
language that can be used to automate common tasks or even build a model
in terms of parameters (variables). APDL also encompasses a wide range of
other features such as repeating a command, macros, if-then-else branching,

do-loops, scalar, vector and matrix operations.
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1.2 Literature review. Part 2. Static modelling of elastomers

The static tests performed to measure the mechanical properties of materials
are executed at very low speeds (see section 3.1.4-A). Hence, as a minimum
speed is required to do the static tests, also they are known as quasi-static

tests.

This part of the literature review is divided in two sections: the first one relates
to the quasi-static material constitutive description and the second section
describes the ordinary quasi-static characterisation methods for performing
simulations in finite element analysis (FEA).

1.2.1 Hyperelastic material models: Static modelling of elastomers by elastic
strain energy density functions (ESED Functions)

There are two rather different approaches to study the rubber elasticity. On the
one hand, the statistical or kinetic theory attempts to derive elastic properties
from some idealized model of the structure of vulcanized rubber. On the other
hand, the phenomenological theory treats the problem from the viewpoint of
continuum mechanics. This approach constructs a mathematical framework to
characterise hyperelastic behaviour so that stress analysis and strain analysis
problems may be solved without reference to microscopic structure or

molecular concepts.

The_statistical-thermodynamic theory of a molecular .— This theory was

originally developed by Kuhn and Grin [17]; additional contributions were
made by James and Guth [18] and also Flory and Rehner [19]. Treloar [20]
comprehensively reviewed the molecular theory of rubber-like elasticity, the
base of which is on the fundamental statistical property of the elastomer
molecules and the network entropy of deformation.

The work of deformation per unit volume is:

w =%NkT(/1f 22422 3) Eq. 1.60
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where N is the number of network chains in a unit volume, k is the Boltzmann’s
constant, A are the principal extension ratios and T is the temperature in
Kelvin. Additionally, developing this theory summarized in e.a. [21], the next

relation can be imposed:

G =NRT Eq. 1.61
Hence,
_ 1 2 2 2
W_EG@+@+%—$ Eq. 1.62

Thus, the strain energy function represented by Eq. 1.62 involves only one
physical constant G, the shear modulus, which may be determined from the

degree of crosslinking in the rubber.

Substituting Eq. 1.30 in Eq. 1.62,
w =262+ 2 2 _3)
=3 2+ 2 +[44,]7-3 Eq. 1.63

Thus, for an incompressible material, W is a function of two independent

variables; in this case, they are chosen to be A1, A2.

This theory predicts a simple relationship between the stress and the strain. In
simple shear, the shear stress is linearly related to the shear strain by the shear
modulus G. The form of the relationships is similar to all elastomers that are
only scaled by the magnitude of the distance between cross-links. It predicts
well the initial elastic modulus at small strains. But it breaks down as the chain
extension approaches strains of 50% for an unfilled elastomer. The high strain
behaviour caused by the effects of a finite extensibility is of course neither
predicted nor the marked nonlinearity is at moderate strains. The
phenomenological theories, to be discussed next, are not restricted by any
particular physical interpretation. They largely concentrate on trying to

Page 33



represent the high strain behaviour of unfilled elastomers with attempts to
extend these ideas to represent the behaviour of filled elastomers.

Rivlin [22] has shown that the statistical theory is the natural extension of
Hooke’s law of large deformations, hence the material that obeys it is called

Neo-Hookean.

Replacing Eq. 1.24 by Eq. 1.62,
1
W = EG(I1 -3) Eq. 1.64

Deviations from the theory are apparent, especially in uniaxial extension,
where, at low strains (below about 50%), the measured modulus is too high in
relation to its value at moderate strains (up to 400%). At even higher strains, a
rapidly rising modulus is seen, which is also not predicted by the theory

presumably due to the finite extensibility of the chains.

Phenomenological theory of rubber-like elasticity.— Before the deviations of

the statistical theory, a general treatment of the stress-strain relation of
rubberlike solids, that began with Mooney [23] and was further developed by
Rivlin [24], shown from the concept of an ideal elastic solid, assuming that the
material is only isotropic in elastic behaviour in the un-strain state; no volume
change occurs on deformation (the energy cannot be dissipated). Its
mechanical behaviour may be described by means of an ESED function or
Helmoltz free energy of deformation per unit volume of material referred to the
undeformed state, which is a single-valued function of the state of deformation.
Based on the symmetry considerations, appropriate measures of strain -

regardless the choice of axes - are given by three strain invariants I, I2, and

15, W=W(Il,I,,1,).
When the material is unstrained, |1, |2 and |3 take the values 3, 3 and 1

respectively. It can be shown that if the linear stress-strain relations of classical

elasticity are to be applied for a sufficiently small deformation of the material,
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W can be approximated with any desired degree of accuracy by a power series

in |1—3, |2—3 and |3—1.Thus, we may write:

W= 3> Cu(l,-3)(1,-3) (I, -1* Eq. 1.65

i+j+k=1

For an incompressible material where I3=1, the coefficient Coo=0 since the
undeformed state is considered to be that in which the strain energy is zero.

So the function is simplified; consequently:

W=3 C,(l,-3(l,-3) Eq. 1.66

i+j=1

Mooney [23] developed the first phenomenological theory in 1940 prior to the

development of the statistical theory:
W =C,(l,-3)+C,(l, -3) Eq. 1.67

Typically this expression and other similar stored energy functions were written
in terms of the three strain invariants. The initial value of the Young modulus

and the shear modulus can be calculated:

E, = 6(C10 +C01) Eq. 1.68
G, = % Eq. 1.69

The Mooney ESED contained two elastic constants C10 and Co1 Eg. 1.67 and
was simplified by the Neo-Hookean, as given in Eq. 1.70, when C10=G/2 and

Co1=0 or in terms of the strain invariants as
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W =C,(I,-3) Eq. 1.70

This model lies in the fact that the statistical theory of rubber elasticity arrives
at the same strain energy function Eqg. 1.64. (Treloar [20]) and Yeoh [25]
showed that only a small strain range could be fitted to a carbon black filled
elastomer. The Mooney expression appears to be unsuitable for modelling the
behaviour of filled elastomers. It has also been pointed by Charlton and Yang
[9] that the Mooney constants determined from tensile data are inadequate to

predict the behaviour in other modes of deformation.

Tschoegl [26] suggested that the failure of the Mooney-Rivlin equations arises
from not taking enough terms of the Rivlin series Eqg. 1.66. James and Green
[27] fitted test data to highly carbon black filled elastomers with various high
order expansions of the Rivlin series. They reported that a third order
deformation expansion with 5 terms, Eq. 1.71, gave better predictions beyond
the range of the input data than the expansion of a higher order or of a higher

number of terms:

W :ClO(Il _3)"'001('1 _3)+C20(|1 _3)2

+Cp (1, =3)(1, =3)+Cy (1, -3)° Eq. 1.71

Gregory [28] noted that a simple relationship existed between stress/strain
data obtained in uniaxial tension, uniaxial compression and simple shear.
Other empirical relationships for W have been developed by Varga, Ogden,
Valanis-Landel [29-31]. These diverge from the Rivlin type of relationship in
that some discard the principle that the strain invariants 1 and |2 are even-
powered functions of the extension ratios and some are written in terms of
strains or extension ratios rather than in terms of strain invariants. Based on
extension ratios, Ogden [30] proposed the next relation for incompressible

elastomers,
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W =i2’:(&“n + A A ~3) Eq. 1.72

1 2
n=1

where p, are constants and the «, are not necessarily integers, and may be
either positive or negative. This representation includes the statistical theory
(2, =2) and the Mooney equation (o, =2,a, =-2) as special cases. Ogden
[30] showed that a three-term expression is required to represent tension, pure
shear and equi-biaxial extension for an unfilled elastomer, containing six
adjustable parameters. The degree of agreement with the experiment is quite
satisfactory for unfilled elastomers. Ogden’s formulation has the merit to be
mathematically simple, although the magnitudes of a large number of
independent constants have to be determined- since all the terms in the
equation have an identical form. According to Sawyers and Rivlin [32] the
Ogden model is a special case of the Rivlin ESED and Treloar [20] affirmed
that the two formulations are equivalent. In the same way, Valanis-Landel [31]

proposed the next relation based in extension ratios,

W =2G, > (4 (In4 ~1)) Eq. 173

i=1,3

Gent [33] developed a function that describes reasonably the whole range of
strains especially the large strain behaviour with the upturn in the stress-strain
behaviour that is due to the finite extensibility of the chains. It would give some
confidence in the use of a model if the parameters had some

molecular/physical significance. In this respect, the function may be written as:

W=-C,(l, -3)|n{1—H} Eq. 1.74

where In is the limiting value of 11 corresponding to the deformation when the

network is fully stretched.
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The previous relation could be written as:

J

m

W :—%Jan{l—M} Eq. 1.75

E and Jn are physical constants: E is the small strain tensile or Young modulus
and Jn denotes a maximum value for(ll—3). At small strains, this equation
reduces to Eq. 1.60 from the statistical theory where Cio is equal to the shear
modulus G or NKT . This ESED function is claimed to have the advantage that

it reduces the description of the stress-strain behaviour of an elastomer to two
parameters having a clear physical meaning.

The general observation that can be made for unfilled materials is that dW/dl1
>> 0W/ol2 and the examination of data published by Fukahori and Seki [34]
also supports the contention that for filled elastomers 6W/ol2 by comparison
with dW/ol1 was numerically close to zero. If it could be assumed that oW/ol2
was equal to zero, then the difficulties of measuring the relationships for I»
could be ignored, and filled elastomer characterisation would be significantly
simplified. This approach was originally suggested by Gregory [28] who
observed, on the basis of measurements of the stress-strain behaviour of
carbon filled natural-rubber elastomers, that a simple relationship existed
between shear, tension and compression data for a number of different
compounds. Davies et al [35] confirmed this observation with carbon black
filled materials. The observation on filled materials showed that the mechanical
behaviour, that could be described using the first strain invariant, could only be
true if OW/0l1 was independent of I> and if the magnitude of dW/dl1 was
significantly greater than 6W/dl2. From this consideration, the review shows
that there is no unique solution. The choice of a function will depend on the
particular situation. The first one will generally need to be accurate at small
and moderate strains (<100%) unlike the second one which would be required

to predict moderate and large strains accurately.
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Yeoh [25], using the work of Gregory [28], proposed to take only the first three
terms of the Rivlin series to obtain the following cubic function for filled

elastomers:

W = Cyo(11-3)+Co0(11-3)° +Cs(11-3)’ Eq. 1.76

This approach predicted the stress strain behaviour of filled elastomers well at
large strain. The use of this function has been shown to permit the prediction
of stress/strain behaviour in different deformation modes from data obtained in
one simple deformation mode. But this leads to unstable functions predicting
physically unrealistic behaviour under conditions outside the range of the
experimental data. The initial value of the Young modulus and the shear

modulus can be calculated as follows:

E, =6C,, Eq. 1.77

G, =2C,, Eq. 1.78

Yeoh’s model [25] reported good ability to predict multi-axial data, including
comparison with the published biaxial data of James and Green [27] for filled
elastomers. Conceptually, this proposed function is a model with a shear
modulus varying as a second-degree polynomial in |, —3. The variation of the
shear modulus in the case of carbon black elastomers is a fall of the modulus
with increasing strain and arise at large deformations due to finite extensibility.

This characteristic behaviour can be modelled if C,, is negative while C,, and

C,,are positive.

Additional experimental evidence and those recent works by Othman and
Gregory [36], Davies et al [35], Gregory et al [37], Yeoh and Fleming [38] have
also suggested that it is appropriate and more reliable to make the ESED a

function of I, for filled materials. Any inaccuracy resulting from making these
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simplifying assumptions may not be too severe a limitation, as elastomers are

only imperfectly elastic.

In the same way, another ESED function based on the previous consideration

was developed by Arruda-Boyce [39]:

W=GOZS: S (1i-3) Eq. 1.79

Go and Am are material parameters which represent the initial shear modulus
and the locking stretch at which the strain/stress curve of the model stiffens
significantly respectively. This function is also called the eight-chain model
because it was developed based on a representative brick element where
eight chains emanate from the centre of the cube to each corner. The values

of Cj arise from statistical treatment of non-Gaussian Chains:

c=t c -t ot g 19 o 519 Eq. 1.80
2 20" °71050° ¢ 7000' " 673750

Mullins effect and Phenomenological hyperelasticity.—

The ESED functions consider the energy cannot be dissipated (section 1.2.2).
Two of the earlier constitutive models that account for softening have been
developed by Simo [40] and Godvinjee and Simo [41] although these models

are not generally available in finite element codes.

The problem described above is compounded as the hysteresis loop changes
systematically on each cycle due to stress softening. Hawkes et al [42] have
attempted to solve this problem by mathematically representing the stress-

softening phenomenon with a strain energy function of the following form:

W, = f(n) W, Eq. 1.81
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where W, and W, are the ESED functions on the first and n" number of cycles,
and f(n) is a decreasing function of n. This model developed for a constant

maximum cyclic strain condition is obviously limited to this particular test
condition and cannot be applied as a general case. In a general situation, the
strain energy function depends not only on the previous number of cycles that

the specimen has endured but also on the whole strain amplitude history.

Ogden and Roxburgh [43] proposed a pseudo elastic mathematical
approximation which allows the prediction of the decrease in material stiffness
modifying the initial value given by hyperelastic ESED material models. The
model is a maximum load modification to the nearly and fully-incompressible
hyperelastic constitutive models already available. In this model, the virgin
material is modelled using one of the available hyperelastic potentials, and the
Mullins effect modifications to the constitutive response are proportional to the
maximum load in the material history. The Ogden-Roxburgh’s model results in

a scaled stress given by
Sij =S Eq. 1.82

where n is a damage variable which is defined as follows:
1] [1 w W] Eq. 1.83
n=1——erf|—Wy—W, G- 1

where Wn, is the maximum previous strain energy and Wo is the strain energy

for the hyperelastic material.

Some earlier models were proposed e.g. Miehe [44] and Miehe and Keck [45].
Newer proposal is implemented in ANSYS software [15]: The modified Ogden-

Roxburgh pseudo-elastic model results in a scaled stress given by

Wm - WO

—_— Eg. 1.84
m+ W, q.18

1o Loy
n=1-—erf
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The modified Ogden-Roxburgh damage function requires and enforces the

three damage material constants r, m, and .

The material constants are selected to ensure ne(0,1] over the range of
application. This condition is guaranteed for r >0, m > 0, and 8 = 0; however,
it is also guaranteed by the less stringent bounds r >0, m > 0, and (m + BWm)
> 0. The latter bounds are solution-dependent, so you must ensure that the

limits for n are not violated if 8 < 0.

1.2.2 Hysteresis. Energy dissipation of strained/cycled elastomers: Mullins,

Payne and crystallization effects

When an elastomer is tested, some energy is dissipated as heat. Such energy

dissipation occurs due to various causes explained below:

Carbon black.— Carbon black fillers are added to rubber to increase stiffness,
abrasion resistance, tear strength, and fatigue life. The mentioned fillers used
in most rubber compounds have a noticeable influence in their mechanical
properties as energy dissipation. The types of filler-rubber interactions are both
physical and chemical, ranging from weak Van Der Waal forces to strong
covalent linkages. Hamed and Hatfield [46] mentioned the number of each kind

of the latter mentioned interactions is unknown.

Medalia et al [47—-49] explained that carbon black consists of aggregates which
are formed by fusion of particles in the flame. The aggregate is composed by
spheroidal particles and these particles do not have an independent existence
in carbon black. The aggregate is the smallest dispersible entity. The
aggregates are associated into agglomerates held together by Van Der Waals
bonds and a network, which can be completely separated into the constituent
aggregates by a deformation of the rubber compound. In rubber, the void
spaces within the aggregates are filled with rubber. This occluded rubber is
partly shielded from deformation and thus acts as part of the filler rather than
as part of the matrix. Rubber molecules interact with carbon black by physical

absorption and by chemisorptions on active sites.

When an elastomeric material is strained, part of the applied energy is

dissipated in overcoming viscous resistance to motion of the molecular chains
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(viscoelastic behaviour) and in breaking or modifying the structure associated
with the molecular or filler network. In unfilled vulcanized elastomers, the
dissipation mechanisms associated with the molecular structure, mainly
viscoelastic losses are not generally significant in terms of the deviation from
elastic behaviour. In the case of filled elastomers, these dissipations are much
more pronounced because the carbon black causes a large increase in the
viscosity due to hydrodynamic effects (displacement of large particles through
the elastomer matrix). The breakdown and the reformation of carbon particle
aggregates are also believed to be one of the causes of the increased energy
dissipation.

Mullins Effect or irreversible stress-softening.— When an elastomer is

cyclically deformed, the stress-softening produced is known as the “Mullins
Effect”. It was apparently first studied in detail by Holt [50] and later by Mullins
[51], Bueche [52], Hardwood et al [53], Hardwood and Payne [54] (Figure 1.7).
This stress-softening is irreversible at room temperature and occurs in filled
and unfilled rubber-like materials and it is produced by the breaking of cross-
links within the rubber network. The greatest softening occurs during the first
cycle, but the effect continues at a decreasing rate in subsequent cycles. The
softening due to the Mullins effect increases progressively with the increasing
deformation and the number of loading and unloading cycles, which are the

main causes of the filler-filler and rubber-filler de-adhesion.
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Figure 1.7: Mullins effect: The greatest softening occurs during the first cycle

The Mullins effect is a phenomenon typically observed in compliant filled
polymers. It is characterised by a decrease in material stiffness during loading
and it is readily observed during cyclic loading as the material response along
the unloading path differs noticeably from the response that is along the

loading path (Figure 1.7).

The various explanations suggested for the Mullins effect show that there is
still no general agreement on the origin of this effect at the microscopic or
mesoscopic scales. This behaviour was attributed to the de-bonding of the
polymer from the filler particles, the molecular slippage, destruction-
reformation of a filler network, and disentanglement of the rubber chains.
Some theories of the possible physical explanation of the Mullins effect are

reviewed in the next lines:
a) Rubber-filler interface bond rupture:

Bueche [52]: When a rubber part is stretched in horizontal direction, the filler
particles must separate. With a very low stretch, the union between filler
particles and rubber-chain C might rupture. Hence, if the rubber is allowed to

retract to its initial value and is re-stretched, it will be softer, since the chains
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which broke are no longer a resisting deformation. After breaking, a chain
makes no further contribution to the stiffness and the softening effect results

from this chain breakdown (Figure 1.8).

B B \\
e
a) b)

Figure 1.8: Three molecular rubber-chains attached to two filler particles are
represented. a) Un-stretched state: The adhesion between Chain C and the aggregates
might break with a very low stretching cycle. The needed stretch to break the adhesions
between filler particles and the rubber chains B and C will be greater respectively. b)
Stretched state: the adhesion between Chain C and one of the carbon black particles
is broken, and Chain A & B are stretched.

b) Molecules slipping: adsorption-desorption of polymeric chains at the

filler interface

Howkink [55] proposed that molecules slip over the surface of the fillers and
new bonds are instantaneously created along the chains. The new bonds
would be of the same physical nature as the original ones, but would appear

at different places along the rubber molecules (Figure 1.9).

A)Original state B)Stretched C)After release of the stress

Figure 1.9: A molecular rubber-chain attached to some filler particles is represented.
A) Un-stretched state. B) Stretched state: Molecules slip over the surface of the fillers.
C) After release of the stress: carbon black particles as a rubber molecule, try to return

to their initial possition.
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C) The destruction-reformation of a filler network:

Kraus et al [56] proposed to attribute the main source of the stress-softening
to the rupture of carbon-black structure or agglomerate, especially for highly

reinforced materials (Figure 1.10)
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Figure 1.10: A carbon-black chain or agglomerate is represented. A) Un-stretched
state B) Stretched state: The carbon-black agglomerate composed by several spherical

aggregates, is broken down into two smaller agglomerates.
d) Disentanglement of the rubber chains

Hammed and Hatfield [46] proposed the other consideration. The removal of
chain entanglements between particles associated with the strain axis may
cause the stress-softening. The number of active chains is assumed to remain

constant; only the entanglement density changes with respect to the extension.

n{ [ [;{ o
™ -
3%%{_)’ ‘ B ﬂ:éi\s‘i_/‘. B
A) B)

Figure 1.11: A) Un-stretched state B) Stretched state: a chain entanglement is

removed
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Mullins [51] explained that in filled rubber compounds, pronounced softening
occurs due to a breakdown of aggregates of filler particles. This breakdown is
essentially complete at very small deformations (strains up to about 0.1%))
and at larger deformations, softening due to this cause is relatively small. At
intermediate and larger deformations, in both, unfilled and filled vulcanizates,
most of the softening appears to be due to configurational changes of the
rubber-molecular network due to non-affine, displacement of network junctions
and entanglements during deformation and incomplete subsequent recovery

to their original positions.

Reversibility of deformed rubber.—

Complete recovery in rubber vulcanizates reflects that no structural breakdown
has occurred during deformation and thus, in these cases, the softening is due
solely to a change in the configuration of the molecular network; this involves

a rearrangement or displacement of the network junctions.

In some materials, appreciable residual deformation or set may be present
after removal of the stress. This incomplete recovery associated with set
reflects not only a breakdown of network junctions but also some reformation
in the deformed state. Rupture of network chains connecting filler particles is
an irreversible effect and would be expected to depend on the temperature
and rate of pre-stressing. Any linkages broken and reformed while the rubber
is deformed also contribute to softening and incomplete recovery after
deformation. Recovery is normally much slower and less complete due to filler
agglomerates and to filler aggregates attached to rubber-molecular network
and displaced during deformation, hindering and limiting return to original
equilibrium positions Harwood and Payne [54]. Hence, this incomplete
recovery may derive from viscous flow in a network that is not crosslinked or
from the rearrangement of a network formed by weak crosslinks or molecular
entanglements. The softening recovers slowly on standing, but may be

accelerated and made more complete by an increase in temperature.
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Payne effect.—

The Payne effect appears when rubber parts are loaded cyclically at different
load amplitudes where the magnitude of the dynamic stiffness of a rubber unit
decreases as the excitation amplitude increases. In addition, the loss modulus
plotted over amplitude shows a maximum where the storage modulus drops
more rapidly. Several researchers review extensively the dynamic properties
and the amplitude dependence of carbon black filled rubbers better explained
in section 1.3.3, e.g., Medalia [47,49], Harris and Stevenson [57] and Rendek
and Lion [58].

Strain-softening of the glassy polymer shell surrounding the particles surfaces

Another molecular mechanism responsible for the non-elastic behaviour, in the
form of an increased high strain hysteresis, is strain-induced crystallisation
which occurs particularly in natural rubber. At large extensions, the elastomer
chains orientate and align resulting in the formation of crystallites. This
crystallisation is an additional energy dissipation process which is observed as
a more pronounced upturn in the stress-strain curve at large strains when

compared with that of a non-strain crystallising elastomer.

1.2.3 Static mechanical properties characterisation: Uniaxial and shear strain

states

When the mechanical properties of an elastomer compound have to be
characterised, some experimental tests are required. This section presents the
standard specimens used in the mechanical properties characterisation. The
materials are characterised in simple strain states by standard specimens

designed for this purpose.

Once the material behaviour is characterised experimentally in simple strain
states, later on, the prediction of deformed geometries with complex strain
states can be performed by the use of Commercial finite element method
software such as Ansys or Abaqus. These types of software have implemented
algorithms to fit the experimental curves of simple strain states to standard

ESED functions reviewed in section 1.2.1.
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The usually characterised strain states are the uniaxial tension or equibiaxial
compression, the uniaxial compression or equibiaxial tension, the planar
tension (pure shear) or planar compression and simple shear. With the addition
of the hydrostatic stress, some of the previously mentioned strain states can

be related to each other as it is shown in Figure 1.12
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Figure 1.12: Uniaxial, equibiaxial and planar tension equivalences.

The most popular tests, because of their testing simplicity, are the tensile [59—
61] (Figure 1.13-A) and compression [62—64] (Figure 1.13-B) tests which
describe the uniaxial state and the shear planar test for the shear strain state
(Figure 1.13-C). There are some drawbacks that make other tests difficult to
perform: firstly, the equibiaxial testing device fabrication and maintenance
(Figure 1.13-D); secondly, the bonding needed between the testing plates and
the rubber in simple shear [65,66] (Figure 1.14); and lastly, because of the
bulging (edge effects) of the rubber disc that indicates a non-uniform strain
state (the surfaces of the rubber part in contact with the plates have to be
correctly lubricated and the selection of the lubricant has to be carefully made).

This latter effect is explained in section 3.1.2.1.

What is explained above does not imply that the rejection of one or two of the

previously mentioned tests is unfeasible. In some cases, for some
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mathematical models, it is possible to carry out the characterisation only with
one type of the test samples [25].

S e

A) B) C) D)

Figure 1.13: A) Tensile, B) compression, C) pure shear and D) equi-biaxial

characterisation samples

Figure 1.14: Simple shear characterisation sample
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1.3 Literature review. Part 3. Dynamic behaviour of elastomers

1.3.1 Contribution of time in the stiffness relaxation of elastomers under

constant load.

In this section the stress relaxation is studied. The stress relaxation is the
variation of the stress with time, in response to an applied constant deformation
o, all at a constant temperature. The load acting on the body is decreasing
gradually since the stress decays exponentially with a characteristic time
constant. Once the material is relaxed, the stress is not zero and the long term

modulus is E,, (Figure 1.15).

e(t o(t)

0o
= K

Figure 1.15: Stress relaxation curves. The testing sample is deformed and this
deformation is maintained constant during the test. The maximum stress value is

reached at time to and it decreases gradually.

Unfilled elastomers.— The mechanical behaviour of this type of rubbers can

be assumed as viscoelastic behaviour, and then, their behaviour can be
reproduced by linear viscoelastic constitutive models. The mentioned models
assume that the relaxation rate is proportional to the instantaneous stress oo
and that all the curves, for different values of applied strain (and instantaneous

stress), are proportional (Figure 1.16).

When an unfilled rubber is cycled, such viscoelastic models consider that the
hysteresis loop during cyclic deformation remains elliptic. They do not take into
account the dependence of the material on the strain amplitude that is
imposed. Hence, the viscoelastic models fit well the mechanical properties of

unfilled rubbers but do not characterise correctly the filled rubbers properties.
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Figure 1.16: Stress relaxation: Linear viscoelasticity. A) Four stress relaxation tests
done with four preloads are represented from €1 to 4. B) The modulus E depends
only on the testing time (t). C) The modulus E does not depend on the preload and it
is the same for all preloaded tests. Hence, the initial stress oo and every o(t) are
proportional to the applied deformation load ¢i. C) In a load cycle, the hysteresis

loop is elliptical.

Filled elastomers.— In case of filled rubbers, the relaxation rate is not

proportional to the stress and the different curves are not proportional to each
other. Hence, the dynamic behaviour of filled elastomers cannot be
characterised by classical viscoelasticity. In addition, when highly filled
elastomers are cycled at large amplitudes and low frequencies, the hysteretic
response diverges considerably from the elliptic shape shown in viscoelastic
or unfilled materials. Stress in the filler phase and in the rubber-filler interfaces

is responsible for the rate-independent contribution as observed in Figure 1.17.
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Figure 1.17: Nonlinear viscoelasticity. A) Four stress relaxation tests done with four
preloads are represented from €1to €4. B) The modulus E depends on the testing time
(t) and on the load strain (g;). C) The modulus E depends on the strain load (e;). Hence,
the initial stress oo and every o(t) are not proportional and depend on the applied

deformation load &i. C) The hysteresis loop is nonlinear.

1.3.2 Dynamic properties of unfilled elastomers: linear viscoelastic materials
in cycled loads.

Dynamic mechanical properties refer generally to responses periodically
varying strain or stresses. They are usually simply defined as a small
sinusoidally varying strain or stress, for which the response is a small
sinusoidally varying stress or strain, respectively, with the same frequency but
generally out of phase. Then, the strain always lags slightly behind the stress
(Figure 1.18). This phase shift between stress and strain exists because that
part of the energy input is not recovered at the end of the cycle. Some of the
energy input is stored and recovered in each cycle and some is dissipated as
heat. Materials whose behaviour exhibits such characteristics are called
viscoelastic. The phase angle is a measure of the damping, and thus, also a

measure of hysteresis.

The mathematical approximations studied in this section are based on the

linear viscoelastic theory.
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Figure 1.18: Phase shift between stress and strain.

If no damping is present in the system, the modulus is real but it becomes
complex when damping exists as in the case of elastomers.

When a sample is subjected to oscillatory deformations, the strain varies

sinusoidally with time as:

& = gySinwt Eg. 1.85

where & is the strain amplitude, w the angular frequency (21T times the
frequency in Hertz), and t the time. The stress o will also oscillate sinusoidally

with the angular frequency w as illustrated in Figure 1.18

0 = gpsin(wt + 6) Eq. 1.86

where ¢is the phase lag.

If Eq. 1.86 is expanded, it can be rewritten as:

0 = 0, sin wtcosd + g,cos wtsind Eqg. 1.87

From the last expression Eq. 1.87, the stress can be considered consisting of
two components (Figure 1.19):

a) o,cosd: in phase with the strain, proportional to sinwt

b) a,sind: 90° out of phase with the strain, proportional to coswt
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Figure 1.19: Stress components representation

Rewriting Eq. 1.87,

0 = gy E'sinwt + gy E"'cos wt Eq. 1.88

The dynamic properties can be decomposed in storage modulus E’ and loss
modulus E” or equivalently, as complex modulus E* and phase angle ¢ (see
Figure 1.20).

90
E' =—cosé Eq. 1.89
€o
Op .
E" = —siné Eqg. 1.90
€o

(o)
E*=\E?+E"72 =2 Eq. 1.91

And the phase lag,

tans = E" /E' Eq. 1.92

Page 55



Figure 1.20: Phasor diagram

According to Eq. 1.91, the dynamic modulus is the ratio of the peak values of
stress 0o and strain & even though these values are taken at different times.
In fact, if strain and stress cycles are sinusoidal, the slope of the long axis is
defined as the complex modulus E* (Figure 1.21) and the hysteresis area takes
the form of an elliptical loop. The elliptic hysteresis loop is associated with the

dissipated energy.

Stress E*

>
/ €0 Strain

Figure 1.21: Linear viscoelastic hysteresis loop for harmonic excitation. Linear

behaviour

The E' is the real part of the complex modulus (Figure 1.20). It is known as
storage modulus because it defines the energy stored in the sample produced
by the load strain. Likewise, E" is the imaginary part of the complex modulus
E*. Itis called loss modulus since it describes the dissipation of energy, which

is evident when calculating the energy dissipated per cycle Uc (Annex II-C);

2
U, = g 2% Eq. 1.93
2 w
U, =7E"g,’ Eq. 1.94
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This energy is represented by the area of elliptic hysteresis loop (Figure 1.21).
If the integral of Uc is evaluated for a quarter of a cycle, instead of the entire
cycle, the first term gives the maximum stored elastic energy (W¢).
1_, >
W, = 5 E'e, Eq. 1.95
If Eq. 1.89 is replaced in Eq. 1.95,
1
W, = 50050 coso Eq. 1.96
where W, is the maximum stored elastic energy, which is independent from

the frequency.

From these energy expressions, we can deduce that:

. 2V,
E'=— Eq. 1.97
&
" Uc
E'"=—% Eqg. 1.98
TE,

As it is explained above, the damping is the energy loss per cycle and it is
compared to some values of potential energy stored in the component during
the same cycle. However, there are numerous definitions of this energy based

on the assumption of linear behaviour of rubber material.

Nashif et al [67] describes the loss factor as follows:
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n=—=190=— Eq. 1.99

Olsson and Austrell [68] or Sj6berg and Kari [69] applied another definition of
damping which is obtained as the quotient between the energy lost per cycle

Uc and a simplified potential energy multiplied by 7

D=—¢ Eq. 1.100

Furthermore, this energy loss can be defined as [70]:

C=E'siné/w Eq. 1.101
c=""sins Eq. 1.102
0E,

Finally, the next ratio is called specific loss:

U
© = 27tgS
W g Eq. 1.103

Cc
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1.3.3 Dynamic properties of filled elastomers: non-linear viscoelastic

materials in cycled loads.

Dynamic properties of filled/nonlinear elastomers in cyclic loading.- When the

system is nonlinear, the hysteresis loop mentioned in the previous section
1.3.2, distorts and becomes parallel shaped (Figure 1.22). The dynamic
behaviour of filled elastomers is not linear and this effect is observed in the
hysteresis loop. These nonlinearities are produced because of the nonlinear
elasticity of rubber and the filler structure breakdown and reforming. This filler

structure modification produces a decrease of the dynamic modulus induced

Strain

by the amplitude increasing.

2€0

Figure 1.22: General hysteresis loop for harmonic excitation. Nonlinear behaviour

Strain amplitude dependence on the dynamic modulus: Payne effect.—

Strain amplitude dependence on the dynamic modulus has been thoroughly
studied in the last years. Two phenomena are responsible for the stiffness
dependence on the amplitude: on the one hand the well-known Mullins effect
[50-53,55,56] which is related to the stress-softening produced when an
elastomer is cyclically deformed as shown in Figure 1.7. On the other hand,
the Payne effect. The term “Mullins softening” is sometimes used
interchangeably with the Payne effect, but the former is a different
phenomenon that occurs at larger strains. To investigate the Payne effect
without the influence of the Mullins effect, all specimens are preconditioned

with sufficient large strain amplitude so that the Mullins-effect is eliminated.
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One of the earliest studies of this phenomenon was made by Fletcher and
Gent [71] (afterwards called Payne effect [72—77]) who extended the studies
of the mentioned effect. When a constant strain load at constant frequency is
applied cyclically, the modulus decreases with increasing strain amplitude for

a wide range of filler types and concentrations.

The investigations made by Payne [73] concluded that the elastomer modulus
declines, increasing strain amplitude as a result of the breaking of the filler
structure. As the molecular structure is composed of aggregates held together
by Van Der Waals bonds, the modulus is almost recoverable due to the
permanent breaking and recombination of the mentioned weak bonds in the
filler network. Huber et al [78] described that the rate of these breaking and
recombination processes generally differs but, under stationary conditions,
they are equal and depend on the dynamic deformation amplitude. In Figure
1.23-A and Figure 1.23-B, where the dynamic mechanical properties are
plotted as the storage E’ and loss modulus E” respectively, it is observed that
E” takes a maximum value in the strain range corresponding to the maximum

rate of change of the storage modulus with amplitude.

At small amplitudes of oscillation, a small structure is broken down; the storage
modulus E’, which is large due to the filler structure, is not modified. Hence, E”
is small even though the reformation of the structure is probably easier at these
small separations of the black particles. At large amplitudes, the structure is
so extensively broken down that the reformation of the structure is very much
slower than the cycle time and E”is again low. A maximum in E” and phase
angle are expected somewhere in the middle strain region where considerable
structure breakdown occurs, but where reformation is also easier and faster.
Consequently, the decrease in dynamic modulus E* and increase in loss factor
tano are not maintained in all range of amplitudes. At large amplitudes, the
change in dynamic modulus E* is softer than in intermediate ones as shown in
Figure 1.23-C. The loss factor (Figure 1.23-D) shows a peak in the region
where E* decreases more markedly as shown for example by Lindley [79],
Payne and Whittaker [76] and Rendek and Lion [58]. Theoretically, there is a
critical amplitude where, bellow it, the storage E’ and loss modulus E” do not

change due to the amplitude variation.
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Figure 1.23: Amplitude sweep test. Testing frequency: 10 Hz. Figures A, B, C and D
are the storage E’, loss E” and complex E* modulus respectively and D is the tan 0

(Figure reproduced from Rendek and Lion [58])

Effect of fillers.— Carbon black fillers are added to rubber in order to increase

both the dynamic modulus E* and the phase angle ¢ (and hence the damping)
of rubber. Consequently, these dynamic properties become amplitude-
dependent. The magnitude of the mentioned dynamic properties depends on

the type and the amount of filler.

In Figure 1.24, the variation of the dynamic properties of vulcanizates A to E
over the normal operating range of shear strain is shown. The rubbers are all
of approximately the same hardness (about 55 IRHD). This was accomplished
using three different types of carbon-black, balancing the reinforcing effect and
adding high-viscosity aromatic oil. Harris and Stevenson [57] who made
experimental investigations of several nonlinear aspects of the dynamic
behaviour of, especially, filled rubbers, which shows that the modulus
increases, was greater at small amplitudes, particularly for vulcanizates with

high proportions of filler.
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Medalia’s [47,49] work shows that the dynamic properties represent the
viscoelastic properties of vulcanizates at deformations below about 25%, after
reaching a pseudo-equilibrium state. The level and the variation of the
damping through the strain range increased with enhancing the filler content.
The filler agglomerate, which is broken down on cycling above a certain strain
range, may reform, leading to a reduction in modulus and to a peak in damping.
This material behaviour, even in shear, is clearly nonlinear [57]. Fletcher and
Gent [71], Lindley [79] and more recently Rendek and Lion [58] carried out
some experimental tests to study the amount of filler influence on the
mentioned dynamic properties, which show again a stronger dependence on

filled elastomers than on unfilled ones as it is observed in Figure 1.24.
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Figure 1.24: Amplitude dependence of dynamic shear modulus and phase angle for
some filled natural rubbers of various filler contents (Reproduced from Harris and
Stevenson [57]). From A to E, different compounds are represented, the amount of
carbon-black being higher in E than in A). From C to E, they have the same type of

filler.

Wang [80,81] carried out experimental investigations to show the impact of the
filler network, both its strength and architecture on the dynamic modulus and
its hysteresis during the dynamic straining. It was found that the filler network
can substantially increase the effective volume of the filler due to the rubber
trapped in the agglomerates, leading to high elastic modulus (Figure 1.25-B).
During the cyclic straining, while the stable filler network can reduce the
hysteresis of the filled rubber, the breakdown and reformation of the filler

network would cause an additional energy dissipation resulting in the higher
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hysteresis. The experiments were done at double strain amplitudes ranging
from 0.2% to 120% with a constant frequency of 10Hz under constant

temperatures of 0 and 70°C and filler phr of 0 and 70.
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Figure 1.25: A) Low filler concentration: Immobilized and occluded rubber
representation around filler agglomerates. B) High filler concentration: Trapped
rubber representation into filler agglomerates (Figure taken from Wang [81]).

Payne effect and the augmentation of the elastic modulus— The

augmentation of the elastic modulus at low amplitudes has been explained by
Payne [73,76] or Mullins and Tobin [82] as being due to a network structure
modification of carbon black particles (known as aggregates in Medalia’s [47]
studies). From Payne’s viewpoint, the particles or aggregates are associated
in agglomerate groups which, when deformed, are broken into smaller
agglomerates of different dimensions. The particles or aggregates are fused
carbon entities and are associated by the Van Der Waals or other secondary

attractive forces into agglomerates (known as well as aggregates network).

At small deformations, the elastic modulus is higher because the carbon-black
agglomerates, which are the “hardest” regions, are not broken. These
agglomerates or “hard regions” must immobilize some rubber in addition to the
occluded one within the aggregates (see Figure 1.25-A); thus, they cause an
augmentation of the effective volume fraction beyond that limit, which is due to
the aggregates themselves. In addition, as the effective volume fraction of the

filler increases, the agglomerates ability to move into the matrix is diminished,;
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hence, elastic modulus increases. Both effects become more important as the
amplitude is diminished or as the frequency is increased.

As the deformation is increased, the agglomerates are broken into smaller
agglomerates. Therefore, the elastic modulus decreases because there are
more mobile units or “soft” regions into the rubber matrix. At high deformations,
the carbon-black agglomerates break down until the aggregates themselves
are mobile units. The augmentation effect is of minor practical importance in

well-dispersed formulation batches.

The agglomerates present at intermediate amplitudes may be identified with
the “hard” regions. The breaking of the structure is often described as a
frictional behaviour, which is an energy dissipation mechanism. Hence, the

loss factor of the elastomer increases, as Medalia show in [49].

Reversibility.— In recent literature [83], it has been shown that the dynamic
moduli of rubber are not only a function of the current deformation amplitude:
they also depend on the history of deformation. Based on comprehensive
experiments with sinusoidal excitations with changing amplitudes, Wang et al
[84] demonstrated that the dynamic moduli of filled rubber exhibit a
pronounced recovery behaviour, which can be interpreted as a thixotropic

effect.

If firstly small dynamic strain amplitude is applied, followed by a larger one and
finally the small amplitude again, different numerical values of dynamic moduli
belonging to the same strain amplitude are observed. The small amplitude
storage and loss modulus observed directly after switching from the large to
the small amplitude is smaller than their values prior to the large amplitude
cycles. But they show pronounced recovery behaviour and reach their original
values after several minutes or a few hours. Experiments of this type can be

found, for instance in [85].

The stress response attributed to the Mullins effect shows a similar behaviour
but the recovery times are longer [83]. When an elastomer is tested with
increasing and decreasing amplitude sweeps driven in series in the first

decreasing amplitude sweep, a softening is observed. This softening is related
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to the Mullis effect and it is irreversible. In the followings up and down
amplitude sweeps, the material is pre-conditioned; so the Mullins effect is
eliminated. Hence, the next up and down sweeps demonstrates the
reversibility of the rubber compound, where the stiffness does not change
(Figure 1.26).

From Figure 1.26, another conclusion can be deduced: The Payne’s effect is
reversible because the second and subsequent amplitude sweeps give the

same result.

E' [MPa]

10 10° 10 10 10" 10
Amplitude [%)] Amplitude [%)]

Figure 1.26: Reversibility of the Payne effect. Thin lines belong to increasing or up-
amplitude sweeps (dynamic amplitude increases) and fat lines to decreasing or down-
amplitude sweeps (dynamic amplitude decreases). (Figure taken from Rendek and
Lion [58])

Pre-load in harmonic tests.—

To study the dynamic behaviour of a rubber part, sinusoidally varying strain or
stress harmonic tests are commonly used. The rate of the dynamic load can
be defined as both unique frequency as frequency range. Generally, this type
of tests consists of an initial static pre-stress of the testing specimen continuing
with a dynamically applied sinusoidally varying strain or stress. In addition, it
is common to perform amplitude/frequency sweeps, increasing them in linear
steps where the other parameter (frequency/amplitude) is maintained

constant.
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When an elastomer part is tested in dynamic sinusoidal experiments, the
dynamic modulus is larger than the static modulus of the preload (Figure 1.27).

Stress

Op

e
/

20

€p Strain

Figure 1.27: Static pre-load and dynamically applied load

E*=— Eq. 1.104
€0
Op
E=— Eq. 1.105
Ep

where op and & are the stress and strain captured in the pre-load static test

and oo and & are the stress and strain captured in the harmonic test.

The dynamic properties of rubber change with the influence of pre-strain,
amplitude, frequency and temperature. The temperature increasing has a
stress softening effect and the increasing of frequency has a stress stiffening

effect.

The dynamic modulus E* increases and the phase angle or loss factor
decreases as preload is increased, as shown in works of Nashif et al [67],
Rendek and Lion [58] and [86] (Figure 1.28). Rendek and Lion [58] carried out
different static pre-strain to continue with the same amplitude-sweep tests.
They observed that the pre-strain does not have any influence in the material
stiffening in the full strain range of amplitudes when this pre-strain is smaller
than 60%.
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For preloads higher than the latter percentage, the influence in the material
stiffening is considerable, which increments the storage E’ and loss E”
modulus. The loss modulus is less sensitive to changes in the preload which
is responsible for the loss factor decreases. The observed dependence on the
pre-strain can be explained by the progressive hyperelastic behaviour of
elastomers (Figure 1.29).
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Figure 1.28: Influence of the preload and later cyclic amplitude in elastomers dynamic
properties. Left graph: Complex or dynamic modulus E*. Right graph: phase angle &
(Figure reproduced from [58]).
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Figure 1.29: Influence of the preload and later cyclic amplitude in elastomers dynamic
properties. Left graph: Storage modulus E’. Right graph: Loss modulus E” . (Figure
reproduced from [58]).

Freguency or strain rate dependence in harmonic tests.—

The dynamic stiffness E* of elastomeric materials increases as frequency is
increased. This stiffening effect is due to the possible configurational changes

of the polymer molecules within the rubber compound matrix are reduced when
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the frequency is increased. Hence the expected storage modulus is greater if
the frequency is increased [76,77,87].

The storage E’ and loss modulus E” exhibit pronounced frequency
dependences (Figure 1.30-A and B). The unfilled elastomer shows much
weaker frequency dependence than filled elastomers. As filler content
increases, the stiffening of the storage modulus E’ and loss modulus E” are
greater as frequency increases. The effect of the filler amount in both moduli

in a frequency range is more detailed in the experimental work in section 4.2

0 10 20 30 40 50 60 70 0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00
Frequency (Hz) Frequency (Hz)

A B
Figure 1.30: Influence of the frequency in the material stiffening. A) Storage modulus

E’vs. frequency. B) Loss modulus E” vs. frequency.

In dynamic characterisations, when the specimen is tested in harmonic
frequency sweeps, the material needs a certain time to achieve a stationary or
constant value of its dynamic modulus when the frequency/strain-amplitude
has changed. It is called micro-structural relaxation time or cyclic relaxation
time (CSR) [88].

Stress stiffening due to frequency at small amplitudes.—

The Payne effect explained before describes why the dynamic stiffness of
elastomers is higher when the amplitude is smaller. In addition, filled
elastomers stiffen more markedly when frequency is increased. The slope of
the frequency sweep is more pronounced when the strain amplitude is smaller
(see Figure 1.31-A,C and Figure 1.32). This effect can be produced because
the elastomer behaviour is more a composite behaviour at small amplitudes
than at higher amplitudes; as the bonds between aggregates and the

elastomer matrix are broken, its behaviour is more similar to an unfilled
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elastomer. As the molecular structure is composed of aggregates held
together by Van Der Waals bonds, the modulus is almost recoverable upon
return to small amplitudes. It implies that the filler structure largely reforms for
an amplitude cycle. For small amplitudes, the dynamic modulus, which is large
due to the filler structure, is not modified. This effect is studied more thoroughly

in the experimental work in section 4.2.
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Figure 1.31: Frequency sweeps with different double strain amplitudes. Figures A, B,
C and D are the storage, loss and complex modulus respectively and D is the phase
angle (Figures calculated from Rendek and Lion [58])
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Figure 1.32: Influence of the frequency in the material stiffening. 18 frequency sweeps
are presented. Each frequency sweep between 0.01-100 Hz is done at changing the
peak to peak amplitude (Figure calculated from results taken from [89])
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1.3.4 Frequency-temperature correspondence

Dynamic properties of rubber are dependent on frequency, amplitude and
temperature, which can be observed in the dynamic modulus and damping
results. This dependency exists due to the reorganization of the rubber

network during the dynamic test.

Ward [7]: There is a certain relationship between frequency and temperature
in dynamic viscoelastic measurements. This relationship is based on a
Boltzmann Superposition Principle or “time-temperature superposition”.
Hence, it is possible to convert temperature changes into frequency changes
to study the frequency dependency of viscoelastic properties at a given
temperature. Consequently, it is possible to predict viscoelastic properties over

a wide frequency range at an arbitrary temperature.

Ferry [90] (WLF) carried out several studies based on the principle of “time-
temperature superposition” related to the amount of horizontal shift and
temperature. They found an empirical equation associated to the latter
principle. The equation can be used to fit (regress) discrete values of the shift
factor ar vs. temperature T. When this WLF Eq. 1.106 is defined, it is used to
estimate the temperature shift factor for temperatures not tested. Hence, the
master curve can be applied to other temperatures. For a given reference
temperature T, this equation determines the amount of horizontal shift ar, for
data measured at T;, and T. This horizontal shift quantity is called the “shift

factor”,

_Cl(T - Tr)
CZ + (T - Tr)]

log(ar) = [ Eq. 1.106

where T; is the reference temperature chosen to construct the master curve

and Ci, C> are empirical constants adjusted to fit the values of shift factor ar.

For the construction of the master curve, it is necessary to make several
dynamic tests. These tests consist of multiple frequency sweeps at different

temperatures (i.e. Figure 1.33).
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Figure 1.33: Master curve of a polymer in the glass transition region plotted against
frequency at 24 temperatures. (Figure taken from Ferry [90])

Having data above Ty, it is possible to predict the behaviour (compliance,
storage modulus, etc.) of viscoelastic materials for temperatures T>Tg, and/or
for times/frequencies longer/slower than the time available for
experimentation. With the master curve and associated WLF equation, it is
possible to predict the mechanical properties of the polymer out of time scale
of the machine, thus extrapolating the results of multi-frequency analysis to a

broader range, out of measurement range (Figure 1.34).

Storage compliance,J, (Pal)

Figure 1.34: Application of suitable shift factors to the data of Figure 1.33. The

storage compliance is predicted over a wide frequency range at an arbitrary
temperature. (Figure taken from Ferry [90]).
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The horizontal shift on a logarithmic time-scale is shown in Figure 1.34. WLF
[91] found an approximately identical shift factor-temperature relation for all
amorphous polymers. For most elastomers, C; and C, assume the following
values: C1=8.86 and C»=101.6 [49,92].

i 1

0 25 50 75 100 125

Ternperature {°C)

Figure 1.35: Representation of the WLF equation. Temperature dependence of the

shift factor at used in plotting Figure 1.34. (Figure taken from Ferry [90] Ch.11)

When the selected T; is the glass transition Tg, this WLF equation holds only
in the temperature range between the glass transition Tg and a temperature
100°C higher than that temperature. Moreover, if T: is in the range of
temperature of transition or rubbery region (Figure 1.35), this equation applies

over a temperature range T+50°C.

When the rubber part is working above the glassy region or glass transition
temperature (Tg), the constants are positive. However, when the constants are
obtained with data at temperatures below Tg, negative values of Ci, C> are

obtained.
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1.3.5 Amplitude-temperature correspondence

Rendek and Lion [58]: As it is shown in Figure 1.36, the Payne-effect depends
strongly on the temperature. The amplitude dependence is more pronounced

at lower temperatures than at higher ones.
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Figure 1.36: Amplitude-temperature correspondence at 10Hz (Figure taken from

[581)

Miller and Warnaka [93] demonstrated the applicability of shifting techniques
to the strain-frequency and strain-temperature relationships which have shown

good correlation with the experiments.
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1.4 Literature review. Part 4. Dynamic modelling of elastomers

As seen in section 1.3.2, when a rubber part is subjected to a sinusoidal
deformation, the resulting stress does not have to be in phase with the said
load deformation (as it would be for perfect elastic solids). However, this
response is not 90 degrees out of phase (as in the case of perfectly viscous
liquid). This delay in the response is somewhere in between. As mentioned in
that section, it is considered that the dynamic behaviour of rubber is
viscoelastic. On the contrary to what happens in linear elastic materials,
viscoelastic material depends on the complete history of deformation. Several
approaches to the analytical modelling of the rheological behaviour of a linear
viscoelastic system are available in the literature. A classical approach uses a
mechanical model comprising a combination of linear springs and dashpots.
Viscoelastic models consider that the hysteresis loop during a cyclic
deformation remains elliptic. These models do not take into account the
dependence of the material on the strain amplitude imposed. These
considerations are correct in the case of unfilled rubbers (proportionality in the
relaxation rate and between different pre-strained curves Figure 1.16), but it is
not correct for filled rubbers (where both proportionalities do not happen in

such types of elastomers Figure 1.17).

In order to develop a model with a reasonable behaviour for a wide range of
frequencies, there are two different ways to go. On the one hand the use of
the hereditary or convolution integrals (section 1.4.1.1). This method consists
of a series of Maxwell elements in parallel, resulting in Prony series. The wider
frequency range supposes the need to use more Maxwell elements with a
consequent increase in material constants. This thesis is focused on this
method. On the other hand the use of Fractional derivatives (section 1.4.1.2).
The last method is more recent than the first one, its main advantage being

the reduction in a number of material constants.

Several approaches have been presented in the literature. The first
approaches, which the authors call’s triboelastic models, omit the frequency-
dependence on mechanical properties in the theory of rate-independent

plasticity Coveney and Johnson [94,95]. These triboelastic models were
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modified to take into account the rate-dependency of elastomers Coveney and
Johnson [96]. Other models are based on the phenomenological theory of

viscoelasticity, e.g. [97-99].

The first model giving a qualitative and quantitative interpretation of the Payne
effect (reviewed in section 1.3.3) on a physical level is the so-called Kraus
model. In brief, it characterises the amplitude dependence of the dynamic
moduli under periodic loads. It has been discussed in detail, e.g. in Ulmer
[100]. He assumed that physical Van der Waals contacts between
neighbouring aggregates are continuously broken and restored under periodic
loads. Under the assumption of a constant strain amplitude Ae, frequency and
temperature, the microstructure of the material tends to a stationary state
which is characterised by a constant number of aggregate constants. To
represent the amplitude dependence of the dynamic moduli, the stationary
number of constants is nonlinear function of 4e. The so-called Kraus model is
specified by Eq. 1.107 and Eg. 1.108 and describes the experimentally
observed dependence of the storage modulus G’ and the dissipation or loss

modulus G” on 4, i.e. the monotonic decrease of G” and sigmoidal behaviour

of 67 [72].
G — Gl
G'=Glot ——g— Eq. 1.107
L+ G
n _ oy Ag
N N 2(Gm — Goo)(A_gc)m
G" =Gl + Eq. 1.108

Ae
1+ (A_gc) 2m

The material constant Ae. is the strain amplitude belonging to the maximum
Gm” of the loss modulus; G’ and G»” are the asymptotic values of G’and G”
for large 4¢; Go' is the value of storage modulus for small amplitudes, and m is

a phenomenological exponent.

Kraus [101] model specified by Eq. 1.107 and Eqg. 1.108 is a very successful

method of representing the behaviour of the dynamic moduli perceived during
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experiments at a constant frequency. Nevertheless, some more or less small
modifications are necessary and have been proposed by Ulmer [100].
Although the model is appropriate to represent the material amplitude
dependence, the whole set of material parameters has to be determined again
if the frequency changes. In addition, this model cannot be used for
calculations in the time domain under arbitrary loading histories. For this
purpose, Lion [102] developed a new model based on the previously
mentioned models. Lion [102] assumes that the amplitude dependent parts of
storage and dissipation modulus are not independent of each other, as
frequently assumed. This model [102] is able to represent the frequency
dependence of the material parameters of G’(4¢) and G’(4s) models
developed by Kraus [101] and improved by Ulmer [100]. However, the
identification of the parameters is complicated. Lion et al [72] developed a 6
parameters model based on the theory of linear viscoelasticity. Since the linear
viscoelasticity is unable to describe any kind of amplitude dependence, they
introduce a non-linearity into the model. For this purpose, he uses fractional
derivatives. This model is formulated in the time domain. It can relate the stress
to any strain history (arbitrary function of time) and it is not restricted to the
steady-state response to a deformation that varies sinusoidally with time
(frequency domain theory). The frequency is between 10 and 60 Hz and the
strain amplitude between 0.1 and 5%. Although the model describes the
general trend of amplitude and frequency dependence, the loss modulus is
weakly underestimated. New models are proposed, e.g. Lion [83], Hofer [89].
Rendek and Lion proposed three more models which take into account the
initial static pre-deformation [58,103,104]. The last mentioned researchers
implemented successfully a subroutine in a finite elements software ANSYS,
which could simulate the mechanical properties of three dimensional industrial

parts under dynamic loadings.

In the other way, the dynamic properties of elastomers are often characterised
by mathematical schematization, which allows the physical behaviour of the
material to be analytically simulated. This is achieved by defining models, also
known as rheological models, which can be structured in such a way that they
reproduce the response of the material to any kind of excitation. In particular,

by means of different ways of assembling spring, viscous damping and
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Coulomb friction sliding elements connected in series or in parallel. Several
researchers use three types of the mentioned elements to represent the
dynamic behaviour of elastomers. The first type of element contemplates the
completely relaxed stiffness of the elastomer (generally modelled by a linear
or nonlinear spring); the second type characterises the amplitude dependence
of the elastomer (normally modelled by elastoplastic elements) and lastly, the
third type of element which characterises the rate or frequency dependent

behaviour of elastomers (viscoelastic models).

Berg [98,105] proposed a one-dimensional model with a relationship between
force and motion based on a superposition of elastic, friction and viscous
forces. The proposed model has five parameters. The viscous model with only
one set of spring and damper in series is a conservative model since it
underestimates the hysteresis. It does not take into account the dependence
on the preload and temperature. Sjoberg and Kari [69] improve Mats Bergs
model, extending the viscous part of the model. The frequency dependence is
modelled by a fractional calculus element, which permits the correct
characterisation of the frequency dependence underestimated in Bergs model.
The use of fractional derivatives has the potential to give appropriate frequency
dependence with very few (spectral) terms; essentially a model consisting of a
very large number of Maxwell elements is replaced by a single fractional
derivative Maxwell element. Although they provide a compact way of
presenting a wide spectrum, fractional time derivatives cannot alone model
nonlinear behaviour. The model proposed by Sjoberg and Kari [69] was
applied by Garcia et al [106,107].

Austrell [99] presented FEM based method which avoids the subroutine
implementation. His work was directed to develop a simple method which
allowed the simulation of dynamic properties with the combination of general
constitutive models implemented in commercial finite element methods.
Austrell’s model consists of 5 constants simple model composed by a linear
spring, an elastoplastic and a viscoelastic elements. The mentioned model
was improved to fit better the dynamic behaviour of elastomers with a
consideration of various elastoplastic and viscoelastic elements in the model

by Olsson and Austrell [68] with the subsequent increment in material
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constants. After, the model was improved by an introduction of a hyperelastic
spring instead of elastic spring by Olsson and Austrell [108-110] using the
same overlay method. The overlay method is used to combine various
constitutive models programmed in commercial finite element software. As
shown in Figure 1.37, this method consists of the mesh superposition where
the object to simulate is meshed and the mesh is copied at the same location.
Next, the nodes are merged obtaining a final model composed of a number of
superposed meshes with common nodes. As said before, the use of the
overlay or mesh superposition technique avoids the implementation of new
complex constitutive models. Austrell [108] research shows how this overlay
method can be used. For this purpose, Austrell [108] used three superposed
meshes, where one mesh was characterised by an elastic or hyperelastic
properties of rubber, the second mesh which characterised the Payne effect
and the third mesh related with the rate-dependent properties of rubber. One
mesh or elements layer for each elastoplastic or viscoelastic element is
needed. As filler content increases, the nonlinearity of the rubber dynamic
behaviour is increased, which requires the use of more VE or/and EP elements
to obtain more accurate fitting of the material model to the experimental results.
As the number of the elastoplastic constitutive elements increases, the number

of needed meshes also increases; this enlarges the calculation time.

Figure 1.37: Overlay model. The object to simulate is meshed and the mesh is copied
as many times as required at the same location. Each mesh is characterised by the
required material model. This example is the simplest overlay model presented by
Austrell [99]

On the research of the hysteresis loop at a constant frequency, Ahmadi [111]
evaluated the Multi-linear Kinematic Hardening Plasticity (ML) rule

implemented for example in the ANSYS and Abaqus FE codes that could

Page 79



provide the appropriate stress-strain hysteresis loops for filled rubber. The
model was shown to give similar results as that achieved by the overlay of
several FE meshes of elastic-perfectly-plastic (EP) material studied in Austrell
and Olsson’s work, resulting in substantial reduction in computation time
compared with the "overlay" approach. On the other hand, in the research of
the rate-dependence, Gil-Negrete et al [112] and Gil-Negrete [113] reduced
the number of material constants of the model proposed by Olsson and Austrell
[108-110] using fractional derivatives and simplifying all viscoelastic elements

in a unique element.

One of the most recent models was proposed by Ahmadi and Muhr [114] which
consist of a simple time-domain model. This model requires a few numbers of
material constants and is in accordance with the Kraus [101] and Davies et al
[35] models.

1.4.1 Strain rate characterisation by means of viscoelasticity

1.4.1.1 The hereditary theory for viscoelasticity: Stress relaxation for unfilled

rubbers: Constant strain (&o)

Viscoelasticity will be described by other means: the hereditary or convolution
integrals. These integral, are used because the stress is not only a function of
the actual strain, but also of the previous strain history, which is what hereditary
integrals take into account. These integrals can express all facts contained in
the constitutive equations of the models presented previously. Hence, it can
describe the behaviour of the viscoelastic materials.

Linear viscoelastic material can be represented by the following Boltzmann
superposition integral. According to this expression, the current stress is
determined by the superposition of stress responses to the complete spectrum

of increments of strains
(f d.(7)
ot)=| E(t—1) d—dT Eq. 1.109
0

T

Where E(t) is the relaxation modulus, and E(t) = e(t) =0 for —co <t <0
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Eq. 1.109 is founded on general principles; hence, it is valid for any linear
viscoelastic material irrespective of the model used to express the material
function, E(t). Different phenomenological models of the behaviour of linear

viscoelastic materials are available in the literature.
1.4.1.2 Fractional derivative viscoelasticity

To obtain accurate predictions, the generalised Maxwell model solved with
hereditary integrals needs to increase the number of parameters associated to
the model and may make it difficult to fit. This increment in the number of

parameters is due to the expansion of the Prony series (Eq. 4.43, Eq. 4.44).

A general form of the stress-strain equation in differential operators is given by
Fung [115],

dPic  ~  ds
z ai= Z Eq. 1.110
i e

Where pi and q; are real constants with 0 <p;,q; < 1. The ordinary time
derivatives acting on the time-dependent stress and strain fields in Eqg. 1.110
are replaced with corresponding fractional-order time derivatives. A fractional
time-derivative of order « is defined, in an integral form, as Bagley and Torvik
[116].

And now, the generalised Maxwell model can be written as follows Nashif [67]:

o dPio dVe
o+ a; =K ez Ji Eqg. 1.111
— dpi dyqj

Fractional derivatives can be defined through the Riemann-Liouville
convolution integral Oldham [117],
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pepey = L |1 @, +1>N>a>0 Eq 1112
tf()_dtNF(N—a)J;)(t—T)“‘N“T eri=sN-as= a =

Where « s the arbitrary order of derivative; N, the smallest integer, larger than

the order of the fractional differentiation «, and I denotes the gamma function

defined as:
I'(n) = .f t" e tdt (n > 0) Eq. 1.113
0

Several researchers [69,112,118-121] have used this method to define the
behaviour of various types of materials where elastomers are included in time

domain or frequency domain.

Enelund [118] developed a fractional derivative model of linear viscoelasticity
based on the decomposition of the displacement field into an anelastic part

and elastic part.

The fractional derivatives are not applied in this work.
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CHAPTER 2 DETERMINING THE STATE OF CURE OF
RUBBER BY MEANS OF SWELLING.

2.1 Theoretical background

In the present chapter, we want to develop a very simple and quick method to
evaluate (measure) the degree of cure achieved by the material. The term
“state of vulcanizate” means the degree to which some property of the
vulcanizate has approached to maximum attainable value as a result of
change in time or temperature of cure. It is rather directly related to the degree

of crosslinking.

Rubber parts are manufactured using processes such as compression
moulding, injection moulding, extrusions, calendaring and so on. In all cases,
first the rubber takes the shape of the part to be manufactured, and, later on,
it vulcanizes to achieve the final properties. Vulcanization is known as the
process during which a number of bonds (so called crosslinks) between the
rubber molecules are formed, so that a viscous and tacky material is converted
into an elastic material. As a consequence, a polymer network is created,
resulting in a three-dimensional structure (Figure 2.1). Three requirements
have to be fulfilled for a material to show rubber-like properties:

(1) the presence of long chain-like molecules with freely rotating links;
(2) weak secondary forces between the molecules;

(3) an interlocking of the molecules at a few places along their length to form

a three-dimensional network.

Figure 2.1: Model of a rubber network: A: loose chain ends, B: elastically inactive

loop, C: chain entanglement, chemical crosslink [122].
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Due to the introduction of crosslinks, the chains are prevented from sliding
from each other and the rubber becomes elastic. Besides chemical crosslinks,
chain entanglements contribute to the elasticity of the polymer network. They
can be either of permanent or temporary nature. The concept of
entanglements has been discussed, and even questioned during many
decades. Today, however, it is more or less accepted that entanglements
contribute to the elastic forces in rubber materials. When filler is incorporated,
polymer-filler interactions appear and will also contribute to the three-
dimensional network. Opposing these three mechanisms of networking are
loose chain ends and elastically ineffective loops. The former increases the
free volume of the material by their non-restricted mobility (no crosslinks that
tighten the chain end). Chain loops may be formed during vulcanization and

will lower the number of elastically effective chains in the material.

The term “crosslink density” deserves a more elaborate explanation. It can be
expressed as the number of crosslink points or number of elastically effective
chains per unit volume. These two quantities are proportional to each other,
and their exact relationship depends on the functionality of the crosslink points,
I.e. the number of chains that start from the crosslink. Henceforth crosslink
density will be defined as the number of crosslink points per unit volume.
Furthermore, crosslink density is inversely related to the average molecular
weight of the chains between the crosslinks, which is also a way to express
the network properties. The value of crosslink density may be in the order of
107 to 10°° mol/cm3 for a typical rubber material, corresponding to 15 to 1500
monomer units between the crosslinks. Crosslink density is fundamental for
polymeric networks as it determines many physical properties of the resulting
material. Figure 2.2 shows how some properties of a rubber material generally

depend on the crosslink density [1,2].
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Figure 2.2 Dependence of some properties of a rubber material on crosslink density
[122]

This vulcanization process requires a time, which basically depends on the
formulation recipe and the cure temperature, and in some cases pressure. For
instance, when using a compression or injection moulding process, the heated
mould transfers heat to the material; its temperature increases, and cure
reactions start. Depending on the cure time, a certain crosslink density will be
achieved, and as detailed in Figure 2.2, this leads to specific values of the

physical properties.

Several techniqgues are available to study the Kkinetics of curing or
vulcanization. Arrillaga et al [123] discusses their application and usefulness,
with the aim of defining the kinetics by empirical/phenomenological
approaches, to realise curing simulations. This includes techniques such as
ODR, MDR and DSC. Nevertheless, the aim of the present work was not to
have a procedure to obtain the complete cure curve, but to have a procedure

to determine the degree of cure achieved in partially cured samples.
According to literature, crosslink density can be measured in different ways:

- Stress-strain measurements using the Mooney-Rivling equation [2,23]
- Determination of the elastic modulus at a certain temperature in the
rubbery plateau range [124]

- By determination of the residual exothermicity [125]

- By swelling measurements using the Flory-Rehner equation [126]
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The current work is concerned with the use of swelling measurements to
evaluate the degree of cure achieved in several parts. ODR measurements
and tensile tests are also done to correlate the results obtained to the swelling
value. Although the use of residual exothermicity measured by DSC was
considered as a useful procedure to evaluate the degree of cure, this
procedure was not utilized for the present study because of its poor resolution,
related to the low exothermal peak of rubber formulations and the very small
samples that need to be used. The degree of cure is determined as a ratio
between the residual heat given by a partially cured sample and the heat given
by a non-cured sample [127].

The swelling based procedure was finally used to evaluate differences in
curing degree values across the thickness, for a real industrial part

manufactured with the rubber formulations studied in the present work.

The determination of equilibrium swelling volumes is one of the best methods
for characterising crosslinked structures. The rate of swell as well as the
equilibrium swell of a vulcanizate in a solvent has been shown to be a function
of the state of cure. Either the molecular weight between crosslinks or its
reciprocal, the number of effective network chains per unit volume of rubber
may be used as an indication of the cure state. Curing degrees are usually

determined by applying the Flory-Rehner formula [128], which is:

W = V(v -V /2)
- Ln(l_vr)_vr - :uvr2

Eq. 2.1

where p is the density of the material (rubber formulation), Vo is the molar
volume of solvent, u is the value of the rubber-solvent interaction parameter
and V; is the polymer volume fraction in the swollen vulcanizate, which is a
function of the swollen rubber mass, dried rubber mass, density of the

formulation, and density of the solvent used for swelling.

Warley and Del Vecchio [127] proposed a similar expression to calculate the

crosslink density in (mol/cm3):
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o n@-V)+V, +uV?
VoV, -V, 12)

Eq. 2.2

Where v is the crosslink density, in mol/cm3, which can be rewritten as:

—v==L Eq. 2.3

This is true for non-filled formulations. The calculation becomes much more
complex when testing carbon-black loaded formulations [128],[129,130]. The
polymer-Solvent interaction parameter must be also determined, using the two

solvent procedure described by Hayes [131].

In this work, two types of geometries are used. The first one is used to
characterise the static and dynamic properties of elastomers (characterisation
specimen) and the second one is the industrial geometry, which is used to do
the mechanical properties predictions and after correlating the mentioned
predictions with the experimental tests. To avoid external parameters
iterations, the degree of cure of both (characterisation specimen and industrial
part) must be as similar as possible. To compare their degree of cure, an
internal procedure was developed and published, based on swelling
measurements Arrillaga, Kareaga, Retolaza and Zaldua [1,2] (Annex I-A and
B).
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2.2 Swelling measurements

Due to the complexity of the swelling procedures presented in section 2.1, the
option of using just the value of the swelling degree was chosen. The swelling
degree is defined as:

. o [mi—mg
% swelling = 0 100 Eq. 2.4
0

where mg is the samples weight before swelling, and my is the samples weight

after swelling.

To apply this technique, it is necessary to use appropriate solvents
(ciclohexane for apolar and acetone for polar elastomers could be a good
choice). It should give a sufficient swelling rate in the range of 90-100% and a
low evaporation rate. From the solvents tested, ciclohexane was the only one
fulfilling these requirements. Samples cured at different times were available
from the ODR tests and tensile tests specimens. Samples (0.4 to 0.5 g) were
immersed into a bottle containing 6 ml of solvent and maintained into the
solvent 24 h. Before measuring mz the sample was dried briefly with tissue. It
is necessary to recall that the swelling degree measured in this way is an
average value because in reality, there is a distribution of the curing degree

across the thickness of the sample.
2.3 Materials. Rubber compounds

The present study was based on the use of two rubber formulations, one based
on a NR cured with sulfur and the other on an EPDM cured by peroxides. They
are proprietary developments and were manufactured at Cikautxo S.Coop.

Company.

Table 2.1: summarizes the complete recipe for both formulations, which were

prepared in a 150 | internal mixer.
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CK-NR 1 phr CK-EPDM 1 phr

BR 30 EPDM, 50% propylene, 5% diene 70
NR 70 EPDM, 70% propylene, 5% diene 30
Inhibitor 1 MgO 6
Stearic acid 15 T™MQ 1
Zn0O 4 Polyethylen glycol 2
Antiozone wax 4 Stearic acid 1
PAN 1 N-539 58.3
TMQ 0.5 Paraffinic oil 29
N539 91 Slipping wax 4
Aromatic oil 12 Perkadox 14/40 55
Ccz 15 Vulcanization Co-agent 35
Sulfur 80% 1.8

4,4' dithiomorfoline 11

PVI 0.2

Table 2.1: Compound recipes. CK-NR 1 and CK-EPDM 1 are natural rubber based
and EPDM based formulations respectively. Both elastomers are provided by the

company Cikautxo Scoop.
2.4 Rheological tests

All tests were conducted according to the ASTM D2084 standard. The sample
was put into a temperature controlled die cavity fitted with a bi-conical disk
(rotor) oscillating in a sinusoidal way, at a frequency of 1.57 Hz and an
amplitude of +/-3° (see Figure 2.3). The torque counteracting the disk
oscillation is monitored over the test time. ODR not only measures the scorch
or induction period, but also the cure rate and the state of cure. Thus, the
complete cure curve can be recorded and the torque level is correlating to the
degree of crosslinking. Three different cure characteristics occur and are

illustrated in Figure 2.4.

Upper half of the mold

Rubber

Figure 2.3: ODR testing system. The elastomer covers completely the acting rotor and

it is vulcanized in the heated mold.
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Test operation mode was as follows: First, the dies and the rotor are heated to
the test temperature. A sample taken from an environment held at room
temperature is introduced in the preheated chamber and the dies are closed.
Immediately, at the closing of the dies, the system automatically adjusts the
time to zero. As the sample is at room temperature when introduced into the
dies, a decrease of temperature is observed in the chamber. A short time
elapses before the test temperature is restored. Tests were made at 165° and
150° for CK-NR 1 and 180°C and 160° for CK-EPDM 1.

Tests were done with at least 5 samples for each case, and an average was
set for later evaluation. Figure 2.4: If the minimum torque (point a) is set to
“‘degree of cure a’=0 and the maximum torque (point b) to “degree of cure
a’=1, then the cure curve o vs. t (t=time) can be calculated for each

temperature according to the following equation:

_ Torquey, —Torque,
Torque(max) —Torque(min)

2 Eq. 2.5

Constant temperature

" | (1)
ZONE B /ff 2)
fg ZONE A b ZONE C
)]
X
Q
—
[
E (3)
a
Time

Figure 2.4: ODR test result showing the points of minimum ‘a’ and the“ideal
vulcanization” torque ‘b’. Vulcanization curves showing (1)-marching behaviour, (2)

— plateau level, and (3) - reversion.
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The ODR results are divided in three main zones:

- ZONE A: Induction period or scorch time (ti): The time from the start of the
measurement to the onset of the crosslinking process (i.e. when the curve
begins to slope upwards) is called scorch time, also defined as induction
period. It represents time interval at the curing temperature during which no

crosslinking can be defined.

- ZONE B: Curing or crosslinking stage: Following the induction period,
crosslinking occurs at a rate which is dependent on temperature and the nature

of the composition.

- Zone C: Reversion or overcure stage: When the crosslinking has proceeded
to a full cure, subsequent heating produces an overcure which may be
evidenced by continued stiffening or by reversion. The upper curve (1) shows
a marching behaviour that can be observed for chloroprene rubber, EPDM and
SBR-based compounds. (2) Plateau level: It is the ideal behaviour where the
cure level reaches a plateau (equilibrium), typically for NBR. (3) shows a
reversion, a phenomenon that appears for example, when NR is vulcanized

with a conventional sulfur system, as described by Crowther et al [132].
2.5 Geometries and testing conditions
2.5.1 ODR samples

The CK-NR 1 formulation was tested at two temperatures, 165°C and 150°C.
CK-EPDM 1 was tested also at two temperatures, 180 and 160°C. Sufficiently
long cure times were set to see the complete curve. Once the complete cure
curves were obtained, further measurements were made at the same

temperatures, but using intermediate test times, as described below:

¢ CK-NR 1, tested at 165°C: 100, 120, 150, 180, 220, 300, 600 and 1000 s.
¢ CK-NR 1, tested at 150°C: 260, 290, 320, 350, 390, 430, 470 and 720 s.
¢ CK-EPDM 1, tested at 180°C: 60, 90, 110, 140, 200, 300 and 500 s.

¢ CK-EPDM 1 , tested at 160°C: 100, 210, 320, 440, 550, 660 and 900 s.
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These times are intermediate values within the cure range and the
reversion/plateau range. After reaching the test time, the samples were
removed as quickly as possible from the ODR and were immersed into iced

water to stop curing.
2.5.2 Tensile tests

The tensile test specimens were pressed on a REP V37 injection machine.
CK-NR 1 was injected at a 165°C mould temperature with curing times of 60,
90, 120 160, 200, 260, 290, 320, 350, 390, 430, 470 and 720 s. CK-EPDM 1
was injected at 180°C mould temperature with curing times of 30, 60, 80, 100,
210, 320, 440, 550, 660 and 900 s.

After moulding, samples were removed as quickly as possible from the mould
and immersed into iced water to stop further curing. Five samples were
manufactured at each cure time and then, tensile tests were done according
to the ASTM D412-97 to get the information on modulus at 100 and 200 %

elongation.
2.5.3 Industrial part

To evaluate the test method with regard to its applicability, the degree of cure
variation across the thickness of an industrial part (Reference: Volkswagen
7HO0-253-144) was checked. Parts were manufactured with both formulations
(Table 2.1). Figure 2.5 displays the part studied; it's a rubber-metal part, where
rubber has a maximum thickness of about 15 mm. Two types of samples were
analysed. Sample 1 was cut from the external layer of the rubber part (that one
in contact with the mould) and sample 2 was taken from the centre of the
rubber part. Test conditions complied to section 2.2 with a solvent-rubber ratio
of 15:1.
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Figure 2.5: Industrial part studied in the present work. Volkswagen Reference 7HO-
253-144

2.6 Results and discussion

2.6.1 Rheometer traces

Figure 2.6 and Figure 2.7 show the ODR tests results obtained for both rubber
formulations. CK-NR 1 exhibits a clear reversion phenomenon (being typical
for sulfur cured formulations), both when testing at 150 and 165°C. This is
represented as a torque decrease after achieving the maximum value. CK-
EPDM 1 is an EPDM crosslinked with peroxide. When testing at low
temperature, 160°C, the decompositions rate of the peroxide is low. This slow
down the cure kinetics and it seems that the trace arrives at the plateau after
900 s. Nevertheless, the maximum torque achieved at 180°C was slightly
higher. This means that at 160°C, the maximum degree of cure was not

attained.
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Ck-NR 1 at 165°C Ck-NR 1 at 150°C

Torque (kg.cm)
Torque (kg.cm)

0 200 400 600 800 1000 0 200 400 600 800 1000

Time (s) Time (s)

a) b)

Figure 2.6: Vulcanization curves by ODR for CK-NR 1; a) tests done at 165°C; b) test
done at 150°C.

Ck-EPDM 1 at 180°C Ck-EPDM 1 at 160°C

Torque (kg.cm)
Torque (kg.cm)

0 100 200 300 400 500 0 200 400 600 800

Time (s) Time (s)
a) b)

Figure 2.7: Vulcanization curves by ODR for CK-EPDM 1; a) tests done at 180°C; b)
test done at 160°C.
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Using the information of the aforementioned curves and Eq. 2.5, the curing
degree curves detailed in Figure 2.8 and Figure 2.9 can be calculated from
torque values. The degree of cure was set at zero up to the point where the

torque starts to increase after achieving the minimum value. This period is

defined as the induction or scorch time.
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Figure 2.8: Cure curves defined as degree of cure () versus time data, obtained from

ODR torque values, for CK-NR 1; data at 165°C; b) data at 150°C
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Figure 2.9: Cure curves defined as degree of cure () versus time data, obtained from

ODR torque values, for CK-EPDM 1; data at 180°C; b) data at 160°C
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2.6.2 Swelling of ODR samples

As already discussed in section 2.5.1, additional tests were performed with
keeping the compound in the ODR chamber for the specified times and the
resulting samples being checked for swelling. Figure 2.10 and Figure 2.11

represent the swelling values obtained vs. curing time:

CK-NR1, tested at 165°C CK-NR1, tested at 150°C
400 T T T T T 350 T T T T

300 k
250 ;

< < 200 :

> > \

T T :

& & 150

100 : \K

0 | | | | | 0 | | | | |
0 200 400 600 800 1000 1200 200 300 400 500 600 700 800
Time (s) Time (s)

Figure 2.10: Swelling degree value as a function of cure time set for the ODR samples,
for CK-NR 1 formulation; data at 165°C; b) data at 150°C

CK-EPDML, tested at 180°C CK-EPDML, tested at 160°C
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Figure 2.11: Swelling degree value as a function of cure time set for the ODR samples,
for CK-EPDM-1 formulation; data at 180°C; b) data at 160°C

Page 96



The NR formulation gives a higher torque at the maximum cure point when test
is done at lower temperature (see Figure 2.6). The number of crosslinks per
unit volume becomes higher. This behaviour is verified by the swelling results
(see Figure 2.10) where the minimum value of swelling (that is related to the
maximum crosslink density) is at 107% for the material having been cured at
165°C and goes down to 95% at curing temperature of 150°C. A higher torque
value means a lower swelling ratio. Once the optimum cure point is achieved
(that is the minimum swelling point), the NR exhibits its reversion character,

which results in an increase of the swelling ratio as detailed in Figure 2.10.

The EPDM formulation was cured with peroxides. In this case, as illustrated in
Figure 2.7, the material gives a higher maximum torque when the test is done
at higher temperature (180°C instead of 160°C). When a temperature of 160°C
is applied, the peroxide does not decompose completely so that the curing
remains incomplete. When the information of the swelling tests is evaluated
(see Figure 2.11), a minimum swelling ratio of about 166% is achieved at a
temperature of 180°C whereas the minimum value at 160°C is 172%. This
means that the cure reaction is not completed at 160°C. Again, a higher torque
values correlate to a lower swelling ratio. A small torque decay, as time goes
on, is exhibited at 180°C, which is also represented as an increase of swelling

ratio.

For both NR and EPDM, there is a match in time for the time values at which
the material reaches the maximum torque value in ODR tests and the time
value for which the minimum value of swelling ratio is achieved; which means

that there is an equivalence of maximum torgue and minimum swelling ratio.

According to these results, when vulcanizing a rubber formulation, it is
necessary to take the cure temperature into account because it affects the
decomposition of the curing agents, and also the cure time. In addition to that,
it could lead to reversion phenomena depending on the composition of the

formulation.

A match can be found between the torque values measured in the ODR test
(and each torque value can be associated to a specific degree of cure) and the

swelling ratios. In this way, once this relationship has been defined for the
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rubber formulation to be studied, it is possible to determine the curing degree
of a rubber part using the swelling method discussed above. So, it is not
necessary to apply the methods described in the literature (being much more

complex) and that are based on the Flory-Rehner relationship [128].
2.6.3 Tensile testing and swelling of tensile test samples

Tensile test specimens were manufactured in accordance with section 2.5.2,
three samples each for tensile testing and swelling. The results are collected
in Figure 2.12 and Figure 2.13 (tensile tests) and in Figure 2.14 and Figure
2.15 (swelling tests).

Modulus values at 100 % and 200 % elongation

for CK-NR1 material, cured at 165°C for different cure times
12 1 1 1 1 1 1 1

—=— 100 % Elongation Modulus
—— 200 % Elongation Modulus

Modulus (MPa)
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Figure 2.12: Variation of the modulus value at 100 and 200 % of deformation for CK-

NR 1 samples cured at 165°C for different cure times.
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Modulus values at 100 % and 200 % elongation
for CK-EPDM1 material, cured at 180°C for different cure times
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Figure 2.13: Variation of the Modulus value at 100 and 200 % of deformation for CK-
EPDM 1 samples cured at 180°C for different cure times.

Swelling ratio for Tensile Test Samples

0 of CK-NR 1, moulded at 165°C for different cure times
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Figure 2.14: Variation of swelling ratio for the samples of CK-NR 1 cured at 165°C

for the different cure times.
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Swelling ratio for Tensile Test Samples

of CK-EPDM 1, moulded at 180°C for different cure times
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Figure 2.15: Variation of Swelling ratio for the samples of CK-EPDM 1 cured at
180°C for different cure times.

Regarding CK-NR 1, there occurs an initial increase of moduli up to a
maximum followed by an on-going decrease. That decrease is associated with
the reversion character exhibited by the formulation. CK-EPDM 1 shows a
similar increase at the beginning, but almost no reversion behaviour. The

maximum value is maintained.

Figure 2.14 and Figure 2.15 display a minimum swelling ratio point. Values of
about 93 and 172% are attained for NR (165°C) and EPDM (180°C) samples
respectively. The values are close to the minimum swelling values seen for
ODR samples tested at 150°C (NR) and 1602C (EPDM), i.e. tested at lower
temperatures than the mould temperature for manufacturing the tensile
samples. This means a direct relationship of swelling values from ODR and
tensile test samples cannot be deduced, because the manufacturing process
and, as a consequence, the thermal history of those samples are completely
different. Concerning the curing degrees measured by swelling, both methods
(ODR and tensile) do not lead to equivalent results. Analogous to the ODR

samples, however, the tensile specimens have a match in time for the point of
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minimum swelling ratio and the point of maximum modulus value (both at 100

and 200% elongation).
2.6.4 Swelling of industrial parts

Preparation and testing of the samples followed the section 2.5.3. The results
are presented in Table 2.2. Both materials show that the external layer leads
to lower swelling ratio values than the core material, which is related to
differences in the degree of cure. According to results presented in Figure 2.10
and Figure 2.11, where samples from the ODR tests were swollen under
similar conditions, the NR formulation arrives to a minimum level of about 95%
of swelling ratio for a completely cured sample. This value matches the value
measured for the external layer of the industrial part. So, it can be concluded
that the external layer of the NR part is completely cured. The internal layer
reaches about 102%, which corresponds to an incomplete cure. Considering
the swelling values obtained for the ODR samples, it can be deduced that the
swelling behaviour gives a good indication of the degree of cure. Referring to
the EPDM formulation, ODR test samples attain a minimum swelling ratio of
about 170% for a complete curing stage. Results from the industrial part show
that the external layer achieves these values, whereas the internal layer gives

higher swelling ratios, which corresponds to an incomplete cure again.

Material Sample n°1 Sample n°2 Sample n°3 Average

CK-NR 1 — External layer 96.56 95.06 96.76 96.13
CK-NR 1 — Internal layer 101.99 101.27 102.24 101.84
CK-EPDM 1-External layer 169.04 169.14 170.57 169.59
CK-EPDM 1-Internal layer 175.56 175.95 176.56 176.02

Table 2.2: Swelling ratios measured in industrial part ref. 7h0-253-144.
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CHAPTER 3 STATIC CHARACTERISATION METHODS.
STRAIN-RATE DEPENDENT MECHANICAL
CHARACTERISATION AND CORRELATION WITH A
HYPERELASTIC STRAIN ENERGY FUNCTION IN ANSYS

3.1 Theoretical background

As mentioned in previous sections, there are very few standard rubber
components. In addition, the static/dynamic mechanical properties of the
standard rubber components are not characterised as in metals or

thermoplastic materials.

To make predictions of stiffness of complex parts, the first step is to
characterise the mechanical properties of simple states of deformation of the
material of the said parts. Subsequently, these simple behaviours are used to
fit the parameters of the hyperelastic models. Finally, using finite element
programs can predict the behaviour that will have the aforementioned complex
parts. This means that, on the one hand, it must be used one or several parts
to characterise simple deformation states. On the other hand, we will have

another complex part with a state of complex deformation.

Because of the complexity of the rubber mechanical behaviour, mathematical
models based on Elastic Strain Energy Density have been developed by
several researchers as it is shown in section 1.2.1, from the beginning of the
20th century until now. These models have been implemented in FEA software
as Ansys, Abaqus or Marc to make complex calculus simpler. But these
models do not have the capability to intrinsically take into account the rate
dependency of the material. So, the simplest way to solve this problem is to
influence the material characterisation step. Another way to characterise the
rate-dependency could be using viscoelastic models, which are not covered in

this present work.

Although some tests are considered static, they must be performed with a
minimum testing rate (near zero testing rates supposes time consuming which
increases the cost of the test). Hence, we can find ‘static’ tests performed by

testing rates of 100%/min, 20 mm/min, 100 mm/min or 500 mm/min. It is
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known, when a complex rubber part is tested with a constant testing rate, the
deformation strain tensor of the finite element mesh is composed by principal
and shear strain components. The gradient of the strain range of the tensor

should be wide. Therefore, the strain rate of the elements should be different.

As seen before, some experimental data are required to calibrate the ESED
functions (hyperelastic models). This work is directed to characterise the
stiffness of rubber depending on three parameters — strain level, number of
conditioning cycles and strain-rate in each strain level-. After, this input will be

the input to calibrate any ESED function.

The aim of this chapter is to provide a new material conditioning method
improving the existing mechanical conditioning methods. The new conditioning
method allows to build a single curve where each strain level characterised by
the strain rate is due. Hence, the classic hyperelastic models developed to

simulate static mechanical properties can be used for ‘non-static’ simulations.

Before making a prediction of a static test of a complex part (eg an industrial
part) one should know the process to be followed in experimental trials to

perform an adequate characterisation of the material.
3.1.1 Degree of cure

The mechanical properties of rubber compounds are greatly influenced by the
degree of cure (Figure 2.2). Therefore, both the testing specimens used to
(section 3.1.2) characterise mechanical properties of rubbers as the part to be
predicted and its mechanical behaviour by means of FEA must have the same
degree of cure. For this purpose, the method presented in CHAPTER 2 is
applied in order to achieve the same vulcanization degree between both

testing sample used in the characterisation step as in the industrial part.
3.1.2 Simple strain states

For engineering purposes, the behaviour of materials is characterised in the
simplest strain states. The next subsections review the uniaxial and shear
planar states of strain which will be applied in future characterisation of

materials.
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3.1.2.1 Uniaxial strain state

For uniaxial tension test (Figure 3.1), A is positive and negative for
compression. In the other two directions, they are equal in case of

incompressible materials:

Ay =2
Eq. 3.1
ﬂtz:,is:%/z q

=
N
Az =112
L
\ AL=A
Ao = A12 A
Y
=

Figure 3.1: Uniaxial strain state

In this case of deformation state, there is only one nonzero principal stress

component; then the Cauchy stress tensor is written as:

Eq. 3.2

~+

Il
o O ~
o O O
o O O
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where
t=F/a Eg. 3.3

and F is the force applied in the principal direction and a is the deformed cross
section area perpendicular to the loaded direction. The relation between

deformed and undeformed areas is defined as follows:
A Eq. 3.4

So, the Cauchy or the real stress can be expressed by the force and

undeformed or initial cross section area as:

t= F% Eq. 3.5

For uniaxial deformations described in terms of the stretch ratio A, the
deformation tensor that relates the undeformed and deformed configurations

is

A 0 0
1
[F]=]0 N 0 Eq. 3.6
1
0o 0 —
i VA

The Cauchy Green tensor and its inverse matrix are defined as follows:
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2 0 0
[B]=| 0 Lo Eq. 3.7
A
0 O L
L A
iz 0 0
A
[B]=[0 4 o0 Eq. 3.8
0O 0 2
and its invariants of deformation are:
, 2
I, =tr(B)=1 +Z Eg. 3.9
a 1
I, =tr(B ):2/1+? Eg. 3.10
|, =det(B) =1 Eq. 3.11

The true stress versus stretch response in uniaxial deformations can then be

determined, Rivlin [22]:

1\ W . oW
t=2 P-— | —-1— Eqg. 3.12
( ﬂ)[all alj |

and the nominal or engineering stress (load per unit initial area) versus stretch

is:
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1)ow 10w
o=2 /1__2 - - Eg. 3.13
2) e, aal,

Then,

E =2A[/1—i2j w 1w Eq. 3.14
) e, 2,

where F is the tensile force and A is the initial cross sectional area.

The only stresses ¢ and deformations € appear in principal directions without
any shear appearance. In the case of the hyperelastic materials, the young
modulus is different for each strain. However, the initial Young modulus Eo can

be calculated considering the unit stretch as:

Eq. 3.15

oo oW N oW
-0 OA 1,3

E, =lim2Z =6 S
o, al,

For a complete uniaxial strain state characterisation, the component is
compressed and tensioned in the required range of deformations. To
characterise this strain state in a wide range of deformations, the normal way
is to characterise the uniaxial compression (Figure 1.13-B and Figure 3.2) and

uniaxial tension (Figure 1.13-A and Figure 3.5) separately.

The compression specimen presented in The International Standards [62—64],
for example, defines the geometry and the methods to use to characterise the

mechanical properties of rubber compounds in uniaxial compression.

Figure 3.2: Compression characterisation sample
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The standard compression test specimens should be 29mm in diameter and
12.5mm in thickness (Figure 3.2). The cylinder is compressed between two
parallel plates. To avoid friction in the rubber-plate interface that produces the
appearance of shear deformations, the plates and the cylinder faces are
lubricated. The used oil must be incompatible with the rubber compound to
avoid the absorption by the latter. Anyway, in deformations greater than 30-50
% depending on the tested compound, the lateral side straight verticality
becomes a round shape (Figure 3.3). This is the so called bulging effect and it
means that shear deformation appears and the test is not completely uniaxial
in advance. So the test may be stopped (e.g. in Figure 3.4, from experience,
this effect starts at around 32% of deformation).

Undeformed shape
Deformed 30-50%
Deformed >30-50%

Figure 3.3: Representation of the bulging effect

COMPRESSIONTEST
4,500
4,000
3,500 /
3,000

prd
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1,500 " A
I‘/I 0,
1,000 it 32%

0,500 et
O ,OOO """MMM T T T T 1
0,000 0,100 0,200 0,300 0,400 0,500

Strain (/1)

Stress (MPa)

Figure 3.4: Change from pure uniaxial to complex deformation state at the strain of
32%.
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On the other hand, for example, the International Standard [59-61] defines the
geometry and the testing methods to characterise uniaxial tensile properties.
The double-dumbbell sample used in tensile tests is shown in Figure 1.13 and

Figure 3.5 and the tensile typical curve in Figure 3.6.

Figure 3.5: Tensile characterisation sample

TENSILE TEST

Stress (MPa)

0 T T T 1
0 0,5 1 1,5 2

Strain (/1)

Figure 3.6: Typical tensile curve

In Figure 3.6 it is shown the strain/stress nonlinear behaviour. The initial
decrease in modulus up to around 40% (in this example) may be due to the
changes in the filler-filler and rubber-filler interactions. The subsequent
increase in modulus at large deformations is probably due to finite extensibility
of the rubber network [51].

Finally, both compression and tension uniaxial tests are joined to get a

complete uniaxial response. The final graph looks like Figure 3.7.
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Stress
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Strain

Compression

Figure 3.7: Complete uniaxial response. Compression-tension uniaxial curve
3.1.2.2 Shear planar or pure shear strain state

The pure shear or shear planar specimen is not defined in any International
Standard (ISO) (Figure 3.8). Not much information is available in bibliography
concerning the shear planar specimen. The length of the sample must be more
or less 10 times its height and a lot wider (more than a hundred times). The
dimensions of the specimen in this work are: length=300mm, height=35mm,

thickness=2mm.

Figure 3.8: Pure shear or shear planar characterisation specimen
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ha = M=

b

Figure 3.9: Pure shear or shear planar strain state

The principal elongations in shear planar are related as follows (Figure 3.9):

, =1 Eq. 3.16

A0 0
[F]=|0o 1 o Eq. 3.17
00 ¥
22 0
[B]=FF'=|0 1 cl) Eqg.3.18
00
1
= 00
[B*]=|0 1 o Eq. 3.19
0 0 2

In this case, the strain invariants are equal and they could be defined as:
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I, =tr(B)=1,=tr(B™*) =1+’ +/1—12 Eg. 3.20

There are two non-zero principal stress components, thus the Cauchy stress

tensor is:
tt 0 0
[t]=(0 t, © Eqg. 3.21
0 0 O
The relation between the initial and deformed areas is:
1
a=—A Eq. 3.22
A
a, =A, Eg. 3.23

where A1 and A, are the undeformed and a: and a, are the deformed cross

section areas.

Therefore,
=t Eq. 3.24
= g. 3.
A
F
t, = EZ Eq. 3.25

where F1 and F: are the forces that develop in direction 1 and 2.

It is possible to predict the pure shear with the Rivlin’s relations as follows:
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F, oW oW [ 1)
VAR LSS (PR Eq. 3.26
% %\1 (a1 a, \“ "R :

_|:2/_28W+16W -
Oy= Yy =2 —+o—[1-— Eq. 3.27
2 /A [ah 2o, T2 |

In practice A>1, therefore only the first relation is used for the evaluation of

laboratory tests.
3.1.3 Strain rate dependence on the dynamic stiffness of rubber compounds

In the case of rubber compounds, the strain rate used in characterisation tests
has a considerable influence on their mechanical properties. The hyperelastic
ESED models seen in section 1.2.1 do not take into account the influence of
the deformation rate used in the experimental test or the stress relaxation that
occurs in a rubber part during the test or once it has been deformed (see Figure
3.10-A and D respectively). Some examples of strain-rate influence are
represented in Figure 3.10-B.

ol Strain rate o) olt

|

£ el
A) B) C) (t)
Figure 3.10: A) Hyperelastic models curve representation (Static test). B) Stiffness
increases with strain rate C) In an experimental load cycle, the material is relaxed and
the energy represented by the hysteresis area is lost as heat. D) When a rubber part is

deformed and this deformation is maintained in time, the initial stress oo is relaxed c.

Figure 3.11 and Figure 3.12 show the testing rate influence in static tests. In
these figures, the strain rate dependence on rubbers stiffness is checked
performing tension tests with different testing rates. As it is shown in Figure

3.11, the stiffness of the studied rubber is increased at higher testing rates.
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These tests are carried out with shear planar characterisation specimens

shown in Figure 3.8 and manufactured with the natural rubber based

compound called CKR (

Table 3.1).

In Figure 3.12, it is plotted the stresses at each strain rate when the testing

specimen is deformed 30%. The obtained results suppose the normalized

error of 7.73% (Eqg. 3.29) between the higher and lower testing rates
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Figure 3.11: Evolution of the stress-strain behaviour (stiffness) depending on the used
testing speed.(Material: CKR)
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Figure 3.12: Strength of the Rubber compound (CKR) at 30% of deformation tested at

different testing rates in mm/min.
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3.1.4 Standard mechanical conditioning methods

Due to the presence of the Mullins effect (section 1.2.2) in elastomeric parts,
all parts involved both in material characterisation and simulated parts must be
cycled the same number of times. The Mullis Effect consists of the relaxation
of the elastic stiffness of the tested rubber part after each load cycle. This effect
IS more pronounced during the first cycle, but it is still detectable after several

cycles (see Figure 1.7).

To simplify finite element simulations, the strain energy function can be derived
after softening the elastomer for a given number of cycles in an attempt to
stabilise its stress-strain behaviour. In order to avoid the use of Mullins damage
functions, elastomers may be conditioned. These latter methods are usually

called conditioning.

There are different procedures to characterise elastomeric materials which
have been extensively studied by Charlton et al [9], Austrell [99], James and
Green [27], Chow and Cundiff [133] and Yeoh [25]. In short, these techniques

are explained bellow:
A) Unconditioned test:

The part is tested at a very low strain-rate until the required strain. On the first
cycle loading, the viscous behaviour affects both the loading and the unloading
curves. The strain energy functions referred to earlier are usually derived by
fitting the first loading curve. Certainly, this method almost overestimates the
elastic strain energy in a specimen. A number of attempts have been made to
obtain an approximate solution to the problem. Kawabata et al [134] used an
average of loading and unloading curves. Gent and Kim [135] suggested that
the area under the unloading curve should be used to calculate the elastic
strain energy. Furthermore, they calculated that an overestimation, ranging
from 35-130%, depending on the imposed strain of the elastic strain energy
occurred in carbon black filled NR and SBR elastomers if the loading curve
was used. It is hence currently better to use a particular well-defined solution
for a particular problem. On the one hand, Yeoh [25] uses a testing speed of

50%/min after the correlation with 10%/min, because of the similarity of the
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results and the time efficiency of the first one. On the other hand, Austrell [99]
recommends 3%/min if the characterisation sample will not be cycled.
Furthermore, Yang et al [136] and Przybylo and Arruda [137] use a strain rate
of 1.10-2/s. Moreau et al [138] arrived at the same conclusion, i.e. that results
obtained at 2mm/min, 20mm/min and 100mm/min are approximately
equivalent; hence the test rate of 20mm/min is being selected for the

measurements.
B) One-level conditioning

In order to take into account the Mullins [51] effect in the characterisation
phase, the samples are tested up to the selected strain for a number of cycles.
The preconditioning cycles are not registered and the last curves are selected.
Austrell [99] recommends 5 preconditioning cycles and 3 more to take a
representative stress/strain curve. An example of such a method was
proposed by Yeoh [25] to cycle the test piece from zero strain to a selected
strain for five cycles and takes the average of the sixth to the eighth cycle as

the representative stress-strain behaviour (Figure 3.13):

25

15 7

\
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Figure 3.13: One-level conditioning method.
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(03] Progressive conditioning

The objective of using this method is to obtain a representative curve of the
material preconditioning a number of times (five, for example) up to predefined
strains that go from small to large deformations (Figure 3.14). After that, three
more cycles are performed and the representative curve is taken. The selected
levels could be 2, 5, 10, 20, 50 and 100%; obviously, the curve should be of

better quality as long as more levels are defined.

Chow and Cundiff [133] proposes to repeat from zero strain at this deformation
level during eight cycles and the average of the stress strain maxima in the
sixth to the eighth loading cycle was taken. This average stress gives a single
point on the stress-strain curve. Collectively, the recorded averages of stress
strain maxima at each deformation level defined a quasi-equilibrium stress

versus strain curve for the material.
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Figure 3.14: The progressive conditioning method.
D) Intermittent conditioning

This method consists of a static strain up to the selected strain and a
subsequent stress relaxation. Afterwards, the sample is strained up to the next
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selected static strain continuing with the stress relaxation. This sequence is

repeated up to the largest stretch selected (Figure 3.15).
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Figure 3.15: The intermittent conditioning method
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Figure 3.16: Comparison of different rubber conditioning methods. The unconditioned
sample and the one level conditioning method give the highest and the lowest
stiffness’s respectively. The rubber compound used to correlate the conditioning
methods is the NR based CKR rubber compound (

Table 3.1).
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Such procedures will clearly work quite well for a component for which the
approach represents approximately its only loading cycles. However, it clearly
cannot have a general applicability for components loaded in a more complex

manner.
3.1.5 ESED Function to perform the simulations by means of FEA.

The present work is carried out using the finite element code Ansys v11, where
the experimental data of the characterisation samples are fitted to Yeoh'’s [25]

model defined as,

W = Cyo(11-3)+Ca(1:-3 ) +Cso(1:-3 ). Eqg. 3.28

This approach predict the stress strain behaviour of filled elastomers well at
large strain. Moreover, this function permit the prediction of stress/strain
behaviour in different deformation modes from data obtained in one simple

deformation mode (see section 1.2.1).

In order to numerically check the error between the experimental data and the
simulation, the normalized least-square method is used. This least-square
method gives equal weight to all data points. The calculated residual is the
output that helps evaluating how precisely the fit was performed. The equation

for the normalized error calculation is the following one:

trial experiment 2
. (Gi -y " )

Enormalized = Z ( experiment)z Eqg. 3.29
i1 o,

where gexreriment gra the stresses used to calibrate the Yeoh’s model and oti@
are the calculated stresses using this model. Finally, ‘i' denotes each strain

point.
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3.2 Experimental work
3.2.1 Geometry definition

The characterisation and simulation procedure will be presented with an
industrial example. The studied geometry is an exhaust hanger shown in
Figure 3.17:

Figure 3.17: Industrial case: Exhaust hanger industrial case. Meshed geometry.
3.2.2 Material definition

The selected rubber to perform this work and its composition are detailed in

Table 3.1.

CKR phr
BR 30
NR 70
Zn0O 4
Stearic acid 1
Peptizing agent 1
Antiozonant Microwax 3.5
Aminic antioxidant 15
Aminic antiozonant 3
Aromatic oil 5
N539 50
Sulfur 1.4
Ccz 1

Table 3.1: The selected rubber compound is CKR and its composition in parts per

hundred of rubber.

This material was manufactured by Cikautxo Scoop.
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3.2.3 Functional requirements

The experimental testing conditions of the exhaust hanger are defined as

follows:

e 3 pre-conditioning cycles will be performed before the last load cycle
which will be the accepted curve.

e The load consists of a positive tension load of 8mm.

e The testing rate or the speed given to perform the tension is 100

mm/min (or 1.66mm/sec).
That means that the testing time t: is 4.8 seconds.
3.2.4 Initial FEM simulation

In order to determine the strain range to characterise, an initial simulation is
performed. Hence, as required in the functional requirements, the finite
element model is loaded 8mm to obtain the mentioned deformation range. In
this step, we randomly use selected material properties (E=1 MPa and

Poisson’s ratio= 0.499) and the results are plotted in the following Figure 3.18:

Applied Load

NODAL SOLUTION

STEP-1

SUB -8

TIME-B
/EXPANDED
EPTOEQV  (AVG)
DMX -8.004

Sy -.00154
sMX -.22

.00154 -050388 -05B855 -147313 .185771
.0Z€168 .074627 -123084 -171542 .22

Figure 3.18: Initial FEM simulation
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The material is characterised in a range between zero and the maximum strain
that has been calculated in the former simulation (22%). To assure an

adequate characterisation, this range is augmented to 30%.
3.2.5 Material testing: Mechanical Properties Characterisation

This section is directed to create experimental data curves to be used as input
data. Later, the mainly generalised conditioning methods are presented in
subsection 3.2.5.1 and an additional conditioning method is proposed in

subsection 3.2.5.2 is correlated.

In order to build the characterisation curves, the material needs to be tested at
some increasing strain levels. First, the maximum strain of 22% of the
deformed mesh is calculated in the initial FEM simulation (section 3.2.4). After,
the characterisation strain range is defined between 0 and 30% to assure the
adequate characterisation of the mechanical properties of the exhaust hanger.
Finally, the conditioning strain levels for the last two progressive conditioning
methods are defined as 1, 2, 5, 10, 20 and 30%. In addition, the material
properties are tested with the same number of cycles as in the industrial part;
the material is cycled four times at each strain level. The last curve of each
level is the selected one to build the definitive material curve. In addition, each
strain level is tested as the same strain rate given in the elements with the
same deformation of the industrial part. Then, the strain rate for each strain

level given in the industrial case is calculated as follows:

First, the test duration in the exhaust hanger’'s example can be calculated as

follows:
- Load Eq. 3.30
" Speed g- 2

where ttis the test duration, Load is the applied displacement and Speed is the

testing rate.
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Second, the strain rate for each strain level is calculated,

StrainRate =

Eq. 3.31

where ¢ is the strain level.

Finally, the testing speed for each strain set can be calculated and tested for

every characterisation test sample as follows:
Speed—iD/t Eq. 3.32
100 o

where D is the original length between clamps.
Finally, from Eqg. 3.31 and Eq. 3.32 the testing speed for each strain set can

be calculated as follows:

Speed = DStrainRate Eq. 3.33
100

3.2.5.1 Standard conditioning procedures

1.- Unconditioned test: The first type consists of a unique tension test at a very

slow strain rate. The strain rate is defined as 5%/min of the initial length of the

sample.

The first two, both compression and pure shear characterisations, are
performed controlling the displacement and the speed of the testing machine
actuator. “Due to the complexity of the strain rate controlling method, the third,
the uniaxial tension test is an exception. This specimen is characterised with
the aid of a non-contact video extensometer (see Figure 3.19). Hence, the
strain and strain rates of each level are controlled in strain (%/min) and not in
speed (mm/min) as they are done in the compression and pure shear tests.

The testing conditions for each specimen are detailed in Table 3.2
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Specimen Strain Displacement  Testing speed

type Strain Level Strain Rate (mm) (mm/min)
N° (%) (%/min)
Compression 1 30 5 4.05 0.7
Shear planar 1 30 5 10.5 1.8
Tensile 1 30 3) ol e

Table 3.2: Testing conditions of each specimen type.

Figure 3.19: Non-contact video extensometer

2.- Progressive conditioning method: The characterisation sample is tested as
many times as the industrial part (3+1 in this case) at a very slow strain rate.
The selected rate of 15%/min is an intermediate value between the ones
proposed by Austrell [99] and Yeoh [25], 3%/min and 50%/min respectively.
The testing conditions for shear planar, compression and tensile essays are
detailed in Table 3.3, Table 3.4 and Table 3.5 respectively:

Strain Level  Strain  Strain Rate Displacement Testing speed
NP° (%) (%/min) (mm) (mm/min)
1 1 15 0.35 5.3
2 2 15 0.7 53
3 5 15 1.75 53
4 10 15 3.5 5.3
5 20 15 7 53
6 30 15 10.5 5.3

Table 3.3: Rate used in each set of 3+1 cycled stretch for the Shear Planar Samples

on their respective tests
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Strain Level Strain Strain Rate Displacement Testing speed
N° (%) (%/min) (mm) (mm/min)
1 1 15 0.135 2
2 2 15 0.27 2
3 5 15 0.675 2
4 10 15 1.35 2
5 20 15 2.7 2
6 30 15 4.05 2

Table 3.4: Rate used in each set of 3+1 cycled stretch for the Compression Samples

on their respective tests

Strain Level N°

Strain (%) Strain Rate (%/min)

SOOIk WN -

1

2

5
10
20
30

15
15
15
15
15
15

Table 3.5: Rate used in each set of 3+1 cycled stretch for the Dumb-bell Samples on

their respective tests

3.2.5.2 Proposed material conditioning procedure; Progressive conditioning

with equivalent strain-rates

The presented conditioning method consists of a number of loading cycles

performed at several strain levels that go from small to large deformations.

Therefore, this method is similar to the progressive conditioning method

reviewed in section 3.1.4 changing the strain rate from the previous strain level

to the next as seen in Figure 3.20.
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1,2 1 Proposed Variable Strain Rate Method

o
[0.2]
1

——Strain 1%-12.5%/min

Strain 2%-25%/min

StresschPa]
o

——Strain 5%-62.5%/min
—Strain 10%-125%/min
——Strain 20%-250%,/min

=—Strain 30%-375%/min

0 -+ 2 T T T T T T 1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35
Strain (Unitary)

Figure 3.20: Shear planar mechanical conditioning test (3+1 cycles). In the

progressive conditioning the sample is stretched in six strain levels.

Shear planar, compression and tensile specimens testing conditions are
detailed in the following data tables (Table 3.6, Table 3.7 and Table 3.8):

Strain Level  Strain  Strain Rate Displacement Testing speed

NP° (%) (%/min) (mm) (mm/min)

1 1 12.5 0.35 4.4

2 2 25 0.7 8.8

3 5 62.5 1.75 21.9

4 10 125 3.5 43.8

5 20 250 7 87.5

6 30 375 10.5 131.3

Table 3.6: Proposed characterisation method: Rates used in each set of 3+1 cycled

stretch for the Shear Planar Samples on their respective tests
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Strain Level Strain Strain Rate Displacement Testing speed
N° (%) (%/min) (mm) (mm/min)
1 1 12.5 0.135 1.7
2 2 25 0.27 3.4
3 5 62.5 0.675 8.4
4 10 125 1.35 16.9
5 20 250 2.7 33.8
6 30 375 4.05 50.6

Table 3.7: Proposed characterisation method: Rates used in each set of 3+1 cycled

stretch for the Compression Samples on their respective tests

Strain Level N°  Strain (%) Strain Rate (%/min)

1 1 12.5
2 2 25

3 5 62.5
4 10 125
5 20 250
6 30 375

Table 3.8: Proposed characterisation method: Rates used in each set of 3+1 cycled
stretch for the Dumb-bell Samples on their respective tests

3.3 Results and discussion

3.3.1 Conditioning methods correlation in pure shear

In the later simulations performed by means of FEA, the selected ESED
function is the Yeoh’s model. In order to simplify the procedure, the Yeoh’s

model parameters can be fitted to shear planar experimental data [25].

In Figure 3.21, the conditioning methods presented in section 3.2.5.1 and
3.2.5.2 are correlated in shear planar. The unconditioned and progressive
conditioning method seems to be very similar where the deviation is 1%
between each other. The conditioning method, which gives the highest
stiffness, is given by the progressive conditioning with equivalent strain rates.
The later conditioning method has 1% and 5% of deviation at the unitary strain
of 0.1 and 0.3 (/1) respectively.
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—i— Unconditioned

=—4—Progressive conditioning

= Progressive conditioning with equivalent

strain rates

/

0

0.1 strain (1)

0,2

0,3

Figure 3.21: Comparison of different rubber conditioning methods.

3.3.2 Yeoh’s models fitting to shear planar experimental data and its

validation in tension and compression.

In order to verify that the use of shear planar experimental test is sufficient to

calibrate Yeoh’s model, the next verifications are carried out. The material

fitting is performed by the use of ANSYS software and this material is called

MATL. Later, on the one hand, the pure shear specimen used to calibrate the

Yeoh’s model and, on the other hand, the tests of the other two experimentally

tested tension and compression geometries are simulated by virtual meshes

by means of FEA. Finally, the previous simulations are compared with their

experimental data (see Figure 3.22).

Experimental

Proposed Method

Simulation

Simulation Vs. Exp.

» Ycoh's constants

—» 0K

Figure 3.22: First, Yeoh’s ESED function is fitted to shear planar experimental data.

Second, the MAT1 characterisation is validated by means of reverse engineering.

The shear planar experimental data presented in this validation process is the

experimental performed with the progressive conditioning with equivalent
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strain rates (Figure 3.21). The Yeoh’s parameters Cio, C20 and Czo calculated
in the fitting process are 0.85407,-0.82742, 1.1348 MPa respectively.

The next Figure 3.23-A,B and C shows the experimental and simulation
correlation in tensile, pure shear and compression specimens respectively.
The mean and maximum normalized error (Eq. 3.29) gives values below 5 and

14.8 % respectively.

TENSILE-TEST SHEAR-TEST

I

N
[’
[N

N

\
\

]

g N /
/ —— R-TENS ’ —M— R-SHE
—=— S-TENS —8— S-SHE

Stress (MPa)
o o
BN ko) T
Stress (MPa)
o
o

0.2 %, 02
0 0 /
0 0,05 0,1 0,15 0,2 0,25 0,3 0 0,05 0,1 0,15 0,2 0,25 0,3
Strain (Unitary) Strain (Unitary)
A) B)
COMPRESSION-TEST
1,60
1,40 a
1,20 /
= 100
o
=3
» 0,80
[%]
o
&% 0,60 A
0,40 // —&—R-COM [
—w—S-COM

0,20

0,00
0,00 0,05 0,10 0,15 0,20 0,25 0,30

Strain (Unitary)

C)

Figure 3.23: Simulation and correlation with the experiments of: A) Dumb-bell
(tensile test), B) Shear planar test and C) Compression test. R- and S- means

experimental and simulation result.

The agreement in the experimental and simulations correlation is acceptable.
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3.3.3 Exhaust hanger: Simulations correlation to experimental data

The next table presents the Yeoh’s parameters obtained by fitting the model
to the studied three conditioning methods. These parameters will be used to

do the stiffness predictions of the industrial case by means of FEA.

Method Cio Ca0 Cso
Unconditioned 0.84622 -0.99511 1.4672
Progressive conditioning 0.85218 -0.95689 1.3503
Strain rate variable conditioning 0.85407 -0.82742 1.1348

Table 3.9: Yeoh's parameters (MPa) obtained in the fitting of the model to the shear
planar experimental tests. Yeoh’s parameters obtained from the different conditioning

methods.

The comparison of the simulations of the industrial part (exhaust hanger) and
the experimental tests using the previously mentioned three characterisation
methods (section 3.2.5) is shown in Figure 3.24 and the normalized errors are

presented in Table 3.10.
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EXPERIMENTAL TESTOF THE EXHAUSTHANGER Vs. SIMULATION
-UNCONDITIONED METHOD-

40 ——EXPERIMENTAL
——Unconditioned

0 1 2 3 4 5 6 7 8

Displacement (mm)

A)

EXPERIMENTAL TESTOF THE EXHAUSTHANGER Vs. SIMULATION
-PROGRESSIVE CONDITIONING METHOD-

120 /
100
_ 80
E /
8 0
(=]
S /
40 ——EXPERIMENTAL
——Progressive conditioning
20
0
0 1 2 3 Displaceme‘ht (mm) 5 6 7 8
EXPERIMENTAL TESTOF THE EXHAUST HANGER Vs. SIMULATION
-VARIABLE STRAIN RATE PROGRESSIVE CONDITIONING METHOD-
140
120
100 =]
£
8 /

——EXPERIMENTAL

Variable strain rate progressive conditioning

0 1 2 3 Displacesent(mm) 5 6 7 8

C)
Figure 3.24: Comparison of the industrial part experimental test and their simulations.
The simulations are performed with Yeoh's parameters presented in Table 3.9. The
simulations are performed with the fitting carried out with A) Unconditioned, B)

Progressive conditioning and C) Variable strain rate in progressive conditioning
methods.
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Method Desviation % Max desviation %
Unconditioned 8.57 18
Progressive conditioning 7.81 17
Varlabl_e strain _rqte in 5 95 15

progressive conditioning

Table 3.10: The simulations error respect to the Exhaust Hanger Experimental data.

The maximum deviation is given when the tension load is 1 mm

The unconditioned method, which consists of a unique tension test using a
quasi-static speed of 5%/min, does not take into account the Mullins effect. In
order to evaluate this effect in both -the characterisation samples as in the
industrial part- the best procedure is the application of the same number of
conditioning cycles in both tests. However, this method does not contemplate
the strain-rate dependence, which is one of the main factors to define the

stiffness of the rubber. Hence, the global error is the highest.

The progressive conditioning method, which consists in the application of the
same number of conditioning cycles in both tests using a very low testing
speed of 15%/min, is very similar to the first method. This time, the influence
of the Mullins Effect is evaluated as in the industrial part. Nevertheless, the

global error remains high.

The proposed method (progressive conditioning with equivalent strain rates)
gives the best results compared to the other two methods. In addition,
correlating established first and second characterisation methods and the
proposed method, the normalized errors are 2.97%, and 2.22% for the first and

the second methods respectively.

In synthesis, the proposed characterisation method permits to describe all the
main variables in the characterisation phase according to the definition of the
loads and deformations applied to the industrial part. Then, the most proper
method to predict the industrial part behaviour is the one proposed in this

research.
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CHAPTER 4 MODELLING THE DYNAMIC PROPERTIES OF
RUBBER. AMPLITUDE AND FREQUENCY DEPENDENCY
OF RUBBERS

This section is directed to review the behaviour of unfilled, filled and highly
filled rubber compounds under cyclic dynamic loads. For this purpose, three
rubber compounds are characterised dynamically with different frequency and

amplitude conditions [139].
4.1 Theoretical background

4.1.1 Simple shear strain state

The simple shear is the more popular specimen type to characterise the
dynamic properties of elastomers. This section reviews the simple shear state
of strain which will be applied in this CHAPTER 4 to carry out the

characterisation of the dynamic properties of elastomers.

j.i'u

H  y=tang=11/3

Figure 4.1: Simple shear: deformed shape

Xi and x; are the coordinates in the original and deformed configuration
respectively (Figure 4.1) and, in the simple shear case, the deformation is

determined by:
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X, = X, +tangX,
X, = X, Eq. 4.1
Xs = X
where,
tan ¢ = % Eq. 4.2

and where ¢, 6, F and H are defined as the shear angle (direct shear strain),
shear displacement , force and thickness respectively (Figure 4.1). There is

only a displacement in the first direction, being proportional to Xs.

For simple shear deformations described in terms of the stretch ratio A, the

deformation gradient is:

1 0 tang
[F]=|l0 1 0 Eq. 4.3
0O O 1

The Cauchy Green tensor and its inverse are:

l1+tan’¢ 0 tang

[B]J=FF'=| 0 1 0 Eq. 4.4
0 0 1
1 0 -—tang
BY=| o 1 o0 Eq. 45

—~tang 0 1+tan’¢y
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so the strain invariants in this strain state are equal
|, =tr(B)=1, =tr(B™")=3+tan’ ¢ Eq. 4.6

and the shear stress according to Rivlin’s was found to be

r=2 %Jﬁﬂ tan ¢ Eq. 4.7
o, dl,

where ris the shear stress and ¢ the rotation angle (Figure 4.1).

In this strain state, the area is not affected by the deformation and force F is
applied on area A in parallel direction:

T= % Eq. 4.8

Inserting Eq. 4.2 and Eq. 4.8 into Eqg. 4.7, we arrive at the relation between

shear forces and shear displacement in simple shear test:

oW oW
F :2 + 5 Eqg. 4.9
7 {au au% q

For small strains used in linear theory of elasticity where the shear angle
approach zero:

tan(/ﬁz%| . Eq. 4.10
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As,

G, =7 Eq. 4.11

/4

The initial shear modulus can be obtained from Eq. 4.7 in the following way:

G, = lim Zr =g W W Eq. 4.12
*Cwosogy Ll al, | a4

Hence, comparing Eq. 4.12 and Eq. 3.15 for incompressible linear materials,
the relation between the elastic and the shear modulus is Eo=3Go. This
equation reinforces the relation of the shear modulus and Young modulus
concluded in section 1.1.2 (Eq. 1.9); it is valid for small displacements in

elastomers.

In order to characterise the simple shear mechanical behaviour of rubber
compounds, there are at least two types of generalised shear specimens that

are explained in the next lines:

1.- Quadruple simple-shear testing specimen (Figure 4.2): This simple shear

characterisation sample is defined in the International 1ISO Standard
1827:1991 [66] and in the Spanish Spanish UNE Standard 53630:2010 [65]:

25 mm

Figure 4.2: Quadruple simple shear characterisation sample

2.- Dual simple-shear testing specimens: This characterisation sample is
defined in ASTM D 945-92 [140].

The deformation achieved via these tests only approximates simple shear. In

large deformations, the analysis neglects non-uniform deformation, loss of
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plane strain conditions, and normal deformation to the shear plane, Przybylo

and Arruda [137]. To solve this problem, there are two proposals:

o Option A.- The same authors Przybylo and Arruda [137] proposal is a
single cubic specimen where the normal deformation to the shear plane was
restricted by a special shear test fixture designed to fix the shear platen

separation (Figure 4.3).

Figure 4.3: Dual simple shear characterisation sample: option A

o Option B.- Two rubber cylinders are connected to metal cylinders. The
lateral ones are fixed and the central one is moved in the vertical direction. The
recorded force is twice the shear force on each cylinder, and the loading head
displacement is the deformation of each cylinder (Figure 4.4). However, finite
element calculations of the test specimen show that a shear modulus obtained
from this test has to be increased by 6 percent to yield the same values as the
ideal simple shear test, indicating that a perfect simple shear load case is not
obtained [141].

y
y

=

Figure 4.4: Dual simple shear characterisation sample: option B

Pure shear studied in subsection 3.1.2.2 and simple shear are related as

explained in Annex II-D and E.
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4.1.2 EPVE Model: Elastoplastic-Viscoelastic material model

In the experimental work (section 4.2) the behaviour of rubber under several
amplitude and frequency conditions is studied. Section 4.3 is directed to
develop a new FEM model which has the ability to fit the mentioned rubber
behaviour. The model proposed in the section 4.3 is based on Austrell and
Olsson’s work. Hence, this section 4.1.2 is directed to review the model of the

latter authors called EPVE (elastoplastic-viscoelastic) model in this report.

The present thesis develops the work started by Austrell [99] and continued by
Olsson and Austrell [68,108] using an overlay method. The proposed model is
presented in Kareaga et al [3] attached as Annex Il The overlay method is
used to combine various constitutive models programmed in commercial finite
element software. As shown in Figure 4.28 or Figure 4.21, this method consists
of the mesh superposition where the object to simulate is meshed and the
mesh is copied at the same location. Then, the nodes are merged obtaining a
final model composed of a number of superposed meshes with common
nodes. The use of the overlay or mesh superposition technique explained in

section 4.1.3.3 avoids the implementation of new complex constitutive models.

Both EPVE and the proposed MLVE with equivalent viscoelastic approach
models are composed by several rheological elements. Consequently, a brief

summary of mathematical approaches is reviewed.

In this work, the elastoplastic, multilinear and viscoelastic parts are called EP,
ML and VE respectively.

4.1.2.1 Amplitude-dependence characterisation by means of elastoplasticity.

Generalised frictional solid model.

This section develops the EP or generalised friction model. This model will be
used to characterise the ML part of the proposed MLVE model with equivalent
viscoelastic approach. The review is basically extracted from the work of
Austrell [99,141] and Olsson [68,109].
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Coulomb friction element.—

O'fTSf o

off
[LI] off - )
A) B)

Figure 4.5: A) Coulomb friction element. B) Representation of possible stress
situations

This element consists of two blocks which can slide against each other (Figure
4.5-A). This element cannot be applied by itself because it provides an infinite
horizontal slope when it acts. Hence, this element cannot characterise the

nonlinear cycle (Figure 4.5-B).

No sliding occurs while a stress equal to os is not developed in the element.
Therefore, bellow the latter friction stress, the element blocks are fixed to each

other; so, no strain is produced in these conditions.

In brief, the next situations can be produced:

=0 \when 7
=% \when %%
%t =%  when ¢0
O =% \when &0

Where o, of and off are the acting stress, stress in the frictional element and

the yield stresses respectively.
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Elastoplastic element.—

Ofriction Efriction Ofriction
(Oft.f)  (Opeak,Epeak)
Efe / ~\ Efe
u u Off / |/::8friction
-Epeak  (-OFff,-Eff P
d e
A) B)

Figure 4.6: A) an elastoplastic element. B) Hysteresis loop for harmonic excitation of

amplitude &o=¢Epeak.

This model consists of a spring and friction elements in series (Figure 4.6-A).
Itis similar to the Maxwell model but, in this instance, the dashpot is substituted
by the Coulomb friction element.

As in the previous element, while the stress in the chain is less than ox, the
two blocks in the Coulomb element are fixed together and a linear response is
given by the spring. Once the maximum stress level o is reached, sliding in

the Coulomb element occurs.

In brief, the next situations can be produced:

b Gfriction = Efeefriction while gfriction < eff

b Ofriction — Off while Efriction > &r

where ¢+ = o7 /Er, denotes the strain level at which sliding is produced.

When a cyclic load is applied, the hysteresis loop adopted by this model is

represented in Figure 4.6-B, which is the same for any frequency.

According to section 1.3.2, the stiffness can be calculated as follows:

When efiction>€1f then,
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|E™| = Upeak/gpeak Eqg. 4.13

The area Uc which represents the dissipated energy for strain cycle, is:

Ue = 407 (epear = &) = 4077 (epear = O/ Ere) Eg. 4.14

While e,.qx < &f, No sliding is produced and this model behaves as a linear

spring. Consequently, the modulus will be Ef and no damping is present.

The hysteresis loop can be evaluated using the next algorithm presented in
[99]. As shown previously, the strain is the summation of elastic and frictional

strain &ryiction = Ere + &r¢. HeNce, the incremental relation used to obtain the

algorithm is:

ASfTiCtiOTL = Aefe + Agff Eq 4.15

The stress-strain relationship must be evaluated for the increments of strain
and stress. The objective is to obtain the stress increment Aogy;¢ion Which can

be derived from the elastic part because the stress is the same in both elastic

and friction elements given by:

Ofriction = Efegfe Eqg. 4.16

In that way, the stress increment can be expressed as,

Ao-fricl:ion = EfeAgfe Eq. 4.17

The required final stress is evaluated from the known current stress. To
evaluate the latter value, a trial stress is determined from the assumption that

the strain increment is purely elastic:
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Otrial = Ofriction T EfeAgfriction Eq. 4.18

where Oriction IS the current stress.
The maximum stress is limited to —o#<Ofiction<Of, then,

o If 6¢riction > 055 , at least one part of the strain increment is plastic. If
this increment is considered as purely plastic, then, Agf, = 0; hence:

s If |otriarl > S then Ofriction = io_ff

When the previous condition is fulfilled, the stress has to be scaled back. This

factor is defined as a = ofyiction/Otriar, then the stress oryiction = A0¢riar-

o If |0¢riai]l < 075 , then o¢riction = Oeri @nd the strain increment is purely

elastic.

Finally, the algorithm used to evaluate the stress is defined as [99]:
i=123..

Aggriction = 8}::ilction - E}riction

Otrial = Ufin'ction + EfeArriction

a = Ufriction/ Otrial

Ifa>1thena =1

i+1 —
Ufriction = AO0trial
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A simple frictional solid model.—

1
/

Eet+Efe

Ete

HHOﬁ E 2¢f €

Ee

(-00,-€0)

A) B)

Figure 4.7: A) A simple frictional solid model B) Hysteresis loop for harmonic

excitation of amplitude &o.

This model describes better the dynamic modulus and damping than the
simple elastoplastic element. When the stress in the elastoplastic element is
less than ox, the two blocks in the Coulomb element are fixed together and a
linear response is given by the spring. Hence, the response of the whole model
is linear, given by the addition of two linear springs. However, when the
maximum stress level o is reached, sliding in the coulomb element occurs and

the model behaves nonlinearly (Figure 4.7-A-B).

0 = O¢ t Ofriction Eq.4.19

In this model two situations may appear:

4 __ Ofriction
Efe+Ee Efe

l-e<gy= = 0, /E,.: no sliding is produced in the Coulomb

element and the elasoplastic chain behaves as a linear spring. Hence, there
will be no hysteresis and damping will be zero. Then, the modulus E given by
the whole model will be the summation of both springs Ee+Ere; therefore the

stress of the whole model is defined as
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0 =E.e+ Ef.e Eq. 4.20

2.- € 2 & = o055/ Ef.: sliding occurs in the Coulomb element then

0 =E.&+ g5 Eqg. 4.21
o. oy Orrt+ Eee o

|E*|:Lak:_0:u:Ee+ﬂ Eq. 4.22
gpeak <o <o €o

The difference with the elastoplastic element is due to the peak stress value,
which is higher than the friction Zener model because of the elastic spring
contribution in parallel. However, the hysteresis area is the same as in the

elastoplastic element (Eq. 4.14).

In addition to what is explained in section 1.3.1, this model can be used to
simulate sinusoidal dynamic tests. If the mentioned test is simulated with the
latter model, in contrast to what happens in the viscoelastic Zener model, the
dynamic modulus changes with the load strain amplitude (Figure 4.8): E*1>E*>.

A) B)

Figure 4.8: Sinusoidal Dynamic test: A simple frictional solid model. Nonlinear
plasticity. The dynamic modulus changes with the load strain amplitude. A) Two
sinusoidal loads with different strain amplitude are presented. B) The dynamic

modulus changes with the load strain amplitude: E*1>E*.
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Generalisation of the simple frictional solid Model.—

0'?8 o

% Efeé Efe2 é Efen
Ee

{12011 1 |
] ¢

A) B)

Figure 4.9: A) Generalised frictional solid model B) Hysteresis loop for harmonic

excitation of amplitude &o.

The Zener model is a good approximation to rubber material behaviour but it
could be optimized including N elastoplastic chains in parallel. In this way, the
hysteresis loop gets a smoother shape and fits better to experimental results
(Figure 4.9 & Figure 4.10).

Elastic spring Simple frictional model: 1 element

$ 0,10 - $ #:10 -

0,05 - 0,05 7 {
0-00 . ; n

-0,04 0,0 0,00 0,02 boa | 004 0 opo 002 004
-0,05 - -0,05 1
-0,10 - -0,10 -
A) B)
Generalised frictional model: 2 elements Generalised frictional model: 3 elements
Q10 - 0510 -
a‘} 0,05 - @ 0,05 /
0,02 0,04 ( 0,02 0,04
€ €
C) D)

Figure 4.10: Static characterisation: A) Elastic spring. B) Simple frictional model. C)
Generalised two frictional elements model. D) Generalised three frictional elements

model.
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Total stress is calculated by adding the stress of each element:

N
o=0,+ Z O’ iction Eq. 4.23
i=1

In this model, two situations may appear again:

1.- € < &fi = Ofriction,i/ Ere,i- NO sliding occurs in the Coulomb element and the

friction Maxwell chain behaves as a linear spring. Hence, there will be no

hysteresis and damping will be zero and
Ofriction = Efei Eq. 4.24
2.- &€ 2 grf; = 055i/Efe,: sliding occurs in the Coulomb element then
Ofriction = Ofi Eq. 4.25

The fitting procedure of the mentioned model can be performed as proposed
by Austrell [99] or by Ahmadi et al [111].

a) Parameters evaluation method N°1: Initial loading curve fitting:

This method was proposed by Austrell [99] and a similar method was also used
by Ahmadi et al [111].

o Ewx+Efe1+Efe2+Efe3
s Ex+Bfer+Efe2 J——
/ //‘E:)o+

(otf3,£€3)
(Off2,€2)

(Of1,81)

€

Figure 4.11: Initial loading curve of the generalised frictional solid model
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The model parameters can be obtained from the initial loading curve (Figure
4.11). Each friction Maxwell chain yield in the order 1,2,3,.... The parameters

of each element are determined directly as follows:

g, i—0. i—1 (e} '+1_0- i
E}ei:: ffi “ffi-1 Yffi ffi Eq.4n26
E—&—1 Eiv17&

And the yield stress of each element is defined as

Offi = Efeigi Eq 4.27

These equations can be rewritten in function of the strain and stress to obtain

the breakpoints directly:

i-1 n

g; = Z EfEJgj +| Ex + Z Efej & Eq 4.28
j=1 j=t

& = 055/ Efei Eq. 4.29

In the case of the first point where i=1, the first term of Eq. 4.28 disappears.

b) Parameters evaluation method N°2: Load cycle fitting presented in this

thesis:

This characterisation method is developed in section 4.3.1.1.
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The hyperelastic spring.—

Ee

Figure 4.12: Nonlinear frictional solid model

The generalised frictional solid model should be improved using a nonlinear
spring instead of linear one, as Austrell et al [108] proposed, where the
nonlinear spring is modelled by a hyperelastic model (see section 1.2.1). To
simplify the fitting of the model, initially the nonlinear spring may be considered
as a linear spring to calculate the approximated initial shear modulus G. The
previously calculated initial shear modulus can be used to fit the nonlinear
model using the equivalences of the mentioned modulus with Cj constant of

the hyperelastic models. For example, according to Yeoh [25],

W:Clo(|1'3)+C20(|1'3)Z+C30(|1'3)3- Eqg. 4.30

For simple shear, the shear stress of the Yeoh’s model is given as a function

of the shear strain y as follows, Olsson and Austrell [110],

T= 2610]/ + 4‘C20y3 + 6C30y5 Eq 431

On the one hand, parameter Cio governs the initial shear modulus Go

C10=Go/2 Eq. 4.32

and Cx as Cazo the nonlinear elastic response. Its equivalence with shear

modulus G (from [108]) can be written as follows:
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G G G
W = 70(11 —3) - 0.170(11 -3)2+ 0.0670(11 —3)3 Eq. 4.33

Another hyperelastic models and its equivalences with G modulus are detailed
in section 1.2.1.

4.1.2.2 Rate-dependence characterisation by means of Prony series. Linear

viscoelasticity of rubber

For a pure viscous material, all internal stresses are a function of the
instantaneous strain rate. This material may not recover its original shape,
even when the applied stress is removed. The mechanical energy supplied to
the system is dissipated as heat. Reciprocally, pure elastic material efforts are
based only on the instantaneous deformation. This material recovers its

original shape upon removal of the applied stress.

A classical approach to the description of the response of materials which
exhibit viscoelastic properties is based on the analogy with the response of
mechanical elements. This involves the construction of viscoelastic models by
combination of mechanical elements that simulate pure viscous and elastic
properties, and therefore represent linear viscoelastic behaviour. Some of the
most studied combinations of spring and dashpots are the Kelvin-Voigt model,
Maxwell model or the Zener model. Discussions on these models may be
found in Austrell [99] and Gil-Negrete [113]. Some other authors as Park [142]
have done a good review of the work done in the field of classical
viscoelasticity using generalised standard mechanical models for the

characterisation of viscoelastic dampers.

Since the actual materials show nonlinear behaviour under large deformations,
these models are only suitable for small displacement amplitudes, and are not
suitable for predicting a continuous deformation or flow behaviour of the real

materials.

For a viscoelastic material, internal stresses are a function not only of the

instantaneous deformation (deformation, strain rate, etc.), but also the
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deformation history. In real materials, the most recent history is more important

than the most distant, so they may be defined as materials with weak memory.

In the case where both stress and deformation are of infinitesimal magnitude,
their relationships over time can be described by means of linear differential
equations with constant coefficients. It will define a linear viscoelastic
behaviour, which means that the relationship between stress and deformation
is only a function of time and does not depend on the magnitude of the load.
More specifically, it only defines the proportionality of the relaxation rate to the
instantaneous stress op and all the tests done with different initial strains are

proportional.

These models are purely phenomenological. They do not enlighten the
molecular and physical processes that take place, but they are particularly
useful for predicting the response of a material under conditions of creep and
relaxation and even under complex loading conditions. In addition, they can

give a clearer picture of the general nature of the viscoelastic response.

These time domain viscoelastic models can provide an accurate description of

the frequency dependent behaviour of rubber materials.

A classical approach to the modelling of linear viscoelastic behaviour employs
a mechanical model composed of linear springs and dashpots, and the stress-
strain equation for such a model involves standard differential operators. A
general form of the stress-strain equation in differential operators is given by
Fung [115] in Eq. 1.110.

In Annex II-F, one-dimensional simple material models have been described

in terms of their constitutive differential equations.

Generalisation of the Maxwell model.—

This model is based on the Zener model. One or more Maxwell chains are

added to that model to improve the fitting of experimental data (Figure 4.13).

Page 151



o ? €
vel Eve2 Even
Es .
Nvi Nv2 MNvn

Figure 4.13: Generalisation of the Maxwell model.

Considering a relaxation test, the total stress in this model will be obtained with
the addition of the elastic stress to the solitary spring of stiffness Ee which is

known as E, plus the summation of stresses in each Maxwell element.

These viscoelastic models can be written so that they can characterise the
mechanical behaviour as a function of both time and frequency. When these
models are written according to time, they can be used for characterising the
creep and stress relaxation tests. This thesis will examine the last mentioned

tests because these latter are the most related to the objectives of this thesis.

The generalised Maxwell model (Figure 4.13), widely used to characterise the
modulus functions of linear viscoelastic media, consists of a spring and N

Maxwell units connected in parallel Tschoegl [143].

N
0p = 0 + Z Ovpe,i Eqg. 4.34
i=1

N
-t
o =g (Eoo + Z Eve,l-ef_i) Eq. 4.35

=1

t

N
Eye(t) = E, + Z Epeie T Eq. 4.36
i=1

where 7 is the relaxation time for each Prony component Eyei.
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In this model, when the time is zero (t=0), the instantaneous modulus Eo is
Ey = Eo, + Z Epei Eq. 4.37

where E,, is the long term or the relaxed modulus at (t=o) , and Evei and t are
the relaxation modulus and relaxation time respectively; the relaxation time of
the i Maxwell element defined by t; = n;/E,.; Where n; is the viscosity of the
dashpot unit. The typical term under the summation symbol in the previous
equation represents the relaxation modulus of the i" Maxwell unit. The series

expression in the equation is often referred to as a Prony series.

Findley et al [144] studied some common models including the generalised

Voigt model and generalised Maxwell model.

Prony series in time domain.—

This section is developed in detail in Annex 1I-G.

The Prony series can be used to characterise the variation of relaxation

modulus of elastomers subjected to a constant deformation Eq. 4.36,

If we call E(t) the relaxation modulus of tensile stresses. The limits take the

following values:
E, = tlim E(t)
Ey = E(0)

A dimensionless relaxation modulus is defined as follows:

Eq. 4.38

The summation of o should be less than or equal to 1. If the summation of &

is equal to 1, that means that E (t=00)=0.
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Hence, Prony series can be rewritten as follows,

N t
E(t) = Ey | ey + z aie_T_i] Eq. 4.39
i=1

If two extremes of time are studied, one extreme is the instantaneous shear

moduli at time t equal to 0 which gives the full stiffness. Hence,

N
E(0) = E, |a., + Z ai] Eq. 4.40
i=1

This implies that the summation of the input relative moduli & must be less

than or equal to 1.
On the other extreme, where time is infinite, the relative modulus a. represents
the percentage of remaining stiffness, which is given by:

E(o0) = Ep[ac] Eq. 4.41

In brief, T; is the relaxation time for each Prony component Eve,. E, is the
instantaneous modulus (t=0) whereas E is the long-term modulus (t=).

Prony series in frequency domain.—

In addition to the explained in section 1.3.1, this model can be used to simulate

sinusoidal dynamic tests.

Prony series generally defined in time domain can be converted to frequency
domain with the application of the Fourier transformation. This section is
developed in detail in Annex II-H. The final equations obtained in Annex II-H

are the same as those given by Bergstrom [145]:
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E*(w) = E., +ZE 5 Eq. 4.42
w) = q. 4.
vel ] 4 iwT;
ve, lT a)z
E'(w) = Eq — ZEvel+21+‘[a)2 Eq. 4.43
- E
12 _ ve,iTiW
l

i=1

Note that this model do not depend on the imposed amplitude.

4.1.2.3 Complete response modelling. Combination of rate and amplitude

dependence: Elastoplastic-viscoelastic model (EPVE model)

This section explores how the models explained in sections 4.1.2.1 and 4.1.2.2
could be used to characterise the dynamic properties of filled rubbers in

various frequency and amplitude conditions.

The nonlinearization of the pure viscoelastic Maxwell model can be performed
with the addition of frictional elements. The studied friction models are rate-

independent, which means that no viscous effects are modelled.

The simplest model of the generalised Maxwell model is obtained connecting
the Zener model and the corresponding frictional model in parallel (Figure
4.14). The total response of the model is the sum of the mentioned frictional
and Zener models o = 0¢jqstic + Oviscous T Ofriction- It takes into account the
elastomers elasticity, its strain rate-independent hysteresis (which is used to
characterise the amplitude dependence) and the strain rate-dependence all

together.

This simplest model was studied by Austrell [99] which consist of a simple five-

parameter model (Figure 4.14).
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Figure 4.14: Nonlinear viscoelasticity. Five-parameter model.

This five-parameter model can be expanded by the addition of more viscous
and frictional elements in parallel (Figure 4.15) obtaining better fittings to

experimental data.

N M
— § n § m
0 = Oegstic T - Ofriction T ] 1Gviscous Eq. 4.45
i= j=

0'?8

Efel Efez Efen ve Eve2 Even
Ee Y

[I uO'ffl [I [Ioff [IOﬁn Nvif—Nv2 Nvn

Figure 4.15: EPVE Model: Generalised Maxwell model.

Olsson [146] concluded that this model has limitations. On the one hand, the
model assumes the independence between frequency and amplitude which
was demonstrated that it is not completely correct in some materials. The use
of Prony series to characterise the rate-dependency implies that the model
does not take into account the amplitude. Hence, the frequency dependence
will be the same for all amplitudes and the frequency sweeps done with
different amplitudes will be perfectly parallel. Then, the EPVE model does not
take into account the change of the stiffening slope as frequency increases at
different amplitudes. The latter stiffening effect is reviewed in section 1.3.3

and verified with our materials in the experimental section 4.2.

Page 156



On the other hand, the mentioned generalised Maxwell model does not include
any damage effects. Olsson [146] concludes that the model was valid for
correctly conditioned materials without damage effects. He studied the

possibility to introduce the Mullins effect using Miehe’s model [44].
4.1.3 Finite element method theory and application with ANSYS
4.1.3.1 Preliminary considerations

As mentioned before, the elastoplastic-viscoelastic model (EPVE model) is
composed by three types of different simple material models. It is needed to
take into account how these models are programmed in the FE-Code that it
will be used to feed the models parameters correctly. This time, the FE-Code
that is used is ANSYS 14.0

On the one hand, this section is focused on defining the material models used
in ANSYS to build the generalised Maxwell model and, on the other hand, it
focuses on the explanation of the way to transform the parameters obtained in

the characterisation step in parameters used by ANSYS.

The characterisation sample is the simple shear specimen. Then, the obtained
parameters are shear modulus Go for elastic springs, shear yield zf stress for
Coulomb friction elements and relaxation Gve modulus and relaxation time tt

for Maxwell elements.
The material models used in ANSYS to characterise the EPVE model are:

1.- The elastic behaviour can be modelled as (linear) elastic spring where
Young modulus Eg is required, or as hyperelastic (nonlinear) spring where the

initial shear modulus G is required for Neo-Hookean constitutive model.

2.- Elastoplastic model: Bilinear kinematic (BKIN) where initial Young modulus

Eo and the tensile yield stress oy are required.

3.- Viscoelastic or Prony series: where dimensionless relaxation modulus and
relaxation times are required. The relation between relaxation modulus and

dimensionless relaxation modulus is described in section 4.1.2.2.
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Elastomers are considered isotropic and completely incompressible so that the
relation E=3*G (Eqg. 1.9) is applied.

The shear modulus G is normally obtained by pure shear specimen test. This
time, the used specimen is the simple shear specimen. In Annex II-D and E,
the equivalence between both pure and simple shear specimens for small

strains is demonstrated.

To convert shear yield stress af in tensile yield stress of as required in ANSYS

the relation (see Annex II-1),

opr = V3.74; Eq. 4.46

4.1.3.1.1 Elasto Plastic Constitutive Models in Finite Element Analysis.
ANSYS Software.

In this section, different elasto-plastic models will be described in order to
clarify the possibilities that these constitutive models offer in codes such as
ANSYS.

The FEA code ANSYS offers a huge variety of material models. Inside the
structural analysis group (thermal, fluid, electromagnetic, acoustic,
piezoelectric, piezoresistive and thermoelectric materials could also be

defined), mainly linear or nonlinear materials can be defined.

For linear materials, elastic properties are defined which can be further
classified as isotropic, orthotropic or anisotropic. The simplest option is to
consider the material isotropic since only two constants are needed to define
the material card. These two constants are the elastic modulus (E in ANSYS)
and the Poisson’s ratio (PRXY in ANSYS). In the case of the orthotropic
behaviour, 9 constants are needed to be defined. And in the case of the

anisotropic behaviour, up to 21 constants could be specified.

For an elastic isotropic consideration, the elastic modulus and Poisson’s ratio

can be calculated from a standardised tensile test.
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Concerning the present thesis, the interest has not only been centred on the
definition of the elastic properties but also on the generation of material data
cards above the yield point. Due to this, nonlinearity and plasticity have to be
also considered in the material specification. This can be carried out by the
use of nonlinear material models in ANSYS. Inside the nonlinear material
models, elastic and inelastic classifications can be found. Elastic nonlinear
material models cover mainly hyperelastic material equations for elastomeric
material behaviour. They also cover multilinear elastic behaviour, but none of

them are useful for hysteretic studies.

Inelastic nonlinear material models are the so-called elasto-plastic material
constitutive equations. These material models were originally created to
characterise metallic materials behaviour. These constitutive models can also
be classified into different groups in ANSYS: rate independent (studied in this
thesis work), rate dependent, non-metal plasticity, cast-iron and shape

memory alloy.

The rate independent consideration does not take into account testing rate
effects in the stress-strain properties of the material. This approach can be
used for cycled elastomeric materials when the component to be studied is
required to support guasi-static loading conditions with no change of time (no

transient effects).

The hardening rule describes the changing of the yield surface with
progressive yielding, so that the conditions (i.e. stress states) for subsequent
yielding can be established.

4.1.3.1.2 Yielding.

The yield criterion is used to relate multiaxial stress state with the uniaxial case.
Tensile testing on specimens provides uniaxial data, which can easily be

plotted on one-dimensional stress-strain curves.

The actual structure usually exhibits a multiaxial stress state. The yield criterion
provides a scalar invariant measure of the stress state of the material which

can be compared with the uniaxial case.

Page 159



A common vyield criterion is the Von Mises equation (also known as the
octahedral shear stress or distortion energy criterion). In ANSYS notation, the
Von Mises equivalent stress for a 3D space with normal (o) and shear (7)

stresses is defined as:

O, = \/E[(O'X —O'y)2 +(0'y -0, )2 +(c, -0,) +6(szy +7°y +2'2xz)] Eq. 4.47

In tensor form, Eq. 4.47 can be expressed as:
3
oy = ES 'S Eq. 4.48

where s is the deviatoric stress, defined as the summation of the stress tensor

and the hydrostatic stress:

s=o+pl

p:—%(ax+ay+az)) Eq. 4.49

The stress state can be separated into hydrostatic (dilatational) and deviatoric
(distortional) components. The hydrostatic stress p is associated with the
energy of volume change whereas the deviatoric stress s is associated with

the change in shape.
o=s-pl Eqg. 4.50

The Von Mises yield criterion states that only the deviatoric component causes
yielding. If plotted in 3D principal stress space, the Von Mises yield surface is
a cylinder. The cylinder is aligned with the axis 01=0>=03. Note that if the stress
state is inside the cylinder, no yielding occurs. This means that if the material
is under hydrostatic pressure (01=02=03), no amount of hydrostatic pressure

will cause yielding.
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Another way to view this is that stresses which deviate from the axis (01=02=03)

contribute to the Von Mises stress calculation s.

Figure 4.16: Von Mises yield surface in 3D space.

If viewed normal to the axis 01=0>=03, the Von Mises yield criterion will look as

shown below:

Plastic

G2

G3

Principal Stress Space Uniaxial Stress-Strain

Figure 4.17: Von Mises yield surface in 61=02=03 axis.

Inside the yield surface, as mentioned earlier, behaviour is elastic. Note that
the multiaxial stress state can exist anywhere inside the cylinder. At the edge
of the cylinder (circle), yielding will occur. No stress state can exist outside the
cylinder. Instead, hardening rules will describe how the cylinder changes with

respect to yielding.
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4.1.3.1.3 Hardening Rules.

The hardening rule determines how the yield surface changes (size, centre,
shape) with plastic deformation. The hardening rule determines when the
material will yield again if the loading is continued or reversed. This is in
contrast to elastic-perfectly-plastic materials which exhibit no hardening — i.e.,
the yield surface remains fixed.

Plastic

~—— Yield Surface after Loading
Elastic

“—— Initial Yield Surface

Figure 4.18: Evolution of yield surface as plastic deformation is being produced.

Two hardening rules are available: work or isotropic hardening and kinematic
hardening. In work hardening, the yield surface remains centred about its initial

centreline and expand in size as the plastic strains develop.

G o

Subsequent
Yield Surface

Initial Yield
Surface

Figure 4.19: Isotropic hardening, evolution of yield surface.

Kinematic hardening assumes that the yield surface remains constant in size

and the surface translates in stress space with progressive yielding.
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Figure 4.20: Kinematic hardening, evolution of yield surface.

This is in contrast to elastic-perfectly-plastic materials which exhibit no

hardening — i.e., the yield surface remains fixed.

Different hardening behaviours can be specified inside the rate independent
formulation in ANSYS:

o Isotropic Hardening Plasticity.
o Kinematic Hardening Plasticity.
o Combined Kinematic and Isotropic Hardening Plasticity.

Isotropic Hardening is appropriate for large strains with proportional loading. It

IS not suitable for cyclic loading applications.

Kinematic Hardening can be used for cyclic loading since it includes the
Bauschinger effect (the greater the tensile cold working, the lower the
compressive yield strength). However, kinematic hardening is recommended
for situations where the strain levels are relatively small (less than 5-10 % true

strain).

Combined isotropic and kinematic hardening is an advanced plasticity option
which uses the Chaboche Hardening model. This results in the translation and
expansion of the yield surface. The combined hardening can be used for large

strain and cyclic loading applications.

When elastomeric components are subjected to small straining under cyclic
loads, as it will be the case of the studies performed in this thesis work, the

kinematic hardening option seems to be the adequate choice.
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In all the hardening models, two different yielding criteria can be used in
ANSYS: the Von Mises vyield criterion and the anisotropic Hill’s yield criterion.
Hill’s criterion can be thought of as an extension of the Von Mises yield criterion
to cover anisotropic yielding but will not be studied in this thesis. In this latter,
elastomers are considered as isotropic; hence, the Von Mises yield criterion

will be used.

ANSYS offers different approximations to input the experimental uniaxial
tensile tests. The input true stress-true strain curve can be modelled as a
bilinear trace, as a multilinear curve or as a nonlinear curve. With the bilinear
trace, the material behaviour is described by a bilinear stress-strain curve
starting at the origin with positive stress and strain values. The initial slope of
the curve is taken as the elastic modulus of the material. At the specified yield
stress, the curve continues along the second slope defined by the tangent
modulus (having the same units as the elastic modulus). The tangent modulus
cannot be less than zero nor greater than the elastic modulus. In this thesis
project, when BKIN model is used, the modulus of the second slope is zero,
which means that the material has a perfectly plastic behaviour when it is
deformed over the yield strain.

In the multilinear option, a multilinear curve is used instead of a bilinear curve.
The uniaxial behaviour is described by a piece-wise linear total stress-total
strain curve, starting at the origin, with positive stress and strain values. The
curve is continuous from the origin through 100 (maximum) stress-strain
points. The slope of the first segment of the curve must correspond to the
elastic modulus of the material and no segment slope should be larger. No
segment can have a slope less than zero. The slope of the stress-strain curve
is assumed to be zero beyond the last user-defined stress-strain data point.
Up to 20 temperature-dependent stress-strain curves can be included. This
option seems to be the best choice to input the elastomers cyclic quasi-static

behaviour.

The nonlinear option uses an equation to fit the input stress-strain curve. This
equation can be of the form of the Voce or power law hardening and it is
specially indicated to metallic materials where there is a smooth pass from the

elastic to the plastic zone.
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4.1.3.2 Viscoelastic constitutive model: Prony series. ANSYS Software.

Viscoelasticity describes material response which contains an elastic and
viscous part. The elastic response is instantaneous and recoverable and the
viscous response occurs over time (anelastic) is non-recoverable. The rate
effect is such that there is a limiting behaviour for fast and slow loading. As
strain rate decreases, the bulk/shear modulus also decreases. For high strain
rates, the elastic response is the limiting behaviour. For low strain rates, the

‘viscous’ response is the limiting behaviour.

In mechanical solutions from ANSYS [15], viscoelasticity is implemented
through the use of Prony series. The shear and volumetric responses are
separated and the well-known relationships between shear modulus G and
bulk modulus k are described by Eq. 1.10.

Instead of having constant values for G and K (and by extension, elastic
modulus E and Poisson’s ratio v), these are represented by Prony series in

viscoelasticity.

For shear strain state, equations Eq. 4.36 and Eq. 4.38 can be rewritten as:

G(t)=G, +> Ge ™ Eq. 4.51
i=1
at =3 Eq. 4.52
’ =3 q. 4.

As with other material behaviour, deviatoric and volumetric terms are

separated. Hence, from previous equations, the next relations can be written:

v L
G(t)=G,y| a® + Y afe ™ Eq. 4.53
i=1
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t

M _
K(t)=Ko|aX +Y afe ™ Eq. 4.54
i=1

These equations imply that the shear and bulk moduli are represented by a
decaying function of time t. Simply stated, the user provides pairs of relative
moduli ac, and relaxation time Tg,, which represent the amount of stiffness
lost at a given rate. Similar behaviour can be defined for bulk modulus with a

separate set of M values of relative moduli ox,i and relaxation times Tk
4.1.3.3 The overlay technique in finite element method software.

The present thesis develops the work started by Austrell [99] and continued by
Olsson and Austrell [68,108] using an overlay method. The overlay method is
used to combine various constitutive models programmed in commercial finite
element software. Such an approach allows the use of material models
implemented in classical FE-codes avoiding programming a new complex

material models subroutine.

As shown in Figure 4.21, this method consists of the mesh superposition where
the object to simulate is meshed and the mesh is copied at the same location.
Then, the nodes are merged obtaining a final model composed of a number of
superposed meshes with common nodes. Austrell [108] research shows how

this method can be used.

For this purpose, the latter researcher used three superposed meshes: one
mesh was characterised by an elastic or hyperelastic properties of rubber, the
second mesh characterised the Payne effect and the third mesh was related
with the rate-dependent properties of rubber. One mesh or the elements layer
is needed for the viscoelastic model and one for each elastoplastic element.
As the filler content increases, the nonlinearity of the rubber dynamic
behaviour is increased, which requires the use of more VE or/and EP elements
to obtain more accurate fitting of the material model to the experimental results.
As the number of the constitutive elements increases, the number of needed

meshes also increases, which enlarges the calculation time.
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S0 —»

Figure 4.21: A) Example of four brick elements: The first element is characterised by

the viscohyperelastic material. The elements number 2, 3 and 4 are characterised by
the plasticity (BKIN) model that obey Von Mises yield criteria. B) The elements 2, 3
and 4 are displaced and superposed with the element number 1 and the nodes are

merged.

As it is commented in previous sections, the total stress is obtained by the
addition of several mechanical elastic, viscoelastic and plastic elements. A
direct generalisation for three dimensional stress states would be to add the
elastic or hyperelastic, elastoplastic and viscoelastic stress tensors. Hence,

the total stress tensor [0]=[0e]+[Ove]+[Oep]=[Ceve]+[Oep]

In ANSYS, when Prony series are defined, the spring of the EPVE model is
introduced as a long term relaxation modulus. Hence, two stress tensors are
required: on the one hand, the elasto-viscoelastic or hyper-viscoelastic, and,
on the other hand, the elastoplastic (Von Mises Bilinear Kinematic) material

models.

The elastoplastic part of the stress tensor is given by a summation,
N
%P = Z P Eq. 4.55

The elasto-viscoelastic or hyper-viscoelastic stress contribution is given by the

following summation:

Page 167



o.eve - o.e +

l

ole Eq. 4.56

N
{
=1

The EPVE model used in the experimental chapter employs three terms of the

mentioned elastoplastic and elasto-viscoelastic summations.
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4.2 Experimental research: Rubber dynamic properties and its

characterisation in simple shear

4.2.1 Geometry and testing conditions

The simple shear specimen, which consists of a 25mm diameter and 6 mm
thick rubber cylinder, is used to characterise the dynamic properties as shown
in Figure 4.22. This type of geometry avoids the introduction of some factors
that could have an influence on the experimental results such as contact
frictions, and it permits a rigid fixture between the testing tools and the tested

part.

6mm
25mm i
D > €

; L

Ve

A B

Figure 4.22: Simple Shear specimen: A) Cylindrical double shear test piece. In black,
two rubber cylinders of 25mm diameter and 6 mm thickness sandwiched between three
metal end pieces. B) The two metal end pieces are fixed and the central piece is moved

along the direction shown by the arrows (Figure taken from [147]).

To assure the repeatability of the dynamic characterisation tests, some

considerations are taken into account:

(1) The laboratory atmosphere is adjusted to 23°C and 50% of relative

humidity.

(2) 5 simple shear specimens are tested per condition and the mean curve of

these curves is presented.

(3) One frequency sweep per amplitude, where the starting frequency is
0.05Hz with 5Hz linear step increments up to 500.05Hz.

Each specimen is preconditioned at each of the eight different amplitudes,

cycling 10 times, and then the frequency sweep starts. Each specimen is
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tested in the defined frequency sweep at the mentioned eight shear strains,
from the lower to the higher. At the end of the characterisation procedure, eight
frequency sweeps are captured, one frequency sweep per amplitude. Once
the eight frequency sweeps are finished, the tests are repeated again to assure

that no relaxation factor has any influence on the initial results.

The tests in elastomer NR1, NR2 and CKR are presented also in the work of
Kareaga [139] (Annex 1V); they consist of eight different amplitude frequency
sweeps: from 0.05Hz to 500.05 Hz. The input peak amplitudes to characterise
the mentioned elastomers dynamic properties are 0.1, 0.2, 0.31, 0.41, 0.82,
1.23, 2.05 and 4.1 %.

In this thesis, all the characterisation process with each specimen is made with
the same clamping device and testing machine where the specimen is

mounted only once.

Page 170



4.2.2 Material definition: Rubber compounds used in the experimental work

For this work, three materials or rubber compounds are used. Two of them are
natural rubber based rubber compounds NR1 and NR2; and the third one is a
randomly selected elastomer provided by the company Cikautxo Scoop. The
formulation of the first two natural rubber based elastomers is very similar,
where the unique difference between both is the carbon black quantity. One of
them is low filled formulae and the second one is highly filled formulae (Table
4.1).

NR1 phr NR2 phr CKR(MCN6887) phr
SMR CV 60 100 SMRCV 60 100 BR 30
Zn0O 5 ZnO 5 NR 70
SFR N-774 80 SFR N-774 30 Zn0O 4
TMQ 1 T™MQ 1 Stearic acid 1
IPPD 1.5 IPPD 1.5 Peptizing agent 1
Zinc Stearate 3 Zinc Stearate 3 Antiozonant Microwax 3.5
MBS 1.5 MBS 1.5 Aminic antioxidant 1.5
TBTD 0.9 TBTD 0.9 Aminic antiozonant 3
Sulfur 0.8 Sulfur 0.8 Aromatic oil 5

N539 50
Sulfur 1.4
Cz 1

Table 4.1: Formulation recipes. NR1 and NR2 are natural rubber based formulations.
Their unique difference consists of the carbon black quantity. The third formula CKR

is randomly selected industrial elastomer provided by the company Cikautxo Scoop.
4.2.3 Material test system

Dynamic tests have been carried out in Cikautxo S.Coop. The MTS
servohydraulic test systems are precisely configured to characterise dynamic
properties of several materials and components. Specifically, the MTS Model
831.50 (10 kN, Elastomer Testing System with FlexTest 60 Control System)
1000 Hz is shown in Figure 4.23. The MTS Model 831.50 is a high frequency
elastomer test system incorporating all the necessary elements to provide
static and dynamic characterisation data for elastomeric components and
materials. The standard configuration features a frequency range of 0.01 to
1000 Hz with £50N to +10 kN force range and +0.005 to £20 mm dynamic

displacement range.
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Acceleration compensation is built into the force measurement system and is
used on both the strain gauge load cell and the piezoelectric load washer.
Accuracy at high frequency is ensured by utilizing acceleration based
displacement measurement with the accelerometer located at the specimen

interface of the piston rod.

Figure 4.23: MTS Model 831.50 (10 kN) 1000 Hz. Elastomer Testing System

The results given by the characterisation device have the structure of the
following figure:

Dynamic Characterization 73,02881 Sec
Analysis Method:  Sine Regression
Time Data File:

Specified [Specified| Specifie [Frequenc| Load Load Load | Displace | Displace | Phase K* K' K" Tan Delta| Energy
Frequenc| Mean d ¥ Mean | Dynamic| Vector ment ment

v Level |Dynamic Level [Amplitud Mean | Dynamic
Amplitu e (p-p} Level [Amplitud
de (p-p) e (p-p)
Hz N mm Hz N N deg mm mm deg N/mm N/mm | N/mm | unitless | N-mm
0,05 0,5 0,05 -1,29844| 188,8753| 10,39336] -1,06572| 0,500428| 10,39336| 377,4272( 371,2345| 68,08982 0,183415| 13,39387
5,05 0,5| 5,052632| 0,101987| 213,7403| 10,88911| -1,0574| 0,500427| 10,88911| 427,1157| 419,4253| 80,68588| 0,192372| 15,87633
10,05 0,5| 10,05016| -3,58639| 217,5122| 11,01295| -1,06752| 0,500548| 11,01295| 434,5485| 426,5458| 83,01214| 0,194615| 16,35045
15,05 0,5| 15,05882| -0,10714| 219,7473| 11,18353| -1,05731| 0,500022| 11,18353| 439,4751| 431,1299| 85,23723| 0,197707| 16,74489
20,05 0,5| 20,05658| -2,28159| 221,712| 11,35298| -1,0612| 0,501002| 11,35298| 442,537| 433,8779| 87,11468| 0,200782| 17,17346

=Ri=Ri=Ri=R1=]

Figure 4.24: An example of a frequency sweep where the amplitude remains constant.
The starting frequency is 0.05Hz with 5Hz linear step increments up to 20.05Hz

The simple shear specimens were tested in order to characterise the rate-
dependent or frequency dependent properties of elastomers.

K’ and K” (MPa) dynamic storage and loss stiffness respectively - data were
reported by the software of the testing machine. The shear storage and loss
modulus can be obtained as follows:
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G =K — Eq. 4.57

Where K’ is the dynamic storage stiffness given by the division between the
load given by the load cell (N) and the displacement given by the LVDT or axial
accelerometer of the material test system (MTS); thk is the thickness of the
simple shear specimen (mm) and A is the cross sectional area (mm?). It must
be taken into account that, if the used testing specimen type is dual simple-

shear, this area A has to be multiplied by two. Then,

thk
= K Eq. 4.58
G A q
and,
thk
"o_ gen Eq. 4.59
G K _ZA q

4.2.4 Results and discussion

As mentioned before, formulation recipes of three elastomers are presented in
Table 4.1. These elastomers are highly filled, filled and unfilled, NR1, CKR and
NR2 respectively. The characterisation results of each elastomer are divided
into two groups. On the one hand, four graphs will be presented defining the
dynamic properties versus frequency (Hz); these properties are simple shear
storage G’, loss G”, dynamic G* modulus and phase angle ¢ (Figure 4.25-
Figure 4.27 from A to D). On the other hand, the same dynamic properties
versus shear strain amplitude jo are presented (Figure 4.25-Figure 4.27 from
E to H).

The most widely studied parameters in literature are the storage G’ and loss
G” modulus: they are the dynamic properties which give the most valuable
information. The dynamic stiffness G* and phase angle 6 can be derived from

them. Hence, the conclusions will be focused mostly on these two modulus G’
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and G” and the other two dynamic properties G* and phase angle ¢ will be
presented as additional information. Moreover, the dynamic stiffness G* has

the same tendencies as the storage modulus G

Freguency versus dynamic properties.—

As it can be seen from Figure 4.25 to Figure 4.27 in A and C graphs, if
frequency is increased, storage G’and dynamic modulus G* increase too. This
stiffening effect due to the frequency increasing is more pronounced as the
amplitude tends to zero. However, in frequency sweeps performed at higher
amplitudes, the change in frequency does not almost affect the magnitude of
G’and G*.

Loss modulus G” and phase angle ¢, as shown in Figure 4.25 to Figure 4.27
in B and D graphs, an increase as frequency is increased. When studying the
highest amplitudes, the increase of the loss modulus G”, due to the frequency

increase, becomes less significant.

Amplitude versus dynamic properties.—

The magnitudes of storage G’ and dynamic G* modulus shown from Figure
4.25 to Figure 4.27 in E and G graphs decrease as the amplitude is increased.
As it is shown in the mentioned graphs, this reduction in the stiffness is more

pronounced as the testing frequency is higher.

The maximum of the loss modulus G” shown from Figure 4.25 to Figure 4.27
in graph F is given at an amplitude where the storage modulus G’ shown in the
same figures in graphs E drops more rapidly. The phase angle ¢ (graph H)
increases as the frequency is increased. The magnitude of loss modulus G”
arises as frequency is increased, but this effect becomes less significant as

the amplitude increases.

The effect of the amount of filler on dynamic properties.—

In general, the dynamic stiffness of all testing conditions is greater in
elastomers with a higher content of filler. On the one hand, the storage

modulus G’ and the dynamic stiffness G* arise as much as the amount of filler
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is increased; this is due to its reinforcing effect. The stiffening of the storage G’
and dynamic modulus G* that plotted over frequency, the slope at low
amplitudes have more noticeable influence as a filler content of the elastomer
increases. On the other hand, the offset between G’ and G* versus the
frequency curves at the tested amplitudes is more noticeable in elastomers
with a greater amount of filler. Finally, as the filler content tends to zero, the
amplitude and frequency dependence tend to be negligible whereas the

material behaviour tends to be linear.

If we compare the B graphs of each elastomer from Figure 4.25 to Figure 4.27,
the loss modulus magnitude increases with increasing the filler content. The
slope of G” versus frequency decreases as the amplitude increases in highly
filled and filled rubbers, as it is shown in Figure 4.25 to Figure 4.26 in graph B.
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Figure 4.25: Dynamic results of NR1: First, the dynamic properties G’, G”, G* and &

versus frequency (Hz) are represented, A), B) ,C) and D) respectively. Next, the

dynamic properties G’, G, G* and o versus shear strain (/1) are represented, E), F),

G) and H) respectively.
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Figure 4.26: Dynamic results of CKR: First, the dynamic properties G’, G”, G* and
o versus frequency (Hz) are represented, A), B) ,C) and D) respectively. Next, the

dynamic properties G°, G”, G* and o versus shear strain (/1) are represented, E), F),
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Figure 4.27: Dynamic results of NR2: First, the dynamic properties G', G”, G* and &
versus frequency (Hz) are represented, A), B) ,C) and D) respectively. Next, the
dynamic properties G’, G”, G* and o versus shear strain (/1) are represented, E), F),

G) and H) respectively.
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4.2.5 Conclusions: Rubber behaviour under several amplitude and frequency

loads

Storage modulus G’ and dynamic stiffness G*.—

At small deformations, carbon-black agglomerates are not broken and, in
addition, they can occlude the rubber producing the mentioned augmentation
effect mentioned in section 1.3.3. Hence, the ability to move into the matrix is
reduced. As the testing frequency increases, the elastomer stiffness increases.
This stiffening of the material with the frequency increase is due to the fact that
the cycle time is smaller at higher frequencies. Hence, the non-broken filler
agglomerates, and in lower proportion the molecular structure, have less time
to return to the relaxed state. This stiffening effect, produced by the frequency
increasing, is more pronounced when the amount of filler of the elastomer is

higher.

At intermediate deformations, the carbon-black agglomerates are broken into
smaller agglomerates. Hence, the elastic modulus or the elastomer stiffness
decreases because there are more mobile units into the rubber matrix.
Consequently, the material stiffening due to the frequency increasing is
smaller. Finally, at high deformations, the carbon-black agglomerates broken
down until becoming the aggregates themselves are mobile units. Therefore,

the behaviour at high deformations will be similar to the unfilled rubbers.

As the amount of filler of the elastomer decreases, the agglomerates content
is lower; consequently the stiffening of the rubber diminishes. Accordingly, the
change in the mobility, because of their rupture due to the amplitude,
diminishes and, the mobility, because of the frequency change, is not affected.
Hence, the frequency and the amplitude dependence diminish as the filler

content decreases.

To sum up, the dynamic stiffness slope when plotted over frequency, the slope
is higher at low amplitudes than at high ones, which tends to be horizontal
when the amplitude is higher. This effect is more evident as the amount of filler
of the elastomer increases. Hence, the storage modulus G’ and the dynamic

stiffness G* curves versus frequency at different amplitudes are not parallel
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and the slope goes from smaller to higher, this latter being low at high
amplitudes and high at low amplitudes.

Loss modulus G” and phase angle 6.—

Amplitude dependence: When increasing the amplitude, the structure of the
agglomerates, that are present at intermediate amplitudes, break down in
smaller agglomerates. Those internal frictions increase with the consequent
increase in the loss modulus. From the critical amplitude, the increase in the
loss modulus changes the trend and decreases with the amplitude. During the
cyclic strain, while the stable filler network at low amplitudes can reduce the
hysteresis of the filled rubber, the breakdown and reformation of the filler
network cause an additional energy dissipation resulting in the higher
hysteresis at intermediate amplitudes. Finally, at high amplitudes, as the filler
agglomerates are broken down in aggregates, the rubber compound becomes
more stable and the reformation of the filler network does not occur. Hence, at

high amplitudes, the loss modulus is reduced again.

Frequency dependence: As the frequency is increased, it produces a greater
loss of energy because the filler and molecular structure change their
configuration in a shorter period of time. Therefore, when the frequency is
increased, the number of internal friction increases producing a greater heat
release. In unfilled elastomers the internal frictions are lower. Consequently,
when increasing the frequency, the loss modulus G” does not vary as much as

in filled elastomers.

In general, the results are in accordance with those existing in literature.
Additionally, a dataset is obtained, which covers a wider frequency or strain
ranges, characterising highly filled, filled and unfilled elastomers than usual.
This accurate database, which is generated with a current servo-hydraulic
machine, can be used to develop or validate new or existing constitutive
models. These results could be considered as a reference dataset generated
with modern servo-hydraulic test systems; they could be used for further
studies in the development and validation of new and existing constitutive

models on the prediction of the dynamic properties of rubbers.
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4.3 Simulating experimental tests by means of FEA.

In this work, the mentioned EPVE model proposed by Olsson and Austrell is
improved in two ways. First, a novel fitting procedure of three EP elements for
static cyclic loading tests at four strain levels is proposed; then these
elastoplastic elements are fused in a multilinear (ML) curve. The use of a
multilinear kinematic hardening constitutive model (MKIN model in ANSYS)
reduces the various meshes required for each elastoplastic element to one
mesh. After, the second mesh is divided into equivalently strained elements
groups (see Figure 4.29) and then, each element group is characterised by the

corresponding viscoelastic (VE) material.

The VE materials are characterised by their corresponding Prony constants.
The equivalent VE part of the model characterises the rate-dependent stiffness
and damping at a number of strain levels. The method presented in this thesis
report reduces to two the number of required superposed meshes. One mesh
will be characterised by the multilinear constitutive model and the elements of
the second mesh are characterised by the equivalent viscoelastic materials
characterised with Prony series explained in section 4.3.1.2. This reduction in

the number of required meshes reduces the calculation time.

Figure 4.28: Overlay model. The object to simulate is meshed and the mesh is copied
at the same location. The first mesh characterised by the multilinear kinematic
hardening constitutive model (ML or MKIN) and the second mesh characterised by a
number of VE materials, each one characterised by its corresponding Prony series as

it is shown in Figure 4.29-B.
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Figure 4.29: A) Represents the strain energy density of the deformed geometry. B)
Represents the mesh of the model divided in four materials characterised by the

equivalent Prony series.

For the fitting step, some considerations are taken into account. The elastomer
is considered incompressible and isotropic material, and the fitting procedure

is done by the one-dimensional model.

The type of characterisation specimen used is the simple shear sample (see
section 4.1.1: Dual simple-shear testing specimens Option B. The main
advantage of the used test specimen is that test set up is the same for both
static and dynamic test, referring to the clamping devices and the testing
machine. On the other hand, dynamic properties of elastomers are
characterised in simple shear in order to reduce the influence of elastic
nonlinearities. Simple shear strain state characteristics are studied in section
4.1.1, and exposed that the initial shear modulus Go as the shear modulus for
small strains may be characterised by the use of such type of characterisation
specimen. For convenience, the initial modulus Go is renamed as relaxed

modulus G...

Several fitting procedures are studied for similar material models Berg
[98,105], Austrell [99,141], Olsson [68,109], Gil-Negrete [113] or Ahmadi [111].
Each method has its advantages and disadvantages; hence, after the

exposition of existing suggestions, a clear and simple method will be exposed.
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The elastoplastic (static mechanical properties) and viscoelastic (dynamic
mechanical properties) can be modelled independently Austrell [99], Olsson
and Austrell [68], Kaliske and Rothert [148] and Miehe and Keck [45].

4.3.1 MLVE model with equivalent viscoelastic approach and its

implementation in Ansys

The constitutive model proposed in this work is divided into two parts in order
to fit the model parameters to the experimental data. The first part modelled
as a single spring and a number of elastoplastic elements (see Figure 4.30 into
dashed lines named as ‘EP model’ in this thesis report) characterises the
amplitude dependence. Firstly the EP part of the model is fitted and then the
characterisation constants are transferred into the ML model (Multilinear

model).

The second part modelled as various Maxwell elements (see Figure 4.30 into
dash-dot lines known as ‘VE model’ in this document) characterises by the use
of Prony series the rate-dependence of elastomers. As it is shown in the
experimental section, the rate-dependence of elastomers depends on the
applied strain amplitude. Consequently, the viscoelastic material (VE model)
has to change as the deformation of the elastomer changes. Therefore, the
elements similarly strained of a finite element mesh have to be characterized

with the same VE material.

In brief, the proposed MLVE with equivalent viscoelastic approach consists of
the reduction of various EP models in a unique ML model. The rate
dependence is characterised with several VE materials which depend on the

strain level of the element once it is loaded.

The algorithms created to fit the multilinear-viscoelastic (MLVE) model to the

experimental data were created with the Matlab software.
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Figure 4.30: Dashed line: Representation of the expanded elastoplastic model (EP
model). Dash-dot line: Representation of the expanded viscoelastic model (VE model).

4.3.1.1 Quasi-static and amplitude dependence material fitting

The part of the model which characterises the Payne effect or amplitude
dependence is the generalised Zener friction model. This model is composed
of a number of elastoplastic elements coupled in series with a hyperelastic
spring. The elastoplastic behaviour of this model is piece-wise kinematic
hardening. The rate-independent elastoplastic elements are used to define the
static hysteresis. When coupled together with elastic springs, as shown in
Figure 4.31 (equivalent to Figure 4.9), it is obtained a rather smooth response
as well as a good fit to a larger range of amplitudes. The experimental data
needed to characterise this part of the model come from the first measurement
performed at each strain level or amplitude. Specifically, the required input

data come from the first frequency of 0.05Hz of each frequency sweep.

T ?y
é Gfeé Grez é Gren

G ["]Tfﬂ I]l]l'ffz. . .["]Tffn
|| |

Figure 4.31: Elastoplastic or Generalised Zener friction model.

Hyperelastic spring.— The model used in this study is the Neo-Hookean or

also known as Yeoh’s first order model [25]. The hyperelastic spring element
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of the EP model characterises the completely relaxed shear G modulus or the
commonly known G. of the elastomer. In this work, the elastomer NR1 is
characterised up to the maximum peak strain of 4.1%. Hence, when the Zener
model is fitted to experimental data, the spring element can be linearized to
calculate the initial relaxed shear modulus G. . Then, this G« is used to
calculate the Yeoh's constant Cio. The Yeoh’s first order equation for

incompressible materials is written as follows:

C10=Gun/2 Eq. 4.61

Bilinear kinematic hardening or Elastoplastic elements.— The elastoplastic
elements are used to characterise the quasi-static hysteresis loop and the
amplitude dependence. The constitutive model, which fits better the
characterised properties, is the kinematic hardening rule. Kinematic hardening

assumes that the yield surface remains constant in size when plasticity starts.

In this thesis, a fitting procedure based on a detailed fitting procedure from
Olsson and Austrell [68] is proposed. Firstly, the dynamic properties are
specified for an easier comprehension of the fitting procedure. Storage
modulus E’, loss E” modulus, the phase angle &, dynamic stiffness E* and the
hysteresis area are defined for uniaxial strain state in section 1.3.2, and for

shear strain state the dynamic properties can be written equivalently as

follows:
G' = G*cosé Eqg. 4.62
G" = G"sind Eq. 4.63
G"
= — Eq. 4.64
6 =1 q
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T
G'=—=VG"+§ Eq. 4.65

Yo

area = nG"y? Eq. 4.66

The dynamic properties used in the fitting process are G’and G”.
When an elastoplastic element is strained, two situations may occur:

1. ¥ <¥sr :No sliding occurs in the Coulomb element. Hence, the chain

behaves as a linear spring and the damping is zero. Consequently, T = Gy and
the hysteresis areas= 0.

2. Y = ygy: sliding occurs in the Coulomb element then, = = 74¢, and the

hyteresis areas = 4t¢¢(y — ¥¢s)

Then, the total elastoplastic shear stress and hysteretic areas of the Zener

model are calculated as follows:

n
o = Teo + Z T Eq. 4.67
i=1
6% = Gf kYo Eq. 4.68
n
areasy = Z areas; Eq. 4.69
i=1

k indicates the frequency sweep number done between 0.05 to 500.05Hz from
the lowest to the highest strain level. i indicates the number of the elastoplastic
element where the total stresses and areas for each k strain level are

calculated by ‘BKIN’ (Figure 4.32) and ‘df’ (Figure 4.33) functions respectively,
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Function Bkin(Ginf, Gf1, Y1, Gf2, ¥2, Gf3, Y3, E)
If E <= ¥1 / Gfl Then

Sigmal = Gf1 * E

El=e

Sigmal = Y1

End If

If E <= ¥2 / Gf2 Then

Sigmaz = Gf2 * E

El=e

Sigmaz = Y2

End If

If E <= ¥3 / GEf3 Then

Sigma3 = Gf3 * E

Else

Sigma3 = ¥3

End If

Bkin = Ginf # E + Sigmal + SigmazZ + Sigma3l
End Function

Figure 4.32: BKIN Function programmed in Visual Basic. The output gives the total
stress of the generalised friction model, which is composed by an elastic spring and
three elastoplastic elements in parallel.

Function df (Gf1, Y1, Gf2, ¥2, Gf3, ¥3, E)

ezl = ¥1 J Gfl
If E <= g5l Then

dfl = 0

El=e

dfl = 4 * ¥1 * (E - esl) 'area
End If

es2 = ¥2 / Gf2
If E <= es2 Then

dfz = 0

Else

dfz = 4 * ¥2 * (E - es2) 'area
End If

es3 = ¥3 / GL£3
If E <= e=3 Then

dfs = 0

Else

df3 = 4 * ¥3 * (E - e=s3) 'area
End If

df = dfl + df2 + dfs
End Function

Figure 4.33: df Function programmed in Visual Basic. The output gives the area of
the generalised friction model, which is composed by an elastic spring and three

elastoplastic elements in parallel.
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The experimentally obtained input values of G;,,,, and areal?;, , are obtained

from each strain level at the frequency of 0.05Hz, which is considered to be
quasi-static (Figure 4.34).

Static tests. Strain rate 0,05 Hz
T 0,150 -

0,100 -

0,050 -

(=]

-0,060 -0,040 -0, M 0,020 0,040 0,060

0,100 - =——Amp-2
Amp-3
-0,150 - ==Amp-4

Figure 4.34: Typical cyclic static tests. Four different amplitudes tests are plotted .

The Zener friction model is fitted to the experimental input, which is given by
the relation 735, x = Goxpr¥ox and the hysteresis areay,,,, ;. The error function

used in the optimization approach is the one presented by Olsson and Austrell
[68].

n n
Ttot _ TO .05Hz areatot _ areao .05Hz
_ 0,k Oexpk + f.k fexp,k Eq. 4.70
err = 0 T _0.05Hz J area95Hz q. 4.
i=1 Oexp,k i=1 fexp,k

where k and J are the shear strain amplitude and the scale factor respectively.

Multilinear kinematic hardening.— Once the material constants of the EP
model are determined, they are transformed in a multilinear ML curve. Ahmadi
et al [147] or Austrell [99] showed the method to determine multilinear
kinematic parameters from the initial loading curve. In this work, for fitting
purposes, the way taken was more extensive; each characterisation cycle at
each strain level is considered. Once elastoplastic constants are calculated as
detailed above, they are transformed in a multilinear curve as it is shown in
Figure 4.35-A and B, using for this purpose the next equations: Eq. 4.71 and
Eq. 4.72.
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Figure 4.35: A) Elastoplastic elements: represents three bilinear plasticity curves.
Each constitutive model works as a linear elastic model with stiffness G up to the

yield strain and then becomes perfectly plastic. B) Multilinear constitutive model

In commercial finite element software as ANSYS, MARC or ABAQUS,
elastoplastic data must be introduced in terms of uniaxial tension o and
uniaxial strain &. For infinitesimal strain theory in an incompressible material,
the elastic energy density in simple shear and uniaxial deformation state are
the same. Hence, the yield stress in tension oy is related to the yield stress in

simple shear [147] ,

Opi = TpV3 Eqg. 4.73

&rri = VrilV3 Eq. 4.74
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4.3.1.2 Frequency or rate dependence characterisation of elastomers

In order to characterise the rate-dependency of the dynamic properties of
elastomers, viscoelastic elements are used to define the change in the material
behaviour as the testing load becomes non-static. In this work, the frequency
of 0.05Hz is considered quasi-static. Hence, the contribution of the VE part of
the MLVE model is zero at this frequency.

One of the simplest models to define the viscoelasticity of any material is the
Maxwell element. In order to achieve a better fit to a larger range of
frequencies, the viscoelasticity is defined by Prony series. The Prony series
consists of an expansion of several Maxwell elements coupled in parallel. This
VE model is also known as the generalised Maxwell model and it can be

represented as shown in Figure 4.36 (equivalent to Figure 4.13).

Figure 4.36: Generalised Maxwell model: Prony series

The relaxation time T is defined as the division of the dashpot viscosity
constant ny and the spring elastic modulus Gve (The relaxation time known as

rin section 4.1.2.2 is renamed as T for convenience):

_ Nv,i

T
' Gve,i

Eq. 4.75

The stress of the Prony series is calculated as follows and it shows that the
stress decays exponentially with a characteristic time constant (equivalent to
Eq. 4.35)[15,99,149]:
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N -t
T =7, <Gw + Z GveieT_i> Eq. 4.76
i=1

The previous Eq. 4.76 can be written as follows (equivalent to Eq. 4.36):

-t
Gue = Gon ¥ ) GyreTs Eq. 4.7

The viscoelastic behaviour of a material is determined from harmonic
experiments [139]. In these experiments, the material is exposed to small
sinusoidal strain vibrations and the resulting dynamic properties are
determined as a function of frequency @». The mentioned dynamic properties
are the storage modulus G,.(w) and loss modulus G,,(w). The Prony series
generally defined in time domain (Eg. 4.77) as showed in Annex II-G can be
converted to frequency domain with the application of the Fourier
transformation (Annex II-H) and, as a result, the next equations are written
(equivalently to Eq. 4.43 and Eq. 4.44)[145]:

Gy = Gon + Z Gre. Eq. 4.78
i=1
Gye  TZ w?
ve((*)) - GO z Gvel +Z 1+ Tzwz Eq- 4.79
1" Gve,iTiw
Gpe(w) = HTLZ(UZ Eqg. 4.80

i=1

The amplitude dependence and rate dependence can be considered as two
independent types of behaviour, i.e. the frequency response is the same for all
strain amplitudes and vice versa. This assumption holds rather well for unfilled

materials and it requires some modifications for filled or highly filled materials.

Page 191



The simplest MLVE model is equivalent to the 5 parameters EPVE presented
by Austrell [99] shown in Figure 4.37-A. This model can be used to
characterise the unfilled rubbers dynamic behaviour and some low filled
elastomers when the model is expanded to more EP and VE elements as it
can be observed in Figure 4.37-B. As it is shown in Figure 4.38, when shear
strain decreases the slope of the curve G’is increased. In Figure 4.38, the EV
Prony series are characterised by the experimental results performed with the
shear strain peak amplitude of y2. In consequence, the simulation at this
amplitude is correct, but in case of lower amplitude of y1, the error increases
when the frequency is increased. The use of only one VE characterisation (the
same Prony series for every element of the mesh) for any strain level is
erroneous because it generates parallel curves displaced by the elastoplastic

model. To solve this problem requires the use of equivalent yeq VE

%GfE‘I%Gfez fe ve GVEZ Gvem

["]Tff1 I]Tffz I]I]Tffn Nvil—_Nv2 Nym

characterisations.

A) B)

Figure 4.37: A) Representation of the simplest EPVE five parameter constitutive

model. B) Representation of the expanded EPVE constitutive model
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y2

Freq (Hz)

Figure 4.38: EPVE model and MLVE models representation. Solid line represents the
experimental tests performed with amplitude 1 and » where n<jy.. The x’ marked
lines are the EPVE and MLVE models simulations where the Prony series are

characterised by j» experimental results.

The G« is a known value which comes from the quasi-static multi-linear fitting
step. In this second VE fitting step, Prony series are calculated from different
frequency sweeps performed with different strain levels. It is interesting to
characterise the widest possible range of strain amplitudes. Hence, in this
work, four curves of the eight characterised amplitudes of the material NR1
(see ANNEX IV) will be used to characterise the Prony series. The four input
curves are given by the test performed at »1=0.0031, 5»=0.0082, »5=0.021 and
14=0.042 (/1) in a frequency range from 0.05 to 500.05Hz.

Preparing input data.— The experimental data (the frequency sweep
performed at a constant amplitude) is composed of the amplitude dependent
static component and the frequency dependent dynamic component. Hence,
the amplitude dependent static component is first removed from the
experimental data.

*

vexp

Gyep (@) =Gy (0) - G0 "™ +G, Eq. 4.81

0.05Hz

area,,,, () =area,, (o) —area,, Eq. 4.82

vexp(
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The Prony series (see Eq. 4.79 and Eqg. 4.80) are fitted to the prepared input
data given by Eqg. 4.81 and Eqg. 4.82. The error function is defined as:

; : 2 = (area area 2

ve,k ~— Yvexp,k vek — vexp,k

( i p) ”Z( ”) Eq. 4.83
vexp,k : areavexp,k

errzz

n
=1

Material properties assignation to the simulation object.— The finite element
simulation of the component is divided by two simulations. First, it is required
to know what deformation of each element of the mesh is once they are loaded
with the testing amplitude. Once the deformation of each element is known, it
is characterised by the corresponding Prony series. Hence, the first simulation
consists of a simple initial tension as it is shown in Figure 4.29-A. This load is
the peak amplitude which will be used in the posterior frequency sweep. In this
first step, an initial guess of the rubber shear modulus is used to calculate the

maximum equivalent shear strain [141].

Austrell [141] proposed a method to determine an equivalent simple shear
strain of a general strain state of a finite element. To this end, a neo-Hooke
hyperelastic model having the strain energy potential Wo= Cio (11-3), with |1
being the first strain invariant (and the shear modulus G=2C1o) is defined. The
neo-Hookean model is simple and useful in cases of moderate compression
and shear dominated load cases. From Eq. 4.6 and Eq. 4.10, for a simple
shear load case, the first strain invariant is 11=)2+3, (y is the direct shear strain
defined as shear displacement divided by the sheared height). For a general
load case, an equivalent shear strain jq can be calculated from the strain
energy amplitude Wo of each element by putting the elastic strain energy of
the simple shear load case equal to the strain energy of the general element

load case, giving

Yeq = vV Wo/C1o Eq. 4.84

The equivalent shear strain of each element is compared with the

characterised Prony series (here four materials characterised by Prony series
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tested with vy1, y2, y3 and y4 shear strain levels), and the material is assigned.

Some considerations:

a) veq <y1 : all these elements will be characterised by the material
property characterised in the smallest strain testing condition.

b) veq >y4 All these elements will be characterised by the material
property characterised at the highest strain.

C) if the strain range yeq goes from y1 to y4, each element will be

characterised by one of the levels y1, y2, y3 and y4 respectively

The elements of the viscoelastic model that will be assigned to the mesh,
belonging to the four different load levels 1 to 4, are shown in Figure 4.29-A
and Figure 4.29-B.

4.3.2 Material fitting to MLVE model

This section is directed to verify that the MLVE model with viscoelastic
approach presented in the previous section 4.3.1 can simulate all the studied
experimental cases correctly. For this purpose, the studied parts are the simple

shear specimen and a rubber block is an industrial part.

In the previous section 4.2 we have studied three types of elastomers. As it is
shown in the experimental work of the latter section, rubbers behave as linear
materials as the filler quantity decreases. Consequently, the amplitude and
rate-dependency diminishes as the filler quantity decreases. Therefore, as
unfilled rubbers have near linear dynamic behaviour, they have historically
been characterised by linear viscoelastic models. The problem begins when
the filler content increases. Hence, in this thesis, the objective is the validation
of the proposed model for very nonlinear rubbers. The elastomer showing
higher nonlinearities of the three presented in the experimental work of the
latter section is the rubber NR1, being the most appropriate elastomer to

perform the validation of the presented model.
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Once the model is fitted as presented in section 4.3.1, the Finite Element
Analysis (FEA) simulations of the experimental NR1 are carried out in ANSYS.
For a better representation of the obtained results, different sections are
presented. First, the simple shear characterisation tests used to fit the material
model are inversely simulated to validate both the methodology and the
developed programs. Secondly, an industrial part presented as rubber block is
simulated and correlated to its experimental tests in several amplitude

conditions.

Concerning to material modelling, the ML model constants written in Table 4.2,
are common for any strain and frequency condition. Therefore, the first
element layer is characterised by a unique material characterised by the ML

model.

MULTILINEAR PARAMETERS

Epini(MPa) 14.726
etti (/1) op,i (MPa)
0.000186 0.002739
0.00217 0.01476
0.008139 0.028

Table 4.2: ANSYS MKIN model: Multi-linear kinematic hardening model fitting
constants. Elastomer NR1.

In addition, the parameter G calculated in the previous static characterisation
step remains constant for any VE Prony series fitted to the mentioned four

shear strain amplitude sweeps as shown in Table 4.3.
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PRONY SERIES: MATERIAL PARAMETERS FOR EQUIVALENT SHEAR

STRAINS ’qu
G« (MPa) common for any model 1.8806
Yeq Gue,i Ti
0.3699 0.00402
0.0031 1.0603 0.29351
3.9994 0.000139
0.1767 0.00324
0.0082 1.0615 1
3.5692 0.00012
0.1739 0.0018
0.02 0.6858 1
3.5 0.000083
0.2662 0.0015
0.041 0.5072 0.1002
5 0.000044

Table 4.3: ANSYS PRONY model. Viscoelastic Prony series parameters. Elastomer
NR1

4.3.3 Simple shear: Experimental and FEA correlation.
4.3.3.1 Simple shear: Real model vs. Brick model in FEA

The experimental data for the material characterisation is performed in simple
shear strain state. The simple shear specimen used for that purpose is the

dual simple-shear specimen presented in section 4.1.1.

Once the material parameters of the MLVE model are fitted to the experimental
data by the use of a Matlab application developed on this purpose, the next
step consists of the ANSYS simulations of the simple shear specimen and
correlation with the experimental data. For that purpose, an APDL program

into ANSY'S software (called Dynstiff) is developed to carry out the simulations.

When simulating by finite element methods, the computational time of
calculation increases as the number of elements of the mesh is increased. The
main goal is to reduce the model size (humber of elements and nodes) as
much as possible. To perform the ideal simple shear state simulation, only one
brick element is required, which is the highest possible simplification.
Sometimes, the mentioned simplifications of the models of finite elements

produce an increase in the error when the predictions are correlated with
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experimental tests. To avoid external errors produced by the simplifications,
first, the predictions are performed by the finite element brick and the full model
of the simple shear specimen used in the experimental data is compared. The

work scheme is shown in the next Figure 4.39:

EXPERIMENTAL DYNAMIC PROPERTIES CHARACTERIZATION

MLVE model with equivalent viscoelastic approach: PARAMETERS FITTING

]_M—“=> %—_//# == /’/ = % . iii i
. I

00O

e T

PRESENTED METHODOLOGIES VALIDATION IN SIMPLE SHEAR

| model simple shear: Correlation between simulations of 'real’ and 'simplified virtual geometries by means of FEA
Real mode|

7M_“ == % — T B

i, VOO

-|1 One element model |~ "
; "
;’ ‘
|

N
o,

| ——

Figure 4.39: Work scheme to validate the simplified cube model. 1% the MLVE model
Is fitted to the experimental data obtained testing a real simple shear specimen in
several testing conditions. 2" the real and the brick models are characterised with
previously fitted MLVE model to carry out simulations and correlate with the

experimental data.

As explained in section 4.1.1, finite element calculations of the test specimen
show that the shear modulus obtained from this test has to be increased by 6
percent to yield the same values as the ideal simple shear test, indicating that
a perfect simple shear load case, is not obtained [141]. Firstly, this affirmation
is verified for the studied rubber compound NR1, the applied characterisation

and for the novel model presented in this work.

Two finite element models are correlated. One of them is a brick element sided
by 1x1x1 millimetres, meshed with a SOLID 185 element (8 node hexahedral
type elements). The second, which is a reproduction of the used simple shear
specimen (The B option of dual simple-shear specimen presented in section
4.1.1), meshed with the same type of element are presented in Figure 4.40-A

and B respectively.
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po— ANSYS] | oo ANSYS

R15.0)
2013

Figure 4.40: Simple shear specimens A) Simplified shear cube meshed with a unique
element. B) Reproduction of the used simple shear characterisation specimen

composed by 576 brick elements.

For the simple shear specimen due to symmetry, only half of the full geometry
was modelled in ANSYS (see Figure 4.40-B). The finite element for this model
consisted of 452 nodes and 576 elements.

The loading on both specimens consisted of a constant sinusoidal load with a
peak strain amplitude of 4,1% and a frequency sweep between 5 and 505 Hz

with a linear step size of 50 Hz.

The first objective is to achieve a good agreement in the correlation between
both simulations of the simplified shear cube and the simple shear

characterisation specimen in ANSYS.

G' (MPa)

0 100 200 Freq (Hz) 300 400 500 0 100 200 Freq (Hz) 300 400 500

A) B)

Figure 4.41: Simulation correlations of simplified shear cube and simple shear
characterisation specimen: Dynamic properties G” and G versus frequency (Hz) A)

and B) are represented respectively.
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Results and discussion.—

For this material, the finite element calculations of the test specimen, the
characterisation method and the presented material model show that the
storage and loss shear modulus obtained from this test have to be increased
by 4.5 instead of 6 percent mentioned in literature to yield the same values as
the ideal simple shear test (1 brick element), indicating that a perfect simple

shear load case is not obtained.
4.3.3.2 Experimental and simulation correlations in simple shear

As concluded in section 4.3.3.1, the experimental data must be treated and
the obtained results increased in 4.5% to have a real simple shear values for

this material.

These simulations are performed using the 1 cube or brick element presented
in the previous section 4.3.3.1. These experimental and simulation correlations
are performed to validate the MLVE model with equivalent VE approach, the
proposed characterisation method, the program built in MATLAB to fit the
material constants, the overlay technigue and the program built in ANSYS with
ADPL programming language [150] to perform the dynamic predictions of

industrial elastomeric parts.

The studied peak amplitudes in the validation test and simulations are 0.31,
0.82, 2.05 and 4.1 percent respectively and the material is NR1 as presented

in Table 4.1. The work scheme is shown in the next figure,

MLVE WITH EQUIVALENT VISCOELASTIC MODELS VALIDATION IN SIMPLE SHEAR

==

- Real model :
L) == |
g |

T ==

& EXPERIMENTAL | £ .
|

SIMULATION

Figure 4.42: Work scheme to validate the MLVE model with equivalent VE approach

in simple shear.
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In the next Figure 4.43, the experimental results of the simple shear specimen

are presented,

4 ——EXP-0.0031

~&—EXP-0.0082
EXP-0.02

EXP-0.041

G" (MPa)

. V

————EXP-0.0031
~o—EXP-0.0082
EXP-0.02

EXP-0.041

0,6
) 0 100 )mFreq(HllmO 400 500 ' 0 100 7mF'eq(Hx)zm 400 500
A) B)
Figure 4.43: Experimental dynamic results of the simple shear specimen: Dynamic

properties G’ and G” versus frequency (Hz) A) and B) respectively are represented.

In the next Figure 4.44, the simulations of the simple shear strain state

(simplified brick element model in section 4.3.3.1) performed in ANSYS are

presented:

mﬂFveq (Hz)m0

]
6 g
55
|

400

& ——SIM-0.0031

!

-8—SIM-0.0082
SIM-0.02
SIM-0.041

——5IM-0.0031

©—S5IM-0.0082
SIM-0.02
SIM-0.041

100

400 500

7vaeq (Hx)gm

A)

B)

Figure 4.44: Simulation with MLVE model with equivalent VE approach of the
dynamic results of the simple shear strain state: Dynamic properties G’ and G versus

frequency (Hz) A) and B) respectively are represented.
4.3.3.3 Results and discussion

Figure 4.43 shows four of the eight experimental curves obtained from
Kareaga [139] (Figure 4.25-A and B).

The MLVE model is fitted to the studied elastomer NR1 using an application

programmed in Matlab, which gives the required material constants. The
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parameters of the ML model written in Table 4.2 are common for any strain
level and frequency. As mentioned before, the viscoelastic model depends on
the strain level. The viscoelastic parameters are given in Table 4.3. where, G
is common for all viscoelastic models fitted to the mentioned four shear strain

levels.

Experimental results of G’ and G” shown in Figure 4.43 are correlated to the
simulations shown in Figure 4.44 performed with the MLVE model with
equivalent VE approach programmed in ANSYS. The maximum deviation
between experimental and simulations produced with the presented
characterisation method do not cross the barrier of 11%. In the next Table 4.4
it is shown the deviation between experimental and simulation results for all of

the studied amplitude cases presented in Figure 4.43 and Figure 4.44:

% DEVIATION TABLE (EXPERIMENTAL AND SIMULATION CORRELATION)
Amp (unitary) 0,0031 0,008 0,0205 0,041

Frgcy({Hz) Ksto Kloss Ksto Kloss Ksto Kloss Ksto Kloss
5 8,38 8,14 9,54 1,75 6,70 1,71 1,25 8,22
55 3,66 0,57 3,39 2,42 1,23 1,26 2,16 0,48
105 2,51 4,29 2,02 0,78 0,76 L74 0,32 1,33
155 1,07 4,61 0,94 0,31 0,94 0,77 1,12 0,80
205 0,40 3,04 0,16 0,09 0,70 0,55 0,12 1,02
255 0,01 3,97 0,51 0,90 1,07 0,84 0,15 0,85
305 0,60 2,78 1,09 0,72 0,88 0,43 0,00 0,53
355 1,27 2,44 1,48 0,38 0,76 0,29 0,06 0,05
405 1,15 5,23 1,53 2,07 0,84 0,81 0,20 0,22
455 1,45 7,94 1,62 3,94 0,76 1,56 0,51 0,76
205 1,82 1.0'. 69 1,69 6,11 0,48 2,48 0,54 0,60

Table 4.4: Deviation table. Experimental and simulation correlation of the studied
simple shear cases. Four amplitudes are studied in the frequency range between 5 and
505 Hz.

4.3.4 Rubber block: Experimental and FEA simulations correlation

Once the characterisation methods and programs are validated satisfactorily
at specimen level, the second objective consists of performing the MLVE
model validation in an industrial part. When the studied industrial part is
deformed, the strain range varies between different points of the geometry
which does not happen in the characterisation, the specimen being constant
in all the geometry. In addition, the strain states of the elements which

Page 202



compose the mesh are more complex than in the characterisation specimen.

The work scheme is shown in the next figure:

MLVE WITH EQUIVALENT VISCOELASTIC MODELS VALIDATION IN AN INDUSTRIAL CASE

EXPERIMENTAL| " o ) //,,» -

fou == | SELE R

v —— " g P
[ = W

SIMULATION | . =" " —_— i s b Sor
; - : % :

Figure 4.45: Work scheme to validate the MLVE model with equivalent VE approach

in an industrial case (rubber block).
4.3.4.1 Geometry definition and testing conditions

The industrial part consists of a 35mm diameter and 35 mm thick rubber

cylinder (see Figure 4.46).

Figure 4.46: Industrial part: Rubber block. In black, a 35mm diameter and 35mm
thickness rubber cylinder sandwiched between two metal end pieces. One of the two
metal end pieces is fixed and the other end piece is displaced in the axial direction.

The degree of cure is directly related to the measured stiffness and damping
and it is one of the most important parameters to be taken into account. The
thickness differences of the studied simple shear specimen and rubber block
with 6mm and 35 mm thicknesses respectively require the use of different cure
times in each type of geometry in order to obtain the same degree of cure in
both. To this end, the first characterisation method proposed to control the
degree of cure between different geometries can be applied (explained in
section CHAPTER 2.)
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The tests consist of five different amplitude frequency sweeps: from 0.05Hz to
500.05 Hz. The tested peak displacement amplitudes are 0.05, 0.1, 0.15, 0.25
and 0.35 millimetres. The experimental results are presented in Figure 4.48.
The MTS test system presented in section 4.2.3 is used to perform the
mentioned essays. Hence, the material properties characterisation (carried out
by simple shear specimens) and the dynamic measurements of the industrial
part (rubber to metal bonded rubber block) are performed in the same servo-

hydraulic machine.

The finite element model as the loading conditions of the rubber block that are
presented above is meshed with the element type PLANE182 used for 2-D
modelling of solid structures. The mentioned element can be used as an
axisymmetric element. It is defined by four nodes having two degrees of
freedom at each node: translations in the nodal x and y directions. The rubber
block geometry is simplified in an axisymmetric cross sectional area in order

to reduce the number of the mesh elements (See Figure 4.47):

Ep— ANSYS
R15.0

a4 2018

Figure 4.47: The rubber block finite element model is composed by 153 nodes and 256

quad elements.
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4.3.4.2 Results and discussion

The geometry and testing conditions are detailed in section 4.3.4.1. In the next
Figure 4.48, the experimental results of the industrial part (rubber block) are

presented:

a—9

o ‘ e EXP-0.1mm e EXP-0.1mm

T ~&—EXP-0.2mm ~—EXP-0.2mm
5 430 g EXP-0.3mm EXP-0.3mm
* e

400 8 EXP-0.5mm EXP-0.5mm

350 ~4i—EXP-0.7mm ~&— EXP-0.7mm

300

250

0 100 200¢0q (HzPP* 400 500 | 0 100 200¢0q (HzP% 400 500

Figure 4.48: Experimental dynamic results of the industrial case rubber block:
Dynamic properties K’ and K” versus frequency (Hz) A) and B) are represented

respectively.

In the next Figure 4.49, the simulations of the industrial part performed in
ANSYS are presented:

e 5IM-0.1mm

®-S5IM-0.2mm

K' (MPa)
¢
1

SIM-0.3mm
SIM-0.5mm SIM-0.5mm

~-SIM-0.7mm

0 100 mn,,eq (HIPOO 400 500 | 0 100 )m"eq (HI)HX) 400 500

A) B)

Figure 4.49: Simulation with MLVE model with equivalent VE approach of the
dynamic results of the industrial case rubber block: Dynamic properties K’ and K”

versus frequency (Hz) A) and B) are represented respectively.

The validation of the MLVE model with equivalent VE approach model has
been performed. Experimental results of K’ and K” shown in Figure 4.48 are
correlated to the simulations shown in Figure 4.49 performed with the MLVE

model with equivalent viscoelastic model programmed in ANSYS (Dynstiff
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application). The range of the studied frequencies is between 5 and 505 Hz.
Five peak to peak amplitude levels (0.1, 0.2, 0.3, 0.5 and 0.7mm) are tested
experimentally and correlated with the ANSYS simulations. The maximum
deviation in the experimental and simulation correlations is around 20%. The
mayor deviation is produced in the correlation of the storage stiffness K’
performed with the peak to peak amplitude of 0.7mm (see Figure 4.48-A and
Figure 4.49-A). This deviation could be avoided by the use of more equivalent
VE models. This implies that it would be necessary to characterise more
equivalent strain levels than the four used in the present work (see Table 4.3).
In the next Table 4.5 it is shown the deviation between experimental and
simulation results for all of the studied peak to peak amplitude cases presented
in Figure 4.48 and Figure 4.49:

% DEVIATION TABLE (EXPERIMENTAL AND SIMULATION CORRELATION)
Amp p-p (mm) 0,1 0,2 0,3 0,5 0,7

Frgcy(Hz) Ksto Kloss Ksto Kloss Ksto Kloss Ksto Kloss Ksto Kloss
5 15,83 5,24 10,62 11,37 15,74 1,47 13,53 12,15 20,37 13,47
55 7,24 8,71 4,18 8,31 8,45 0,70 6,77 12,50 11,69 3,14
105 5,10 6,77 2,69 7,82 6,55 3,09 5,81 8,78 10,19 9,72
155 3,33 6,19 1,23 7,18 5,53 3,66 5,56 7,33 9,27 9,99
205 2,10 5,48 1,32 3,24 5,98 2,12 5,76 6,09 8,73 8,88
255 0,38 7,85 1,42 0,26 2,91 1,42 3,63 7,11 6,55 9,47
305 0,72 7,49 1,76 0,56 2,58 0,96 3,12 5,03 5,60 8,65
355 1,69 6,83 2,61 1,69 1,96 2,03 2,74 4,12 4,66 8,25
405 2,45 5,05 3,16 2,51 1,54 2,09 2,16 4,45 2,14 7,08
455 3,53 2,66 3,99 2,99 0,53 3,17 1,69 5,79 0,34 8,62
505 4,27 0,66 4,62 3,61 0,23 1,93 1,25 5,60 0,37 9,84

Table 4.5: Deviation table. Experimental and simulation correlation of the studied
cases. Five peak to peak amplitude cases are studied in the frequency range between
5 and 505 Hz.
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CHAPTER 5 CONCLUSIONS

Two characterisation methods are proposed in CHAPTER 3 and CHAPTER 4.
The first is related to the strain rate influence on the static stiffness of
elastomers and the last is related to a novel characterisation method for the
prediction of dynamic properties of filled rubbers by the use of finite element
method. Previously, in the CHAPTER 2, a method focused on the
determination of the degree of cure of rubber parts is developed. One of the
most important parameters to avoid is a different degree of cure between the
characterisation specimens used to characterise the static/dynamic behaviour
of rubbers and the industrial parts to be predicted. The latter method is applied
in CHAPTER 3 and CHAPTER 4 to assure the same degree of cure of various

parts manufactured by the use of the same material.

Degree of cure:

When vulcanizing a rubber formulation, it is necessary to take into
consideration the cure temperature and the cure time because of their effect
on the decomposition of the curing agents. The cure time could also lead to a
reversion phenomenon or even to a non-completed cure stage. This reversion
phenomenon is exhibited as an increase of the swelling ratio of the rubber
formulation and a reduction of the mechanical properties such as the modulus
values at Tensile Tests, together with a reduction of the oscillating torque in
ODR measurements.

The aim of the study presented in Annex-I to check the applicability of simple
swelling tests to evaluate the degree of cure achieved in rubber parts. Other
swelling procedures, such as those being based on the Flory-Rehner equation,
are considered to be too complicated and too time consuming for a practical
industrial application. The analysis of swelling data obtained by simple
procedures allows a reasonable assessment of the degree of cure in a rapid
and uncomplicated way. This could be exemplary demonstrated within a broad
test programme covering the examination of laboratory and regular production
samples from two formulations, i.e. a conventionally sulphur cured NR and a
peroxide cured EPDM. The determined swelling rates are in good conformity

with the data from the rheometer traces and the tensile moduli reflecting
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realistically the progress of the crosslinking reaction. In addition to that, the
swelling data gave valuable insights on how the manufacturing process
influences the complete vulcanization of a rubber part. This work dimensions,
the way of heat transfer and the curing time are factors which should not be
underestimated. When vulcanizing rubber formulations, the fixing of cure
temperature and cure time needs a special attention to avoid reversion effects,

incomplete decomposition of the curing agents, and irregular vulcanization.

The swelling test can be useful, but it is a simple tool for checking the degree
of cure of rubber parts for quality control and even development purposes or
in situations where other test methods fail to obtain reasonable results.

When comparing ODR test torque results and the swelling ratios for these
samples, the swelling values show a minimum value point which represents
the maximum degree of cure point; this point matches with the point of
maximum torque in ODR tests. After this point, the NR-sulfur formulation
shows a clear reversion phenomenon, which is indicated as a torque decay in
the ODR tests and as an increase of the swelling values. EPDM formulation
does not exhibit this behaviour at low temperatures (the cure is not completed),
but a small torque decrease is displayed when tested at high temperatures.

This is also checked for tensile test specimens, for which swelling tests and
measurements of modulus values as test tensile at 100 and 200 % elongation
were made. The modulus values achieve a maximum value after which the
value goes decreasing in NR formulation for higher cure times (related to the
reversion phenomenon); EPDM formulation show similar values (a decay is
not shown) for larger cure times. Swelling values give a minimum value, after
which the value goes increasing for NR formulation because of the reversion,
whereas it can be considered that EPDM formulation keeps the value (it really
goes increasing slowly as time goes on). The point of minimum swelling
matches in time with the point of maximum modulus values. No matching
between the minimum swelling values measured for tensile test samples and
ODR samples is seen; it is concluded this difference is related to different
processing procedures of each sample, and, as a consequence, the materials
suffer different thermal histories. This affects the crosslink densities, and as a

result, the swelling values.
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It is clearly seen that swelling ratio on a specific solvent can be matched to
torque values measured in an ODR test (and each torque value can be
associated to a specific degree of cure), or it can be matched to modulus
values measured in tensile tests. As a consequence, the degree of cure of
rubber parts can be defined using a simple procedure, so that it will be a useful
procedure for quality control purposes of rubber parts and even for other more
scientific purposes. Measurements done in an industrial area show the
usefulness of the present method, illustrating that the external layer of the part
achieves a full degree of cure whereas, the core material is not completely

cured.

Quasi static characterisation methods: Conditioning research:

The static tests are carried out following some specifications. It is common to
find test speeds that can range from 1 mm/min up to 500 mm/min. Therefore,
the tests known as static tests can be really quasi-static or non-static
depending on the test speed. It is known that mechanical stiffness of rubber

compounds are very influenced by its deformation rate.

When a complex geometry is tensioned, the different points of the tested part
are strained. The strain range can be very wide, which means that the strain
rate of the zones that are more strained is higher than the less strained zones.
Then, in the same geometry manufactured with one rubber compound, it can

be said that the material behaves differently.

The ESED functions programmed in commercial finite element software have
the capability to fit the hyperelastic behaviour of rubber compounds when they
are tested statically (when the test speed is near zero). This ‘problem’ may be
solved by influencing the experimental test of the characterisation specimen.
In this way, several characterisation methods are presented in the literature
but no one solved the mentioned problem of the difference of the strain rate in

different zones of the tested part.

Correlating the standard two characterisation methods with the proposed
method, the best choice to predict the behaviour of an industrial part is the new
proposed method. The main advantages of the new method are: it considers
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the strain range, the strain rates of each point of the simulated part and the
cycles of the mechanical conditioning. Besides, any existing hyperelastic
model (ESED Function) could be used to carry out this kind of non-static

simulations by means of FEA.

Modelling of dynamic properties of rubbers

The MLVE model with equivalent VE approach has been studied. The
experimental vs. simulation agreement demonstrates that the presented
method is valid to characterise and simulate the amplitude/frequency
dependence on the dynamic properties of highly filled elastomers in a wide
range of amplitudes and frequencies.

The MLVE model with equivalent VE approach can be characterised with a
number of friction and viscoelastic elements. This model requires only two
superposed meshes being independent from the number of friction and
viscoelastic elements of the model. This method reduces considerably the

calculation time required by the classical elastoplastic-viscoelastic model.

The first correlation performed in simple shear demonstrates the suitability of
the MLVE model for each characterised strain level in simple shear. In order
to characterise the frequency influence at different amplitudes, the use of
equivalent VE fitting is required and each of the mentioned four amplitudes has
been characterised and simulated with a very good agreement. In simple
shear, the strain is the same in any point of the specimen which helps to fit the
experimental data and to achieve a good correlation in posterior simulations.
A second correlation has been performed in geometry with a considerable
difference between the maximum and minimum strains of the deformed mesh
when it is loaded. The good agreement between experimental and simulation
correlation demonstrates the validity of the mesh division in equivalent shear

strain groups and the assignation of the equivalent VE characterisations.

Finally, it is foreseen that more divisions of the mesh in equivalently deformed
element groups and more VE fittings at more strain amplitudes will even
reduce the error percentage when experimental and simulation results are

correlated.
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CHAPTER 6 CONTRIBUTION TO KNOWLEDGE
ACADEMIC CHALLENGE AND FUTURE WORK

6.1 Contribution to knowledge

The intention of the present work is to develop a methodology where the main
studied area is the testing and simulating of dynamic behaviour of elastomers.
Previously, two characterisation methods are developed with the objective to

supply valuable information.

The first characterisation method is directed to propose a simple method which
consists of various swelling tests of rubber pieces into compatible solvent. The
swelling degree of the latter pieces is a value which is used to determine the
degree of cure. First, the procedure to create the swelling trace is presented
where the samples used in the characterisation are obtained from several ODR
Rheometer tests. Later, the degree of cure of any vulcanized part (both
material characterisation samples as industrial parts) can be correlated to the

swelling trace obtaining their vulcanization degree.

In the second part of the thesis, a procedure related to the conditioning of
rubbers in quasi-static tests is developed. This conditioning method takes into
account how the stiffness is changed as the strain rate is increased. The
presented conditioning method is correlated with two of the most used
conditioning methods, obtaining a better agreement in the correlation of

experimental and simulation tests than in standard methods.

The intention of the third and most important part of the thesis is the
implantation of characterisation and simulation methodologies to simulate the
dynamic stiffness and damping of rubber made complex geometries using the

finite element code ANSYS. The current procedure allows:

- A simple characterisation of the dynamic properties of rubber.
- The material model to be built by the use of standard material models
programmed in commercial finite element software avoiding the need

of subroutines implementation.
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The use of a multilinear single curve to characterise the amplitude
dependence on the stiffness and damping. This method smoothen the
sharp edges produced by a single elastoplastic element in a load cycle.
The need of several elastoplastic elements to smooth the hysteresis
loop that is replaced with a unique multilinear curve.

The different strain rates present in the finite element mesh to be
correctly characterised with various equivalent viscoelastic models
characterised as Prony series. The model captures the most marked
stiffening at lower amplitudes when frequency is increased.

First, the use of a multi-linear kinematic hardening elasto-plastic model
for the frictional behaviour and second, the viscoelastic approach that
requires only two superimposed meshes when using the overlay

method. This reduces considerably the calculation time.

To the consecution of the present objective, two mathematical applications

were created:

MLVE Fitting algorithm in Matlab: This program is used to calculate the
parameters of the proposed model to fit the model to the experimental
data.

ANSYS APDL program: This application is programmed to reproduce
the experimental tests performed with a servo-hydraulic testing
machine. This program is used to assign the material properties to each
element and calculate the dynamic properties at the frequencies and

amplitudes applied.

6.2 Future work

In order to improve the predictions of dynamic stiffness and damping of rubber

parts, some new research areas could be considered:

Discuss the application of the proposed model including temperature
and pre-load dependency.

Check the applicability of the model in bushings where the external
metallic ring is pre-strained.

Investigate how the model could be applied in transient analysis.
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- Implement fractional derivatives to characterise the equivalent
viscoelastic materials in order to reduce the number of material
parameters

- Investigate the design of the simple shear characterisation sample to

enable a wider range of testing amplitudes in the same testing machine.
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NOMENCLATURE

Abbreviation Name
Iy Uniaxial stress
€ Uniaxial strain
F Force
ESED Elastic strain energy density
K Stiffness
1) Displacement
E Young Modulus
Lo Initial length
L Final length
Shear modulus
T Shear stress
Y Shear strain
Vo Initial volume
Vs Final volume
&v Volumetric strain
p Hydrostatic pressure
k Bulk modulus
d Compressibility constant
A Stretch
EPVE Elastoplastic-viscoelastic constitutive model
EP Elastoplastic constitutive model
VE Viscoelastic constitutive model
MLVE Multilinear-viscoelastic constitutive model
ML Multilinear constitutive model
/1 Unitary strain
Gw Relaxed shear modulus
Wo Elastic strain energy density
Cio Hyperelastic parameter
G’ Storage modulus
G” Loss modulus
Gve Shear modulus of the viscoelastic component
G" Dynamic shear modulus
G exp Experimental dynamic shear modulus
) Phase angle
area Hysteresis area
T Shear stress
To Shear stress amplitude
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T Yield stress in shear

Tp Shear stress point in a multilinear curve
Yo Shear strain amplitude
Y Yield strain of the elastoplastic element
Yeq Equivalent shear strain
T Relaxation time
Nv Dashpot viscosity constant
t time
® Angular frequency
DSC Differential Scanning Calorimeter
NR Natural rubber
EPDM Ethylene-propylene-diene rubber
ODR Oscillating Disc Rheometer
MDR Moving Die Rheometer
SBR Styrene-butadiene rubber
NBR Acrylonitrile-butadiene rubber
ti Scorch or induction time
a Alpha, degree of cure. Its value goes between

0 (0% cure) and 1 (100% cure).
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ANNEX |

A) Bestimmung des
Vulkanisations grades von
Gummi durch Quellung

B) Determining the state of cure
of rubber by means of swelling



A. Arrillaga, Z. Kareaga, E. Retolaza, A. M. Zaldua®

Die Gummiindustrie bendtigt ein zweckmdBiges Yerfahren zur Bestimmung des Vul-
kanisationsgrades von Formteilen. Die Prifung des Quellverhaltens und der Restexo-
thermie {mittels DSC) kann man in diesem Kontext als niitzliche Verfahren ansehen.
DSC-Messungen erwiesen sich jedoch wegen der niedrigen Exothermie der untersuch-
ten Mischungen als nicht sinnvoll. Aus diesem Grund wurde die Verdnderung des Vul-
kanisationsgrades eines schwefelvernetzten Naturkauischuks und eines peroxidver-
netzten FPDMs (iber Queliungsmessungen in Cyclohexan bestimmt. Als Fazit resultier-
te, dass die Quellergebnisse sowohl mit den Doten rheologischer Tests, als auch mit
den Modulwerten qus Zugversuchen in Einklang stehen. Die Methode wurde zusditzlich
bei einem industriell hergesteflten Gummiteil angewendet, um Unterschiede des Vul-
kanisationsgrades als Funktion der Dicke des Teils heraus;uffnden.

The rubber industry requires a practical technigue to determine the degree of cure
achieved in moulded parts. in this context tests regarding the swelling chaorocteris-
tics and residual exothermicity (by means of DSC) con be considered os helpful tech-
nigues. DSC measurements, however, were not useful due to the low exothermicity
of the formulations having been investigated. The cure variation of a NR crosslinked
with sulphur and an EPDM crosslinked with peroxide was examined using swelling
measurements in cyclohexane. It could be observed that swelling results agreed with
data from rheological tests as well as modulus volues from fensile testing. The me-
thad was also applied to an industrial rubber part to evaluate differences in the de-

gree of cure across the part thickness.

1. Einleitung

Gummiteile werden in Verfahren wie
Formpressen, Spritzpressen, Extrusion, Ka-
landrieren usw. hergestellt. In allen Fillen
wird die Gummimischung zundchst in die
Form des herzustellenden Artikels gebracht
und anschlieBend vulkanisiert, um die end-
glltigen Eigenschaften zu erhalten. Vulka-
nisation oder Vernetzung bezeichnet den
Vorgang, bei dem Bindungen (so genann-
te Vernetzungsstellen) zwischen den Kaut-
schukmolekiilen gebildet werden, so dass ein
urspriinglich viskoses und klebriges Material

* Dr. Alexander Arritlzga,
" aarriflaga@!leartik.com
Zorion Kareaga,
Egoitz Retolaza,
Dr. Ane M. Zaldua
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in ¢in ¢lastisches umgewandelt wird. Dabei
entsteht ein dreidimensionales Polymernetz-
werk (Abb. 1) [1]. Ein Material mit Gummi-
eigenschaften muss drei Voraussetzungen
erfiillen:

e langkettige Molekiile mit frei rotierenden
Bindurngen besitzen

¢ schwache Wechselwirkungen zwischen
den Molekiilketten aufweisen

e wenige, feste Verkniipfungen der Ketien
untereinander bilden, um ein dreidimen-
sionales Netz zu bilden

Abb. 1:

Schematische Darstel-

lung eines Gumminetz-

werks 1]

A:lose Kettenenden,

B: elastisch inaktive R b
Schlaufe,

C: Kettenverflechtung

» chemische Bindung

Vulkanisation

Der Einbau von Querverkniipfungen ver-
hindert die vollstindig freic Beweglichkeit
der Ketten, der Gummi wird elastisch. Ne-
ben chemischen Bindungen tragen Verflech-
tungen zur Clastizitdt des Polymernetzwerks
bei. Sie kinnen permanenter ader tempori-
rer Natur sein. Die Vorstellung von solchen
Verflechtungen wurde liber viele Jahrzehnte
diskutiert und in Frage gestellt. Heute jedoch
wird mehr ader weniger akzeptiert, dass sol-
che Verflechtungen zu den elastischen Fi-
genschaften von Gummimaterialien beitra-
gen. In Gegenwart van Filllstoff kammt es
zuséitzlich zu Polymer-Fillstoff-Wechselwir-
kungen. Diese tragen ebenfalls zum dreidi-
mensionalen elastischen Netzwerk bei. Den
drei genannten Mechanismen zu Netzwerk-
interaktionen stehen lose Kettenenden und
elastisch unwirksame Schlaufen gegeniiber.
Erstere erhdhen durch ihre unbegrenzte Be-
weglichkeit (keine Vernetzungsstellen, die
die Kettenenden binden) das freie Volumen
des Materials. Kettenschlaufen kénnen sich
wihrend der Vulkanisation bilden. Sie er-
niedrigen die Anzahl von elastisch effekti-
ven Ketten im Material.

Der Begriff ,,Vernetzungsd.iéhte" ver-
dient eine ausfiihrlichere Eriiuterung. Sie
kann entweder als die Anzahl von Vernet-
zungsstelten oder als die Zahl elastisch ef-
fektiver Ketten pro Velumeneinheit ausge-
driickt werden. Diese beiden GréBen sind
einander proportional und ihre genaue
Beziehung hingt von der Funktionalitat
der Vernetzungsstellen ab, d. h. der Anzahl
von Ketten, die von der Vernetzungsstelle
ausgehen. Im Folgenden wird die Vernet-
zungsdichte als Zahl der Vernetzungsstel-
len pro Volumeneinheit definiert. Darliber
hinaus ist die Vernetzungsdichte umgekehrt
proportional zum durchschnittlichen Mo-
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Vulkanisation

lekulargewicht der Ketten zwischen den
Vernetzungsstellen. Auch das ist ein Weg,
Netzwerke zu charakterisieren. Fiir ein typi-
sches Gummimaterial liegt der Wert fiir die
Vernetzungsdichte in der GréBenardnung
von 107 bis 10 molfem?®. Das entspricht
15~ 1500 Monomereinheiten zwischen den
Vernetzungsstellen. Die Vernetzungsdichte
ist fiir Polymernetzwerke von fundamenta-
ter Bedeutung, well sie viele physikalische
Eigenschaften des Materials bestimmt. Ab-
bildung 2 [2] zeigt, wie einige Eigenschaf-
ten eines Gummimaterials generell von der
Vernetzungsdichte abhingen.

Der Vulkanisationsprozess erfordert eine
bestimmte Zeit, die grundsétzlich von der
Mischungsrezeptur und der Vulkanisations-
temperatur abhdngt, in einigen Féllen auch
vom Druck. Bei Press- oder SpritzgieBverfah-
ren libertragt die geheizte Form Warme auf
das Material. Seine Temperatur steigt und
die Vernetzungsreaktion beginnt. Abhiingig
von der Vulkanisationszeit wird eine gewisse
Vernetzungsdichte erreicht, die, wie in Ab-
bildung 2 detailliert gezeigt, die spezifischen
Werte fiir die physikalischen Eigenschaften
zur Folge hat.

Mit der voriiegenden Untersuchung soll-
te eine einfache und schnelle Methode zur
Messung des jeweils erreichten Vulkanisati-
onsgrades des Materials entwickelt werden.
Der Begriff ,Vulkanisationsgrad” bezeichnet
den Anteil vom mdglichen Maximalwert ei-
ner physikalischen Eigenschaft, der schon in
Abhingigkeit von Vulkanisationszeit oder
-temperatur erzielt worden ist. Der Yulkani-
sationsgrad (manchmal auch Vernetzungs-
grad) steht in Wechselbeziehung zur Vernet-
zungsdichte.

Um die Kinetik von Vernetzung oder Vul-
kanisation zu untersuchen, sind verschiedene
Verfahren verfligbar. In einer friiheren Ar-
beit [3] wurde deren Anwendung und Nut-
- zen-sehon-diskutiert: Ihr Ziel bestand darin,
die Kinetik Giber empirische/phinomenologi-
sche N&herungen zu definieren, um darauf
aufbauend den Vernetzungsverlauf zu simu-
lieren. Dies schloss Messmethoden wie ODR
{oscillating disc rheometer), MDR (moving
die rheometer) und DSC {differential/dyna-
mic scanning calorimetry) ein. Das Ziel der
vorliegenden Arbeit war jedoch, ein Verfah-
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ren zu erarbeiten, mit dem sich der Vulkani-
satiohsgrad teilweise vulkanisierter Proben
ermitteln lsst.

Nach dér Literatur kann die Vernetzungs-
dichte auf verschiedene Weisen bestimmt
werden:

e Zug-Dehnungs-Messungen unter Finsaiz
der Mooney-Rivlin-Gleichung [4 - 5]

e Ermittlung des elastischen Moduls bei ei-
ner bestimmten Temperatur im Piateau-
bereich der Gummielastizitit [6]

& Quellungsmessungen unier Verwendung
der Flory-Rehner-Gieichung [7]

¢ Bestimmung der verbleibenden exother-
men Vernetzung [8 ~ 10]

Die aktuelle Studie befasst sich mit der
Verwendung von Quellungsmessungen, um
den in unterschiedlichen Teilen (Teilbezirken)

erreichten Vulkanisationsgrad herauszufin-
den. Weitere Resultate aus rheologischen
Tests (ODR) und Zugversuchen dienten zur
Untersuchung ihrer Korrelierbarkeit mit den
Quellwerten. Obwohl die mit DSC messha-
re Restwarme der Vulkanisationsreaktion
als niitzliche Methode zur Feststellung des
Vernetzungsgrades angesehen werden kann,
wurde in der vorliegenden Arbeit auf sie ver-
zichtet. Zum einen weisen Gummimischun-
gen nur einen sehr niedrigen exothermen
Peak auf. Dies flhrt zu einer mangelhaften,
schlecht auswertbaren Aufldsung. Zum an-
deren sind die einsetzbaren Probemengen
sehr gering und nicht immer repréasentativ.
Als ergdnzender Hinweis mag dienen, dass
der Vuikanisationsgrad bei dieser Analyse-
methade als das Verhiltnis zwischen der
Restwdrme elner teilweise vulkanisierten
Probe und der Wiarme einer nicht vulkani-
sierten Probe bestimmt wird [10].

Zunahme

Abb. 2:
Abhargigkeit der
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AbschlieBend durchlief die Quellmethodik
einen Test an einem realen, aus den hier ein-
gesetzten Gummimischungen angefertigten
Industrieartikel. Damit sollte Gberpriift wer-
den, inwieweit sich mégliche Unterschiede
des Vulkanisationsgrades in Abhingigkeit
von der Dicke des Teils herausfinden lassen.

2. Experimenteller Teil
2.1 Materialien

Fiir die Versuche wurden zwei Gummisor-
ten, eine schwefelvernetzte NR- und eine
peroxidvernetzte EPDM-Mischung, eigens
fur diesen Verwendungszweck entwickelt
und bei Firma Cikautxo S. Coop. in einem
150 | Innenmischer hergestellt. Tabelle 1
zeigt die vollstindigen Rezepte.

2.2 Rheologische Priifungen

Sie erfolgten gemaB Norm ASTM D2084.
Die Probe kommt in eine beheizte Priitkam-
mer mit Temperaturkontrolle, in der sich eine
doppelt kegelformige Scheibe, der Rotor, be-
findet, Er schwingt mit einer Frequenz von
1,67 Hz und einer Amplitude von = 3°, Das
auf diese Schwingscheibe wirkende Drehmo-
ment wird iiber die Priifzeit aufgezeichnet,
Das Schwingscheibenrheometer (ODR/oscil-
lating disc rheometer) misst nicht nur den
Scorch oder die nduktionszeit, sondern auch
die Vulkanisationsgeschwindigkeit und den
jeweiligen Stand der Vulkanisation, d. h. es
wird die kompiette Vulkanisationskurve auf-
gezeichnet. Der Drehmomentwert kann mit
dem Vernetzungsgrad korreliert werden, Es

lassen sich drei -Kurventypen unterscheiden
(Abb. 3). Der Vulkanisationsverlauf selbst
besteht aus ebenfalls drei Abschnitten:

® lnduk%i‘ansperiode oder Scorch-Zeit (t):
Die Zeit vom Messbeginn bis zum Einset-
zen des Vernetzungsprozesses (wenn die
Kurve wieder ansteigt) wird als ,Scorch-
Zeit” oder auch als Induktionsperiode be-
zeichnet. Sie stellt das Zeitintervall dar, in
dem bei Vulkanisationstemperatur keine
Vernetzung festzustellen ist.

¢ Vulkanisations- oder Vernetzungsverlauf:

Nach der Induktionsperiode setzt die Ver-

netzung ein. Die Geschwindigkeit hingt

von Temperatur und der Zusammenset-
zung der Mischung ab.

Vollstindiger Vulkanisationsumsatz: Im

Idealfall erreicht die Vuikanisationskurve

nach volistindigem Umsetzen des Vernet-

zungssystems ein Plateau, d. h. die Vernet-
zunhgsreaktion hat ihren Gleichgewichtszu-

stand eingenommen (Kurve B in Abb. 3).

In manchen Fillen stellt sich ein solches

Gleichgewicht nicht ein und das Drehmo-

ment nimmt kontinuiertich zu (Kurve A in

Abb. 3). Dies nennt man ,marching modu-

lus" und tritt hiufig bei peroxidvernetzten

Formulierungen auf. Wahit man fir solche

Materiafien zu lange Vulkanisationszeiten

{=Ubervulkanisation), treten Verhirtung,

néherer Modul, kleinere ReiBdehnung

auf. Bei anderen Gummirezepten durch-
lduft die Rheometerkurve ein Maximum

(=maximales Drehmoment} und iilt dann

wieder ab (Kurve C in Abb. 3}. Dies ist ty-

pisch fiir NR-Mischungen, die mit einem
konventionellen Schwefelsystem vulkani-
siert werden. Lange Vulkanisationszeiten

Drehmoment

e

|

Abb. 3:

Typische Vulkanisations-
charakteristiken

A kontinuierlicher An-

I
Scorch-Zeit Zeit

| stieg,
i B:Plateau,
-+ C:Reversion

GAK 1172011 - Jahrgang 64

(=Ubervulkanisation) fiihren zum Abbau
des Netzwerks (= Reversion) [11].

Die beiden Testmischungen wurden jeweils
bei zwei Temperaturen gepriift, CK-NR 1 bei
165 °C und 150 °C, CK-EPDM 1 bei 180 °C
und 160 °C. Die Messzeiten waren lang ge-
rug ausgelegt, um die Rheokurve miglichst
vollstandig aufzuzeichnen. Die Tests fanden
in jedem Fall mit mindestens fiinf Messun-
gen je Mischung statt. Daraus ergaben sich
die Durchschnittswerte fiir die spatere Aus-
wertung. Bezelchnet man das Drehmoment
als M und den Vulkanisationsgrad als o, ord-
net ihm beim niedrigsten Drehmoment den
Wert 0" und beim maximaler Drehmoment
den Wert ,1" zu, dann lisst sich nach Glei-
chung 1 leicht der zeitliche Verlauf des Vul-
kanisationsgrades berechnen:

M.—M
_ Vi
%=

(min)

mawy ™~ M(minj 1

Nach Registrierung der Vulkanisationskur-
ven wurden zusitzliche Messungen bei glei-
chen Temperaturen aber mit dazwischenlie-
genden Priifzeiten vorgenommen:

& CK-NR 1 bei 165 °C mit 100, 120, 150, 180,
220, 300, 600 und 1000 s

e CK-NR 1 bei 150 °C mit 260, 290, 320, 350,
390, 430, 470 und 720 s

& CK-EPDM 1 bei 180 °C mit 60, 90, 110, 140,
200, 300 und 500 s

@ CK-EPDM 1 bei 160 °C mit 100, 210, 320,
440, 550, 660 und 900 s

Diese Zeiten sind Zwischenpunkte auf der
Vernetzungskurve und liegen im Bereich von
Reversion/Plateau. Direkt nach Erreichen der
festgelegten Prifzeit kamen die Proben aus
der Priafkammer in Eiswasser, um die Vernet-
zungsreaktion zu stoppen.

2.3 Zugprifungen

Die Prutkorper fir die Zugversuche, jeweils
sechs pro Kombination, wurden auf einer
IM-Presse REP V37 gespritzt: CK-NR 1 bei
165 °C Formiemperatur und Vulkanisations-
zeiten von 60, 90, 120, 160, 200, 260, 290, 320,
350, 390, 430, 470 und 720 s, CK-EPDM 1 bej
180 °C Formtemperatur und Zeiten von 30,
60, 80, 100, 210, 320, 440, 550, 660 und 900 s.
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Nach Ablauf der Vulkanisationszeit muss-
ten die Proben so schnell wie moglich der
Form entnommen und in Eiswasser getaucht
werden, um eine weitere Vulkanisation zu
verhindern. Danach folgten die Zugprifun-
gen nach ASTM D412-97 und die Bestim-
mung der Spannungswerte bei 100 und
200 % Dehnung an jeweils drei Priifkérpern
pro Presszeit.

2.4 Quellpriifungen

Die Ermittlung der Gleichgewichtsvolu-
menquellung ist eine der besten Methoden
zur Charakterisierung der Vernetzungsstruk-
tur. Nachweislich sind der Quellwert ebenso
wie die Gleichgewichtsguellung eines Vutka-
hisates in einem Lésemittel eine Funktion des
Vulkanisationsgrades. Als Index dafiir kann
man entweder das durchschnittliche Mole-
kulargewicht der Polymerkettensegmente
zwischen den Vernetzungsstellen oder sei-
nen Kehrwert, die Zah! der effektiven Ver-
netzungsstellen pro Volumeneinheit Gum-
mi benutzen. Vernetzungsgrade werden ge-
wdhnlich unter Anwendung der Flory-Reh-
ner-Gleichung [7] bestimmt:

L o 2
© —bn(1-V )=V —pv? 2

Darin sind p die Dichte des Materials
(Gummimischung), V, das Molvolumen des
Losemittels, u der Wert des Wechselwir-
kungsparameters Gummi-Lésemittel und V,
die Volumenfraktion des Polymers im ge-
quollenen Vulkanisat. Sie ist eine Funkti-
on der geguoilenen Gummimasse, der ge-
trockneten Gummimasse, der Dichte der Mi-
schung und der Dichte des Losemittels, das
zum Quellen der Probe verwendet wurde.

Abb. 4:  Getesteter Industrieartikel
—VYW-Teil Nr. 7HG-253-144

Warley und Del Vecchio {10] benutzten
eine &hnliche Gleichung fir die Berechnung
der Vernetzungsdichte in molfem?:

L
Ln{1-V )+V +pV?
V,{V15-V/32) 3

Darin ist v die Vernetzungsdichte in mol/
cm?, die wiedergegeben werden kann als:

v=
Mc

Dieser Ausdruck gilt fir ungefultte Mi-
schungen. Die Berechnung wird wesentlich
komptizierter bei ruBgefiillten Mischungen
[7, 12~13]. Der Parameter fiir die Polymer-
Losemittel-Wechselwirkung muss ebenfails
ermittelt werden. Hierzu kann das von Hayes

Abb. 5:  Vulkanisationskurven Mischung CK-NR 1 (ODR)

[14] beschriebene Verfahren mit den zwei
Lésemitteln dienen. Wegen der Komplexitat
dieser Methodik wurde hier aber der Quell-
grad verwendet. Fr ergibt sich nach der For-
mel

% Queliung = [{m,—m )/m ]-100

mit m, = Probengewicht vor der Queilung
und m, = Probengewicht nach der Quel-
lung. Die beschriebene Messmethodik er-
fordert ein gingiges sowie geeignetes Léise-
mittel, d. h. es muss eine ausreichend groBe
Quellung (im Bereich 90- 100 %) hervorru-
fen und darf nicht zu schnell verdampfen.
Von den gepriiften Losemitteln erfillte nur
Cyclohexan diese Anforderungen. Priflinge
mit den unterschiedlichen Vulkanisationszei-
ten waren aus den rheologischen Tests und
den Zugprifungen veriligbar. Testbedingun-

. CKNRT bei165°C o

t
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Abb. 6: Vulkanisationskurven Mischung CK-EPDM 1 (ODR)
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gen: Probengewicht 0,4-0,5 g, jede Probe
fiir 24 h in einer verschlossenen Flasche mit
& ml Lésemittel bedeckt bei Raumtemperatur
gelagert. Vor dem Auswiegen von m, wur-
den die Probekdrper an der Oberfliche mit
einem Papiertuch getrocknet. Es ist zu be-
achten, dass der auf diese Weise gemesse-
ne Quellgrad ein Durchschnittswers ist. Der
Vulkanisationsgrad muss bezogen auf den
Querschnitt der Probe nicht unbedingt kon-
stant sein.

2.5 Quellpriifungen industriell
gefertigter Teile

Hier wurde die Schwankung des Vulka-
nisationsgrades Gber den Querschnitt ei-
nes industriellen Artikels (Referenz-Nr. VW
7H0-253-144} untersucht. Es handelte sich
um ein Gummi-Metallteil (Abb. 4). Die
maximale Wandstéirke des Gummis betrug

ca. 156 mm. Die Fertigung des Teils fand so-
wohl mit der NR~, als auch der EPDM-Mi-
schung stait. Die Priiflinge (je 3) stammten
aus zwei Zonen. Probe 1 wurde aus der 3u-
Beren Gummischicht {Kontaktflache mit der
Form) herausgeschnitten, Probe 2 aus dem
Zentrum. Die Testbedingungen entsprachen
denen aus Abschnitt 2.4 mit einem Lisemit-
tef-Gummi-Verhiltnis von 15:1.

3. Diskussion der Ergebnisse
3.1 Vulkanisationskurven

Abb. 5 und Abb. 6 stellen die ODR-Kurven
fur die zwei untersuchten Gummimischun-
gen dar. CK=NR 1 l3sst klar eine Reversion
(typisch fiir mit Schwefel vulkanisierte Mi-
schungen) bei beiden Messtemperaturen,
150 und 160 °C, erkennen. Sie zeigt sich als

*CKENR 1 el 165°C

1=
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Abb. 8: Vulkanisationsgrad Mischung CK-EPDM 1 (ODR)
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ein Abfall des Drehmomentes nach dem Fr-
reichen des Maximalwertes. CK-EPDM 1 ist
ein mit Peroxid vulkanisierter EPDM. Die
hhere Priftemperatur fithrt zu einem gro-
Beren Wert flir das Drehmomentmaximum.
Bei der niedrigeren Temperatur von 160 °C
ist die Zersetzungsgeschwindigkeit des Per-
oxids hach gering. Es resultiert eine langsa-
me Vernetzungsreaktion und die Kurve strebt
erst nach etwa 900 s ihrem Plateau zu. Da
sich bei der Messung mit 180 °C ein héhe-
res Drehmomentmaximum einstellt, kann
bei 160 °C nach nicht der maximale Vernet-
zungsgrad erziett worden sein.

Wertet man die Rheokurven nach Glei~
chung 1 aus, d. h. berechnet man den Vui-
kanisationsgrad o aus den Drehmomentwer-
ten, so ergibt sich jeweils der Zeitverlauf fiir
den Vulkanisationsfortsehritt {Abb. 7 und
Abb. 8). Der Vulkanisationsgrad ist bis zu
dem Punkt, an dem das Drehmoment an-
steigt, gleich 0" gesetzt. Diese Zeit wird als
Induktions- oder Scorch-Zeit bezeichnet.

3.2 Quetlung der ODR-Vulkanisaie

Wie schon in Abschnitt 2.2 dargelegt,
wurden im Rheometer Priiflinge mit Vulka-
nisationszeiten im Bereich des Plateaus/der
Reversion hergesiellt und ihr Quellverhaiten
analysiert. In den Abbildungen 9 und 10
sind diese Quellwerie als Funktion der Vul-
kanisationszeit eingetragen.

Die NR-Mischung besitzt bei niedri-
ger Temperatur ihr grofites Drehmoment
(Abb. 5). Demnach sollte an diesem Punkt
die Zahl der Vernetzungsstellen pro Volu-
meneinheit ebenfalls am hochsten liegen.
Dieses Verhalten ist auch aus den Queller-
gebnissen abzulesen. Bei der Priftempera-
tur von 165 °C wird der kleinste Quellwert,
der mit der maximalen Vernetzungsdichte
korreliert, bei 107 % erreicht, mit 150 °C re-
duziert er sich auf 95 %. Ein hherer Wert
des Drehmomentes ist also mit geringerer
Quellung gleichzusetzen. Ist der optimale
Vernetzungspunkt Gberschritten (= kleins-
ter Quellgrad), geht der Naturkautschuk in
Reversion, die Quellung nimmt zu (Abb. 9).

Die peroxidvernetzte EPDM-Mischung

tauft erst mit der hdheren Vulkanisations-
temperatur von 180 °C in thr maximales
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Drehmoment (Abb. 6). Bei 160 °C zersetzt
sich das Peroxid nicht restlos und es kommt
nicht zu einer vollstandigen Vulkanisati-
on. Betrachtet man die Quellgrade, so liegt
fir die Versuchstemperatur von 180 °C die
kleinste Quedlung bei etwa 166 %. Fiir 160 °C
ist die minimale Queliung mit 172 % hoher.
Dies karn ebenfalls als Indiz dafilr gewertet
werden, dass die Reaktion bei 160 °C nicht
vollkommen abliuft. Wieder bedeutet ein
hoherer Drehmomentwert eine geringere
Quetlung. In der 180 *C-Kurve tritt im Zeit-
verlauf ein leichter Abfall des Drehmomen-
tes ein, was sich auch in einem wachsenden
Ouellgrad widerspiegelt (Abb. 10).

Fir beide Mischungen, NR und EPDM,
stimmt die 7eit, zu der das maximale Dreh-
moment beobachtet wird, mit der Zeit, bei
der sich der niedrigste Quellwert ergibt,
iberein. Damit bestatigt sich die Aquivalenz
von maximalem Drehmoment und minima-
ler Quellung.

Nach diesen Ergebnissen ist es notwendig,
bei der Vulkanisation einer Gummimischung
sowoil die Vulkanisationstemperatur wegen
ihres Einflusses suf die Zersetzung der Ver-
netzungsmittel, als auch die Vulkanisations-
zeit richtig anzupassen. Wird eine zu lange
Zeit gewidhlt, kdnnen abhingig von der Re-
zeptur Reversionserscheinungen aufireten.

Zwischen den gemessenen Drehmomen-
ten (jedes Drehmoment ist spezifisch einem
Vulkanisationsgrad assoziiert) und der GriBe
der Quellung kann ein Abgleich hergestellt
werden. Nachdem diese Beziehung fir die
Jeweils untersuchte Gummimischung einmal
definiert ist, hat man die Moglichkeit an der
Hand, den Vernetzungsgrad des Gummiteils
nach dem diskutierten Quellverfahren zu be-
stimmen. Auf diese Weise ist es nicht mehr
notwendig, die viel komplexeren Untersu-
chungen, die in der Literatur beschrieben
sind und auf der Flory-Rehner-Gleichung
beruhen, durchzufithren [11].

3.3 Zugversuche und Queflung
der Zugversuchpriiflinge

Entsprechend Abschnitt 2.3 wurden jeweils
drei Priifthanteln fir die Zugtests und drei
fiir Quelltests hergestellt. Die Resultate der
Zugtests finden sich in den Abbildungen 11
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und 12, die der Quellung in den Abbildun-
gen 13 und 14.

Die Mischung CK-NR 1 weist anfinglich
einen Anstieg des Moduls bis zu einem Ma-
ximum auf. Danach beginnen die Werte ab-
zufallen. Diese Abnahme beruht auf der Re-
version der NR-Mischung bei lingeren Vul-
kanisationszeiten. CK-EPDM 1 verhalt sich
dhnlich, doch tritt keine Reversion auf und
der Maximalwert bleibt erhalten.

Abbildungen 13 und 14 zeigen jeweils
eine minimale Queltrate Uber die Zeit. NR er-
reicht bei 165 °C ca. 93 %, EPDM bej 180 °C
etwa 172 %. Die Daten entsprechen nzhe-
zu den Minimumwerten, die fiir 150 °C (NR)
und 160 °C {EPDM) bei den ODR-Vulkanisa-
ten gefunden wurden, also dem Zustand bei
niedrigerer Temperatur. Man kann demnach
keine direkte Kongruenz zwischen den Quell-

Abb. 9 Quellung Mischung CK-NR 1 (QDR)

werten der ODR-Proben und denen der Priif-
hanteln ableiten. Die Ursache diirfte in der
(durch die Herstellverfahren bedingte) un-
terschiedlichen thermischen Vorgeschichte
der Proben zu suchen sein. Im Ergebnis sind
die nach beiden Methoden erreichten Vulka-
nisaticnsgrade, d. h. ihre via Quellverfahren
gemessenen Werte, nicht dquivalent. Analog
den ODR-Proben stimmen jedoch die Vulka-
nisationszeiten der minimalen Queliung und
des maximalen Moduls (bei 100 und 200 %
Dehnung) liberein.

3.4 Quellung Industrieartikel

Die Priifungen erfolgten gemiB Abschnitt
2.5. Die zugehdrigen Quellwerte sind in Ta~
belle 2 angegeben. Bei beiden Mischungen
zeigt sich, dass die duBere Schicht weniger
quillt als das Material im Kern. Dies hiingt
mit den Unterschieden im Vulkanisations-

L CRNRY, geprift bei 165°C
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grad zusammen. Nach den in Abbildung 10
dargestellten Ergebnissen fiir die ODR-Vul-
kanisate, die unter dhnlichen Bedingungen

gequollen wurden, erreichte die NR-Mi-
schung bei vollstandiger Vulkanisation eine
Minimaiquellung von ca. 95 %. Dieser Wert

P

ProbeBI% Durchschnitt 7 %

stimmt mit dem an der AuBenschicht des
Industrieartikels gemessenen iiberein. Da-
raus ist zu schlieBen, dass das NR-Teil au-
Ben ausvulkanisiert ist. Die innere Schicht
kommt auf einen Wert von ca. 102 % und
ist demnach nichz véllig vulkanisiert, Es er-
hértet sich die Erkenntris aus den Quellver-
suchen mit den Rheopriflingen: Das Queli-
verhatten eines Gummimaterials ist ein Maf3
fiir seinen Vulkanisationsgrad. Die Queligra-
de fir den ausvulkanisierten Zustand lagen

Abb 12 Modulwerte Mlschung K- EPDIVI 1

{

Modul f MPa

! 100 % Dehmung
! ; ~—><—~200%Dehnung ced

Mudu[ CK EPDM 1 als Funktion der Vulkamsatlonszelt bel 180 °C.

“Modul {MPa - "
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—x—200% Dehnum

Zeit/s

Abb 14 Queilung Mlschung CK EPDM 1 (Prufhantel)
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bej der EPDM-Mischung entsprechend Ab-
schnitt 2.5 je nach Temperatur im Bereich
von 166-172 %. Im Aufenbezirk des Teils
wird ein entsprechender Wert eingehalien.
Die innenschicht weist jedoch eine erhdhte
Quellrate auf. Der Gummikerr ist somit nicht
voilkommen vulkanisiert,

4, Fazit und Schlussfolgerungen

Das Ziel der vorliegenden Studie bestand
darin nachzupriifen, inwieweit sich einfache
Quellungspriifungen in der Praxis zur Kon-
trolle der Ausvulkanisation eines Gummi-
teils eignen. Die auf der Flory-Rehner-Glei-
chung [7] basierenden Verfahren sind far
den praktischen Einsatz in der Industrie zu
komplex und zu tangwierig. Beschréinkt man
sich auf die Auswertung von Daten aus der
Gewichtsquetlung, so getangt man rasch
und unkompliziert zu vern{inftigen Aus-
sagen Giber den Vulkanisationsgrad. Dies
konnte in einem breit angelegten Priifpro-
gramm beispielhaft an zwei unterschiedli-
chen Mischungen, niamlich konventionell
mit Schwefel vulkanisiertem Naturkaut-
schuk und mit Peroxid vernetztem EPDM,
mit entsprechenden Proben aus dem Labor
und reprisentativen Mustern aus regulérer
IM-Fertigung gezeigt werden. Die ermittel-
ten Quellraten stehen in gutem Einklang
mit den Messungen der Vulkanisationskur-
ven und den Modulwerten bei Dehnung

und spiegeln somit den zeitlichen Verlauf
der Vernetzungsreaktion realistisch wider.
In diesenﬁ' Zusammenhang way anhand der
Ouellwa‘ge ebenfalls festzustellen, wie sich
das Herstellverfahren auf die Ausvulkanisa-
tion eines Gummiartikels auswirkt. Die Fak-
toren Artikeldimensionen, Art des Warme-
eintrags und Vulkanisationszeit spielen eine

‘nicht zu unterschiatzende Rolle. Man muss

also bei der Herstellung von Gummiartikeln
der Festlegung von Vulkanisationstempera-
tur und -zeit ausreichend Aufmerksamkeit
widmen, um Reversionserscheinungen, un-
rureichende Vernetzungsreaktion und un-
gleichmiBige Ausvulkanisation sicher zu
vermeiden.

Die Quellungsprifung kann als nitzliches
Werkzeug zur Uberpriifung des Vulkanisati-
onsgrades, sei es in der Entwicklung, sei es
in der Qualititskontrolle, auch in Situatio-
nen herangezogen werden, in denen andere
Messverfahren versagen.
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A. Arrillaga, Z. Kareaga, E. Retolaza, A. M. Zaldua®

The rubber industry requires o practical technique to determine the degree of cure
achieved in moulded parts. In this conlext fests reqarding the swelling character-
istics and residual exothermicity (by means of DSC) can be cansidered as helpful
technigues. DSC measurements, however, were not useful due to the low exother-
micity of the formulations having been investigated. The cure variotion of o NR
crasslinked with sulphur and an EPDM crosslinked with peroxide was examined
using swelling measurements in cyciohexane. It could be observed that swelling
results agreed with duto from rheological tests as welfl as modulus values from
tensile testing. The method was also applied to an industrial rubber part to evalu-
ate differences in the degree of cure across the part thickness.

1. Introduction

Rubber parts are manufactured using
processes such as compression moulding,
injection moulding, extrusion, calendering,
and 5o on. In all cases, first the rubber takes
the shape of the part to be manufactured,
and later on it vulcanises to achieve the fi-
nal properties. Vulcanisation is known as the
process during which a number of bonds {so
called crosslinks) between the rubber mole-
cules are formed, so that a viscous and tacky
material is converted into an elastic material.
As a consequence, a polymer network is cre-
ated, resulting in a three-dimensional struc-
ture (fig. 1) [1]. Three requirements have to
be fulfilled for a material to show rubber-
like properties:

® the presence of luong chain-fike malecules
with freely rotating links

& weak secondary forces between the mole-
cules

*

Dr. Alexander Arrillaga
. / -

aarrillaga@leartik.com

Zarion Kareaga,

Egoitz Retolaza,

Dr. Ane M. Zzldua

Leartiker, Materials Dept.,

Lea-Artibai lkastetxes S. Coop.,
Vizeaya, Spain

REP 1/2012 - Volume 7

e an interlocking of the molecules at a few
places along their length to form a three-
dimensional network

[lue to the introduction of crosslinks,
the chains are prevented from sliding from
each other and the rubber becomes efas-
tic. Besides chemical crosslinks, chain en-
tanglements contribute to the elasticity of
the polymer network. They can be either of
permanent or temporary nature. The con-
cept of entanglements has been discussed,
and even guestioned, during many decades.
Today, however, it is more or less accepted
that entanglements contribute to the elas-
tic forces in rubber materials. When filler is
incorporated, polymer-filier interactions ap-
pear and will also contribute to the three-
dimensional network. Opposing these three
mechanisms of networking are loose chain
ends and elastically ineffective loops. The
former increase the free volume of the ma-
terial by their non-restricted mobility (no

Fig. 1:

Model of a rubber net-

work [1]

A: loose chain ends,

8: elastically inactive
{oop,

C: chain entanglement

* chemical crosslink

Vuicanisation

crosstinks that tighten the chain end). Chain
loops may be formed during vulcanisation
and will lower the number of elastically ef-
fective chains in the material.

The term "crosslink density” deserves a
mare elaborate explanation. It can be ex-
pressed as the number of crosstink points
or the number of efastically effective chains
per unit volume. These two guantities are
proportichal to each other, and their exact
relationship depends on the functionality
of the crosslink points, i. e. the number of
chains that start from the crosslink. Hence-
forth crosslink density wiil be defined as the
number of crosslink points per unit valume.
Furthermore, crosslink density is inversely re-
lated to the average molecular weight of the
chains between the crosslinks, which is also
a way to express the network properties. The
value of crosslink density may be in the or-
der of 107 - 10 molfem? for a typical rubber
material, corresponding to 15- 1,500 mono-
mer units between the crasslinks. Crosslink
density is fundamental for polymeric net-
works as it determines many physical prop-
erties of the resulting material. Figure 2
[2] shows how some properties of a rubber
material generally depend on the crosslink
density.

This vulcanisation process reguires a time,
which basically depends on the formulation
recipe and the cure temperature, and in some
cases pressure. For instance, when using a
compression or injection moulding process,
the heated mould transfers heat to the ma-
terial, its temperature increases, and cure re-
action starts. Depending on the cure time, a
certain crosslink density will be achieved, and
as detailed in figure 2, this leads 1o specific
values of the physical properties.

37




Vulcanisation

In the present study, the authors wanted
to develop a very simple and quick meth-
od to evaluate {measure) the degree of cure
achieved by the material. The term "state of
cure of a vulcanisate” means the degree to
which some property of the vulcanisate has
approached the maximum attainable value
as a result of change in time or temperature
of cure, It is rather directly related to the
degree of crosslinking.

Several techniques are available to study
the kinetics of curing or vuicanisation. A
previous publication [3] discusses their ap-
plication and usefulness with the aim of
defining the kinetics by empirical/phenom-
enological approaches for reatising curing
simulations. This includes techniques such
as ODR, MDR and DSC. Nevertheless, the
aim of the present work was not to have
a procedure to obtain the complete cure
curve, but to have a procedure to deter-
mine the degree of cure achieved in par-
tially cured samples.

According to literature, crosslink density
can be measured in different ways:

e stress-sirain measurements using the
Mooney-Rivlin equation [4, 5]

e determination of the elastic modulus at
a certain temperature in the rubbery pla-
teau range [6]

o hy swelling measurements using the Flory-
Rehner equation [7]

s by determination of the residual exother-
micity [8-10]

The current work is concerned with the use
of swelling measurements to evaluate the de-
gree of cure achieved in several parts. ODR
measurements and tensile tests are also done
to correlate the results obtained fo the swell-
ing value. Although the use of residual exo-
thermicity measured by DSC was considered
as an useful procedure to evaluate the degree
of cure, this procedure was not utilized for the
present study because of its poor resolution,
related to the low exothermal peak of rubber
formulations and the very small sampies that
need to be used. The degree of cure is deter-
mined as the ratio between the residual heat
given by a partially cured sample and the heat
given by a non-cured sample {10].

The swelling based procedure was finally
used to evaluate differences in curing de-
gree values across the thickness, for a real
industrial part manufactured with the rub-
ber formulations studied in the present work.

2, Experimental
2.1 Materials

The present study was based on the use
of two rubber formulations, one based on
a NR cured with sulphur and the other one
on an EPDM cured by peroxides. They are
proprietary developments and were manu-
factured at Cikautxo S. Coop. Company. Ta-
ble 1 summarises the compiete recipe for
both formulations, which were prepared in
a 150 | internal mixer.

2.2 Rheological tests

All tests were conducted according to
the ASTM D2084. The sample was put into
a temperature controlled die cavity fitted
with a bi-conical disk (rotor) osciilating in
a sinusoidal way at a frequency of 1.57 Hz
and an amplitude of + 3°. The torgue coun-
teracting the disk oscillation is monitored
over the test time. QDR measures not anly
the scorch or induction period, but also the
cure rate and the state of cure. Thus the
complete cure curve can be recorded and
the torque level is correlating to the de-
gree of crosslinking. There oceur three dif-
ferent cure characteristics being iflustrated
in figure 3. The vulcanisation proceeds in
three steps:

& [nduction period or scorch time {t): The
fime from the start of the measurement to
the onset of the crosslinking process (1. e.
when the curve begins to slope upwards) is
called scorch time, also defined as induc-
tion period. It represents the time inter-
val at curing temperature during which no
crosslinking can be defined.

e Curing or crosslinking stage: Following the
induction period, crosslinking occurs at a
rate which is dependent on temperature
and the nature of the composition.

& Reversion or overcure stage: When the
crosslinking has proceeded to a full cure,
subseguent heating produces an over-
cure which may be evidenced by contin-
ued stiffening or by reversion. The up-
per curve {A) shows a marching behav-

1
i
i
i

Fig. 2:  Dependence of some properties of a rubber material on crosstink density Fig.3:  Typical theometer traces;
' A) marching characteristic, B) plateau level, C} reversion
.......................................... R,
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four that can be observed for chloroprene
rubber and SBR-based compounds. B) is
the ideal behaviour where the cure level
reaches a piateau {equilibrium), typically
for NBR. C) shows reversion, a phenom-
enon that appears for example, when NR
Is vulcanised with a conventional sulphur
system as described by Crowther, Lewis
and Methrell [11].

The CK-NR 1 formulation was tested
at two temperatures, 1685 °C and 150 °C.
CK-EPDM 1 was tested aiso at two tem-
peratures, 180 °C and 160 °C. Sufficiently
long cure times were set to see the com-
plete curve. Tests were done with at least
five samples for each case, and an aver-
age was calculated for later evaluation. If
the minimum torque (M) is set to "degree
of cure &"=0 and the maximum torque to
"degree of cure a"=1 then the cure curve
o vs. t (t=time) can be calculated for each
temperature according to the following
eguation:

Tab. T:  Compound recipes

P U .

§ Inhibitor
i Stearic ac

CK-EPDM 1

“EI:“DM_,__SO % p{ggﬂene, 5 9% diene 7 :
¢ EPDM, 70 % propylene, 5 % diene | i

LCarbonblackN539‘583‘
(E“P.araﬁinic oil o ;
iSIipping_Tyéx |
:Perkadox14;'4055x
| Co-agent t T35 E
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Once the complete cure curves were ob-
tained further measurements were made at
the same temperatures, but using intermedi-
ate test times, as described below:

o CK-NR 1 tested at 165 °C: 100, 120, 150,
180, 220, 300, 600, and 1,000 s

¢ CK-NR 1 tested at 150 °C: 260, 290, 320,
350, 390, 430, 470, and 720 s

& CK-EPDM 1 tested at 180 °C: 60, 90, 110,
140, 200, 300, and 500 s

¢ CK-EPDM 1 tested at 160 °C: 100, 210,
320, 440, 550, 660, and 900 s

These times are intermediate values with-
in the cure range and the reversion/pla-
teau range. After reaching the test time the
samples were removed as quickly as possible
from the ODR and were immersed into iced
water o stop curing.

2.3 Tensile tests

The tensile test specimens were pressed
oh a REP V37 injection machine. CK-NR 1
was injected at a 165 °C mould temperature
with euring times of 80, 90, 120 160, 200,
260, 290, 320, 350, 390, 430, 470, and 720 s.
CK-EPDM 1 was injected at 180 °C mould
temperature with curing times of 30, 60, 80,
100, 210, 320, 440, 550, 660, and 900 s.

After moulding samples were removed as
quickly as possible from the mould and im-
mersed into iced water to stop further cur-
ing. Five samples were manufactured at each
cure time and then tensile tests were done
according to ASTM D412-97 for getting the
information on modulus at 100 and 200 %
elongation.

2.4 Swelling tests

The determination of equilibrium swell-
ing volumes is one of the best methods
for characterising crosstinked structures.
The rate of swell as well as the equilibri-
um swell of a vulcanisate in a solvent has
been shown to be a function of the state of
cure, Either the molecular weight between
crosslinks or its reciprocal, the number of

Vulcanisation

effective network chains per unit volume
of rubber, may be used as an indication of
the cure state. Curing degrees are usually
determined by applying the Flory-Rekner
formula [7], which is as:

PV )
Cola(-v)-vew:

where p is the density of the material (rub-
ber formulation), V, is the molar volume of
the solvent, p is the value of the rubber-
solvent interaction parameter, and V., is the
polymer volume fraction in the swollen vul-
canisate, which is a function of the swollen
rubber mass, dried rubber mass, density of
the formulation, and the density of the sol-
vent used for swelling.

Warley and Del Vecchio [10} proposed a
similar expression to calculate the crosslink
density in molfem?:

Ln(1-V )+V +pv?
V, VIRV 12) 3

where v is the crosslink density, in molfem?,
which can be rewritten as:

P
V==
MC

This is true for non-filled formulations. The
calculation becomes much more complex
when testing carbon black ioaded formula-
tions [7, 12, 13]. The polymer-solvent inter-
action parameter must be also determined
using the two solvent procedure described
by Hayes [14]. Due to the complexity of this
procedure the aption of using just only the
value of the swelling degree was chosen. The
swelling degree is defined simply as:

% Swelling = [(m~m,}m,]-100
5
where m,=sample weight before swelling
and m, =sample weight after swelling.

To apply this technique it is necessary to use
appropriate solvents. It should give a sufficient
swelling rate inthe range of 90-100 % and a
low evaporation rate. From the solvents tested
cyclohexane was the only one fuliilling these
requirements. Samples cured at different times
were available from the ODR tests and the
tensile tests specimens. Samples {(0.4-0.5 g)
were immersed into a bottle containing 6 mi
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of solvent and maintained into the soivent for
24 h. Before measuring m, the sample was
dried briefly with tissue. It is necessary to re-
mind that the swelling degree measured in
this way is an average value because in real-
ity there is a distribution of the curing degree
across the thickness of the sample.

2.5 Swelling tests of industrial parts

For evaluating the test method with re-
gard to applicability the degree of cure vari-
ation across the thickness of an industrial
part (Reference: Volkswagen 7H0-253-144)
was checked. Parts were manufactured with
both formulations. Figure 4 displays the
part studied. It is a rubber-metal part, where
rubber has a maximum thickness of about
15 mm. Two types of samples were analysed.
Sample 1 was cut from the external layer
of the rubber {that one in contact with the
mould) and sample 2 was taken from the
centre of the rubber part. Test conditions
were conforming with section 2.4 with a
solvent-rubber ratio of 15:1.

3. Results and discussion
3.1 Rheomefer fraces

Figures 5 and 6 show the ODR tfest re-
sults obiained for both rubber formulations.
CK-NR 1 exhibits a clear reversion phenom-
enon (being typical for sulphur cured for-
mulations), both when festing at 150 and
165 °C. This is represented as a torgue de-
crease after achieving the maximum vaiue.
CK-EPDM 1 is an EPDM crosslinked with
peroxide. When testing at low temperature,
160 °C, the decompasition rate of the perox-
ide is low. This slows down the cure kinetics
and it seems that the trace arrives at the pla-

Fig. 4  Industriai part tested —
VW Reference 7H0-253-144

40

feau after 900 s. Nevertheless the maximum
torque achieved at 180 °C was slightly high-
er. This means that at 160 °C the maximum
curing degree was not attained. Using the

Fig.5:  Rheometer traces of CK-NR 1 {ODR)

CK-NR 1 at 165 °C

&
I

Torque / dm

Fig.6: Rheometer traces of CK-EPDM 1 {ODR}

CK-EPDM 1 at 180 °C

information of the aforementioned curves
and equation 1 the curing degree curves
detailed in figures 7 and & can be calcu-
lated fram the torque values. The degree of
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cure was set at zero up to the point where
the torque starts to increase after achieving
the minimum value. This period is defined as
the induction or scorch time,

Fig. 8:  State of cure of CK-EPDM 1 {ODR)

CK-EPDM 1 at 180 °C
1.0 ;

3.2 Swelling of ODR samples

As already discussed in section 2.2 addi-
tional tests were performed with keeping

CK-EPDM 1 at 160 °C )
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the compouncd in the ODR chamber for the
specified times and the resulting samples
being checked for swelling. Figures 9 and
10 represent the swelling values obtained
Vs. curing time,

The NR formulation gives a higher torque
at the maximum cure point when the test
is done at lower temperature (fig. 5). The
number of crosslinks per unit volume be-
comes higher. This behaviour is verified by
the swelling resuits (fig. 9) where the mini-
mum value of swelling {that is related to the
maximum crosslink density) is at 107 % for
the material having been cured at 165 °C
and goes down to 95 % at a curing tempera-
ture of 150 °C. A higher torque value means
a lower swelling ratio. Once the eptimum
cure point is achieved (that is the minimum
swelling point) the NR exhibits its reversion
character, which resulis in an increase of the
swelling ratio as detailed in figure 9.

The EPDM formulation was cured with
peroxides. In this case, as iliustrated in fig-
ure 6, the material gives a higher maximum
torque when the test is done at higher tem-
perature (180 °C instead of 160 °C). When 3
temperature of 160 °Cis applied, the perox-
ide does not decompose completely, sa that
the curing remains incomplete. When the
information of the swelling tests is evalu-
ated (fig. 10), a minimum swelling ratio of
about 166 % is achieved at a temperature of
180 °C whereas the minimum value at 160 °C
is 172 Y. This means that the cure reaction
is not completed at 160 °C. Again, a higher
torque value correlates 1o a lower swelling
tatio. A small torque decay as time goes on is
exhibited at 180 °C, which is also represented
as an increased swelling ratio.

For both NR and EPDM there is a match in
time for the time values at which the mate-
rial reaches the maximum torque value in
ODR tests and the time vafue for which the
minimum value of swelling ratio is achieved:
which means that there exists an equiva-
lerice of maximum torque and minimum
sweiling ratio,

According to these results, when vulcan-
ising a rubber formulation it is necessary to
take the cure temperature into account be-
cause it affects the decomposition of the
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curing agents and also the cure time. In ad-
dition to that it could lead to reversion phe-
nomena depending on the composition of
the formulation.

A matceh can be found between the torque
values measured in the ODR test (and each
torque value can be associated to a specif-
ic degree of cure) and the swelling rafios.

in this way, once this relationship has been
defined for the rubber formulation to be
studied it is possible to determine the curing
degree of a rubber part using the swelling
method discussed above. So, it is not neces-
sary to apply the methods described in the
literature (being much more complex) and
that are based on the Flory-Rehner relation-
ship [11].

3.3 Tensile testing and swelling of
tensile test samples

Tensile test specimens were manufactured
in accordance with section 2.3, three sam-
ples each for tensile testing and swelling.
The results are collected in figures 11 and
12 (tensile tests) and in figures 13 and 14
(swelling tests).
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Regarding CK-NR 1 there occurs an ini-
tial increase of the moduli up to a maxi-
mum followed by an on-going decrease.
That decrease is associated with the rever-
sion character exhibited by the formulation.
CK-EPDM 1 shows & similar increase at the
beginning, but no reversion behaviour. The
maximum value is maintained.

Figures 13 and 14 display a minimum
swelling ratio point. Values of about 93
and 172 % are attained for NR {165 °C) and
EPDM (180 °C) samples respectively. The val-
ues are close to the minimum swelling values
seen for the ODR samples tested at 150 °C
(NR) and 160 °C (EPDM}, i . tested at lower
temperatures than the mould temperature
for manufacturing the tensile samples. This
means a direct relationship of swelling values
from ODR and tensile test samples cannot be
deduced, because the manufacturing proc-
ess and as a consequence the thermal history
of those samples are completely different.
Cancerning the curing degrees measured by
swelling both methods {ODR and tensile} do
not lead to equivalent results. Analogous to
the ODR samples, however, the tensile speci-
mens have a match in time for the point
of minimum swelling ratio and the point of
maximum modulus value (both at 100 and
200 % elongation).

3.4 Swelling of industrial parts

Preparation and testing of the samples
followed section 2.5. The results are present-
ed in table 2. Both materials show that the
external layer leads to lower swelling ratio
values than the core material, which is relat-
ed 1o differences in the degree of cure, Ac-
cording to the results presented in figures 9
and 10 where samples from the QDR tests
were swollen under similar conditions, the
NR formulation arrives at a minimum level of
about 95 % for a completely cured sample.
This value matches with the value measured
for the external layer of the industrial part;
so it can be concluded that the external layer

Material ‘
CeNRTouside | 9635
[CK-NRTinside 10199
! M1

| CK-EPDM 1 inside ©

Jg3.14
ST
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of the NR part is completely cured. The in-
ternal layer reaches about 102 %, which cor-
responds to an incomplete cure. Consider-
ing the swelling values obtained for the QDR
samples it can be deduced, that the swelling
behaviour gives a good indication of the cur-
ing degree. Referring to the EPDM formu-
lation ODR test samples attain a minimum
swelling ratio of about 170 % for a complete
curing stage. Results from the industrial part
show that the external fayer achieves these
values, whereas the internal layer gives high-
er sweliing ratios, which corresponds to an
incomplete cure again.

4. Conclusions

The aim of the present study was to check
the applicability of simple swelling tests for
evaluating the curing degree achieved in
rubber parts. Other swelling procedures
such as those being based on the Flory-
Rehner equation [7] are considered to be
too complicated and too time consuming
for a practical industrial application. The
analysis of swelling data obtained by simple
procedures allows a reasonable assessment
of the curing degree in a rapid and uncom-
plicated way. This could be exemplary dem-
onstrated within a broad fest programme
covering the examination of laboratory
and regular production samples from two
formulations, i. e. a conventionally sulphur
cured NR and a peroxide cured EPDM. The
swelling rates determined are in good con-
formity with the data from the rheometer
traces and the tensile moduli reflecting re-
alistically the progress of the crosslinking
reaction. In addition to that the swelling
data gave vatuable insights how the manu-
facturing process influences the camplete
vulcanisation of a rubber part. The article
dimensions, the way of heat transfer, and
curing time are factors which should not be
underestimated. When vuleanising rubber
formulations the fixing of cure tempera-
ture and cure time needs special attention

‘Sample 1/ % Sample 2/ % :Sample 17% :Average ! %

ST %13
102.24 - 101.84 Tab. 2:
Tiq0s7 yeaeg o Swelling industrial part —
VW Reference
7HO-253-144

Vulcanisation

to avoid reversion effects, incomplete de-
composition of the curing agents, and ir-
regular vulcanisation.

The swelling test can be a useful, but sim-
ple tool for checking the degree of cure of
rubber parts for quality control and even de-
velopment purposes or in situations where
other test methods fail to obtain reasonable
results.
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ANNEX II-A: ON THE TENSILE AND SHEAR MODULUS RELATION

Figure 0.1 represents the pure shear state. When the inside cube is rotated
45° it is only loaded by the maximum possible shear. The unique

deformations in this geometry are angular deformations.

Figure 0.2: Pure shear representation

The diagonal d-b (Figure 0.2) is extended and the diagonal a-c is shortened.

ox =1, oy =-7; 0y = 0. Applying the generalized Hooke’s law:

&y =é[0'x —V(O'y + 0, )]: é(l'f‘ V) Eq. 0.1
e, :%[ay Vo, + o)=L +v) Eq. 0.2
£, = %[az —v(aX +0o, )]: 0 Eq. 0.3
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& —V——gx+gy+gz—0 Eq. 0.4

v
0

The variation of the unitary volume is zero in pure shear. So the diagonals

variation is calculated as follows (Figure 0.3):

a

(n/4)-(vI2)

Figure 0.3: Pure shear: diagonals variation

o_bl=0_b(1+gx)=ﬁ[1+é(1+v)} Eq. 0.5

o_alztg(l+gy):£{l—é(l+v)} Eq.0.6

o

— %{“T(lﬂ/)} 1+ L (1+v)
tgoalblztg(%+zj:£: E - E Eq. 0.7

2) oa L, T LT
1-—(1 1-—(1+
oa[ E(-l—v)} E( V)

x tg £+tg1 1+7
R S
1-tfg=~tg~ 1-%
g 4 J 2 2
From the last two Eqg. 0.7 and Eq. 0.8,
1+7 1+£(l+v) .
2 _ E :>Z=—(1—|—V):g Eqg. 0.9

1-7 1= T @) E
> T E
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G =
21+v)

=0y
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Eq.0.11



ANNEX 1I-B: BULK MODULUS AND HYDROSTATIC PRESSURE

It is assumed that Vo=1,

V, =(L+¢,)(1+¢,)(1+¢,) Eqg. 0.12
Rejecting a higher order this expression yields to:

Vi =1l+e,+¢,+¢, Eq. 0.13

V, -V l+e, +6,+¢,)-1
:AV: f 0:( X y Z) =&, te, te, Eq. 0.14

& \
vV, 1

where Vo and V; are the initial and the final volume values respectively and &v

is known as the volumetric strain or cubic dilatation.

Substituted by the generalized Hooke’s law,

P =W(l—2v) Eq. 0.15

v

The deformation of any point which is modelled as a cube and loaded with

hydrostatic pressure p is solved with the following equation:
&, =&, =& =—£(1—2v) Eq. 0.16
o,=0,=0,=—) X y z E L

Y.C. Fung [1]: The Bulk modulus k may be expressed as follows
k=-ple, Eq.0.17

From Eq. 0.15, Eq. 0.16 and Eq. 0.17,
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ANNEX II-C: ENERGY DISSIPATED PER CYCLE AND THE MAXIMUM
STORED ELASTIC ENERGY (Wc).

When a sample is subjected to oscillatory deformations, the strain varies

sinusoidally with time as:

£ = gsinwt Eqg. 0.19
And the stress can be defined as,

o = gy E'sinwt + gy E”"cos wt Eg. 0.20

The dissipative energy per cycle is calculated as:
U.=|ode= —dt Eg. 0.21
J.O' & o at q

From Eq. 0.19 the following equation can be defined as:
de
E=goa)COSa)t Eq. 0.22

Using expressions Eq. 0.20 and Eq. 0.22, Eg. 0.21 can be rewritten as:

2
U, = I(gowcosthgoE'senmt+30E“coswt)dt Eq. 0.23
0
2
[0 2 I N )
U, = .[‘90 w(E senawt cos wt + E''cos cot)dt Eqg. 0.24

0

This integral is solved taking into account the next trigonometric relations;
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1
J Ssen wt coswt = Esen 2wt

{cos2 ot = %(1+ cos2mt)

7

U, =z, | (E'%senZa)t+ E"%(1+ cos Zwt)jdt Eq. 0.25
0
w& 2 2%)
U == [ (E'sen2et + E"+E""cos 20t )t Eq. 0.26
0
2 ' . 27/
U, = P& {—Ecos 20t + E"'t +E—sen2a)t} Eq. 0.27
2 20 20 0
wgoz W 2T
U, =—2 gL Eq.0.28
2 w
U, =7E"g,’ Eqg. 0.29

If the integral U is evaluated for a quarter of a cycle, instead of the entire

cycle, the first term gives the maximum stored elastic energy (W¢).

%(l)
E'ws,’ jsenwt cos wtdt Eq. 0.30
0

%” %w
2 1 2 1
W, = E'mz,” [ =sen2otdt = E'ms,’| - cos 2t Eq. 0.31
) 2 4o 0
1 1 , 1
W, = E'we,’| — +— |=E'we,” — Eq. 0.
‘ 0 {460 4(0} “ 2w q.0.32
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ANNEX 1I-D: APPROXIMATED RELATION BETWEEN SIMPLE SHEAR
AND PURE SHEAR

\ 7
| \, %
o

\

Figure 0.4: Simple shear specimen, strain state representation & Mohr’s circle

representation.

.
—>

N g-e.cosy=e.(1-cosy) O2=T 0171
....... (e)
: A

€ \/ Vi ‘| elcosy
B : Y
%

Figure 0.5: Pure shear, strain state representation & Mohr’s circle representation

e(1l—cos
e, = % Eq. 0.34

The Generalized Hooke’s law is valid only for isotropic materials; the strain

for ‘X’ direction is calculated as follows,
[ax —v(oy + O'Z)] Eg. 0.35

Ex =

In pure shear strain state oy and o, are zero, hence,
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ox _e(1—cosy)

== - Eq. 0.36
=g e a
oy = E(1 — cosy) Eqg. 0.37
Oy o\, Eq. 0.38
o4 = ? + (?) +7T g. v

When the angular deformation y takes small values it is known that tany =
siny & cosy = 1, hence, ¢, =0, g, =0 and g; = t which implies that both

strain states (pure shear and simple shear states) are equivalent states.
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ANNEX II-E: CORRELATION BETWEEN SIMPLE SHEAR AND PURE
SHEAR

The strain invariants I, and I, in pure shear Eq. 0.39 as in simple shear Eq.

0.40 are equal;

|, =tr(B) =1, =tr(B) =1+ 2 +712 Eq. 0.39

I, =tr(B)=1,=tr(B™")=3+tan’ Eq. 0.40

As explained in the thesis document when the elastomer is considered as
incompressible the third strain invariant Is= 1. In addition, in both pure shear
and simple shear strain states the first and second invariants are equal as
demonstrated in Eq. 0.39 and Eq. 0.40. Hence, a relation between the shear
angle yin simple shear and the stretch A=A, in pure shear can be obtained by

comparing the first strain invariant expressions;
1+ 2+ L — 34 tan?
+ +?_ +tan® y Eqg. 041

and solve for the shear angle giving,

f 1 1
y = atan( A% + T 2) then y = atan (A - /—1) Eqg. 0.42

From this equation, we find the shear angle that produces the same strain
invariants in simple shear as in pure shear, given a specific stretch A in pure

shear.

Work is the result of a force on a point that moves through a distance. For a
constant force that is not directed along the line it is defined as the product of

force vector and the displacement in the direction of movement,
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W = F.cosy.ds Eqg. 0.43

where v is the angle between force and displacement direction vectors.

In pure shear the only work done is the work done by o; (4,=1 in pure shear
is constant and the third direction is 90° displaced with the force application
direction, then, Cos90°=0),

dW = 01dA Eq. 0.44

In the same way, in simple shear the only work done is that done by the

shear stress T,
dW = tdy Eq. 0.45

These two expressions Eq. 0.44 and Eg. 0.45 must be identical,
T=0; d_y Eqg. 0.46

Hence, from measurements of stress o; in the principal direction A4; done in

pure shear permits the calculation of the equivalent simple shear stress r.

As mentioned above, the pure shear stress o; /strain € data can be
transformed in simple shear stress dstrain y data. After, two ways are
presented. First, the simplified relation for small strain level and after, the

complete relation for every strain level are presented.

Pure shear and simple shear relation for small strains.—

For small strains, the principal axes are inclined at 45° to the direction of
sliding. Love [2] explained that the amount of the shear may be related either

to angle y or to the principal extension ratios A as follows (from Eq. 0.42),
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1
y =tany =1— 1 Eq. 0.47

Hence, the derivative of the previous expression Eq. 0.47 can be written as

follows,

dy 1 1422

ﬁ: +?: - Eqg. 0.48
Hence,

di A2

E = T Eqg. 0.49

Rewriting Eq. 0.47, the pure shear stretch A can be defined as follows Gil-
Negrete [3],

2
dy=22—1-22—yA—1=0then _rryro+4 Eq. 0.50
A 2

The elongation or stretch A4 is defined as,

From Eqg. 0.50 and Eq. 0.51 pure shear strain g, and simple shear strain y

can be related as follows,

ytyrit4 Eq. 052

Rewriting Eq. 0.46 we have,
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0] = Tﬂ Eq 0.53

From Eq. 0.53 and Eq. 0.48, the pure shear stress 0; and simple shear stress

can be related for a known pure shear stretch A.

1+22 or r=go yE
22 T Y1442

Eq. 0.54

Pure shear and simple shear relation for every strain level.—

The derivative of Eq. 0.42 which relates simple shear angle y and pure shear

stretch A gives,

dr -2 +1

R Eqg. 0.55
dy 1+ A2 f

When 4; = 1, Eq. 0.49 and Eqg. 0.55 gives a similar result.

From Eq. 0.46 and Eq. 0.55 , the pure shear stress o; and simple shear

stress can be related for a known pure shear stretch 1 as follows,

1+4? 421241
01 = or T=0; Eqg. 0.56

From Eq. 0.42 the pure shear stretch A can be related with simple shear

strain y as follows,

A

_ tany + /tan®y + 4 Eq. 0.57
B 2

Finally, from Eq. 0.51 and Eqg. 0.57 the pure shear strain € can be related with

simple shear strain y as follows,
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tany + \/tan?y + 4 1 Eq. 0.58
€= -
2
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ANNEX II-F: GENERALIZED MAXWELL MODEL. RHEOLOGICAL

ELEMENTS
Pot element or Dashpot.—
€
I
O | | O
Ny >
t
A) B)

Figure 0.6: A) Dashpot element. B) Deformation vs. time representation when a

constant stress is applied

This element is a frictionless piston which represents the viscous behavior
(Figure 0.6-A). If a stress o is applied between times t, and t;, the
deformation ¢ will vary linearly with time of application of stress (Figure 0.6-
B).

o
e Eq. 0.59

E=—t Eq. 0.60

where 1, is the viscosity constant.

When the applied stress o stops acting, deformation € remains (irreversible)
because the work provided by the external force is not stored by the material
and it is dissipated as heat (internal friction). Deformation is faster for smaller

values of viscosity.
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Elastic solid. Spring model.—

E-

v

A) B)

Figure 0.7: A) Elastic Spring. B) Deformation vs. time representation when a

constant stress is applied

The elastic solid follows Hooke's law o=E. ¢ (Figure 0.7-A). When a load is
applied, the instantaneous strain originated is due to changes in the length
and angles of atomic bonds (Figure 0.7-B). The solid stores all the energy
supplied by the external forces. When the load is removed, the stored energy

Is able to restore the original shape instantly (reversible deformation)

Maxwell model.—

€
Ev :
i"‘_ EVEZG/EV
Nv
& eve=0/E, é"‘"ewztl*olnv
ty t
A) B)

Figure 0.8: A) Maxwell models representation. B) Creep case (o is constant)
Maxwell models loading and unloading representation. The model is unloaded at

time t;.

Most polymers exhibit elastic and viscous behavior together (only glassy

polymers are perfectly elastic solids and thermoplastics; high temperature
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shows a viscous behavior only), which can be assimilated to the juxtaposition
of the models described above.

Maxwell's element or model is formed by connecting in series a dashpot and
a spring (Figure 0.8-A). By applying the spring force F, it instantly lengthens
the magnitude € and the dashpot moves to the speed o/n while applying the
load (between t, and t;). By stopping the application of the load, the elastic
component is recovered instantaneously while the viscous component of the

deformation remains indefinitely (Figure 0.8-B).

The total deformation is therefore distributed between the two elements,

which are subjected to the total stress. Thus,
Oy = Ope = Oy Eq. 0.61
&y = Epe + &y Eq. 0.62

Where subscripts ve, vv and v indicate the stresses ¢ and strains € in the

elastic spring, dashpot and the totals of the Maxwell element.

The spring is the elastic component of the model and behaves according to

Hooke's law:
1
. (—) v, Eq. 0.63

and the dashpot is the viscous component of the model and behaves

according to Newton's law:

de,, ( 1 )
=|{—]o, Eqg. 0.64
d; Ny v d

The total strain variation over time is obtained by differentiating the Eq. 0.62:
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de, dey,e dey,
—v_ Eq. 0.65
& 4 4 ]

Substituting in Eq. 0.65 the Eqg. 0.64 and Eq. 0.63 derivative with respect to

time vyields:
@:(L)da,,_l_(i)a Eq. 0.66
d; Eye/ d m/ " o

which is the equation that governs the behavior of the Maxwell model.

A simple viscous or standard viscoelastic solid model: Zener model.—

Eve
Ee

Nv

ﬂ

Figure 0.9: Three elements model. It is known as the Zener or standard linear solid
(SLS) model.

A response closer to a real polymer is obtained by adding a second spring of
modulus E¢ in parallel with Maxwell unit (Figure 0.9). This model is known as

Zener model [4].

e=¢, =g, Eq. 0.67
0 =0,+0, Eq. 0.68
where:
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£=— Eq. 0.69

Using these relationships, their time derivatives and the above stress-strain
relationships for the spring and the dashpot elements, the system can be

modelled as follows:

de E,E do E
(Ee + Eve) 7 + en"ee=—+£a Eqg. 0.70

Generalization of the Maxwell model.—

This model is based on the Zener model. One or more Maxwell chains are
added to that model to improve the fitting of experimental data (Figure 0.10).

0'?8

vel Evez Even

Nvi Nv2 Nvn

Figure 0.10: Generalization of the Maxwell model.

Considering a relaxation test, the total stress in this model will be obtained
with the addition of the elastic stress to the solitary spring of stiffness E.

which is known as E., plus the sum of stresses in each Maxwell element.

These viscoelastic models can be written so that they can characterize the
mechanical behavior as a function of both time and frequency. When these
models are written according to time, they can be used for characterizing the
creep and stress relaxation tests. This thesis will examine the last mentioned

tests because this latter is the most related to the objectives of the thesis.
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Maxwell models stress relaxation behavior.—

In this mode of time-dependent stress, ¢ is constant, then Eq. 0.66 is

converted into:

(i) doy (ﬁ) —0 Eq. 0.71
Eve dt nv ' .
Where,
d E

v (ﬂ) dt Eq. 0.72
Oy My

The solution of the previous differential equation between the initial time of

application of stress o until it takes a time t gives:

—Epet —t _t
0=0y,e M =o0,et =g ket Eqg. 0.73
And,

—t
E(t) =E,et Eqg. 0.74

The initial stress is defined entirely by the elastic spring, and the initial
condition for the differential equation is the load acting on the body is
disappearing gradually and disappears completely after an infinite time
(Figure 0.11). This equation shows that the stress decays exponentially with

a characteristic time constant:

T=—" Eq.0.75

where ris called the “relaxation time”.
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o(t

Figure 0.11: Stress relaxation phenomenon: Maxwell model.

This model is too simple to explain the actual behavior of polymers since it
has two major limitations: the strain rate is constant while applying the

constant load and also the relaxed stress 0.,.=0 at constant strain conditions.

The complex modulus E*(w) can be determined by solving Eq. 0.66 for a

steady-state sinusoidal strain history,

g* = goet®t Eq.0.76

Inserting a trial solution,

o = Cel®t Eq.0.77

into Eqg. 0.66 yields in the stationary solution,

- o = Epe— " Eq. 0.78
oo iw+E,,e/n€0 = e i+ 150 a-%
Finally the complex modulus can be written as follows,
lwT
E* =E,, —— Eq. 0.79
(@) = Eye 1+iwt f
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Zener models stress relaxation behavior.—

o(t)

Op = eo(Eoo + Eve)

Figure 0.12: Stress relaxation phenomenon: Zener model.

The total stress is given by,
0 = 0w + Omaxwell Eqg. 0.80

Once the material is relaxed, the stress is not zero (Figure 0.12), but it
reaches a value depending on the additional spring (compared to the

Maxwell model).

In this case, integrating the Eqg. 0.70 from the initial time of application of

stress o until it takes a time t gives:
—t
a(t) =g (Eoo +E,et ) Eq. 0.81

Then, Young’s relation modulus can be written as follows:

-t
E(t) = Eop + Eppe ™ Eq. 0.82

The stress is given by inserting the Maxwell stress Eqg. 0.79 into Eqg. 0.80

according to,

lwt
a*(a)) =FExe" + E,, mg* Eq. 0.83
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Hence, the Zener models complex modulus yields in,

lwt

E@) = Boo b Bre

Eq. 0.84

Generalization of the Zener model or generalized Maxwell model.—

The generalized Maxwell model (Figure 0.10), widely used to characterize
the modulus functions of linear viscoelastic media, consists of a spring and N

Maxwell units connected in parallel Tschoegl [5].

N
0y = O + z Ove,i Eq. 0.85
i=1

N -t
o =g <Eoo + Z Eve,ief_i> Eq. 0.86
i=1

t

N
Eve(t) = E,, + Z Epeie T Eq. 0.87
i=1

where 7 is the relaxation time for each Prony component E;.

In this model, when the time is zero (t=0), the instantaneous modulus E, is,
Ey = E., + z Epo; Eq. 0.88

where the long term or the relaxed modulus (t=w«) is E,. Ev and t are the
relaxation modulus and relaxation time respectively; the relaxation time of the
i™ Maxwell element defined by 7; = n;/E,.; Where n; is the viscosity of the
dashpot unit. The typical term under the summation symbol in the previous
equation, represents the relaxation modulus of the i Maxwell unit. The

series expression in the equation is often referred to as a Prony series.
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Findley et all [6] studied some common models including the generalized

Voigt model and generalized Maxwell model.

This model can be used to simulate sinusoidal dynamic tests. If the
mentioned test is simulated with the latter model, the dynamic modulus does

not change with the loading strain amplitude (Figure 0.13):

(0} /’
,//F
I\ ///\\
I‘\ //I
\ VAL
/ 7 /
2/ /,
7
t ///,// £
\/ 1/}
\7 I///
\/ /(//
A) B)

Figure 0.13: Sinusoidal Dynamic test: Linear viscoelasticity. The dynamic modulus
does not change with the load strain amplitude. A) Two sinusoidal loads with
different strain amplitude are presented. B) The dynamic modulus is the same in both

load strain cases presented in Figure A.

The complex modulus for the generalized Zener model can be derived in a

similar manner that made before in Eq. 0.84,

lWT;

ejTinj Eq. 0.89

n
E*(w) = E, + Z E,
=1
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ANNEX 1I-G: GENERALIZED MAXWELL MODEL: PRONY SERIES IN TIME
DOMAIN

The Prony series can be used to characterize the variation of relaxation

modulus of elastomers subjected to a constant deformation [7],

t

N
Eve(t) = Eo, + Z Eje T Eq. 0.90
i=1

where 7 is the relaxation time for each Prony component E;. E, is the

instantaneous modulus (t=0) whereas E., is the long-term modulus (t=).

If we call Ee (t) the relaxation modulus of shear stresses. The limits take the

following values,
Ey, = tlim E,.(t)
Ey = Eve(O)

A dimensionless relaxation modulus is defined as follows,
a = -2 Eq.0.91

The sum of « should be less than or equal to 1. If the sum of ¢ is equal to 1,

that means that Eye(t=0)=0.

Hence, Prony series can be rewritten as follows,

Eve(t) = E,

N t
oy + Z aie_f_i] Eq. 0.92
i=1

and if it is rewritten based on the dimensionless relaxation modulus,
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ANNEX II-H: GENERALIZED MAXWELL MODEL: PRONY SERIES IN
FREQUENCY DOMAIN:

Prony series generally defined in time domain can be converted to frequency

domain with the application of the Fourier transform.

The application of Fourier transformation to Eq. 0.96 gives,

[00]

B@e@) = [ ae(® e de Eq. 0.97

— 00

a,.(t) is defined only between (0,%), hence,

(o]

H e (D) = f {1 - ZN: a; [1 _ e_%]}e‘i“’tdt

—00 =1
1. @
e‘i‘"tr o e it r - e_t<r_i+“")
iw iw 1, .
—oo i=1 0 i=1 F"‘l(l)
l 0
N N N N
a a - a;T
Dt T, it AT
i=1 =17 +lw i=1 i=1 L
l
That is, awe in the frequency domain is,
N N
ai Z ait;
Ape(W)=— ) —+ ) — Eqg. 0.98
ve(®) Ziw i1+ i f
= =

Taking the last expression and equation 9.9 of Austrell [8], we have the same

expression given by Jorgen Bergstrom [9]:

From Austrell [8],

E* = Eo(l + iwave(a))) Eq. 0.99

Hence,
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a;iwT;
E* = E, < z a; +Z ) Eq. 0.100
1+ iwTt;

E.
As a; = E—‘ then,
0

Eiiwt;
E*(w) = Eq — ZE +z L Eq. 0.101

1+ iwT;

Real and imaginary parts are obtained by multiplying by the conjugate of the,

N N i i
E*(w) = Ey — Z E; + z Eilon (1~ lo) Eq. 0.102
o - . 2 (1 +i0t)(1 - ot) o
i= i=

Rewritting the previous equation,

E 2,.2
E'(w) = E E, + L@ Eq. 0.103
0 1 + 7] 1+ 12w?
N E
T
E'(w)= )y ——+—— Eq. 0.104
1=
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ANNEX II-I: RELATION BETWEEN TENSILE AND PURE SHEAR YIELD
STRESSES

The next development relating the shear yield stress and the tensile yield

stress has been extracted from [10].

Clasical plasticity: Hypothesis

The so-called classic plasticity involves the application of four hypotheses,
which are described below,

1% Hypothesis: Fluency function:

It is supposed that there exists a function that determines the fluency and
that the initial yield or fluency depends only on the state of stress. Hence, it
does not take into account how it has achieved this status. The yield function

f (a;;) defines the elastic limit in the tensional space and determines the yield

criterion. f(a;;) depends on the principal stresses and their directions.

2"% Hypothesis: The material is Isotropic:

It is assumed that satisfies the condition isotropy. In this case, there would be
no preferred direction and f(o;;) could be expressed in main directions.
Furthermore, function f is not changed if the axes are exchanged (in the
representation of the principal stresses, instead of the principal stresses, we
can use strain invariants, which are logically independent also of the order of

the principal stresses.

3" Hypothesis: The yield stress and the hydrostatic stress are not

directly related:

It is considered that the hydrostatic stress does not influence the plastic flow
condition. Plastic deformation occurs when there are only tangential or shear
stresses. Therefore, in a state of uniform tri-axial tension or compression
(hydrostatic stress state) no plastic deformation is generated, regardless of
the presented stress magnitude, since it does not appear shear stresses in

any plane.

4™ Hypothesis: Traction behavior is identical to that in compression:
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It is supposed that the tension and compression behaviour are identical.

Hence, if all the stresses change sign, the f function continues invariable:

f(oi)=f (—0y)).

Mises Fluency criterion: Criterion J,

There are several fluency criterions which fulfil the above mentioned four

hypotheses. The Mises criterion is widely applied in ductile materials.

Mises criterion postulates that the yield begins when the modulus of the
second invariant of deviatoric stress tensor reaches a critical value K7, it
depends on the material (but not on the stress state). Consequently means

that fluency is
J» = K& Eq. 0.105

and in terms of main directions:
1 2 2 2
2= 5 [(0y — 02)° + (0, — 03)° + (07 — 03)°] Eqg. 0.106

In a state of pure shear, i.e. in plane 1-2, the fluency implies that o, = k,

where k is the fluency for shear stress. Hence,

Jo = 0f, = k? Eq. 0.107
and the Mises constant yields in,

Ky =k Eq. 0.108
K,, also can be found from tensile test, i.e. in direction 1, where

01 =Y Eqg. 0.109

in fluency,
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2 2 2
_011+U11_Y_

= Eqg. 0.110
J2 6 3 |
Where Y is the tensile yield stress, hence,

Ky = d Eqg. 0.111

For this value, in the pure shear test fluency for a shear stress would be:

Y
k=Ky=— Eq. 0.112
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ABSTRACT: The current work focus on the overlay method proposed by Austrell concerning frequency de-
pendence of the dynamic modulus and loss angle that is known to increase more with frequency for small
amplitudes than for large amplitudes. The original version of the overlay method yields no difference in fre-
quency dependence with respect to different load amplitudes. However, if the elements in the viscoelastic lay-
er of the finite element model are given different stiffness and loss properties depending on the loading ampli-
tude level, frequency dependence is shown to be more accurate compared to experiments. The commercial
finite element program Ansys is used to model an industrial metal rubber part using two layers of elements.
One layer is a hyper viscoelastic layer and the other layer uses an elasto-plastic model with a multi-linear kin-
ematic hardening rule. The model, being intended for stationary cyclic loading, shows good agreement with

measurements on the harmonically loaded industrial rubber part.

1 INTRODUCTION

The dynamic stiffness and loss angle of elastomers
increases with higher filler content. Fillers can also
introduce a non-linear dynamic behavior shown as
an amplitude dependence of the dynamic stiffness
and loss angle. Although it is a bit inappropriate the
linear viscoelastic stiffness and loss measures are
used also for the non-linear dynamics of filled rub-
bers.

— 0,102%
0,205%
-===0,307%
- — 0,410%
- .« =0,820%
1,230%

2,049%
4,098%

0 100

00 300 400 500
Frea (Hz)

Figure 1. Filled elastomers: The upturn of the storage modulus
with increasing frequency is greater at smaller amplitudes (to
the right).

In this work storage G’ and loss modulus G” are
used to characterize the cyclic dynamic behavior of
a particular rubber used to validate the proposed
modeling method.

While unfilled rubbers can be properly modeled
by purely viscoelastic models, filled rubbers, on the
other hand, show amplitude dependence of stiffness
and loss as shown in Figures 1 and 2 giving the stor-
age and loss modulus respectively for a highly filled
natural rubber. The amplitude dependence is pro-
nounced in both plots.

2,5
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-==-0,307%
- = 0,410%
— . =0,820%
1,230%
2,049%

4,008%

0 100 200 300
Frea (Hz)
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Figure 2. Filled elastomers: The upturn of the loss modulus
with increasing frequency is significant.

The behavior shown in the figures can be cap-
tured by using the overlay method proposed by Aus-
trell et al. (2001). However, the frequency depend-
ence shows a steeper slope for the smaller



amplitudes than for the larger amplitudes in both
Figure 1 and 2. This cannot be modeled by the origi-
nal version of the overlay method. In a wide fre-
quency range, as shown here, it is important to be
able to model this behavior.

Osterlof et al. (2014) modeled this phenomena in
a one-dimensional model coupling a generalized
Maxwell model in series with an elasto-plastic mod-
el by Dafalias & Popov (1977). They thus added
strain instead of stress from the two branches.

Here it is shown in a finite element context, using
the overlay method, how different dynamic stiffness
and loss values in the elements of the viscoelastic
mesh (in the overlay) can capture this phenomena.

2 THE OVERLAY METHOD AND THE
PROPOSED EXTENSION

The overlay method consists of three fundamental
steps, illustrated in Figure 3.

W —
W —

WL,
WA

Figure 3. The basic steps in the overlay method: 1) material
test, 2) one-dim. model fit, and 3) viscoelastic and elasto-
plastic mesh overlay

The first is a cyclic material test. Here a dynamic
harmonic displacement shear test is used to charac-
terize the dynamic properties of the rubber material.
On the basis of the expected working condition of
the component, the test is carried out for a range of
different frequencies and amplitudes. For simple
shear, the elastic part of the rubber behavior is more
or less linear, making it easier to observe the rate
and amplitude dependence in this mode of defor-
mation.

The second step is the parameter identification
using a one-dimensional viscoelastic elasto-plastic
model. This model contains a number of material pa-
rameters that are fitted to the experimental data us-
ing a minimization procedure, focusing on a good fit
of dynamic modulus and damping.

The third step is to establish the finite element
model. By using a straightforward engineering ap-
proach, it is possible to create a finite element model
containing both frequency and amplitude depend-
ence. This is done by means of an overlay of viscoe-

lastic and elasto-plastic finite element models. The
meshes are simply assembled on top of each other to
the same nodes. This approach makes it possible to
use commercially available finite element codes, us-
ing only the constitutive models that have already
been implemented.

These three steps describe shortly the original
version of the method presented on the second EC-
CMR conference in 2001 by Austrell & Olsson. A
fitting procedure for the material parameters was al-
so presented at the same conference (Olsson & Aus-
trell 2001).

In this work, as mentioned, an extension of the
method is proposed in order to capture the different
slopes of the frequency dependence shown in Fig-
ures 1 and 2. As can be seen from the figures,
smaller amplitudes give a steeper frequency depend-
ence for both the storage and the loss modulus,
compared to larger amplitudes. This effect is more
significant the wider the frequency range is that one
wants to cover. The modeling method proposed here
is to let the values of dynamic stiffness and loss be
dependent on the load amplitude level of the ele-
ment. This means that different viscoelastic models
are used in the elements of the viscoelastic mesh.
The way this is done is similar to the equivalent vis-
coelastic approach (Olsson & Austrell 2005). In that
work the frictional behavior was approximated by
using only one viscoelastic mesh with different vis-
coelastic models in different elements.

The big difference compared to the present work
is that here the viscoelastic mesh is assembled on top
of an elasto-plastic mesh according to the overlay
method. Moreover, the existence of a multi-linear
kinematic hardening elasto-plastic large displace-
ment model in Ansys makes it possible to use only
one elasto-plastic mesh.

It should be pointed out that the method proposed
here is strictly speaking only suitable for stationary
cyclic loading cases although the loading need not
be harmonic. This is due to the need of predicting
load levels in the elements. Thus, vibration prob-
lems, rolling contact problems etc. are suitable for
the method proposed here.

3 MATERIAL MODEL AND PARAMETERS
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Figure 4. The material parameters are obtained from this uniax-
ial model by fitting it to the simple shear experimental data.



The parameters of the viscoelastic and the elasto-
plastic mesh are given by a fit of the uniaxial model,
shown in Figure 4, to the harmonic simple shear ex-
periments. The spring-dashpot elements with param-
eters shown in the figure are material input to the
viscoelastic mesh. The spring-friction block ele-
ments with parameters corresponds to the multi-
linear kinematic hardening model, being material pa-
rameters of the elasto-plastic mesh.

The fitting of the material parameters shown in
Figure 4 is done by using algorithms implemented in
Matlab. In this work three viscoelastic elements and
three elasto-plastic elements were used in the uniax-
ial model. The viscoelastic material parameters was
characterized at four amplitude levels in order to
capture the different slopes of the frequency depend-
ence.

4 LABORATORY TESTING

A natural rubber compound was used to manufacture
a double shear specimen shown in Figure 5 (left) and
a cylindrical metal rubber part shown in Figure 5

(right).

Figure 5. The double shear material test object (left) and the
metal rubber cylinder used for model verification (right).

The compound is a highly filled natural rubber
based on the formulation given in Table 1.

Table 1. Formulation of the filled natural rubber

Rubber compound *Phr
SMR CV 60 (NR) 100
ZnO 5.0
SFR N-774 (carbon black) 80
T™MQ 1.0
IPPD 15
Zinc Stearate 3.0
MBS 15
TBTD 0.9
Sulfur 0.8

*Phr= parts per hundred rubber.

The double shear specimen, consists of two rub-
ber discs, 25mm diameter and 6 mm thick, vulcan-
ized to metal cylinders. The second object is a metal
rubber cylinder, diameter of 35mm and a height of
35 mm, used for verification of the proposed model.

The degree of cure is directly related to the meas-
ured stiffness and damping and it is one of the most
important parameters to take into account in manu-
facturing test objects. The thickness differences of
the studied material test specimen and the validation
component require the use of different curing times
in order to obtain the same degree of cure in both.
To this end, a previously developed swelling meth-
od, was used presented by Arrillaga & Kareaga
(2012).

The testing of the double shear specimen consist
of different frequency sweeps for constant ampli-
tudes from 0.05Hz up to 500.05 Hz. Four amplitudes
were used to characterize the elastomer: y;=0.0031,
7,=0.0082, y3=0.020 and y,=0.041 in terms of direct
shear strain y, being the ratio of the displacement
and the thickness of the rubber disc. These levels
where chosen to match the load levels in the cylin-
drical metal rubber part used for verification. This
matching will be discussed in Section 5.

Fig 1 and 2 show the measured storage and loss
modulus for the amplitudes given above together
with four extra amplitudes.

The testing of the rubber cylinder was done in
another mode of deformation being alternating ten-
sion/compression, using five different amplitudes in
frequency sweeps covering the same frequency in-
terval i.e. 0.05 to 500.05 Hz. The tested peak dis-
placement amplitudes were (determined according to
the discussion in Section 5) 0.05, 0.1, 0.15, 0.25 and
0.35 millimeters. In Section 6 the results of these
measurements will be compared to the finite element
model output for the cylindrical component.

5 MATERIAL FITTING PROCEDURE

The method presented in this work reduces, as men-
tioned, the number of required superimposed meshes
to two due to the existence of the multi-linear kine-
matic hardening elasto-plastic model.

The components of the first, rate independent,
mesh are characterized by the elasto-plastic constitu-
tive model. The components of the second superim-
posed rate dependent mesh are characterized by a
conventional viscoelastic model with the relaxation
modulus defined by a Prony series approach. How-
ever, one viscoelastic model for each selected ampli-
tude need to be determined (i.e. four in this case).
The load level in the component can be determined
through a purely elastic simulation with a simple
hyperelastic approximate model. The values of the
shear strain levels to be used in the material testing
can be determined from the span of strain energy in
different elements of the component giving equiva-
lent shear strain values yeq to be used in the laborato-
ry testing of the material. The procedure of obtaining
the equivalent shear strain is described by Austrell &
Olsson (2005).



5.1 Obtaining the elasto-plastic parameters

In this work three frictional components, with asso-
ciated material parameters, are chosen in order to
take care of the elasto-plastic branch of the material
behavior. Here the fitting of this rate independent
part of the model is done by quasi static cyclic load-
ing tests at four strain levels. The experimental data
needed to characterize this part of the model come
from the first measurement performed at each strain
level (i.e. amplitude). Specifically, the required ex-
perimental data come from the first frequency, i.e.
0.05Hz, used for each frequency sweep.

A procedure based on a two-step fitting procedure
similar to the one used by Ahmadi et al (2005) is
used to obtain material parameters according to Fig-
ure 4. These elasto-plastic parameters are then con-
verted into the format of the multi-linear kinematic
hardening model as follows:
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where i is the i friction element yield shear strain,
ati is the i™ friction element yield shear stress, and
7 1S the shear stress point in a multi-linear loading
curve of quasi static behavior.

In the commercial finite element software Ansys
being used, elasto-plastic data must be introduced in
terms of uniaxial tension ¢ and uniaxial strain e. By
using infinitesimal strain theory and an incompressi-
ble material, the yield stress in tension oy is related
to the yield stress in simple shear z, according to

Opi = Tpi V3 (3)
fui =T @

The material model is fitted to the NR elastomer
using an application programmed in Matlab, which
gives the required material constants. The elasto-
plastic model parameters are given in Table 2.

Table 2. Elasto-plastic parameters.

Epm|=0'p,1/8ﬁ'1 [M Pa] 14.726

i €t i Opi [MPa]
1 0.000186 0.002739
2 0.002170 0.01476
3 0.008139 0.028

5.2 Obtaining the viscoelastic parameters

The viscoelastic part of the model characterizes the
rate-dependent stiffness and damping at a number of
strain levels (four here). In order to determine these
levels (amplitudes) a preliminary elastic finite ele-
ment simulation of the component is required. For
this problem, using an axi-symmetric model, a sim-
ple initial tension as shown in Figure 6a, is applied.
The model used in this first step, is based on a neo-
Hooke material with only one hyperelastic constant
Ci0, being half the shear modulus of the material. It
can for example approximately be determined from
the hardness of the material.

The strain energy density in each element is used
to calculate the equivalent shear strain yq to be used
in the material testing

yeq = O/Clo (5)

The equivalent shear strain of each element is di-
vided into (here) four level y1 y, y3 and y,4 of simple
shear strain amplitudes chosen according to:

a) yeq <y1 . all these elements will be character-
ized by the material property characterized in the
smallest strain testing condition.

D) yeq >ya All these elements will be character-
ized by the material property characterized at the
highest strain.

c) if the strain range yeq goes from y; to y4, €ach
element will be characterized by one of the levels y;,
2, y3 and y, respectively.

The elements of the viscoelastic model that will
be assigned to the mesh, belonging to the four dif-
ferent load levels 1 to 4, are shown in Figure 6b.

MH MY

;

Figure 6. a) The strain energy density of the elastic (neo-
Hooke) preliminary model in tension. b) The viscoelastic mesh
division into four categories depending on the load level in a)
yielding their equivalent shear strain jq.

The experimental data from the frequency sweeps
performed at the different constant amplitudes show
a behavior originating from both frictional and vis-
cous material properties. Hence, the viscoelastic part
of the complete response have to be extracted from



the experimental data to calculate the Prony series
parameters at the four amplitudes. Hence, the previ-
ously characterized elasto-plastic part of the stress
has to be removed from the experimental data. For
each constant shear strain amplitude the viscous dy-
namic modulus and loss is obtained as

(0) =G, (0)-Gl*" +G,_ (6)

vexp exp

Avexp(@) = Ay (@) =

G’ exp (@) 1S the experimental dynamic shear
modulus for the viscoelastic part of the material
model at the particular amplitude used. G* exp ga) is
the experimental dynamic shear modulus. G .05 exp
is the experimental dynamic shear modulus at
0.05Hz, and G.. is the relaxed shear modulus. A is
the hysteretic area and w is angular frequency.

From the extracted experimental data according
to (6) and (7), the Prony series parameters can be
calculated (Bergstrom 2005)
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Go is the initial shear modulus; G’ and G "\ are
the storage and the loss shear modulus, T is the re-
laxation time.

The viscoelastic parameters are given in Table 3.
G. is common for all viscoelastic models fitted to
the mentioned four shear strain sweeps with differ-
ent amplitudes.

Table 3. Viscoelastic Prony series parameters for simple shear
strains y; at four amplitude levels (i).

G, [MPa] common for all viscoel. models 1.8806

Yi Gyei[MPa] Ti[s]
0.3699 0.00402

0.0031 1.0603 0.29351
3.9994 0.000139
0.1767 0.00324

0.0082 1.0615 1.0
3.5692 0.00012
0.1739 0.00180

0.02 0.6858 1.0
3.5 0.000083
0.2662 0.0015

0.041 0.5072 0.1002
5.0 0.000044

Comparing the fitted material model (according
to Figure 4) with parameters in Table 2 and 3 show

that the experimental results of G’ and G~ given in
Figures 1 and 2 vyields errors not exceeding 10%.
The correlation is not presented because the agree-
ment is very good and all curves are almost super-
imposed.

6 MODEL VALIDATION

In order to validate also the finite element model the
testing of the cylindrical component discussed in
Section 2, was simulated using Ansys. Figures 7 and
8 show the experimental tests and simulation results
respectively, for the dynamic storage stiffness. Fig-
ures 9 and 10 show the experimental tests and simu-
lation results respectively, for the dynamic loss stiff-
ness.

There is a slight discrepancy between the model
and the experiments concerning the storage stiffness
with the slopes of the model being slightly lower
than the experiments. However, experiments and
simulation are otherwise in good agreement.
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Figure 7. Experimental dynamic storage stiffness versus fre-
quency at different amplitudes.
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Figure 8. Simulation of the dynamic storage stiffness versus
frequency at different amplitudes.
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Figure 9. Experimental dynamic loss stiffness versus frequency
at different amplitudes.
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Figure 10. Simulation of the dynamic loss stiffness versus fre-
quency at different amplitudes.

7 CONCLUSIONS

A modified overlay approach was developed and
compared to experiments in harmonic loading in a
wide frequency interval at different amplitudes The
purpose is to handle the difference in frequency de-
pendence of the dynamic stiffness and loss for dif-
ferent amplitudes during stationary cyclic loading.

The method was validated using a cylindrical
natural rubber component of the same material as
the material test samples. The model was shown to
be in good agreement with experiments.

Moreover, the use of a multi-linear kinematic
hardening elasto-plastic model for the frictional be-
havior requires only two superimposed meshes. This
reduces considerably the calculation time.
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ABSTRACT

The current paper is focused on the experimental characterization of elastomers and the dynamic
properties in simple shear mode are investigated. For this purpose, three carbon black-filled rubber compounds
are loaded with 8 harmonic peak strain levels between 0.01 and 4.1 % shear strains, in a frequency range
between 0.05 and 500Hz. The stationary stress response is evaluated in terms of the storage and the loss modulus
and equivalently, in terms of the dynamic modulus and the loss angle. The formulae of the essayed elastomers,
NR1 and NR2, are identical with a unique exception, the carbon black-filler quantity. The formulae of the third
compound which is named as elastomer CKR, is completely different and the carbon black-filler quantity is
intermediate between the others. The theories and conclusions of the literature review are contrasted and the
stiffening of the rubber with frequency sweeps is studied. The first objective which consists of developing a
dynamic properties database with a highly-filled, filled and unfilled elastomer covering a wider frequency/strain
ranges than existing literature has been fulfilled. Concerning results, as filler content diminishes the influence of
the amplitude and frequency on dynamic properties is reduced and tends to be linear. In filled and more
markedly in highly filled elastomers the storage modulus G’ increases with the frequency being this increment
higher at smaller amplitudes. The loss modulus G~ increases as frequency increase and the amplitude influence
is depreciable at small amplitudes where above critical amplitude the filler network starts breaking down with
the consequent diminution in the reformation property and increasing internal frictions. This complete database,
which has been generated with a current servo-hydraulic machine, could use to develop or validate new or
existing constitutive models.

The experimental results are in accordance with the literature review. The range of frequency wider
than it is in the literature at eight strain levels of three reproducible highly filled, filled and unfilled elastomers

gives valuable information.
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INTRODUCTION

The motivation for carrying out this work is to develop a material test database of the dynamic properties of
three natural rubbers covering a wide range of frequencies usually given in the automotive industry. In literature
the characterization is generally done at a unique frequency as in the work of Wang"?, at a constant frequency of
10Hz, or the frequency ranges hardly pass the barrier of 100 Hz as shown in existing studies from as Olsson et
al®, up to 50Hz or Lion et al * up to 70Hz. In literature there are not many characterized materials, some of the
results are partially published or the formulation of the characterized elastomers is not specified. Hence, on the
one hand, the test may not be reproduced and on the other hand, it is not possible the testing of other strain states
or more complicated geometries by other researchers to advance in the knowledge of the dynamic properties of
elastomers. Additionally, this work provides material characterizations performed in current testing devices,
which enable more accurate measurements than those reported in most of the previous researches. In early
seventies, Payne and Whittaker® explained that little work had been carried out on the effect of frequency on
dynamic properties. This was presumably due to the difficulty of obtaining sufficient frequency and strain ranges
together in one apparatus. The current testing devices permit a characterization of wider frequency and
amplitude ranges. Furthermore, in this paper the dynamic results are presented in several dynamic terms versus
amplitude and frequency, although both types of graphs give the same results. However, they are shown in two
forms to facilitate the understanding of the results.

From one side, the dynamic characterization of the mentioned three elastomers are used to review the
influence of the testing strain amplitude and frequency in elastomers with different amounts of carbon black
filler and on the other side, the goal was to generate a database for future works for verification of existing
constitutive models or developing new models. To this end, and to cover the widest range of all variables, the
dynamic characterizations are performed as follows:

(1) Three elastomers are characterized: NR1, CKR and NR2, highly-filled, filled and un-filled
elastomers respectively.
(2) The simple shear specimens used to characterize the dynamic properties are used by recognized
researchers °, the shape of the specimen is shown in FIG. 1.
(3) The tested frequency range is defined between 0.05 and 500Hz
(4) The tested shear strain range (peak amplitude) is defined between 0.1 and 4.1%.
Elastomers NR1 and NR2 have almost the same formulation where the only difference consist of the amount

of carbon black of its composition. Elastomer NR2 is formulated with the minimum amount of carbon black
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possible to avoid problems in injection processing. Finally, elastomer CKR is an industrial rubber compound
which has a different formulation with an intermediate amount of carbon black in comparison with the
elastomers NR1 and NR2.

Most researches have been directed to studying the Payne effect. These studies are composed by several
amplitude sweeps changing the testing cycle frequency after each amplitude sweep. Then, these curves were
have been used to demonstrate the amplitude and frequency dependence on the dynamic properties of elastomers
*7_In this way, firstly, a short literature review of the Payne effect is presented in this study to continue with the
experimental work where the dynamic properties versus frequency and amplitude of the three characterized
elastomers are presented. Initially the dynamic properties versus frequency, related to the Payne effect, are
exposed and after, these properties are presented versus amplitude to check if the literature review is in

accordance with these characterized materials.

STRAIN AMPLITUDE DEPENDENCE ON THE DYNAMIC MODULUS: PAYNE EFFECT

Strain amplitude dependence has been deeply studied in the last years. Two phenomena are the responsible

813 Wwhich is

for the stiffness dependence in the amplitude: On the one hand the well-known Mullins effect
related with the stress-softening produced when an elastomer is cyclically deformed as shown in FIG. 2 and on
the other hand the Payne effect which is reviewed in this paper. The term “Mullins softening” is sometimes used
interchangeably with the Payne effect, but the former is a different phenomenon that occurs at larger strains. To
investigate the Payne effect without influence of the Mullins-effect, in our study all specimens were
preconditioned with sufficient large strain amplitude so that the Mullins-effect was eliminated.

One of the earlier studies of this phenomenon was made by Fletcher and Gent ** (afterwards called Payne
effect “>15%%) that made extensive studies of the mentioned effect. When a constant strain load at constant
frequency is applied cyclically, the modulus decreases with increasing strain amplitude, for a wide range of filler
types and concentrations.

5 concluded that the elastomer modulus declines, increasing strain

The investigations made by Payne
amplitude as a result of the breaking of the filler structure. As the molecular structure is composed of aggregates
held together by van der Waals bonds, the modulus is almost recoverable due to the permanent breaking and

recombination of the mentioned weak bonds in the filler network. As Huber et al '° described the rate of these

breaking and recombination processes generally differs but under stationary conditions they are equal and
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depend on the dynamic deformation amplitude. In FIG. 3-A and FIG. 3-B where the dynamic mechanical
properties are plotted as the storage £’ and loss modulus £’ respectively, it is observed that £’ takes a
maximum value in the strain range corresponding to the maximum rate of change of the storage modulus with
amplitude. At small amplitudes of oscillation, little structure is broken down, the storage modulus £°, which is
large due to filler structure, is not modified and hence £’ is small, even though the reformation of structure is
probably easier at these small separations of the black particles. At large amplitudes, the structure is so
extensively broken down, that reformation of structure is very much slower than the cycle time and £’ is again
low. A maximum in £’ and phase angle is expected somewhere in the middle strain region where considerable
structure breakdown occurs, but where reformation is also most easy and rapid. Consequently, the decrease in
dynamic modulus E* and increase in loss factor tand are not maintained in all range of amplitudes. At large
amplitudes the change in dynamic modulus E* is softer than in intermediate ones as shown in FIG. 3-C. The loss
factor (FIG. 3-D) shows a peak in the region where E* decreases more markedly as shown for example by
Lindley %, Payne and Whittaker ° and Rendek and Lion ’. Theoretically, there is a critical amplitude where

bellow it the storage £’ and loss modulus £~ do not change due to amplitude variation.

Effect of fillers.— Carbon black fillers are added to rubber in order to increase both the dynamic modulus E* and
the phase angle ¢ (and hence damping) of rubber. Consequently, these dynamic properties become amplitude-
dependent. The magnitude of the mentioned dynamic properties depends on the type and the amount of filler. In
FIG. 4 it is shown the variation of the dynamic properties of Vulcanizates A to E over the normal operating
range of shear strain. The rubbers are all of approximately the same hardness (about 55 IRHD). This was
accomplished by using three different types of carbon-black and by balancing the reinforcing effect by addition
of high-viscosity aromatic oil. The modulus increase was greater at small amplitudes, particularly for
vulcanizates with higher proportions of filler **. The level of damping and the variation of the damping through
the strain range increased with increasing the filler content. The filler agglomerate which is broken down on
cycling above a certain strain range may reform, leading to a reduction in modulus and peak in damping. This
material behavior, even in shear, is clearly nonlinear . Fletcher and Gent **, Lindley ® and more recently
Rendek and Lion ’ carried out some experimental tests to study the amount of filler influence on the mentioned
dynamic properties which shown again a stronger dependence on filled elastomers than on unfilled ones.
Meng-Jiao Wang “? carried out experimental investigations to show the impact of the filler network, both

its strength and architecture on the dynamic modulus and hysteresis during the dynamic straining. It was found
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that the filler network can substantially increase the effective volume of the filler due to rubber trapped in the
agglomerates, leading to high elastic modulus (FIG. 5-B). During the cyclic straining, while the stable filler
network can reduce the hysteresis of the filled rubber, the breakdown and reformation of the filler network
would cause an additional energy dissipation resulting in the higher hysteresis. The experiments were done at
double strain amplitudes ranging from 0.2% to 120% with a constant frequency of 10Hz under constant

temperatures of 0 and 70°C and filler phr of 0 and 70.

Payne effect and the augmentation of the elastic modulus.— The augmentation of elastic modulus at low
amplitudes has been explained by Payne ** or Mullins and Tobin % as being due to a network structure
modification of carbon black particles (known as aggregates in Medalias ?* studies). From the viewpoint of
Payne, the particles or aggregates are associated in agglomerate groups which when deformed are broken into
smaller agglomerates of different dimensions. The particles or aggregates are fused carbon entities and are
associated by the van der Waals or other secondary attractive forces into agglomerates (known as well as
aggregates network).

At small deformations, the elastic modulus is higher because the carbon-black agglomerates which are the
“hardest” regions are not broken. These agglomerates or “hard regions” must immobilize some rubber in
addition to that occluded within the aggregates (see FIG. 5-A), and thus cause an augmentation of the effective
volume fraction beyond that due to the aggregates themselves. In addition, as the effective volume fraction of the
filler increases, the agglomerates ability to move into the matrix is diminished, hence, elastic modulus increases.
Both effects become more important as the amplitude is diminished or as the frequency is increased.

As the deformation is increased, the agglomerates are broken into smaller agglomerates. Hence, the elastic
modulus decreases because there are more mobile units or “soft” regions into the rubber matrix. At high
deformations, the carbon-black agglomerates break down until the aggregates themselves are mobile units. The
augmentation effect is of minor practical importance in well-dispersed formulation batches.

The agglomerates present at intermediate amplitudes may be identified with the “hard” regions. The
breaking of the structure is often described as a frictional behavior, which is an energy dissipation mechanism.

Hence, the loss factor of the elastomer increases, Medalia 2.
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EXPERIMENTAL

MATERIALS
The present research is based on the use of three rubber formulations. Two formulations, NR1 and NR2 are
own designed formulations and manufactured at Elastorsa company (Rioja, Spain) and the third formulation is
an industrial formulation manufactured at Cikautxo S.Coop. company (Basque Country, Spain). Table I.

summarizes the complete recipe for each formulation, which were prepared in an internal mixer.

CHARACTERIZATION DEVICE

Dynamic tests have been carried out in Cikautxo S.Coop. The MTS servohydraulic test systems are
precisely configured to characterize dynamic properties of several materials and components. Specifically the
MTS Model 831.50 (10 kN) 1000 Hz shown in FIG. 6. Elastomer Testing System with FlexTest 60 Control
System. The MTS Model 831.50 is a high frequency elastomer test system incorporating all the elements
necessary to provide static and dynamic characterization data for elastomeric components and materials. The
standard configuration features a frequency range of 0.01 to 1000 Hz with +50N to £10 kN force range and
+0.005 to 20 mm dynamic displacement range.

Acceleration compensation is built into the force measurement system and is used on both the strain gauge
load cell and piezoelectric load washer. Accuracy at high frequency is ensured by utilizing acceleration based

displacement measurement with the accelerometer located at the specimen interface to the piston rod.

TESTING CONDITIONS

To assure the repeatability of the tests some considerations are taken:

(1) The laboratory atmosphere was adjusted to 23°C and 50% relative humidity.

(2) 5 simple shear specimens were tested per condition and the mean curve of these curves is presented.

(3) One frequency sweep per amplitude, where the starting frequency is 0.05Hz with 5Hz linear step
increments up to 500.05Hz.

(4) The studied 8 shear strains are 0.1, 0.2, 0.31, 0.41, 0.82, 1.23, 2.05 and 4.1 %.
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Each specimen is preconditioned at each of the eight different amplitudes, cycling 10 times, and then the
frequency sweep starts.

Each specimen is tested in the defined frequency sweep at mentioned eight shear strains from the smaller to
the higher. Once the eight frequency sweeps are finished, the test are repeated again to assure that no relaxation
factor have influence in the initial results.

At the end of each test, there are captured eight frequency sweeps, one frequency sweep per amplitude
DYNAMIC CHARACTERIZATION AND MEASUREMENTS

The simple shear specimen type used to perform the characterizations was shown in FIG. 1. This type of simple
shear specimen is composed by two rubber cylinders. Hence, it must take into account and divide the measured
forces F by 2. Rubber cylinders of the shear specimen are sheared as it is shown in FIG. 7. where thickness H as
the area A are constants every time. Applied force F produces a displacement d of the upper area A as shown in

FIG. 7 and consequently a shear strain y.

tany = % 1)

For small deformations the previous Equation 1 can be simplified as follows,

tany:%w 2

The shear stress 7 and the simple shear modulus G are defined as,

r=F/ 3)
G=7 @

When a simple shear specimen is subjected to oscillatory deformations, the strain varies sinusoidally with time
as it can be seen in FIG. 8. The shear strain and the shear strain can be written as,

Yy = YoSinwt 5)

T = 1osin(wt + §) (6)
where g is the shear strain amplitude, o the angular frequency (2r times the frequency in Hertz), and t the time.
The sinusoidal oscillation of the shear stress z and the shear strain y with the angular frequency  and a phase lag

Jis illustrated in FIG. 8.
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The software from the testing machine (MTS Elastomer Configuration Program ®) used to calculate the
dynamic properties, considers an elliptical hysteresis area U, (FIG. 9). The results of the dynamic
characterizations will be shown in terms of storage G, loss G*’, dynamic G* modulus and phase angle . Hence,

the storage G, loss G~ and dynamic G* modulus and the damping tan &are defined as®,

G' =2coss @)
Yo

G" =2sins (8)
Yo

G =G TG" ©)

tand = G" /G’ (10)

If no damping is present in the system, the modulus G* is real G’ but it becomes complex when damping

exists as in the case of elastomers.
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RESULTS AND DISCUSSION

The dynamic results of three elastomers are presented. These elastomers are highly filled, filled and
unfilled, NR1, CKR and NR2 respectively. The characterization results of each elastomer are divided in two
groups. On the one hand, four graphs will be presented defining the dynamic properties versus frequency (Hz)
and these properties are simple shear storage G, loss G ”, dynamic G* modulus and phase angle 6. On the other
hand, the same dynamic properties versus shear strain amplitude y, are presented.

The most widely studied parameters in literature, are the storage G’ and loss G” modulus and they are the
dynamic properties which give the most valuable information. The dynamic stiffness G* and phase angle & can
be derived from them. Hence, the conclusions will be focused mostly in these two modulus G’ and G and the
other two dynamic properties G* and phase angle & will be presented as additional information. Moreover, the

dynamic stiffness G* has the same tendencies as the storage modulus G".

FREQUENCY VERSUS DYNAMIC PROPERTIES

As it can be seen from FIG. 10-12-A-C, as frequency is increased, storage G’ and dynamic modulus G*
increase too. This stiffening effect due to frequency increasing is more pronounced as the amplitude tends to
zero. However, at high amplitudes the frequency change almost does not affect the magnitude of G’ and G*.

Loss modulus G and phase angle & as shown from FIG. 10-12-B-D increase as frequency is increased. At
the studied highest amplitudes, the increase of the loss modulus G~ due to frequency increasing becomes less
significant.

AMPLITUDE VERSUS DYNAMIC PROPERTIES

The magnitudes of storage G’ and dynamic G* modulus from FIG. 10-12-E-G decrease as amplitude is
increased. As it is shown in FIG. 13 this reduction in the stiffness is more pronounced as higher is the testing
frequency.

The maximum of the loss modulus G shown in FIG. 10-12-F is given at the amplitude where the storage
modulus G’ shown in FIG. 10-12-E drops more rapidly. The phase angle & (FIG. 10-12-H) increase as the
frequency is increased. The magnitude of loss modulus G arises as frequency is increased but this effect

becomes less significant as the amplitude increase.
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THE EFFECT OF THE AMOUNT OF FILLER ON DYNAMIC PROPERTIES

In general the dynamic stiffness of all testing conditions is greater in elastomers with a higher content of
filler. On the one hand, storage modulus G’ as dynamic stiffness G* arise as the amount of filler is increased due
to its reinforcing effect. The stiffening of the storage G’ and dynamic modulus G* plotted against frequency
slope at low amplitudes has more noticeable influence as a filler content of the elastomer increase. On the other
hand, the offset between G* & G* versus frequency curves at the tested amplitudes is more noticeable in
elastomers with a greater amount of filler. Finally, as the filler content tends to zero, the amplitude and frequency
dependence tends to be negligible and the material behavior tends to be linear.

The loss modulus magnitude increases with increasing the filler content, FIG. 10-11-B. The slope of G”

versus frequency decrease as the amplitude increase in highly filled and filled rubbers, FIG. 10-11-B.
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CONCLUSIONS

STORAGE MODULUS G’ AND DYNAMIC STIFFNESS G*

At small deformations carbon-black agglomerates are not broken and in addition they can occlude rubber
producing the mentioned augmentation effect mentioned above. Hence, the ability to move into the matrix is
reduced. As the testing frequency increases the elastomer stiffness increases. This stiffening of the material with
the frequency increase is due to the fact that the cycle time is smaller at higher frequencies. Hence, the non-
broken filler agglomerates and in lower proportion the molecular structure, has less time to return to the relaxed
state. This stiffening effect produced by the frequency increasing is more pronounced as higher is the amount of
filler of the elastomer.

At intermediate deformations, the carbon-black agglomerates are broken into smaller agglomerates. Hence,
the elastic modulus or the elastomer stiffness decreases because there are more mobile units into the rubber
matrix. Consequently, the material stiffening due to frequency increasing is smaller. Finally, at high
deformations, the carbon-black agglomerates broken down until the aggregates themselves are mobile units.
Hence, the behavior at high deformations will be similar to the unfilled rubbers.

As the amount of filler of the elastomer decreases, the agglomerates content is lower, consequently the
stiffening of the rubber diminishes. Accordingly, the change in the mobility because of their rupture due to the
amplitude diminishes and the mobility because frequency change is not affected. Hence, the frequency and
amplitude dependence diminishes as the filler content decreases.

In summary, the dynamic stiffness slope when plotted against frequency slope is higher at low amplitudes
than higher amplitudes, which tends to be horizontal as higher is the amplitude. This effect is more evident as the
amount of filler of the elastomer increase. Hence, the storage modulus G’ and the dynamic stiffness G* curves
versus frequency at different amplitudes are not parallel and the slope goes from smaller to higher being the

slope low at high amplitudes and high at low amplitudes.

LOSS MODULUS G*> AND PHASE ANGLE &

Amplitude dependence.— With increasing amplitude, the structure of the agglomerates present at

intermediate amplitudes break down in smaller agglomerates. Those internal frictions are increasing with the
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consequent increase in the loss modulus. From the critical amplitude the increase in the loss modulus changes
the trend and decreases with the amplitude. During the cyclic strain, while the stable filler network at low
amplitudes can reduce the hysteresis of the filled rubber, the breakdown and reformation of the filler network
would cause an additional energy dissipation resulting in the higher hysteresis at intermediate amplitudes.
Finally, at high amplitudes as the filler agglomerates are breakdown in aggregates, the rubber compound
becomes more stable and the reformation of the filler network could not happen. Hence, at high amplitudes the
loss modulus is reduced again.

Frequency dependence.— As frequency is increased it produces a greater loss of energy because the filler
and molecular structure are changing their configuration in a shorter period of time. Therefore, when frequency
is increased the number of internal friction increases producing a greater heat release. In unfilled elastomers the
internal frictions are lower. Consequently, increasing the frequency the loss modulus G~ does not vary as much
as in filled elastomers.

In general, the results are in accordance with those existing in literature. Additionally a dataset is obtained,
which covers a wider frequency/strain ranges than usual and characterizing highly filled, filled and unfilled
elastomers. This accurate database, which is generated with a current servo-hydraulic machine, can be used to
develop or validate new or existing constitutive models. The presented results, could be considered as a
reference dataset generated with modern servo-hydraulic test systems, which could be used for further studies in
the development and validation of new and existing constitutive models on the prediction of the dynamic

properties for rubbers.

Page 13



ACKNOWLEDGEMENTS

The definition and manufacturing of rubber formulations, as the characterization tests are a result of a

collaborative work with Cikautxo S.Coop.

EMERG. EUITI. UPV/EHU, Leartiker, Lea Artibai Ikastetxea S.Coop., AZARO Fundazioa, FEDER and Basque

Country Government, for research funding for the development of this study.

Page 14



REFERENCES

! M.-J. Wang, Rubber Chem. Technol. 71, 520 (1998).

2 M.-J. Wang, Rubber Chem. Technol. 72, 430 (1999).

® Olsson, A. K.; Austrell, P. E. Const. Models for Rubber 111 2003, 133-140.

* A. Lion, C. Kardelky, and P. Haupt, Rubber Chem. Technol. 76, 533 (2003).

® A.R. Payne and R.E. Whittaker, Rubber Chem. Technol. 44, 440 (1971).

® H.R. Ahmadi and A.H. Muhr, Rubber Chem. Technol. 84, 24 (2011).

" M. Rendek and A. Lion, ZAMM-J. Appl. Math. Mech. Firr Angew. Math. Mech. 90, 436 (2010).
8 W.L. Holt, Rubber Chem. Technol. 5, 79 (1932).

% L. Mullins, Rubber Chem. Technol. 42, 339 (1969).

1k Bueche, Rubber Chem. Technol. 34, 493 (1961).

113 A.C. Harwood, L. Mullins, and A.R. Payne, Rubber Chem. Technol. 39, 814 (1966).
12 R. Houwink, Rubber Chem. Technol. 29, 888 (1956).

3 G. Kraus, C.W. Childers, and K.W. Rollmann, Rubber Chem. Technol. 39, 1530 (1966).
Y W.P. Fletcher and A.N. Gent, Rubber Chem. Technol. 27, 209 (1954).

> A.R. Payne, Rubber Chem. Technol. 36, 432 (1963).

16 A.R. Payne, Rubber Chem. Technol. 36, 444 (1963).

7 G.E. Warnaka and H.T. Miller, Rubber Chem. Technol. 39, 1421 (1966).

'8 G.E. Warnaka, Rubber Chem. Technol. 36, 407 (1963).

%' G. Huber, T.A. Vilgis, and G. Heinrich, J. Phys. Condens. Matter 8, L409 (1996).

0 p B. Lindley, Engineering Design with Natural Rubber., 4th ed. (Malaysian Rubber Producers Research
Association, Brickendonbury, 1974).

21 J. Harris and A. Stevenson, Rubber Chem. Technol. 59, 740 (1986).

22 . Mullins and N.R. Tobin, Rubber Chem. Technol. 30, 555 (1957).

2 A.l. Medalia, Rubber Chem. Technol. 46, 877 (1973).

24 A.1. Medalia, Rubber Chem. Technol. 51, 437 (1978).

SMTS Systems Corporation (2000).

Page 15



FIGURES

FIG. 1.— Simple Shear specimen for measuring dynamic properties. In black: two rubber cylinders. In grey:

FIG. 2.— Mullins effect: The greatest softening occurs during the first cycle, with subsequent cycles a
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FIG. 9.— Dynamic measurement hysteresis loop.
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TABLES

TABLE |
FORMULATION RECIPES

NR1 phr NR2 phr CKR phr
SMR CV 60 100 SMRCV60 100 BR 30
ZnO 5 Zn0O 5 NR 70
SFR N-774 80 SFR N-774 30 ZnO 4
TMQ 1 TMQ 1 Stearic acid 1
IPPD 1.5 IPPD 1.5 Peptizing agent 1
Zinc Stearate 3 Zinc Stearate 3 Antiozonant Microwax 35
MBS 15 MBS 15 Aminic antioxidant 15
TBTD 0.9 TBTD 0.9 Aminic antiozonant 3
Sulfur 0.8 Sulfur 0.8 Aromatic oil 5

N539 50

Sulfur 14

Ccz 1
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