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Abstract

The main results in this thesis are the minimax theorems for operators in Schatten

ideals of compact operators acting on separable Hilbert spaces, generalized Clarkson-

McCarthy inequalities for vector lq-spaces lq (Sp) of operators from Schatten ideals

Sp, inequalities for partitioned operators and for Cartesian decomposition of oper-

ators. All Clarkson-McCarthy type inequalities are in fact some estimates on the

norms of operators acting on the spaces lq (Sp) or from one such space into another.
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Chapter 1 Introduction
The study of linear operators and functionals on Banach and Hilbert spaces aims at

producing results and techniques that help us to understand the structure and prop-

erties of these spaces. This study was developed in twentieth-century and attracted

some of the greatest mathematicians such as D. Hilbert, F. Riesz, J. von Neumann

and S. Banach. It grew and became a branch of mathematics called functional analy-

sis. It includes the study of vector spaces, spaces of functions and various classes

of operators defined on them. Some of the most important theorems in functional

analysis are: Hahn-Banach theorem, uniform boundedness theorem, open mapping

theorem and the Riesz representation theorem. There are numerous applications

of this theory in algebra, real and complex analysis, numerical analysis, calculus

of variations, theory of approximation, differential equations, representation theory,

physics (for example boundary value problems and quantummechanics), engineering

and statistics.

Functional analysis uses language, concepts and methods of logic, real and com-

plex analysis, algebra, topology and geometry in the study of functions on linear

spaces and function spaces.

The first minimax theorem was proved by von Neumann in 1928 - it was a result

related to his work on games of strategy. No new development occurred for the next

ten years but, as time went on, minimax theorems became an object of study not

only in the game theory but also in other branches of mathematics. Minimax theory
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consists of establishing suffi cient and necessary conditions for the following equality

to hold:

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y), (1.1)

where f(x, y) is a function defined on the product of spaces X and Y . Minimax the-

ory is applied in decision theory, game theory, optimization, computational theories,

philosophy and statistics, for example to maximize potential gain. For overview on

minimax theory and its applications see [34] and [15].

This thesis has two aims and, consequently, is divided into two parts that corre-

spond to them. The first part consists of Chapters 2, 3 and 4. In these chapters we

verify whether the general minimax conditions hold in various settings of the oper-

ator theory. We also identify necessary and suffi cient conditions for which minimax

theorems can be proved for certain classes of functionals and operators on Hilbert

spaces.

The second part consists of Chapters 5 and 6. Its aim is to obtain generalized

Clarkson-McCarthy inequalities for lq-spaces of operators from Schatten ideals Sp.

We apply these generalized inequalities to prove various estimates for partitions and

Cartesian decomposition of operators from Sp (H,H∞) and lq (Sp) spaces.

Borenshtein and Shulman proved in [10] that if Y is a compact metric space,

X is a real interval and f is continuous, then (1.1) holds provided that, for each

y ∈ Y , the function f (·, y) is convex and, for each x ∈ X, every local maximum of

the function f (x, ·) is a global maximum. Some weaker conditions on f that ensure
4



the validity of (1.1) were established by Saint Raymond in [36] and Ricceri in [33].

Minimax theory has various applications in the operator theory; see, for example,

Asplund-Ptak equality

inf
λ∈C

sup
‖x‖=1

‖Ax− λBx‖ = sup
‖x‖=1

inf
λ∈C
‖Ax− λBx‖ ,

where H is a Hilbert space, x ∈ H, C is the the set of complex numbers and A and

B are bounded linear operators on H [2].

In our work we wanted to identify new minimax theorems that hold for semi-

norms and linear operators that act on separable Hilbert spaces. In Chapter 3 we

obtain some minimax results that hold for sequences of bounded seminorms. We

illustrate these results with examples of seminorms on the Hilbert space l2. Next we

consider and prove some simple minimax formula for operators. The formula works

also for bilinear functionals on a Hilbert space. The main results on minimax con-

ditions obtained in this thesis are the minimax conditions for operators in Schatten

ideals of compact operators. The details of this theory are explained in Chapter

4, and the results, namely Proposition 4.8 and Theorems 4.9, 4.11 and 4.15, have

been published in our joint paper in [19, pp.29-40] under the joint authorship of T.

Formisano and E. Kissin, where the second author contributed to various stages and

to its final version.

Clarkson proved in [12] famous inequalities for Banach spaces of sequences lp,

p > 1. He used these inequalities to show that the lp spaces, for p > 1, are uni-
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formly convex. McCarthy obtained in [28] non-commutative analogues of Clarkson

estimates for pairs of operators in Schatten ideals Sp. Using them, he proved that

the spaces Sp are uniformly convex, for 1 < p <∞, and therefore they are reflexive

Banach spaces [39, p.23]. The Clarkson-McCarthy estimates play an important role

in analysis and operator theory. They were generalized to a wider class of norms

that include the p-norms by Bhatia and Holbrook [6] and Hirzallah and Kittaneh

[24]. In [9] Bhatia and Kittaneh proved analogues of Clarkson-McCarthy inequali-

ties for n-tuples of operators of special type. Kissin [25] extended these estimates

to all n-tuples of operators. He also extended the results of Bhatia and Kittaneh in

[7] and [8] on estimates for partitioned operators and for Cartesian decomposition

of operators.

In Chapters 5 and 6 we develop a theory that allows us to extend the result of

Kissin [25] and to obtain an analogue of generalized Clarkson-McCarthy inequality

for lq (Sp) spaces. We also establish various relevant results for operators that belong

to lq (Sp) and Sp (H,H∞) spaces. Making use of this, we prove that the spaces

lp (Sp) are p-uniformly convex, for p ≥ 2. We also analyze partition of operators

from Sp spaces and Cartesian decomposition of operators from lq (Sp) spaces. In

fact, we extend the results obtained in [25, Theorems 1 and 4-5] to infinite families

of projections and operators. This extension requires new techniques and a new

approach to the theory of lq (Sp) spaces and their relation to Sp (H,H∞) spaces.

Finally, we draw conclusions in Chapter 7. We provide elementary background
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of the theory of Hilbert spaces in the next chapter. In most cases, the reader can

find proofs of known results in the referenced literature. In some instances, we give

the proofs of some well known results for the readers convenience.
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Part I

Minimax
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Chapter 2 Preliminaries and background
A linear space X over R (real numbers) or C (complex numbers) is called a normed

linear space if it is equipped with a norm ‖·‖, that is, each x ∈ X is associated with

a non-negative number ‖x‖ —the norm of x, with the properties:

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0; (2.1)

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X; (2.2)

(iii) ‖αx‖ = |α| ‖x‖ where α is a scalar. (2.3)

The distance between x, y ∈ X is defined by ‖x− y‖. The concept of norm

generalizes the notion of absolute value and, more generally, the notion of the length

of a vector. For example if R is the real line with usual arithmetic and x ∈ R then

the usual absolute value, |x|, is a norm. Having the distance function given by a

norm, we can extend familiar concepts from calculus to this more general setting.

Definition 2.1 Let (xn) be a sequence in a normed space (X, ‖·‖).

(i) It is a Cauchy sequence if for every ε > 0 there is an integer N such that

m,n ≥ N implies ‖xn − xm‖ < ε.

(ii) It has a limit x ∈ X (in other words, (xn) converges to x) provided that, for

every ε > 0, there exists an integer N such that n ≥ N implies ‖xn − x‖ < ε. We

write limn→∞ ‖xn − x‖ = 0, ‖xn − x‖ →n→∞ 0, limn→∞ xn = x or xn →n→∞ x.

A function from X into another normed space Y is continuous at x ∈ X provided
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that for every sequence (xn) in X converging to x, the sequence (f (xn)) converges

to f (x).

If every Cauchy sequence in a normed linear space X has a limit in X then X

is said to be complete. A complete normed linear space is called a Banach space in

honour of the Polish mathematician Stefan Banach.

Let X be a Banach space with norm ‖·‖X = ‖·‖ . For 1 ≤ p < ∞, the lp(X)

space consists of all infinite sequences x = (x1, ..., xn, ...) of elements xn ∈ X such

that

‖x‖p =

( ∞∑
n=1

‖xn‖p
)1/p

<∞.

For p = ∞, the l∞(X) space consists of all infinite sequences x = (x1, ..., xn, ...) of

elements xn ∈ X such that

‖x‖∞ = sup
n
‖xn‖ <∞.

The proof below (see Lemma 2.2 - Theorem 2.4) that all lp(X), 1 ≤ p <∞, are

Banach spaces is based on proofs developed in [30, pp.45-46] and [32, pp.78-81].

Recall that a real-valued function f defined on an interval I of R is convex if

f (αa+ (1− α) b) ≤ αf (a) + (1− α) f (b) , for all 0 ≤ α ≤ 1 and all a, b ∈ I.

In other words, if a, b ∈ I then the graph of the function f restricted to the interval

[a, b] lies beneath the line segment joining the points (a, f (a)) and (b, f (b)). Posi-

tivity of the second derivative is a suffi cient condition for convexity, showing that,

in particular, the function f (t) = et is convex.
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Consider numbers p ≥ 1, q ≥ 1 satisfying

1

p
+

1

q
= 1. (2.4)

If one of the numbers is 1, we assume that the other is ∞.

Lemma 2.2 [30, Lemma 2.36], [32, Lemma IX.1] If s ≥ 0, t ≥ 0 then, for p, q > 1

satisfying (2.4),

st ≤ sp

p
+
tq

q
.

Proof. If st = 0, the lemma is evident. Let s > 0 and t > 0. Set a = p ln s and

b = q ln t. Then s = ea/p and t = eb/q. Thus sp = ea and tq = eb. By convexity of

f (t) = et, we obtain

st = ea/peb/q = e(
1
p
a+(1− 1

p)b) ≤ 1

p
ea +

(
1− 1

p

)
eb =

1

p
sp +

1

q
tq

which completes the proof.

The above lemma allows us to prove easily the following important Holder’s and

Minkowski’s inequalities.

Proposition 2.3 (i) [32, Theorem IX.2] (Holder’s inequality) Let p > 1, q > 1

satisfy (2.4). Then, for any n ∈ N and ai, bi ∈ C, i = 1, ..., n,

n∑
i=1

|aibi| ≤
(

n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

. (2.5)
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(ii) [32, Theorem IX.3] (Minkowski’s inequality) If p ≥ 1 then, for any n ∈ N and

ai, bi ∈ C, i = 1, ..., n,(
n∑
i=1

|ai + bi|p
)1/p

≤
(

n∑
i=1

|ai|p
)1/p

+

(
n∑
i=1

|bi|p
)1/p

. (2.6)

Proof. (i) Let A = (
∑n

i=1 |ai|
p)

1/p and B = (
∑n

i=1 |bi|
q)

1/q. If A = 0 or B = 0, the

proof is evident. Otherwise, by Lemma 2.2, we obtain

|ai|
A

|bi|
B
≤

(
|ai|
A

)p
p

+

(
|bi|
B

)q
q

=
|ai|p

pAp
+
|bi|q

qBq
.

Thus

|ai| |bi| ≤
AB

pAp
|ai|p +

AB

qBq
|bi|q .

Hence, summing up, we obtain

n∑
i=1

|aibi| ≤
AB

pAp

n∑
i=1

|ai|p +
AB

qBq

n∑
i=1

|bi|q =
AB

pAp
Ap +

AB

qBq
Bq =

= AB

(
1

p
+

1

q

)
= AB.

(ii) For p = 1, the inequality is evident. Let p > 1 and let p, q satisfy 1
p

+ 1
q

= 1.

Then 1 + p
q

= p and applying the triangle inequality, we have

|ai + bi|p = |ai + bi| |ai + bi|p/q ≤ (|ai|+ |bi|) |ai + bi|p/q =

= |ai| |ai + bi|p/q + |bi| |ai + bi|p/q .

Thus, summing up and applying (2.5), we get

n∑
i=1

|ai + bi|p ≤
n∑
i=1

|ai| |ai + bi|p/q +
n∑
i=1

|bi| |ai + bi|p/q ≤
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(2.5)

≤
(

n∑
i=1

|ai|p
)1/p( n∑

i=1

|ai + bi|p
)1/q

+

(
n∑
i=1

|bi|p
)1/p( n∑

i=1

|ai + bi|p
)1/q

.

If
∑n

i=1 |ai + bi|p = 0, the proof is evident. Otherwise, dividing the above inequality

by (
∑n

i=1 |ai + bi|p)1/q and using 1
p

= 1− 1
q
, we obtain(

n∑
i=1

|ai + bi|p
)1/p

≤
(

n∑
i=1

|ai|p
)1/p

+

(
n∑
i=1

|bi|p
)1/p

.

The proof is complete.

Using norm triangle inequality (2.2), we obtain that, for a Banach space X with

norm ‖·‖ and ai, bi ∈ X, i = 1, ..., n, Minkowski’s estimate gives(
n∑
i=1

‖ai + bi‖p
)1/p

≤
(

n∑
i=1

(‖ai‖+ ‖bi‖)p
)1/p

(2.7)

(2.6)
≤
(

n∑
i=1

‖ai‖p
)1/p

+

(
n∑
i=1

‖bi‖p
)1/p

.

We shall now prove that all lp (X) , 1 ≤ p <∞, are Banach spaces.

Theorem 2.4 Let X be a Banach space. The space lp (X) , for 1 ≤ p < ∞, is a

Banach space —a normed linear space complete with respect to ‖·‖p.

Proof. Let x = (x1, ..., xn, ...) ∈ lp (X). Then ‖x‖p = 0 if and only if x = 0, i.e., all

xn = 0.

Clearly, αx ∈ lp (X) for each α ∈ C, and ‖αx‖p = |α| ‖x‖p .

Let also y = (y1, ..., yn, ...) ∈ lp. It follows from Minkowski’s inequality (2.7) that,
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for all n,(
n∑
i=1

‖xi + yi‖p
)1/p

≤
(

n∑
i=1

‖xi‖p
)1/p

+

(
n∑
i=1

‖yi‖p
)1/p

≤
( ∞∑

i=1

‖xi‖p
)1/p

+

( ∞∑
i=1

‖yi‖p
)1/p

= ‖x‖p + ‖y‖p .

Hence the sequence of partial sums Sn =
∑n

i=1 ‖xi + yi‖p is bounded by
(
‖x‖p + ‖y‖p

)p
and monotone increasing. Therefore limSn exists and

lim
n→∞

Sn =
∞∑
i=1

‖xi + yi‖p ≤
(
‖x‖p + ‖y‖p

)p
.

Thus

‖x+ y‖p =

( ∞∑
i=1

‖xi + yi‖p
)1/p

=
(

lim
n→∞

Sn

)1/p

≤ ‖x‖p + ‖y‖p ,

so that ‖x+ y‖p ≤ ‖x‖p + ‖y‖p . Thus ‖·‖p is a norm.

The triangle inequality ‖x+ y‖p ≤ ‖x‖p+‖y‖p implies that lp (X) is closed under

addition, i.e., if x, y ∈ lp (X) then x + y ∈ lp (X). Thus lp (X) is a normed linear

space and we only need to show that it is complete.

Let {xk = (xk1, ..., x
k
n, ...)}∞k=1 be a Cauchy sequence in lp (X). Then, for each

ε > 0, there is N ∈ N such that, if r, s > N then

‖xr − xs‖p =

( ∞∑
n=1

‖xrn − xsn‖
p

)1/p

< ε.

Consequently, for each n = 1, 2, ..., we have ‖xrn − xsn‖ ≤ ‖xr − xs‖p < ε. Thus

for each n, the “vertical sequence”{xkn}∞k=1 is a Cauchy sequence in X. As X is a

Banach space and, therefore, is complete, there are xn ∈ X such that

lim
k→∞

∥∥xkn − xn∥∥ = 0 for all n. (2.8)
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Set x = (x1, ..., xn, ...). We shall show that x ∈ lp (X) , i.e.,
∑∞

n=1 ‖xn‖
p < ∞ and

that
∥∥x− xk∥∥

p
→ 0.

As {xk}∞k=1 is a Cauchy sequence in lp (X), for ε = 1, choose N such that∥∥xk − xN∥∥
p
≤ 1 for all k ≥ N. Setting s =

∥∥xN∥∥
p
, we have

∥∥xk∥∥
p

=
∥∥xk − xN + xN

∥∥
p
≤
∥∥xk − xN∥∥

p
+
∥∥xN∥∥

p
≤ s+ 1 for all k ≥ N.

Suppose that x /∈ lp (X) . Then there is q such that (
∑q

n=1 ‖xn‖
p)

1/p
> s + 3.

Hence, for all k ≥ N,

s+ 3 <

(
q∑

n=1

‖xn‖p
)1/p

=

(
q∑

n=1

∥∥(xn − xkn) + xkn
∥∥p)1/p

(2.7)

≤
(

q∑
n=1

∥∥xn − xkn∥∥p
)1/p

+

(
q∑

n=1

∥∥xkn∥∥p
)1/p

≤
(

q∑
n=1

∥∥xn − xkn∥∥p
)1/p

+
∥∥xk∥∥

p
≤
(

q∑
n=1

∥∥xn − xkn∥∥p
)1/p

+ s+ 1.

By (2.8), we can choose M ∈ N such that
∥∥xn − xkn∥∥ ≤ 1

q1/p
, for each n = 1, ..., q

and all k ≥M. Then
q∑

n=1

∥∥xn − xkn∥∥p ≤ q × 1

q
= 1.

Combining this with the above inequality, we have s+ 3 < s+ 2. This contradiction

shows that x ∈ lp (X) .

Let us show now that
∥∥x− xk∥∥

p
→ 0. As {xk}∞k=1 is a Cauchy sequence, choose

N such that ∥∥xk − xN∥∥
p
≤ ε

9
for all k ≥ N. (2.9)
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For v ≥ 1, let Qv be the projection on lp (X) such that Qvy = (y1, ..., yv, 0, 0, ..) for

all y = (yn) ∈ lp (X) . Then

‖Qvy‖p ≤ ‖y‖p and Qvy → y as v →∞. (2.10)

For ε > 0, we can choose m such that

‖x−Qmx‖p <
ε

3
and

∥∥xN −Qmx
N
∥∥
p
<
ε

9
. (2.11)

Then, by (2.9)-(2.11), we have for all k ≥ N,

∥∥xk −Qmx
k
∥∥
p
≤
∥∥xk − xN∥∥

p
+
∥∥xN −Qmx

N
∥∥
p

+
∥∥Qm(xN − xk)

∥∥
p

(2.12)

≤ 2
∥∥xk − xN∥∥

p
+
∥∥xN −Qmx

N
∥∥
p
<

2ε

9
+
ε

9
=
ε

3
.

By (2.8), we can choose k0 such that
∥∥xn − xkn∥∥ ≤ ε

3m1/p , for all n = 1, ...,m and

all k ≥ k0. Then

∥∥Qm(x− xk)
∥∥
p

=

(
m∑
n=1

∥∥xn − xkn∥∥p
)1/p

≤
(

m∑
n=1

( ε

3m1/p

)p)1/p

=
ε

3
. (2.13)

Hence, for k ≥ max(N, k0), it follows from (2.11) - (2.13) that

∥∥x− xk∥∥
p
≤ ‖x−Qmx‖p +

∥∥Qm(x− xk)
∥∥
p

+
∥∥Qmx

k − xk
∥∥
p
≤ ε

3
+
ε

3
+
ε

3
= ε.

Thus
∥∥x− xk∥∥

p
→ 0 as k →∞.

Example 2.5 [32, p.78] Consider the space lp = lp (C) , for 1 ≤ p < ∞. The

elements of lp are sequences of complex numbers x = {xn}∞1 such that
∑∞

n=1 |xn|
p <

∞. If we define the p-norm on lp by the formula

‖x‖p =

( ∞∑
n=1

|xn|p
)1/p

,
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then we derive from Theorem 2.4 that each lp is a Banach space.

Remark 2.6 Let X be a Banach space. The space l∞(X) is a Banach space. We

omit the proof as it is similar to the proof of Theorem 2.4.

It is also known (see for example [16, Lemma 9, XI.9.]) that

lp ⊆ lq and ‖x‖p ≥ ‖x‖q , for x ∈ lp, if 1 ≤ p ≤ q.

Thus l1 is the smallest and l∞ is the largest of the spaces.

Definition 2.7 [1, p.2] Let X be a linear complex space. An inner-product (or

scalar-product) (·, ·) is a complex-valued function defined on X ×X which satisfies

the conditions:

1. (x, y) = (y, x);

2. (αx+ βy, z) = α (x, z) + β (y, z) for α, β ∈ C

3. (x, x) ≥ 0, with equality if and only if x = 0.

We can derive from the above conditions that

(x, αy + βz) = (αy + βz, x) = α (y, x) + β (z, x)

= α (y, x) + β (z, x) = α (x, y) + β (x, z) .

The Cauchy-Schwarz-Bunyakovsky inequality is one of the most important in-

equalities in mathematics:
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Theorem 2.8 (Cauchy-Schwarz-Bunyakovsky inequality) [1, p.2] If (·, ·) is an inner-

product on a linear space X then

|(x, y)| ≤ (x, x)
1
2 (y, y)

1
2 , for all x, y ∈ X, (2.14)

with equality if and only if x and y are linearly dependent.

Proof. If (x, y) = 0 the theorem is proved. We can assume that (x, y) 6= 0. Letting

θ = (x,y)
|(x,y)| , we find from Definition 2.7 that, for any real λ,

0 ≤
(
θx+ λy, θx+ λy

)
= |θ|2 (x, x) + λθ (x, y) + λθ(x, y) + λ2 (y, y)

=

∣∣∣∣ (x, y)

|(x, y)|

∣∣∣∣2 (x, x) + λ
(x, y)

|(x, y)| (x, y) + λ
(x, y)

|(x, y)|(x, y) + λ2 (y, y)

= (x, x) + λ
|(x, y)|2

|(x, y)| + λ
|(x, y)|2

|(x, y)| + λ2 (y, y)

= λ2 (y, y) + 2λ |(x, y)|+ (x, x) . (2.15)

We arrived at a non-negative (no roots or one repeated root) quadratic in λ. Thus

the discriminant of this quadratic is non-positive:

4 |(x, y)|2 − 4 (y, y) (x, x) ≤ 0

Hence |(x, y)|2 ≤ (x, x) (y, y) and we have the inequality (2.14).

The equality in (2.14) holds if and only if the quadratic has a repeated root, in

other words if and only if

λ2 (y, y) + 2λ |(x, y)|+ (x, x) = 0, for some λ ∈ R.
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This implies (see (2.15)) that
(
θx+ λy, θx+ λy

)
= 0. Thus θx + λy = 0 for some

real λ, so that the vectors x and y are linearly dependent.

Let X be a linear space with scalar product (·, ·). Set

‖x‖ = (x, x)1/2 .

Let us check that ‖·‖ is a norm on X. From the Definition 2.7 we have ‖x‖ ≥ 0

with equality if and only if x = 0. Additionally, it follows that ‖αx‖2 = (αx, αx) =

αα (x, x) = |α|2 ‖x‖2 for all scalars α. Thus ‖αx‖ = |α| ‖x‖ for all scalars α. To

prove the triangle inequality, we apply the Cauchy-Schwarz-Bunyakovsky inequality

to obtain

‖x+ y‖2 = (x+ y, x+ y) = (x, x) + (x, y) + (y, x) + (y, y)

(2.14)

≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 for all x, y ∈ X.

This implies the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A Banach space whose norm comes from a scalar-product as ‖x‖ = (x, x)
1
2 is

called a Hilbert space in honour of the German mathematician David Hilbert [32].

A normed linear space (not complete) is called a pre-Hilbert space if its norm

comes from an inner-product. Hilbert and pre-Hilbert spaces are called inner-

product spaces [32].
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Example 2.9 [1, p.5-7] Consider the Hilbert space l2 that consists of sequences

x = {xn}∞1 of complex numbers such that

∞∑
n=1

|xn|2 <∞.

As in Example 2.5, it is a Banach space with norm

‖x‖ =

( ∞∑
n=1

|xn|2
)1/2

.

The scalar product in the space l2 has the form

(x, y) =
∞∑
n=1

xnyn.

The series on the right converges absolutely because

|ts| = |ts| ≤ 1

2
|t|2 +

1

2
|s|2 for all t, s ∈ C.

We omit the simple prove that the number (x, y) satisfies all the conditions of a

scalar product and the norm ‖x‖ of each vector x ∈ l2 satisfies

‖x‖ = (x, x)1/2 =

( ∞∑
n=1

|xn|2
) 1

2

.

Definition 2.10 [32] [27, Definition 1.21] Let X be an inner-product space. Ele-

ments x, y ∈ X are orthogonal (we write x ⊥ y) if their inner-product (x, y) = 0.

For sets A and B in X, we write A ⊥ B if (x, y) = 0 for all x ∈ A and y ∈ B.

Finally, A⊥ is the set of all vectors x ∈ X such that x ⊥ y for all y ∈ A; for any set

A this is always a subspace of X, moreover since A⊥ = ∩a∈A {a}⊥, A⊥ is a closed

subspace by continuity of the inner product.
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A subset S of X is an orthogonal set, if x, y ∈ S and x 6= y imply (x, y) = 0. If

each element of an orthogonal set S has norm 1, then S is an orthonormal set.

An orthonormal set S in X is complete if S ⊂ T and T is another orthonormal

set in X imply S = T .

One of the most used results in all mathematics and especially in functional

analysis is a result taken from logic and it’s called Zorn’s lemma. It was stated

without proof by the man whose name it carries [32]. In fact it is not possible

to prove Zorn’s lemma in the usual sense of the world. However,it can be shown

that Zorn’s lemma is logically equivalent to the axiom of choice, which states the

following: given any class of non-empty sets, a set can be formed which contains

precisely one element taken from each set in the given class. The axiom of choice

is intuitively obvious. We therefore treat Zorn’s lemma as an axiom of logic [38].

Other, equivalent forms of Zorn’s lemma include: Principle of choice, Principle of

transfinite induction, Zermelo theorem (Every set can be well ordered), the Tukey-

Teichmuller theorem and Hausdorff’s theorem. Zorn’s lemma is frequently used in

place of transfinite induction, since it does not require the sets considered to be well

ordered. Usually sets are naturally equipped with a partially ordered relation but

not necessary a well ordered relation [31].

Definition 2.11 [32] [31] Let P be a set and R a relation on P satisfying for

x, y, z ∈ P the following three conditions:
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1. (reflexive) xRx

2. (antisymmetric) xRy, yRx implies x = y

3. (transitive) xRy, yRz implies xRz.

Then (P,R) is a partially ordered set. If additionally, every two elements of

P are comparable i.e. for x, y ∈ P either xRy or yRx, then the set P is totally

ordered (or linearly ordered). If S ⊂ P then m ∈ P is an upper bound for S if

sRm for all s ∈ S and a lower bound if mRs for all s ∈ S (A smallest (largest)

element in S is an element s ∈ S which serves as a lower bound (upper bound) for

S). A well-ordered set is a partially ordered set every non-empty subset of which

possesses a smallest element. An element m ∈ P is maximal provided a ∈ P and

mRa implies m = a.

Lemma 2.12 (Zorn’s lemma)[32] [38] [31]Let P be a partially ordered set and sup-

pose every totally ordered subset S has an upper bound in P . Then P has at least

one maximal element.

Theorem 2.13 [32] Let X 6= {0} be an inner-product space. Then X contains a

complete orthonormal set.

Proof. Proof of this theorem uses Zorn’s lemma. Let x 6= 0 be in X. Then

s =
{

x
‖x‖

}
is an orthonormal set. Let P be the collection of all orthonormal sets
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containing s and ordered by inclusion. Let P0 be any linearly ordered (totally

ordered) subset of P . Consider

S0 =
⋃
UεP0

U

Let x, y ∈ S0. Then x ∈ U1 and y ∈ U2. Since P0 is linearly ordered we can assume

that U1 ⊆ U2. Thus x, y ∈ U2. Since all elements of P0 are orthonormal sets we

have that x ⊥ y and so S0 is an orthonormal set. Thus S0 ∈ P . S0 is clearly an

upper bound for P0 since for every U ∈ P0, we have U ⊆ S0. By Zorn’s lemma, P

has a maximal element T .

Suppose that T is not a complete orthonormal set in X. Then there exists an

element z ∈ X such that z /∈ T and T ∪ {z} is an orthonormal set. This implies

that T is not a maximal element in P and we have a contradiction. Thus T is a

complete orthonormal set in X and the theorem is proved.

Theorem 2.14 [32, p.20] Let H be a Hilbert space and S a complete orthonormal

set in H. Then

x =
∑
u∈S

(x, u)u, for every x ∈ H,

where the convergence is unconditional (the series converges to the same element if

we rearrange the elements of the series), the number of u ∈ S, for which (x, u) 6= 0,

is at most countable and

‖x‖2 =
∑
u∈S
|(x, u)|2 (the Parseval equality). (2.16)
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If H is separable (i.e. it contains a countable dense subset), then any complete

orthonormal set S is countable, say S = {un}∞n=1 , and

x =
∞∑
n=1

(x, un)un and ‖x‖2 =
∞∑
n=1

|(x, un)|2 .

A Hilbert space H is the direct sum of its closed subspaces M and N , i.e.

M ⊕N = H if M ∩N = {0} and each z ∈ H can be written in the form z = x+ y,

where x ∈M and y ∈ N. As M ∩N = {0}, this representation of z is unique.

Theorem 2.15 [17, Theorem 2.2.4] For every closed subspace L of a Hilbert space

H,

L⊕ L⊥ = H.

In this thesis we study separable Hilbert spaces.

Definition 2.16 [27, p.31] Let X and Y be normed linear spaces. A map T : X →

Y is a linear transformation, linear operator or operator (in this thesis all operators

are linear) if

T (αx+ βy) = αTx+ βTy, for all x, y ∈ X and α, β ∈ C.

It is bounded if there exists M ≥ 0 such that

‖Tx‖ ≤M ‖x‖ for all x ∈ X.

The norm ‖T‖ of a bounded operator T can be defined as

‖T‖ = sup
‖x‖≤1

‖Tx‖ , or equivalently ‖T‖ = sup
‖x‖=1

‖Tx‖ = sup
x∈X

‖Tx‖
‖x‖ .
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If T is bounded, one-to-one, onto and its inverse T−1 is bounded, then T is an

isomorphism and we say that the spaces X and Y are isomorphic.

Theorem 2.17 [27, p.32] The collection B (X, Y ) of all bounded operators from a

normed linear space X to a normed linear space Y is a normed linear space in the

operator norm, where the vector operations are defined pointwise. If, in addition, Y

is a Banach space, then B (X, Y ) is a Banach space.

When X = Y we denote B (X, Y ) as B (X).

Theorem 2.18 [38, pp.219-220] Let X, Y be normed spaces and let T : X → Y be

an operator. The following are equivalent :

1. T is bounded;

2. T is continuous at 0;

3. T is continuous on all of X.

Example 2.19 [27, Example 2.8] Let H be a Hilbert space with orthonormal basis

{en}∞n=1 and {αn}
∞
n=1 a bounded sequence of complex numbers. Set Aen = αnen.

Extend A by linearity and continuity to all of H. Then, given x ∈ H, we have

x =
∑∞

n=1 (x, en) en and

‖Ax‖2 =
∞∑
n=1

|(Ax, en)|2 =
∞∑
n=1

|(x, en)|2 |αn|2

≤
(

sup
n
|αn|2

) ∞∑
n=1

|(x, en)|2 =

(
sup
n
|αn|

)2

‖x‖2 .
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We see that A is bounded and ‖A‖ ≤ supn |αn|. Consideration of Aen shows that

‖A‖ = sup
n
|αn| .

Such an operator A is called a diagonal operator, with diagonal sequence {αn}∞n=1.

Definition 2.20 [30, p.86] Let X be a Banach space and let X∗ denote the linear

space of all bounded linear operators from X into C. Every f ∈ X∗ is called a linear

functional and

‖f‖ = sup {|f (x)| : ‖x‖ ≤ 1}

is its norm. The space X∗ is the dual (or conjugate) space of X.

Theorem 2.21 [27, p.36] (adjoint of an operator). Given Hilbert spaces H and K

and T ∈ B (H,K) , there is a unique T ∗ ∈ B (K,H) such that

(Tx, y)K = (x, T ∗y)H for all x ∈ H and y ∈ K.

The operator T ∗ is called the adjoint of T and (see [42, page 78])

‖T ∗‖ = ‖T‖ .

Definition 2.22 [30, p.93] An operator T ∈ B (H) is self-adjoint if T = T ∗.

Theorem 2.23 [30, p.93] A bounded operator T is self-adjoint if and only if (Tx, x)

is real for all x ∈ H.
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With every operator T : X → Y we associate two important subspaces: The

null space or the kernel denoted by ker (T ) and the range or the image of T denoted

by R (T ). The null space consists of all x ∈ X such that Tx = 0 and the the range

consists of all y ∈ Y such that Tx = y for some x ∈ X. The subspace R(T ) is not

necessarily closed in Y, while kerT is always a closed subspace of X. [26, page 52].

Theorem 2.24 [30, Proposition 4.27] For all T ∈ B (H) :

(a) ker (T ∗) = R (T )⊥ ;

(b) ker (T )⊥ = R (T ∗).

Let A be a bounded linear operator on a Hilbert space H. The norm of A (see

Definition 2.16) is

‖A‖ = sup {‖Ax‖ : ‖x‖ = 1} = sup
{

(Ax,Ax)
1
2 : ‖x‖ = 1

}
.

From Cauchy-Schwarz-Bunyakovsky inequality we obtain for all x ∈ H

sup
‖y‖=1

|(Ax, y)| ≤ sup
‖y‖=1

(‖Ax‖ ‖y‖) = sup
‖y‖=1

‖Ax‖ = ‖Ax‖

On the other hand, let ‖x‖ = 1 and Ax 6= 0. Set y0 = Ax
‖Ax‖ . Then

‖y0‖ = 1 and ‖Ax‖ =
(Ax,Ax)

‖Ax‖ = (Ax, y0) ≤ sup
‖y‖=1

|(Ax, y)| .

Hence

sup
‖y‖=1

|(Ax, y)| = ‖Ax‖ . (2.17)
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Thus

‖A‖ = sup
‖x‖=1

‖Ax‖ = sup
‖x‖=‖y‖=1

|(Ax, y)| .

Definition 2.25 [30, p.93] An operator T ∈ B (H) is positive if (Tx, x) ≥ 0 for all

x ∈ H.

It is clear that 0 and 1 are positive, as are T ∗T and TT ∗ for any operator

T ∈ B (H), since for all x ∈ H, we have

(T ∗Tx, x) = (Tx, Tx) ≥ 0 and (TT ∗x, x) = (T ∗x, T ∗x) ≥ 0.

For operators A and B, A ≥ B is defined to mean that A − B ≥ 0; equivalently

A ≥ B ⇐⇒ (Ax, x) ≥ (Bx, x) for all x.

Theorem 2.26 [30, Theorem 4.32] Given any positive operator T , there is a unique

positive operator A such that A2 = T . The operator A is denoted by T 1/2. Moreover,

T 1/2 commutes with any operator that commutes with T .

Definition 2.27 [30, p.95] If H and K are Hilbert spaces and an operator U ∈

B (H,K), then U is unitary if U∗U = 1H and UU∗ = 1K.

Definition 2.28 [38, p.237] A projection P on a Banach space B is an idempotent

in the algebra of all linear bounded operators on B, that is, P is a linear bounded

transformation of B into itself such that P 2 = P.

Projections can be described geometrically as follows [38, p.237] (here the symbol

⊕ represents direct sum of subspaces):
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1. If P is a projection on a Banach space B, then the range R(P ) is a closed

subspace of B and B = R(P )⊕ ker(P );

2. a pair of closed linear subspaces M and N of a Banach space B, such that

B = M ⊕N determines a projection P whose range and null space areM and

N, respectively. (If z = x+ y is the unique representation of a vector in B as

a sum of vectors in M and N , then P is defined by Pz = x).

In the theory of Hilbert spaces we consider projections, sometimes called orthogo-

nal projections, whose range and null space are perpendicular, i.e., kerP = (R (P ))⊥.

Definition 2.29 [30, p.94] An operator P ∈ B (H) on a Hilbert space H is an

orthogonal projection, or ortho-projection, if P = P ∗ and P 2 = P . We will call

such operator P just projection.

By the projection theorem (see [27, p.13]), every non-zero orthogonal projection

is of norm 1.

We say that two projections P and Q are orthogonal if PQ = 0. It can be proved

[38, p.275] that

PQ = 0 ⇐⇒ QP = 0 ⇐⇒ R (P ) ⊥ R (Q) .

The following definition holds for Banach spaces but we shall only consider

Hilbert spaces.
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Definition 2.30 [17, p.59] (i) A set K in a Banach space X is called a precompact

set if, for every sequence {xn} in K, there exists an element x ∈ X (a limit point)

and a subsequence {xni} of {xn} such that xni → x. It is compact, if all limit points

also belong to K.

(ii) A linear operator A : X → Y, where X and Y are Banach spaces, is called a

compact operator if and only if, for every bounded sequence {xn} in X, the sequence

{Axn} is a precompact set.

Clearly, a compact operator must be bounded, since the image of the unit ball

of X must be a bounded set in Y (otherwise, we can easily find a sequence {xn}

inside the unit ball of X such that ‖Axn‖ → ∞ and, therefore the set {Axn} has

no converging subsequence) [17, p.59].

Theorem 2.31 [43, p.10] If T is a compact operator on a Hilbert space H, then for

any bounded linear operator S on H, the operators TS and ST are both compact. If

S is also compact, then T + S is compact.

Note that if T is compact, then αT = (α1)T is also compact for all complex

numbers α.

Theorem 2.32 [43, p.11]. A bounded linear operator T on H is compact if and

only if T ∗ is compact, if and only if T ∗T is compact, if and only if |T | = (T ∗T )1/2

is compact.
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Theorem 2.33 [43, p.11]. If {Tn}∞n=1 is a sequence of compact operators on H and

‖Tn − T‖ →n→∞ 0

for some operator T on H, then T is also compact.

Definition 2.34 [30, p.168]. The spectrum of an operator T ∈ B (H), denoted by

σ (T ), is the set of all scalars λ such that T − λ1 is not invertible in B (H).

Theorem 2.35 (Spectral Theorem for Compact Operators) [30, Theorem 9.16 and

9.18]. Let T be a compact operator in B (H).

(i) The set σ (T ) = {λn} is finite or countable. All λn 6= 0 are eigenvalues

and the corresponding eigenspaces Mn are finite-dimensional. If {λn} is countable

infinite then λn → 0, as n→∞.

(ii) If T is self-adjoint, then all λn are real, all eigenspaces Mn are mutually

orthogonal and their closed linear span is all of H. Moreover, T =
∑

n λnPn, where

Pn are projections on Mn.

We will need the following version of the spectral theorem also called the Schmidt

representation (see [32, pp.64, 75]).

Corollary 2.36 [27, Corollary 4.25]. Let T be a compact self-adjoint operator on a

separable Hilbert space H. Then there is an orthonormal basis {en} of H consisting

of eigenvectors for T such that

Tx =
∑
n

λn (x, en) en, for each x ∈ H,
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where λn is the eigenvalue of T corresponding to the eigenvector en.

In [21] the authors analyze completely continuous operators that map weakly

convergent sequences to norm convergent sequences. In our case of operators on

separable Hilbert spaces, completely continuous operators coincide with compact

operators, since, for reflexive spaces, the two definitions are equivalent (we know

that all Hilbert spaces are reflexive, i.e., if H is a Hilbert space then it is isomorphic

to its second dual H∗∗) [11] [43] [38].

Definition 2.37 [38, p.208] An algebra (real or complex) is a linear space A equipped

with a multiplication operation that assigns to each x, y ∈ A an element xy ∈ A such

that, for all x, y, z ∈ A and scalars α, the following axioms must be satisfied:

(1) (Associative law) x (yz) = (xy) z;

(2) (Distributive laws) x (y + z) = xy + xz and (x+ y) z = xz + yz;

(3) (Law connecting multiplication and scalar multiplication) α (xy) = (αx) y =

x (αy).

An algebra is commutative if xy = yx for all elements of the space.

Definition 2.38 [38, p.302] A Banach algebra is a real or complex Banach space

B, which is also an algebra in which the multiplicative structure is related to the

norm by the following requirement

‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ B.
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For example, the linear space B(H) of all bounded operators on a Hilbert space

H endowed with the operator norm is a Banach algebra, where multiplication of

operators is their composition.

Definition 2.39 [38, p.324] A Banach algebra A is called a Banach ∗-algebra if it

has an involution ∗, that is, if there exists a mapping x → x∗ of A into itself with

the following properties:

(1) (x+ y)∗ = x∗ + y∗ for x, y ∈ A;

(2) (αx)∗ = αx∗ for x ∈ A and α ∈ C;

(3) (xy)∗ = y∗x∗ for x, y ∈ A;

(4) x∗∗ = x for x ∈ A;

(5) ‖x∗‖ = ‖x‖ for x ∈ A.

If H is a Hilbert space, then the algebra B(H) of all bounded linear operators

on H is a Banach ∗-algebra with the adjoint operation T → T ∗ as the involution.

A subalgebra of the algebra B(H) is said to be self-adjoint, or a ∗-subalgebra, if it

contains the adjoint of each of its operators. All closed self-adjoint subalgebras of

B (H) are Banach ∗-algebras. Moreover, the closed self-adjoint subalgebras of B (H)

that satisfy the following condition:

‖xx∗‖ = ‖x‖2 ,

for all elements x, constitute a special class of Banach ∗-algebras called C∗-algebras.
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Definition 2.40 [38, p.209] Let A be a complex algebra. Its subset I is a left (re-

spectively, right) ideal of A, if

(1) αa+ βb ∈ I for all a, b ∈ I and α, β ∈ C;

(2) ab ∈ I (respectively, ba ∈ I) for each a ∈ A and b ∈ I.

It is a two-sided ideal of A, if it is a left and a right ideal of A.

Let C (H) denote the set of all compact operators on H. From the above Theo-

rems 2.31, 2.33 and 2.32 we know that C (H) is a closed, self-adjoint subalgebra and

a two-sided ideal of the algebra B (H). Thus C (H) is a C∗-subalgebra of B (H). It

is known that C (H) is the only proper closed two-sided ideal of B (H). [43, p.12].
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Chapter 3 Minimax and seminorms
3.1 Introduction

Let X and Λ be sets and let f be a real function on X×Λ = {(x, λ) : x ∈ X,λ ∈ Λ}.

Recall that the minimax equality is the following equality:

inf
λ∈Λ

(
sup
x∈X

f (x, λ)

)
= sup

x∈X

(
inf
λ∈Λ

f (x, λ)

)
.

As we shall see in Proposition 3.1, the inequality

inf
λ∈Λ

(
sup
x∈X

f (x, λ)

)
≥ sup

x∈X

(
inf
λ∈Λ

f (x, λ)

)

holds for all functions f. Therefore to prove the minimax equality, one only need to

prove the inverse inequality

inf
λ∈Λ

(
sup
x∈X

f (x, λ)

)
≤ sup

x∈X

(
inf
λ∈Λ

f (x, λ)

)
.

We give below the proof of the following known proposition, as we could not find

a reference.

Proposition 3.1 Let X and Λ be sets and let f be a function from

X × Λ = {(x, λ) : x ∈ X,λ ∈ Λ}

into R. Then

inf
λ∈Λ

(
sup
x∈X

f (x, λ)

)
≥ sup

x∈X

(
inf
λ∈Λ

f (x, λ)

)
.
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Proof. For every µ ∈ Λ, we have

sup
x∈X

f (x, µ) ≥ sup
x∈X

inf
λ∈Λ

f (x, λ) .

Thus

inf
µ∈Λ

sup
x∈X

f (x, µ) ≥ sup
x∈X

inf
λ∈Λ

f (x, λ)

This concludes the proof.

To prove some theorems for example Theorem 4.11 we need the following lemma.

The lemma is known, but we could not find any reference.

Lemma 3.2 Let f : X × Λ→ R be a function on the product of non-empty sets X

and Λ. Suppose that there exists µ ∈ Λ such that

sup
λ∈Λ

f (x, λ) = f (x, µ) for each x ∈ X. (3.1)

Alternatively, suppose that there exists x0 ∈ X such that

inf
x∈X

f (x, λ) = f (x0, λ) for each λ ∈ Λ. (3.2)

Then

inf
x∈X

(
sup
λ∈Λ

f (x, λ)

)
= sup

λ∈Λ

(
inf
x∈X

f (x, λ)

)
= inf

x∈X
f (x, µ) . (3.3)

Proof. Applying Proposition 3.1, we always have

inf
x∈X

(
sup
λ∈Λ

f (x, λ)

)
≥ sup

λ∈Λ

(
inf
x∈X

f (x, λ)

)
. (3.4)
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Suppose now that (3.1) holds. Then

inf
x∈X

(
sup
λ∈Λ

f (x, λ)

)
= inf

x∈X
f (x, µ) .

Hence

inf
x∈X

(
sup
λ∈Λ

f (x, λ)

)
= inf

x∈X
f (x, µ) ≤ sup

λ∈Λ

(
inf
x∈X

f (x, λ)

)
Combining this with (3.4), we obtain (3.3). The proof that (3.2) implies (3.3) is

similar.

In sections 3.2 and 3.3 we consider the validity of the minimax equality for a

sequence of seminorms on Banach spaces.

Definition 3.3 [35, p.12] Let X be a complex vector space. A non-negative, finite,

real-valued function g on X is called a seminorm if, for all x, y ∈ X and scalars λ,

g (λx) = |λ| g (x) (3.5)

g (x+ y) ≤ g (x) + g (y) . (3.6)

In fact, any function on X that satisfies (3.5) and (3.6) is non-negative. Indeed,

for each x ∈ X,

g (0) = g (0x) = |0| g (x) = 0, so that

0 = g (0) = g (x+ (−x)) ≤ g (x) + g (−x) = g (x) + |−1| g (x) = 2g(x).

Clearly, the set g−1 (0) is a linear subspace of X. If g (x) = 0 implies x = 0, then

(see(2.1)-(2.3)) g is a norm, so that (X, g) is a normed space.
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Definition 3.4 [1, p.36] A seminorm g on a normed linear space X is bounded if

there exists M > 0 such that

g (x) ≤M ‖x‖ for all x ∈ X.

For example, letX be a Banach space with norm ‖·‖ . For each bounded operator

T on X, we have that gT (x) = ‖Tx‖ , for x ∈ X, is a bounded seminorm on X, as

gT (λx) = ‖Tλx‖ = |λ| ‖Tx‖ = |λ| gT (x);

gT (x+ y) = ‖T (x+ y)‖ ≤ ‖Tx‖+ ‖Ty‖ = gT (x) + gT (y)

and gT (x) = ‖Tx‖ ≤ ‖T‖ ‖x‖ for all x ∈ X.

A bounded seminorm g on X defines an equivalent norm on X and we will write

g ∼ ‖·‖ , if there exists 0 < k such that

k ‖x‖ ≤ g(x) for all x ∈ X.

In other words, g ∼ ‖·‖ if

k = inf
x∈X

g(x)

‖x‖ = inf
‖x‖=1

g(x) > 0. (3.7)

For example, if T is a bounded operator on X that has bounded inverse T−1

then gT ∼ ‖·‖ , as

‖x‖ =
∥∥T−1Tx

∥∥ ≤ ∥∥T−1
∥∥ ‖Tx‖ =

∥∥T−1
∥∥ gT (x) for all x ∈ X,

so that ‖T−1‖−1 ‖x‖ ≤ gT (x) and k = ‖T−1‖−1
.
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It follows from (3.7) that g � ‖·‖ if and only if there is a sequence {xn}∞n=1 in X

such that

‖xn‖ = 1 for all n and g(xn)→ 0, as n→∞.

The following theorem about seminorms is known. Note that if the seminorms

are linear, then the proof of the theorem follows from the uniform boundedness

principle and the Banach-Steinhaus theorem (see for example [27, Theorems 3.11

and 3.12]).

Theorem 3.5 [1, p.37] Let {gk}∞k=1 be a sequence of bounded seminorms on a Hilbert

space H. If the sequence is bounded at each point x ∈ H, then the function defined

by

g (x) = sup
n
gn (x) for x ∈ H,

is also a bounded seminorm.

3.2 Minimax equality for seminorms

Let {gk}∞k=1 be a sequence of bounded seminorms on a Hilbert space H bounded at

each point x ∈ H. Consider the minimax formula:

inf
‖x‖=1

sup
n
gn (x) = sup

n
inf
‖x‖=1

gn (x) .

By Theorem 3.5, g (x) = supn gn (x) is a bounded seminorm on H. Hence the mini-

max formula takes the form

inf
‖x‖=1

g(x) = inf
‖x‖=1

sup
n
gn (x) = sup

n
inf
‖x‖=1

gn (x) . (3.8)
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A particular case could be that there exists m ∈ N such that gm (x) = supn gn (x).

Proposition 3.6 Let ‖x‖ = (x, x)1/2 be the norm on a Hilbert space H. Let {gk}∞k=1

be a sequence of bounded seminorms on H bounded at each point x ∈ H and let

g (x) = supn gn (x) . Then

(i) If g � ‖·‖ then (3.8) holds.

(ii) If g ∼ ‖·‖ but all gn � ‖·‖ then (3.8) doesn’t hold.

(iii) Let g ∼ ‖·‖. Then (3.8) holds if and only if for each ε > 0 there exists nε

such that gnε ∼ ‖·‖ and inf‖x‖=1 gnε (x) ≥ inf‖x‖=1 g(x)− ε.

Proof. (i) We know that g � ‖·‖ if and only if there is a sequence {xn}∞n=1 in X

such that ‖xn‖ = 1 for all n and g(xn)→ 0, as n→∞. Then

0 ≤ inf
‖x‖=1

g(x) ≤ inf
x∈{xn}

g(x) = 0.

Thus inf‖x‖=1 g(x) = 0. We know from Proposition 3.1 that

inf
‖x‖=1

g(x) = inf
‖x‖=1

sup
n
gn (x) ≥ sup

n
inf
‖x‖=1

gn (x) .

As all seminorms are non-negative, we have supn inf‖x‖=1 gn (x) ≥ 0. Thus

inf
‖x‖=1

g(x) = inf
‖x‖=1

sup
n
gn (x) = sup

n
inf
‖x‖=1

gn (x) = 0.

(ii) Suppose that g ∼ ‖·‖ but all gn � ‖·‖. Thus for each n there exists sequence

{xnj }∞j=1 such that
∥∥xnj ∥∥ = 1, for all n, j, and, for each n, g(xnj ) → 0, as j → ∞.

Hence for all n we have

inf
‖x‖=1

gn (x) ≤ inf
x∈{xnj }∞j=1

gn (x) = 0.
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Therefore supn inf‖x‖=1 gn (x) = 0. On the other hand, g ∼ ‖·‖ and by (3.7)

inf
‖x‖=1

g(x) > 0. Thus

inf
‖x‖=1

g(x) = inf
‖x‖=1

sup
n
gn (x) > 0.

Therefore LHS > 0 and RHS = 0. Hence the minimax (3.8) doesn’t hold.

(iii) Let kn = inf‖x‖=1 gn(x) and k = inf‖x‖=1 g(x). Then kn > 0 if and only if

gn ∼ ‖·‖ . The minimax (3.8) holds if and only if k = supn kn, that is, for each ε > 0

there exists nε such that gnε ∼ ‖·‖ and inf‖x‖=1 gnε (x) ≥ inf‖x‖=1 g(x)− ε.

Case (ii) is a subcase of (iii) but we think that it is worth mentioning it as

individual case for clarity. Example 3.7 below illustrates Proposition 3.6 case (ii)

when g = ‖·‖2.

Example 3.7 Consider the Hilbert space

l2 =

x = {xn}∞1 : all xn ∈ C, ‖x‖2 =

( ∞∑
n=1

|xn|2
)1/2

<∞


and the following seminorms gn on l2 given by gn (x) =

(∑n
i=1 |xi|

2) 12 where x ∈ l2.
The proof of condition (3.5) is obvious and the proof of the triangle inequality called

in this case the Minkowski’s inequality

gn(x+ y) =

(
n∑
i=1

|xi + yi|2
) 1

2

≤
(

n∑
i=1

|xi|2
) 1

2

+

(
n∑
i=1

|yi|2
) 1

2

= g(x) + g(y)

was obtained in Proposition 2.3. Thus gn are seminorms on l2.

We have that

g(x) = sup
n
gn (x) = sup

n

(
n∑
i=1

|xi|2
) 1

2

=

( ∞∑
i=1

|xi|2
) 1

2

= ‖x‖2 .
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Thus

LHS = inf
‖x‖2=1

g(x) = inf
‖x‖2=1

‖x‖2 = 1.

On the other hand

RHS = sup
n

inf
‖x‖2=1

gn (x) = sup
n

0 = 0.

Thus the minimax formula does not hold.

3.3 The minimax in reverse

Let H be a Hilbert space. Let {gk}∞k=1, be a sequence of seminorms in H such that

gm (x) = infn gn(x) for all x ∈ H and some m ∈ N (for example {gk}∞k=1, could be

monotone increasing, i.e. gk (x) ≤ gk+1 (x) for all x ∈ H and we can set m = 1).

Consider the minimax formula, which is the reverse to minimax (3.8)

inf
n

sup
‖x‖=1

gn(x) = sup
‖x‖=1

inf
n
gn(x) (3.9)

Theorem 3.8 The minimax formula (3.9) holds and

inf
n

sup
‖x‖=1

gn(x) = sup
‖x‖=1

inf
n
gn(x) = sup

‖x‖=1

gm (x) . (3.10)

Proof. The inequality in the formula

inf
n

sup
‖x‖=1

gn(x) ≤ sup
‖x‖=1

gm (x) = sup
‖x‖=1

inf
n
gn(x)

is obvious, as the infimum over n of sup‖x‖=1 gn(x) is not greater than sup‖x‖=1 gm (x).

The reversed inequality holds for all minimax formula (see Proposition 3.1). Hence

Eqn. (3.10) holds.
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Example 3.9 Let us consider the following three examples.

(i) The following seminorms gn on l2

gn (x) =

(
n∑
i=1

|xi|2
) 1

2

where x ∈ l2

are monotone increasing and

RHS = sup
‖x‖=1

inf
n
gn(x) = sup

‖x‖=1

inf
n

(
n∑
i=1

|xi|2
) 1

2

= sup
‖x‖=1

|x1| = 1

LHS = inf
n

sup
‖x‖=1

gn(x) = inf
n

sup
‖x‖=1

(
n∑
i=1

|xi|2
) 1

2

= inf
n

1 = 1.

Thus the reversed minimax (3.10) holds as equality.

(ii) Consider the following seminorms gn on l2

gn(x) = ‖Pnx‖n =

(
n∑
i=1

|xi|n
)1/n

for x ∈ l2.

We have g1(x) = |x1| ≤ gn(x) for all n ∈ N and all x ∈ l2. Thus

g1(x) = inf
n
gn(x) for all x ∈ l2,

(
n∑
i=1

|xi|n
)1/n

≤
( ∞∑

i=1

|xi|n
)1/n

≤
( ∞∑

i=1

|xi|2
)1/2

= 1,

for ‖x‖2 = ‖x‖ = 1, and all n ∈ N, n ≥ 2.

Hence

sup
‖x‖=1

gn(x) ≤ 1 for all n ∈ N and inf
n

sup
‖x‖=1

gn(x) ≤ inf
n

1 = 1.
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We know that infn gn(x) = g1(x) = |x1|, for all x ∈ l2. Thus

sup
‖x‖=1

inf
n
gn(x) = sup

‖x‖=1

(|x1|) = 1.

Hence, it follows from Proposition 3.1 that

1 ≥ inf
n

sup
‖x‖=1

gn(x) ≥ sup
‖x‖=1

inf
n
gn(x) = sup

‖x‖=1

g1 = 1.

Thus the reversed minimax (3.10) holds as equality.

(iii) Let us consider the following seminorms Sn on l2

Sn (x) = ‖Pnx‖1+ 1
n

=

(
n∑
i=1

|xi|1+ 1
n

)1/(1+ 1
n)

for x ∈ l2.

From Minkowski’s inequality we know that Sn’s are seminorms.

As the function f (t) = (
∑n

i=1 s
t
i)

1/t
, (0 < t ≤ ∞, sj > 0) is nonincreasing [21,

p.92], we obtain that the sequence {Sn (x)}∞n=1 is monotone increasing, i.e.

1 +
1

n
> 1 +

1

n+ 1
implies ‖x‖1+ 1

n+1
≥ ‖x‖1+ 1

n
.

We have Sn (x) ≥ maxi=1,...,n (|xi|) ≥ |x1|, for all 1 ≤ n ∈ N. Thus infn Sn(x) ≥ |x1|.

On the other hand,

inf
n
Sn(x) ≤ S1(x) =

(
1∑
i=1

|xi|1+ 1
1

)1/(1+ 1
1)

= |x1| .

Hence infn Sn(x) = S1(x) = |x1|. Therefore we have

RHS = sup
‖x‖=1

inf
n
Sn(x) = sup

‖x‖=1

|x1| = 1.
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Let us now calculate LHS. We have that, for all n,

sup
‖x‖=1

Sn(x) ≥ Sn((1, 0, ..., 0, ...)) = 1.

Thus LHS = infn sup‖x‖=1 Sn(x) ≥ infn 1 = 1. On the other hand

LHS = inf
n

sup
‖x‖=1

Sn(x) ≤ sup
‖x‖=1

S1(x) = sup
‖x‖=1

(
1∑
i=1

|xi|2
)1/2

= sup
‖x‖=1

|x1| = 1.

Thus the reversed minimax (3.10) holds as equality.

3.4 A minimax theorem for operators

Let H be a Hilbert space and let A be a bounded linear operator on H. The uniform

norm of A (see Definition 2.16) is

‖A‖ = sup {‖Ax‖ : ‖x‖ = 1} = sup
{

(Ax,Ax)
1
2 : ‖x‖ = 1

}
where (x, y) is the scalar product of elements x, y ∈ H.

Definition 3.10 [30, p.63] A linear operator T ∈ B (H) is bounded from below if

there is a k > 0 such that, ‖Tx‖ ≥ k for all x ∈ H, ‖x‖ = 1.

Clearly, being bounded below implies that T is injective as ker (T ) = {0} . How-

ever, the converse is not true in infinite-dimensional spaces.

Theorem 3.11 (The bounded inverse theorem) [30, Theorem 3.6] For an injective

linear operator T ∈ B (H) , the following are equivalent:

(i) T−1 is bounded;
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(ii) T is bounded below;

(iii) R (T ) is closed.

In this thesis report we will consider various cases when minimax formula holds

within the theory of operators on Hilbert spaces. We will start with the following

simple case of minimax formula.

Theorem 3.12 Let H be a Hilbert space and A a bounded operator on H.

(i) If A is invertible and

(a) dimH = 1, then the minimax formula:

inf
‖x‖=1

{
sup
‖y‖=1

|(Ax, y)|
}

= sup
‖y‖=1

{
inf
‖x‖=1

|(Ax, y)|
}

= |a| (3.11)

holds, where a is a scalar such that Ax = ax for all x ∈ H.

(b) dimH > 1, then the minimax condition does not hold:

inf
‖x‖=1

{
sup
‖y‖=1

|(Ax, y)|
}

= inf
‖x‖=1

‖Ax‖ = k > 0, (3.12)

while

sup
‖y‖=1

{
inf
‖x‖=1

|(Ax, y)|
}

= 0. (3.13)

(ii) If A is not invertible, then

inf
‖x‖=1

{
sup
‖y‖=1

|(Ax, y)|
}

= sup
‖y‖=1

{
inf
‖x‖=1

|(Ax, y)|
}

= 0. (3.14)
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Proof. (i) (a) dimH = 1 implies that one vector spans the space and Ax = ax

for all x ∈ H and some scalar a. Let e ∈ H, ‖e‖ = 1. Then e forms a complete

orthonormal set. Thus

inf
‖x‖=1

{
sup
‖y‖=1

|(Ax, y)|
}

= inf
‖x‖=1

{
sup
‖y‖=1

|(ax, y)|
}

= inf
|l1|=1

{
sup
|l2|=1

|(al1e, l2e)|
}

= |a| ,

and

sup
‖y‖=1

{
inf
‖x‖=1

|(Ax, y)|
}

= sup
‖y‖=1

{
inf
‖x‖=1

|(ax, y)|
}

= sup
|l2|=1

{
inf
|l1|=1

|(al1e, l2e)|
}

= |a| .

(b) Suppose that A is invertible. This implies that A is injective and that A−1 is

bounded. By theorem 3.11, A is bounded below. Let inf‖x‖=1 ‖Ax‖ = k > 0. Then,

for all x such that ‖x‖ = 1

sup
‖y‖=1

|(Ax, y)| (2.17)
= ‖Ax‖ ≥ k > 0. (3.15)

Therefore

inf
‖x‖=1

{
sup
‖y‖=1

|(Ax, y)|
}

= inf
‖x‖=1

‖Ax‖ = k > 0.

Let us now evaluate the right hand side.

sup
‖y‖=1

{
inf
‖x‖=1

|(Ax, y)|
}

= sup
‖y‖=1

{
inf
‖x‖=1

|(x,A∗y)|
}

= 0

as dimH > 1 implies that for each vector A∗y we can find an orthogonal vector x

such that ‖x‖ = 1.

(ii) Suppose now that A is not invertible. If A is injective, Theorem 3.11 implies

that A is not bounded below i.e. there exists a sequence {xn} such that ‖xn‖ = 1
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for all n and limn→∞ ‖Axn‖ = 0. If A is not injective, there is e ∈ H, ‖e‖ = 1, such

that Ae = 0. Set xn = e for all n. Then

inf
‖x‖=1

{
sup
‖y‖=1

|(Ax, y)|
}

(2.17)
= inf

‖x‖=1
‖Ax‖ ≤ inf

n
‖Axn‖ = 0.

Hence, by Proposition 3.1, if A is not invertible, the minimax (3.14) holds.

3.5 Application

Definition 3.13 [1] We say that a complex function Ω : H ×H → C is a bounded

bilinear functional on a Hilbert space H if, for all x, y, z ∈ H, the following condi-

tions are satisfied:

(a) Ω (α1x+ α2y, z) = α1Ω (x, z) + α2Ω (y, z);

(b) Ω (x, β1y + β2z) = β1Ω (x, y) + β2Ω (x, z);

(c) sup‖x‖≤1,‖y‖≤1 |Ω (x, y)| <∞.

The scalar product (x, y) on H is an example of a bilinear functional.

The norm of the bilinear functional Ω, is defined by

‖Ω‖ = sup
‖x‖=1,‖y‖=1

|Ω (x, y)| = sup
x,y∈H

|Ω (x, y)|
‖x‖ ‖y‖ .

Thus |Ω (x, y)| ≤ ‖Ω‖ ‖x‖ ‖y‖ for all x, y ∈ H.

Theorem 3.14 [1] Each bilinear functional Ω on a Hilbert space H has a represen-

tation of the form Ω (x, y) = (Ax, y) where A ∈ B (H) and A is uniquely defined by

Ω. Furthermore ‖A‖ = ‖Ω‖.
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The minimax theorem can be applied to a bilinear functional Ω on a Hilbert

space H as follows. Consider the minimax formula:

inf
‖x‖=1

sup
‖y‖=1

|Ω (x, y)| = sup
‖y‖=1

inf
‖x‖=1

|Ω (x, y)| . (3.16)

Corollary 3.15 Let Ω be a bounded linear functional on a Hilbert space H and let A

be the corresponding operator defined in Theorem 3.14 such that Ω (x, y) = (Ax, y).

(i) If A is invertible and

(a) dimH = 1, then the minimax formula (3.16) holds:

inf
‖x‖=1

sup
‖y‖=1

|Ω (x, y)| = sup
‖y‖=1

inf
‖x‖=1

|Ω (x, y)| = |a| ,

where a is a scalar such that Ax = ax for all x ∈ H.

(b) dimH > 1, then the minimax condition (3.16) does not hold:

inf
‖x‖=1

sup
‖y‖=1

|Ω (x, y)| = inf
‖x‖=1

‖Ax‖ = k > 0,

while

sup
‖y‖=1

inf
‖x‖=1

|Ω (x, y)| = 0.

(ii) If A is not invertible then the minimax condition (3.16) holds:

inf
‖x‖=1

sup
‖y‖=1

|Ω (x, y)| = sup
‖y‖=1

inf
‖x‖=1

|Ω (x, y)| = 0.

3.6 Conclusion

In this chapter we studied minimax condition for sequences of bounded seminorms

on a Hilbert space H. We found that its validity depends on comparison of the
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bounded seminorms with the norm of the Hilbert space H. We illustrated the result

with example of bounded seminorms on the space l2. We also evaluated this minimax

in reverse and illustrated it with examples on l2. We found that, unlike the previous

minimax theorem, the minimax in reverse holds in all cases.

Towards the end of this chapter we presented a simple minimax formula for

bounded operators. We found that the minimax formula holds if the bounded oper-

ator is not invertible and it does not hold if the operator is invertible and dimH > 1.

We completed this chapter with application of the minimax condition for operators

to bounded bilinear functionals on H.

In the next chapter we study minimax theory for a special class of compact

operators - the Schatten class operators on a separable Hilbert space H.
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Chapter 4 Minimax and Schatten ideals of

compact operators
4.1 Introduction

In this chapter we consider various minimax conditions for norms of compact op-

erators in Schatten ideals. While in majority of cases the restrictions on operators

for which these conditions hold are straightforward, in one case considered in Sec-

tion 4.3 the fulfilment of the minimax condition depends on an interesting geometric

property of a family of subspaces {Ln = PnH}∞n=1 of a Hilbert space – approximate

intersection of these subspaces.

Before we consider these minimax conditions, let us recall main concepts of

theory of Schatten ideals that we will need in this chapter.

Let H be a separable Hilbert space and B(H) be the C∗-algebra of all bounded

operators on H with operator norm ‖·‖ . The set C(H) of all compact operators

in B(H) is the only closed two-sided ideal of B(H) [21, Corollary 1.1]. However,

B(H) has many non-closed two-sided ideals. By Calkin theorem [21, Theorem 1.1],

all these ideals of B(H) lie in C(H).

Definition 4.1 [21, pp.68-70] A two-sided ideal J of B(H) is called symmetrically

normed (s. n.), if it is a Banach space in some norm ‖ · ‖J and

‖AXB‖J ≤ ‖A‖‖X‖J‖B‖ for all A,B ∈ B(H) and X ∈ J.
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The most important class of s. n. ideals - the class of Schatten ideals - is defined

in the following way [21, Theorem 7.1 ]. For A ∈ C(H), consider the positive

operator |A| = (A∗A)1/2. The operator |A| is compact [43, Theorem 1.3.7], so that

its spectrum σ (|A|) contains 0 [30, Remark, p. 196], which is the only limit point

of σ (|A|). Apart from 0, it consists of countably many positive eigenvalues of finite

multiplicity (see Theorem 2.35). Thus σ (|A|)\{0} can be written as a non-increasing

sequence s(A) = {si(A)} of eigenvalues of |A|, taking account of their multiplicities.

Hence s(A) belongs to the space c0 of all sequences of real numbers converging to 0.

For each 0 ≤ p <∞, consider the following function on c0 :

φp(ξ) =

( ∞∑
i=1

|ξi|
p

)1/p

, where ξ = (ξ1, ..., ξn, ...) ∈ c0,

and the following subset of compact operators

Sp = Sp (H) = {A ∈ C(H) : φp(s(A)) =

(∑
j

spj (A)

)1/p

<∞}. (4.1)

Then all Sp are two-sided ideals of B(H) [21].

For each A ∈ Sp, consider the norm

‖A‖p = φp(s(A)) =

(∑
j

spj (A)

)1/p

. (4.2)

For all 1 ≤ p <∞, Sp are Banach∗-algebras with respect to the norms ‖·‖p and the

adjoint operation as the involution: if T ∈ Sp then T ∗ ∈ Sp [43, Theorem 1.3.6].

Moreover, they are s. n. ideals of B(H) (see [16, Lemma 6 (c)] for the second
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statement and [21, Theorem 7.1] for the first statement):

‖ATB‖p ≤ ‖A‖‖T‖p‖B‖ and ‖T ∗‖p = ‖T‖p , (4.3)

for all T ∈ Sp, A,B ∈ B(H). These ideals are called Schatten ideals.

All Schatten ideals are separable algebras in the ‖·‖p norm topology and the ideal

of all finite rank operators in B(H) is dense in each of them [21, p.92]. Moreover

[16, Lemma 9 (a)],

Sq ⊂ Sp, if q < p ≤ ∞, and ‖A‖p ≤ ‖A‖q if A ∈ Sq. (4.4)

We also denote the ideal C(H) of all compact operators by S∞. Note that [21, p.27]

‖A‖∞ = ‖A‖ = sup sj = s1. (4.5)

Definition 4.2 [27, p.28] [1, p.61] [30, p.164] A sequence {xn} in a Hilbert space

H is said to converge weakly to x ∈ H if

lim
n→∞

(xn, y) = (x, y) for all y ∈ H.

Let K be another separable Hilbert space. Let {An}∞n=1 be a sequence of operators

in B(H,K). It converges to a bounded operator A in the weak operator topology

(w.o.t), if

(Anx, y)→ (Ax, y) for all x ∈ H and y ∈ K.

It converges to A in the strong operator topology (s.o.t.), if

‖Ax− Anx‖K → 0 for all x ∈ H.
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If {xn} converges to x ∈ H in norm, then {xn} weakly converges to x. If {An}∞n=1

uniformly converges to an operator A (‖An − A‖ → 0) then {An}∞n=1
s.o.t→ A; if

{An}∞n=1
s.o.t→ A then {An}∞n=1

w.o.t→ A.

We can extend the norm ‖·‖p to all operators from B(H), by setting ‖A‖p =∞,

if A ∈ B(H) and A /∈ Sp. Thus

‖A‖p <∞ if A ∈ Sp, and ‖A‖p =∞ if A /∈ Sp, for p ∈ [1,∞). (4.6)

All Schatten ideals Sp, p ∈ [1,∞), share the following important property.

Theorem 4.3 [21, Theorem III.5.1] Let p ∈ [1,∞) and let a sequence {An} of

operators from Sp converge to A ∈ B(H) in the weak operator topology. If

sup
n
‖An‖p = M <∞ then A ∈ Sp and ‖A‖p ≤M.

Theorem 4.3 implies the following result.

Corollary 4.4 [21, Theorem III.5.2] Let a sequence {Tn} of operators in B (H)

converge to 1H in the strong operator topology. Let p ∈ [1,∞) and A ∈ B (H) . The

following conditions are equivalent.

(i) A belongs to Sp.

(ii) For some M1 > 0, A satisfies

sup
n
‖TnATn‖p = M1 <∞. (4.7)

(iii) For some M2 > 0, A satisfies sup
n
‖TnA‖p = M2 <∞.
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Proof. As ‖Tnx− x‖ → 0, as n → ∞, for all x ∈ H, it follows from the uniform

boundedness principle (see, for example, [16, Theorem II.1.17] [30, Theorem 3.10])

that there is L > 0 such that supn ‖Tn‖ < L.

(i) → (iii). If A ∈ Sp then all TnA ∈ Sp and, by (4.3),

‖TnA‖p ≤ ‖Tn‖ ‖A‖p ≤ L ‖A‖p .

Hence (iii) holds for M2 = L ‖A‖p .

(iii) → (ii). As TnA ∈ Sp, the operators TnATn also belong to Sp. By (4.3),

‖TnATn‖p ≤ ‖TnA‖p ‖Tn‖ ≤M2L = M1.

(ii)→ (i). Let (4.7) hold. The sequence {TnATn} converges to A in s.o.t. Indeed,

for each x ∈ H,

‖Ax− TnATnx‖ ≤ ‖Ax− TnAx‖+ ‖TnAx− TnATnx‖

≤ ‖Ax− TnAx‖+ ‖Tn‖ ‖A‖ ‖x− Tnx‖ → 0, as n→∞,

since ‖z − Tnz‖ → 0 for all z ∈ H. Hence {TnATn} converges to A in w.o.t. As

‖TnATn‖p ≤ M1 < ∞, all operators TnATn belong to Sp. Therefore it follows from

Theorem 4.3 that A ∈ Sp and ‖A‖p ≤M1.

Corollary 4.4 is partially stated in Theorem III.5.2 of [21, p.87] but only for

monotonically increasing sequence of finite rank projections.

It should be noted that Corollary 4.4 does not hold for p = ∞, that is, for

S∞ = C(H). Indeed, let A be a bounded non-compact operator. Then A /∈ S∞.
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However, as the norm ‖·‖∞ coincides with the usual operator norm ‖·‖ , we have

that (4.7) holds, since

sup
n
‖TnA‖∞ = sup

n
‖TnA‖ ≤ sup

n
‖Tn‖ ‖A‖ ≤ L ‖A‖ .

Theorem 4.5 [21, Theorem III.6.3] Let {Tn} be a sequence of self-adjoint bounded

operators on H that converges to 1H in the strong operator topology. Then, for each

p ∈ [1,∞] and for each A ∈ Sp,

‖A− TnA‖p → 0 and ‖A− TnATn‖p → 0, as n→∞.

The above result means that every sequence of self-adjoint bounded operators on

H that converges to 1H in the strong operator topology is an approximate identity

in all ideals Sp, p ∈ [1,∞] (including S∞ = C(H)).

Corollary 4.6 Let a sequence of self-adjoint bounded operators {Tn} on H converge

to 1H in the strong operator topology. Suppose that supn ‖Tn‖ ≤ 1. Then, for each

A ∈ B (H) and each p ∈ [1,∞],

sup
n
‖TnATn‖p = ‖A‖p (4.8)

and lim
n→∞

‖TnATn‖ = ‖A‖ . (4.9)

Proof. Let firstly A ∈ Sp. It follows from (4.3) and Theorem 4.5 that,

‖TnATn‖p
(4.3)

≤ ‖Tn‖ ‖A‖p ‖Tn‖ ≤ ‖A‖p and lim
n→∞

‖TnATn‖p = ‖A‖p .
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Hence supn ‖TnATn‖p = ‖A‖p.

Let A /∈ Sp. Then by (4.6), ‖A‖p = ∞. If supn ‖TnATn‖p < ∞ then it

follows from Corollary 4.4 that A ∈ Sp and we have a contradiction. Hence

supn ‖TnATn‖p =∞ = ‖A‖p and (4.8) is proved.

Now let us prove (4.9). Given ε > 0, we can find x ∈ H such that ‖x‖ = 1 and

0 ≤ ‖A‖ − ‖Ax‖ < ε. Then, as Tn → 1H in the s.o.t., we have

‖TnATnx− Ax‖ ≤ ‖TnA(Tnx− x)‖+ ‖TnAx− Ax‖

≤ ‖Tn‖ ‖A‖ ‖Tnx− x‖+ ‖TnAx− Ax‖ → 0, as n→∞,

since ‖Tnx− x‖ → 0 and ‖TnAx− Ax‖ → 0. Choose N ∈ N such that

‖TnATnx− Ax‖ < ε, for n > N.

Then, as ‖TnATnx‖ ≤ ‖TnATn‖ ≤ ‖A‖ , we have

0 ≤ ‖A‖ − ‖TnATn‖ ≤ ‖A‖ − ‖TnATnx‖ ≤ ‖A‖ − ‖Ax‖+ ‖Ax‖ − ‖TnATnx‖

< ε+ ‖Ax− TnATnx‖ < 2ε.

Since we can choose ε arbitrary small, we have that lim
n→∞

‖TnATn‖ = ‖A‖. Thus

(4.9) is proved.

4.2 Some minimax conditions for norms in Sp

Let a sequence {Tn} of self-adjoint bounded operators on H converge to 1H in the

s.o.t. For each A ∈ B(H), consider the function fA(p, n) = ‖TnATn‖p , for n ∈ N and
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p ∈ [1,∞). In this section we shall show that the function fA satisfies the minimax

condition:

inf
p∈[1,∞)

sup
n
fA(p, n) = sup

n
inf

p∈[1,∞)
fA(p, n) (4.10)

in the following two cases:

1) when A ∈ ∪p∈[1,∞)S
p,

2) when A /∈ ∪p∈[1,∞)S
p and TkATk /∈ ∪p∈[1,∞)S

p for some k.

We shall also show that, as a consequence of Lemma 3.2, the reversed minimax

condition

inf
n

sup
p∈[1,∞)

fA(p, n) = sup
p∈[1,∞)

inf
n
fA(p, n) (4.11)

holds for all operators A in B (H).

The following lemma contains simple norm equalities some of which are well

known.

Lemma 4.7 Let A ∈ Sq, for some q ∈ [1,∞). Then

lim
q≤p→∞

‖A‖p = ‖A‖ . (4.12)

Let {Tn} be a sequence of self-adjoint bounded operators on H that converges to 1H

in the s.o.t.. If a sequence {pn} in [q,∞) satisfies lim
n→∞

pn =∞, then

lim
n→∞

‖TnATn‖pn = ‖A‖ . (4.13)

Proof. Let {sj} be the non-increasing sequence of all eigenvalues of the operator

(A∗A)1/2 repeated according to multiplicity. Set αj =
sj
s1
. Then all αj ≤ 1. As
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A ∈ Sq, the series
∑∞

j=1 s
q
j = sq1

∑∞
j=1 α

q
j converges. Hence we can find N such that∑∞

j=N α
q
j < 1. Thus αj < 1 for j ≥ N, so that

∑∞
j=N α

p
j <

∑∞
j=N α

q
j < 1, for p > q.

Therefore,

∞∑
j=1

spj = sp1

∞∑
j=1

αpj = sp1

N−1∑
j=1

αpj + sp1

∞∑
j=N

αpj ≤ sp1(N − 1) + sp1 = Nsp1.

Thus

s1 ≤
( ∞∑
j=1

spj

)1/p

= ‖A‖p ≤ s1N
1/p → s1, as p→∞.

Hence

lim
p→∞
‖A‖p = s1

(4.5)
= ‖A‖ =

∥∥(A∗A)1/2
∥∥

which completes the proof of (4.12).

By (4.4), we have that A belongs to all Spn . Noticing that

∣∣∣‖A‖ − ‖TnATn‖pn∣∣∣ ≤ ∣∣∣‖A‖ − ‖A‖pn∣∣∣+
∣∣∣‖A‖pn − ‖TnATn‖pn∣∣∣ ,

we shall prove that ∣∣∣‖A‖ − ‖TnATn‖pn∣∣∣→ 0 as n→∞.

Indeed, by (4.12), lim
n→∞

∣∣∣‖A‖ − ‖A‖pn∣∣∣ = 0, as lim
n→∞

pn =∞. It follows from Theorem

4.5 that ‖A− TnATn‖q → 0, as n→∞. Thus

∣∣∣‖A‖pn − ‖TnATn‖pn∣∣∣ ≤ ‖A− TnATn‖pn (4.4)

≤ ‖A− TnATn‖q → 0, as n→∞.

Thus (4.13) holds.
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In the following proposition we evaluate

inf
p∈[1,∞)

(
sup
n
‖TnATn‖p

)
and sup

n

(
inf

p∈[1,∞)
‖TnATn‖p

)
.

Suppose that supn ‖Tn‖ ≤ 1. Recall that ‖A‖p = ∞ if A /∈ Sp. We obtain from

Corollary 4.6 that

sup
n
‖TnATn‖p = ‖A‖p , if A ∈ Sp, (4.14)

and sup
n
‖TnATn‖p = ‖A‖p =∞, if A /∈ Sp. (4.15)

Proposition 4.8 Let A ∈ B (H). Let a sequence {Tn} of self-adjoint bounded

operators on H converge to 1H in the s.o.t. and supn ‖Tn‖ ≤ 1.

(i) If A belongs to Sq, for some q ∈ [1,∞), i.e., A ∈ ∪p∈[1,∞)S
p then

inf
p∈[1,∞)

(
sup
n
‖TnATn‖p

)
= ‖A‖ .

(ii) If A does not belong to any Schatten ideal Sq, for q ∈ [1,∞), i.e., A /∈

∪p∈[1,∞)S
p then

inf
p∈[1,∞)

(
sup
n
‖TnATn‖p

)
=∞.

(iii) If, for each n, the operator TnATn belongs to ∪p∈[1,∞)S
p (for example, all Tn

are finite rank projections, or A belongs to some Sq), then

sup
n

(
inf

p∈[1,∞)
‖TnATn‖p

)
= ‖A‖ . (4.16)

(iv) If TkATk /∈ ∪p∈[1,∞)S
p, for some k, then

sup
n

(
inf

p∈[1,∞)
‖TnATn‖p

)
=∞.
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Proof. (i) Let A ∈ Sq. Then, by (4.15),

inf
p∈[1,∞)

(
sup
n
‖TnATn‖p

)
= inf

(
‖A‖p : p ∈ [1,∞), A ∈ Sp

)
.

Taking into account (4.4), we have

inf
{
‖A‖p : p ∈ [1,∞), A ∈ Sp

}
= lim

q≤p→∞
‖A‖p

(4.12)
= ‖A‖

which completes the proof of (i).

(ii) If A does not belong to any Schatten ideal Sp, for p ∈ [1,∞), then ‖A‖p =∞

and it follows from (4.15) that sup
n
‖TnATn‖p =∞ for each p ∈ [1,∞). Hence

inf
p∈[1,∞)

(
sup
n
‖TnATn‖p

)
=∞.

This ends the proof of (ii).

(iii) Fix n. Then TnATn belongs to some Sq(n). Hence TnATn ∈ Sp, for all p ≥

q(n). By (4.15),

inf
p∈[1,∞)

‖TnATn‖p = inf
{
‖TnATn‖p : p ∈ [1,∞), TnATn ∈ Sp

}
(4.4)
= lim

p→∞
‖TnATn‖p

(4.12)
= ‖TnATn‖ .

As ‖TnATn‖ ≤ ‖Tn‖ ‖A‖ ‖Tn‖ ≤ ‖A‖ , we have

sup
n

inf
p∈[1,∞)

‖TnATn‖p = sup
n
‖TnATn‖ ≤ ‖A‖ .

From (4.9) we have that lim
n→∞

‖TnATn‖ = ‖A‖. Thus sup
n
‖TnATn‖ ≥ ‖A‖. Hence

sup
n
‖TnATn‖ = ‖A‖ and

sup
n

inf
p∈[1,∞)

‖TnATn‖p = sup
n
‖TnATn‖ = ‖A‖ .
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Thus (4.16) is proved.

(iv) If, for some k, the operator TkATk does not belong to any Sp, then ‖TkATk‖p =

∞ for all p ∈ [1,∞) . Hence inf
p∈[1,∞)

‖TkATk‖p =∞. Therefore

sup
n

inf
p∈[1,∞)

‖TnATn‖p =∞

and the proof is complete.

Making use of Proposition 4.8, we obtain

Theorem 4.9 Let A ∈ B (H). Let {Tn} be self-adjoint bounded operators on H

and Tn
s.o.t.→ 1H . Suppose that supn ‖Tn‖ ≤ 1.

(i) If A ∈ ∪p∈[1,∞)S
p then the minimax condition holds:

inf
p∈[1,∞)

sup
n
‖TnATn‖p = sup

n
inf

p∈[1,∞)
‖TnATn‖p = ‖A‖ .

(ii) If A /∈ ∪p∈[1,∞)S
p and TkATk /∈ ∪p∈[1,∞)S

p, for some k, then the minimax

condition trivially holds:

inf
p∈[1,∞)

sup
n
‖TnATn‖p = sup

n
inf

p∈[1,∞)
‖TnATn‖p =∞.

(iii) If A /∈ ∪p∈[1,∞)S
p but each TnATn ∈ ∪p∈[1,∞)S

p, then the minimax condition

does not hold:

inf
p∈[1,∞)

sup
n
‖TnATn‖p =∞, while sup

n
inf

p∈[1,∞)
‖TnATn‖p = ‖A‖ .

Remark 4.10 Using the same arguments as above, we obtain that the results of

Theorem 4.9 hold if TnATn is replaced by TnA.
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Unlike the minimax condition in Theorem 4.9 that only holds for some operators

in B(H), its reversed minimax, i.e., Theorem 4.11 holds for all operators in B(H).

Theorem 4.11 For a non-empty set X, let {Ax}x∈X be a family of operators in

B (H). Then the following minimax condition holds:

inf
x∈X

(
sup

p∈[1,∞)

‖Ax‖p

)
= sup

p∈[1,∞)

(
inf
x∈X
‖Ax‖p

)
= inf

x∈X
‖Ax‖1 .

In particular, if {Tn} is a sequence of operators in B (H) then, for each operator

A ∈ B(H), the following minimax condition holds:

inf
n

(
sup

p∈[1,∞)

‖TnATn‖p

)
= sup

p∈[1,∞)

(
inf
n
‖TnATn‖p

)
= inf

n
‖TnATn‖1 .

Proof. Set f (x, p) = ‖Ax‖p for all x ∈ X and p ∈ [1,∞). Then, for each x ∈ X, it

follows from (4.4) that

sup
p∈[1,∞)

f (x, p) = sup
p∈[1,∞)

‖Ax‖p = ‖Ax‖1 = f (x, 1) .

Setting Λ = [1,∞) and µ = 1 in Lemma 3.2, we obtain

inf
x∈X

(
sup

p∈[1,∞)

‖Ax‖p

)
= sup

p∈[1,∞)

(
inf
x∈X
‖Ax‖p

)
= inf

x∈X
‖Ax‖1 .

This concludes the proof.

Remark 4.12 Note that we can not apply Lemma 3.2 to prove Theorem 4.9.

Indeed, to do this, we have to set X = [1,∞), Λ = N and f (p, n) = ‖TnATn‖p.

Then (see (3.1)) we have to find µ ∈ N such that

sup
n∈N
‖TnATn‖p = sup

n∈N
f (p, n) = f (p, µ) = ‖TµATµ‖p , for each p ∈ [1,∞) .
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From (4.8), sup
n∈N
‖TnATn‖p = ‖A‖p. This means that there is µ ∈ N such that, for

each p ∈ [1,∞) , ‖A‖p = ‖TµATµ‖p and that is, generally speaking, not true.

Also we can not apply Lemma 3.2 using condition (3.2). Indeed, to do this we

need the fact that

inf
p∈[1,∞)

‖TnATn‖p = ‖TnATn‖∞ = ‖TnATn‖ for all n ∈ N.

However, infinity is not an element of the interval [1,∞).

4.3 Minimax condition and geometry of subspaces of

Hilbert spaces

Let {Pn}∞n=1 be a sequence of projections in B (H), Pn 6= 1, and let q ∈ [1,∞).

Suppose that a sequence {pn}∞n=1 in (q,∞) satisfies limn→∞ pn =∞. In this section

we study the minimax condition

inf
X∈Sq ,‖X‖q=1

(
sup
n
‖PnXPn‖pn

)
= sup

n

(
inf

X∈Sq ,‖X‖q=1
‖PnXPn‖pn

)
(4.17)

and the reversed minimax condition

inf
n

(
sup

X∈Sq ,‖X‖q=1

‖PnXPn‖pn

)
= sup

X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
. (4.18)

We will show that while the first minimax condition always holds, the fulfilment

of the reversed minimax condition depends on an interesting geometric property of

the family of subspaces {Ln = PnH}∞n=1− approximate intersection of these sub-

spaces.
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Definition 4.13 We say that a family of nonzero subspaces {Ln}∞n=1 of H is ap-

proximately intersecting if, for every ε > 0, there is xε ∈ H such that

‖xε‖ = 1 and dist (xε, Ln) := min
y∈Ln
‖xε − y‖ ≤ ε for all n. (4.19)

In particular, if there exists 0 6= x ∈ H that belongs to all Ln, then, clearly, the

family of subspaces {Ln} is approximately intersecting - condition (4.19) holds for

xε ≡ x
‖x‖ for all ε > 0.

For nonzero vectors x, y ∈ H, consider the rank one operator x ⊗ y on H that

acts by

(x⊗ y) z = (z, x) y for all z ∈ H. (4.20)

Geometrically the operator x⊗ y can be described as follows:

1. If ‖x‖ = 1 then the operator x ⊗ x is an orthogonal projection onto the one-

dimensional subspace Cx = {λx : λ ∈ C}. The subspace ker (x⊗ x) consists

of all vectors orthogonal to the vector x, i.e. ker (x⊗ x) = (Cx)⊥;

2. Generally, if (x, y) 6= 0 and y /∈ Cx, then the operator T = 1
(y,x)

(x⊗ y) =

(x,y)
‖(x,y)‖ (x⊗ y) is a projection (but not orthogonal projection) onto the one-

dimensional subspace Cy = {λy : λ ∈ C}, i.e. T 2 = T . In particular, if (y, x) =

(x, y) = 1 then x ⊗ y is a projection (but not orthogonal projection) onto

the one-dimensional subspace Cy = {λy : λ ∈ C}. The subspace ker (x⊗ y)

consists of all vectors orthogonal to the vector x, i.e. ker (x⊗ y) = (Cx)⊥.
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Note that (ker (x⊗ y))⊥ =
(

(Cx)⊥
)⊥

= Cx. As y /∈ Cx we have that y is

not perpendicular to ker (x⊗ y), i.e. the range and the null space are not

perpendicular;

3. If (x, y) = 0 then the range of x ⊗ y is the subspace Cy but the range of

(x⊗ y)2 consists only of the zero vector.

If T, S ∈ B (H) and z ∈ H,

T (x⊗ y)Sz = T (x⊗ y) (Sz) = T (Sz, x) y = T (z, S∗x) y

= (z, S∗x)Ty = (S∗x⊗ Ty) z.

Thus

T (x⊗ y)S = S∗x⊗ Ty. (4.21)

To find the adjoint of A = x⊗ y, notice that for all z, w ∈ H, we have

((x⊗ y) z, w) = ((z, x) y, w) = (z, x) (y, w) = (z, (w, y)x) = (z, (y ⊗ x)w) .

Thus

A∗ = (x⊗ y)∗ = y ⊗ x.

In particular, if x = y, we obtain

(x⊗ x)∗ = x⊗ x. (4.22)

66



For all z ∈ H, we have

A∗Az = (y ⊗ x) (x⊗ y) z = (y ⊗ x) (z, x) y = (z, x) (y ⊗ x) y

= (z, x) (y, y)x = (y, y) (z, x)x = ‖y‖2 (x⊗ x) z.

Hence

A∗A = ‖y‖2 (x⊗ x) . (4.23)

In the case when x = y and ‖x‖ = 1, i.e., A∗ = A = (x⊗ x) we obtain

(x⊗ x)2 = x⊗ x. (4.24)

To evaluate the norm ‖A‖p=‖x⊗ y‖p we need to find eigenvalues of the operator

(A∗A)1/2. These are the square roots of eigenvalues of A∗A. Note that the operator

(x⊗ x) has only one non-zero eigenvalue and it is ‖x‖2. Indeed, if k 6= 0 is an

eigenvalue and z is the corresponding eigenvector: (x⊗ x) z = kz, then (x⊗ x) z =

(z, x)x = kz, so that z and x are linearly dependent: z = tx, for t = (z,x)
k
6= 0.

Hence

t =
(z, x)

k
=

(tx, x)

k
= t
‖x‖2

k
,

so that k = ‖x‖2.

It follows from (4.23) that the only non-zero eigenvalue of the operator A∗A is

‖x‖2 ‖y‖2. Thus the only non-zero eigenvalue of the operator (A∗A)1/2 is ‖x‖ ‖y‖.

Hence

‖x⊗ y‖p = ‖x‖ ‖y‖ , for all p ∈ [1,∞) . (4.25)
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If ‖x‖ = 1 then the operator x⊗x is a projection on the one-dimensional subspace

Cx = {λx : λ ∈ C}. Indeed (see (4.22) and (4.24)),

(x⊗ x)2 = x⊗ x and (x⊗ x)∗ = x⊗ x.

Let {en}∞n=1 be a complete orthonormal basis in H with e1 = x. Then, for each

z =
∑∞

n=1 αnen ∈ H, where αn are scalars, we have

(x⊗ x) z = (z, x)x =

( ∞∑
n=1

αnen, x

)
x = α1 ‖x‖2 x = α1x.

We shall now prove a lemma that will help us to identify approximately inter-

secting selection of spaces.

Lemma 4.14 Let {Ln}∞n=1 be a family of nonzero subspaces of H and let Pn be the

orthogonal projections onto Ln. The family {Ln}∞n=1 is approximately intersecting if

and only if, for each ε > 0, there is xε ∈ H such that

‖xε‖ = 1 and ‖Pnxε‖ ≥ 1− ε for all n. (4.26)

Proof. For ε ≥ 1, (4.19) and (4.26) hold trivially as ‖Pnxε‖ ≥ 0 for all n. Thus we

can assume that 0 < ε < 1.

Let {Ln} be approximately intersecting. Then, for each ε ∈ (0, 1), there is xε ∈ H

such that (4.19) holds for all n. We know from [1, pp.8-10] that miny∈Ln ‖xε − y‖ =

‖xε − Pnxε‖. Thus ‖xε − Pnxε‖ ≤ ε and, since

‖xε‖ = ‖xε − Pnxε + Pnxε‖ ≤ ‖xε − Pnxε‖+ ‖Pnxε‖ ,
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we have

‖Pnxε‖ ≥ ‖xε‖ − ‖xε − Pnxε‖ ≥ 1− ε for all n.

Conversely, let for each ε ∈ (0, 1), there be xε ∈ H such that (4.26) holds for all

n. Then (1− Pn)xε and Pnxε are orthogonal, as

((1− Pn)xε, Pnxε) = (xε, Pnxε)− (Pnxε, Pnxε)

= (xε, Pnxε)− (xε, P
∗
nPnxε) = (xε, Pnxε)−

(
xε, P

2
nxε
)

= (xε, Pnxε)− (xε, Pnxε) = 0.

Since xε = (1− Pn)xε + Pnxε, we have

1 = ‖xε‖2 = ((1− Pn)xε + Pnxε, (1− Pn)xε + Pnxε)

= ‖(1− Pn)xε‖2 + ‖Pnxε‖2 .

Hence, by (4.26), ‖Pnxε‖2 ≥ (1− ε)2 and we have

‖xε − Pnxε‖2 = 1− ‖Pnxε‖2 ≤ 1− (1− ε)2 = 2ε− ε2 for all n.

Thus, given ε ∈ (0, 1) , let xε2/2 be such that
∥∥Pnxε2/2∥∥2 ≥ (1− ε2/2)

2. Then

min
y∈Ln

∥∥xε2/2 − y∥∥ =
∥∥xε2/2 − Pnxε2/2∥∥ ≤ (2× ε2

2
− ε4

4

)1/2

<
(
ε2
)1/2

= ε,

for all n. Hence (4.19) holds.

We will now verify the following minimax conditions in Schatten ideals for a

family of projections.
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Theorem 4.15 Let {Pn}∞n=1 be projections in B(H), Pn 6= 1, and let q ∈ [1,∞).

Suppose that a sequence {pn}∞n=1 in (q,∞) satisfies lim
n→∞

pn =∞.

(i) The following minimax condition holds in all cases:

inf
X∈Sq ,‖X‖q=1

(
sup
n
‖PnXPn‖pn

)
= sup

n

(
inf

X∈Sq ,‖X‖q=1
‖PnXPn‖pn

)
= 0.

(ii) The reversed minimax condition

inf
n

(
sup

X∈Sq ,‖X‖q=1

‖PnXPn‖pn

)
= sup

X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
= 1. (4.27)

holds if and only if the family of subspaces {Ln = PnH}∞n=1 is approximately inter-

secting.

Proof. (i) As all Pn 6= 1, we can choose Xn ∈ Sq such that ‖Xn‖q = 1 and

PnXnPn = 0. Then we have that RHS = 0.

Set

r = inf{pn}.

Since lim
n→∞

pn =∞ and all pn ∈ (q,∞) , we have q < r ≤ pn →
n→∞

∞ and

‖PnXPn‖pn ≤ ‖Pn‖ ‖X‖pn ‖Pn‖ = ‖X‖pn
(4.4)

≤ ‖X‖r . (4.28)

Hence sup
n
‖PnXPn‖pn ≤ ‖X‖r . Let Xk = {k−1/q, ..., k−1/q, 0, ...} be the diagonal

operators with first k elements equal k−1/q and the rest equal 0. Then

‖Xk‖q =
((
k−1/q

)q
+ ...+

(
k−1/q

)q)1/q

= 1 and
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inf
k
‖Xk‖r = inf

k

(
k

kr/q

)1/r

= inf
k
k
1
r
− 1
q = 0,

as q < r. Hence

inf
X∈Sq ,‖X‖q=1

(
sup
n
‖PnXPn‖pn

)
≤ inf

k

(
sup
n
‖PnXkPn‖pn

)
(4.28)

≤ inf
k
‖Xk‖r = 0

and (i) is proved.

(ii) First note that it follows from (3.4) that

inf
n

(
sup

X∈Sq ,‖X‖q=1

‖PnXPn‖pn

)
≥ sup

X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
always holds. As ‖PnXPn‖pn ≤ ‖Pn‖ ‖X‖pn ‖Pn‖ = ‖X‖pn ≤ ‖X‖q = 1, we have

1 ≥ inf
n

(
sup

X∈Sq ,‖X‖q=1

‖PnXPn‖pn

)
.

Thus in order to prove (4.27) we only need to show that

sup
X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
≥ 1. (4.29)

Let the spaces {Ln = PnH}∞n=1 approximately intersect. Then, by (4.26), for

each ε > 0, there is xε ∈ H such that ‖xε‖ = 1 and ‖Pnxε‖ ≥ 1 − ε for all n. Set

Xε = xε ⊗ xε. Then, by (4.25) and (4.21),

‖Xε‖q = ‖xε ⊗ xε‖q = ‖xε‖2 = 1, and PnXεPn = Pnxε ⊗ Pnxε.

Thus

‖PnXεPn‖pn = ‖Pnxε ⊗ Pnxε‖pn
(4.25)
= ‖Pnxε‖2 ≥ (1− ε)2 .
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Hence

inf
n
‖PnXεPn‖pn ≥ (1− ε)2

and

sup
X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
≥ sup

ε

(
inf
n
‖PnXεPn‖pn

)
≥ sup

ε
(1− ε)2 = 1.

This proves (4.29).

Conversely, let (4.27) hold. Let us prove that the spaces {Ln = PnH}∞n=1 ap-

proximately intersect. It follows from the last equality in (4.27) that, for each ε > 0,

there is Xε ∈ Sq such that ‖Xε‖q = 1 and ‖PnXεPn‖pn ≥ 1− ε, for all n. Let, as in

(i), r = inf {pn}. Then q < r ≤ pn and

‖Xε‖r ≥ ‖PnXεPn‖r ≥ ‖PnXεPn‖pn ≥ 1− ε for all n. (4.30)

Let s1 (ε) ≥ s2 (ε) ≥ ... be the singular values of Xε, that is, the eigenvalues of the

operator (X∗εXε)
1/2. Then it follows from (4.2) and (4.30) that

∞∑
n=1

srn (ε) = ‖Xε‖rr ≥ (1− ε)r .

Therefore, as srn ≤ sr−q1 sqn (this follows from the fact that sn ≤ s1) and

‖Xε‖q =

( ∞∑
n=1

sqn (ε)

)1/q

= 1, (4.31)

we have

(1− ε)r ≤ ‖Xε‖rr =

∞∑
n=1

srn (ε) ≤ sr−q1 (ε)

∞∑
n=1

sqn (ε) = sr−q1 (ε) ‖Xε‖qq = sr−q1 (ε) .
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By (4.31), 1 ≥ s1 (ε). Hence,

1 ≥ s1 (ε) ≥ (1− ε)
r
r−q . (4.32)

Consider the Schmidt decomposition (see [21, Chapter II.2.2.]) of the operator

Xε :

Xε =
∑
k

sk (ε)xk (ε)⊗ yk (ε) ,

where {xk (ε)}∞k=1 and {yk (ε)}∞k=1 are orthonormal systems of vectors in the Hilbert

space H. Then Bε = s1 (ε)x1 (ε)⊗ y1 (ε) is a rank one operator and,

‖Xε −Bε‖pn ≤ ‖Xε −Bε‖q =

( ∞∑
k=2

sqk (ε)

)1/q

=

( ∞∑
k=1

sqk (ε)− sq1 (ε)

)1/q

= (1− sq1 (ε))1/q , (4.33)

for all n. Since

‖PnXεPn‖pn = ‖PnXεPn − PnBεPn + PnBεPn‖pn

≤ ‖PnXεPn − PnBεPn‖pn + ‖PnBεPn‖pn

≤ ‖Pn‖ ‖Xε −Bε‖pn ‖Pn‖+ ‖PnBεPn‖pn

= ‖Xε −Bε‖pn + ‖PnBεPn‖pn ,

it follows from (4.30) and (4.33) that, for all n,

‖PnBεPn‖pn ≥ ‖PnXεPn‖pn − ‖Xε −Bε‖pn (4.34)

≥ (1− ε)− ‖Xε −Bε‖pn ≥ (1− ε)− (1− sq1 (ε))1/q .
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As Bε = s1 (ε)x1 (ε)⊗ y1 (ε), making use of (4.25) and (4.21), we obtain that,

‖PnBεPn‖pn = ‖s1 (ε)Pnx1 (ε)⊗ Pny1 (ε)‖pn = |s1 (ε)| ‖Pnx1 (ε)‖ ‖Pny1 (ε)‖ ,

for all n. Hence, by inequality (4.34),

s1 (ε) ‖Pnx1 (ε)‖ ‖Pny1 (ε)‖ ≥ (1− ε)− (1− sq1 (ε))1/q .

Therefore,for all n,

‖Pnx1 (ε)‖ ≥ (1− ε)− (1− sq1 (ε))1/q

s1 (ε) ‖Pny1 (ε)‖ ≥ (1− ε)− (1− sq1 (ε))1/q , (4.35)

since, by (4.32), s1 (ε) ≤ 1 and ‖Pny1 (ε)‖ ≤ ‖y1 (ε)‖ = 1.

We have

‖Pnx1 (ε)‖ ≤ ‖x1 (ε)‖ = 1,

and, by (4.32), s1 (ε) ≥ (1− ε)
p
p−q . Hence s1 (ε) → 1, as ε → 0 and therefore it

follows from (4.35) that

‖Pnx1 (ε)‖ → 1 for all n, as ε→ 0.

As limε→0 s1 (ε) = 1, we have that given ε1 ∈ (0, 1), there is δ (ε1) such that

s1 (ε) ≥
(

1−
(ε1

2

)q)1/q

for all ε < δ (ε1) .

Then

1− sq1 (ε) ≤ 1−
(

1−
(ε1

2

)q)
=
(ε1

2

)q
. (4.36)
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Thus, it follows from (4.35) that, for ε ∈
(
0,min

{
δ (ε1) , ε1

2

})
, we have

‖Pnx1 (ε)‖ ≥ (1− ε)− (1− sq1 (ε))1/q
(4.36)

≥ (1− ε)− ε1

2
≥ 1− ε1,

for all n. Set xε1 = x1

(
1
2

min
{
δ (ε1) , ε1

2

})
. Then, by the above inequality, ‖Pnxε1‖ ≥

1− ε1 for all n. Hence it follows from Lemma 4.14 that the family {Ln = PnH}∞n=1

approximately intersects.

4.4 Conclusion

The aim of this chapter is to research, identify and evaluate minimax conditions

(4.10), (4.11), (4.17) and (4.18) within the theory of operators on a separable Hilbert

space H. We discussed suffi cient and necessary conditions in all four cases of the

minimax formulae.

In fact we found that (4.11) holds unconditionally for all bounded operators on

H. Similarly, (4.17) holds for all sequences of projections in B (H) different from

identity and (4.10) holds for Schatten class operators and, generally, for any bounded

operator A, if TkATk is not a Schatten class operator for some k, where {Tk} is as

described in Theorem 4.9.

In section 4.3 we introduced a new concept - approximate intersection of a se-

lection of nonzero subspaces of a Hilbert space H. We proved that the approximate

intersection of subspaces {Ln} , as introduced in Theorem 4.15, is the necessary and

suffi cient condition for the minimax (4.27) to hold.

All the results in this chapter have been published in [19, pp.29-40].
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In Chapters 5 and 6 we divert our attention from minimax theory and focus

our study on inclusion of spaces lq (Sp) and Sp (H,K), on analogues of Clarkson-

McCarthy estimates, on inequalities for partitioned operators and Cartesian decom-

position of operators.
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Part II

Estimates
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Chapter 5 Inclusions of spaces lq (Sp) and

Sp (H,K)
5.1 Background

Let H be a separable complex Hilbert space and let B (H) be the C∗- algebra of

all bounded linear operators on H (see definitions 2.16 and 2.39). The following

concepts and theorems are the main results we will need in this chapter. See also

introduction to Chapter 4.

Let K be another separable Hilbert space and B(H,K) be the Banach space (see

Theorem 2.17) of all bounded operators from H into K. Then B (H) = B(H,H). If

A ∈ B(H,K) then A∗ ∈ B(K,H) [42, page 76] and A∗A ∈ B(H).

Definition 5.1 [30, pp.20, 99] (i) An operator V ∈ B (H,K) is an isometry if

‖V x‖K = ‖x‖H for all x ∈ H.

(ii) An operator V ∈ B (H,K) is a partial isometry, if it is isometric on (kerV )⊥,

i.e., ‖V x‖K = ‖x‖H for all x ∈ (kerV )⊥.

A partial isometry V is an isometry from (kerV )⊥ onto V H; (kerV )⊥ is called

the initial space and V H the final space of V . [13, p.15].

We give below the proof of the following known theorem, as we could not find a

reference. We will need this theorem in section 5.4.
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Theorem 5.2 Let V ∈ B (H,K). Then

(i) V ∗V = 1H if and only if ‖V x‖K = ‖x‖H for all x ∈ H, i.e., V is an isometry.

(ii) If V is an isometry from H onto K then V ∗ = V −1 is also an isometry. In

this case V is unitary.

Proof. (i) Suppose that V ∗V = 1H . Then

‖V x‖K = (V x, V x)
1/2
K = (x, V ∗V x)

1/2
H = (x, x)

1/2
H = ‖x‖H .

Conversely, suppose that ‖V x‖K = ‖x‖H for all x ∈ H. Then, using polarization

[41, Theorem 1.1.1], we have, for all x, y ∈ H,

(V ∗V x, y)H = (V x, V y)K

=

∥∥∥∥1

2
V (x+ y)

∥∥∥∥2

K

−
∥∥∥∥1

2
V (x− y)

∥∥∥∥2

K

+ i

∥∥∥∥1

2
V (x+ iy)

∥∥∥∥2

K

− i
∥∥∥∥1

2
V (x− iy)

∥∥∥∥2

K

=

∥∥∥∥1

2
(x+ y)

∥∥∥∥2

H

−
∥∥∥∥1

2
(x− y)

∥∥∥∥2

H

+ i

∥∥∥∥1

2
(x+ iy)

∥∥∥∥2

H

− i
∥∥∥∥1

2
(x− iy)

∥∥∥∥2

H

= (x, y)H .

Hence (V ∗V x− x, y)H = 0 for all x, y ∈ H. Thus V ∗V x− x = 0, for all x ∈ H, i.e.,

V ∗V = 1H .

(ii) As V is an isometry onto K, V is invertible. Let y ∈ K and V −1y = x ∈ H.

Then ‖V −1y‖H = ‖x‖H = ‖V x‖K = ‖y‖K . Thus V −1 is also an isometry. From

part (i) we have V ∗V = 1H . Since also V −1V = 1H and from the uniqueness of an

inverse, we conclude that V ∗ = V −1. As V ∗V = 1H and V V ∗ = V V −1 = 1K , V is

unitary.
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Definition 5.3 [38, p.222] Normed linear spaces X and Y are isometrically iso-

morphic if there exists a one-to-one linear transformation T of X onto Y such that

‖Tx‖ = ‖x‖ for all x ∈ X.

The following theorem that considers polar decomposition of operators plays a

very important role in the theory of operator algebras.

Theorem 5.4 [16, p.935] [43] For any T ∈ B (H), there exist a unique partial

isometry U with initial space (kerT )⊥ and final space R (T ) such that

T = U |T | and |T | = U∗T, (5.1)

where |T | = (T ∗T )1/2. If T is invertible, then U is unitary.

If A is a bounded operator from H to K then

A = U |A| (5.2)

is the polar decomposition of A, where |A| = (A∗A)1/2 ∈ B(H) and U is a partial

isometry from the closure R(A∗) = (kerA)⊥(see Theorem 2.24) of the range of A∗

onto the closure R(A) of the range of A. Indeed, it suffi ces to notice that if V is an

isometry operator from K onto H, then

V A = U1 |V A| = U1 ((V A)∗ V A)
1/2

= U1 |A| ,

where U1 is a partial isometry as per Theorem 5.4 (applied to the operator V A).

Thus A = V −1U1 |A|, where V −1U1 is an isometry from (kerA)⊥ onto R(A).
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Let T ∈ Sp be a positive operator. Then T = |T | and the eigenvalues {si (T )}∞n=1

of T, repeated according to multiplicity, are non-negative numbers. It follows from

Corollary 2.36 that {si (T 2)}∞i=1 = {s2
i (T )}∞i=1 . Hence (see (4.2)), for each p > 0,

∥∥T 2
∥∥
p/2

=

(∑
i

(
s2
i (T )

)p/2)2/p

=

(∑
j

(sj(T ))p
)2/p

= ‖T‖2
p <∞, (5.3)

so that T 2 ∈ Sp/2.

Let A ∈ Sp. Then A∗A = |A|2 and, by (4.1), ‖A‖p = ‖|A|‖p. Hence

‖A∗A‖p/2 =
∥∥|A|2∥∥

p/2

(5.3)
= ‖|A|‖2

p = ‖A‖2
p . (5.4)

Replacing A with A∗ in (5.4) we have ‖AA∗‖p/2 = ‖A∗‖2
p. Thus

‖AA∗‖p/2 = ‖A∗‖2
p

(4.3)
= ‖A‖2

p =
∥∥|A|2∥∥

p/2
= ‖A∗A‖p/2 , (5.5)

for 0 < p <∞. Therefore

A∗A ∈ Sp/2 (H) ⇐⇒ A ∈ Sp (H) ⇐⇒ AA∗ ∈ Sp/2 (H) .

Let K be another separable Hilbert space. Then the set C (H,K) of all compact

operators from H to K is the closed subspace [30, p.193] of B (H,K). For 0 < p <

∞, Schatten space Sp(H,K) is defined as follows:

Sp(H,K) =
{
A ∈ C (H,K) : |A| = (A∗A)1/2 ∈ Sp(H)

}
(5.6)

with norm ‖A‖p = ‖|A|‖p =

(∑
j

spj

)1/p

, for A ∈ Sp (H,K) , (5.7)
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where sj are eigenvalues of |A|, repeated according to multiplicity. Then

‖A‖p = ‖|A|‖p
(5.4)
= ‖A∗A‖1/2

p/2 . (5.8)

We will need the following inequalities (see [16, Lemma XI.9.9(c)], for p ∈ (0, 2) ,

and [21, Section III.7.2] for p ≥ 2). If A,B ∈ Sp(H) then AB ∈ Sp/2(H) and

‖AB‖p/2 ≤ 22/p ‖A‖p ‖B‖p , if 0 < p < 2, (5.9)

‖AB‖p/2 ≤ ‖A‖p ‖B‖p , if p ≥ 2. (5.10)

This also holds if A ∈ Sp(H,K) and B ∈ Sp(K,H).

If 0 < p < 1 and A,B ∈ Sp(H) then (see [16, Lemma XI.9.9(b)])

‖A+B‖pp ≤ 2 ‖A‖pp + 2 ‖B‖pp . (5.11)

For 1 ≤ p, we have the norm triangle inequality [16, Lemma XI.9.14(d)]

‖A+B‖p ≤ ‖A‖p + ‖B‖p . (5.12)

Let S be a positive compact operator on H with eigenvalues {λn (S)} repeated

according to multiplicity. It follows from the spectral theorem (see Corollary 2.36)

that S =
∑

n λn (S) (·, en) en, where {en} is an orthonormal basis of H consisting of

eigenvectors of S. Then S is a diagonal operator with {λn (S)} on the diagonal. Let

g be a real-valued continuous function on [0,∞). We define (see [30, pp.180-183,

200] [5, p.5]) g (S) to be a diagonal operator with the same orthornormal basis {en}
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of H consisting of eigenvectors of S and with eigenvalues λn (g (S)) = g (λn (S)) on

the diagonal.

We need the following results, that are probably known, but we could not find

the reference.

Lemma 5.5 Let S, T be positive compact operators on H. Let f, g be real-valued

non-decreasing continuous functions on [0,∞) and g((Sx, x)) ≤ f((Tx, x)) for all

x ∈ H with ‖x‖ = 1. Then, for each p, 0 < p <∞,

f(T ) ∈ Sp implies g(S) ∈ Sp and ‖g(S)‖p ≤ ‖f(T )‖p . (5.13)

In particular,

0 < S ≤ T and T ∈ Sp implies S ∈ Sp and ‖S‖p ≤ ‖T‖p . (5.14)

Proof. Let all eigenvalues of S be ordered so that λj(S) ≥ λj+1(S), j = 1, 2, .... It

follows from the Minimax principle (see [21, Theorem II.1] and [16, Theorem X.4.3])

that

λ1(S) = max
‖x‖=1

(Sx, x) and λj+1(S) = min
L∈Lj

(
max

x∈L⊥,‖x‖=1
(Sx, x)

)
, for j ≥ 1,

where Lj is the set of all j-dimensional subspaces of H. Then, as above, g (S) is a

diagonal operator with the same eigenvectors as S and with eigenvalues λj(g(S)) =

g(λj((S)). The same is true for f (T ) and µj(f(T )) = f(µj(T )), where µj (T ) are

ordered eigenvalues of T . Since g and f are non-decreasing and continuous, we have

λ1 (g(S)) = g(λ1(S)) = g

(
max
‖x‖=1

(Sx, x)

)
= max
‖x‖=1

g ((Sx, x)) ,
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µ1 (f(T )) = f(µ1(T )) = f

(
max
‖x‖=1

(Tx, x)

)
= max
‖x‖=1

f ((Tx, x)) ,

λj+1(g(S)) = g(λj+1(S)) = g

(
min
L∈Lj

(
max

x∈L⊥,‖x‖=1
(Sx, x)

))
= min

L∈Lj

(
max

x∈L⊥,‖x‖=1
g((Sx, x))

)
, j ≥ 1;

µj+1(f(T )) = f(µj+1(T )) = f

(
min
L∈Lj

(
max

x∈L⊥,‖x‖=1
(Tx, x)

))
= min

L∈Lj

(
max

x∈L⊥,‖x‖=1
f((Tx, x))

)
, j ≥ 1.

From this and from the condition of the lemma it follows that λj(g(S)) ≤ µj(f(T ))

for all j. Since S and T are positive, we have (S∗S)1/2 = S and (T ∗T )1/2 = T . Thus

sj(S) = λj(S) and sj(T ) = µj(T ), and condition (5.13) follows from (4.1).

Let f(t) = g(t) = t for 0 ≤ t <∞. Then g(S) = S, f(T ) = T , and (5.14) follows

from (5.13).

Lemma 5.6 Let S, T be positive operators on H and 0 < p <∞. Then

0 < S ≤ T and T ∈ Sp, implies S ∈ Sp and ‖S‖p ≤ ‖T‖p . (5.15)

Proof. We only need to verify that S is a compact operator and to apply Lemma

5.5. As T is a positive compact operator, we have that T 1/2 is also a positive

compact operator. Indeed, by spectral theorem there is an orthonormal basis {en}

of H consisting of eigenvectors for T such that

Tx =
∑
n

λn (x, en) en, for each x ∈ H,
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where λn is the eigenvalue of T corresponding to the eigenvector en and λn → 0, as

n→∞. As T is positive, all the λn are nonnegative. Thus

T 1/2x =
∑
n

λ1/2
n (x, en) en, for each x ∈ H.

We have λ1/2
n → 0, as n→∞ and thus the operator T 1/2 is also a compact operator

(see [43, Proposition 1.3.10]). By Theorem 2.26, for all x ∈ H, we have

∥∥S1/2x
∥∥2

= (S1/2x, S1/2x) = (Sx, x) ≤ (Tx, x) =
∥∥T 1/2x

∥∥2
. (5.16)

Let {xn}∞n=1 be a bounded sequence inH. Then there is a subsequence
{
T 1/2xnk

}∞
n=1

such that T 1/2xnk → x, as k →∞, for some x ∈ H. Hence
{
T 1/2xnk

}∞
n=1

is a Cauchy

sequence. As

∥∥S1/2xnk − S1/2xnl
∥∥ =

∥∥S1/2 (xnk − xnl)
∥∥ (5.16)

≤
∥∥T 1/2 (xnk − xnl)

∥∥ =
∥∥T 1/2xnk − T 1/2xnl

∥∥ ,
{
S1/2xnk

}∞
n=1

is also a Cauchy sequence. Hence S1/2 is a compact operator. Thus

S = S1/2S1/2 is also compact. Hence (5.15) follows from (5.14).

Definition 5.7 [25, p.3] (i) A family {Pn}Nn=1, for N ≤ ∞, of mutually orthogonal

projections on H, i.e. PiPj = 0 if i 6= j, is a partition of 1H if

N∑
n=1

Pn = 1H for N <∞; and
m∑
n=1

Pn
s.o.t.→
m→∞

1H for N =∞.

We denote by PN the set of all partitions P = {Pn}Nn=1 of N elements of 1H .

(ii) For two such partitions {Pn}Nn=1 ∈ PN , {Qm}Mm=1 ∈ PM , N,M ≤ ∞, and an

operator A ∈ B (H), the set

A = {PnAQm}n=1,...,N,m=1,...,M
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is called a partition of A.

5.2 The spaces B (H,H∞) , Sp (H,H∞) and l2(S
p)

In this section we prove some important norm inequalities that we will use later.

We proved in Chapter 2 (see Theorem 2.4) that if X is a Banach space, then the

space l2 (X) of sequences x = (x1, ..., xn, ...), all xn ∈ X, with

‖x‖l2(X) =

( ∞∑
n=1

‖xn‖2
p

)1/2

<∞

is a Banach space.

Let H∞ = H ⊕ ...⊕H ⊕ ... be the infinite orthogonal sum of H, i.e.,

H∞ = l2 (H) (5.17)

We shall use H∞ and l2 (H) and also ‖·‖H∞ and ‖·‖l2(H) interchangeably. Thus

H∞ is a Hilbert space with inner product

(x, y)H∞ =
∞∑
n=1

(xn, yn) ,for x, y ∈ H∞. (5.18)

We omit details of the proof that (5.18) defines inner product on H∞.

Let A be a bounded operator from H into H∞, i.e., A ∈ B (H,H∞). Then

A has form A = (A1, ..., An, ...), where all An ∈ B (H). For x ∈ H, we have

Ax = (A1x, ..., Anx, ...) and

‖A‖B(H,H∞) = sup
‖x‖=1

{‖A1x, ..., Anx, ...‖H∞} (5.19)

= sup
‖x‖=1


( ∞∑
n=1

‖Anx‖2

)1/2
 ≤

( ∞∑
n=1

‖An‖2

)1/2

.
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Hence each A = (An)∞n=1 ∈ l2 (B (H)) also belongs to B (H,H∞), so that

l2 (B (H)) ⊆ B (H,H∞) , (5.20)

‖A‖B(H,H∞) ≤
( ∞∑
n=1

‖An‖2

)1/2

= ‖A‖l2(B(H))

and B (H,H∞) is a Banach operator space [38, p.221 ] with respect to pointwise

addition and scalar multiplication and the above norm ‖·‖B(H,H∞).

Since H∞ is a Hilbert space, we have additional structure - the adjoint operation

A→ A∗ such that

(Ax, y)H∞ = (x,A∗y)H for all x ∈ H, y = (yn)∞n=1 ∈ H∞.

Noticing that

(Ax, y)H∞ =
∞∑
n=1

(Anx, yn)H =
∞∑
n=1

(x,A∗nyn)H =

(
x,
∞∑
n=1

A∗nyn

)
H

we have that if A = (An)∞n=1, y = (yn)∞n=1 ∈ H∞, then A∗ = (A∗n)∞n=1 and

A∗y =
∞∑
n=1

A∗nyn ∈ H where the series converges in w.o.t.. (5.21)

For all n, consider the subspaces

Hn =

{ ∞∑
n=1

⊕xn = (x1, ..., xn, ...) ∈ H∞ : xn ∈ H and xk = 0 if k 6= n

}

of H∞ isomorphic to H and let Qn be the projections on Hn, i.e.,

Qnx = (0, ..., 0, xn, 0, ...) for all x = (x1, ..., xn, ...) ∈ l2 (H) . (5.22)
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For all n, let Un be isometry operators from Hn onto H, such that

Un (0, ..., 0, xn, 0, ...) = xn. (5.23)

We will identify Hn with H. Consider also the projections

Pm =

m∑
n=1

⊕Qn, i.e., Pmx = (x1, ..., xm, 0, ...) for all m = 1, 2, .... (5.24)

Let A = (An)∞n=1 ∈ l∞ (B (H)). Then Qn and Pm act on l∞ (B (H)) by

QnA = (0, ..., 0, An, 0, ...) , PmA = Pmx = (A1, ..., Am, 0, ...) ,

so that QnA, PmA ∈ B (H,H∞), for all A ∈ l∞ (B (H)) and m,n ∈ N , and An =

UnQnA. Indeed,

‖QnA‖B(H,H∞) = sup
‖x‖=1

{(
‖Anx‖2)1/2

}
= ‖An‖ ≤ sup

k
‖Ak‖ = ‖A‖l∞(B(H))

and

‖PmA‖2
B(H,H∞) = sup

‖x‖=1

{
m∑
n=1

‖Anx‖2

}
≤

m∑
n=1

(
sup
‖x‖=1

‖Anx‖2

)
(5.25)

≤
m∑
n=1

‖An‖2
B(H) ≤ m ‖A‖2

l∞(B(H)) <∞.

We have

Pm
s.o.t.→ 1H∞ (5.26)

since, for each x ∈ H∞,

‖Pmx− x‖H∞ = ‖(0, ..., 0, xm+1, ...)‖H∞ =

( ∞∑
n=m+1

‖xn‖2

)1/2

→
m→∞

0.
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Thus, for each A ∈ B (H,H∞),

PmA
s.o.t.→ A, (5.27)

since Ax ∈ H∞ for all x ∈ H. This implies that PmA
w.o.t.→ A for each A ∈

B (H,H∞). Hence (PmA)∗ (PmA) converge to A∗A ∈ B (H) in w.o.t.:

((PmA)∗(PmA)x, y) = (A∗PmAx, y)

= (PmAx,Ay) →
m→∞

(Ax,Ay) = (A∗Ax, y)

for all x, y ∈ H. Thus we have

(PmA)∗ (PmA) = A∗PmA = A∗



A1
...

Am

0
...


(5.21)
=

m∑
n=1

A∗nAn
w.o.t.→ A∗A. (5.28)

If PmA ∈ Sp (H,H∞), for some 0 < p <∞ and some m, then

‖PmA‖2
p

(5.54)
= ‖(PmA)∗(PmA)‖p/2

(5.28)
=

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

. (5.29)

We shall now prove some norm inequalities for operators in the space l∞ (Sp).

We shall need these results at the end of this chapter when proving inclusions of

spaces Sp (H,H∞) and lp (Sp).

McCarthy and Simon (see [39, Theorem 1.22]) proved that if A andB are positive

operators in Sp then

‖A‖pp + ‖B‖pp ≤ ‖A+B‖pp for 1 ≤ p <∞.
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Let {Tn}∞n=1 be positive operators in S
p. We can prove by mathematical induction

that, for each m <∞,

m∑
n=1

‖Tn‖pp ≤
∥∥∥∥∥

m∑
n=1

Tn

∥∥∥∥∥
p

p

for 1 ≤ p <∞. (5.30)

For 0 < p ≤ 1, Bhatia and Kittaneh [8, pp.111-112] showed in Lemma 1 (the first

inequality) and in Theorem 1 formula (7) (the second inequality) that

(
‖A‖p + ‖B‖p

)p
≤ ‖A+B‖pp ≤ ‖A‖

p
p + ‖B‖pp for 0 < p < 1.

Similarly to (5.30) we could extend this result to all m <∞:(
m∑
n=1

‖Tn‖p

)p

≤
∥∥∥∥∥

m∑
n=1

Tn

∥∥∥∥∥
p

p

≤
m∑
n=1

‖Tn‖pp for 0 < p < 1. (5.31)

We can see that if we add the norm triangle inequality to (5.30) and reverse all the

inequality signs, then we would obtain from it the inequalities (5.31).

Proposition 5.8 Let A = (An)∞n=1 ∈ B(H,H∞) and all An ∈ Sp(H). If 1 ≤ p < 2

then, for each m,(
m∑
n=1

‖An‖2
p

)p/2

≤ ‖PmA‖pp =

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

≤
m∑
n=1

‖An‖pp . (5.32)

If 2 ≤ p <∞ then, for each m,

m∑
n=1

‖An‖pp ≤ ‖PmA‖
p
p =

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

≤
(

m∑
n=1

‖An‖2
p

)p/2

. (5.33)

Proof. We have PmA = (A1, ..., Am, 0, ...) and

‖PmA‖pp
(5.4)
= ‖(PmA)∗(PmA)‖p/2p/2

(5.28)
=

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

. (5.34)
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If 1 ≤ p < 2 then p
2
< 1. Replacing Tn by A∗nAn and p by

p
2
in (5.31),(

m∑
n=1

‖An‖2
p

)p/2

(5.4)
=

(
m∑
n=1

‖A∗nAn‖p/2

)p/2
(5.31)

≤
∥∥∥∥∥

m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

(5.34)
= ‖PmA‖pp

(5.31)

≤
m∑
n=1

‖A∗nAn‖
p/2
p/2

(5.4)
=

m∑
n=1

‖An‖pp .

Let 2 ≤ p. Then 1 ≤ p
2
and Sp/2 is a Banach space. Using the triangle inequality

for norms, replacing Tn by A∗nAn and p by
p
2
in (5.31),we obtain

m∑
n=1

‖An‖pp
(5.4)
=

m∑
n=1

‖A∗nAn‖
p/2
p/2

(5.30)

≤
∥∥∥∥∥

m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

(5.34)
= ‖PmA‖pp

(5.12)

≤
(

m∑
n=1

‖A∗nAn‖p/2

)p/2

(5.4)
=

(
m∑
n=1

‖An‖2
p

)p/2

.

This completes the proof.

As Sp = Sp (H) , p ∈ [1,∞] , is a Banach space, we have that the space l2(Sp) of

sequences A = (An)∞n=1, all An ∈ Sp, with

‖A‖l2(Sp) =

( ∞∑
n=1

‖An‖2
p

)1/2

<∞

is a Banach space. For convenience, we set

‖A‖l2(Sp) =∞ if A /∈ l2(Sp).

Let A = (An)∞n=1 ∈ B(H,H∞). As PmA
s.o.t.→ A (see (5.27)), we have(

m∑
n=1

A∗nAnx, y

)
= ((PmA)∗(PmA)x, y) = (A∗PmAx, y)

= (PmAx,Ay)→ (Ax,Ay) = (A∗Ax, y) ,
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for all x, y ∈ H. Therefore

A∗A =

∞∑
n=1

A∗nAn ∈ B(H), (5.35)

where the series converges in the weak operator topology.

Recall (see (5.6), (5.7)) that a compact operatorA = (An)∞n=1 belongs to S
p(H,H∞)

if and only if |A| = (A∗A)1/2 ∈ Sp(H). Then

‖A‖p = ‖|A|‖p =

(∑
j

spj

)1/p

where sj are eigenvalues of |A| in non increasing order.

Since all infinite dimensional separable Hilbert spaces are isometrically isomor-

phic, similarly to Theorems 4.3 and 4.5, we have:

Proposition 5.9 (i) Let operators {An} from Sp(H,K), p ∈ [1,∞), converge to

A ∈ B(H,K) in w.o.t. If sup
n
‖An‖p = M <∞, then A ∈ Sp(H,K) and ‖A‖p ≤M.

(ii) Let {Pn}∞n=1 be a sequence of projections in B (K) that converges to 1K in

s.o.t. For each p ∈ [1,∞] and for each A ∈ Sp(H,K),

‖A− PnA‖p → 0 as n→∞. (5.36)

Proposition 5.10 Let A = (An)∞n=1 ∈ B(H,H∞).

(i) If A ∈ Sp(H,H∞), for some p ∈ [1,∞), then

lim
m→∞

∥∥∥∥∥A∗A−
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

= 0, (5.37)
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so that
∑m

n=1A
∗
nAn is a Cauchy sequence with respect to the norm ‖·‖p/2.

(ii) Let 1 ≤ p < 2. If A ∈ Sp(H,H∞) then A ∈ l2(Sp) and

‖A‖l2(Sp) ≤ ‖A‖p = ‖A∗A‖1/2
p/2 = lim

m→∞

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
1/2

p/2

≤
( ∞∑
n=1

‖An‖pp

)1/p

, (5.38)

where the last term in (5.38) could diverge.

(iii) Let 2 ≤ p <∞. If A ∈ l2(Sp) then A ∈ Sp(H,H∞) and( ∞∑
n=1

‖An‖pp

)1/p

≤ ‖A‖p = ‖A∗A‖1/2
p/2 = lim

m→∞

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
1/2

p/2

≤ ‖A‖l2(Sp) . (5.39)

(iv) A ∈ l2(S2) if and only if A ∈ S2(H,H∞). In this case ‖A‖l2(S2) = ‖A‖2 .

Proof. Let A ∈ Sp(H,H∞). By (5.36), ‖A− PmA‖p → 0 as m→∞. Hence

‖PmA‖p → ‖A‖p . (5.40)

(i) Let 1 ≤ p < 2. Then p
2
< 1 and∥∥∥∥∥A∗A−

m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

(5.28)
= ‖A∗A− (PmA)∗(PmA)‖p/2

= ‖A∗A− A∗PmA‖p/2 = ‖A∗ (A− PmA)‖p/2
(5.9)

≤ 22/p ‖A∗‖p ‖A− PmA‖p →m→∞ 0.

Let 2 ≤ p. Then∥∥∥∥∥A∗A−
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

(5.28)
= ‖A∗A− (PmA)∗(PmA)‖p/2

= ‖A∗A− A∗PmA‖p/2 = ‖A∗ (A− PmA)‖p/2
(5.10)

≤ ‖A∗‖p ‖A− PmA‖p →m→∞ 0.
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This completes the proof of (i).

(ii) Let 1 ≤ p < 2. It follows from Proposition 5.8 and (i) that

‖A‖l2(Sp) = lim
m→∞

(
m∑
n=1

‖An‖2
p

)1/2

≤ lim
m→∞

‖PmA‖p
(5.40)
= ‖A‖p

(5.8)
= ‖A∗A‖1/2

p/2

part (i)
= lim

m→∞

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
1/2

p/2

≤ lim
m→∞

(
m∑
n=1

‖An‖pp

)1/p

≤
( ∞∑
n=1

‖An‖pp

)1/p

,

where the last term could diverge.

(iii) Let 2 ≤ p <∞. It follow from Proposition 5.8 and part (i) that( ∞∑
n=1

‖An‖pp

)1/p

≤ lim
m→∞

‖PmA‖p
(5.40)
= ‖A‖p

(5.8)
= ‖A∗A‖1/2

p/2

part (i)
= lim

m→∞

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
1/2

p/2

(5.12)

≤ lim
m→∞

(
m∑
n=1

‖A∗nAn‖p/2

)1/2

(5.8)
= lim

m→∞

(
m∑
n=1

‖A‖2
p

)1/2

= ‖A‖l2(Sp) .

Part (iv) is evident from (iii) in case when 2 = p.

Proposition 5.10 extends the results of Lemma 6 in [25, p.4] to infinite families

of operators.

5.3 Action of operators on l2 (Sp)

In this section we introduce a subset B (l2 (Sp)) of B (H∞). We show connections

between norms of operators R ∈ B (l2 (Sp)), A ∈ l2 (Sp) ∪ lp (Sp) and B = RA.

Recall thatH∞ = H⊕...⊕H⊕... is a Hilbert space with respect to scalar product

(x, y)H∞ =
∑∞

n=1 (xn, yn)H (see (5.18)). Thus B (H∞) is a C∗-algebra. The space
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B(H,H∞) is a left B (H∞)-module, that is, if R ∈ B(H∞) and A ∈ B (H,H∞)

then RA ∈ B(H,H∞), since

‖RA‖B(H,H∞) = sup
‖x‖=1

‖(RA)x‖H∞ = sup
‖x‖=1

‖R (Ax)‖H∞

≤ sup
‖x‖=1

‖R‖B(H∞) ‖Ax‖H∞ = ‖R‖B(H∞) ‖A‖B(H,H∞) <∞.

The operator R has block-operator form R = (Rij) where all Rij ∈ B(H). It

follows from (5.20) that l2 (Sp) ⊆ B (H,H∞). Set

B(l2(Sp)) = {R ∈ B(H∞) : RA ∈ l2(Sp) for all A ∈ l2(Sp)}.

The following theorem is the main result of this section. It shows connections

between norms of operators: R ∈ B (l2 (Sp)), A ∈ l2 (Sp) ∪ lp (Sp) and B = RA. It

extends the results of Corollary 7 [25, p.5] to infinite sets of operators.

Theorem 5.11 Let R ∈ B(l2(Sp)). Set β = ‖R‖B(H∞) . For A = (An)∞n=1 ∈

B(H,H∞), set B = RA.

(i) Let p ∈ [1, 2), let A ∈ Sp(H,H∞) and A ∈ lp (Sp) . Then B ∈ l2 (Sp) and

‖B‖l2(Sp) =

( ∞∑
n=1

‖Bn‖2
p

)1/2

≤ β

( ∞∑
n=1

‖An‖pp

)1/p

= β ‖A‖lp(Sp) .

(ii) Let p ∈ [2,∞) and A ∈ l2(Sp). Then B ∈ lp (Sp) and

‖B‖lp(Sp) =

( ∞∑
n=1

‖Bn‖pp

)1/p

≤ β

( ∞∑
n=1

‖An‖2
p

)1/2

= β ‖A‖l2(Sp) .
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(iii) Let p = 2 and A ∈ l2 (S2) . Let R be invertible in B (l2 (Sp)) and α =

‖R−1‖B(H∞). Then

α−1

( ∞∑
n=1

‖An‖2
2

)1/2

≤
( ∞∑
n=1

‖Bn‖2
2

)1/2

≤ β

( ∞∑
n=1

‖An‖2
2

)1/2

.

Proof. The operator K = β21H∞ −R∗R ∈ B(H∞) is positive, as

(Kx, x) = β2 ‖x‖2 − (R∗Rx, x) = ‖R‖2
B(H∞) ‖x‖

2 − ‖Rx‖2 ≥ 0 for all x ∈ H∞.

Since A∗ ∈ B (H∞, H), the operator A∗KA is positive in B(H), as (A∗KAy, y) =

(KAy,Ay) ≥ 0 for all y ∈ H. Therefore we have A∗KA = A∗β21H∞A − A∗R∗RA.

Rearranging it, we obtain

β2A∗A = A∗(R∗R +K)A = B∗B + A∗KA ≥ B∗B. (5.41)

(i) Let p ∈ [1, 2) andA ∈ Sp(H,H∞). By Proposition 5.10 (ii), A ∈ l2(Sp). Hence

B ∈ l2(Sp). We know from (5.8) that A ∈ Sp(H,H∞) if and only if A∗A ∈ Sp/2 (H)

and ‖A∗A‖p/2 = ‖A‖2
p .

We also know that β2A∗A and B∗B are positive operators. Therefore it follows

from (5.41) and (5.15) that

‖B∗B‖p/2 ≤ β2 ‖A∗A‖p/2 . (5.42)

Thus B∗B ∈ Sp/2 (H) and therefore B = RA ∈ Sp(H,H∞).
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We also have from (5.38) that

‖B‖l2(Sp) =

( ∞∑
n=1

‖Bn‖2
p

)1/2

≤ ‖B‖p = ‖B∗B‖1/2
p/2 ,

and ‖A‖p = ‖A∗A‖1/2
p/2 ≤

( ∞∑
n=1

‖An‖pp

)1/p

.

Combining this with (5.42) yields

‖B‖l2(Sp) =

( ∞∑
n=1

‖Bn‖2
p

)1/2

≤ β

( ∞∑
n=1

‖An‖pp

)1/p

= β ‖A‖lp(Sp) .

(ii) Let p ∈ [2,∞) and A ∈ l2(Sp). By Proposition 5.10(iii), A ∈ Sp(H,H∞).

Then, for the same reasons as in part (i), (5.42) holds and B = RA ∈ Sp(H,H∞).

As A ∈ l2(Sp) and R ∈ B(l2(Sp)), we have from definition of B(l2(Sp)) that B ∈

l2(Sp).We also have from (5.39) that( ∞∑
n=1

‖Bn‖pp

)1/p

≤ ‖B‖p = ‖B∗B‖1/2
p/2 ,

and ‖A‖p = ‖A∗A‖1/2
p/2 ≤

( ∞∑
n=1

‖An‖2
p

)1/2

.

Combining this with (5.42) yields

‖B‖lp(Sp) =

( ∞∑
n=1

‖Bn‖pp

)1/p

≤ β

( ∞∑
n=1

‖An‖2
p

)1/2

= β ‖A‖l2(Sp) .

Part (iii) follows from part (ii). Indeed, the second inequality follows immediately

from part (ii) by substituting p = 2. The proof of the first inequality is as follows. Let

R−1 ∈ B(l2(Sp)). Then A = R−1B ∈ l2(Sp) and, applying part (ii) to B ∈ l2(Sp),

i.e., swapping B and A, we have( ∞∑
n=1

‖An‖2
2

)1/2

≤
∥∥R−1

∥∥
B(H∞)

( ∞∑
n=1

‖Bn‖2
2

)1/2
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Thus ∥∥R−1
∥∥−1

B(H∞)

( ∞∑
n=1

‖An‖2
2

)1/2

≤
( ∞∑
n=1

‖Bn‖2
2

)1/2

and the proof is complete.

5.4 The spaces lq (Sp) , l∞ (B (H)) and Sp (H,K)

In this section, unless otherwise stated, we assume that 1 ≤ p < ∞. We shall

prove several results such as: equivalent definitions of the spaces Sp (H,K), that

Sp (H,K) are Banach spaces and Sp (H,K) are left B (K)-module. Towards the

end of this section we will develop an approach that enables us to identify which

operators from l∞ (B (H)) belong to B (H,H∞) and Sp (H,H∞). We will prove a

lemma that studies the inclusion of spaces l2 (B (H)) , B (H,H∞) and lq (B (H)) for

q ∈ [1, 2) . In addition, the lemma states that for q > 2 and all p, the spaces lq (Sp)

are not subsets of B (H,H∞). We shall need these results in the subsequent section

when proving inclusions of spaces Sp (H,H∞) and lp (Sp).

For a Banach space (X, ‖·‖) and n ∈ N, let Xn = X ⊕ ...⊕X be the direct sum

of n copies of X. That is, Xn consists of sequences x = (x1, ..., xn) with all xk ∈ X.

For 1 ≤ q ≤ ∞, denote by lnq (X) the space Xn, endowed with the norm

‖x‖lnq (X)

def
=

(
n∑
i=1

‖xi‖q
)1/q

and ‖x‖ln∞(X)

def
= sup ‖xi‖ . (5.43)

Similarly, for n = ∞, the space l∞q (X) = lq(X) consists of infinite sequences
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x = (xn)∞n=1, all xn ∈ X, endowed with the norm.‖·‖lq(X). That is

‖x‖lq(X) =

( ∞∑
n=1

‖xn‖q
)1/q

<∞, for q ∈ [1,∞) , (5.44)

and ‖x‖l∞(X) = sup ‖xn‖ <∞, for q =∞.

In Theorem 2.4 we proved that all lq(X) are Banach spaces.

As the function f(q) = (
∑∞

i=1 t
q
i )

1/q is decreasing [16, Lemma 9 (a)], we have for

x ∈ lp(X) and p < q,

‖x‖l∞(X) ≤ ‖x‖lq(X) ≤ ‖x‖lp(X) and lp(X) $ lq(X). (5.45)

Definition 5.12 [27, Definition 4.1] Norms ‖·‖1 and ‖·‖2 on a linear space X are

equivalent if and only if there are positive numbers k1 and k2 such that

‖x‖1 ≤ k1 ‖x‖2 and ‖x‖2 ≤ k2 ‖x‖1 for all x ∈ X.

For N <∞, the norms ‖·‖lNq (X) are equivalent for all q. Indeed, we know that if

p < q then ‖x‖lNq (X) ≤ ‖x‖lNp (X) and, on the other hand,

‖x‖lNp (X) ≤ N1/p max
i=1,...,N

{‖xi‖} ≤ N1/p ‖x‖lNq (X) .

For N = ∞, and 1 ≤ p < q the norms ‖·‖lq(X) and ‖·‖lp(X) on the space lq(X)

are not equivalent. Indeed, fix x ∈ X, ‖x‖ = 1. Consider xm = (xn)∞n=1, such

that x1 = ... = xm = x and xn = 0 for n > m. Then all xm ∈ lp (X) ⊆ lq (X),

‖xm‖lq(X) = m1/q and ‖xm‖lp(X) = m1/p. Clearly, there does not exist a constant

K > 0 such that

‖xm‖lp(X) = m1/p ≤ K ‖xm‖lq(X) = Km1/q for all m.
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Let H and K be Hilbert spaces. Let C (H,K) be the Banach spaces of all

compact operators from H to K. Recall that the subspace Sp(H,K), 1 ≤ p <∞, of

C (H,K) is defined by

Sp(H,K) =


A ∈ C(H,K): |A| ∈ Sp(H),

‖A‖p = ‖|A|‖p =
(∑

j s
p
j

)1/p

 , (5.46)

where sj are eigenvalues of |A|. The above definition is equivalent to the following

definition (see Proposition 5.13 below):

Sp(H,K) =
{
A ∈ B(H,K): UA ∈ Sp(H) and ‖A‖p

def
= ‖UA‖p

}
. (5.47)

where U is an isometry operator from K onto H.

Proposition 5.13 (i) Definition (5.47) does not depend on the choice of the isom-

etry operator U.

(ii) Definitions (5.46) and (5.47) of the space Sp(H,K) are equivalent.

Proof. (i) We know that the adjoint of isometry is its inverse and the inverse is

also an isometry (see theorem 5.2). Suppose that V is also an isometry operator

from K onto H. Thus UV −1 and V U−1 are unitary operators on H, as UV −1 and

V U−1 are onto and

∥∥UV −1x
∥∥ =

∥∥V −1x
∥∥ = ‖x‖ and

∥∥V U−1x
∥∥ =

∥∥U−1x
∥∥ = ‖x‖ .

If V A ∈ Sp(H), then UA = UV −1 (V A) ∈ Sp(H), since Sp(H) is an ideal in B (H).

On the other hand, if UA ∈ Sp(H), then V A = V U−1 (UA) ∈ Sp(H), as Sp(H) is
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an ideal in B (H). To show that ‖UA‖p = ‖V A‖p use (4.3):

‖UA‖p =
∥∥UV −1 (V A)

∥∥
p
≤
∥∥UV −1

∥∥ ‖V A‖p = ‖V A‖p

and ‖V A‖p =
∥∥V U−1 (UA)

∥∥
p
≤
∥∥V U−1

∥∥ ‖UA‖p = ‖UA‖p .

Hence ‖UA‖p = ‖V A‖p. Thus V A ∈ Sp(H) if and only if UA ∈ Sp(H) and

‖UA‖p = ‖V A‖p and therefore the definition (5.47) does not depend on the choice

of the isometry operator U from K onto H.

(ii) Let Sp|·|(H,K) and SpU(H,K) denote the set of operators defined in (5.46) and

in (5.47) respectively. Suppose that A ∈ B (H,K). Let us show that SpU(H,K) =

Sp|·|(H,K) and ‖|A|‖p = ‖UA‖p,where U is an isometry operator from K onto H.

We have that A ∈ SpU(H,K) if and only if

A ∈ B (H,K) and ‖A‖p = ‖UA‖p <∞,

if and only if

A = U∗ (UA) ∈ C (H,K) and

‖|A|‖p =
∥∥∥(A∗A)1/2

∥∥∥
p

=
∥∥∥((UA)∗ (UA))

1/2
∥∥∥
p

= ‖UA‖p <∞,

if and only if A ∈ Sp|·|(H,K). This ends the proof.

Corollary 5.14 The spaces Sp (H,K) are Banach spaces for all 1 ≤ p <∞.

Proof. We know that the Schatten ideals Sp (H), 1 ≤ p < ∞, are Banach spaces

[43]. Let U be an isometry from H onto K. It follows from Proposition 5.13 that
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Sp (H,K) and Sp (H) spaces are isometrically isomorphic. Indeed, the operator T

that maps every A ∈ Sp (H) to UA is one-to-one, onto and ‖T (A)‖p = ‖UA‖p =

‖A‖p. Hence, as Sp (H) is a Banach space, Sp (H,K) is also a Banach space.

Definition 5.15 [11] Let R be a Banach algebra. We say that a Banach space M

is a left R-module if M is endowed with an exterior left multiplication by elements

from R that is associative and distributive and

‖ra‖M ≤ ‖r‖ ‖a‖M , for all r ∈ R and a ∈M .

Lemma 5.16 Sp (H,K) is a left B (K)-module (multiplication by composition) for

all 1 ≤ p <∞. If B ∈ B (K) and A ∈ Sp (H,K) then

‖BA‖p ≤ ‖B‖ ‖A‖p . (5.48)

Proof. We have that Sp (H,K) is a Banach space. Let U be an isometry operator

from K onto H. If B ∈ B (K) and A ∈ Sp (H,K) then UBU∗ ∈ B (H), so

that UBA = UBU∗ (UA) ∈ Sp (H), since Sp (H) is an ideal in B (H). Hence

BA ∈ Sp (H,K) and

‖BA‖p = ‖UBA‖p = ‖UBU∗ (UA)‖p
(4.3)

≤ ‖UBU∗‖ ‖UA‖p = ‖B‖ ‖A‖p .

The proof is complete.

To prove that A ∈ Sp (H,K) implies A∗ ∈ Sp (K,H), we need the following

lemma and another yet equivalent definition of the spaces Sp (H,K).
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Lemma 5.17 For A ∈ Sp (H,K), the nonzero eigenvalues of AA∗ and of A∗A are

the same and the multiplicities are also the same.

Proof. Let V be an isometry from K onto H. Then V A ∈ B (H). Let V A =

U1 |V A| be the polar decomposition of V A, where U1 is a partial isometry with

initial space (kerV A)⊥ = (kerA)⊥ and final space R (V A). Hence,

A = V ∗U1 |V A| = V ∗U1 ((V A)∗ V A)
1/2

= V ∗U1 |A| .

Set U = V ∗U1. Then A = U |A|, where U is a partial isometry with initial space

(kerA)⊥ and final space R (V ∗V A) = R (A).

Let us assume to begin with that U is unitary, i.e. U∗U = UU∗ = I. Suppose

that λ is an eigenvalue of |A|2, i.e., |A|2 x = λx, for some x ∈ H. Consider z = Ux.

Then

AA∗z = U |A| (U |A|)∗ z = U |A|2 U∗Ux = U |A|2 x = Uλx = λUx = λz.

Thus λ is an eigenvalue of AA∗. In general, when U is a partial isometry, for each

x ∈ H, we have x = x1 + x2, where x1 ∈ ker (A) and x2 ∈ (ker (A))⊥. Then

λx = |A|2 x = |A|2 (x1 + x2) = A∗A (x1 + x2) = A∗Ax2 = |A|2 x2. (5.49)

Hence, as U∗U is a projection onto (ker (A))⊥ [14, p.88],

AA∗z = U |A| (U |A|)∗ z = U |A|2 U∗Ux = U |A|2 x2
(5.49)
= Uλx = λUx = λz.

Hence λ is an eigenvalue of AA∗.
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Let us assume now that λ is an eigenvalue of AA∗ i.e., AA∗x = λx for some

x ∈ K. Suppose that U is unitary. Consider the vector z = U∗x ∈ H. Then, since

AA∗ = U |A|2 U∗, we have that U∗AA∗U = |A|2 and

|A|2 z = U∗AA∗Uz = U∗AA∗UU∗x = U∗AA∗x = U∗λx = λU∗x = λz.

Thus λ is an eigenvalue of |A|2. In general, when U is a partial isometry, U∗x =

z1 + z2, where z1 ∈ ker (A) and z2 ∈ (ker (A))⊥. Since AA∗x = U |A|2 U∗x,

U∗AA∗x = U∗U |A|2 U∗x = U∗U |A|2 (z1 + z2) = U∗U |A|2 z2. (5.50)

We have |A|2 z2 = A∗Az2 ∈ R (A∗) and R (A∗) = (ker (A))⊥ (see Theorem 2.24).

As U∗U is a projection onto (ker (A))⊥ [14, p.88], we obtain that U∗U |A|2 z2 =

|A|2 z2. Thus

U∗AA∗x
(5.50)
= U∗U |A|2 z2 = |A|2 z2 = |A|2 z

On the other hand,

U∗AA∗x = U∗ (λx) = λU∗x = λz.

Hence |A|2 z = λz. This ends the proof.

Consider the following definition of the space Sp (H,K) :

Sp(H,K) =


A ∈ B(H,K): AV ∈ Sp(K)

with norm ‖A‖p
def
= ‖AV ‖p

 , (5.51)

where V is an isometry operator from K onto H.
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Proposition 5.18 (i) Definition (5.51) does not depend on the choice of the isom-

etry operator V .

(ii) Definitions (5.46) and (5.51) of the space Sp (H,K) are equivalent.

Proof. (i) We omit the proof as it is similar to the proof of Proposition 5.13(i).

(ii) Let Sp|·|(H,K) and SpV (H,K) denote the set of operators defined in (5.46)

and in (5.51) respectively. Suppose A ∈ B (H,K). Let us show that SpV (H,K) =

Sp|·|(H,K) and ‖|A|‖p = ‖AV ‖p, where V is an isometry operator from K onto H.

We have that A ∈ SpV (H,K) if and only if

A ∈ B(H,K) and ‖A‖SpV = ‖AV ‖p <∞,

if and only if

A = (AV )V ∗ ∈ C (H,K) and ‖AV ‖2
p =

∥∥∥((AV )∗ (AV ))
1/2
∥∥∥2

p

(5.3)
= ‖(AV )∗ (AV )‖p/2

(5.5)
= ‖(AV ) (AV )∗‖p/2

= ‖AV V ∗A∗‖p/2 = ‖AA∗‖p/2

Lemma 5.17
= ‖A∗A‖p/2

(5.3)
= ‖|A|‖2

p <∞,

if and only if A ∈ Sp|·|(H,K). We also proved that ‖AV ‖p = ‖|A|‖p. This ends the

proof.

Corollary 5.19 If A ∈ Sp(H,K) then A∗ ∈ Sp(K,H) and

‖A‖p = ‖A∗‖p . (5.52)
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Proof. We have

‖A‖p
(5.47)
= ‖UA‖p

(4.3)
= ‖(UA)∗‖p = ‖A∗U∗‖p

(5.51)
= ‖A∗‖p ,

where U is an isometry operator from K onto H.

Corollary 5.20 Let 2 ≤ p. If A,B ∈ l2(Sp) then B∗A ∈ Sp/2(H) and

‖B∗A‖p/2 ≤ ‖A‖p ‖B‖p ≤ ‖A‖l2(Sp) ‖B‖l2(Sp) . (5.53)

Proof. As A,B ∈ l2(Sp), it follows from (5.20) that A,B ∈ B (H,H∞). Hence,

from Proposition 5.10(iii), we have that A,B ∈ Sp(H,H∞). Hence, by Corollary

5.19, B∗ ∈ Sp(H∞, H). It follows from (5.10) that B∗A ∈ Sp/2(H) and ‖B∗A‖p/2 ≤

‖A‖p ‖B‖p . Therefore, (5.53) follows from (5.39):

‖B∗A‖p/2
(5.10)

≤ ‖A‖p ‖B‖p
(5.39)

≤ ‖A‖l2(Sp) ‖B‖l2(Sp) .

This completes the proof.

The following is a generalization of (5.5) for Sp (H,K). Let A ∈ Sp (H,K) and

1 ≤ p <∞. We have from Lemma 5.17 that

‖AA∗‖p/2 = ‖A∗A‖p/2
(5.3)
= ‖|A|‖2

p

(5.46)
= ‖A‖2

p

(5.52)
= ‖A∗‖2

p . (5.54)

Therefore

A∗A ∈ Sp/2 (H) ⇐⇒ A ∈ Sp (H,K) ⇐⇒ AA∗ ∈ Sp/2 (K)

The following lemma gives conditions whenA ∈ l∞ (B (H)) belongs toB (H,H∞)

and Sp (H,H∞). It also provides some information about inclusion of spaces l2 (B (H)),
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B (H,H∞) and lq (B (H)), q ∈ [1, 2). Additionally, we find that for q > 2 and

all p, the spaces lq (Sp) are not subspaces of B (H,H∞).According to (5.44), for

X = B (H) and for X = H, we have

l∞ (B (H)) =


A = (An)∞n=1 : all An ∈ B (H) ,

‖A‖l∞(B(H)) = supn ‖An‖ <∞.

 ,

l∞ (H) =


x = (xn)∞n=1 : all xn ∈ H

and ‖x‖l∞(H) = supn ‖xn‖ <∞.

 .
Each A = (An)∞n=1 ∈ l∞ (B (H)) acts as an operator from H into l∞ (H) :

Ax = (Anx)∞n=1 ∈ l∞ (H) , for each x ∈ H,

since

‖Ax‖l∞(H) = sup
n
‖Anx‖ ≤ sup

n
‖An‖ ‖x‖ = ‖x‖ sup

n
‖An‖ = ‖x‖ ‖A‖l∞(B(H)) <∞.

The Hilbert space H∞ = l2 (H) is a linear subspace of l∞ (H) : H∞ ⊆ l∞ (H) ,as

‖x‖l∞(H) = sup ‖xn‖ ≤
( ∞∑
n=1

‖xn‖2
H

)1/2

= ‖x‖H∞ .

For all operators A = (An)∞n=1 ∈ B (H,H∞) we have (see (5.22))

‖A‖l∞(B(H)) = sup
n
‖An‖ = sup

n
‖QnA‖ ≤ sup

n
‖Qn‖ ‖A‖B(H,H∞) = ‖A‖B(H,H∞) <∞.

Therefore

B (H,H∞) ⊆ l∞ (B (H)) . (5.55)
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On the other hand if A ∈ l∞ (B (H)), Ax ∈ H∞ and ‖Ax‖H∞ ≤ C ‖x‖H , for

some C > 0 and all x ∈ H, then A is a bounded operator from H into H∞. We shall

now consider some necessary and suffi cient condition when A ∈ l∞ (B (H)) belongs

to B (H,H∞).

Lemma 5.21 Let A ∈ l∞ (B (H)). Then

(i) A ∈ B (H,H∞) if and only if {PmA} converges in the w.o.t. to an operator

from B (H,H∞).

(ii) A ∈ Sp (H,H∞), for some p ∈ [1,∞), if and only if there is M > 0 such

that ‖PmA‖p ≤M for all m. Moreover, ‖A‖p ≤M .

(iii) lq (B (H)) ⊂ l2 (B (H)) ⊂ B (H,H∞) for q ∈ [1, 2), and

‖A‖2
B(H,H∞) ≤

∞∑
n=1

‖An‖2 = ‖A‖2
l2(B(H)) for A ∈ l2 (B (H)) . (5.56)

(iv) For q > 2 and all p ∈ [1,∞), lq (Sp) is not contained in B (H,H∞).

Proof. (i) Clearly, for each m, PmA ∈ B (H,H∞) (see (5.25)). Let, for each x ∈ H,

{PmAx}
w.o.t.→ zx ∈ H∞, i.e., for each y ∈ H∞, (PmAx, y)H∞ →

m→∞
(zx, y)H∞ . Let

ε = 1. Then, there is N such that, for all m > N, |(PmAx, y)H∞ − (zx, y)H∞| < 1.

Then |(PmAx, y)H∞| < |(zx, y)H∞|+ 1. Thus

sup
m
|(PmAx, y)H∞| <∞ for all x ∈ H, y ∈ H∞. (5.57)

Recall [38, page 261] that, for each bounded functional f on H∞, there is a unique

yf ∈ H∞ such that f (x) = (x, yf ) for x ∈ H∞. Thus for any arbitrary functional f
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on H∞ we have f (PmAx) = (PmAx, yf )H∞ . Thus

sup
m
|f (PmAx)| = sup

m

∣∣(PmAx, yf )H∞∣∣ (5.57)
< ∞ for all x ∈ H and f ∈ (H∞)∗ .

Applying now the uniform boundedness principle (see [16, Volume 1, Chapter II,

§3, Corollary 21]), we obtain that the set {PmA}∞m=1 is bounded in B (H,H∞):

C = sup
m
‖PmA‖B(H,H∞) <∞,

for some C > 0. Therefore, for all m and each x ∈ H, we have

‖PmAx‖H∞ =

(
m∑
n=1

‖Anx‖2

)1/2

≤ C ‖x‖ .

Hence, for every x ∈ H,

‖Ax‖H∞ =

( ∞∑
n=1

‖Anx‖2

)1/2

= lim
m→∞

(
m∑
n=1

‖Anx‖2

)1/2

≤ C ‖x‖ .

Thus A ∈ B (H,H∞). The part only if follows from (5.27) and the fact that con-

vergence in s.o.t. implies convergence in w.o.t.

(ii) Let A ∈ Sp (H,H∞) for some p ∈ [1,∞). For allm, let Pm be the projections

given in (5.24). Then Pm ∈ B (H∞). Setting M = ‖A‖p, we have

‖PmA‖p
(5.48)

≤ ‖Pm‖ ‖A‖p = ‖A‖p .

Conversely, let there exist M > 0, such that ‖PmA‖p ≤ M for all m. Hence, all

PmA ∈ Sp (H,H∞) and it follows from (5.47) that

‖PmA‖B(H,H∞) = ‖UPmA‖B(H)

(4.4)

≤ ‖UPmA‖p
(5.47)
= ‖PmA‖p ≤M
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for all m,where U is an isometry operator from H∞ onto H. Hence

sup
m
‖PmA‖B(H,H∞) ≤M <∞.

Thus A ∈ B (H,H∞) (see (i)) and ‖A‖B(H,H∞) ≤M . As PmA
s.o.t.→ A (see (5.27)),.we

have from Theorem 5.9(i) that A ∈ Sp (H,H∞) and ‖A‖p ≤M .

(iii) lq (B (H)) ⊆ l2 (B (H)) for q ∈ [1, 2) follows from the fact that if A =

(An)∞n=1 ∈ lq (B (H)) , then

‖A‖l2(B(H)) =

( ∞∑
n=1

‖An‖2

)1/2
(4.4)

≤
( ∞∑
n=1

‖An‖q
)1/q

= ‖A‖lq(B(H)) .

To prove that lq (B (H)) is a proper subset of l2 (B (H)) we consider an example.

Let A = (An)∞n=1, where An = (n−1)
1/q
1H for each n. Then A ∈ l2 (B (H)), as

‖A‖l2(B(H)) =

( ∞∑
n=1

‖An‖2

)1/2

=

( ∞∑
n=1

((
n−1
)1/q
)2
)1/2

=

( ∞∑
n=1

n−2/q

)1/2

<∞,

since 2
q
> 1. However, A /∈ lq (B (H)), since

‖A‖lq(B(H)) =

( ∞∑
n=1

‖An‖q
)1/q

=

( ∞∑
n=1

n−1

)1/q

diverges.

We have l2 (B (H)) ⊆ B (H,H∞) (see (5.20)). To prove that l2 (B (H)) is a proper

subset of B (H,H∞) we consider the following example. Let (en)∞n=1 be an ortho-

normal basis in H. For x ∈ H, x =
∑∞

n=1 (x, en) en and ‖x‖2 =
∑∞

n=1 |(x, en)|2. Let

110



A = (An)∞n=1, where Anx =
(

1
n

)1/2
(x, en) en. Then

‖A‖B(H,H∞) = sup
‖x‖=1

( ∞∑
n=1

‖Anx‖2

)1/2

= sup
‖x‖=1

( ∞∑
n=1

1

n
|(x, en)|2

)1/2

≤ sup
‖x‖=1

( ∞∑
n=1

|(x, en)|2
)1/2

= 1.

Hence A ∈ B (H,H∞). However, A /∈ l2 (B (H)), since

‖An‖ = sup
‖x‖=1

‖Anx‖ = sup
‖x‖=1

∥∥|(x, en)| /n1/2
∥∥ = n−1/2 and

‖A‖2
l2(B(H)) =

∞∑
n=1

‖An‖2 =
∞∑
n=1

n−1 - diverges.

The estimate (5.56) follows from the following reasoning

‖A‖2
B(H,H∞) = sup

‖x‖=1

( ∞∑
n=1

‖Anx‖2

)
≤

∞∑
n=1

(
sup
‖x‖=1

‖Anx‖2

)

=
∞∑
n=1

‖An‖2 = ‖A‖2
l2(B(H)) , if A = (An)∞n=1 ∈ l2 (B (H)) .

(iv) Let q > 2 and p ∈ [1,∞). We are going to construct an operator A such

that A ∈ lq (Sp) and A /∈ B (H,H∞). Let α = 2q
2+q
. Then α > 1, as q > 2. For some

0 6= T ∈ Sp, let A = (An)∞n=1, where An = n−
α
q T for each n. Then

‖A‖lq(Sp) =

( ∞∑
n=1

‖An‖qp

)1/q

=

( ∞∑
n=1

∥∥∥n−αq T∥∥∥q
p

)1/q

= ‖T‖p

( ∞∑
n=1

(
n−

α
q

)q)1/q

= ‖T‖p

( ∞∑
n=1

n−α

)1/q

<∞, as
∞∑
n=1

n−α converges.

Thus A ∈ lq (Sp). On the other hand, as 2α
q

= 4
2+q

< 1, we have

‖A‖2
B(H,H∞) = sup

‖x‖=1

‖Ax‖2
H∞ = sup

‖x‖=1

∞∑
n=1

‖Anx‖2 = sup
‖x‖=1

∞∑
n=1

∥∥∥n−αq Tx∥∥∥2

= sup
‖x‖=1

(
‖Tx‖2

H

) ∞∑
n=1

n−
2α
q = ‖T‖2

∞∑
n=1

n−
2α
q - diverges,
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as
∑∞

n=1 n
− 2α

q diverges. Hence A /∈ B (H,H∞). Thus, for q > 2 and p ∈ [1,∞),

none of the spaces lq (Sp) is contained in B (H,H∞).

5.5 Inclusions of spaces Sp (H,H∞) and lp (Sp)

In this section we prove the main result of this chapter - inclusions that hold for

the spaces Sp (H,H∞) and lp (Sp). Let C (H,H∞) be the subspace of all compact

operators in B (H,H∞). Recall that, for p, q ∈ [1,∞) , the Banach space lq (Sp)

consists of all sequences A = (An)∞n=1, such that all An ∈ Sp and

‖A‖lq(Sp) =

( ∞∑
n=1

‖An‖qp

)1/q

<∞. (5.58)

Similar to the rank one operator on H in (4.20), we define a rank one operator in

B (H,K). For x ∈ H and u ∈ K, denote by x⊗u the rank one operator in B (H,K)

that acts by

(x⊗ u) z = (z, x)u for each z ∈ H. (5.59)

All finite dimensional operators on H belong to Sp (H) for all p ∈ [1,∞) (see [21,

Calkin Theorem ]). Therefore x⊗ u ∈ Sp (H,K) and

‖x⊗ u‖Sp(H,K) = ‖U (x⊗ u)‖Sp(H) (5.60)

= ‖x⊗ Uu‖Sp(H)

(4.25)
= ‖x‖ ‖Uu‖ = ‖x‖ ‖u‖

where U is an isometry from K onto H.

Theorem 5.22 (i) Let 1 ≤ p < 2. Then

lp (Sp) $ Sp (H,H∞) $ l2 (Sp) $ l2 (C (H)) $ C (H,H∞) .
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For A ∈ Sp (H,H∞),

‖A‖l2(Sp) ≤ ‖A‖p ≤ ‖A‖lp(Sp) where ‖A‖lp(Sp) =∞ if A /∈ lp (Sp) . (5.61)

For q ∈ (p, 2), the space lq (Sp) neither contains, nor is contained in Sp (H,H∞).

(ii) Let p ∈ (2,∞). Then

l2 (Sp) $ Sp (H,H∞) $ lp (Sp) * B (H,H∞) .

For A ∈ Sp (H,H∞),

‖A‖lp(Sp) ≤ ‖A‖p ≤ ‖A‖l2(Sp) , where ‖A‖l2(Sp) =∞ if A /∈ l2 (Sp) . (5.62)

Moreover, Sp (H,H∞) is not contained in lq (Sp) , for any q ∈ [2, p) and lq (Sp)

is not contained in B (H,H∞), for all q > 2 and p ∈ [1,∞).

(iii) l2 (S2) = S2 (H,H∞) and ‖A‖l2(S2) = ‖A‖2 for each A ∈ S2 (H,H∞).

Proof. (i) Let 1 ≤ p < 2. We begin by showing that l2 (C (H)) ⊆ C (H,H∞). Let

A = (An)∞n=1 ∈ l2 (C (H)) . Then all An ∈ C (H) and PmA ∈ l2 (C (H)) for all m.

By Lemma 5.21(iii), A ∈ B (H,H∞). Since PmA = (A1, ..., Am, 0, ...) is a sum of

finite number of compact operators, it is compact, i.e. PmA ∈ C (H,H∞) for all m

(see [30, p.193.]). We also have

‖A− PmA‖B(H,H∞)

(5.56)

≤ ‖A− PmA‖l2(B(H))

(4.5)
= ‖A− PmA‖l2(C(H)) →m→∞ 0.

Since the set of all compact operators C (H,H∞) is closed (see [42, Theorem 8.3]),

we have that A ∈ C (H,H∞). Thus l2 (C (H)) ⊆ C (H,H∞).
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We shall now prove the inclusions

lp (Sp) ⊆ Sp (H,H∞) ⊆ l2 (Sp) ⊆ l2 (C (H)) .

The inclusion l2 (Sp) ⊆ l2 (C (H)) is obvious.

Suppose that A ∈ lp (Sp). Since A ∈ lp (Sp) ⊆ l∞ (Sp), we have

‖PmA‖p
(5.32)

≤
(

m∑
n=1

‖An‖pp

)1/p

≤
( ∞∑
n=1

‖An‖pp

)1/p

= ‖A‖lp(Sp) ,

for all m. By Lemma 5.21(ii), A ∈ Sp (H,H∞). Thus lp (Sp) ⊆ Sp (H,H∞).

Suppose that A ∈ Sp (H,H∞). For all n, let Qn be the projection given in (5.24)

and Un be the isometry given in (5.23). Then, for all n, An = UnQnA. Hence

U−1
n An = QnA and we obtain that for all n

‖An‖p =
∥∥UnU−1

n An
∥∥
p

(5.47)
=
∥∥U−1

n An
∥∥
p

= ‖QnA‖p
(5.48)

≤ ‖Qn‖ ‖A‖p = ‖A‖p .

Thus supn ‖An‖p <∞ and therefore A ∈ l∞ (Sp). Applying (5.32), we have

‖A‖pl2(Sp)

(5.58)
=

( ∞∑
n=1

‖An‖2
p

)p/2

= lim
m→∞

(
m∑
n=1

‖An‖2
p

)p/2

(5.32)

≤ lim
m→∞

‖PmA‖pp
(5.36)
= ‖A‖pp .

Hence A ∈ l2 (Sp), so that Sp (H,H∞) ⊆ l2 (Sp). Additionally,

‖A‖pp
(5.36)
= lim

m→∞
‖PmA‖pp

(5.32)

≤ lim
m→∞

m∑
n=1

‖An‖pp = ‖A‖plp(Sp) .

Thus ‖A‖p ≤ ‖A‖lp(Sp). This ends the proof of (5.61).
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To complete the proof of (i), we shall construct examples of operators that will

show proper inclusions, i.e.,

lp (Sp) 6= Sp (H,H∞) 6= l2 (Sp) 6= l2 (C (H)) 6= C (H,H∞) .

We begin with l2 (Sp) 6= l2 (C (H)). Let A1 ∈ C (H) and A1 /∈ Sp. Then

A =


A1

0
...

 , ∈ l2 (C (H)) but A /∈ l2 (Sp) .

Before proving the other proper inclusions, we construct some operators. Let

{en}∞n=1 be an orthonormal basis inH and Pen be projections onCen = {λen : λ ∈ C}.

Then ‖Pen‖p = 1 for all n and p ∈ [1,∞). Let {λn}∞n=1, {µn}
∞
n=1 be nonincreasing

sequences in (0, 1] and

A = (An)∞n=1 , B = (Bn)∞n=1 with An = λnPen , Bn = µnPe1 . (5.63)

Then ‖An‖p = λn, ‖Bn‖p = µn. HenceA andB belong to l∞ (Sp), since supn ‖An‖p =

supn λn ≤ 1 and supn ‖Bn‖p = supn µn ≤ 1. Let x =
∑∞

n=1 αnen ∈ H. Then∑∞
n=1 |αn|

2 = ‖x‖2 and Ax =
∑∞

n=1⊕λnαnen, where λnαnen belongs to the n-th

component of H∞. As

‖Ax‖H∞ =

∥∥∥∥∥
∞∑
n=1

⊕λnαnen

∥∥∥∥∥
H∞

≤
( ∞∑
n=1

|αn|2
)1/2

= ‖x‖ <∞,

we have Ax ∈ H∞, so that A ∈ B (H,H∞) and .‖A‖ ≤ 1. Then

|A|2 = A∗A
(5.35)
=

∞∑
n=1

A∗nAn =

∞∑
n=1

λ2
nPen

115



is a diagonal operator (see Example 2.19) with diagonal sequence
{
λ2
n

}
and Theorem

2.26 implies that |A| =
∑∞

n=1 λnPen . Hence, by (4.2)

‖A‖pp =
∞∑
n=1

λpn for p ∈ [1,∞) . (5.64)

We also have that Bx = α1

∑∞
n=1⊕µne1, where µne1 belongs to the n-th component

of H∞, and

‖Bx‖2
H∞ = α2

1

∞∑
n=1

µ2
n ≤ ‖x‖

2
∞∑
n=1

µ2
n.

Hence B is bounded if and only if
∑∞

n=1 µ
2
n <∞. Setting x = e1, we have

‖B‖2
B(H,H∞) =

∞∑
n=1

µ2
n. (5.65)

Moreover, if B is bounded then B = e1 ⊕ u, where u =
∑∞

n=1⊕µne1 ∈ H∞, is a

rank one operator in B (H,H∞). Indeed, (x, e1) = α1, so that

(e1 ⊕ u)x = (x, e1)u = α1

∞∑
n=1

⊕µne1 = Bx.

Thus, as every rank one operator, B ∈ Sp (H,H∞) for all p ∈ [1,∞).

We shall now prove that Sp (H,H∞) 6= l2 (Sp). Let 1 ≤ p < q ≤ 2. Set in (5.63)

λn = n−1/p. Then

‖A‖qlq(Sp) =
∞∑
n=1

‖An‖qp =
∞∑
n=1

λqn =
∞∑
n=1

n−q/p <∞.

On the other hand, by (5.64), ‖A‖pp =
∑∞

n=1 λ
p
n =

∑∞
n=1 n

−1 - diverges. Hence

A ∈ lq (Sp) and A /∈ Sp (H,H∞). Thus lq (Sp) is not contained in Sp (H,H∞). In
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particular, when q = 2 we have Sp (H,H∞) 6= l2 (Sp). This ends the proof that

Sp (H,H∞) $ l2 (Sp).

Now we shall prove that lp (Sp) 6= Sp (H,H∞). Let 1 ≤ p ≤ q < 2. Set in (5.63)

µn = n−1/q. Then

‖B‖qlq(Sp) =

∞∑
n=1

‖Bn‖qp =

∞∑
n=1

µqn =

∞∑
n=1

n−1 - diverges,

and thus B /∈ lq (Sp). On the other hand,
∑∞

n=1 µ
2
n =

∑∞
n=1 n

−2/q <∞, as 2/q > 1.

Hence, as above, B ∈ Sp (H,H∞) for all p ∈ [1,∞). Thus the space lq (Sp) does

not contain Sp (H,H∞). In case when p = q we have that lp (Sp) 6= Sp (H,H∞) and

therefore lp (Sp) $ Sp (H,H∞).

Finally, to prove that l2 (C (H)) 6= C (H,H∞), set λn = n−1/2 in (5.63). Then

An = n−1/2Pen and A /∈ l2 (C (H)), since

‖A‖2
l2(C(H)) =

∞∑
n=1

‖An‖2 =
∞∑
n=1

λ2
n =

∞∑
n=1

n−1 − diverges.

On the other hand, |A|2 = A∗A =
∑∞

n=1 A
∗
nAn =

∑∞
n=1 n

−1Pen and, by Theorem

2.26, |A| =
∑∞

n=1 n
−1/2Pen . Thus |A| is a compact operator. Indeed, for each m, the

operator Tm =
∑m

n=1 n
−1/2Pen is compact, as it is a finite sum of rank one operators,

and the operators Tm converge uniformly to |A| :

‖|A| − Tm‖ =

∥∥∥∥∥
∞∑

n=m+1

n−1/2Pen

∥∥∥∥∥ = sup
n>m

{
n−1/2

}
= (m+ 1)−1/2 →

m→∞
0.

Thus, by Theorem 2.33, |A| ∈ C (H). Hence A = U |A| ∈ C (H,H∞). Since

A /∈ l2 (C (H)) and A ∈ C (H,H∞), we have l2 (C (H)) $ C (H,H∞).

117



(ii) Let p > 2. We shall begin by proving the inclusion l2 (Sp) ⊆ Sp (H,H∞) and

the RHS inequality in (5.62). Let A ∈ l2 (Sp). As l2 (Sp) ⊆ l2 (B (H)) ⊆ B (H,H∞)

(see (5.20)), it follows from Proposition 5.8 that, for all m,

‖PmA‖p ≤
(

m∑
n=1

‖An‖2
p

)1/2

≤ ‖A‖l2(Sp) .

As A ∈ l2 (Sp) ⊆ l∞ (Sp) ⊆ l∞ (B (H)), we can apply Lemma 5.21(ii) to obtain that

A ∈ Sp (H,H∞) and ‖A‖p ≤ ‖A‖l2(Sp). Thus l2 (Sp) ⊆ Sp (H,H∞) and the RHS

inequality in (5.62) holds for all A ∈ l2 (Sp).

We shall now prove the inclusion Sp (H,H∞) ⊆ lp (Sp) and LHS in (5.62). Let

A = {An}∞n=1 ∈ Sp (H,H∞). By (5.36), ‖PmA‖p →m→∞ ‖A‖p. Applying now Propo-

sition 5.8 we obtain that, for each m,

m∑
n=1

‖An‖pp ≤ ‖PmA‖
p
p

(5.36)→ ‖A‖pp , as m→∞.

Hence,
(∑∞

n=1 ‖An‖
p
p

)1/p

< ∞, i.e., A ∈ lp (Sp). Thus Sp (H,H∞) ⊆ lp (Sp) and

LHS in (5.62) holds.

To complete the proof of (ii), consider some examples that show that

Sp (H,H∞) * lq (Sp) for 2 ≤ q < p,

lq (Sp) * B (H,H∞) , for q > 2 and p ∈ [1,∞) ,

l2 (Sp) 6= Sp (H,H∞) 6= lp (Sp) , for p > 2. (5.66)

Let 2 ≤ q < p. Set λn = n−1/q in (5.63). Then A /∈ lq (Sp), since

‖A‖qlq(Sp) =

∞∑
n=1

‖An‖qp =
∞∑
n=1

λqn =

∞∑
n=1

n−1 diverges.
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On the other hand, A ∈ Sp (H,H∞) since, applying (5.64), we have ‖A‖pp =∑∞
n=1 λ

p
n =

∑∞
n=1 n

−p/q < ∞. Thus, (5.66) holds. In particular, when q = 2,

we have Sp (H,H∞) 6= l2 (Sp).

Set now µn = n−1/2 in (5.63). Then, for 2 < q and p ∈ [1,∞),

‖B‖qlq(Sp) =
∞∑
n=1

‖µnPe1‖
q
p =

∞∑
n=1

µqn =

∞∑
n=1

n−q/2 <∞.

Thus B ∈ lq (Sp). On the other hand, since

‖B‖B(H,H∞)

(5.65)
=

( ∞∑
n=1

µ2
n

)1/2

=

( ∞∑
n=1

n−1

)1/2

diverges,

B is not bounded, i.e., B /∈ B (H,H∞). Hence lq (Sp) * B (H,H∞), for 2 < q and

p ∈ [1,∞). In particular, if p = q > 2, we have Sp (H,H∞) 6= lp (Sp) .

(iii) Repeating the proof of (ii) for p = 2, we obtain that

l2
(
S2
)
⊆ S2 (H,H∞) ⊆ l2

(
S2
)
,

‖A‖2
l2(S2) ≤ ‖A‖

2
2 ≤ ‖A‖

2
l2(S2) , for A ∈ S2 (H,H∞) .

Thus l2 (S2) = S2 (H,H∞) and ‖A‖l2(S2) = ‖A‖2 for each A ∈ S2 (H,H∞). The

proof is complete.

5.6 Conclusion

The main results in this chapter are Propositions 5.8 and 5.10, Lemma 5.21 and

Theorems 5.11 and 5.22. In Proposition 5.8 we prove some norm estimates for an
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operator from B (H,H∞) with all its components from Sp (H). This is an auxiliary

result that we use in the proof of Theorem 5.22.

In Proposition 5.10 we prove some norm inequalities for operators from the

spaces Sp (H.H∞) and l2 (Sp). In fact, this proposition and Theorem 5.11 extend,

respectively, the results of Lemma 6 and Corollary 7 of [25, p.4] to infinite families

of operators.

In Lemma 5.21 we find and prove necessary and suffi cient condition when an

operator A from l∞ (B (H)) belongs to B (H,H∞) and to Sp (H.H∞). We also

prove inclusions that hold for spaces l∞ (B (H)), B (H,H∞) and lq (B (H)). In

addition, we find that for q > 2 and all p, the spaces lq (Sp) do not lie in B (H,H∞).

In Theorem 5.22 we prove some inclusions that hold for spaces Sp (H.H∞) and

lp (Sp). We will use the results of this chapter in the subsequent chapter.

Chapter 6 is dedicated to generalized Clarkson-McCarthy inequalities, convexity

of spaces lp (Sp), partitions of operators from Sp, Cartesian decomposition.
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Chapter 6 Analogues of Clarkson-McCarthy

inequalities. Partitioned operators and Carte-

sian decomposition.
This chapter is mainly devoted to generalized Clarkson-McCarthy inequalities for

vector lq-spaces lq (Sp) of operators from Schatten ideals Sp. We show that all

Clarkson-McCarthy type inequalities are, in fact, some estimates on the norms of

operators acting on the spaces lq (Sp) or from one such space into another. The first

section is dedicated to known analogues of McCarthy inequalities. In the second

section we analyse actions of operators from B (H∞) on lq (Sp) spaces. We obtain a

further generalization of McCarthy estimates in section 6.3. In the fourth section we

study the convexity of spaces lp (Sp). In the fifth section we study partitioned oper-

ators from Sp and the sixth section is about Cartesian decomposition and Schatten

norms. Finally, in the last section we summarize the results in this chapter.

6.1 Background on analogues of McCarthy inequalities

Clarkson [12, Theorem 2] proved the following estimates for spaces Lp and lp. If

p ≥ 2, q = p/(p− 1) and x, y ∈ Lp, or x, y ∈ lp, then

21/p (‖x‖p + ‖y‖p)1/p ≤ (‖x+ y‖p + ‖x− y‖p)1/p ≤ 21−1/p (‖x‖p + ‖y‖p)1/p ;
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21/q (‖x‖p + ‖y‖p)1/p ≤ (‖x+ y‖q + ‖x− y‖q)1/q ;

‖x+ y‖p + ‖x− y‖p ≤ 2 (‖x‖q + ‖y‖q)p−1 .

For 1 < p ≤ 2 these inequalities hold in reversed order.

The algebras Sp are non-commutative, i.e., T1T2 6= T2T1 in general for T1, T2 ∈

Sp. McCarthy [28, Theorem 2.7] stated that the non-commutativity of Sp spaces

complicates the proofs of estimates for these spaces. However, he obtained the

following non-commutative analogues of Clarkson estimates.

For A,B ∈ Sp, 2 ≤ p <∞ and 1
p

+ 1
q

= 1,

21/p
(
‖A‖pp + ‖B‖pp

)1/p

≤
(
‖A+B‖pp + ‖A−B‖pp

)1/p

(6.1)

≤ 21−1/p
(
‖A‖pp + ‖B‖pp

)1/p

;

21/q
(
‖A‖pp + ‖B‖pp

)1/p

≤
(
‖A+B‖qp + ‖A−B‖qp

)1/q

. (6.2)

For 1 < p ≤ 2, inequalities in (6.1) and (6.2) are reversed.

We will consider now these and some other inequalities from the perspective of

lp (Sp)-spaces of operators from Schatten ideals.

Let Hn be the orthogonal sum of n copies of H. Each R ∈ B (Hn) has the

block-matrix form R = (Rij), 1 ≤ i, j ≤ n, with all Rij ∈ B (H). It generates a

bounded operator (we also call it R) on each space lnq (Sp) that acts in the following
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way

RA = (Rij)


A1
...

An

 =


∑n

i=1 R1iAi
...∑n

i=1 RniAi

 ∈ lnq (Sp) , (6.3)

for A = (Ai)
n
i=1 ∈ lnq (Sp). Clearly, RA ∈ lnq (Sp), since

‖RA‖lnq (Sp) =

 n∑
j=1

∥∥∥∥∥
n∑
i=1

RjiAi

∥∥∥∥∥
q

p

1/q

≤
(
n max
j,i=1,...,n

‖Rji‖q nq max
i=1,...,n

‖Ai‖qp
)1/q

= n1+1/q max
j,i=1,...,n

‖Rji‖ max
i=1,...,n

‖Ai‖p <∞.

In particular, each n× n matrix a = (aij) generates an operator

Ra = (aij1H) on lnq (Sp) . (6.4)

Consider the unitary matrix (the conjugate of the transpose is its inverse) u =

1√
2

1 1

1 −1

. By (6.4) and (6.3), the operator Ru acts as

RuA =
1√
2

A1 + A2

A1 − A2

 , for A =

A1

A2

 ∈ l2p (Sp) .

We will show now that Clarkson-McCarthy inequalities (6.1) and (6.2) could be

transformed to the form

2−|
1
2
− 1
p | ‖A‖l2p(Sp) ≤ ‖RuA‖l2p(Sp) ≤ 2|

1
2
− 1
p | ‖A‖l2p(Sp) , for p ∈ [1,∞) ; (6.5)
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‖RuA‖l2p(Sp) ≤ 2( 12−
1
q ) ‖A‖l2q(Sp) , where

1

p
+

1

q
= 1 and p ∈ [2,∞) . (6.6)

The inequality (6.6) is reversed for 1 < p ≤ 2.

Indeed, substituting A1 for A and A2 for B in (6.1) and (6.2), we obtain

21/p
(
‖A1‖pp + ‖A2‖pp

)1/p

≤
(
‖A1 + A2‖pp + ‖A1 − A2‖pp

)1/p

(6.7)

≤ 21−1/p
(
‖A1‖pp + ‖A2‖pp

)1/p

;

21/q
(
‖A1‖pp + ‖A2‖pp

)1/p

≤
(
‖A1 + A2‖qp + ‖A1 − A2‖qp

)1/q

, (6.8)

for 2 ≤ p < ∞ and 1
p

+ 1
q

= 1. For 1 < p ≤ 2, inequalities in (6.7) and (6.8) are

reversed. Note that we can extend (6.7) to p = 1. Indeed, substituting p = 1 in

(6.7) we get

2 (‖A1‖1 + ‖A2‖1) ≥ ‖A1 + A2‖1 + ‖A1 − A2‖1 ≥ ‖A1‖1 + ‖A2‖1 .

We can verify this using the norm triangle inequality:

‖A1 + A2‖1 + ‖A1 − A2‖1 ≤ 2 (‖A1‖1 + ‖A2‖1) and ‖A1‖1 + ‖A2‖1

=
1

2
(‖A1 + A2 + A1 − A2‖1 + ‖A2 + A1 − A1 + A2‖1) ≤ ‖A1 + A2‖1 + ‖A1 − A2‖1 .

Let A =

A1

A2

. Then A ∈ l2p (Sp),

‖A‖l2p(Sp) =
(
‖A1‖pp + ‖A2‖pp

)1/p

and ‖RuA‖l2p(Sp) =
1√
2

(
‖A1 + A2‖pp + ‖A1 − A2‖pp

)1/p

.
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Thus we can transfer the first inequality to

21/p ‖A‖l2p(Sp) ≤ 21/2 ‖RuA‖l2p(Sp) ≤ 21−1/p ‖A‖l2p(Sp) for 2 ≤ p <∞ and

21/p ‖A‖l2p(Sp) ≥ 21/2 ‖RuA‖l2p(Sp) ≥ 21−1/p ‖A‖l2p(Sp) for 1 ≤ p ≤ 2.

Simplifying and rearranging, we get

2
1
p
− 1
2 ‖A‖l2p(Sp) ≤ ‖RuA‖l2p(Sp) ≤ 2

1
2
− 1
p ‖A‖l2p(Sp) for 2 ≤ p <∞ and

2
1
2
− 1
p ‖A‖l2p(Sp) ≤ ‖RuA‖l2p(Sp) ≤ 2

1
p
− 1
2 ‖A‖l2p(Sp) for 1 ≤ p ≤ 2.

Taking into account that 1
p
− 1

2
≤ 0 and 1

2
− 1

p
≥ 0, for 2 ≤ p <∞, and 1

2
− 1

p
≤ 0 and

1
p
− 1

2
≥ 0, for 1 ≤ p ≤ 2, we obtain the transformed Clarkson-McCarthy inequality

(6.5).

Similar procedure shows that we could transform the inequality (6.8) to

2
1
q
− 1
2 ‖A‖l2p(Sp) ≤ ‖RuA‖l2q(Sp) , where A =

A1

A2

 ∈ l2p (Sp) ,

1
p

+ 1
q

= 1 and 2 ≤ p <∞. We could rearrange it, by substituting T = A1 +A2 and

S = A1 − A2, to obtain (6.6)

‖RuA‖l2p(Sp) ≤ 2
1
2
− 1
q ‖A‖l2q(Sp) , where A =

T
S

 ∈ l2p (Sp) .

For 1 < p ≤ 2 the above inequality is reversed.

Ball, Carlen and Lieb proved in [3, Theorem 1(b)] the following inequality for

X, Y ∈ Sp and 2 ≤ p ≤ ∞:(
‖X + Y ‖pp + ‖X − Y ‖pp

2

)2/p

≤ ‖X‖2
p + (p− 1) ‖Y ‖2

p . (6.9)
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For 1 ≤ p ≤ 2, the estimate (6.9) is reversed.

Set λ = (p− 1)−1/2. Then (6.9) could be transformed to the form

‖RaA‖l2p(Sp) ≤ 21/p ‖A‖l22(Sp) , where a =

1 λ

1 −λ

 , A =

A1

A2

 . (6.10)

For 1 ≤ p ≤ 2, the inequality is reversed.

Indeed, set X = A1 and Y = λA2. Then

RaA =

A1 + λA2

A1 − λA2

 =

X + Y

X − Y

 ,
‖RaA‖l2p(Sp) =

(
‖X + Y ‖pp + ‖X − Y ‖pp

)1/p

and

‖A‖l22(Sp) =
(
‖A1‖2

p + ‖A2‖2
p

)1/2

=
(
‖X‖2

p + (p− 1) ‖Y ‖2
p

)1/2

.

Substituting the above formulae for ‖RaA‖l2p(Sp) and ‖A‖l22(Sp) into (6.9) we obtain

‖RaA‖2
l2p(Sp) × 2−2/p ≤ ‖A‖2

l22(Sp). Rearranging it, we get (6.10).

For n ≥ 2, let a = (akj)
n
k,j=1 be the n× n matrix with entries

akj = n−1/2 exp

(
i
2π (j − 1) (k − 1)

n

)
= n−1/2ωk−1

j−1 ,

where ωj−1 = e2πi(j−1)/n, j = 1, 2, ..., n, are the n-th roots of unity. For 1 ≤ p ≤ ∞,

let, as before, q be the conjugate index defined by 1
p

+ 1
q

= 1. Bhatia and Kittaneh

[9, Theorems 1, 2, 4] obtained an analogue of Clarkson-McCarthy inequalities (6.1)

and (6.2) for n operators A0, ..., An−1 in Sp:

n
2
p

n−1∑
j=0

‖Aj‖2
p ≤

n−1∑
k=0

∥∥∥∥∥
n−1∑
j=0

ωkjAj

∥∥∥∥∥
2

p

≤ n2−2/p

n−1∑
j=0

‖Aj‖2
p , (6.11)
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n
n−1∑
j=0

‖Aj‖pp ≤
n−1∑
k=0

∥∥∥∥∥
n−1∑
j=0

ωkjAj

∥∥∥∥∥
p

p

≤ np−1

n−1∑
j=0

‖Aj‖2
p , (6.12)

n

(
n−1∑
j=0

‖Aj‖pp

)q/p

≤
n−1∑
k=0

∥∥∥∥∥
n−1∑
j=0

ωkjAj

∥∥∥∥∥
q

p

for 2 ≤ p ≤ ∞. (6.13)

For 1 ≤ p ≤ 2, inequalities (6.11) and (6.12) and (6.13) are reversed.

Let A =


A1
...

An

 and all Ai ∈ Sp. Inequalities (6.11) and (6.12) can be interpreted
as a particular case (q = p or 2) of the following inequalities in lnq (Sp), for 1 ≤ p <∞:

n−|
1
2
− 1
p | ‖A‖lnq (Sp) ≤ ‖RaA‖lnq (Sp) ≤ n|

1
2
− 1
p | ‖A‖lnq (Sp) . (6.14)

Inequality (6.13) can be interpreted as inequality in lnq (Sp):

n( 1q−
1
2) ‖A‖lnp (Sp) ≤ ‖RaA‖lnq (Sp) for p ∈ [2,∞) , (6.15)

and reversed for 1 < p ≤ 2. Indeed, we have

‖RaA‖lnq (Sp) = n−1/2

 n∑
k=1

∥∥∥∥∥
n∑
j=1

ωk−1
j−1Aj

∥∥∥∥∥
q

p

1/q

, (6.16)

‖A‖lnq (Sp) =

(
n∑
j=1

‖Aj‖qp

)1/q

. (6.17)

Set q = 2 and q = p. Substituting (6.16) and (6.17) in (6.11) and (6.12) and

changing the index of summation, we get

n
1
p
− 1
2 ‖A‖lnq (Sp) ≤ ‖RaA‖lnq (Sp) ≤ n

1
2
− 1
p ‖A‖lnq (Sp) , for 2 ≤ p <∞,

n
1
2
− 1
p ‖A‖lnq (Sp) ≤ ‖RaA‖lnq (Sp) ≤ n

1
p
− 1
2 ‖A‖lnq (Sp) , for 1 ≤ p ≤ 2.
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Noticing that 1
p
− 1

2
≤ 0 for 2 ≤ p <∞ and 1

2
− 1

p
≤ 0 for 1 ≤ p ≤ 2 we obtain (6.14).

Substituting (6.16) and (6.17) for q = p and changing the index of summation in

(6.13), we get (6.15).

In [25, Theorems 1 and 2] Kissin extended the above results to all invertible

operators R = (Rij)
n
i,j=1 ∈ B (Hn) with all Rij ∈ B (H). Set r = maxi,j=1,...,n ‖Rij‖,

ρ = maxi,j=1,...,n

∥∥R−1
ij

∥∥, α = ‖R−1‖, β = ‖R‖ and let A = (Aj)
n
j=1 ∈ lnp (Sp) and

B = (Bj)
n
j=1 = RA. He proved that

1) if 2 ≤ p <∞ and λ, µ ∈ [2, p], or if 1 < p ≤ 2 and λ, µ ∈ [p, 2], then

n−|
1
p
− 1
2 |α−1

(
1

n

n∑
j=1

‖Aj‖µp

) 1
µ

≤
(

1

n

n∑
j=1

‖Bj‖λp

) 1
λ

≤ n|
1
p
− 1
2 |β
(

1

n

n∑
j=1

‖Aj‖µp

) 1
µ

,

(6.18)

2) if 1
p

+ 1
q

= 1 and 2 ≤ p <∞, then(
n∑
j=1

‖Aj‖pp

) 1
p

≤ ρ1− 2
pα

2
p

(
n∑
j=1

‖Bj‖qp

) 1
q

, (6.19)

and if 1 < p ≤ 2, then(
n∑
j=1

‖Bj‖qp

) 1
q

≤ r
2
p
−1β

2
q

(
n∑
j=1

‖Aj‖pp

) 1
p

. (6.20)

Replacing λ by t and µ by s and using the fact that

‖RA‖lnt (Sp) = ‖B‖lnt (Sp) =

(
n∑
j=1

‖Bj‖tp

)1/t

and ‖A‖lns (Sp) =

(
n∑
j=1

‖Aj‖sp

)1/s

,

we can interpret (6.18) as inequalities in lnq (Sp) in the following way:

n−|
1
p
− 1
2 |− 1

s
+ 1
tα−1 ‖A‖lns (Sp) ≤ ‖RA‖lnt (Sp) ≤ n|

1
p
− 1
2 |− 1

s
+ 1
t β ‖A‖lns (Sp) , (6.21)
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for 1 ≤ p <∞, where t, s ∈ [min (p, 2) ,max (p, 2)].

Similarly, we can interpret (6.19) and (6.20) as inequalities in lnq (Sp):

‖RA‖lnq (Sp) ≤ r
2
p
−1β2/q ‖A‖lnp (Sp) for 1 < p ≤ 2, (6.22)

‖A‖lnp (Sp) ≤ ρ1− 2
pα2/p ‖RA‖lnq (Sp) for p ≥ 2, (6.23)

where 1
p

+ 1
q

= 1.

In turn, inequalities (6.21) could be interpreted as estimates of the norm of the

operator R acting from lns (Sp) into lnt (Sp) for 1 ≤ p <∞:

n−|
1
p
− 1
2 |− 1

s
+ 1
t

∥∥R−1
∥∥−1 ≤ ‖R‖lns (Sp)→lnt (Sp) ≤ n|

1
p
− 1
2 |− 1

s
+ 1
t ‖R‖ . (6.24)

Inequalities (6.22) and (6.23) could be interpreted as estimates of the norm of the

operator R acting from lnp (Sp) into lnq (Sp), where 1
p

+ 1
q

= 1:

‖RA‖lnp (Sp)→lnq (Sp) ≤ r
2
p
−1 ‖R‖2/q for 1 < p ≤ 2, (6.25)

‖RA‖lnp (Sp)→lnq (Sp) ≥ ρ−1+ 2
p

∥∥R−1
∥∥−2/p

for p ≥ 2. (6.26)

We call inequalities (6.24) - (6.26) the generalized Clarkson-McCarthy inequalities.

6.2 Action of operators from B (H∞) on lq (Sp) spaces

In this section we analyse action of operators from B (H∞) on lq (Sp) spaces.

By Theorem 5.22(iii), l2 (S2) = S2 (H,H∞). By Lemma 5.16, Sp (H,K) is a

left B (K)-module for all p ∈ [1,∞). Thus, in case p = 2 and K = H∞, we have

l2 (S2) = S2 (H,H∞) is a left B (H∞)-module. In this section we assume that H is
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a separable infinite dimensional complex Hilbert space. We show that, apart from

l2 (S2), the Banach spaces lq (Sp) are not left B (H∞)-modules. We also establish

the following inequalities. Let R ∈ B (H∞).

(i) if 1 ≤ p ≤ 2 and A ∈ lp (Sp), then

RA ∈ l2 (Sp) and ‖RA‖l2(Sp) ≤ ‖R‖B(H∞) ‖A‖lp(Sp) ;

(ii) if p ≥ 2 and A ∈ l2 (Sp), then

RA ∈ lp (Sp) and ‖RA‖lp(Sp) ≤ ‖R‖B(H∞) ‖A‖l2(Sp) .

We will need these estimates to prove the main result in this chapter, namely, the

analogue of McCarthy inequality (6.1) for lq (Sp) spaces.

Each operator R ∈ B (H∞) has the block matrix form R = (Rkn)∞k,n=1 where

Rkn ∈ B (H). It acts on a subspace D (R) of l∞ (B (H)) - the domain of R - defined

as follows:

D (R) =


A = (An)∞n=1 ∈ l∞ (B (H)) :

Bk :=
∑∞

n=1RknAn ∈ B (H) for all k = 1, 2, ...

and B := RA = (Bn)∞n=1 ∈ l∞ (B (H))


,

where all
∑∞

n=1 RknAn converge in the w.o.t. Thus, for A = (An)∞n=1 ∈ D (R),

B = RA = R


A1
...

An
...

 =


∑∞

n=1R1nAn
...∑∞

n=1RknAn
...

 ∈ l∞ (B (H)) ,
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where all Bk =
∑∞

n=1RknAn ∈ B (H). We also have

‖RA‖l∞(B(H)) = ‖B‖l∞(B(H)) = sup
k=1,2,...

‖Bk‖B(H) .

Proposition 6.1 (i) ∩R∈B(H∞)D (R) = B (H,H∞)

(ii) If (p, q) 6= (2, 2) then the space lq (Sp) is not a left B (H∞)-module.

Proof. (i) Let D = ∩R∈B(H∞)D (R). First let us prove that D ⊆ B (H,H∞). Let

A = (An)∞n=1 ∈ D. Then, A ∈ l∞ (B (H)) and, for all R ∈ B (H∞), we have

A ∈ D (R). In particular, A ∈ D (R) where R is an operator that we are about to

construct. Since all separable infinite dimensional Hilbert spaces are isometrically

isomorphic to the complex sequence space l2 (see for example [32, p.26]), there

exists an isometry L from H∞ onto H. It is of a form L = (L1, ..., Ln, ...) with all

Ln ∈ B (H), ‖L‖B(H∞,H) = 1 and

Lx = (L1, ..., Ln, ...)



x1

...

xn

...


=

∞∑
n=1

Lnxn ∈ H, for all x = (xn)∞n=1 ∈ H∞,

where all xn ∈ H, and the series converges in H. Let R = (Rij)
∞
i,j=1 ∈ B (H∞) be

such that all R1n = Ln, for all n, and Rin = 0 for all i ≥ 2 and all n. Then

R =


L1 · · · Ln · · ·

0
...
· · · 0

...
· · ·

 and Rx = y = (yn)∞n=1 =


Lx

0
...

 ,
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for all x = (xn)∞n=1 ∈ H∞. Thus R ∈ B (H∞), as

‖R‖B(H∞) = sup
‖x‖=1

‖Rx‖H∞ = sup
‖x‖=1

‖Lx‖H = ‖L‖B(H∞,H) = 1.

Since R maps D (R) into l∞ (B (H)), we have

RA =


L1 · · · Ln · · ·

0
...
· · · 0

...
· · ·




A1
...

An
...

 =


∑∞

n=1 LnAn

0
...

 ∈ l∞ (B (H)) .

Let Pm be the projections defined in (5.24). As RA ∈ l∞ (B (H)), we have LPmA =∑m
n=1 LnAn

w.o.t.→ B1 ∈ B (H). Since L is invertible isometry, L−1 ∈ B (H,H∞) and

L−1 = L∗. Thus, for all x ∈ H, y ∈ H∞

(
L−1 (LPmA)x, y

)
= ((LPmA)x, Ly) →

m→∞
(B1x, Ly) =

(
L−1B1x, y

)
.

Hence

PmA = L−1 (LPmA)
w.o.t.→ L−1B1 ∈ B (H,H∞) .

By Lemma 5.21(i), A ∈ B (H,H∞). Thus D ⊆ B (H,H∞).

Let us now prove that B (H,H∞) ⊆ D. Clearly, for all A ∈ B (H,H∞) ⊆

l∞ (B (H)) (see (5.55)) and R ∈ B (H∞), we have RA ∈ B (H,H∞) ⊆ l∞ (B (H)).

Thus B (H,H∞) ⊆ D (R). Hence B (H,H∞) ⊆ D.

Combining these inclusions, we have D = B (H,H∞).

(ii) (1) First consider the case when q ∈ (2,∞) and p ∈ [1,∞).

We see that lq (Sp) ⊆ l∞ (B (H)). Indeed, if A = (An)∞n=1 ∈ lq (Sp) then

‖A‖l∞(B(H)) = sup
n
‖An‖ ≤ sup

n
‖An‖p ≤

( ∞∑
n=1

‖An‖qp

)1/q

= ‖A‖lq(Sp) .
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If lq (Sp) is a left B (H∞)-module then RA ∈ lq (Sp) ⊆ l∞ (B (H)), for each A ∈

lq (Sp) and each R = (Rkn)∞k,n=1 ∈ B (H∞). Hence lq (Sp) ⊆ ∩R∈B(H∞)D (R). There-

fore, by (i), lq (Sp) ⊆ B (H,H∞). This contradicts Theorem 5.22(ii). Thus lq (Sp),

for q ∈ (2,∞) and p ∈ [1,∞), is not a left B (H∞)-module.

(2) Consider now the case when q ∈ [1, 2) and p ∈ [1,∞).

Let R = (Rnk)
∞
n,k=1 ∈ B (H∞) be such that Rnk = 0 for all k > 1. Then, for

A = (An)∞n=1 ∈ lq (Sp) and x = (xn)∞n=1 ∈ H∞,

R =


R11
...

0
...
· · ·

Rn1
...

0
...
· · ·

 , RA =


R11A1
...

Rn1A1
...

 , Rx =


R11x1
...

Rn1x1
...

 . (6.27)

Let Rn1 = αn1H , where all αn > 0,
∑∞

n=1 α
2
n = 1 and

∑∞
n=1 α

q
n = ∞ (for example,

αn = n−1/qσ, where σ =
(∑∞

j=1 j
−2/q

)−1/2

). Then, by (6.27),

‖Rx‖2 =
∞∑
n=1

‖αnx1‖2 = ‖x1‖2
∞∑
n=1

α2
n = ‖x1‖2 ≤ ‖x‖2 , for all x ∈ H∞.

Hence R ∈ B (H∞). If A ∈ lq (Sp) and A1 6= 0, then, by (6.27),

‖RA‖lq(Sp) =

( ∞∑
n=1

‖Rn1A1‖qp

)1/q

=

( ∞∑
n=1

‖αnA1‖qp

)1/q

=

( ∞∑
n=1

|αn|q ‖A1‖qp

)1/q

= ‖A1‖p

( ∞∑
n=1

αqn

)1/q

=∞.

Therefore RA /∈ lq (Sp). Thus lq (Sp) is not a left B (H∞)-module for q < 2.

(3) We only have to consider the case when q = 2 and p ∈ [1, 2) ∪ (2,∞) .
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Let {en}∞n=1 be an orthonormal basis in H, let Pen be the projections on Cen,

n ∈ N and {Vn}∞n=1 be partial isometries that map Cen onto Ce1, i.e.,

Vnen = e1 for all n and Vnej = 0, for all j 6= n.

Noticing that (Vnen, e1) = 1 = (en, V
∗
n e1), for all n, and

(Vnen, ek) = (e1, ek) = 0 = (en, V
∗
n ek) , for all n and all k 6= 1,

we have that V ∗n e1 = en and V ∗n ek = 0, for all k 6= 1. Thus

Pen = V ∗n Vn for all n.

Set now Rn1 = Vn in (6.27). Let x = (xn)∞n=1 ∈ H∞ and x1 =
∑∞

k=1 αkek ∈ H.

As Rn1x1 = Vnx1 = αne1, we have that R ∈ B (H∞), since

‖R‖2
B(H∞) = sup

‖x‖=1

‖Rx‖2
H∞

(6.27)
= sup

‖x‖=1

∞∑
n=1

‖Rn1x1‖2
H =

= sup
‖x‖=1

∞∑
n=1

‖αne1‖2
H = sup

‖x‖=1

∞∑
n=1

α2
n = 1.

(3a) Let p ∈ [1, 2) . Set An = n−1/pVn and A = (An)∞n=1. Since A∗nAn =

n−2/pV ∗n Vn = n−2/pPen and ‖V ∗n Vn‖p/2 = ‖Pen‖p/2 = 1, we have

‖A‖l2(Sp) =

( ∞∑
n=1

‖An‖2
p

)1/2

(5.5)
=

( ∞∑
n=1

‖A∗nAn‖p/2

)1/2

=

( ∞∑
n=1

n−2/p ‖Pen‖p/2

)1/2

=

( ∞∑
n=1

n−2/p

)1/2

<∞.

134



Thus A ∈ l2 (Sp). Since R ∈ B (H∞), the operator

R∗ =


R∗11 · · · R∗n1 · · ·

0 · · · 0 · · ·
...

...
...

...

 ∈ B (H∞) and R∗A =


∑∞

n=1 R
∗
n1An

0

...

 .

The operator

B =
∞∑
n=1

R∗n1An =
∞∑
n=1

V ∗n
(
n−1/pVn

)
=
∞∑
n=1

n−1/pPen

is self-adjoint and positive. Thus its s-numbers are the eigenvalues
{
n−1/p

}∞
n=1
.

Hence B /∈ Sp and R∗A /∈ l2 (Sp). Thus l2 (Sp) is not a left B (H∞)-module.

(3b) Assume now that p ∈ (2,∞) . Set An = 0, for all n ≥ 2, and A1 =∑∞
n=1 n

−1/2Pen . Then A1 is self-adjoint and positive. Thus, the s-numbers of A1 are

its eigenvalues
{
n−1/2

}∞
n=1
. Hence A1 ∈ Sp (H), since

‖A1‖p =

( ∞∑
n=1

n−p/2

)1/p

<∞

and A ∈ l2 (Sp), since

‖A‖
l2(S

p)
=

( ∞∑
n=1

‖An‖2
p

)1/2

= ‖A1‖p <∞.
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For each n, A∗1PenA1 = A1PenA1 = A1n
−1/2Pen = n−1Pen . Therefore

‖RA‖
l2(S

p)
=

∥∥∥∥∥∥∥∥∥∥∥


R11A1
...

Rn1A1
...



∥∥∥∥∥∥∥∥∥∥∥
l2(S

p)

=

∥∥∥∥∥∥∥∥∥∥∥


V1A1
...

VnA1
...



∥∥∥∥∥∥∥∥∥∥∥
l2(S

p)

=

( ∞∑
n=1

‖VnA1‖2
p

)1/2

(5.5)
=

( ∞∑
n=1

‖(VnA1)∗ VnA1‖p/2

)1/2

=

( ∞∑
n=1

‖A∗1V ∗n VnA1‖p/2

)1/2

=

( ∞∑
n=1

‖A∗1PenA1‖p/2

)1/2

=

( ∞∑
n=1

∥∥n−1Pen
∥∥
p/2

)1/2

=

( ∞∑
n=1

n−1

)1/2

diverges. Thus RA /∈ l2 (Sp), so that l2 (Sp) is not a left B (H∞)-module.

Making use of Theorem 5.22, we obtain the following theorem.

Theorem 6.2 Let R ∈ B (H∞).

(i) Let p ∈ [1, 2] and A ∈ lp (Sp). Then

RA ∈ l2 (Sp) and ‖RA‖l2(Sp) ≤ ‖R‖B(H∞) ‖A‖lp(Sp) .

(ii) Let p ∈ [2,∞) and A ∈ l2 (Sp). Then

RA ∈ lp (Sp) and ‖RA‖lp(Sp) ≤ ‖R‖B(H∞) ‖A‖l2(Sp) .

Proof. (i) Let p ∈ [1, 2) and A ∈ lp (Sp). Applying Theorem 5.22(i), we obtain

that A ∈ Sp (H,H∞). Hence, by Lemma 5.16, RA ∈ Sp (H,H∞) and ‖RA‖p ≤

‖R‖B(H∞) ‖A‖p. Since p ∈ [1, 2) , we have from Theorem 5.22(i) that RA ∈ l2 (Sp)

and ‖RA‖l2(Sp) ≤ ‖RA‖p. We also have from Theorem 5.22(i) that ‖A‖p ≤ ‖A‖lp(Sp).

Combining these inequalities yields

‖RA‖l2(Sp) ≤ ‖RA‖p
(5.48)

≤ ‖R‖B(H∞) ‖A‖p ≤ ‖R‖B(H∞) ‖A‖lp(Sp) .
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(ii) Let p ∈ (2,∞) and A ∈ l2 (Sp). Applying Theorem 5.22(ii), we have that A ∈

Sp (H,H∞). Hence, by Lemma 5.16, RA ∈ Sp (H,H∞) and ‖RA‖p ≤ ‖R‖B(H∞) ‖A‖p.

We have from Theorem 5.22(ii) that RA ∈ lp (Sp), ‖RA‖lp(Sp) ≤ ‖RA‖p and

‖A‖p ≤ ‖A‖l2(Sp). Combining these inequalities yields

‖RA‖lp(Sp) ≤ ‖RA‖p
(5.48)

≤ ‖R‖B(H∞) ‖A‖p ≤ ‖R‖B(H∞) ‖A‖l2(Sp) .

For p = 2, it follows from Theorem 5.22(iii) and Lemma 5.16 that ‖A‖l2(S2) = ‖A‖2

and ‖RA‖l2(S2) = ‖RA‖2. Thus

‖RA‖l2(S2) = ‖RA‖2

(5.48)

≤ ‖R‖B(H∞) ‖A‖2 = ‖R‖B(H∞) ‖A‖l2(S2) .

This completes the proof.

6.3 The main result: The case of lq (Sp) spaces

For operators R ∈ B (H∞) of a particular form, we can use inequality (6.21) to

obtain some further analogues of McCarthy inequality (6.1) for lq (Sp) spaces. Let

{nk}∞k=1 be a sequence of positive integers. For A = (An)∞n=1 ∈ lq (Sp), let

Â1 =


A1
...

An1

 , Â2 =


An1+1

...

An1+n2

 ,..., Âk =


An1+...+nk−1+1

...

An1+...+nk

 ,....
Then each Âk belongs to lnkq (Sp), and we have

A =


Â1
...

Âk
...

 and ‖A‖lq(Sp) =

( ∞∑
k=1

∥∥∥Âk∥∥∥q
l
nk
q (Sp)

)1/q

. (6.28)
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For each k, let Hnk = H ⊕ ... ⊕ H be the orthogonal sum of nk copies of H and

H∞ = ⊕∞k=1H
nk Let Rk ∈ B (Hnk). Then Rk is an nk×nk block-operator. Consider

a block-diagonal operator R = {Rk}∞k=1 ∈ B (H∞) such that the operators Rk are

on the diagonal and off the diagonal there are all 0, i.e.,

R =



R1 0 · · · · · ·

0
. . . 0 · · ·

0 0 Rk 0

...
... 0

. . .


(6.29)

Theorem 6.3 Let p ∈ [1,∞) and q ∈ [min (p, 2) ,max (p, 2)]. Let R = {Rk}∞k=1 ∈

B (H∞) be a block-diagonal operator on H∞ described in (6.29). Assume that

ω = sup
k=1,...

n
| 1p− 1

2 |
k ‖Rk‖ <∞ and let ζ = inf

k
n
−| 1p− 1

2 |
k

∥∥R−1
k

∥∥−1
.

Then

ζ ‖A‖lq(Sp) ≤ ‖RA‖lq(Sp) ≤ ω ‖A‖lq(Sp) for A ∈ lq (Sp) . (6.30)

Proof. It follows from (6.28) and the block-diagonal structure of R that

RA =


R1Â1
...

RkÂk
...

 and ‖RA‖lq(Sp) =

( ∞∑
k=1

∥∥∥RkÂk

∥∥∥q
l
nk
q (Sp)

)1/q

. (6.31)

Replacing s and t with q and n with nk, we have from (6.21) that, for all k,

n
−| 1p− 1

2 |
k

∥∥R−1
k

∥∥−1
∥∥∥Âk∥∥∥

l
nk
q (Sp)

≤
∥∥∥RkÂk

∥∥∥
l
nk
q (Sp)

≤ n
| 1p− 1

2 |
k ‖Rk‖

∥∥∥Âk∥∥∥
l
nk
q (Sp)

. (6.32)
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Applying RHS of (6.32) to formula (6.31), we have

‖RA‖lq(Sp) ≤
( ∞∑
k=1

n
q| 1p− 1

2 |
k ‖Rk‖q

∥∥∥Âk∥∥∥q
l
nk
q (Sp)

)1/q

≤
( ∞∑
k=1

ωq
∥∥∥Âk∥∥∥

l
nk
q (Sp)

)1/q

(6.28)
= ω ‖A‖lq(Sp) .

Applying LHS of (6.32) to formula (6.31), we have

‖RA‖lq(Sp) ≥
( ∞∑
k=1

n
−q| 1p− 1

2 |
k

∥∥R−1
k

∥∥−q ∥∥∥Âk∥∥∥q
l
nk
q (Sp)

)1/q

≥
( ∞∑
k=1

ζq
∥∥∥Âk∥∥∥

l
nk
q (Sp)

)1/q

(6.28)
= ζ ‖A‖lq(Sp) .

This completes the proof.

Let n = 2. Consider the block-diagonal operator R = {Rk}∞k=1, where all Rk =

2−1/2

1H 1H

1H −1H

 are unitary operators onH2, as R∗k = Rk and R∗kRk = R2
k = 1H2 .

The operator R is also unitary, as R∗ = R and R∗R = R2 = {R2
k}
∞
k=1 = {1H2}∞k=1 =

1H∞ . Then R ∈ B (H∞), since

‖R‖B(H∞) = sup
‖x‖=1

‖Rx‖H∞ = sup
‖x‖=1

2−1/2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



x1 + x2

x1 − x2
...

x2n−1 + x2n

x2n−1 − x2n
...



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
H∞

(6.33)

= sup
‖x‖=1

2−1/2

( ∞∑
n=1

(x2n−1 + x2n)2 +

∞∑
n=1

(x2n−1 − x2n)2

)1/2

= sup
‖x‖=1

‖x‖ = 1.
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For A = (An)∞n=1 ∈ lq (Sp), consider X = (Xn)∞n=1 and Y = (Yn)∞n=1 such that

Xn = A2n−1 and Yn = A2n. Then X, Y ∈ lq (Sp) and

‖A‖lq(Sp) =

( ∞∑
n=1

‖A2n−1‖qp +

∞∑
n=1

‖A2n‖qp

)1/q

=
(
‖X‖qlq(Sp) + ‖Y ‖qlq(Sp)

)1/q

.

Then

RA = 2−1/2



A1 + A2

A1 − A2
...

A2n−1 + A2n

A2n−1 − A2n
...


(6.34)

and

‖RA‖lq(Sp) = 2−1/2

( ∞∑
n=1

‖A2n−1 + A2n‖qp +
∞∑
n=1

‖A2n−1 − A2n‖qp

)1/q

=

= 2−1/2
(
‖X + Y ‖qlq(Sp) + ‖X − Y ‖qlq(Sp)

)1/q

.

Using Theorems 6.2 and 6.3, we obtain the following analogue of McCarthy inequal-

ities (6.1) and (6.2) for lq (Sp) spaces.

Corollary 6.4 (i) Let p ∈ [1, 2] and X, Y ∈ lp (Sp). Then

(
‖X + Y ‖2

l2(Sp) + ‖X − Y ‖2
l2(Sp)

)1/2

≤ 21/2
(
‖X‖plp(Sp) + ‖Y ‖plp(Sp)

)1/p

. (6.35)

Let p ∈ [2,∞) and X, Y ∈ l2 (Sp). Then

(
‖X + Y ‖plp(Sp) + ‖X − Y ‖plp(Sp)

)1/p

≤ 21/2
(
‖X‖2

l2(Sp) + ‖Y ‖2
l2(Sp)

)1/2

. (6.36)
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(ii) Let p ∈ [1,∞), q ∈ [min (p, 2) ,max (p, 2)] and X, Y ∈ lq (Sp). Then

2−|
1
p
− 1
2 |+ 1

2

(
‖X‖qlq(Sp) + ‖Y ‖qlq(Sp)

)1/q

(6.37)

≤
(
‖X + Y ‖qlq(Sp) + ‖X − Y ‖qlq(Sp)

)1/q

≤ 2|
1
p
− 1
2 |+ 1

2

(
‖X‖qlq(Sp) + ‖Y ‖qlq(Sp)

)1/q

.

Proof. We proved in (6.33) that ‖R‖B(H∞) = 1. The rest is simply substitution of

‖RA‖lq(Sp) = 2−1/2
(
‖X + Y ‖qlq(Sp) + ‖X − Y ‖qlq(Sp)

)1/q

and

‖A‖lq(Sp) =
(
‖X‖qlq(Sp) + ‖Y ‖qlq(Sp)

)1/q

in Theorems 6.2 and 6.3. Additionally, we need to see that, in this case in Theorem

6.3, ω = 2|
1
p
− 1
2 | and ζ = 2−|

1
p
− 1
2 | as n = 2 and all operators Rk,R−1

k are unitary.

6.4 Uniform convexity of spaces lp (Sp)

This section is dedicated to the proof that the spaces lp (Sp), for p ∈ [2,∞), are

p-uniformly convex.

Definition 6.5 (i) [39, p.23] A Banach space B is called uniformly convex if and

only if, for all 0 < ε ≤ 2, the modulus of convexity

δB (ε) = inf

{
1− 1

2
‖x+ y‖B : x, y ∈ B, ‖x‖B = ‖y‖B = 1, ‖x− y‖B ≥ ε

}

is strictly positive.
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(ii) [3, p.464] A Banach space B is r-uniformly convex, if its modulus of convexity

δB (ε) is such that

δB (ε) ≥ (ε/C)r for 0 < ε ≤ 2 where C > 0 is some constant.

Lemma 6.6 For all x ∈ [0, 1] and p ≥ 1,

1− xp ≤
(

1− xp

p

)p
.

Proof. Fix p and consider the function

f (x) =

(
1− xp

p

)p
− 1 + xp.

Then f (0) = 0 and

f ′ (x) = p

(
1− xp

p

)p−1 (
−xp−1

)
+ pxp−1 = pxp−1

(
1−

(
1− xp

p

)p−1
)
≥ 0.

Hence f increases, so that f (x) ≥ 0, for all x ∈ [0, 1].

Theorem 6.7 The space lp (Sp), for p ∈ [2,∞), is p-uniformly convex.

Proof. Let 2 ≤ p = q < ∞. Then
∣∣∣1p − 1

2

∣∣∣ + 1
2

= 1 − 1
p
and, for X, Y ∈ lp (Sp), it

follows from Corollary 6.4(ii) that

(
‖X + Y ‖plp(Sp) + ‖X − Y ‖plp(Sp)

)1/p

≤ 21− 1
p

(
‖X‖plp(Sp) + ‖Y ‖plp(Sp)

)1/p

(6.38)

To apply the definition of p-uniformly convex space, we set ‖X‖lp(Sp) = ‖Y ‖lp(Sp) = 1

and ‖X − Y ‖lp(Sp) ≥ ε. Substituting into (6.38) and rearranging we have

‖X + Y ‖plp(Sp) ≤
(

21− 1
p2

1
p

)p
− ‖X − Y ‖plp(Sp) = 2p − ‖X − Y ‖plp(Sp) ≤ 2p − εp.
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Thus, making use of Lemma 6.6, we have∥∥∥∥X + Y

2

∥∥∥∥p
lp(Sp)

≤ 1−
(ε

2

)p
≤
(

1−
(
ε
2

)p
p

)p

.

Hence ∥∥∥∥X + Y

2

∥∥∥∥
lp(Sp)

≤ 1−
(
ε
2

)p
p

and we obtain that

1−
∥∥∥∥X + Y

2

∥∥∥∥
lp(Sp)

≥ 1−
(

1−
(
ε
2

)p
p

)
=

(
ε

2p1/p

)p
. (6.39)

Thus

δlp(Sp) (ε)

= inf

{
1− 1

2
‖X + Y ‖lp(Sp) : ‖X‖lp(Sp) = ‖Y ‖lp(Sp) = 1, ‖X − Y ‖lp(Sp) ≥ ε

}
(6.39)

≥
(

ε

2p1/p

)p
.

The proof is complete.

Problem 6.8 Are the spaces lp (Sp), for p ∈ [1, 2), p-uniformly convex?

6.5 Estimates for partitions of operators from Sp

Let {Pn}Nn=1 ∈ PN , be a partition of 1H . Then (see [21, Theorem III.4.2])∥∥∥∥∥
N∑
n=1

PnAPn

∥∥∥∥∥
p

≤ ‖A‖p .

Let {Qm}Mm=1 ∈ PM be another partition and U = {PnAQm}N,Mn,m=1 be a partition of

A ∈ Sp (H) , 1 ≤ p < ∞ (see Definition 5.7). For M,N < ∞, it was proved in [25,
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Theorem 4] that, for 2 ≤ q ≤ p <∞,

(NM)
1
p
− 1
q

(∑
n,m

‖PnAQm‖qp

)1/q

≤ ‖A‖p ≤ (NM)
1
2
− 1
q

(∑
n,m

‖PnAQm‖qp

)1/q

.

In other words, U = {PnAQm}N,Mn,m=1 belongs to l
NM
q (Sp) and

(NM)
1
p
− 1
q ‖U‖lmnq (Sp) ≤ ‖A‖p ≤ (NM)

1
2
− 1
q ‖U‖lmnq (Sp) .

For 0 < p ≤ q ≤ 2, the inequalities are reversed.

For N = M , Pn = Qn and q = 2 or p, these inequalities were proved by Bhatia

and Kittaneh [7, Theorem 1 for q = 2 and Theorem 2 for q = p.]. They used them to

prove that symmetrically normed ideals of B (H) corresponding to Q∗-norms have

Radon-Riesz property.

In this section we consider the case when M = N = ∞ and prove that, if

A ∈ Sp (H) and 2 ≤ p < ∞, then the partition U = {PnAQm}∞n,m=1 belongs to

lp (Sp) and ( ∞∑
n,m=1

‖PnAQm‖pp

)1/p

≤ ‖A‖p ≤
( ∞∑
n,m=1

‖PnAQm‖2
p

)1/2

.

In other words,

‖U‖lp(Sp) ≤ ‖A‖p ≤ ‖U‖l2(Sp) .

Note that, for U /∈ l2 (Sp), we set ‖U‖l2(Sp) =∞. For 1 ≤ p ≤ 2, U belongs to l2 (Sp)

and satisfies the reversed inequalities.

We start with the following proposition.
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Proposition 6.9 Let A = (An)∞n=1 ∈ Sp (H,H∞), 1 ≤ p < ∞ and let {An}∞n=1

have mutually orthogonal ranges, i.e.,

A∗kAn = 0 if k 6= n. (6.40)

Let Pn be the projections on the closure of the ranges AnH of the operators An.

Then the series
∑∞

n=1An converges in ‖·‖p to some operator Ã ∈ Sp (H) such that∥∥∥Ã∥∥∥
p

= ‖A‖p and all An = PnÃ.

Proof. We have (
m+k∑

n=m+1

An

)∗
=

(
m+k∑

n=m+1

A∗n

)

It follows from (6.40) that, for all m = 0, 1, ... and k = 1, 2, ...,∥∥∥∥∥
m+k∑

n=m+1

A∗nAn

∥∥∥∥∥
p/2

(6.40)
=

∥∥∥∥∥
(

m+k∑
n=m+1

A∗n

)(
m+k∑

n=m+1

An

)∥∥∥∥∥
p/2

(6.41)

=

∥∥∥∥∥
(

m+k∑
n=m+1

An

)∗( m+k∑
n=m+1

An

)∥∥∥∥∥
p/2

(5.4)
=

∥∥∥∥∥
(

m+k∑
n=m+1

An

)∥∥∥∥∥
2

p

.

As all An belong to Sp (H), the operators A∗nAn belong to S
p/2 (H). Hence all

operators
∑m

n=1A
∗
nAn also belong to S

p/2 (H). As A ∈ Sp (H,H∞) , we have A∗A ∈

Sp/2 (H) (see (5.8)). Hence we obtain from (6.41)∥∥∥∥∥
m+k∑
n=1

An −
m∑
n=1

An

∥∥∥∥∥
2

p

=

∥∥∥∥∥
(

m+k∑
n=m+1

An

)∥∥∥∥∥
2

p

(6.41)
=

∥∥∥∥∥
m+k∑

n=m+1

A∗nAn

∥∥∥∥∥
p/2

(6.42)

=

∥∥∥∥∥
m+k∑
n=1

A∗nAn − A∗A+ A∗A−
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

.
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If 1 ≤ p ≤ 2 then p
2
≤ 1. It follows from (5.11), (6.42) and (5.37) that∥∥∥∥∥

m+k∑
n=1

An −
m∑
n=1

An

∥∥∥∥∥
p

p

(6.42)
=

∥∥∥∥∥
m+k∑
n=1

A∗nAn − A∗A+ A∗A−
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

(5.11)

≤ 2

∥∥∥∥∥A∗A−
m+k∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

+ 2

∥∥∥∥∥A∗A−
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

p/2

(5.37)→ 0.

If 2 ≤ p then 1 ≤ p
2
and we have∥∥∥∥∥

m+k∑
n=1

An −
m∑
n=1

An

∥∥∥∥∥
2

p

(6.42)
=

∥∥∥∥∥
m+k∑
n=1

A∗nAn − A∗A+ A∗A−
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

(5.12)

≤
∥∥∥∥∥A∗A−

m+k∑
n=1

A∗nAn

∥∥∥∥∥
p/2

+

∥∥∥∥∥A∗A−
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

(5.37)→ 0.

We conclude that {
∑m

n=1An}
∞
m=1 is a Cauchy sequence in S

p (H). Thus it converges

in ‖·‖p to some operator Ã ∈ Sp (H):

lim
m→∞

∥∥∥∥∥
m∑
n=1

An − Ã
∥∥∥∥∥
p

= 0, (6.43)

so that ∥∥∥Ã∥∥∥
p

= lim
m→∞

∥∥∥∥∥
m∑
n=1

An

∥∥∥∥∥
p

. (6.44)

Hence
∥∥∥Ã∥∥∥

p
= ‖A‖p, since

∥∥∥Ã∥∥∥2

p

(6.44)
= lim

m→∞

∥∥∥∥∥
m∑
n=1

An

∥∥∥∥∥
2

p

(6.41)
= lim

m→∞

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

(5.37)
= ‖A∗A‖p/2

(5.54)
= ‖A‖2

p .

It follows from (6.40) that all projections Pn are mutually orthogonal and that

PnAk = PnPkAk = 0 if n 6= k. Fix n ∈ N. Then, for m ≥ n,∥∥∥PnÃ− An∥∥∥
p

=

∥∥∥∥∥Pn
(
Ã−

m∑
k=1

Ak

)∥∥∥∥∥
p

(4.3)

≤ ‖Pn‖
∥∥∥∥∥Ã−

m∑
k=1

Ak

∥∥∥∥∥
p

(6.43)→
m→∞

0.
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Thus
∥∥∥PnÃ− An∥∥∥

p
= 0. Hence PnÃ− An = 0, so that PnÃ = An.

Theorem 6.10 Let {Pn}∞n=1 be a partition of 1H . Let A ∈ Sp (H). Then( ∞∑
n=1

‖PnA‖2
p

)1/2

≤ ‖A‖p ≤
( ∞∑
n=1

‖PnA‖pp

)1/p

for 1 ≤ p ≤ 2,

where the last series could diverge. For 2 ≤ p < ∞, the above inequalities are

reversed.

Proof. It follows from Definition 5.7 that Qm =
∑m

n=1 Pn
s.o.t.→ 1H , as m→∞:

‖x−Qmx‖ → 0 for all x ∈ H. (6.45)

We have Q∗m =
∑m

n=1 P
∗
n =

∑m
n=1 Pn = Qm. As PnPk = 0, if k 6= n, we also have

Q2
m = (

∑m
n=1 Pn)

2
=
∑m

n=1 Pn = Qm. Thus Qm are projections and

‖Qmx‖2 = (Qmx,Qmx) = (Q∗mQmx, x) = (Qmx, x)

=
m∑
n=1

(Pnx, x) =
m∑
n=1

(Pnx, Pnx) =
m∑
n=1

‖Pnx‖2 .

Hence, by (6.45),
∑m

n=1 ‖Pnx‖
2 = ‖Qmx‖2 → ‖x‖2, as m→∞. Thus

‖x‖2 =
∞∑
n=1

‖Pnx‖2 for x ∈ H. (6.46)

Set An = PnA. As A ∈ Sp (H), all An belong to Sp (H), since Sp (H) is an ideal

of B (H), and all An satisfy (6.40):

A∗kAn = A∗P ∗kPnA = A∗0A = 0 if k 6= n. (6.47)
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Consider the operator Ā = (An)∞n=1 from H to H∞. For x ∈ H,

∥∥Āx∥∥2

H∞
=

∞∑
n=1

‖Anx‖2 =
∞∑
n=1

‖PnAx‖2 (6.46)
= = ‖Ax‖2 .

Hence Ā ∈ B (H,H∞) and
∥∥Ā∥∥

B(H,H∞)
= ‖A‖B(H).

We shall now prove that Ā∗Ā = A∗A. For all x, y ∈ H, we have(
Ā∗Āx−

m∑
n=1

A∗nAnx, y

)
(5.28)→ 0

as m→∞. We also have∣∣∣∣∣
(

m∑
n=1

A∗nAnx− A∗Ax, y
)∣∣∣∣∣ =

∣∣∣∣∣
(

m∑
n=1

(PnA)∗ PnAx− A∗Ax, y
)∣∣∣∣∣

=

∣∣∣∣∣
(

m∑
n=1

A∗PnAx− A∗Ax, y
)∣∣∣∣∣

= |(QmAx− Ax,Ay)| (6.45)→ 0,

as m→∞. Thus

∣∣(Ā∗Āx− A∗Ax, y)∣∣
≤
∣∣∣∣∣
(
Ā∗Āx−

m∑
n=1

A∗nAnx, y

)∣∣∣∣∣+

∣∣∣∣∣
(

m∑
n=1

A∗nAnx− A∗Ax, y
)∣∣∣∣∣ →m→∞ 0.

Hence
(
Ā∗Āx, y

)
= (A∗Ax, y) for all x, y ∈ H, so that Ā∗Ā = A∗A.

Applying (5.5) we have that Ā∗Ā ∈ Sp/2 (H). It follows from (5.54) that Ā ∈

Sp (H,H∞) and
∥∥Ā∥∥

p
= ‖A‖p.
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Let 1 ≤ p < 2. It follows from theorem 5.22(i) that Ā ∈ l2 (Sp) and( ∞∑
n=1

‖PnA‖2
p

)1/2

=

( ∞∑
n=1

‖An‖2
p

)1/2

(5.58)
=
∥∥Ā∥∥

l2(Sp)

(5.61)

≤
∥∥Ā∥∥

p

= ‖A‖p
(5.61)

≤
∥∥Ā∥∥

lp(Sp)

(5.58)
=

( ∞∑
n=1

‖PnA‖pp

)1/p

,

where the last series could diverge if Ā /∈ lp (Sp).

Let 2 ≤ p <∞. By Theorem 5.22(ii) and (iii), Ā ∈ lp (Sp) and( ∞∑
n=1

‖PnA‖pp

)1/p

=

( ∞∑
n=1

‖An‖pp

)1/p

(5.58)
=
∥∥Ā∥∥

lp(Sp)

(5.62)

≤
∥∥Ā∥∥

p
= ‖A‖p

(5.62)

≤
∥∥Ā∥∥

l2(Sp)

(5.58)
=

( ∞∑
n=1

‖PnA‖2
p

)1/2

,

where the last series could diverge if Ā /∈ l2 (Sp). The proof is complete.

Consider now partitions of operators. If A /∈ lq (Sp), we set ‖A‖lq(Sp) =∞.

Theorem 6.11 Let {Pn}∞n=1 and {Qk}∞k=1be partitions of 1H . Let A ∈ Sp (H) and

U = {PnAQk}∞n,k=1 be the partition of A.

(i) If 1 ≤ p ≤ 2, then U ∈ l2 (Sp) and

‖U‖l2(Sp) =

( ∞∑
n,k=1

‖PnAQk‖2
p

)1/2

≤ ‖A‖p ≤
( ∞∑
n,k=1

‖PnAQk‖pp

)1/p

= ‖U‖lp(Sp) .

(ii) Let 2 ≤ p <∞. Then U ∈ lp (Sp) and

‖U‖lp(Sp) =

( ∞∑
n,k=1

‖PnAQk‖pp

)1/p

≤ ‖A‖p ≤
( ∞∑
n,k=1

‖PnAQk‖2
p

)1/2

= ‖U‖l2(Sp) .

Proof. (i) Let 1 ≤ p ≤ 2. It follows from Theorem 6.10 that( ∞∑
n=1

‖PnA‖2
p

)1/2

≤ ‖A‖p ≤
( ∞∑
n=1

‖PnA‖pp

)1/p

, (6.48)
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where the last series above could diverge.

Fix n and set Bn = A∗Pn. As A ∈ Sp (H) and Sp (H) is a s.n. ideal of B (H),

we have Bn ∈ Sp (H). Replacing in (6.48), A by Bn and {Pn}∞n=1 by {Qk}∞k=1 we

obtain ( ∞∑
k=1

‖QkBn‖2
p

)1/2

≤ ‖Bn‖p ≤
( ∞∑
k=1

‖QkBn‖pp

)1/p

, (6.49)

where the last series above could diverge. Since, by (4.3), ‖Bn‖p = ‖B∗n‖p = ‖PnA‖p

and

‖QkBn‖p = ‖QkA
∗Pn‖p

(4.3)
= ‖(QkA

∗Pn)∗‖p = ‖PnAQk‖p ,

we can rewrite (6.49) as follows:( ∞∑
k=1

‖PnAQk‖2
p

)1/2

≤ ‖PnA‖p ≤
( ∞∑
k=1

‖PnAQk‖pp

)1/p

, for each n,

and obtain

∞∑
k=1

‖PnAQk‖2
p ≤ ‖PnA‖

2
p and ‖PnA‖

p
p ≤

∞∑
k=1

‖PnAQk‖pp , for each n.

Thus summing up for n, we get( ∞∑
n,k=1

‖PnAQk‖2
p

)1/2

≤
( ∞∑
n=1

‖PnA‖2
p

)1/2

and ( ∞∑
n=1

‖PnA‖pp

)1/p

≤
( ∞∑
n,k=1

‖PnAQk‖pp

)1/p

.
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We can now apply (6.48) to obtain( ∞∑
n,k=1

‖PnAQk‖2
p

)1/2

≤
( ∞∑
n=1

‖PnA‖2
p

)1/2

≤ ‖A‖p

≤
( ∞∑
n=1

‖PnA‖pp

)1/p

≤
( ∞∑
n,k=1

‖PnAQk‖pp

)1/p

.

Clearly, on the left we have ‖U‖l2(Sp) =
(∑∞

n,k=1 ‖PnAQk‖2
p

)1/2

and on the right we

have
(∑∞

n,k=1 ‖PnAQk‖pp
)1/p

= ‖U‖lp(Sp). This ends the proof of (i).

(ii) Let 2 ≤ p <∞. It follows from Theorem 6.10 that( ∞∑
n=1

‖PnA‖pp

)1/p

≤ ‖A‖p ≤
( ∞∑
n=1

‖PnA‖2
p

)1/2

, (6.50)

where the last series could diverge. Proceeding now, as in (i), fix n and set Bn =

A∗Pn. Then Bn ∈ Sp (H). Replacing in (6.50) A by Bn and {Pn}∞n=1 by {Qk}∞k=1

we get ( ∞∑
k=1

‖QkBn‖pp

)1/p

≤ ‖Bn‖p ≤
( ∞∑
k=1

‖QkBn‖2
p

)1/2

, (6.51)

where the last series can diverge. Since, as in (i), ‖Bn‖p = ‖B∗n‖p = ‖PnA‖p and

‖QkBn‖p = ‖PnAQk‖p, we can rewrite (6.51) as( ∞∑
k=1

‖PnAQk‖pp

)1/p

≤ ‖PnA‖p ≤
( ∞∑
k=1

‖PnAQk‖2
p

)1/2

, for each n.

Hence
∑∞

k=1 ‖PnAQk‖pp ≤ ‖PnA‖
p
p and ‖PnA‖

2
p ≤

∑∞
k=1 ‖PnAQk‖2

p, for each n. Thus

summing up for n, we get( ∞∑
n,k=1

‖PnAQk‖pp

)1/p

≤
( ∞∑
n=1

‖PnA‖pp

)1/p
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and ( ∞∑
n=1

‖PnA‖2
p

)1/2

≤
( ∞∑
n,k=1

‖PnAQk‖2
p

)1/2

.

We can now apply (6.50) to obtain( ∞∑
n,k=1

‖PnAQk‖pp

)1/p

≤
( ∞∑
n=1

‖PnA‖pp

)1/p

≤ ‖A‖p

≤
( ∞∑
n=1

‖PnA‖2
p

)1/2

≤
( ∞∑
n,k=1

‖PnAQk‖2
p

)1/2

.

Clearly, on the right we have ‖U‖l2(Sp) =
(∑∞

n,k=1 ‖PnAQk‖2
p

)1/2

and on the left we

have
(∑∞

n,k=1 ‖PnAQk‖pp
)1/p

= ‖U‖lp(Sp). The proof is complete.

The case of finite families {Pn} and {Qk} was studied in [7] and [25].

6.6 Cartesian decomposition of operators

In this chapter we analyse the following natural involution on l∞ (B (H)):

A# = (A∗n)∞n=1 =


A∗1
...

A∗n
...

 , for each A = (An)∞n=1 =


A1
...

An
...

 ∈ l∞ (B (H)) .

Then
(
A#
)#

= A and # preserves all spaces lq (Sp), since, by (4.3),

‖A‖lq(Sp) =
∥∥A#

∥∥
lq(Sp)

, for all A ∈ lq (Sp) . (6.52)

However, if A = (An)∞n=1 ∈ Sp(H,H∞) then A# does not necessarily belong to

Sp(H,H∞). We will now construct an example to show this.
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Example 6.12 Let {ek}∞k=1 be an orthonormal basis in H. Let A = (An)∞n=1 , where

each An has matrix form An = (akmn ) with respect to {ek}∞k=1 such that a
n1
n > 0 for

all n, and all other akmn = 0, i.e.,.

An =



0
...

0
...
· · ·

0 0 · · ·

an1
n 0 · · ·

0
...

0
...
· · ·


, and A∗n =


0 · · · 0 an1

n 0 · · ·

0
...
· · · 0

...
0
...

0
...
· · ·

 .

Then A∗nAn = (ckmn ) ∈ B(H) and AnA∗n = (dkmn ) ∈ B(H), where c11
n = (an1

n )
2 and

all other ckmn = 0, and dnnn = (an1
n )

2 and all other dkmn = 0, i.e.,

A∗nAn =


(an1
n )

2
0 · · ·

0
...

0
...
· · ·

 and AnA∗n =



0
...
· · · 0

...
0
...

0
...
· · ·

0 · · · 0 0 0 · · ·

0 . . . 0 (an1
n )

2
0 · · ·

0
...
· · · 0

...
0
...

0
...
· · ·


.

1) Let p ∈ [1, 2). Set an1
n = 1

n1/p
for all n. Then A∗A =

∑
A∗nAn =

(
ckm
)
∈ B(H),

where c11 =
∑∞

n=1 (an1
n )

2
=
∑∞

n=1
1

n2/p
< ∞, as p < 2, and all other ckm = 0.

Thus A∗A = c11Pe1 and |A| = (c11)
1/2
Pe1 is a multiple of the projection Pe1 on the

subspace Ce1, so that |A| ∈ Sp(H). Hence A ∈ Sp(H,H∞).

On the other hand,
(
A#
)∗
A# =

∑
AnA

∗
n =

(
dkm
)
∈ B(H) is a diagonal operator
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with dnn = (an1
n )

2
= 1

n2/p
, for all n, and all other dkm = 0, i.e.,

(
A#
)∗
A# =


1

12/p
0 · · ·

0 1
22/p

· · · ‘
...

... · · ·

 .

Therefore sn
(
A#
)

= 1
n1/p

and A# /∈ Sp(H,H∞), since

∥∥A#
∥∥p
p

=
∞∑
n=1

(
n−1/p

)p
=
∞∑
n=1

n−1 diverges.

2) Let p ∈ [2,∞). Set an1
n = n−1/2 for all n. Then A∗A =

∑
A∗nAn =

(
ckm
)
/∈ B(H),

since c11 =
∑∞

n=1 (an1
n )

2
=
∑∞

n=1 n
−1 diverges, as p > 2. Hence A /∈ Sp(H,H∞).

On the other hand,
(
A#
)∗
A# (see above) is a diagonal operator with dnn =

(an1
n )

2
= n−1, for all n, and all other dkm = 0, i.e.,

(
A#
)∗
A# =


1 0 · · ·

0 1
2
· · ·

...
... · · ·

 .

Therefore sn
(
A#
)

= 1
n1/2

and A# ∈ Sp(H,H∞), since

∥∥A#
∥∥p
p

=

∞∑
n=1

1

np/2
<∞, as p > 2.

Thus B = A# ∈ Sp(H,H∞), while B# =
(
A#
)#

= A /∈ Sp(H,H∞).
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All lq (Sp) spaces are symmetrically normed ideals of the Banach∗-algebra l∞ (B (H))

with involution # and multiplication

AB =


A1B1
...

AnBn
...

 , for A = (An)∞n=1 , B = (Bn)∞n=1 ∈ l∞ (B (H)) .

Indeed, let A ∈ lq (Sp) and T,B ∈ l∞ (B (H)), then

‖TAB‖lq(Sp) =

∥∥∥∥∥∥∥∥∥∥∥


T1A1B1
...

TnAnBn
...



∥∥∥∥∥∥∥∥∥∥∥
lq(Sp)

=

( ∞∑
n=1

‖TnAnBn‖qp

)1/q
(4.3)

≤
( ∞∑
n=1

‖Tn‖q ‖An‖qp ‖Bn‖q
)1/q

≤
(

sup
n
‖Tn‖q sup

n
‖Bn‖q

∞∑
n=1

‖An‖qp

)1/q

= ‖T‖l∞(B(H)) ‖B‖l∞(B(H)) ‖A‖lq(Sp) .

Let An = Xn + iYn be the "Cartesian decomposition" of all An in A, where

Xn =
1

2
(An + A∗n) and Yn =

1

2i
(An − A∗n)

are self-adjoint operators. Indeed,

X∗n = ((An + A∗n) /2)∗ = (A∗n + An) /2 = Xn

and, similarly, Y ∗n = Yn. Set X = (Xn)∞n=1 and Y = (Yn)∞n=1, so that

X =
1

2

(
A+ A#

)
and Y =

1

2i

(
A− A#

)
. (6.53)
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Then X, Y ∈ lq (Sp). Indeed as ‖Xn‖qp ≤ 1
2

(
‖An‖p + ‖A∗n‖p

)
= ‖An‖p, we have

‖X‖lq(Sp) =

( ∞∑
n=1

‖Xn‖qp

)1/q

≤
( ∞∑
n=1

‖An‖qp

)1/q

= ‖A‖lq(Sp) <∞.

Similarly, ‖Y ‖lq(Sp) ≤ ‖A‖lq(Sp) <∞.

Theorem 6.13 Let A ∈ lq (Sp), where p ∈ [1,∞) and q ∈ [min (p, 2) ,max (p, 2)],

and let X = 1
2

(
A+ A#

)
and Y = 1

2i

(
A− A#

)
. Then

2
1
q
− 1
2
−| 1p− 1

2 | ‖A‖lq(Sp) ≤
(
‖X‖qlq(Sp) + ‖Y ‖qlq(Sp)

)1/q

≤ 2
1
q
− 1
2

+| 1p− 1
2 | ‖A‖lq(Sp) .

Proof. Replacing Y by iY in Corollary 6.4(ii), we have

(
‖X + iY ‖qlq(Sp) + ‖X − iY ‖qlq(Sp)

)1/q

≤ 2|
1
p
− 1
2 |+ 1

2

(
‖X‖qlq(Sp) + ‖iY ‖qlq(Sp)

)1/q

.

Replacing now X + iY by A and X − iY by A#, we have

(
‖A‖qlq(Sp) +

∥∥A#
∥∥q
lq(Sp)

)1/q

≤ 2|
1
p
− 1
2 |+ 1

2

(
‖X‖qlq(Sp) + ‖iY ‖qlq(Sp)

)1/q

.

Then, applying (6.52), we obtain

2
1
q ‖A‖lq(Sp) ≤ 2|

1
p
− 1
2 |+ 1

2

(
‖X‖qlq(Sp) + ‖iY ‖qlq(Sp)

)1/q

.

Thus, the left-hand side inequality holds:

2
1
q
− 1
2
−| 1p− 1

2 | ‖A‖lq(Sp) ≤
(
‖X‖qlq(Sp) + ‖Y ‖qlq(Sp)

)1/q

.

Replacing now X by A and Y by A# in Corollary 6.4(ii), we have

(∥∥A+ A#
∥∥q
lq(Sp)

+
∥∥A− A#

∥∥q
lq(Sp)

)1/q

≤ 2|
1
p
− 1
2 |+ 1

2

(
‖A‖qlq(Sp) +

∥∥A#
∥∥q
lq(Sp)

)1/q

.
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Applying (6.53) and (6.52), and rearranging, we obtain the right-hand side inequal-

ity: (
‖X‖qlq(Sp) + ‖Y ‖qlq(Sp)

)1/q

≤ 2
1
q
− 1
2

+| 1p− 1
2 | ‖A‖lq(Sp) .

The proof is complete.

In [25, Theorem 5 (ii)] Kissin proved a result for lnq (Sp) spaces similar to Theorem

6.13.

Remark 6.14 Doing the same replacements in Corollary 6.4(i) instead of (ii), as

we did in the proof of Theorem 6.13, we get the following inequalities: for p ∈ [1, 2]

and A ∈ lp (Sp),

‖A‖l2(Sp) ≤
(
‖X‖plp(Sp) + ‖Y ‖plp(Sp)

)1/p

, (6.54)(
‖X‖2

l2(Sp) + ‖Y ‖2
l2(Sp)

)1/2

≤ 2
1
p
− 1
2 ‖A‖lp(Sp) ; (6.55)

for p ∈ [2,∞) and A ∈ l2 (Sp),

‖A‖lp(Sp) ≤ 2
1
2
− 1
p

(
‖X‖2

l2(Sp) + ‖Y ‖2
l2(Sp)

)1/2

, (6.56)

(
‖X‖plp(Sp) + ‖Y ‖plp(Sp)

)1/p

≤ ‖A‖l2(Sp) . (6.57)

To get (6.54), replace in (6.35) Y by iY and, consequently, replace X + iY by A

and X − iY by A#. To get (6.55), we replace X by A and Y by A#.

To get (6.56), replace in (6.36) Y by iY and, consequently, replace X + iY by A

and X − iY by A#. To get (6.57), we replace X by A and Y by A#.
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However, these estimates could be deduced from Theorem 6.13. Indeed, let

p ∈ [1, 2] and A ∈ lp (Sp). Then
∣∣∣1p − 1

2

∣∣∣ = 1
p
− 1

2
and ‖A‖l2(Sp) ≤ ‖A‖lp(Sp). Setting

q = p in the LHS of the inequality in Theorem 6.13, we obtain (6.54):

‖A‖l2(Sp) ≤ ‖A‖lp(Sp) ≤
(
‖X‖plp(Sp) + ‖Y ‖plp(Sp)

)1/p

.

If we set q = 2 in the RHS inequality Theorem 6.13, we get (6.55):

(
‖X‖2

l2(Sp) + ‖Y ‖2
l2(Sp)

)1/2

≤ 2
1
p
− 1
2 ‖A‖l2(Sp) ≤ 2

1
p
− 1
2 ‖A‖lp(Sp) .

Let now p ∈ [2,∞) and A ∈ l2 (Sp). Then
∣∣∣1p − 1

2

∣∣∣ = 1
2
− 1

p
and by (5.62)

‖A‖lp(Sp) ≤ ‖A‖l2(Sp). Setting q = 2 in the LHS inequality in Theorem 6.13, we

obtain (6.56):

‖A‖lp(Sp) ≤ ‖A‖l2(Sp) ≤ 2
1
2
− 1
p

(
‖X‖2

l2(Sp) + ‖Y ‖2
l2(Sp)

)1/2

.

Setting q = p in the RHS inequality Theorem 6.13,we obtain (6.57):

(
‖X‖plp(Sp) + ‖Y ‖plp(Sp)

)1/p

≤ ‖A‖lp(Sp) ≤ ‖A‖l2(Sp) .

Although the involution # preserves all spaces lq (Sp), it does not preserve

Sp (H,H∞), if p 6= 2 (see Example 6.12). Since, by Theorem 5.22(iii), S2 (H,H∞) =

l2 (S2), the involution # preserves S2 (H,H∞).

Set Sb (H,H∞) = B (H,H∞) and S∞ (H,H∞) = C (H,H∞) - the space of all

compact operators from H to H∞. For each p ∈ [1,∞] ∪ {b}, set

Dp (#) =
{
A ∈ Sp (H,H∞) : A# ∈ Sp (H,H∞)

}
.
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Note that Dp (#) is the maximal linear subspace of Sp (H,H∞) preserved by #.

Indeed, if A ∈ Dp (#) then A ∈ Sp (H,H∞) and A# ∈ Sp (H,H∞). Thus A# ∈

Dp (#), as A# ∈ Sp (H,H∞) and
(
A#
)#

= A ∈ Sp (H,H∞).

If A,B ∈ Dp (#) then A,B ∈ Sp (H,H∞) and A#, B# ∈ Sp (H,H∞). Hence

αA + βB ∈ Sp (H,H∞) and (αA+ βB)# = αA# + βB# ∈ Sp (H,H∞). Thus

αA+ βB ∈ Dp (#), so that Dp (#) is a linear subspace of Sp (H,H∞). To see that

Dp (#) is maximal, assume that there is a linear subspaceD of Sp (H,H∞) preserved

by # such that Dp (#) $ D. If A ∈ DrDp (#) then A# ∈ D ⊆ Sp (H,H∞). Hence

A ∈ Dp (#), so that Dp (#) = D. Thus Dp (#) is the maximal linear subspace of

Sp (H,H∞) preserved by #.

Proposition 6.15 (i) If 1 ≤ p < 2, then lp (Sp) $ Dp (#) $ Sp (H,H∞).

(ii) S2 (H,H∞) = D2 (#).

(iii) If 2 < p ≤ ∞ then Dp (#) $ Sp (H,H∞) * Db (#).

Proof. Let {en}∞n=1 be an orthonormal basis in H, Pen be the projections on Cen

and let {Vn}∞n=1 be partial isometries from Cen on Ce1 : Vnen = e1 and Vnej = 0, for

j 6= n. Then, for all n, V ∗n e1 = en and V ∗n ek = 0 if k 6= 1. Thus

Pen = V ∗n Vn and Pe1 = VnV
∗
n . (6.58)

(i) Let 1 ≤ p < 2. By Theorem 5.22(i), lp (Sp) ⊂ Sp (H,H∞). As # preserves

all lq (Sp), we have lp (Sp) ⊆ Dp (#) ⊆ Sp (H,H∞) It follows from Example 6.12
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that Dp (#) 6= Sp (H,H∞). Thus to finish the proof of (i), we need to show that

lp (Sp) 6= Dp (#).

Let A = (An)∞n=1 ∈ l∞ (B (H)) where An = n−
1
pPe1 . As ‖Pe1‖p = 1,

‖A‖plp(Sp) =

∞∑
n=1

‖An‖pp =
∞∑
n=1

∥∥∥n− 1
pPe1

∥∥∥p
p

=
∞∑
n=1

n−1 diverges.

Hence A /∈ lp (Sp).

Let u =
∑∞

n=1⊕n
− 1
p e1, where each n

− 1
p e1 lies in the n-th component of H∞ =

l2 (H). Then ‖u‖2 =
∑∞

n=1 n
− 2
p <∞. Thus u ∈ H∞. For each x =

∑∞
n=1 αnen ∈ H,

we have Anx = n−
1
pPe1x = n−

1
pα1e1, so that

Ax =
∞∑
n=1

⊕Anx =
∞∑
n=1

⊕n−
1
pα1e1 = α1

∞∑
n=1

⊕n−
1
p e1 = α1u.

Hence A = e1 ⊕ u is a rank one operator in B (H,H∞), i.e., Ax = (e1 ⊕ u)x =

(x, e1)u = α1u. Thus A ∈ Sp (H,H∞) (see (5.59) and (5.60)). Moreover, since for

each n, A∗n = An, we have that A# = A. Thus A ∈ Dp (#). We proved earlier that

A /∈ lp (Sp). Therefore lp (Sp) 6= Dp (#).

(ii) From Theorem 5.22(iii) it follows that S2 (H,H∞) = l2 (S2).As # preserves

l2 (S2), we have S2 (H,H∞) = D2 (#).

(iii) Let 2 < p ≤ ∞. It follows from Example 6.12 that Dp (#) 6= Sp (H,H∞).

Thus we only need to show that Sp (H,H∞) * Db (#). To prove this, we shall

construct an operator A = (An)∞n=1 ∈ Sp (H,H∞) such that A /∈ Db (#).

Set An = n−
1
2Vn, for n ∈ N. The operator

∑m
n=1 n

−1Pen =
∑m

n=1 n
−1 (·, en) en is

self-adjoint, for all m, and its eigenvalues are exactly all n−1 (see Corollary 2.36).
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Hence

‖PmA‖2
p

(5.54)
= ‖(PmA)∗ PmA‖p/2

(5.28)
=

∥∥∥∥∥
m∑
n=1

A∗nAn

∥∥∥∥∥
p/2

=

∥∥∥∥∥
m∑
n=1

n−1V ∗n Vn

∥∥∥∥∥
p/2

(6.58)
=

∥∥∥∥∥
m∑
n=1

n−1Pen

∥∥∥∥∥
p/2

=

(
m∑
n=1

(
n−1
)p/2)2/p

=

(
m∑
n=1

n−
p
2

)2/p

<∞, as p > 2.

Therefore, by Lemma 5.21(ii), A ∈ Sp (H,H∞) for all 2 < p <∞. As Sp (H,H∞) ⊂

S∞ (H,H∞) = C (H,H∞), we have A ∈ S∞ (H,H∞). On the other hand, A# does

not belong to B (H,H∞), since

A#e1 = (A∗ne1)∞n=1 =
(
n−

1
2V ∗n e1

)∞
n=1

=
(
n−

1
2 en

)∞
n=1

and

∥∥A#
∥∥
B(H,H∞)

= sup
‖x‖=1

∥∥A#x
∥∥
H∞
≥
∥∥A#e1

∥∥
H∞

=

( ∞∑
n=1

∥∥∥n− 1
2 en

∥∥∥2
)1/2

=

( ∞∑
n=1

n−1

)1/2

-diverges.

Thus A /∈ Db (#), so that Sp (H,H∞) * Db (#) for 2 < p ≤ ∞. The proof is

complete.

Let A = (An)∞n=1 ∈ Dp (#). Then A# ∈ Dp (#). As in (6.53), let X =

1
2

(
A+ A#

)
and Y = 1

2i

(
A− A#

)
be the ’Cartesian decomposition’of A. Since

Dp (#) is a linear subspace of Sp (H,H∞), we have X, Y ∈ Dp (#). Since An =
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Xn + iYn and all Xn, Yn are self-adjoint, we have

A∗nAn + AnA
∗
n = (Xn − iYn) (Xn + iYn) + (Xn + iYn) (Xn − iYn) (6.59)

= 2
(
X2
n + Y 2

n

)
.

Therefore

|A|2 +
∣∣A#

∣∣2 = A∗A+
(
A#
)∗
A# (5.21)

=
∞∑
n=1

(A∗nAn + AnA
∗
n) (6.60)

= 2 lim
m→∞

m∑
n=1

(
X2
n + Y 2

n

)
= 2

∞∑
n=1

(
X2
n + Y 2

n

) (5.21)
= 2 (X∗X + Y ∗Y ) .

Hence

∥∥∥∥(|A|2 +
∣∣A#

∣∣2)1/2
∥∥∥∥
p

= 2
1
2

∥∥∥∥∥∥ lim
m→∞

(
m∑
n=1

(
X2
n + Y 2

n

))1/2
∥∥∥∥∥∥
p

(6.61)

= 2
1
2 lim
m→∞

∥∥∥∥∥∥
(

m∑
n=1

(
X2
n + Y 2

n

))1/2
∥∥∥∥∥∥
p

.

Theorem 6.16 Let A = (An)∞n=1 ∈ Dp (#), An = Xn + iYn. For 1 ≤ p ≤ 2,

‖A‖l2(Sp) ≤ lim
m→∞

∥∥∥∥∥∥
(

m∑
n=1

(
X2
n + Y 2

n

))1/2
∥∥∥∥∥∥
p

= 2−
1
2

∥∥∥∥(|A|2 +
∣∣A#

∣∣2)1/2
∥∥∥∥
p

≤ 2
1
p
− 1
2 ‖A‖lp(Sp) ,

where ‖A‖lp(Sp) =∞ if A /∈ lp (Sp). For 2 ≤ p <∞, the inequalities are reversed.

Proof. By our assumption, A ∈ Dp (#). Hence A,A# ∈ Sp (H,H∞).Consider

the operator B = (Bn)∞n=1 such that B2j = Ajand B2j−1 = A∗j . Let us show that
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B,B# ∈ Sp (H,H∞). Indeed,

B =



A∗1

A1
...

A∗n

A1
...


and B∗Bx = B∗


B1x
...

Bnx
...

 =

∞∑
n=1

B∗nBnx

=
∞∑
j=1

B∗2j−1B2j−1x+
∞∑
j=1

B∗2jB2jx

=
∞∑
j=1

(
A∗j
)∗
A∗jx+

∞∑
j=1

A∗jAjx =
((
A#
)∗
A# + A∗A

)
x.

for each x ∈ H. Thus B∗B =
(
A#
)∗
A# + A∗A. Applying (5.8), we obtain that(

A#
)∗
A#, A∗A ∈ Sp/2 (H). Since Sp/2 (H) is a linear space (see [16, Lemma XI.9.9

(b)]), we have B∗B =
(
A#
)∗
A# + A∗A ∈ Sp/2 (H). Applying (5.8) again, we have

that B ∈ Sp (H,H∞).

Similarly, we have that, for each x ∈ H,

(
B#
)∗
B#x =

∞∑
n=1

(B∗n)∗B∗nx =
∞∑
j=1

B2j−1B
∗
2j−1x+

∞∑
j=1

B2jB
∗
2jx

=

∞∑
j=1

A∗jAjx+

∞∑
j=1

(
A∗j
)∗
A∗jx = A∗Ax+

(
A#
)∗
A#x.

Thus
(
B#
)∗
B# = A∗A +

(
A#
)∗
A# ∈ Sp/2 (H), so that B# ∈ Sp (H,H∞). Thus

B,B# ∈ Sp (H,H∞), so that B ∈ Dp (#).

We also have

B∗2j−1B2j−1 +B∗2jB2j = AjA
∗
j + A∗jAj

(6.59)
= 2

(
X2
j + Y 2

j

)
. (6.62)
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From the considerations just above the Theorem 6.16 and from Proposition 6.15

we know that X, Y ∈ Dp (#) ⊂ Sp (H,H∞). By Theorem 5.22, Sp (H,H∞) ⊆

l2 (Sp) , for 1 ≤ p ≤ 2, and Sp (H,H∞) ⊆ lp (Sp) , for 2 ≤ p < ∞. Thus all

Xn, Yn ∈ Sp (H), so that X2
j , Y

2
j ∈ Sp/2 (H).

Set Tm =
(∑m

j=1

(
X2
j + Y 2

j

))1/2

. As Sp/2 (H) is a linear space,

T 2
m =

m∑
j=1

(
X2
j + Y 2

j

)
∈ Sp/2 (H)

and is self-adjoint. Then Tm ∈ Sp (H) and

∥∥T 2
m

∥∥
p/2

= ‖T ∗mTm‖p/2
(5.3)
= ‖Tm‖2

p . (6.63)

Thus

‖B‖p
(5.54)
= ‖B∗B‖1/2

p/2

(5.37)
= lim

m→∞

∥∥∥∥∥
m∑
n=1

B∗nBn

∥∥∥∥∥
1/2

p/2

(6.64)

= lim
m→∞

∥∥∥∥∥
m∑
j=1

(
B∗2j−1B2j−1 +B∗2jB2j

)∥∥∥∥∥
1/2

p/2

(6.62)
= 21/2 lim

m→∞

∥∥∥∥∥
m∑
j=1

(
X2
j + Y 2

j

)∥∥∥∥∥
1/2

p/2

(6.63)
= 21/2 lim

m→∞

∥∥∥∥∥∥
(

m∑
j=1

(
X2
j + Y 2

j

))1/2
∥∥∥∥∥∥
p

.

As ‖B2j‖p = ‖Aj‖p =
∥∥A∗j∥∥p = ‖B2j−1‖p, we have, for each q,

‖B‖qlq(Sp) =
∞∑
j=1

(
‖B2j‖qp + ‖B2j−1‖qp

)
(6.65)

=

∞∑
j=1

‖Aj‖qp +

∞∑
j=1

∥∥A∗j∥∥qp = 2 ‖A‖qlq(Sp) .

Let 1 ≤ p ≤ 2. Then

‖B‖l2(Sp)

(5.61)

≤ ‖B‖p
(6.64)
= 21/2 lim

m→∞

∥∥∥∥∥∥
(

m∑
j=1

(
X2
j + Y 2

j

))1/2
∥∥∥∥∥∥
p

(5.61)

≤ ‖B‖lp(Sp) .
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By (6.65), ‖B‖lp(Sp) = 21/p ‖A‖lp(Sp) and ‖B‖l2(Sp) = 21/2 ‖A‖l2(Sp). Hence

21/2 ‖A‖l2(Sp) ≤ 21/2 lim
m→∞

∥∥∥∥∥∥
(

m∑
j=1

(
X2
j + Y 2

j

))1/2
∥∥∥∥∥∥
p

≤ 21/p ‖A‖lp(Sp) .

Making use of (6.61), we complete the proof of the case when 1 ≤ p ≤ 2:

‖A‖l2(Sp) ≤ lim
m→∞

∥∥∥∥∥∥
(

m∑
j=1

(
X2
j + Y 2

j

))1/2
∥∥∥∥∥∥
p

= 2−
1
2

∥∥∥∥(|A|2 +
∣∣A#

∣∣2)1/2
∥∥∥∥
p

≤ 2
1
p
− 1
2 ‖A‖lp(Sp) .

To prove the estimate in the case 2 ≤ p < ∞, we use inequality (5.62) instead

of (5.61). We have

‖B‖l2(Sp)

(5.62)

≥ ‖B‖p
(6.64)
= 21/2 lim

m→∞

∥∥∥∥∥∥
(

m∑
j=1

(
X2
j + Y 2

j

))1/2
∥∥∥∥∥∥
p

(5.62)

≥ ‖B‖lp(Sp) .

By (6.65), ‖B‖lp(Sp) = 21/p ‖A‖lp(Sp) and ‖B‖l2(Sp) = 21/2 ‖A‖l2(Sp). Hence

21/2 ‖A‖l2(Sp) ≥ 21/2 lim
m→∞

∥∥∥∥∥∥
(

m∑
j=1

(
X2
j + Y 2

j

))1/2
∥∥∥∥∥∥
p

≥ 21/p ‖A‖lp(Sp) .

Making use of (6.61), we obtain

‖A‖l2(Sp) ≥ lim
m→∞

∥∥∥∥∥∥
(

m∑
j=1

(
X2
j + Y 2

j

))1/2
∥∥∥∥∥∥
p

= 2−
1
2

∥∥∥∥(|A|2 +
∣∣A#

∣∣2)1/2
∥∥∥∥
p

≥ 2
1
p
− 1
2 ‖A‖lp(Sp) .

The theorem is proved.
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6.7 Conclusion

The main aim of this chapter is to find a generalization of Clarkson-McCarthy in-

equalities (6.21) to infinite families of operators. The inspiration came from studying

actions of operators from B (H∞) on lq (Sp) spaces.

In Proposition 6.1 we prove that, apart from l2 (S2) = S2 (H,H∞), the Banach

spaces lq (Sp) are not left B (H∞)-modules. By applying results from Chapter 5,

namely Theorem 5.22 and Lemma 5.16, we obtain, in Theorem 6.2, important in-

equalities involving operators from B (H∞), l2 (Sp) and lp (Sp). Using interpretation

(6.21) we prove Theorem 6.3, that gives us estimate (6.30) involving a block-diagonal

operator on H∞ (see (6.29)) and operator from the space lq (Sp). We know that a

similar estimate would not work for all bounded operators on H∞ as the spaces

lq (Sp) other than l2 (Sp) are not left B (H∞)-modules. Applying Theorems 6.2 and

6.3 we obtain Corollary 6.4. It gives us an analogue of McCarthy inequalities (6.1)

and (6.2) for lq (Sp) spaces. In Theorem 6.7 we prove that for 2 ≤ p <∞, the space

lp (Sp) is p-uniformly convex.

Next, we concentrate on infinite partitions of operators from Sp. We prove

estimates for partitions in Theorem 6.11. The case when the partitions were finite

was studied in [25] and [7]. In Theorem 6.13 we prove estimates for Cartesian

decomposition of operators from lq (Sp). A similar result for lnq (Sp) spaces was

proved in [25, Theorem 5(ii)]. We also prove Proposition 6.15 that shows inclusions

of spaces lp (Sp), Dp (#), Sp (H,H∞) and l2 (Sp). Our last Theorem in this thesis
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is Theorem 6.16. It proves estimates for Cartesian decomposition of operator A ∈

Sp (H,H∞) such that A# ∈ Sp (H,H∞). It is similar to [25, Theorem 5(i)].
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Chapter 7 Conclusion
This thesis had two aims. The first aim was to identify and prove a number of

minimax conditions that arise in the context of the theory of Hilbert spaces and

linear operators on Hilbert spaces. The second aim was to analyze lq-spaces lq (Sp)

of operators from Schatten ideals Sp. In this chapter we summarize the results we

have achieved until now and indicate possible future research in this area.

We began our research in Chapter 3 by considering sequences of bounded semi-

norms on Hilbert spaces and obtaining minimax theorems for them. We established

two minimax formulae for bounded seminorms on Hilbert spaces, namely Proposi-

tion 3.6 and Theorem 3.8. We consider a sequence {gk}∞k=1 of bounded seminorms

on a Hilbert space H that is bounded at each point x ∈ H. We find that one

of the above minimax formulae holds for such a sequence and its value is zero, if

the bounded seminorm g (x) = supn gn (x) is not equivalent to the norm ‖·‖ of the

Hilbert space H. We prove that the condition does not hold when g is equivalent

to ‖·‖ but all gn are not equivalent to ‖·‖. Generally, if g is equivalent to ‖·‖ then

this minimax condition holds if and only if, for each ε > 0, there exists nε such that

gnε is equivalent to ‖·‖ and inf‖x‖=1 gnε (x) ≥ inf‖x‖=1 g(x)− ε. We also showed that

the reversed minimax condition, as stated in Theorem 3.8, holds for all sequences

of seminorms. The restrictions imposed on the sequences of seminorms are different

for the reversed version. In Theorem 3.8 we require that the sequence {gk}∞k=1 of

seminorms on H is such that gm (x) = infn gn(x) for all x ∈ H and some m ∈ N
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(for example, {gk}∞k=1 could be monotone increasing, i.e. gk (x) ≤ gk+1 (x) for all

x ∈ H). We illustrate Proposition 3.6 and Theorem 3.8 with examples of seminorms

on the Hilbert space l2.

By replacing sequences of seminorms with sequences of operators {Ak}∞k=1 on H

and evaluating their norms, we obtain the following version of the minimax condi-

tion:

inf
‖x‖=1

sup
n
‖Anx‖ = sup

n
inf
‖x‖=1

‖Anx‖ ,

inf
n

sup
‖x‖=1

‖Anx‖ = sup
‖x‖=1

inf
n
‖Anx‖ .

Perhaps, it would be interesting to find necessary and suffi cient conditions for

the minimax to hold and to evaluate the left and right hand sides of the above

minimax formulae.

At the end of Chapter 3, we divert our attention from seminorms and concentrate

on finding minimax theorems that hold for bounded operators on Hilbert spaces.

In Theorem 3.12, we obtain certain minimax conditions for bounded operators on

H. We evaluate this minimax formula as zero if the bounded operator A is not

invertible and find that the minimax condition does not hold if A is invertible and

dimH > 1. We discuss application of this minimax formula to a bounded bilinear

functional Ω on H in Corollary 3.15.

In Chapter 4 we study the validity of various types of minimax conditions for

operators in Schatten ideals of compact operators. Our work has been inspired
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by reading the theory of linear nonselfadjoint operators in [21]. In Theorem 4.9

we consider minimax conditions that involve a bounded operator A on a Hilbert

space H and a sequence of self-adjoint bounded operators on H that converges

to 1H in the s.o.t. We were able to identify exactly for which bounded operators

A this minimax condition holds. We proved that the reversed minimax condition

holds for all operators A ∈ B (H). The most important theorem in this chapter

is, in our opinion, Theorem 4.15. It evaluates and verifies minimax conditions in

Schatten ideals for a family of projections. We discovered that the first formula

in this theorem holds in all cases and is equal to zero. However, the validity of

the second minimax condition depends on a new interesting property - approximate

intersection of a family of subspaces. Details of this notion and the results are

explained in Definition 4.13 and Theorem 4.15(ii).

A possibility of future research in this direction lies in the further attempts to

identify and verify some other minimax conditions for various classes of bounded

operators on Hilbert spaces. Another avenue which is worth, perhaps, pursuing is

investigating whether the minimax conditions could be generalized and then applied

to the operator theory.

In Chapter 5 we study lq (Sp) spaces of operators from Schatten ideals Sp and

the spaces Sp (H,H∞) of Schatten operators from Hilbert space H into H∞. In

Theorem 5.22 we establish the inclusion of these spaces in each other and obtain

various estimates for norms of operators from these spaces. In particular, we found
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that the spaces l2 (S2) and S2 (H,H∞) coincide. Lemma 6 [25], gives some estimates

for norms of n-tuples A = (A1, ..., An) of operators from lnp (Sp). In Proposition 5.10,

we extended these estimates to infinite families of operators. In Theorem 5.11 we

establish a connection between the norms of an operator, A ∈ l2 (Sp) ∪ lp (Sp) and

the operator B = RA, where R is a bounded operator on H∞. This, in fact, extends

the results of Corollary 7 [25], which proved this estimate for the norms of an n-

tuple of operators A = (A1, ..., An) and the n-tuple of operators B = RA, where

R ∈ B (Hn).

We obtained further generalization of Clarkson-McCarthy estimates in Chapter

6 in Corollary 6.4. We apply this result to prove that the spaces lp (Sp) are p-

uniformly convex for p ∈ [2,∞). This, in turn, implies that the spaces lp (Sp), for

p ∈ [2,∞), are reflexive (see [39, p.23]). Partitions of operators were studied in

section 6.5. We established inequalities for infinite partitions of operators from Sp

in Theorem 6.11. This result builds on estimates achieved in Theorem 4 [25] for

finite partitions of operators from Sp. In Theorem 6.13 we consider the Cartesian

decomposition A = X + iY of infinite sequences A = (An)∞n=1 of operators from

lq (Sp), for p ∈ [1,∞) and q ∈ [min (p, 2) ,max (p, 2)]. We obtain a certain estimates

that link the norms ‖X‖lq(Sp), ‖Y ‖lq(Sp) and ‖A‖lq(Sp). These results extend Theorem

5(ii) [25], where this decomposition was investigated for n-tuples A = (A1, ..., An)

of operators from Sp. We also study special type of operators from Sp (H,H∞) and

obtain some inequalities for Cartesian decomposition of these operators in Theorem
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6.16.

As we stated in Problem 6.8, the question about p-uniformly convexity of the

spaces lp (Sp), for p ∈ [1, 2) , is still open. This question is a subject for our future

research.
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