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Abstract. Spectral criteria for the cohomological triviality of extensions of representations of
connected nilpotent groups are obtained. They are applied to the study of symmetrized extensions
of unitary representations by finite-dimensional representations and to the theory of J -unitary
representations of groups on Pontryagin spaces.
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1. Introduction. Irreducible unitary representations of nilpotent groups have attracted atten-
tion of many experts. It is known that such representations are either one-dimensional or infinite-
dimensional; for nilpotent Lie groups, Kirillov [3] developed the orbit method, which has made it
possible to obtain a specific comprehensible classification in many cases. Arbitrary unitary repre-
sentations uniquely decompose into direct integrals of irreducible ones.

In the case of nonsymmetric representations, the situation is significantly less certain. The
irreducible finite-dimensional representations are still one-dimensional (by the Lie–Kolchin theo-
rem [4]), but arbitrary representations no longer decompose into sums of irreducible ones. They can
be decomposed into sums of indecomposable representations, but the latter can rarely be classified.

There is a natural situation in which it is necessary to study mixtures of finite-dimensional and
unitary representations of a group; this is the theory of group representations in the Pontryagin
spaces Πk . As Naimark showed in [5], a J -symmetric representation of a connected nilpotent group
in Πk has an invariant subspace of dimension k; this allows us to consider such representations as
special constructions of “symmetrized extensions” of finite-dimensional representations by unitary
ones. Although there remains the problem with the finite-dimensional part, it becomes simpler,
because the dimensions of the arising finite-dimensional components are bounded by the degree of
indefiniteness. In this paper we successively consider (1) decomposability conditions for representa-
tions of nilpotent groups, (2) the decomposability of extensions of finite-dimensional representations
by unitary ones, and (3) the structure of Πk -representations.

2. Cohomology and extensions. Let λ and U be weakly continuous representations of a
group G on Hilbert spaces L and H, respectively. We use B(H, L) to denote the space of bounded
linear operators from H to L treated as a G-bimodule. The cohomology of G with coefficients in
B(H, L) is defined in a standard way (note that in the classical case, which is considered in the
literature most frequently, λ is equal to the trivial representation ι on a one-dimensional space).
In particular, a 1-cocycle is a weakly continuous function ξ : G → B(H, L) satisfying the condition

ξ(gh) = λ(g)ξ(h) + ξ(g)U(h) for any g, h ∈ G.

The triviality condition for 1-cohomology is particularly important in representation theory,
because it ensures the triviality of extensions. Recall that an extension of a representation λ by U
is any representation for which there exists a closed invariant subspace L such that the restriction
to L is equivalent to λ and the representation induced on the quotient space is equivalent to U .
An extension is considered trivial if L has an invariant complement.

The standard construction of extensions is as follows. Let Z = L⊕H. With each (λ,U)-cocycle
ξ we associate the representation π on Z acting by the rule

π(g) =

(
λ(g) ξ(g)
0 U(g)

)
for g ∈ G.



223

This is an extension of λ by U ; we denote it by e(λ,U, ξ). The extension e(λ,U, ξ) is trivial if and
only if the cocycle ξ is a coboundary.

Given h ∈ G, we define a map adh : G → G by

adh(g) = ghg−1h−1 for all g ∈ G.

An element h is said to be Engel if, for any g ∈ G, there exists a number n = ng for which
adn

h(g) = e.

Theorem 1. Let λ and U be representations of a group G. If

Sp(λ(h)) ∩ Sp(U(h)) = ∅ (1)

for some Engel element h ∈ G, then H 1(λ,U) = 0.

Since all elements of a nilpotent group are Engel, we have the following corollary, which plays
an important role throughout the paper.

Corollary 2. Let λ and U be representations of a connected nilpotent group G. If Sp(λ(h)) ∩
Sp(U(h)) = ∅ for some h ∈ G, then H 1(λ,U) = 0.

Corollary 3. Let π be a representation of a connected nilpotent group on a Banach space X ,
and let L be a closed invariant subspace for π . If λ = π|L , U is the representation induced on X/L,
and condition (1) holds for some h ∈ G, then Y has an invariant complement in X .

It is easy to see that this result does not carry over to solvable groups.
Let χ be a character of a group G (i.e., a multiplicative functional on G). We say that χ is

adjoint to the representation λ if λ(g)x = χ(g)x for some vector x �= 0 and all g ∈ G. We denote
the set of all characters adjoint to λ by sign(λ). We say that a representation λ is monothetic if
sign(λ) is one-point. The following result (it is undoubtedly well known, but the authors do not
know where it was published) is an immediate consequence of Lie’s theorem and Corollary 3.

Corollary 4. Any finite-dimensional representation of a connected nilpotent group is a direct
sum of monothetic representations.

In what follows, we always assume that G is a connected nilpotent group.
Suppose that λ is a representation of G on a finite-dimensional space L, U is a unitary repre-

sentation of G on a Hilbert space H, and ξ is a (λ,U)-cocycle.

Theorem 5. Let π = e(λ,U, ξ) be a representation of a group G on Z = L � H and suppose
that dimH = ∞.

Then there exist closed π-invariant subspaces {Xn}∞n=1 and {Yn}∞n=1 such that

Z = Xn � Yn, Xn+1 ⊂ Xn, Yn ⊂ Yn+1 for any n,

all representations π|Yn are similar to unitary representations, each subspace Xn contains L, the
intersection of all subspaces Xn is finite-dimensional, and the closure of the union of all Yn has
finite codimension in Z.

Corollary 6. If the representation e(λ,U, ξ) does not decompose into the direct sum of two
subrepresentations, then dimH < ∞, sign(λ) = {χ}, and U = χ1H .

Studying representations of groups on spaces with an indefinite metric, Ismagilov [1] introduced
a special class of cocycles; now we proceed to consider this class. We use λ� to denote the represen-
tation conjugate to λ: λ�(g) = λ(g−1)∗ . By C(H,L) we denote the space of continuous maps from
G to B(H, L). For each c ∈ C(H, L), we define a map c�(g) ∈ C(L,H) by setting c�(g) = c(g−1)∗ .

Clearly, if ξ is a (λ,U)-cocycle, then ξ� is a (U, λ�)-cocycle, and the map ξξ� : G×G → B(L)
defined by ξξ�(g, h) = ξ(g)ξ�(h) is a (λ, λ�)-2-cocycle. We say that a cocycle ξ is neutral if ξξ� is
a coboundary, i.e., if there exists a map γ ∈ C(L,L) (a prechain of the cocycle ξ) such that

ξ(g)ξ�(h) = (d1λ,λ�γ)(g, h) = λ(g)γ(h) − γ(gh) + γ(g)λ�(h).

We denote the set of all neutral cocycles by Z 1
ν (λ,U). It can be shown that any cocycle

cohomologous to a neutral one is neutral; therefore, we can define the neutral 1-cohomology set
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H 1
ν (λ,U) in a natural way. This set is not always a subgroup in H 1(λ,U) and may have very

complex structure even in the case where λ = ι and U = ιm is a representation by unit operators
on C

m . Thus, for the group G = Tn of upper triangular n × n matrices with 1’s on the diagonal,
the exact description of neutral 1-(ι, ιm)-cohomology (= cocycles) is as follows.

Let A be an m× (n− 1) matrix such that B = A∗A = (bij) satisfies the condition

Im bij = 0 if |i− j| > 1;

then ξ(g) = A(g12, . . . , gn−1,n)
T is a neutral (ι, ιm)-cocycle, and all neutral cocycles have this form.

The following theorem, which is important for further considerations, asserts that, for a large
class of representations, the set H 1

ν (λ,U) is massive.

Theorem 7. Let G be a connected locally compact nilpotent group, and let U be its unitary
representation weakly containing but not containing ι. Then the neutral (ι, U)-cocycles are dense in
the space Z 1(ι, U) of all 1-cocycles with respect to the topology of uniform convergence on compact
sets.

3. J -Unitary representations in Πk . Recall that the Pontryagin space Πk is a space H with
indefinite inner product [ · , · ] which can be decomposed into the direct sum of a negative subspace
of dimension k and a subspace being a Hilbert space with respect to [ · , · ]. An operator acting on
H is said to be J -unitary if it is invertible and preserves [ · , · ]. A J -unitary representation of a
group G on H is a homomorphism of G to the group of all J -unitary operators.

According to Naimark’s theorem mentioned in the introduction, any J -unitary representation
of a connected nilpotent group on Πk has a nonpositive invariant subspace of dimension k. If this
subspace is negative, then the representation is similar to a unitary representation. Therefore, of
interest are only those representations which have invariant neutral (i.e., consisting of vectors x
with [x, x] = 0) subspaces.

In what follows, by L we denote the maximal invariant neutral subspace of a representation π.
Its J -orthogonal complement L[⊥] is invariant as well, but the decomposition H = L[+]L[⊥] does

not take place; moreover, L ⊂ L[⊥]. Let us choose a closed subspace H ⊂ L[⊥] complementary to
L and a neutral subspace M ⊂ H complementary to L[⊥]; then the representation can be written
in the block-matrix form with respect to the decomposition H = L⊕ H⊕M as

π =

⎛
⎝λ ξ γ
0 U η
0 0 μ

⎞
⎠ .

Here the representation U on H is similar to a unitary representation (and becomes unitary af-
ter a change of inner product in H), ξ is a (λ,U)-cocycle, μ(g) = λ(g−1)∗ , η(g) = ξ(g−1)∗ ,
γ(g)∗ = γ(g−1), and

γ(gh) = λ(g)γ(h) + ξ(g)η(h) + γ(g)μ(h).

We see that the cocycle ξ is neutral and −γ is its prechain. Conversely, given a neutral cocycle,
we can construct a J -unitary representation, choosing a prechain. This allows us to apply results
on extensions to the theory of Πk -representations. We mention some of such applications below.
Recall that a group G is assumed to be connected and nilpotent.

Theorem 8. Let L be a neutral invariant subspace of a J -unitary representation π . Then there

exists a decreasing sequence of closed invariant subspaces Hm containing L and such that all H
[⊥]
m

are positive and
⋂

mHm is finite-dimensional.

This fact (approximative splittability) can be regarded as a theorem on the decomposability of
any representation into the “direct sum” of a sequence of unitary representations (on Ek = Hk−1	
Hk) and a representation on a finite-dimensional (possibly degenerate) subspace (on

⋂
mHm). Note

that, for the Lorentz group, a similar result was obtained in [2].
Of interest is also another version of decomposability (into a finite J -orthogonal direct sum).

We say that a representation on a Πk -space H is Π-decomposable if H = H1[+]H2 , where H1 and
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H2 are invariant and not positive. Otherwise, we say that the representation is Π-indecomposable.
Clearly, any representation is a finite direct sum of Π-indecomposable ones. For representations on
finite-dimensional spaces, such a decomposition is unique (up to isomorphism), but its uniqueness in
the general case has been neither proved nor disproved. The problem of classifying finite-dimensional
Π-indecomposable representations is far from being completely solved, too.

We say that a representation is primary if its restriction to the maximal invariant neutral
subspace is monothetic. The following result answers one of the questions that have led to writing
this note.

Theorem 9. (i) If a group G is commutative, then all of its Π-indecomposable representations
are primary.

(ii) There exists a Π-indecomposable representation of the Heisenberg group T3 which is not
primary.
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