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Clarkson—McCarthy Inequalities for
l,-Spaces of Operators in Schatten Ideals

Teresa Formisano and Edward Kissin

Abstract. In this paper we obtain generalized Clarkson—-McCarthy in-
equalities for spaces [,(S?) of operators from Schatten ideals SP. We
show that all Clarkson-McCarthy type inequalities are, in fact, some
estimates on the norms of operators acting on the spaces l4(S?) or from
one such space into another. We also extend some inequalities for par-
titioned operators and for Cartesian decomposition of operators.

1. Introduction and Preliminaries

The original Clarkson inequalities for L, spaces (summarized by Kato and
Takahashi in [14]) were proved in Clarkson [8] in the context of uniform
convexity of L, spaces. Their non-commutative analogues for the Schatten
ideals SP = SP(H), where H is a separable Hilbert space, were obtained by
McCarthy in [18]: For A, B € S?,2 < p < o0,

1 1

7 (I Al + IBIIE) 7 (1.1)

.
7

(A + | BIE)», (1.2)

A+ Blz + 1A= B|j)» <2
A+ Bl + 1A= Blj)» <2

3 =

where 1/p+ 1/p’ = 1. For 1 < p < 2, these inequalities are reversed. In-
equality (1.2) is stronger than (1.1), since (see, for example, [14, Lemma

1 1

2.3)) (£4%) " < (¢52) 7, for ¢ < p and nonnegative a, b. These Clarkson—
McCarthy inequalities play an important role in analysis and operator theory
and were used to prove that all Schatten ideals SP,2 < p < oo, are uniformly
convex Banach spaces (see [18,19]). Bhatia and Holbrook [4] and Hirzallah
and Kittaneh [11] generalized these inequalities for general symmetric norms.
Bhatia and Kittaneh [7] obtained Clarkson-McCarthy inequalities for certain
N-tuples of operators from S? and the second author [15] extended them to
all N-tuples of operators from SP.

We start this paper with reinterpreting these inequalities as estimates
on the norms of some operators acting on Banach spaces lév (SP) for N < oo.
For the classical Clarkson inequalities in L, spaces, this was done earlier by
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Kato in [12] who considered the action of Littlewood matrices

11 Agn Agn
A21(1 _1),A2n+1(A; _2%), n=12.. (L3

from the space 12" (L,) into 12" (L,) and evaluated the norms of operators
|| Agn: 12°(L,) — 12" (L) || in order to obtain various generalizations of Clark-
son inequalities. This approach was later used and extended further in a num-
ber of papers by Kato and Takahashi in [14,21], Takahashi, Hashimoto and
Kato in [20], Maligranda and Persson in [16,17], Tonge [22]. For arbitrary Ba-
nach spaces X, the action of Rademacher matrices R,, from the space l]’;(X )
into 12" (X) was investigated by Kato et al. in [13] to establish the relation be-
tween Clarkson inequalities in X and the type and cotype of X (see also [14]).

In this paper we study Clarkson—-McCarthy inequalities for infinite sets
of operators from S?, that is, we consider Banach spaces I,(S?) (they are
symmetrically normed ideals of C*-algebra Il (B(H))) and obtain for them
analogues of Clarkson—-McCarthy inequalities and other related inequalities.
As in the finite case, these inequalities are estimates on the norms of some
operators acting from the space l,(S?) into I,-(S?). As a consequence, we prove
that the spaces [,(S?) are p-uniformly convex for p > 2, and p-uniformly
smooth for 1 < p < 2. We investigate the relation between the spaces I,(S?)
and the space SP(H, H*) of compact operators A from H into the orthogonal
sum H of an infinite number of copies of H satisfying ||A||, < oo, and
examine the embeddings of these spaces on to each other. We also consider
infinite partition and Cartesian decomposition of operators from the Schatten
ideals SP.

Let H,K be separable Hilbert spaces, B(H,K) be the space of all
bounded operators from H to K and C(H, K) the subspace of compact op-
erators in B(H,K). If K = H, set B(H) = B(H,H) and C(H) = C(H, H).
Then C(H) is the unique closed two-sided ideal of B(H). For A € C(H, K),
the operator |A| = (A*A)'Y/2 belongs to C'(H) and its eigenvalues {s;} con-
verge to 0. For p € [1, 00),

1/p
SP(H,K) = { A€ C(H, K): | All, = [I|A]l, = (Z) cooy  (14)

is a Banach space in norm ||-[|, and SP := SP(H) = SP(H, H) is a two-sided
Schatten ideal of B(H) and

S9C SP and ||All, < | Al for A€ §% if1<g<p<oo.  (L5)

For a Banach space (X, |-]|), the space I3 (X) of sequences z = ()Y,

xr; € X, satisfying

N 1/q
[l () = (Z IIinq> < o0, for ¢ < oo,
i=1

el (x = sup ]| < oo, for g = ox,
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is a Banach space for each N € NUoo. If N < co then the norms [|-[|;v(y,

are equivalent for all ¢. For N = oo, set [,(X) = [2°(X). The norms H'”lq(x)
are not equivalent:

LX) G 1,(X) and [, ) < Il B0 < @ (L6)

To interpret (1.1) and (1.2) as inequalities in I2(S?), consider the unitary
matrix %Ay (see (1.3)) and the corresponding unitary operator
po L (1 g ly
V2 \1lg —1g
It acts on I2(SP) (treat A = (A, A3),A; € SP, as a column) by RA =
% (A1 4+ A2, A1 — Ay). Then (1.1) and (1.2) can be written in the following
form:

) in B(H @ H).

1

1_1
| RAJ 350 < olz =3 | All 350y » for p € [1,00); (1.7)
| .
1RAlyqsny <2 71 AlLg g0y 2 <)

i .
1BAls 50y < 271577 Ay 0 0 <2 (18

Similarly, the inequality of Ball et al. [2] can be written for p € [2,00) as

[ RA|» <2v [[All2 where R = <1H (p= 1)7%11}[ ) .

z(sp) < B3(s7) 1 —(p—1)t1y
For p € [1,2) it is reversed.

Let HY be the orthogonal sum of N < oo copies of H. Each R € B(HY)
has matrix form R = (Rjk)é-\"kzl,Rjk € B(H), and acts on I (SP) (treat
each A = (Ay,...,An), A; € SP, as a column). Some analogues of Clarkson—
McCarthy inequalities (1.1) and (1.2) were obtained in [15]. Interpreting them

as inequalities in [2'(S7) and setting A = max || R, |, we have, for %—I— ﬁ =1,

|RAlory < NI 2122

R|| HA”lgV(sp) for 1 <p < o0; (1.9)
2 2
IRAllp 50y < AP IR| [ ANl (spy for 1<p<2,

where t,s € [min(p, 2), max(p,2)]. Thus the norm of the operator R from
IN(SP) to IV (SP) satisfies

1_1fy1_1
||R||ISN(SZ’)—>Z%V(SP) g N‘p 2‘+t s RH,
2_1 l/
1Ry (o) sy < A2 HIRI (1.10)
For unitary operators R = ﬁ(ajle)é\fk:h where a1, = exp (Zw),

these inequalities were obtained in [7]. In this paper we obtain some analogues
of inequalities (1.10) for N = co.

Each A € B(H,H®) has form A = (A,,)22, with A,, € B(H). Hence
B(H,H®) can be considered as a subspace of I (B(H)) and SP(H, H>)
as a subspace of [ (S?). By (1.5) and (1.6), {,(S?) C ,(SP) C [.(S") and
sty < Il se) < 1l eswy, 1 < g <71 < p < t. Thus, for each
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P, {l4(5?) }1<g<oo is an increasing range of spaces and {H~||lq(s,,)}1§q<Oo is a
decreasing range of norms. In Sect. 2 we find the positions that SP(H, H>)
and [|-||, occupy in these ranges:

1,(S%) € SP(H, H™) Cla(S7) and || Ay, 50y < IAll, < 1Al (sr) >

if 1 <p < 2. All inclusions and inequalities are reversed for p > 2.

In Sect. 3 we show that, for p € [1,2], operators R € B(H*) map the
spaces [,(SP) into [5(SP); for p > 2, they map [5(S?) into [,(S?), and the
following analogue of (1.10) holds:

IR, (s7)—15(s7) < IRl p(areey for p € [1,2],
Bl (sp)—1,(57) < 1Rl parecy for 2 <p.

These results give, in turn, some analogues of inequalities (1.1). In particular,
it A, B €1,(SP) then, for p € [1,00) and ¢ € [min(p,2), max(p, 2)], we have

1 1_1 1 1
(A + BIIY gy + 1A= BII? 508 < 257355 (a)2 o+ IBIE 50)7

Using this, we prove that the spaces [,(SP) are p-uniformly convex for p > 2,
and p-uniformly smooth for p € [1,2].

A set {P,}N_, of mutually orthogonal projections is a partition of 1z
it YN P, = 1y It is well known (see [10]) that 3, [|PaAP.l, < [|All,
for A € SP. For partitions {P,})_; and {Q,,}M_,, it was established in [15]
that, for M, N < ocoand 2 < g <p < oo,

(NM)P ™S [ PuAQulg < AIG < (NM)ETH S [PaAQull} (111)
and reversed for 1 <p < qg<2. For N =M, P, = Q, and ¢ = 2,p, this was
proved in [5] and used to show that symmetrically normed ideals of B(H)
with @*-norms have the Radon—Riesz property.

In Sect. 4 we study infinite partitions A = {P,AQm}7Z, ,,—; of opera-
tors A € SP. Using results of Sects. 2 and 3, we prove that, for 2 < p < oo,
the partition A belongs to 1,(S?) and

1Al 57y < 1 Allp < 1Al (s0) -

For 1 < p < 2, the partition A belongs to [3(SP) and the inequalities are
reversed.

For a set A = (A,)N_,; of operators from SP, consider the involution
A— AF = (A;)N_,. Then X = 1(A+ A*) and Y = - (A — A) are N-tuples
of selfadjoint operators X = 3 (A;c + A7), Vi = 5 (A — Af) and A = X +4Y
is the “Cartesian” decomposition of A. It was shown in [15]

1

—s q 1_1
@N)7* (X sy + 1Y Wiy ) < 257 Ay omy

1
< @N)* (IX Uiy sy + 1Y sy )
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where s = ‘%

%‘ ,p € [1,00) and ¢ € [min(p,2), max(p,2)]. For N = 1,
this was proved in [6]. For other results of this kind and a discussion of their
importance in the analysis of operators see [1,3,19,23].

In Sect. 5 we show that, for N = oo, the sequences A = (4,)52, €

14,(S7), X = (A4 A%) and Y = L (A — A?) satisfy the following inequalities

. 1/q
gi—3-|1 2|||A||z sn) < (||X||f(sp +HY||§1(SP)
1_ 1_1
25 51531 4), o0

The involution #: A — A¥ preserves spaces l,(SP), but not SP(H, H*®), if
p # 2. Denoting by D,(f) the domain of § in SP(H,H>), we obtain for
A € D,(#) and p € [1,2] that

,l
= 2

i X2+Y2 1/2

(145 + |42 )

1A, 5y <

p

p
<25 || Af, 509 -

For p € [2,00), the inequalities are reversed.

2. SP(H, H*) lies Between the Spaces l,,(S?) and I, (SP)

Let SP(H, K),p € [0,00), be the set of compact operators A in B(H, K') with
||A||p < 00 (see (1.4)). It is a linear space. Set S? = SP(H) = SP(H, H). For
A € SP(H, K), the operator |A| = (A*A)Y/2 € SP is positive and s, (|A|*) =
sn(|A|)? are eigenvalues of |A|”. Hence

2/p 2/p
14 Al = [|14P| = (Z sf:;/?(AF)) - (Z sf;(AD)

= e = a2,
and A € SP(H, K) if and only if A*A € SP/2(H). (2.1)

For A,B € SP and C,D € B(H), we have (see [9])

A+ Bl < 2(1All + IBll,), if p <1, (2.2)

1A+ B, <|All, + 1B, if1 <p,

ICAD|, < [[ClI Al DIl and [|A%[],, = [[All,, (2.3)

IABI, 5 < 227 ||A]l, Bl , if p < 2, (2.4)

IABIl,,, < [IAll, [IBll,, if p= 2.

Operators {A,,} in B(H, K) converge to A in the weak operator topology
(w.o.t) if (Apz,y) — (Az,y), and in the strong operator topology (s.o.t) if
|Az — Apz|l; — Oforallz e H, y € K.

All Banach spaces SP(H, K) share the following important properties:
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Lemma 2.1. [10, Theorems II1.5.1 and II1.6.3]
(i) Forp € [1,00), let operators { A, } in SP(H, K) converge to A € B(H, K)
in w.o.t. If sup||An|, = M < oo, then A € SP(H,K) and ||Al|, < M.

s.o.t.

(ii) Let {Pn}2, be projections in B(K) and P, —= 1k. Then, for p €
[1,00] and A € SP(H, K),
|A—P,Al, — 0, as n — oo. (2.5)
Let H°* =H® ... ® H® ... Each operator A € B(H, H*®) has form
A = (A,)52, where A,, € B(H) and [|A,| < ||A]|. Thus we can identify
B(H, H*) with a subspace of I (B(H)).
For m € N, the projection P, on the first m components of H> belongs
to B(H*) and, for each A = (A4,))22, € lo(B(H)),
PnoA=(A41,...,A,,0,...) € B(H,H*).
s.o.t

Let A€ B(H,H*®). As P,, =" 1, we have

PnA™% A and (PpA)'(Ppd) = A"PpA=3Y" ALA, "5 A4, (26)

n=1

as m — oo. If P, A € SP(H, H*), for some 0 < p < 0o, then
> A
n=1 p/2

The next lemma gives some conditions for A € [ (B(H)) to belong to
B(H, H*) and SP(H, H*).

12aal2 2 (e aypay , 2

s = (2.7)

Lemma 2.2. Let A= (A,)%, € lo(B(H)). Then

(i) A€ B(H,H™®) if and only if { P, Ax} converges weakly in H* for each
z € H, as m — oo.

(ii) A € SP(H,H®), for some p € [1,00), if and only if A, € SP(H), for
all n, and there is M > 0 such that || P, Al[, < M for all m. Moreover,
Al < M.

(ii) l4(B(H)) C lo(B(H)) C B(H,H™) for q € [1,2), and

1

AN (1) < D N ARl = IAIL 5y for A € la(B(H)).  (2.8)

(iv) 14(SP) € B(H,H*), for ¢ > 2 and all p.

Proof. (i) Let {P,,Ax} weakly converge in H* for each x € H. By the
uniform convergence theorem, there is T = (7,,)52, € B(H, H*) such that
P, Ax — Txz. Choosing z in the n-th component of H*, we get A, = T),.
Thus A = T. The part “only if” follows from (2.6).

(ii) Let A € SP(H,H™). As SP(H,H>) is a left Banach B(H)-
module, (P, — P,—1)A € SP(H,H*) and || PRA|, < [|PallIAll, < (4],
Hence also A,, € SP(H) for all n.
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Conversely, we have || P, Al < [|[PpAll, < M and P, A € SP(H, H*®),
as A, € SP(H) for all n. Then, for x € H, || P, Az|| is an increasing bounded
sequence. Hence it converges and, for each k,

[Pk — Pa)Azl? = (| Poss Azl + | P Azl (| Prr s A — || P As])
< 2M |la]| (| Az — || PrnAc]).
Thus {P,, Az} strongly converges in H*> for each « € H. Hence, by (i),
A € B(H,H®). Then P, A *%" A and it follows from Lemma 2.1(i) that
A€ SP(H,H*) and ||A, < M.

(iii) follows from (1.6) and from the fact that HAxH?{x =>, | Apz||® <

[ ]|> 320° |4 || for each z € H.

(iv) Let ¢ > 2,p € [1,00) and @ = m For some 0 # T € SP, let

A, =n"T. Then A = (A,,)72, € 14(SP), since

A} (s0) = Z [AlI2 = 1IT|2 Zn Y < 0, as ag > 1.

n=1

On the other hand, as 2a = 37 < 1, we have for each x ¢ ker T,

| Az||* = |(Tz,...,.n Tz, .. || T2 Zn T - diverges.
Hence A ¢ B(H, H*). Thus all spaces {4(S7), ¢ > 2, are not contained in
B(H,H®). O

For positive operators {T;,}7"_; in SP, it was proved in [18] (also [5], [15,
Theorem 1.22]) that

m m p
ST <|[D 7| if1<p< oo (2.9)
n=1 n=1 p

For 0 < p < 1, it was shown Lemma 1 and formula (7) of [6] that
(i) < $on]
n=1

n=1
Proposition 2.3. Let A = (A,)5%, € loo(SP ) Then, for all m € N,

< Z ITull5 - (2.10)

n=1

m p/2 p/2 m
2
<Z ||An||p> <|PnAl, = <3 AL, (211)
n=1 p/g n=1

ifpell,2);

D 1AL < [PrAlL =
n=1

m p/2 m p/2
Soapa,| < (Z ||An,|f,> , (212)
n=1 p/2 n=1

if2<p. Ifpe[l,o0) and A € SP(H, H*®) then

A*A — Z A A,

n=1

lim
m—00

=0. (2.13)
p/2
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Proof. If 1 <p < 2 then & < 1. Replacing T}, by A}, A, and p by £ in (2.10),
we have

m p/2
(Z ||A:;An||p/2> <
n=1

Combining this with (2.7) and with || 4, ||
proof of (2.11).

If 2 < p, then 1 < £ and SP/2 i3 a Banach space. By the triangle
inequality for norms,

p/2

> A,
n=1

* 2
<> 4542
n=1

p/2

2 (2.1)

A% Anll, /2, we complete the

1P AII

OIS A,

n=1

- (2.1) &
< ST UAL A, = S A2
n=1

p/2 n=1

Replacing in (2.9), T;, by Ay A, and p by £, we obtain that

m p/2
S 4ap % Z 145 An 25 < ZA*
n=1 p/2

Combining this with the above inequalities, we complete the proof of (2.12).
Let A € SP(H, H®). Then (2.5) implies [[A — P, A, - 0. If 1 <p <2
then £ <1 and it follows from (2.6) and (2.4) that
m
ATA=NTALAL| = [|ATA - ATPL A
n=1 p/2
< 22/7|| A%, | A = PrAll, — O,

p/2

asm — o0. If 2 < pthen 1 < £. As SP/2 is a Banach space,
= [[A"A = A" Py All, o < [[A™]], [A = PrAll, — 0,

ATA — f: Ar A,
n=1 p/2

as m — oo. Combining these inequalities and (2.6), we complete the proof of
(2.13). g

Let C(H, H*) be the subspace of all compact operators in B(H, H*).
Recall that, for 1 < g < oo,

A= (A4,)22,: A, € SP and
1,(SP) = - 1/q , (2.14)
' Al smy = (o 14allg) " < o0

are Banach spaces. If A € loo(S?) and A ¢ [4(S7), we set [|A[]; g») =00
For x € H and u € K, the rank one operator = ® u in B(H, K) acts by

(x ®@u)z = (z,z)u for each z € H. (2.15)
Then (see [10]) z @ u € SP(H, K) and ||z ® ul|,, = [[z| [[u], for all p € [1, 00).
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Theorem 2.4. (i) Let 1 <p < 2. Then
[,(SP) C SP(H,H™) C 5(SP) C lo,(C(H)) Cc C(H,H®™),
1Al (spy < [1All, for A€ SP(H, H>),
and (|4l < [All sr) Jor A4 € 1,(S7). (2.16)

For each q € (p,2), the space 1,(SP) neither contains, nor is contained
in SP(H, H*®).
(ii) Let p € (2,00). Then ly(SP) C SP(H, H®) C 1,(S?) ¢ B(H, H®),

[Ally, (50 < IAll, for A€ SP(H,H™),
and ||, < 1A, s») for A € 1x(S7). (2.17)

For each q € (2,p), the space 1,(S?) neither contains, nor is contained
in SP(H, H>).
(iii) 1o(S?) = S*(H, H*®) and [ All;,(s2) = [[Ally for each A € S?(H,H>).
(iv) For ¢ > 2 and any p € [1,00), the space 1,(SP) is not contained in
B(H, H®).

Proof. Let A = (A,)52, € [2(C(H)). Then all P,,A € C(H,H*). By
Lemma 2.2(iii), A € B(H, H*) and

(2.8) oo
[A— PmA”B(H,Hoo) < A= PmA||12(B(H)) = Z ”An”2 -0,
n=m-+1
as m — oo. Since C(H, H*) is complete, A belongs to C'(H, H*). Therefore
12(S7) C Io(C(H)) € C(H, H*).
(i) Let p € [1,2) and A € 1,,(S?). By (2.11),

m 1/p
|PaAll, < (Z |An||§> < Al 50

n=1
for all m. Hence, by Lemma 2.2(ii), A € SP(H, H*) and [|A[|, < [[A[|, (gs)-
Thus 1,(SP) C SP(H, H*®).
If Ae SP(H,H*) then

p/2
(2.1 (2.11) (25)
JAI 5y = tim ZHA 12) < him PaAl =

Thus A € [5(SP), so that SP(H, H*>) C 15(SP), and (2.16) holds.

Let us prove that SP(H, H*) # 15(5P) and ,(SP) € SP(H,H*), for
p < q < 2. Let {e,}>2, be a basis in H and P.  projections on Ce,. Set
A, =n"%P,, , for some o > 0, and consider A = (A,,)22 ;. Then A € I, (SP),
as || P, ||, =1 for all p.

Let @ =Y 2 ane, € H. Then P, Az =" | ®&n~*aye,, where each
n~“ay,e, belongs to the n-th component of H°, converge to Zzozl Pn"*ayen
in H*, as m — co. By Lemma 2.2(i), A € B(H, H*>) and

1Al -

AP = A"A =) ArA, =Y n">*P,, so that s,(|A|) =

n=1 n=1
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Therefore

LA gy = S and a2 D jagz = S, 2ag)
n=1 n=1
Setting o = % in (2.18), we obtain that A € [,(S?) and A ¢ SP(H, H*®).

To prove that lo(C(H)) # C(H,H*>), set a = 3 in (2.18). Then A
belongs to C(H, H*) and A ¢ I5(C(H)).

For p < ¢ < 2, let us prove that [,(S?) # SP(H,H*) and that
SP(H, H*) & 1,(SP). Set B, = n~1P,, and consider B = (B,)2%,. Then
Br=a; Y% @niey, for x = 3.°° ane, € H, where each n” e, belongs
to the n-th component of H*>. Hence B is bounded, since > >~ , n"i < oo.

Moreover, B = e; ® u is a rank one operator in B(H, H*), where
uw=>y ", Gn e, € H®. Thus B € SP(H, H*), for all p € [1,00), and
B ¢ 1,(S?), since

') e’}
q 15 |7 -1
HB||lq(Si"):ZHn qul :ZTL = 0

n=1 p n=1

(ii) Let 2 < p and A € I5(SP). It follows from (2.14) that

, oz ,(212) , (2.12) »/2
IIAIII,,(sp):W}gHOOZHAnIIP < lim [[PrAl, < lim ZIIA Iy

= (HAHZQ SP))p/2 = HAH12 (Sp)

Asall | P All, < [[All},(ss) » we have from Lemma 2.2(ii) that A € SP(H, H>)
and [[All, < [[All,s»)- Hence, by (2.5), lim [|P,All, = ||A[[,. Therefore
l2(SP) C SP(H,H™).

Let A € SP(H, H*®). Then it follows from (2.12) that

(2.9)

ZIIA Il < I1Pm Al "= AL,

n=1
as m — oo. Hence A € 1,,(S?), so that SP(H, H>) C [,(S?) and (2.17) holds.
For 2 < q < p, let us prove that I5(SP) # SP(H, H>®) € 1,4(S?). Set A, =
n~aP,, and consider A = (A,)°%,. Then A ¢ 1,(SP) and A € SP(H, H>),
since (see (2.18))

oo

_r
1Al =Y n~7 <ooand [|A[|] g = Z ) = Zn =
n=1 n=1
For 2< g, let us prove that 1,,(S?)#SP(H, H>®) and 1,(S?) € B(H, H*>)
for all p. Set B, =n~2P,, and consider B = (B,,)2%,. Then B € 1,(5?) and
B ¢ B(H,H®), since
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q

oo
_g
= E n-2 < oo,
p —
n=1

_1
IBIE sy = 3 [t P
n=1

o0 2 oo
1
| Bey||? = g @®n~zer|| = g n~! = oo,
n=1 n=1

where each 77/7%61 belongs to the n-th component of H>. This proves (iv)
and completes the proof of (ii). To prove (iii), repeat the proof of (ii) for
p = 2. D

3. Action of Operators from B(H°°) on [,(S?) Spaces

By Theorem 2.4(iii), I5(S?) = S?(H, H*®). Hence it is a left B(H°)-module.
In this section we show that, apart from l2(S?), the Banach spaces l,(S?)
are not left B(H)-modules. We also establish the following analogue of
inequality (1.10): for R € B(H®),

IRy, (s7)—15(57) < Bl p(grey > for 1 <p <2

1Ry, 50y, (57) < Bl p(arocy > for 2 < p.
Each operator R in B(H*°) has matrix form R = (R;;)75_; with R;; € B(H).

It acts on each A = (4,)22; (consider it as a column) in its domain D(R)
in Lo (B(H)) by

RA = (Rij)(An)2, = (Z RijAj,...Y RujA;,.. ) . (3.1)
The domain D(R) of R consists of A = (A4,)%2 in lo(B(H)) such that
> RujA, V%% B, € B(H), for each n, and (B,)%, € loo(B(H)).
Proposition 3.1. (i) N{D(R) : R € B(H>)} = B(H, H™).

(ii) If (p,q) # (2,2), then the space 14(S?) is not a left B(H)-module.
Proof. (i) Set D = N{D(R): R € B(H*®)}. Then B(H, H®) C D.

Let {Qn}72, be mutually orthogonal projections in B(H) with infinite
dimensional ranges satisfying >~ @, = 1. Let {U,}22, be isometries
from H onto @, H. Then

U]:Un = 6pnlu, UnU* Q@ and U Qn = na (32)

where dgr = 1,0k, = 0 if k # n.

The operator R = (R;;) on H> such that all Ry,, = U,, and all R;;,, =0
for i > 2, belongs to B(H>). The operator L = (U})22, from H to lo(H)
belongs to B(H, H*). Indeed, Lz = (U}z)%%; € lo (H) for x € H, and, by

(3.2),
Sl = S 10 Quall? < 3 1@uall? = lla)?

Let A = (A,)52, € D. Then RA € lo(B(H)), so that, by (3.1),
S UnA, M2 B € B(H). Hence L (Y7, UnA,) ™23 LB € B(H,H™).
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It follows from (3.2) that P, A = L (32", U,A,). Therefore P, A 2% LB.
By Lemma 2.2(i), A= LB € B(H,H*). Thus D = B(H, H*).

(ii) By (i), all left B(H°)-modules lie in B(H,H*). Hence, by
Lemma 2.2(iv), we only have to prove that [,(S?) is not a left B(H°°)-module
for ¢ < 2.

For ¢ < 2, let us prove that 1,(S?) is not a left B(H)-module. Let
R.r =0, for k > 1, and R,1 = a,1ly, where a;, > 0, Y7 a2 = 1 and
oo al = oo. The operator R = (Ry;) € B(H™), since

I1Rz|* = l|la1]* Y af = Jal|* < al|* for @ = (2a)7Z, € H>.
n=1
However, if A = (A,)52; € [4(SP) and Ay # 0 then RA ¢ [,(SP), since

IRAIT g0y = D I Rut Aullf = [AL[I7 Y afh = oo.
n=1 n=1

Thus [,(SP) is not a left B(H>)-module, for ¢ < 2 and all p € [1, 00).

Let ¢ = 2. Let {e,,}22, be a basis in H, let P, be the projections on
Ce,, and {V,,}22; be the partial isometries from Ce,, onto Cey, i.e.,

Vhen = ela‘/nej =0 for .] 7& n, and Pen, = V:VTL

Let R = (Ruk),Rux = 0, for k > 1, and R,y = V,. Then ||Rz|® =
> HanlHQ for z = (2,)02, € H®. Ifx1 = Y ;- | agey, then Voo = apeq
and

oo
2 2 2 2
IRz|* = lan]* = Jloa]|* < [l
n=1

Thus R € B(H>).

For p € (2,00), let us show that I5(SP) is not a left B(H>)-module. We
have A; = 32°° n~ 3P, € SP(H), since AL} = 02 n~% < oo. Hence
A =(A1,0,0,...) € 12(SP). However, l5(S?) is not a left B(H)-module, as
RA ¢ 15(SP), because

2 - 2 (21) E * Y %
IRAIG, sy = D IVadilly =" > ATV VaAull, o
n=1

n=1

e o0 00
=S AP Al = Y |l P = Y0 = oo
n=1 n=1 n=1

For p € [1,2), let us show that l2(SP) is not a left B(H°)-module. Set
1
A= (n"?V,),. As R* € B(H*) and ||VJVn||p/2 = ||Pen|\p/2 =1, we have
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9] [eS) L, X e L,
JAR, 5oy = S 1AulZ = S0 3 Vi Vall, o = S 0% < o0 and
n=1 n=1 n=1
oo o0 o0 1/]9
v =[S - (Sur)
n=1 P n=1 n=1
oo 1/p
= (Z n_1> = 00.
n=1

Hence A € 15(SP) and R*A ¢ [5(SP). Thus I5(S?),p € [1,2), is not a left
B(H®) -module. O

HR*AHlQ(sp) =

P

By Theorem 2.4, 1,(SP) C SP(H,H>) C I3(SP) for p € [1,2]. Thus
the multiplication of the space I,(SP) by operators from B(H) leaves it in
SP(H, H*) and in [3(SP), but not in any [,(S?),p < ¢ < 2.

Similarly, 1o(S?) C SP(H,H>®) C 1,(S?) for 2 < p. Thus the multipli-
cation of the space l2(SP) by operators from B(H®) leaves it in SP(H, H*)
and, hence, in [,,(S?), but not in any [,(S?) for 2 < q.

Theorem 3.2. Let R € B(H™).
(i) Letp € [1,2] and A € 1,(S?). Then RA € 15(SP) and

[1BAlly, 50y < 1Bl paee) [All1, (sp) -
(i) Let p € [2,00) and A € 15(SP). Then RA € 1,,(SP) and
IRAlL sy < | Rlggs1ee) 14l 0 -

Proof. (i) Let p € [1,2] and A € [,(S?). It follows from Theorem 2.4(i)
that A € SP(H, H*). Therefore, by (2.3), RA belongs to SP(H, H>) and
|RA|, < Rl p(groey [|All,,- We have from Theorem 2.4(i) that RA € l5(S?),
[RAll, 50y < [|1RA], and [|A]l, < [[A]],, (sr)- Hence

[1RA[ly, 50y < IRANl, < Rl sy 1A, < IR pease 1Al 50y -
Using part (ii) of Theorem 2.4 instead of (i), we obtain similarly the proof of
(i). O

We can use inequality (1.9) to obtain some analogues of McCarthy in-
equality (1.1) for 1,(S?) spaces. Let {nj}32, be positive integers. For A =
(An)niy € 4 (SP), set

Bl = (Ah s 7An1)7B2 = (An1+17 B 7An1+n2)7 ERE
Bk = (Aﬂ1+--.+nk71+1a ey An1+...+nk)a e
Then By € I+ (S?),

o 1/q
A= (By)Rzy and [|All, 50, = (Z ||Bk||7;k(sp)> SENCEY
k=1
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For each k, let H™* be the orthogonal sum of nj copies of H. Then H* =
@72 H"*. Consider the block-diagonal operator R = {R;}72, with the op-
erators Ry € B(H "t) on the diagonal and O off the diagonal and suppose

that o := supn,” 4 |R|| < co. Then R € B(H™).

Theorem 3.3. Let p € [1,00) and ¢ € [min(p, 2), max(p,2)]. Then
IRANl,, (s0) < @ llAlly, (spy for all A € 14(S).

If np, = N, for some N and all k, then
|RAl 50 < N33 (sup [ Rl 1Al 50y

Proof. Tt follows from the block-diagonal structure of the operator R and
from (3.3) that

RA = (RyBy);Z, and ||RA||1 J(SP) = Z HRkBk“ "k (Sp)
k=1

By (1.9),
|53
HRkBk“l;‘k(Sp) < ny (| Bl HBkHl;”v(Sp) :
Substituting this in the above formula, we have

o (3.3)
IRAIY 50y < an onl IR IBrlfre goy < @ AL, (50
k=1

which completes the proof. O

1y —1g
H @ H, for all k. Then, for A = (4,,)22,,

RA=27""2(Ay + Ao, A1 — As, ... Aoy + Aoy, Ao — Aop, . ).
Set X = (X)), and Y = (Y,,)22,, where X,, = Ay,,_1 and Y,, = As,,. Then

Let ny = 2 and Ry, = 271/2 <1H L ) be a unitary operator on

JAJZ g0y = Z||A2n 1||Q+Z||A2n||q 1X12 5oy + IV IE (5o

[e%¢) o) 1/q
HRAqu(sp) =271/2 (Z A1+ A2n||;1, + Z |A2p—1 — A2n||g>

n=1 n=1

= 22X+ Y g+ X = VI 50

Taking into account that ||R|| = 1 and substituting the above formulas in
Theorems 3.2 and 3.3, we have the following analogue of McCarthy inequality
(1.1) for spaces l,(S?).

Corollary 3.4. (i) Let p € [1,2] and X,Y € 1,,(S?). Then

wb—‘

5 5 1/2 1/p
(X + Y1 m + 10X = YVIn ) <28 (XD ooy + IV 5)) -
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Let p € [2,00) and X,Y € l5(SP). Then

X+Y +[|X-Y|? l/p 22 (||X +[|Y i
|| ” 1, (SP) H || »(SP) H ||l2(sp) H ”zz(sp) .
ii) Let p € [1,00), q € [min(p,2), max(p,2)] and X,Y € 1,(SP). Then
q

1

1
(X + Y1 gy + 1X = VI ) )" < 2557205 (X178 ) + 1V 50

For a Banach space (B, ||-||), the modulus of convexity dp (see [2,15]) is
defined by

1
da(e) = {1- L 1X + Y]l XY € BIXI = V] = LIX - V] 2 e .
for 0 < € < 2; and the modulus of smoothness pp by

X+7Y||+ | X —7Y
pi(r) =sup { I =P gy e = vy =1

for 7 > 0. The space B is called r-uniformly conver, for 2 < r < oo, if
dp(e) > Ce" for some C' > 0 and all 0 < ¢ < 2. It is called r-uniformly
smooth, for 1 <r < 2,if pg(7) < C7" for some C' > 0 and all 7 > 0.

Corollary 3.5. (i) The space 1,(SP), for p € [2,00), is p-uniformly conves.
(ii) The space 1,(S?), for p € (1,2], is p-uniformly smooth.
Proof. Set B = 1,,(S?) and [|-|| = [|][; (s»)-

(i) Let 2 < p < oo and X,Y € B. Setting ¢ = p in Corollary 3.4(ii), we
obtain the p-uniform convexity inequality

(X +Y P+ X =Y [P)» <25 (X[ + [Y]7)»
which yields p-uniform convexity of B (see [2,11]). Indeed, (we prove it for
the convenience of the reader) let | X| = ||[Y|| =1 and |X =Y =& > 0.
Then (|| X +Y|” —1—517)% < 2. As % < 1, we get
P
p2r’

(ii) Let 1 < p <2 and X,Y € B. Setting ¢ = p in Corollary 3.4(ii), we
obtain the p-uniform smoothness inequality

X + Y17+ [1X = YI" <201 X" + [Y]*)

which yields p-uniform smoothness of B (see [2,11]). Indeed, let || X|| = 1 and
Y =7Z with ||Z]| =1 and 7 > 0. Then

| X +7Z||P + | X —72Z|"

'X—FYH<( P
< 55

1/p eP
1—) Sl—ﬁ7sothat53()

<1 P,
7 <l+7
As “T“’ < (#)1/17 for non-negative a, b, it follows that
_ p
X + 720 £ 0X =72 e <y T
2 p
Hence pp(7) < . O

p
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4. Inequality for Partitions of Operators from SP?

A family {P,})_; of mutually orthogonal projections in B(H) is a partition
of the identity operator 1g if

N
> P =1nu. (4.1)
n=1

Let {P,}N_| and {Q,,}*_, be partitions of 1. It was proved in [15] that,
for M,N < oo, the partition A = {P,,AQ,,} of an operator A in SP(H)
satisfies inequalities (1.11), that is, A belongs to [ (57) and

1_1 1_1
(NM)? 5 | Allgon sy < 14l < (VM)A | Allyon s,

for 2 < g <p<oo. For 1< p<q<2, the inequalities are reversed.
In this section we study infinite partitions A = {P, AQ. }5%,—1-
Proposition 4.1. Let {P,}°2, be a partition of 1. For A € SP(H),

1/p

(Z IIPnA§> < |All, < (Z IPnAHﬁ) L ifl<p<2,
n=1 n=1

where the last series may diverge. For 2 < p < oo, the inequalities are re-
versed.

Proof. Set A,, = P, A. Tt follows from (4.1) that

ZP” % 1, as m — oo, and ||z|? = Z |Ppz||® for z € H. (4.2)
n=1

n=1

As A € SP(H), all A,, belong to SP(H) and have mutually orthogonal ranges:
AT A, = A*PrPpA = 0 if k # n. Consider the operator A = (A4,)52, from
H to H°°. Then

1.2)

||A£EH2 = Z ||73nA:13||2 ( HALL'||2 for x € H.
n=1

Hence A € B(H, H*®) and || A|| = ||A||. For all z,y € H and m € N, we have

(A*Ax — i Al Apz, y)

n=1

where R,, =Y ", P,. Since

" 2.6 4.2

<A*Ax - Z A;Anx,y) (—) 0 and (R, Az — Ax, Ay) (*) 0,
n=1

as m — oo, we have A*A = A*A € SP/2(H), so that A € SP(H, H*) and
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Let 1 < p < 2. Then it follows from Theorem 2.4(i) that A € l5(S?) and

1/2
> (2.14 (2.16)
(ZIIPnAHi) =)||v4||z2(sP) < 4,
n=1

(2.16) (2.14) (& e
=[1Al, < Ml = (Do IPaAllL |
n=1
where the last series above may diverge if A ¢ [,,(SP).
For 2 < p < oo, using (2.14), (2.17), we obtain the reversed
inequalities. U

We consider now partitions of operators. If A ¢ [,(S?), we assume that
||A||lq(sp) = 0.

Theorem 4.2. Let {P,};2; and {Qx}72, be partitions of 1. For A € SP(H),
let A ={P,AQy} be the corresponding partition of A.
(i) If 1 < p < 2 then A € [5(SP) and

1/2
A5y = | D IPnAQK < [l A]l,
n,k=1
- 1/p
< | > IPAQE = [l All, (sr) -
n,k=1
(ii) If 2 < p then A € 1,(S?) and
- 1/p
AL 5oy = | D2 I1PnAQk? < 4],
n,k=1
1/2
< | > IPnAQk] = [l All, (sv) -
n,k=1

Proof. (i) Let 1 < p < 2. Tt follows from Proposition 4.1 that

1/p

o 1/2 %)
(Z ||7>nA|f,> < 4ll, < (Z ||7’nA|§> ; (4.3)
n=1 n=1

where the last series above may diverge. Fix n and set B,, = A*P,. Then
B, € SP(H). Replacing in (4.3), A by B, and {P,};2; by {Qx}3,, we
obtain

oo 1/2 0o 1/p
(Z IIQanIIf)> < ||1Bull, < (Z QanHZ) : (4.4)
k=1 k=1
where the last series above may diverge. Since, by (2.3), [ By, = [|B; |, =

|PnAll, and
1QkBnll, = 1QuA™ Pull, = (QrA*Pn)*|l, = PnAQkl, ,
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we can rewrite (4.4) as follows

00 1/2 . 1/p
<Z P,LAQka,) < |PaAll, < (Z ||7>nAQk||§> , for each n.
k=1

k=1

Substituting this into (4.3) and using (2.14), we complete the proof of (i).
(ii) Let 2 < p. From Proposition 4.1 we have

50 1/p 0 1/2
(z |7>nA||§> <Al < (z nmuz) |
n=1

n=1

Proceeding now, as in part (i), we complete the proof. O

5. Cartesian Decomposition and Schatten Norms
Define the following natural involution £ on l.(B(H)):
A* = (A7), for each A = (A,)%%, € loo(B(H)).

It follows from (2.3) that f preserves all spaces ,(S?), as 2 = 1. Moreover,
all 1,(S?) are symmetrically normed ideals of the C*-algebra I (B(H)) and

HA||lq(Sp) = HAquq(SP) , for all A €1,(SP). (5.1)

For each n, consider the selfadjoint operators X, = 3(4, + A7) and
Yo = (A, — A}). Set X = (X,,)52, and Y = (V,,)52,, so that

X =(A+A%/2and Y = (A — A%)/2i. (5.2)

Then A = X +14Y is the “Cartesian decomposition” of A. If A € ,(SP) then
X, Y €1,(57).

Corollary 5.1. Let A € [,(SP), wherep € [1,00) and ¢ € [min(p, 2), max(p, 2)].
Then

1_1_|1_1 1/q
2972 |p 2| ||A||lq(sp) < (HXH?q(SP) + HYH?q(Sp))
2

1

sl Al, ) - (53)

IA

Proof. Replace Y by iY in Corollary 3.4(ii) and replace consequently X +4iY
by A and X —iY by A%, Using (5.1), we obtain the left-hand side inequality
in (5.3). Replace now X by A and Y by A* in Corollary 3.4(ii). Using (5.2)
and (5.1), we obtain the right-hand side inequality in (5.3). O

Remark 5.2. Doing the same replacements in Corollary 3.4(1) as in Corol-
lary 5.1, we obtain

JAIE oy < IXIE )+ I¥ 7 g5y (5.4)
2 2 2_ 2
1 X117, sy + 1Y Il 50y < 27 ' Al (52 » (5.5)
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forp e [1,2] and A € 1,(S?). If p € [2,00) and A € [5(SP), then

JAIE sy < 277 (1XI 5y + IV s+ (56)

”XHZ(SP) + ||YHZ,(SP) < 14117, 5wy - (5.7)

However, they can be deduced from (5.3). For p € [1,2], set ¢ = p in the first

inequality in (5.3) and ¢ = 2 in the second inequality in (5.3). Using that
1Al smy < 4], (0> by (1.6), we get (5.4) and (5.5).

If p € [2,00) then ||A]|, (o) < [IAll1,(sv). by (1.6). Setting q =2 in the

first inequality in (5.3) and g = p in the second inequality, we obtain (5.6)

and (5.7). O

Although the involution # preserves all spaces l,(S?), it does not pre-
serve SP(H, H*), if p # 2. Set S*(H, H>®) = B(H, H*®) and S*®(H, H>®) =
C(H, H*®). Set also

D,(#) = {A € SP(H,H>): A* € SP(H, H*)}, for each p € [1,00] Ub.
Then # preserves D,(#). Indeed, if A € D,(f) then A* € SP(H, H*) and
A% = A € SP(H,H>). Thus A* € D,(f).

Proposition 5.3. (i) If 1 <p < 2 then [,(SP) C D,(4) C SP(H, H*).

(ii) S?(H,H>) = Ds(4). If 2 < p then D,(8) C SP(H,H>) ¢ Dy(4).
Proof. Let {e,,}>2, be an orthonormal basis in H, let P., be the projections
on Ce,, and let {V;,}22 ; be the partial isometries from Ce,, on Cey: Ve, = €1
and Vye; =0, for j # n. Then

P, =V V, and P.,, =V, V" (5.8)

(i) Let 1 < p < 2. By Theorem 2.4(i), 1,(S?) C SP(H,H>) and
lo(C(H)) C C(H,H®). As { preserves all [,(S?), we get all the inclusions
and only need to prove {,(S?) # D,(#) # SP(H, H™).

To prove that [,(SP) # D,(f), set 4, = n*%Pe1 and A = (4,)22,.

Then A ¢ 1,(SP), since [|A[|} g,y = 32,2, 7" = oco. On the other hand, for
=3 " ane, € H,

Ax = Z @n_%Pelm =1 Z @n_%el = aqu, where u = Z @n_%el
n=1 n=1 n=1
and each n_%el lies in the n-th component of H*. Then u belongs to H°,
as |ul® = S n~7 < o0o. Hence A = e; ® u is a rank one operator. Thus
A€ SP(H,H*) (see (2.15)) and A € D,(1), as A* = A.
To prove that D,(f) # SP(H, H>), set A,, = n_%V; and A = (A4,)22,.
By (5.8), for all m € N,

HPmAH;Q; (2;7) Z A:zAn = Z nigvnvr;k
n=1 p/2 n=1 p/2
= H(Zn_i> P, :Zn_% < 00.
n=1 p/2 n=1
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Hence it follows from Lemma 2.2(ii) that A € SP(H, H*). On the other
hand,

m p/2 m p/2 m
HPmAuHi (257) ZTL_%V;VTL (5£8> Z n_%Pen = Z n~! — oo,
n=1 p/2 n=1 p/2 n=1

as m — oo. Hence, by Lemma 2.2(ii), A* ¢ SP(H, H>).
(ii) As S?(H, H>*) = 1(S?), we have S?(H, H*) = Ds(f).
Let p > 2. Set A, = n~2V,, and consider A = (A,)22,. By (5.8),

2
N ) [F— o m N\
PR AL =7 (D 0 Vvl =D P =D on < 00,
n=1 p/2 n=1 p/2 n=1

for all m. Therefore, by Lemma 2.2(ii), A € SP(H, H*®). On the other hand,
if m — oo then

2 (2.7
[Pt 2 7

S A
n=1

i n Vv
n=1

p/2 p/2
) H(Z) Paf =307 o
n=1 p/2 n=1

Therefore, by Lemma 2.2(ii), A* ¢ SP(H, H>). Thus A ¢ D,(4), so that
D,(4) & SP(H,H*). Making use of Lemma 2.2(i), one can show that, in
fact, A* ¢ B(H, H>). Hence SP(H, H>®) ¢ Dy(f). a

Let A = (A,)%, € D,(4). Then A* € D,(#) and (see (5.2)) X,Y €

n=1
Dy(4). As A, = X,, + iy,
AP + 4] el

= A" A+ (A%)* A lim Y (A7 A, + ApA})
m—00 el

i 2.13
=2lim ) (X3;+Y,3)( = )2(X*X+Y*Y). (5.9)
n=1

Theorem 5.4. Let A = (A,)52, € D,(8) and let all A, = X, +1iY,. If
1<p<2then

m 1/2
[All, sy < n}gﬂoo (Z(XZ JFYnz))

n=1
p

_1 2 2\ /2 -3
— 2 2 (|A| + |Aﬁ| ) H S 2;0 2 ||.A||lp(sp) )
p

where |[Al|, gpy = 00 if A ¢ 1,(SP). For 2 < p < oo, the inequalities are
reversed.

Proof. Consider B = (B,,);2; with Byj = Aj and Byj 1 = A}. Let Hy, be
the k-th component H in H>. Set Hy = @®72,Hsj—1 and Ho = &52, Hyj.
Then H® = H; @ Ho and with respect to this decomposition, B = A* @ A
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and Bf = A@ A*. As A € D,(4)), we have A, A* € SP(H, H®). Hence A* €

SP(H,H,),A € SP(H, Hy). Then, by (2.1), (A*)*A* A*A € SP/2(H). There-

fore B*B = (A*)*A* + A*A € SP/2(H). Then, by (2.1), B € SP(H, H*).
Similarly, we have B* € SP(H, H>). Hence B € D,(#). We also have

B3, Bon_1+ B3, Bo, = AyAY + AX A, = 2(X2 4+ Y?) € SP2(H).

Set T2 = Y (X2 +Y}?). Then T,, € SP(H) and, by (2.1), || T2|| /2 =

| T, ||?. This yields

2 (21) . (2.13) N o .
IBl; I1B*Bll,/, =" lim Z B3, 1Ban—1 + B3, Ban)
n=1 p/2
=2lim | (X2+V))| =2lim |7} /2 =2 lim ITnl2.  (5.10)
n=1 p/2

As [|Banll, = | Anll, = A}, = I B2n-1l,, e have, for each g,
o0

1B 50, =Z(||an\|Q+||BZn 12)

Z 1AnlIZ + > AR S = 21 Al (g0 - (5.11)
j=1 j=1

Let 1 <p < 2. Substituting ¢ = 2 and ¢ = p in (5.11), we obtain

f (5.11) (2. 16) (5.10)
22 Al sy = " I1Blly(sry 1Bl 22 lim || T,
e (2.16)
. s (5.10) -
=22 Tim || Y (X7 +Y7) ="1BIl, < Bl s
j=1
’ p
(5.11)
25 || All, (s -

Making use of (5.9), we complete the proof in the case when 1 < p < 2.

To prove the reversed inequality in the case 2 < p < oo, use (2.17)
instead of (2.16). O

Acknowledgements

The authors are extremely grateful to the reviewer for his valuable and
perceptive comments. They are also grateful for bringing to their attention
the fact (see Corollary 3.5(ii)) that Corollary 3.4(ii) implies that the spaces
1,(SP),p € (1,2], are p-uniformly smooth.



T. Formisano and E. Kissin

References

[1] Ando, T., Bhatia, R.: Eigenvalue inequalities associated with the Cartesian
decomposition. Linear Multilinear Algebra 22, 133-147 (1987)

[2] Ball, K., Carlen, E.A., Lieb, E.H.: Sharp uniform convexity and smoothness
inequalities for trace norms. Invent. Math. 115, 463-482 (1994)

[3] Bhatia, R.: Matrix Analysis. Springer, New York (1997)

[4] Bhatia, R., Holbrook, J.A.R.: On the Clarkson-McCarthy inequalities. Math.
Ann. 281, 7-12 (1988)

[5] Bhatia, R., Kittaneh, F.: Norm inequalities for partitioned operators and ap-
plications. Math. Ann. 287, 719-726 (1990)

[6] Bhatia, R., Kittaneh, F.: Cartesian decompositions and Schatten norms. Linear
Algebra Appl. 318, 109-116 (2000)

[7] Bhatia, R., Kittaneh, F.: Clarkson inequalities with several operators. Bull.
Lond. Math. Soc. 36, 820-832 (2004)

[8] Clarkson, J.A.: Uniformly convex spaces. Trans. AMS 40, 396-414 (1936)

[9] Dunford, N., Schwartz, J.T.: Linear Operators, Part II. Interscience, New
York (1963)

[10] Gohberg, 1.Ts., Krein, M.G.: Introduction to the Theory of Linear Non-
selfadjoint Operators in Hilbert Spaces. Nauka, Moscow (1965)

[11] Hirzallah, O., Kittaneh, F.: Non-commutative Clarkson inequalities for unitar-
ily invariant norms. Pac. J. Math. 202, 363-369 (2002)

[12] Kato, M.: Generalized Clarkson’s inequalities and the norms of the Littlewood
matrices. Math. Nachr. 114, 163-170 (1983)

[13] Kato, M., Persson, L.E., Takahashi, Y.: Clarkson type inequalities and their
relations to the concepts of type and cotype. Collect. Math. 51, 327-346 (2000)

[14] Kato, M., Takahashi, Y.: Type, cotype constants and Clarkson’s inequalities
for Banach spaces. Math. Nachr. 186, 187-196 (1997)

[15] Kissin, E.: On Clarkson-McCarthy inequalities for n-tuples of operators. Proc.
AMS 135(8), 24832495 (2007)

[16] Maligranda, L., Persson, L.E.: On Clarkson’s inequalities and interpola-
tion. Math. Nachr. 155, 187-197 (1992)

[17] Maligranda, L., Persson, L.E.: Inequalities and interpolation. Collect.
Math. 44, 181199 (1993)

[18] McCarthy, C.A.: ¢p. Isr. J. Math. 5, 249-271 (1967)

[19] Simon, B.: Trace Ideals and Their Applications. CUP, Cambridge (1979)

[20] Takahashi, Y., Hashimoto, K., Kato, M.: On sharp uniform convexity, smooth-
ness, and strong type, cotype inequalities. J. Nonlinear Convex Anal. 3, 267—
280 (2002)

[21] Takahashi, Y., Kato, M.: Clarkson and random Clarkson inequalities for
L,(X). Math. Nachr. 188, 341-348 (1997)

[22] Tonge, A.: Random Clarkson inequalities and L,-versions of Grothendieck’s
inequality. Math. Nachr. 131, 335-343 (1987)

[23] Zhan, X.: Norm inequalities for Cartesian decomposition. Linear Algebra
Appl. 286, 297-301 (1999)



Clarkson-McCarthy Inequalities for {,-Spaces of Operators

Edward Kissin (=) and Teresa Formisano

STORM, London Metropolitan University

166-220 Holloway Road

London N7 8DB, UK

e-mail: e.kissin@londonmet.ac.uk;
t.formisano@londonmet.ac.uk

Received: January 16, 2013.
Revised: March 19, 2014.



	Clarkson--McCarthy Inequalities for lp-Spaces of Operators in Schatten Ideals
	Abstract
	1. Introduction and Preliminaries
	2. Sp(H,Hinfty) lies Between the Spaces lp(Sp) and l2(Sp)
	3. Action of Operators from B(Hinfty) on lq(Sp) Spaces
	4. Inequality for Partitions of Operators from Sp
	5. Cartesian Decomposition and Schatten Norms
	Acknowledgements
	References


