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Clarkson–McCarthy Inequalities for
lp-Spaces of Operators in Schatten Ideals

Teresa Formisano and Edward Kissin

Abstract. In this paper we obtain generalized Clarkson–McCarthy in-
equalities for spaces lq(S

p) of operators from Schatten ideals Sp. We
show that all Clarkson–McCarthy type inequalities are, in fact, some
estimates on the norms of operators acting on the spaces lq(S

p) or from
one such space into another. We also extend some inequalities for par-
titioned operators and for Cartesian decomposition of operators.

1. Introduction and Preliminaries

The original Clarkson inequalities for Lp spaces (summarized by Kato and
Takahashi in [14]) were proved in Clarkson [8] in the context of uniform
convexity of Lp spaces. Their non-commutative analogues for the Schatten
ideals Sp = Sp(H), where H is a separable Hilbert space, were obtained by
McCarthy in [18]: For A,B ∈ Sp, 2 ≤ p < ∞,

(‖A + B‖p
p + ‖A − B‖p

p)
1
p ≤ 2

1
p′ (‖A‖p

p + ‖B‖p
p)

1
p ; (1.1)

(‖A + B‖p
p + ‖A − B‖p

p)
1
p ≤ 2

1
p (‖A‖p′

p + ‖B‖p′
p )

1
p′ , (1.2)

where 1/p + 1/p′ = 1. For 1 < p < 2, these inequalities are reversed. In-
equality (1.2) is stronger than (1.1), since (see, for example, [14, Lemma

2.3])
(

aq+bq

2

) 1
q ≤ (ap+bp

2

) 1
p , for q ≤ p and nonnegative a, b. These Clarkson–

McCarthy inequalities play an important role in analysis and operator theory
and were used to prove that all Schatten ideals Sp, 2 ≤ p < ∞, are uniformly
convex Banach spaces (see [18,19]). Bhatia and Holbrook [4] and Hirzallah
and Kittaneh [11] generalized these inequalities for general symmetric norms.
Bhatia and Kittaneh [7] obtained Clarkson–McCarthy inequalities for certain
N -tuples of operators from Sp and the second author [15] extended them to
all N -tuples of operators from Sp.

We start this paper with reinterpreting these inequalities as estimates
on the norms of some operators acting on Banach spaces lNq (Sp) for N < ∞.
For the classical Clarkson inequalities in Lp spaces, this was done earlier by
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Kato in [12] who considered the action of Littlewood matrices

A21 =
(

1 1
1 −1

)
, A2n+1 =

(
A2n A2n

A2n −A2n

)
, n = 1, 2, . . . (1.3)

from the space l2
n

r (Lp) into l2
n

s (Lp) and evaluated the norms of operators∥
∥A2n : l2

n

r (Lp) → l2
n

s (Lp)
∥
∥ in order to obtain various generalizations of Clark-

son inequalities. This approach was later used and extended further in a num-
ber of papers by Kato and Takahashi in [14,21], Takahashi, Hashimoto and
Kato in [20], Maligranda and Persson in [16,17], Tonge [22]. For arbitrary Ba-
nach spaces X, the action of Rademacher matrices Rn from the space lnp (X)
into l2

n

s (X) was investigated by Kato et al. in [13] to establish the relation be-
tween Clarkson inequalities in X and the type and cotype of X (see also [14]).

In this paper we study Clarkson–McCarthy inequalities for infinite sets
of operators from Sp, that is, we consider Banach spaces lq(Sp) (they are
symmetrically normed ideals of C*-algebra l∞(B(H))) and obtain for them
analogues of Clarkson–McCarthy inequalities and other related inequalities.
As in the finite case, these inequalities are estimates on the norms of some
operators acting from the space lq(Sp) into lr(Sp). As a consequence, we prove
that the spaces lp(Sp) are p-uniformly convex for p ≥ 2, and p-uniformly
smooth for 1 < p ≤ 2. We investigate the relation between the spaces lq(Sp)
and the space Sp(H,H∞) of compact operators A from H into the orthogonal
sum H∞ of an infinite number of copies of H satisfying ‖A‖p < ∞, and
examine the embeddings of these spaces on to each other. We also consider
infinite partition and Cartesian decomposition of operators from the Schatten
ideals Sp.

Let H,K be separable Hilbert spaces, B(H,K) be the space of all
bounded operators from H to K and C(H,K) the subspace of compact op-
erators in B(H,K). If K = H, set B(H) = B(H,H) and C(H) = C(H,H).
Then C(H) is the unique closed two-sided ideal of B(H). For A ∈ C(H,K),
the operator |A| = (A∗A)1/2 belongs to C(H) and its eigenvalues {si} con-
verge to 0. For p ∈ [1,∞),

Sp(H,K) =

⎧
⎨

⎩
A ∈ C(H,K): ‖A‖p := ‖|A|‖p :=

(
∑

i

sp
i

)1/p

< ∞
⎫
⎬

⎭
(1.4)

is a Banach space in norm ‖·‖p and Sp := Sp(H) = Sp(H,H) is a two-sided
Schatten ideal of B(H) and

Sq ⊂ Sp and ‖A‖p ≤ ‖A‖q for A ∈ Sq, if 1 ≤ q < p ≤ ∞. (1.5)

For a Banach space (X, ‖·‖), the space lNq (X) of sequences x = (xi)N
i=1,

xi ∈ X, satisfying

‖x‖lNq (X) =

(
N∑

i=1

‖xi‖q

)1/q

< ∞, for q < ∞,

‖x‖lN∞(X) = sup ‖xi‖ < ∞, for q = ∞,
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is a Banach space for each N ∈ N ∪ ∞. If N < ∞ then the norms ‖·‖lNq (X)

are equivalent for all q. For N = ∞, set lq(X) = l∞q (X). The norms ‖·‖lq(X)

are not equivalent:

lp(X) � lq(X) and ‖·‖lq(X) ≤ ‖·‖lp(X) , if p < q. (1.6)

To interpret (1.1) and (1.2) as inequalities in l2q(S
p), consider the unitary

matrix 1√
2
A21 (see (1.3)) and the corresponding unitary operator

R =
1√
2

(
1H 1H

1H −1H

)
in B(H ⊕ H).

It acts on l2q(S
p) (treat A = (A1, A2), Ai ∈ Sp, as a column) by RA =

1√
2

(A1 + A2, A1 − A2). Then (1.1) and (1.2) can be written in the following
form:

‖RA‖l2p(Sp) ≤ 2| 1
2 − 1

p | ‖A‖l2p(Sp) , for p ∈ [1,∞); (1.7)

‖RA‖l2p(Sp) ≤ 2−
∣∣
∣ 12 − 1

p′
∣∣
∣ ‖A‖l2

p′ (Sp) , if 2 ≤ p,

‖RA‖l2
p′ (Sp) ≤ 2−

∣
∣
∣ 12 − 1

p′
∣
∣
∣ ‖A‖l2p(Sp) if p ≤ 2. (1.8)

Similarly, the inequality of Ball et al. [2] can be written for p ∈ [2,∞) as

‖RA‖l2p(Sp) ≤ 2
1
p ‖A‖l22(S

p) , where R =
(

1H (p − 1)− 1
2 1H

1H −(p − 1)− 1
2 1H

)
.

For p ∈ [1, 2) it is reversed.
Let HN be the orthogonal sum of N < ∞ copies of H. Each R ∈ B(HN )

has matrix form R = (Rjk)N
j,k=1, Rjk ∈ B(H), and acts on lNq (Sp) (treat

each A = (A1, . . . , AN ), Ai ∈ Sp, as a column). Some analogues of Clarkson–
McCarthy inequalities (1.1) and (1.2) were obtained in [15]. Interpreting them
as inequalities in lNq (Sp) and setting λ = max ‖Rjk‖, we have, for 1

p + 1
p′ = 1,

‖RA‖lNt (Sp) ≤ N | 1
p − 1

2 |+ 1
t − 1

s ‖R‖ ‖A‖lNs (Sp) for 1 ≤ p < ∞; (1.9)

‖RA‖lN
p′ (Sp) ≤ λ

2
p −1 ‖R‖ 2

p′ ‖A‖lNp (Sp) for 1 ≤ p ≤ 2,

where t, s ∈ [min(p, 2),max(p, 2)]. Thus the norm of the operator R from
lNs (Sp) to lNt (Sp) satisfies

‖R‖lNs (Sp)→lNt (Sp) ≤ N | 1
p − 1

2 |+ 1
t − 1

s ‖R‖ ,

‖R‖lNp (Sp)→lN
p′ (Sp) ≤ λ

2
p −1 ‖R‖ 2

p′ . (1.10)

For unitary operators R = 1√
N

(ajk1H)N
j,k=1, where ajk =exp

(
i2π(j−1)(k−1)

N

)
,

these inequalities were obtained in [7]. In this paper we obtain some analogues
of inequalities (1.10) for N = ∞.

Each A ∈ B(H,H∞) has form A = (An)∞
n=1 with An ∈ B(H). Hence

B(H,H∞) can be considered as a subspace of l∞(B(H)) and Sp(H,H∞)
as a subspace of l∞(Sp). By (1.5) and (1.6), lq(Sp) ⊂ lr(Sp) ⊂ lr(St) and
‖·‖lr(St) ≤ ‖·‖lr(Sp) ≤ ‖·‖lq(Sp), if 1 ≤ q < r, 1 ≤ p < t. Thus, for each
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p, {lq(Sp)}1≤q<∞ is an increasing range of spaces and {‖·‖lq(Sp)}1≤q<∞ is a
decreasing range of norms. In Sect. 2 we find the positions that Sp(H,H∞)
and ‖·‖p occupy in these ranges:

lp(Sp) ⊂ Sp(H,H∞) ⊂ l2(Sp) and ‖A‖l2(Sp) ≤ ‖A‖p ≤ ‖A‖lp(Sp) ,

if 1 ≤ p ≤ 2. All inclusions and inequalities are reversed for p ≥ 2.
In Sect. 3 we show that, for p ∈ [1, 2], operators R ∈ B(H∞) map the

spaces lp(Sp) into l2(Sp); for p ≥ 2, they map l2(Sp) into lp(Sp), and the
following analogue of (1.10) holds:

‖R‖lp(Sp)→l2(Sp) ≤ ‖R‖B(H∞) for p ∈ [1, 2],

‖R‖l2(Sp)→lp(Sp) ≤ ‖R‖B(H∞) for 2 ≤ p.

These results give, in turn, some analogues of inequalities (1.1). In particular,
if A,B ∈ lq(Sp) then, for p ∈ [1,∞) and q ∈ [min(p, 2),max(p, 2)], we have

(‖A + B‖q
lq(Sp) + ‖A − B‖q

lq(Sp))
1
q ≤ 2| 1

p − 1
2 |+ 1

2 (‖A‖q
lq(Sp) + ‖B‖q

lq(Sp))
1
q .

Using this, we prove that the spaces lp(Sp) are p-uniformly convex for p ≥ 2,
and p-uniformly smooth for p ∈ [1, 2].

A set {Pn}N
n=1 of mutually orthogonal projections is a partition of 1H

if
∑N

n=1 Pn = 1H . It is well known (see [10]) that
∑

n ‖PnAPn‖p ≤ ‖A‖p

for A ∈ Sp. For partitions {Pn}N
n=1 and {Qm}M

m=1, it was established in [15]
that, for M,N < ∞ and 2 ≤ q ≤ p < ∞,

(NM)
q
p −1

∑

n,m

‖PnAQm‖q
p ≤ ‖A‖q

p ≤ (NM)
q
2 −1

∑

n,m

‖PnAQm‖q
p (1.11)

and reversed for 1 ≤ p ≤ q ≤ 2. For N = M , Pn = Qn and q = 2, p, this was
proved in [5] and used to show that symmetrically normed ideals of B(H)
with Q∗-norms have the Radon–Riesz property.

In Sect. 4 we study infinite partitions A = {PnAQm}∞
n=1,m=1 of opera-

tors A ∈ Sp. Using results of Sects. 2 and 3, we prove that, for 2 ≤ p < ∞,
the partition A belongs to lp(Sp) and

‖A‖lp(Sp) ≤ ‖A‖p ≤ ‖A‖l2(Sp) .

For 1 ≤ p ≤ 2, the partition A belongs to l2(Sp) and the inequalities are
reversed.

For a set A = (An)N
n=1 of operators from Sp, consider the involution

A → A� = (A∗
n)N

n=1. Then X = 1
2 (A + A�) and Y = 1

2i (A − A�) are N -tuples
of selfadjoint operators Xk = 1

2 (Ak +A∗
k), Yk = 1

2i (Ak −A∗
k) and A = X + iY

is the “Cartesian” decomposition of A. It was shown in [15]

(2N)−s
(
‖X‖q

lNq (Sp)
+ ‖Y ‖q

lNq (Sp)

) 1
q ≤ 2

1
q − 1

2 ‖A‖lNq (Sp)

≤ (2N)s
(
‖X‖q

lNq (Sp)
+ ‖Y ‖q

lNq (Sp)

) 1
q

,
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where s =
∣
∣
∣ 1p − 1

2

∣
∣
∣ , p ∈ [1,∞) and q ∈ [min(p, 2),max(p, 2)]. For N = 1,

this was proved in [6]. For other results of this kind and a discussion of their
importance in the analysis of operators see [1,3,19,23].

In Sect. 5 we show that, for N = ∞, the sequences A = (An)∞
n=1 ∈

lq(Sp), X = 1
2 (A + A�) and Y = 1

2i (A − A�) satisfy the following inequalities

2
1
q − 1

2 −| 1
p − 1

2 | ‖A‖lq(Sp) ≤
(
‖X‖q

lq(Sp) + ‖Y ‖q
lq(Sp)

)1/q

≤ 2
1
q − 1

2+| 1
p − 1

2 | ‖A‖lq(Sp) .

The involution �: A → A� preserves spaces lq(Sp), but not Sp(H,H∞), if
p �= 2. Denoting by Dp(�) the domain of � in Sp(H,H∞), we obtain for
A ∈ Dp(�) and p ∈ [1, 2] that

‖A‖l2(Sp) ≤
∥
∥
∥
∥
∥
(

∞∑

n=1

(X2
n + Y 2

n ))1/2

∥
∥
∥
∥
∥

p

= 2− 1
2

∥
∥
∥
∥
(
|A|2 +

∣
∣A�
∣
∣2
)1/2

∥
∥
∥
∥

p

≤ 2
1
p − 1

2 ‖A‖lp(Sp) .

For p ∈ [2,∞), the inequalities are reversed.

2. Sp(H, H∞) lies Between the Spaces lp(S
p) and l2(S

p)

Let Sp(H,K), p ∈ [0,∞), be the set of compact operators A in B(H,K) with
‖A‖p < ∞ (see (1.4)). It is a linear space. Set Sp = Sp(H) = Sp(H,H). For
A ∈ Sp(H,K), the operator |A| = (A∗A)1/2 ∈ Sp is positive and sn(|A|2) =
sn(|A|)2 are eigenvalues of |A|2. Hence

‖A∗A‖p/2 =
∥
∥
∥|A|2

∥
∥
∥

p/2
=

(
∑

n

sp/2
n (|A|2)

)2/p

=

(
∑

n

sp
n(|A|)

)2/p

= ‖|A|‖2
p

(1.4)
= ‖A‖2

p ,

and A ∈ Sp(H,K) if and only if A∗A ∈ Sp/2(H). (2.1)

For A,B ∈ Sp and C,D ∈ B(H), we have (see [9])

‖A + B‖p
p ≤ 2(‖A‖p

p + ‖B‖p
p), if p < 1, (2.2)

‖A + B‖p ≤ ‖A‖p + ‖B‖p if 1 ≤ p,

‖CAD‖p ≤ ‖C‖‖A‖p‖D‖ and ‖A∗‖p = ‖A‖p , (2.3)

‖AB‖p/2 ≤ 22/p ‖A‖p ‖B‖p , if p < 2, (2.4)

‖AB‖p/2 ≤ ‖A‖p ‖B‖p , if p ≥ 2.

Operators {An} in B(H,K) converge to A in the weak operator topology
(w.o.t) if (Anx, y) → (Ax, y), and in the strong operator topology (s.o.t) if
‖Ax − Anx‖K → 0 for all x ∈ H, y ∈ K.

All Banach spaces Sp(H,K) share the following important properties:
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Lemma 2.1. [10, Theorems III.5.1 and III.6.3]

(i) For p ∈ [1,∞), let operators {An} in Sp(H,K) converge to A ∈ B(H,K)
in w.o.t. If sup

n
‖An‖p = M < ∞, then A ∈ Sp(H,K) and ‖A‖p ≤ M .

(ii) Let {Pn}∞
n=1 be projections in B(K) and Pn

s.o.t.−→ 1K . Then, for p ∈
[1,∞] and A ∈ Sp(H,K),

‖A − PnA‖p → 0, as n → ∞. (2.5)

Let H∞ = H ⊕ . . . ⊕ H ⊕ . . . Each operator A ∈ B(H,H∞) has form
A = (An)∞

n=1 where An ∈ B(H) and ‖An‖ ≤ ‖A‖. Thus we can identify
B(H,H∞) with a subspace of l∞(B(H)).

For m ∈ N, the projection Pm on the first m components of H∞ belongs
to B(H∞) and, for each A = (An)∞

n=1 ∈ l∞(B(H)),

PmA = (A1, . . . , An,0, . . .) ∈ B(H,H∞).

Let A ∈ B(H,H∞). As Pm
s.o.t.→ 1H∞ , we have

PmA
s.o.t.→ A and (PmA)∗(PmA) = A∗PmA =

m∑

n=1

A∗
nAn

w.o.t.→ A∗A, (2.6)

as m → ∞. If PmA ∈ Sp(H,H∞), for some 0 < p < ∞, then

‖PmA‖2
p

(2.1)
= ‖(PmA)∗PmA‖p/2

(2.6)
=

∥
∥
∥
∥
∥

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

. (2.7)

The next lemma gives some conditions for A ∈ l∞(B(H)) to belong to
B(H,H∞) and Sp(H,H∞).

Lemma 2.2. Let A = (An)∞
n=1 ∈ l∞(B(H)). Then

(i) A ∈ B(H,H∞) if and only if {PmAx} converges weakly in H∞ for each
x ∈ H, as m → ∞.

(ii) A ∈ Sp(H,H∞), for some p ∈ [1,∞), if and only if An ∈ Sp(H), for
all n, and there is M > 0 such that ‖PmA‖p ≤ M for all m. Moreover,
‖A‖p ≤ M .

(iii) lq(B(H)) ⊂ l2(B(H)) ⊂ B(H,H∞) for q ∈ [1, 2), and

‖A‖2
B(H,H∞) ≤

∞∑

n=1

‖An‖2 = ‖A‖2
l2(B(H)) for A ∈ l2(B(H)). (2.8)

(iv) lq(Sp) � B(H,H∞), for q > 2 and all p.

Proof. (i) Let {PmAx} weakly converge in H∞ for each x ∈ H. By the
uniform convergence theorem, there is T = (Tn)∞

n=1 ∈ B(H,H∞) such that
PmAx → Tx. Choosing x in the n-th component of H∞, we get An = Tn.
Thus A = T . The part “only if” follows from (2.6).

(ii) Let A ∈ Sp(H,H∞). As Sp(H,H∞) is a left Banach B(H∞)-
module, (Pn − Pn−1)A ∈ Sp(H,H∞) and ‖PmA‖p ≤ ‖Pm‖ ‖A‖p ≤ ‖A‖p.
Hence also An ∈ Sp(H) for all n.
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Conversely, we have ‖PmA‖ ≤ ‖PmA‖p ≤ M and PmA ∈ Sp(H,H∞),
as An ∈ Sp(H) for all n. Then, for x ∈ H, ‖PmAx‖ is an increasing bounded
sequence. Hence it converges and, for each k,

‖(Pm+k − Pm)Ax‖2 = (‖Pm+kAx‖ + ‖PmAx‖)(‖Pm+kAx‖ − ‖PmAx‖)
≤ 2M ‖x‖ (‖Pm+kAx‖ − ‖PmAx‖).

Thus {PmAx} strongly converges in H∞ for each x ∈ H. Hence, by (i),
A ∈ B(H,H∞). Then PmA

s.o.t.→ A and it follows from Lemma 2.1(i) that
A ∈ Sp(H,H∞) and ‖A‖p ≤ M .

(iii) follows from (1.6) and from the fact that ‖Ax‖2
H∞ =

∑∞
n=1 ‖Anx‖2 ≤

‖x‖2∑∞
n=1 ‖An‖2 for each x ∈ H.

(iv) Let q > 2, p ∈ [1,∞) and α = 2
2+q . For some 0 �= T ∈ Sp, let

An = n−αT . Then A = (An)∞
n=1 ∈ lq(Sp), since

‖A‖q
lq(Sp) =

∞∑

n=1

‖An‖q
p = ‖T‖q

p

∞∑

n=1

n−αq < ∞, as αq > 1.

On the other hand, as 2α = 4
2+q ≤ 1, we have for each x /∈ ker T ,

‖Ax‖2 =
∥
∥(Tx, . . . , n−αTx, . . .)

∥
∥2 = ‖Tx‖2

∑

n

n− 4
2+q − diverges.

Hence A /∈ B(H,H∞). Thus all spaces lq(Sp), q > 2, are not contained in
B(H,H∞). �

For positive operators {Tn}m
n=1 in Sp, it was proved in [18] (also [5], [15,

Theorem 1.22]) that
m∑

n=1

‖Tn‖p
p ≤

∥
∥
∥
∥
∥

m∑

n=1

Tn

∥
∥
∥
∥
∥

p

p

if 1 ≤ p < ∞. (2.9)

For 0 < p < 1, it was shown Lemma 1 and formula (7) of [6] that
(

m∑

n=1

‖Tn‖p

)p

≤
∥
∥
∥
∥
∥

m∑

n=1

Tn

∥
∥
∥
∥
∥

p

p

≤
m∑

n=1

‖Tn‖p
p . (2.10)

Proposition 2.3. Let A = (An)∞
n=1 ∈ l∞(Sp). Then, for all m ∈ N,

(
m∑

n=1

‖An‖2
p

)p/2

≤ ‖PmA‖p
p =

∥
∥
∥
∥
∥

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

p/2

≤
m∑

n=1

‖An‖p
p , (2.11)

if p ∈ [1, 2);

m∑

n=1

‖An‖p
p ≤ ‖PmA‖p

p =

∥
∥
∥
∥
∥

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

p/2

≤
(

m∑

n=1

‖An‖2
p

)p/2

, (2.12)

if 2 ≤ p. If p ∈ [1,∞) and A ∈ Sp(H,H∞) then

lim
m→∞

∥
∥
∥
∥
∥
A∗A −

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

= 0. (2.13)
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Proof. If 1 ≤ p < 2 then p
2 < 1. Replacing Tn by A∗

nAn and p by p
2 in (2.10),

we have
(

m∑

n=1

‖A∗
nAn‖p/2

)p/2

≤
∥
∥
∥
∥
∥

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

p/2

≤
m∑

n=1

‖A∗
nAn‖p/2

p/2 .

Combining this with (2.7) and with ‖An‖2
p

(2.1)
= ‖A∗

nAn‖p/2, we complete the
proof of (2.11).

If 2 ≤ p, then 1 ≤ p
2 and Sp/2 is a Banach space. By the triangle

inequality for norms,

‖PmA‖2
p

(2.7)
=

∥
∥
∥
∥
∥

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

≤
m∑

n=1

‖A∗
nAn‖p/2

(2.1)
=

m∑

n=1

‖An‖2
p .

Replacing in (2.9), Tn by A∗
nAn and p by p

2 , we obtain that

m∑

n=1

‖An‖p
p

(2.1)
=

m∑

n=1

‖A∗
nAn‖p/2

p/2 ≤
∥
∥
∥
∥
∥

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

p/2

.

Combining this with the above inequalities, we complete the proof of (2.12).
Let A ∈ Sp(H,H∞). Then (2.5) implies ‖A − PmA‖p → 0. If 1 ≤ p < 2

then p
2 < 1 and it follows from (2.6) and (2.4) that

∥
∥
∥
∥
∥
A∗A −

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

= ‖A∗A − A∗PmA‖p/2

≤ 22/p ‖A∗‖p ‖A − PmA‖p → 0,

as m → ∞. If 2 ≤ p then 1 ≤ p
2 . As Sp/2 is a Banach space,

∥
∥
∥
∥
∥
A∗A −

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

= ‖A∗A − A∗PmA‖p/2 ≤ ‖A∗‖p ‖A − PmA‖p → 0,

as m → ∞. Combining these inequalities and (2.6), we complete the proof of
(2.13). �

Let C(H,H∞) be the subspace of all compact operators in B(H,H∞).
Recall that, for 1 ≤ q < ∞,

lq(Sp) =

{
A = (An)∞

n=1: An ∈ Sp and

‖A‖lq(Sp) =
(∑∞

n=1 ‖An‖q
p

)1/q

< ∞

}

, (2.14)

are Banach spaces. If A ∈ l∞(Sp) and A /∈ lq(Sp), we set ‖A‖lq(Sp) = ∞.
For x ∈ H and u ∈ K, the rank one operator x ⊗ u in B(H,K) acts by

(x ⊗ u)z = (z, x)u for each z ∈ H. (2.15)

Then (see [10]) x ⊗ u ∈ Sp(H,K) and ‖x ⊗ u‖p = ‖x‖ ‖u‖, for all p ∈ [1,∞).
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Theorem 2.4. (i) Let 1 ≤ p < 2. Then

lp(Sp) ⊂ Sp(H,H∞) ⊂ l2(Sp) ⊂ l2(C(H)) ⊂ C(H,H∞),
‖A‖l2(Sp) ≤ ‖A‖p for A ∈ Sp(H,H∞),

and ‖A‖p ≤ ‖A‖lp(Sp) for A ∈ lp(Sp). (2.16)

For each q ∈ (p, 2), the space lq(Sp) neither contains, nor is contained
in Sp(H,H∞).

(ii) Let p ∈ (2,∞). Then l2(Sp) ⊂ Sp(H,H∞) ⊂ lp(Sp) � B(H,H∞),

‖A‖lp(Sp) ≤ ‖A‖p for A ∈ Sp(H,H∞),

and ‖A‖p ≤ ‖A‖l2(Sp) for A ∈ l2(Sp). (2.17)

For each q ∈ (2, p), the space lq(Sp) neither contains, nor is contained
in Sp(H,H∞).

(iii) l2(S2) = S2(H,H∞) and ‖A‖l2(S2) = ‖A‖2 for each A ∈ S2(H,H∞).
(iv) For q > 2 and any p ∈ [1,∞), the space lq(Sp) is not contained in

B(H,H∞).

Proof. Let A = (An)∞
n=1 ∈ l2(C(H)). Then all PmA ∈ C(H,H∞). By

Lemma 2.2(iii), A ∈ B(H,H∞) and

‖A − PmA‖B(H,H∞)

(2.8)
≤ ‖A − PmA‖l2(B(H)) =

∞∑

n=m+1

‖An‖2 → 0,

as m → ∞. Since C(H,H∞) is complete, A belongs to C(H,H∞). Therefore
l2(Sp) ⊂ l2(C(H)) ⊆ C(H,H∞).

(i) Let p ∈ [1, 2) and A ∈ lp(Sp). By (2.11),

‖PmA‖p ≤
(

m∑

n=1

‖An‖p
p

)1/p

≤ ‖A‖lp(Sp) ,

for all m. Hence, by Lemma 2.2(ii), A ∈ Sp(H,H∞) and ‖A‖p ≤ ‖A‖lp(Sp).
Thus lp(Sp) ⊆ Sp(H,H∞).

If A ∈ Sp(H,H∞) then

‖A‖p
l2(Sp)

(2.14)
= lim

m→∞

(
m∑

n=1

‖An‖2
p

)p/2 (2.11)
≤ lim

m→∞ ‖PmA‖p
p

(2.5)
= ‖A‖p

p .

Thus A ∈ l2(Sp), so that Sp(H,H∞) ⊆ l2(Sp), and (2.16) holds.
Let us prove that Sp(H,H∞) �= l2(Sp) and lq(Sp) � Sp(H,H∞), for

p < q ≤ 2. Let {en}∞
n=1 be a basis in H and Pen

projections on Cen. Set
An = n−αPen

, for some α > 0, and consider A = (An)∞
n=1. Then A ∈ l∞(Sp),

as ‖Pen
‖p = 1 for all p.

Let x =
∑∞

n=1 αnen ∈ H. Then PmAx =
∑m

n=1 ⊕n−ααnen, where each
n−ααnen belongs to the n-th component of H∞, converge to

∑∞
n=1 ⊕n−ααnen

in H∞, as m → ∞. By Lemma 2.2(i), A ∈ B(H,H∞) and

|A|2 = A∗A =
∞∑

n=1

A∗
nAn =

∞∑

n=1

n−2αPen
, so that sn(|A|) = n−α.
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Therefore

‖A‖q
lq(Sp) =

∞∑

n=1

n−qα and ‖A‖p
p

(2.1)
= ‖|A|‖p

p =
∞∑

n=1

(n−α)p. (2.18)

Setting α = 1
p in (2.18), we obtain that A ∈ lq(Sp) and A /∈ Sp(H,H∞).

To prove that l2(C(H)) �= C(H,H∞), set α = 1
2 in (2.18). Then A

belongs to C(H,H∞) and A /∈ l2(C(H)).
For p ≤ q < 2, let us prove that lp(Sp) �= Sp(H,H∞) and that

Sp(H,H∞) � lq(Sp). Set Bn = n− 1
q Pe1 and consider B = (Bn)∞

n=1. Then
Bx = α1

∑∞
n=1 ⊕n− 1

q e1, for x =
∑∞

n=1 αnen ∈ H, where each n− 1
q e1 belongs

to the n-th component of H∞. Hence B is bounded, since
∑∞

n=1 n− 2
q < ∞.

Moreover, B = e1 ⊗ u is a rank one operator in B(H,H∞), where
u =

∑∞
n=1 ⊕n− 1

q e1 ∈ H∞. Thus B ∈ Sp(H,H∞), for all p ∈ [1,∞), and
B /∈ lq(Sp), since

‖B‖q
lq(Sp) =

∞∑

n=1

∥
∥
∥n− 1

q Pe1

∥
∥
∥

q

p
=

∞∑

n=1

n−1 = ∞.

(ii) Let 2 ≤ p and A ∈ l2(Sp). It follows from (2.14) that

‖A‖p
lp(Sp) = lim

m→∞

m∑

n=1

‖An‖p
p

(2.12)
≤ lim

m→∞ ‖PmA‖p
p

(2.12)
≤ lim

m→∞

(
m∑

n=1

‖An‖2
p

)p/2

= (‖A‖2
l2(Sp))

p/2 = ‖A‖p
l2(Sp) .

As all ‖PmA‖p ≤ ‖A‖l2(Sp) , we have from Lemma 2.2(ii) that A ∈ Sp(H,H∞)
and ‖A‖p ≤ ‖A‖l2(Sp). Hence, by (2.5), lim

m→∞ ‖PmA‖p = ‖A‖p. Therefore

l2(Sp) ⊆ Sp(H,H∞).
Let A ∈ Sp(H,H∞). Then it follows from (2.12) that

m∑

n=1

‖An‖p
p ≤ ‖PmA‖p

p

(2.5)→ ‖A‖p
p ,

as m → ∞. Hence A ∈ lp(Sp), so that Sp(H,H∞) ⊆ lp(Sp) and (2.17) holds.
For 2 ≤ q < p, let us prove that l2(Sp) �= Sp(H,H∞) � lq(Sp). Set An =

n− 1
q Pen

and consider A = (An)∞
n=1. Then A /∈ lq(Sp) and A ∈ Sp(H,H∞),

since (see (2.18))

‖A‖p
p =

∞∑

n=1

n− p
q < ∞ and ‖A‖q

lq(Sp) =
∞∑

n=1

(n− 1
q )q =

∞∑

n=1

n−1 = ∞.

For 2<q, let us prove that lp(Sp) �=Sp(H,H∞) and lq(Sp) � B(H,H∞)
for all p. Set Bn = n− 1

2 Pe1 and consider B = (Bn)∞
n=1. Then B ∈ lq(Sp) and

B /∈ B(H,H∞), since
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‖B‖q
lq(Sp) =

∞∑

n=1

∥
∥
∥n− 1

2 Pe1

∥
∥
∥

q

p
=

∞∑

n=1

n− q
2 < ∞,

‖Be1‖2 =

∥
∥
∥
∥
∥

∞∑

n=1

⊕n− 1
2 e1

∥
∥
∥
∥
∥

2

=
∞∑

n=1

n−1 = ∞,

where each n− 1
q e1 belongs to the n-th component of H∞. This proves (iv)

and completes the proof of (ii). To prove (iii), repeat the proof of (ii) for
p = 2. �

3. Action of Operators from B(H∞) on lq(S
p) Spaces

By Theorem 2.4(iii), l2(S2) = S2(H,H∞). Hence it is a left B(H∞)-module.
In this section we show that, apart from l2(S2), the Banach spaces lq(Sp)
are not left B(H∞)-modules. We also establish the following analogue of
inequality (1.10): for R ∈ B(H∞),

‖R‖lp(Sp)→l2(Sp) ≤ ‖R‖B(H∞) , for 1 ≤ p ≤ 2;

‖R‖l2(Sp)→lp(Sp) ≤ ‖R‖B(H∞) , for 2 ≤ p.

Each operator R in B(H∞) has matrix form R = (Rij)∞
i,j=1 with Rij ∈ B(H).

It acts on each A = (An)∞
n=1 (consider it as a column) in its domain D(R)

in l∞(B(H)) by

RA = (Rij)(An)∞
n=1 =

(∑
R1jAj , . . . ,

∑
RnjAj , . . .

)
. (3.1)

The domain D(R) of R consists of A = (An)∞
n=1 in l∞(B(H)) such that

∑m
j=1 RnjAj

w.o.t.→ Bn ∈ B(H), for each n, and (Bn)∞
n=1 ∈ l∞(B(H)).

Proposition 3.1. (i) ∩{D(R) : R ∈ B(H∞)} = B(H,H∞).
(ii) If (p, q) �= (2, 2), then the space lq(Sp) is not a left B(H∞)-module.

Proof. (i) Set D = ∩{D(R): R ∈ B(H∞)}. Then B(H,H∞) ⊆ D.
Let {Qn}∞

n=1 be mutually orthogonal projections in B(H) with infinite
dimensional ranges satisfying

∑∞
n=1 Qn = 1H . Let {Un}∞

n=1 be isometries
from H onto QnH. Then

U∗
k Un = δkn1H , UnU∗

n = Qn and U∗
nQn = U∗

n, (3.2)

where δkk = 1, δkn = 0 if k �= n.
The operator R = (Rij) on H∞ such that all R1n = Un and all Rin = 0

for i ≥ 2, belongs to B(H∞). The operator L = (U∗
n)∞

n=1 from H to l∞(H)
belongs to B(H,H∞). Indeed, Lx = (U∗

nx)∞
n=1 ∈ l∞(H), for x ∈ H, and, by

(3.2),
∑

n

‖U∗
nx‖2 =

∑

n

‖U∗
nQnx‖2 ≤

∑

n

‖Qnx‖2 = ‖x‖2
.

Let A = (An)∞
n=1 ∈ D. Then RA ∈ l∞(B(H)), so that, by (3.1),

∑m
n=1 UnAn

w.o.t.−→ B ∈ B(H). Hence L (
∑m

n=1 UnAn) w.o.t.−→ LB ∈ B(H,H∞).
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It follows from (3.2) that PmA = L (
∑m

n=1 UnAn). Therefore PmA
w.o.t.−→ LB.

By Lemma 2.2(i), A = LB ∈ B(H,H∞). Thus D = B(H,H∞).
(ii) By (i), all left B(H∞)-modules lie in B(H,H∞). Hence, by

Lemma 2.2(iv), we only have to prove that lq(Sp) is not a left B(H∞)-module
for q ≤ 2.

For q < 2, let us prove that lq(Sp) is not a left B(H∞)-module. Let
Rnk = 0, for k > 1, and Rn1 = αn1H , where αn > 0,

∑∞
n=1 α2

n = 1 and∑∞
n=1 αq

n = ∞. The operator R = (Rnk) ∈ B(H∞), since

‖Rx‖2 = ‖x1‖2
∞∑

n=1

α2
n = ‖x1‖2 ≤ ‖x‖2 for x = (xn)∞

n=1 ∈ H∞.

However, if A = (An)∞
n=1 ∈ lq(Sp) and A1 �= 0 then RA /∈ lq(Sp), since

‖RA‖q
lq(Sp) =

∞∑

n=1

‖Rn1A1‖q
p = ‖A1‖q

p

∞∑

n=1

αq
n = ∞.

Thus lq(Sp) is not a left B(H∞)-module, for q < 2 and all p ∈ [1,∞).
Let q = 2. Let {en}∞

n=1 be a basis in H, let Pen
be the projections on

Cen and {Vn}∞
n=1 be the partial isometries from Cen onto Ce1, i.e.,

Vnen = e1, Vnej = 0 for j �= n, and Pen
= V ∗

n Vn.

Let R = (Rnk), Rnk = 0, for k > 1, and Rn1 = Vn. Then ‖Rx‖2 =∑∞
n=1 ‖Vnx1‖2 for x = (xn)∞

n=1 ∈ H∞. If x1 =
∑∞

k=1 αkek, then Vnx1 = αne1

and

‖Rx‖2 =
∞∑

n=1

|αn|2 = ‖x1‖2 ≤ ‖x‖2
.

Thus R ∈ B(H∞).
For p ∈ (2,∞), let us show that l2(Sp) is not a left B(H∞)-module. We

have A1 =
∑∞

n=1 n− 1
2 Pen

∈ Sp(H), since ‖A1‖p
p =

∑∞
n=1 n− p

2 < ∞. Hence
A = (A1, 0, 0, . . .) ∈ l2(Sp). However, l2(Sp) is not a left B(H∞)-module, as
RA /∈ l2(Sp), because

‖RA‖2
l2(Sp) =

∞∑

n=1

‖VnA1‖2
p

(2.1)
=

∞∑

n=1

‖A∗
1V

∗
n VnA1‖p/2

=
∞∑

n=1

‖A∗
1Pen

A1‖p/2 =
∞∑

n=1

∥
∥n−1Pen

∥
∥

p/2
=

∞∑

n=1

n−1 = ∞.

For p ∈ [1, 2), let us show that l2(Sp) is not a left B(H∞)-module. Set
A = (n− 1

p Vn)∞
n=1. As R∗ ∈ B(H∞) and ‖V ∗

n Vn‖p/2 = ‖Pen
‖p/2 = 1, we have
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‖A‖2
l2(Sp) =

∞∑

n=1

‖An‖2
p =

∞∑

n=1

n− 2
p ‖V ∗

n Vn‖p/2 =
∞∑

n=1

n− 2
p < ∞ and

‖R∗A‖l2(Sp) =

∥
∥
∥
∥
∥

∞∑

n=1

V ∗
n An

∥
∥
∥
∥
∥

p

=

∥
∥
∥
∥
∥

∞∑

n=1

n− 1
p Pen

∥
∥
∥
∥
∥

p

=

( ∞∑

n=1

(n− 1
p )p

)1/p

=

( ∞∑

n=1

n−1

)1/p

= ∞.

Hence A ∈ l2(Sp) and R∗A /∈ l2(Sp). Thus l2(Sp), p ∈ [1, 2), is not a left
B(H∞) -module. �

By Theorem 2.4, lp(Sp) ⊂ Sp(H,H∞) ⊂ l2(Sp) for p ∈ [1, 2]. Thus
the multiplication of the space lp(Sp) by operators from B(H∞) leaves it in
Sp(H,H∞) and in l2(Sp), but not in any lq(Sp), p ≤ q < 2.

Similarly, l2(Sp) ⊂ Sp(H,H∞) ⊂ lp(Sp) for 2 ≤ p. Thus the multipli-
cation of the space l2(Sp) by operators from B(H∞) leaves it in Sp(H,H∞)
and, hence, in lp(Sp), but not in any lq(Sp) for 2 < q.

Theorem 3.2. Let R ∈ B(H∞).
(i) Let p ∈ [1, 2] and A ∈ lp(Sp). Then RA ∈ l2(Sp) and

‖RA‖l2(Sp) ≤ ‖R‖B(H∞) ‖A‖lp(Sp) .

(ii) Let p ∈ [2,∞) and A ∈ l2(Sp). Then RA ∈ lp(Sp) and

‖RA‖lp(Sp) ≤ ‖R‖B(H∞) ‖A‖l2(Sp) .

Proof. (i) Let p ∈ [1, 2] and A ∈ lp(Sp). It follows from Theorem 2.4(i)
that A ∈ Sp(H,H∞). Therefore, by (2.3), RA belongs to Sp(H,H∞) and
‖RA‖p ≤ ‖R‖B(H∞) ‖A‖p. We have from Theorem 2.4(i) that RA ∈ l2(Sp),
‖RA‖l2(Sp) ≤ ‖RA‖p and ‖A‖p ≤ ‖A‖lp(Sp). Hence

‖RA‖l2(Sp) ≤ ‖RA‖p ≤ ‖R‖B(H∞) ‖A‖p ≤ ‖R‖B(H∞) ‖A‖lp(Sp) .

Using part (ii) of Theorem 2.4 instead of (i), we obtain similarly the proof of
(ii). �

We can use inequality (1.9) to obtain some analogues of McCarthy in-
equality (1.1) for lq(Sp) spaces. Let {nk}∞

k=1 be positive integers. For A =
(An)∞

n=1 ∈ lq(Sp), set

B1 = (A1, . . . , An1), B2 = (An1+1, . . . , An1+n2), . . . ,
Bk = (An1+...+nk−1+1, . . . , An1+...+nk

), . . .

Then Bk ∈ lnk
q (Sp),

A = (Bk)∞
k=1 and ‖A‖lq(Sp) =

( ∞∑

k=1

‖Bk‖q

l
nk
q (Sp)

)1/q

. (3.3)
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For each k, let Hnk be the orthogonal sum of nk copies of H. Then H∞ =
⊕∞

k=1H
nk . Consider the block-diagonal operator R = {Rk}∞

k=1 with the op-
erators Rk ∈ B(Hnk) on the diagonal and 0 off the diagonal and suppose

that α := supn
| 1

p − 1
2 |

k ‖Rk‖ < ∞. Then R ∈ B(H∞).

Theorem 3.3. Let p ∈ [1,∞) and q ∈ [min(p, 2),max(p, 2)]. Then

‖RA‖lq(Sp) ≤ α ‖A‖lq(Sp) for all A ∈ lq(Sp).

If nk = N , for some N and all k, then

‖RA‖lq(Sp) ≤ N | 1
p − 1

2 | (sup ‖Rk‖) ‖A‖lq(Sp) .

Proof. It follows from the block-diagonal structure of the operator R and
from (3.3) that

RA = (RkBk)∞
k=1 and ‖RA‖q

lq(Sp) =
∞∑

k=1

‖RkBk‖q

l
nk
q (Sp)

.

By (1.9),

‖RkBk‖l
nk
q (Sp) ≤ n

| 1
p − 1

2 |
k ‖Rk‖ ‖Bk‖l

nk
q (Sp) .

Substituting this in the above formula, we have

‖RA‖q
lq(Sp) ≤

∞∑

k=1

n
q| 1

p − 1
2 |

k ‖Rk‖q ‖Bk‖q

l
nk
q (Sp)

(3.3)
≤ αq ‖A‖q

lq(Sp)

which completes the proof. �

Let nk = 2 and Rk = 2−1/2

(
1H 1H

1H −1H

)
be a unitary operator on

H ⊕ H, for all k. Then, for A = (An)∞
n=1,

RA = 2−1/2(A1 + A2, A1 − A2, . . . , A2n−1 + A2n, A2n−1 − A2n, . . .).

Set X = (Xn)∞
n=1 and Y = (Yn)∞

n=1, where Xn = A2n−1 and Yn = A2n. Then

‖A‖q
lq(Sp) =

∞∑

n=1

‖A2n−1‖q
p +

∞∑

n=1

‖A2n‖q
p = ‖X‖q

lq(Sp) + ‖Y ‖q
lq(Sp) ,

‖RA‖lq(Sp) = 2−1/2

( ∞∑

n=1

‖A2n−1 + A2n‖q
p +

∞∑

n=1

‖A2n−1 − A2n‖q
p

)1/q

= 2−1/2(‖X + Y ‖q
lq(Sp) + ‖X − Y ‖q

lq(Sp))
1/q.

Taking into account that ‖R‖ = 1 and substituting the above formulas in
Theorems 3.2 and 3.3, we have the following analogue of McCarthy inequality
(1.1) for spaces lq(Sp).

Corollary 3.4. (i) Let p ∈ [1, 2] and X,Y ∈ lp(Sp). Then
(
‖X + Y ‖2

l2(Sp) + ‖X − Y ‖2
l2(Sp)

)1/2

≤ 2
1
2

(
‖X‖p

lp(Sp) + ‖Y ‖p
lp(Sp)

)1/p

.
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Let p ∈ [2,∞) and X,Y ∈ l2(Sp). Then
(
‖X + Y ‖p

lp(Sp) + ‖X − Y ‖p
lp(Sp)

)1/p

≤ 2
1
2

(
‖X‖2

l2(Sp) + ‖Y ‖2
l2(Sp)

)1/2

.

(ii) Let p ∈ [1,∞), q ∈ [min(p, 2),max(p, 2)] and X,Y ∈ lq(Sp). Then
(
‖X + Y ‖q

lq(Sp) + ‖X − Y ‖q
lq(Sp)

) 1
q ≤ 2| 1

p − 1
2 |+ 1

2

(
‖X‖q

lq(Sp) + ‖Y ‖q
lq(Sp)

) 1
q

.

For a Banach space (B, ‖·‖), the modulus of convexity δB (see [2,15]) is
defined by

δB(ε) = inf
{

1 − 1
2

‖X + Y ‖ : X,Y ∈ B, ‖X‖ = ‖Y ‖ = 1, ‖X − Y ‖ ≥ ε

}
,

for 0 < ε ≤ 2; and the modulus of smoothness ρB by

ρB(τ) = sup
{‖X + τY ‖ + ‖X − τY ‖

2
− 1: X,Y ∈ B, ‖X‖ = ‖Y ‖ = 1

}
,

for τ > 0. The space B is called r-uniformly convex, for 2 ≤ r < ∞, if
δB(ε) ≥ Cεr for some C > 0 and all 0 < ε ≤ 2. It is called r-uniformly
smooth, for 1 < r ≤ 2, if ρB(τ) ≤ Cτ r for some C > 0 and all τ > 0.

Corollary 3.5. (i) The space lp(Sp), for p ∈ [2,∞), is p-uniformly convex.
(ii) The space lp(Sp), for p ∈ (1, 2], is p-uniformly smooth.

Proof. Set B = lp(Sp) and ‖·‖ = ‖·‖lp(Sp).
(i) Let 2 ≤ p < ∞ and X,Y ∈ B. Setting q = p in Corollary 3.4(ii), we

obtain the p-uniform convexity inequality

(‖X + Y ‖p + ‖X − Y ‖p)
1
p ≤ 21− 1

p (‖X‖p + ‖Y ‖p)
1
p

which yields p-uniform convexity of B (see [2,11]). Indeed, (we prove it for
the convenience of the reader) let ‖X‖ = ‖Y ‖ = 1 and ‖X − Y ‖ = ε > 0.
Then (‖X + Y ‖p + εp)

1
p ≤ 2. As 1

p < 1, we get
∥
∥
∥
∥

X + Y

2

∥
∥
∥
∥ ≤

(
1 − εp

2p

)1/p

≤ 1 − εp

p2p
, so that δB(ε) ≥ εp

p2p
.

(ii) Let 1 < p ≤ 2 and X,Y ∈ B. Setting q = p in Corollary 3.4(ii), we
obtain the p-uniform smoothness inequality

‖X + Y ‖p + ‖X − Y ‖p ≤ 2(‖X‖p + ‖Y ‖p)

which yields p-uniform smoothness of B (see [2,11]). Indeed, let ‖X‖ = 1 and
Y = τZ with ‖Z‖ = 1 and τ > 0. Then

‖X + τZ‖p + ‖X − τZ‖p

2
≤ 1 + τp.

As a+b
2 ≤ (ap+bp

2

)1/p
for non-negative a, b, it follows that

‖X + τZ‖ + ‖X − τZ‖
2

≤ (1 + τp)1/p ≤ 1 +
τp

p
.

Hence ρB(τ) ≤ τp

p . �
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4. Inequality for Partitions of Operators from Sp

A family {Pn}N
n=1 of mutually orthogonal projections in B(H) is a partition

of the identity operator 1H if

N∑

n=1

Pn = 1H . (4.1)

Let {Pn}N
n=1 and {Qm}M

m=1 be partitions of 1H . It was proved in [15] that,
for M,N < ∞, the partition A = {PnAQm} of an operator A in Sp(H)
satisfies inequalities (1.11), that is, A belongs to lNM

q (Sp) and

(NM)
1
p − 1

q ‖A‖lMN
q (Sp) ≤ ‖A‖p ≤ (NM)

1
2 − 1

q ‖A‖lMN
q (Sp) ,

for 2 ≤ q ≤ p < ∞. For 1 < p ≤ q ≤ 2, the inequalities are reversed.
In this section we study infinite partitions A = {PnAQm}∞

n,m=1.

Proposition 4.1. Let {Pn}∞
n=1 be a partition of 1H . For A ∈ Sp(H),

( ∞∑

n=1

‖PnA‖2
p

)1/2

≤ ‖A‖p ≤
( ∞∑

n=1

‖PnA‖p
p

)1/p

, if 1 ≤ p ≤ 2,

where the last series may diverge. For 2 ≤ p < ∞, the inequalities are re-
versed.

Proof. Set An = PnA. It follows from (4.1) that

m∑

n=1

Pn
s.o.t.→ 1H , as m → ∞, and ‖x‖2 =

∞∑

n=1

‖Pnx‖2 for x ∈ H. (4.2)

As A ∈ Sp(H), all An belong to Sp(H) and have mutually orthogonal ranges:
A∗

kAn = A∗PkPnA = 0 if k �= n. Consider the operator A = (An)∞
n=1 from

H to H∞. Then

‖Ax‖2 =
∞∑

n=1

‖PnAx‖2 (4.2)
= ‖Ax‖2 for x ∈ H.

Hence A ∈ B(H,H∞) and ‖A‖ = ‖A‖. For all x, y ∈ H and m ∈ N, we have

|(A∗Ax − A∗Ax, y)| ≤
∣
∣
∣
∣
∣

(
A∗Ax −

m∑

n=1

A∗
nAnx, y

)∣∣
∣
∣
∣
+ |(RmAx − Ax,Ay)| ,

where Rm =
∑m

n=1 Pn. Since
(

A∗Ax −
m∑

n=1

A∗
nAnx, y

)
(2.6)−→ 0 and (RmAx − Ax,Ay)

(4.2)−→ 0,

as m → ∞, we have A∗A = A∗A ∈ Sp/2(H), so that A ∈ Sp(H,H∞) and
‖A‖p = ‖A‖p.
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Let 1 ≤ p < 2. Then it follows from Theorem 2.4(i) that A ∈ l2(Sp) and
( ∞∑

n=1

‖PnA‖2
p

)1/2
(2.14)

= ‖A‖l2(Sp)

(2.16)
≤ ‖A‖p

= ‖A‖p

(2.16)
≤ ‖A‖lp(Sp)

(2.14)
=

( ∞∑

n=1

‖PnA‖p
p

)1/p

,

where the last series above may diverge if A /∈ lp(Sp).
For 2 ≤ p < ∞, using (2.14), (2.17), we obtain the reversed

inequalities. �
We consider now partitions of operators. If A /∈ lq(Sp), we assume that

‖A‖lq(Sp) = ∞.

Theorem 4.2. Let {Pn}∞
n=1 and {Qk}∞

k=1 be partitions of 1H . For A ∈ Sp(H),
let A = {PnAQk} be the corresponding partition of A.

(i) If 1 ≤ p < 2 then A ∈ l2(Sp) and

‖A‖l2(Sp) =

⎛

⎝
∞∑

n,k=1

‖PnAQk‖2
p

⎞

⎠

1/2

≤ ‖A‖p

≤
⎛

⎝
∞∑

n,k=1

‖PnAQk‖p
p

⎞

⎠

1/p

= ‖A‖lp(Sp) .

(ii) If 2 ≤ p then A ∈ lp(Sp) and

‖A‖lp(Sp) =

⎛

⎝
∞∑

n,k=1

‖PnAQk‖p
p

⎞

⎠

1/p

≤ ‖A‖p

≤
⎛

⎝
∞∑

n,k=1

‖PnAQk‖2
p

⎞

⎠

1/2

= ‖A‖l2(Sp) .

Proof. (i) Let 1 ≤ p ≤ 2. It follows from Proposition 4.1 that
( ∞∑

n=1

‖PnA‖2
p

)1/2

≤ ‖A‖p ≤
( ∞∑

n=1

‖PnA‖p
p

)1/p

, (4.3)

where the last series above may diverge. Fix n and set Bn = A∗Pn. Then
Bn ∈ Sp(H). Replacing in (4.3), A by Bn and {Pn}∞

n=1 by {Qk}∞
k=1, we

obtain
( ∞∑

k=1

‖QkBn‖2
p

)1/2

≤ ‖Bn‖p ≤
( ∞∑

k=1

‖QkBn‖p
p

)1/p

, (4.4)

where the last series above may diverge. Since, by (2.3), ‖Bn‖p = ‖B∗
n‖p =

‖PnA‖p and

‖QkBn‖p = ‖QkA∗Pn‖p = ‖(QkA∗Pn)∗‖p = ‖PnAQk‖p ,
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we can rewrite (4.4) as follows
( ∞∑

k=1

‖PnAQk‖2
p

)1/2

≤ ‖PnA‖p ≤
( ∞∑

k=1

‖PnAQk‖p
p

)1/p

, for each n.

Substituting this into (4.3) and using (2.14), we complete the proof of (i).
(ii) Let 2 ≤ p. From Proposition 4.1 we have

( ∞∑

n=1

‖PnA‖p
p

)1/p

≤ ‖A‖p ≤
( ∞∑

n=1

‖PnA‖2
p

)1/2

.

Proceeding now, as in part (i), we complete the proof. �

5. Cartesian Decomposition and Schatten Norms

Define the following natural involution � on l∞(B(H)):

A� = (A∗
n)∞

n=1 for each A = (An)∞
n=1 ∈ l∞(B(H)).

It follows from (2.3) that � preserves all spaces lq(Sp), as �2 = 1. Moreover,
all lq(Sp) are symmetrically normed ideals of the C*-algebra l∞(B(H)) and

‖A‖lq(Sp) =
∥
∥A�

∥
∥

lq(Sp)
, for all A ∈ lq(Sp). (5.1)

For each n, consider the selfadjoint operators Xn = 1
2 (An + A∗

n) and
Yn = 1

2i (An − A∗
n). Set X = (Xn)∞

n=1 and Y = (Yn)∞
n=1, so that

X = (A + A�)/2 and Y = (A − A�)/2i. (5.2)

Then A = X + iY is the “Cartesian decomposition” of A. If A ∈ lq(Sp) then
X,Y ∈ lq(Sp).

Corollary 5.1. Let A ∈ lq(Sp), where p ∈ [1,∞) and q ∈ [min(p, 2),max(p, 2)].
Then

2
1
q − 1

2 −| 1
p − 1

2 | ‖A‖lq(Sp) ≤
(
‖X‖q

lq(Sp) + ‖Y ‖q
lq(Sp)

)1/q

≤ 2
1
q − 1

2+| 1
p − 1

2 | ‖A‖lq(Sp) . (5.3)

Proof. Replace Y by iY in Corollary 3.4(ii) and replace consequently X + iY
by A and X − iY by A�. Using (5.1), we obtain the left-hand side inequality
in (5.3). Replace now X by A and Y by A� in Corollary 3.4(ii). Using (5.2)
and (5.1), we obtain the right-hand side inequality in (5.3). �

Remark 5.2. Doing the same replacements in Corollary 3.4(i) as in Corol-
lary 5.1, we obtain

‖A‖p
l2(Sp) ≤ ‖X‖p

lp(Sp) + ‖Y ‖p
lp(Sp) , (5.4)

‖X‖2
l2(Sp) + ‖Y ‖2

l2(Sp) ≤ 2
2
p −1 ‖A‖2

lp(Sp) , (5.5)

Author's personal copy



Clarkson–McCarthy Inequalities for lp-Spaces of Operators

for p ∈ [1, 2] and A ∈ lp(Sp). If p ∈ [2,∞) and A ∈ l2(Sp), then

‖A‖2
lp(Sp) ≤ 21− 2

p

(
‖X‖2

l2(Sp) + ‖Y ‖2
l2(Sp)

)
, (5.6)

‖X‖p
lp(Sp) + ‖Y ‖p

lp(Sp) ≤ ‖A‖p
l2(Sp) . (5.7)

However, they can be deduced from (5.3). For p ∈ [1, 2], set q = p in the first
inequality in (5.3) and q = 2 in the second inequality in (5.3). Using that
‖A‖l2(Sp) ≤ ‖A‖lp(Sp), by (1.6), we get (5.4) and (5.5).

If p ∈ [2,∞) then ‖A‖lp(Sp) ≤ ‖A‖l2(Sp), by (1.6). Setting q = 2 in the
first inequality in (5.3) and q = p in the second inequality, we obtain (5.6)
and (5.7). �

Although the involution � preserves all spaces lq(Sp), it does not pre-
serve Sp(H,H∞), if p �= 2. Set Sb(H,H∞) = B(H,H∞) and S∞(H,H∞) =
C(H,H∞). Set also

Dp(�) = {A ∈ Sp(H,H∞): A� ∈ Sp(H,H∞)}, for each p ∈ [1,∞] ∪ b.

Then � preserves Dp(�). Indeed, if A ∈ Dp(�) then A� ∈ Sp(H,H∞) and
A�� = A ∈ Sp(H,H∞). Thus A� ∈ Dp(�).

Proposition 5.3. (i) If 1 ≤ p < 2 then lp(Sp) ⊂ Dp(�) ⊂ Sp(H,H∞).
(ii) S2(H,H∞) = D2(�). If 2 < p then Dp(�) ⊂ Sp(H,H∞) � Db(�).

Proof. Let {en}∞
n=1 be an orthonormal basis in H, let Pen

be the projections
on Cen and let {Vn}∞

n=1 be the partial isometries from Cen on Ce1: Vnen = e1

and Vnej = 0, for j �= n. Then

Pen
= V ∗

n Vn and Pe1 = VnV ∗
n . (5.8)

(i) Let 1 ≤ p < 2. By Theorem 2.4(i), lp(Sp) ⊂ Sp(H,H∞) and
l2(C(H)) ⊂ C(H,H∞). As � preserves all lq(Sp), we get all the inclusions
and only need to prove lp(Sp) �= Dp(�) �= Sp(H,H∞).

To prove that lp(Sp) �= Dp(�), set An = n− 1
p Pe1 and A = (An)∞

n=1.
Then A /∈ lp(Sp), since ‖A‖p

lp(Sp) =
∑∞

n=1 n−1 = ∞. On the other hand, for
x =

∑∞
n=1 αnen ∈ H,

Ax =
∞∑

n=1

⊕n− 1
p Pe1x = α1

∞∑

n=1

⊕n− 1
p e1 = α1u, where u =

∞∑

n=1

⊕n− 1
p e1

and each n− 1
p e1 lies in the n-th component of H∞. Then u belongs to H∞,

as ‖u‖2 =
∑∞

n=1 n− 2
p < ∞. Hence A = e1 ⊗ u is a rank one operator. Thus

A ∈ Sp(H,H∞) (see (2.15)) and A ∈ Dp(�), as A� = A.
To prove that Dp(�) �= Sp(H,H∞), set An = n− 1

p V ∗
n and A = (An)∞

n=1.
By (5.8), for all m ∈ N,

‖PmA‖2
p

(2.7)
=

∥
∥
∥
∥
∥

m∑

n=1

A∗
nAn

∥
∥
∥
∥
∥

p/2

=

∥
∥
∥
∥
∥

m∑

n=1

n− 2
p VnV ∗

n

∥
∥
∥
∥
∥

p/2

=

∥
∥
∥
∥
∥

(
m∑

n=1

n− 2
p

)

Pe1

∥
∥
∥
∥
∥

p/2

=
m∑

n=1

n− 2
p < ∞.
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Hence it follows from Lemma 2.2(ii) that A ∈ Sp(H,H∞). On the other
hand,

∥
∥PmA�

∥
∥p

p

(2.7)
=

∥
∥
∥
∥
∥

m∑

n=1

n− 2
p V ∗

n Vn

∥
∥
∥
∥
∥

p/2

p/2

(5.8)
=

∥
∥
∥
∥
∥

m∑

n=1

n− 2
p Pen

∥
∥
∥
∥
∥

p/2

p/2

=
m∑

n=1

n−1 → ∞,

as m → ∞. Hence, by Lemma 2.2(ii), A� /∈ Sp(H,H∞).
(ii) As S2(H,H∞) = l2(S2), we have S2(H,H∞) = D2(�).
Let p > 2. Set An = n− 1

2 Vn and consider A = (An)∞
n=1. By (5.8),

‖PmA‖2
p

(2.7)
=

∥
∥
∥
∥
∥

m∑

n=1

n−1V ∗
n Vn

∥
∥
∥
∥
∥

p/2

=

∥
∥
∥
∥
∥

m∑

n=1

n−1Pen

∥
∥
∥
∥
∥

p/2

=

(
m∑

n=1

n− p
2

)2/p

< ∞,

for all m. Therefore, by Lemma 2.2(ii), A ∈ Sp(H,H∞). On the other hand,
if m → ∞ then
∥
∥PmA�

∥
∥2

p

(2.7)
=

∥
∥
∥
∥
∥

m∑

n=1

AnA∗
n

∥
∥
∥
∥
∥

p/2

=

∥
∥
∥
∥
∥

m∑

n=1

n−1VnV ∗
n

∥
∥
∥
∥
∥

p/2

=

∥
∥
∥
∥
∥

(
m∑

n=1

n−1

)

Pe1

∥
∥
∥
∥
∥

p/2

=
m∑

n=1

n−1 → ∞.

Therefore, by Lemma 2.2(ii), A� /∈ Sp(H,H∞). Thus A /∈ Dp(�), so that
Dp(�) � Sp(H,H∞). Making use of Lemma 2.2(i), one can show that, in
fact, A� /∈ B(H,H∞). Hence Sp(H,H∞) � Db(�). �

Let A = (An)∞
n=1 ∈ Dp(�). Then A� ∈ Dp(�) and (see (5.2)) X,Y ∈

Dp(�). As An = Xn + iYn,

|A|2 +
∣
∣A�
∣
∣2 = A∗A + (A�)∗A� (2.13)

= lim
m→∞

m∑

n=1

(A∗
nAn + AnA∗

n)

= 2 lim
m→∞

m∑

n=1

(X2
n + Y 2

n )
(2.13)

= 2(X∗X + Y ∗Y ). (5.9)

Theorem 5.4. Let A = (An)∞
n=1 ∈ Dp(�) and let all An = Xn + iYn. If

1 ≤ p ≤ 2 then

‖A‖l2(Sp) ≤ lim
m→∞

∥
∥
∥
∥
∥
∥

(
m∑

n=1

(X2
n + Y 2

n )

)1/2
∥
∥
∥
∥
∥
∥

p

= 2− 1
2

∥
∥
∥
∥
(
|A|2 +

∣
∣A�
∣
∣2
)1/2

∥
∥
∥
∥

p

≤ 2
1
p − 1

2 ‖A‖lp(Sp) ,

where ‖A‖lp(Sp) = ∞ if A /∈ lp(Sp). For 2 ≤ p < ∞, the inequalities are
reversed.

Proof. Consider B = (Bn)∞
n=1 with B2j = Aj and B2j−1 = A∗

j . Let Hk be
the k-th component H in H∞. Set H1 = ⊕∞

j=1H2j−1 and H2 = ⊕∞
j=1H2j .

Then H∞ = H1 ⊕ H2 and with respect to this decomposition, B = A� ⊕ A
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and B� = A ⊕ A�. As A ∈ Dp(�)), we have A,A� ∈ Sp(H,H∞). Hence A� ∈
Sp(H,H1), A ∈ Sp(H,H2). Then, by (2.1), (A�)∗A�, A∗A ∈ Sp/2(H). There-
fore B∗B = (A�)∗A� + A∗A ∈ Sp/2(H). Then, by (2.1), B ∈ Sp(H,H∞).

Similarly, we have B� ∈ Sp(H,H∞). Hence B ∈ Dp(�). We also have

B∗
2n−1B2n−1 + B∗

2nB2n = AnA∗
n + A∗

nAn = 2(X2
n + Y 2

n ) ∈ Sp/2(H).

Set T 2
m =

∑m
n=1(X

2
n + Y 2

n ). Then Tm ∈ Sp(H) and, by (2.1),
∥
∥T 2

m

∥
∥

p/2
=

‖Tm‖2
p. This yields

‖B‖2
p

(2.1)
= ‖B∗B‖p/2

(2.13)
= lim

m→∞

∥
∥
∥
∥
∥

m∑

n=1

(B∗
2n−1B2n−1 + B∗

2nB2n)

∥
∥
∥
∥
∥

p/2

= 2 lim
m→∞

∥
∥
∥
∥
∥

m∑

n=1

(X2
n + Y 2

n )

∥
∥
∥
∥
∥

p/2

= 2 lim
m→∞

∥
∥T 2

m

∥
∥

p/2
= 2 lim

m→∞ ‖Tm‖2
p . (5.10)

As ‖B2n‖p = ‖An‖p = ‖A∗
n‖p = ‖B2n−1‖p, we have, for each q,

‖B‖q
lq(Sp) =

∞∑

n=1

(
‖B2n‖q

p + ‖B2n−1‖q
p

)

=
∞∑

j=1

‖An‖q
p +

∞∑

j=1

‖A∗
n‖q

p = 2 ‖A‖q
lq(Sp) . (5.11)

Let 1 ≤ p ≤ 2. Substituting q = 2 and q = p in (5.11), we obtain

2
1
2 ‖A‖l2(Sp)

(5.11)
= ‖B‖l2(Sp)

(2.16)
≤ ‖B‖p

(5.10)
= 21/2 lim

m→∞ ‖Tm‖p

= 21/2 lim
m→∞

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
m∑

j=1

(X2
j + Y 2

j )

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

p

(5.10)
= ‖B‖p

(2.16)
≤ ‖B‖lp(Sp)

(5.11)
= 2

1
p ‖A‖lp(Sp) .

Making use of (5.9), we complete the proof in the case when 1 ≤ p ≤ 2.
To prove the reversed inequality in the case 2 ≤ p < ∞, use (2.17)

instead of (2.16). �
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